
Diagonalization
If an n⇥ n matrix A happens to have n linearly independent eigenvectors, then it

can be written (or “diagonalized”) as

where

T is an n⇥ n invertible matrix, and

⇤ is an n⇥ n diagonal matrix.

Construction:

Let �1,�2, . . . ,�n be the eigenvalues of A. (We do not necessarily assume

they are distinct.)

Let ~v1,~v2, . . . ,~vn the the corresponding eigenvectors. (We do assume that

these are linearly independent.)

For all i = 1, 2, . . . , n, we know that A~vi = .
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Diagonalization - 2
We can stack these n equations in the form of a matrix equation:

A =

that is,

A =

Because the ~v1,~v2, . . . ,~vn are linearly independent, then T must be

invertible. Thus,
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Diagonalization of Hermitian matrices

Lemma (Eigenvalues of a Hermitian matrix)

If A = AH , then all eigenvalues of A are . (This is true even if A itself
has complex entries.)

Proof:

Let � be an eigenvalue of A and let ~x be an eigenvector corresponding to �.
Then

hA~x, ~xi = h�~x, ~xi = �h~x, ~xi
But also,

h~x,A~xi = h~x,�~xi = �⇤h~x, ~xi
Since A = AH

, then hA~x, ~xi must equal h~x,A~xi, and so this implies that �
must equal �⇤

.

Therefore, � must be real.

This lemma does not mean that all the eigenvalues must be distinct (only that

they must be real). So what we can say about the eigenvectors? Will they be

linearly independent?
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Diagonalization of Hermitian matrices - 2

Lemma (Eigenvectors of a Hermitian matrix)

If A = AH , then there exist a set of n eigenvectors ~v1,~v2, . . . ,~vn
such that

for all i = 1, 2, . . . , n.

This result holds even if there are repeated eigenvalues, but it uses the assumption

that A = AH
.
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Diagonalization of Hermitian matrices - 3
Diagonalization of a Hermitian matrix:

Suppose A = AH
.

Then choosing an orthonormal set of eigenvectors ~v1,~v2, . . . ,~vn and letting

T = [~v1,~v2, . . . ,~vn] as before, we have

A = T⇤T�1

However, since the {~vi} are orthonormal, then T is . Therefore,

T�1 = and so

A = T⇤TH

Note: if A is real, it is possible to choose T real and have A = .
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Diagonalization of Hermitian matrices - 4
Example:

Let

A = AH =


3/2 1/2
1/2 3/2

�

Then �1 = 2 and �2 = 1, both of which are real since A = AH
.

We can derive

~v1 =

"
1p
2
1p
2

#
and ~v1 =

"
1p
2

� 1p
2

#

Thus, A = T⇤TH
, where
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Positive definite matrices: Definition
Let A be a square (say, n⇥ n), Hermitian symmetric matrix.

Recall that we say that A is positive definite if

holds for all non-zero ~x 2 Rn
(or Cn

).

Similarly, we say that A is positive semi-definite if

holds for all non-zero ~x 2 Rn
(or Cn

).

Such matrices are also called symmetric, positive (semi-)definite.
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Positive definite matrices: Eigenvalues
If A = AH

, we already know the eigenvalues of A are .

Furthermore, if A is positive definite, then all eigenvalues of A are .

Proof: Let ~v be an eigenvector of A and let � be the corresponding

eigenvalue. Assume ~v 6= ~0. Then, because A is positive definite,

Substituting,

because k~vk > 0.

Similarly, if A is positive semi-definite, then all eigenvalues of A are nonnegative.
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Positive definite matrices: Weighted inner products
Positive definite matrices can be used to define variations on the standard `2 inner

product.

In particular, suppose A is a symmetric, positive definite matrix. Then

h~x, ~yiA := ~yHA~x

defines a valid inner product on Cn
.

Consequently,

defines a valid induced norm on Cn
.
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Positive definite matrices: Geometry
Suppose A is symmetric and positive definite.

Consider the optimization problems

max
~x2Cn

k~xk2
A

k~xk22
= max

~x2Cn

k~xk2=1

~xHA~x and min
~x2Cn

k~xk2
A

k~xk22
= min

~x2Cn

k~xk2=1

~xHA~x.

The maximum value of the first problem is given by and occurs when ~x
equals the corresponding eigenvector of A.

Similarly, the minimum value of the second problem is given by and

occurs when ~x equals the corresponding eigenvector of A.
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Positive definite matrices: Geometry - 2
Proof (for the maximization problem):

Since A = AH
, the eigenvectors ~v1,~v2, . . . ,~vn can be assumed to be

orthonormal. Call the corresponding eigenvalues �1,�2, . . . ,�n.

Let ~x 2 Cn
be arbitrary. Then ~x = ↵1~v1 + ↵2~v2 + · · ·+ ↵n~vn, where the

coe�cients are given by ↵i = for i = 1, 2, . . . , n.

This implies that the constraint term obeys

k~xk22 = ~xH~x =

 
nX

i=1

!0

@
nX

j=1

1

A =
nX

i=1

|↵i|2

and that the objective function obeys

k~xk2
A
= ~xHA~x =

 
nX

i=1

!
A

0

@
nX

j=1

1

A =

 
nX

i=1

↵⇤
i
~vH
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nX

j=1

1

A
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Positive definite matrices: Geometry - 3
Continuing, the objective function obeys

k~xk2
A
= ~xHA~x =

nX

i=1

.

Thus, the optimization problem becomes

max
~↵

nX

i=1

|↵i|2�i such that

nX

i=1

|↵i|2 = 1.

Suppose, without loss of generality, that �1 � �2 � . . . � �n � 0.

Then the optimal choice could be ↵1 = and ↵2 = ↵3 = . . . = ↵n = .

Therefore, the maximum value attained equals �1 (i.e., the maximum

eigenvalue), and the ~x that maximizes this objective function simply equals

~v1 (i.e., the eigenvector corresponding to the maximum eigenvalue).

25

ndn
my

THAI S4. 115115=1 ,

we
oo€oog T
T o

-

O

Iz Th
.



Positive definite matrices: Connection to matrix norms
Recall the 2-norm of a matrix A:

kAk2 = sup
~x2Cn

k~xk2=1

kA~xk2.

Well, note that

kA~xk2 =
q

(A~x)HA~x =
p
~xHAHA~x = k~xkAHA.

For any matrix A, it turns out that AHA is positive semi-definite. Thus, it follows

that

kAk2 = sup
k~xk2=1

k~xkAHA =
q
�max( ).
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Positive definite matrices: Connection to matrix norms - 2
Now, consider the special case where A = AH

.

In this case,

k~xkAHA = k~xkA2 .

Also, since A = T⇤TH
with T unitary, then A2 = T⇤2TH

, and so

(�i(A))2 = �i(A2). Thus, when A = AH
we have

kAk2 = sup
k~xk2=1

k~xkA2 =
p
�max(A2) =

Similarly, it follows that kA�1k2 =
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