Diagonalization

Q@

If an n x n matrix A happens to have n linearly independent eigenvectors, then it

can be written (or “diagonalized”) as

A=TAT"
Tt

where
@ T is an n X n invertible matrix, and

— e
@ Ais an n X n diagonal matrix.
N N—

Construction:

o Let Ay, Mg, ..., A, be the eigenvalues of A. (We do not necessarily assume
O E—
they are distinct.)

o Let ¥, s,. .., U, the the corresponding eigenvectors. (We do assume that
these are linearly independent.)

—
@ Foralli=1,2,...,n, we know that Av; = \; V;
e —— W

T
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Diagonalization - 2 AV = NVe, =2, -

@ We can stack these n equations in the form of a matrix equation:

A1'7.$»-~'7» [ | R

, M.

M A e AnVUa
L L | |
that is, i
A
Y N T |
A v, L Ua _ —\7: W . Un -
. I pn
\ Y — \”_Y——~' ‘-—-——y—\)
T T A
N AT =TA
@ Because the v, s, ..., U, are linearly independent, then T must be
invertible. Thus, . ATT" T/\T
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Diagonalization of Hermitian matrices

Lemma (Eigenvalues of a Hermitian matrix)

If A= A¥  then all eigenvalues of A are M;\,_M{ This is true even if A itself
has complex entries. )
Proof:
@ Let A be an eigenvalue of A_;and let ,:zbe an eigenvector corresponding to .
@ Then 2}_\7‘
(A
N
o But also,
(@, A
o Since A= AH then (AZ, )
must equal \*.
@ Therefore, A must be real. O

This lemma mean that all the eigenvalues must be distinct (only that

they must be real). So what we can say about the eigenvectors? Will they be
. . PR =
linearly independent?
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Diagonalization of Hermitian matrices - 2

Lemma (Eigenvectors of a Hermitian matrix)

If A= A", then there exist a set of n pYthonsrmdeigenvectors ¥y, Vs, . . ., Up
such that

Ad =23,

foralli=1,2,....,n.

This result holds even if there are repeated eigenvalues, but it uses the assumption

that -
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Diagonalization of Hermitian matrices - 3

. o . . 1 i A wnitay] wmedix
Diagonalization of a Hermitian matrix: t T 9 ’

nxa H H _
@ Suppose A = A TT=7TT=1.
W i N\ N _"—_ . i
@ Then choosing an orthonormal set of eigenvectors v, ¥s, ..., v, and letting
T = [, Vs, ..., U,] as before, we have
—_— s

A=TAT!
M
@ However, since the are orthonormal, then/T is u,n,i-l;wﬁ. Therefore,

T = _T_H and so
A=TATH o trmsprie.

=
Note: if A is real, it is possible to choose@real and have A=TAT .

p—
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Diagonalization of Hermitian matrices - 44, (a->1)
3 N2
Example: = ML[ ]>

o Let / y e
A A _ [32 12}_('5/;,)\)_4-0
12 3)2 > 3h-A=1%

Then )\1 =2 and Ay = 1, both of which are real since A = AH. Y

o We can derive 7 A=, Aa=l

1 1
U= || and Gy=| v}
- |3 S (VG

@ Thus, A = TAT™, where
M —

T=LU V:]‘—'é[': _|n ) I\=[119 0|1

§,<\7\‘ ,U.>=0.
U =% k=1

N
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Positive definite matrices: Definition

Let A be a square (say, n X n), Hermitian symmetric matrix.

AP BED A-BSO

“;/" s dione®

Recall that we say that A is positive definite if PD

ZRAX >0 A>o0.

holds for all non-zero & € R™ (or C™). Prima ? .
—
Similarly, we say that A is positive semi-definite if PSD, 0‘7:’
3>

"Azz0 AZO0.
1

holds for all non-zero & € R™ (or C™).

Such matrices are also called symmetric, positive (semi-)definite.

h:&: 3 PD,
A=l 0] < e
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Positive definite matrices: Eigenvalues
If A= A we already know the eigenvalues of A are yea/

Furthermore |if A is positive definite, then all eigenvalues of A are m k

@ Proof: Let ¥ be an elgenvector of A and let \ be the corresponding
eigenvalue. “Assume 7 f Then, because Als positive definite,

DHAS
=3

Substituting,

209)> 020793 >0 =2 >0.
because ||7]| > 0. =IBIL >0

Slmllarly,tA is positive semi-definite, then all eigenvalues of A are nonnegative. )
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Positive definite matrices: Weighted inner products

Positive definite matrices can be used to define variations on the standard ¢5 inner
Jositive dennite matrices

product.

. . Hermitim . .
In particular, suppose A is a symmetric, positive definite matrix. Then
T e —

. H g RPH=3"%
<$,Q>A = yHAx =4

Y
/’ A='—I

defines a valid inner product on C".

Consequently,

WRlls =J<E. 20 =3 A3

defines a valid induced norm on C™.
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Positive definite matrices: Geometry

H m\"b)m‘\
Suppose A is symmetric and positive definite.

&
Consider the optimization problems
(1) max 1] = and (2)min 1% = min #7AZ.
zeCr || 7|3 ¢ zeCr ||F||3  @ech

? (== 0 Z]2=1

The maximum value of the first problem is given by? . (A) and occurs when &
equals the corresponding eigenvector of A. 1‘
—

Similarly, the minimum value of nd _problem is given by)\m,\g A) and
occurs when T equals the correspondlng eigenvector of A.
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Positive definite matrices: Geometry - 2 ¢%,00= <i o Y; , Vs

e d
Proof (for the maximization problem): = é o;<V; iy
. . — — — »
o Since the eigenvectors ¥, ¥s, ..., ¥, can be assumed\to be .
e = =3
orthonormal. Call the corresponding eigenvalues A1, As, .. ,)\n. »9*;
e 1Fe

o Let £ € C™ be arbitrary. Then & = a1 77 + as¥s + -
p—~—— . PRGN g
coefficients are given by a; = {3, U yfor i = 1,2, ..
@ This implies that the constraint term obeys

=37 = (Za, > Zd,

and that the objective function obeys

n S n
||x||A—xHAm—<Zo(,V;)A Zd‘ 2 =<Zai*17iH)-
A — i=1 j=1 N izl]—;

T




Positive definite matrices: Geometry - 3

o Continuing, the objective function obeys

—

‘ %
@ Thus, the optimization problem becomes 1?"/ /

max such that Z: 1.

i . ™\

@ Suppose, without loss of genérality, that \y > \o > ... > ), > 0.
@ Then the optimal choice could be oy = land as = a3 =... = a, =0.

Therefore, the maximum value attained equals (i.e., the maximum
eigenvalue), and the # that maximizes this objective function simply equals
¥ (i.e., the eigenvector corresponding to the maximum eigenvalue).

- -

xX= V.

s. ﬁ“: =1
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Positive definite matrices: Connection to matrix norms
Recall the 2-norm of a matrix A:
N —

spectrel T 4, = u(cp

l|Z]|l2=1
=

Well, note that

|4zl = /(az)7 Az ~ (T AT A ~([FT D)

AT = (ADAD = 1431120
For any matrix_1_4, it turns out that |s positive semi-definite. Thug) it follows
- A'A ic PsP.
D= 0 By = o KB
z \’-—Tq——

K
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Positive definite matrices: Connection to matrix norms - 2

3 _—,3-H
Now, consider the special case where A=TA T

@ In this case, A"-;_ T/\nTH'

Ilgy= 140 <
e Also, sincelth T unitary, t men A% = TA2TH  and so
.(“!!’9 i (A h

=\, (A% us, when A = AH we haveT

||A||2 = sup |Z||a2 = v Amax AQ]; mas t?\t‘A)‘

llZ]l2=1
\

o Similarly, it follows that [[A7 |2 = Ton [niwo|

|
A=TAT" = A'=TA'T" = N~

f’l*/ |

4. = J(AY| = 1
A = wes [ 2aCAO] = Il mia 2]
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