Math 131AH - Honors Real Analysis I
 University of California, Los Angeles

Duc Vu

Winter 2021

This is math 131AH - Honors Real Analysis I taught by Professor Visan, and our TA is Thierry Laurens. We meet weekly on MWF from 10:00am - 10:50am for lectures. There are two textbooks used for the class, Principles of Mathematical Analysis by Rudin and Metric Spaces by Copson. Note that some of the theorems' name are not necessarily their official names. It's just a way for me to reference them without the need of searching through pages for their contents. You can find other lecture notes at my github site. Please let me know through my email if you spot any mathematical errors/typos.

Contents

1 Lec 1: Jan 4, 2021 5
1.1 Logical Statments \& Basic Set Theory 5
2 Lec 2: Jan 6, 2021 8
2.1 Mathematical Induction 8
3 Lec 3: Jan 8, 2021 13
3.1 Equivalence Relation 13
3.2 Equivalence Class 13
4 Lec 4: Jan 11, 2021 16
4.1 Field \& Ordered Field 16
5 Lec 5: Jan 13, 2021 20
5.1 Ordered Field (Cont'd) 20
6 Lec 6: Jan 15, 2021 23
6.1 Least Upper Bound \& Greatest Lower Bound 23
7 Lec 7: Jan 20, 2021 26
7.1 Least Upper \& Greatest Lower Bound (Cont'd) 26
8 Lec 8: Jan 22, 2021 29
8.1 Construction of the Reals 29
9 Lec 9: Jan 25, 2021 32
9.1 Construction of the Reals (Cont'd) 32
10 Lec 10: Jan 27, 2021 36
10.1 Sequences 36
11 Lec 11: Jan 29, 2021 40
11.1 Convergent and Divergent Sequences 40
12 Lec 12: Feb 1, 2021 43
12.1 Cauchy Sequences 43
13 Lec 13: Feb 3, 2021 47
13.1 Limsup and Liminf 47
14 Lec 14: Feb 5, 2021 50
14.1 Limsup and Liminf (Cont'd) 50
15 Lec 15: Feb 8, 2021 54
15.1 Limsup and Liminf (Cont'd) 54
15.2 Series 55
16 Lec 16: Feb 10, 2021 58
16.1 Series (Cont'd) 58
17 Lec 17: Feb 12, 2021 62
17.1 Rearrangements of Series 62
18 Lec 18: Feb 17, 2021 67
18.1 Functions 67
18.2 Cardinality 69
19 Lec 19: Feb 19, 2021 71
19.1 Functions \& Cardinality (Cont'd) 71
20 Lec 20: Feb 22, 2021 74
20.1 Countable vs. Uncountable Sets 74
21 Lec 21: Feb 24, 2021 77
21.1 Countable vs. Uncountable Sets (Cont'd) 77
21.2 Metric Spaces 79
22 Lec 22: Feb 26, 2021 81
22.1 Hölder \& Minkowski Inequalities 81
22.2 Open Sets 83
23 Lec 23: Mar 1, 2021 87
23.1 Open Sets (Cont'd) 87
23.2 Closed Sets 88
24 Lec 24: Mar 3, 2021 92
24.1 Closed Sets (Cont'd) 92
24.2 Subspaces of Metric Spaces 93
24.3 Complete Metric Spaces 95
25 Lec 25: Mar 5, 2021 96
25.1 Complete Metric Spaces (Cont'd) 96
25.2 Examples of Complete Metric Spaces 97
26 Lec 26: Mar 8, 2021 100
26.1 Examples of Complete Metric Spaces (Cont'd) 100
26.2 Connected Sets 101
27 Lec 27: Mar 10, 2021 104
27.1 Connected Sets (Cont'd) 104
28 Lec 28: Mar 12, 2021 107
28.1 Connected Sets (Cont'd) 107
28.2 Connected Subsets 108
List of Theorems
5.2 Ordered Field 21
7.1 Existence of \mathbb{R} 26
7.2 Archimedean Property 26
8.4 Construction of \mathbb{R} (Existence) 29
11.1 Properties of Convergent Sequences 40
11.3 Monotone Convergence 42
12.3 Cauchy Criterion - Sequence 43
12.10Bolzano - Weierstrass 45
13.4 lim, limsup, and liminf 48
14.1 Existence of Monotonic Subsequence 50
14.4 Properties of the Set of Subsequential Limit 52
15.1 Cesaro - Stolz 54
15.4 Cauchy Criterion - Series 56
15.7 Comparison Test 57
16.1 Dyadic Criterion 58
16.3 Root Test 59
16.4 Ratio Test 60
16.5 Abel Criterion 60
17.3 Riemann 64
17.4 Absolute Convergence and Convergence of Rearrangement 65
19.5 Schröder - Bernstein 73
20.1 Union of Countable Sets 75

List of Definitions

3.1 Equivalence Relation 13
3.4 Equivalence Class 13
4.1 Field 16
4.6 Order Relation 18
4.8 Ordered Field 19
6.1 Boundedness - Maximum and Minimum 23
6.5 Least Upper Bound 24
6.7 Greatest Lower Bound 25
6.8 Bound Property 25
7.7 Dense Set 28
8.5 (Dedekind) Cuts 30
10.1 Sequence 36
10.3 Boundedness of Sequence 36
10.4 Absolute Value 37
10.5 Convergent Sequence 37
11.4 Divergent Sequence 42
12.2 Cauchy Sequence 43
12.6 Subsequence 44
13.1 lim sup and liminf 48
14.2 Subsequential Limit 51
15.3 Convergent/Absolutely Convergent Series 55
17.1 Rearrangement 62
18.1 Function 67
18.5 Composition 67
18.7 Inverse Function 68
18.8 Preimage 68
18.9 Equipotent 69
18.10Finite Set, Countable vs. Uncountable 69
21.5 Metric Space 79
21.7 (Un)Bounded Metric Space 79
21.9 Distance Between Sets 80
21.11Distance Between Point and Set 80
22.6 Ball/Neighborhood of a Point 84
22.8 Interior Point 86
23.3 Closed Set 88
23.5 Adherent Point 89
23.6 Isolated Point 89
23.7 Accumulation Point 90
24.2 Subspace of Metric Space 93
24.7 Sequential Limit 95
24.9 Cauchy Sequence (MS) 95
24.11Complete Metric Space 95
26.1 Separated Set 101
27.1 Connected/Disconnected Set 104

§1 Lec 1: Jan 4, 2021

§1.1 Logical Statments \& Basic Set Theory

Let A and B be two statements. We write

- A if A is true.
- not A if A is false.
- A and B if both A and B are true.
- A or B if A is true or B is true or both A and B are true (inclusive "or" - it is not either A or B).
- $\underbrace{A \Longrightarrow B}$: if $(A$ and $B)$ or (not $A)$ - We read this " A implies B " or "If A then B ". In this case, B is at least as true as A. In particular, a false statement can imply anything.

Example 1.1

Consider the following statement: If x is a natural number (i.e., $x \in \mathbb{N}=\{1,2,3, \ldots\}$, then $x \geq 1$. In this case, $A=$ " x is a natural number", $B=" x \geq 1$ ". Taking $x=3$, we get a $T \Longrightarrow T$. Taking $x=\pi$ we get $F \Longrightarrow T$. If $x=0$, we get $F \Longrightarrow F$.

Example 1.2

Consider the statement: $\underbrace{\text { If a number is less than } 10}_{A}, \underbrace{\text { then it's less than } 20}_{B}$.
Taking

$$
\begin{array}{rlrl}
\text { number } & =5, & & T \Longrightarrow T \\
& =15, & F \Longrightarrow T \\
& =25, & F \Longrightarrow F
\end{array}
$$

We write $\underbrace{A \Longleftrightarrow B}$ if A and B are true together or false together. We read this as " A is equivalent to B " or " A if and only if B ". Compare these notions to similar ones from set theory. Let X is an ambient space. Let A and B be subsets of X. Then

$$
\begin{aligned}
& \quad A^{c}=\{x \in X ; x \notin A\} \\
& A \cap B=\{x \in X ; x \in A \text { and } x \in B\} \\
& A \cup B=\{x \in X ; x \in A \text { or } x \in B \text { or } x \in A \cap B\} \\
& A \subseteq B \text { corresponds to } A \Longrightarrow B \\
& A=B \quad A \Longleftrightarrow B
\end{aligned}
$$

Truth table:

A	B	not A	A and B	A or B	$\mathrm{A} \Longrightarrow \mathrm{B}$	$\mathrm{A} \Longleftrightarrow \mathrm{B}$
T	T	F	T	T	T	T
T	F	F	F	T	F	F
F	T	T	F	T	T	F
F	F	T	F	F	T	T

Example 1.3

Using the truth table show that $A \Longrightarrow B$ is logically equivalent to (not A) or B .

A	B	$\mathrm{A} \Longrightarrow \mathrm{B}$	not A	(not A) or B
T	T	T	F	T
T	F	F	F	F
F	T	T	T	T
F	F	T	T	T

Homework 1.1. Using the truth table prove De Morgan's laws:

$$
\begin{aligned}
\operatorname{not}(A \text { and } B) & =(\operatorname{not} A) \text { or }(\operatorname{not} B) \\
\operatorname{not}(A \text { or } B) & =(\operatorname{not} A) \text { and }(\operatorname{not} B)
\end{aligned}
$$

Compare this to

$$
\begin{aligned}
& (A \cap B)^{c}=A^{c} \cup B^{c} \\
& (A \cup B)^{c}=A^{c} \cap B^{c}
\end{aligned}
$$

Exercise 1.1. Negate the following statement: If A then B.

Solution:

$$
\begin{aligned}
\operatorname{not}(A \Longrightarrow B) & =\operatorname{not}((\operatorname{not} \mathrm{A}) \text { or } \mathrm{B}) \\
& =[\operatorname{not}(\operatorname{not} \mathrm{A}) \text { and }(\operatorname{not} \mathrm{B})] \\
& =A \text { and }(\operatorname{not} \mathrm{B})
\end{aligned}
$$

The negation is "A is true and B is false".

Example 1.4

Negate the following sentence: If I speak in front of the class, I am nervous. I speak in front of the class and I am not nervous.

Quantifiers:

- \forall reads "for all" or "for any"
- \exists reads "there is" or "there exists"

The negation of $\forall A, B$ is true is $\exists A$ s.t. B is false.
The negation of $\exists A, B$ is true is $\forall A, B$ is false.

Example 1.5
Negate the following: Every student had coffee or is late for class.
\forall student (had coffee) or (is late for class)
\exists student s.t. not[(had coffee) or (is late for class)]
\exists student s.t. not (had coffee) and not (is late for class)
Ans: There is a student that did not have coffee and is not late for class.

$\S 2 \mid$ Lec 2: Jan 6, 2021

§2.1 Mathematical Induction

The natural numbers $-\mathbb{N}=\{1,2,3, \ldots\}$; they satisfy the Peano axioms:
N1) $1 \in \mathbb{N}$
N2) If $n \in \mathbb{N}$ then $n+1 \in \mathbb{N}$
N3) 1 is not the successor of any natural number.
N4) If $n, m \in \mathbb{N}$ such that $n+1=m+1$ then $n=m$
N5) Let $S \subseteq \mathbb{N}$. Assume that S satisfies the following two conditions:
(i) $1 \in S$
(ii) If $n \in S$ then $n+1 \in S$

Then $S=\mathbb{N}$.
Axiom N5) forms the basis for mathematical induction. Assume we want to prove that a property $P(n)$ holds for all $n \in \mathbb{N}$. Then it suffices to verify two steps:
Step 1 (base step): $P(1)$ holds.
$\overline{\text { Step } 2}$ (inductive step): If $P(n)$ is true for some $n \geq 1$, then $P(n+1)$ is also true, i.e., $P(n) \Longrightarrow P(n+1) \forall n \geq 1$.
Indeed, if we let

$$
S=\{n \in \mathbb{N}: P(n) \text { holds }\}
$$

then Step 1 implies $1 \in S$ and Step 2 implies if $n \in S$ then $n+1 \in S$. By Axiom N5 we deduce $S=\mathbb{N}$.

Example 2.1

Prove that

$$
1^{2}+2^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6} \quad \forall n \in \mathbb{N}
$$

Solution: We argue by mathematical induction. For $n \in \mathbb{N}$ let $P(n)$ denote the statement

$$
1^{2}+2^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Step 1 (Base step): $P(1)$ is the statement

$$
1^{2}=\frac{1 \cdot 2 \cdot 3}{6}
$$

which is true, so $P(1)$ holds.
Step 2 (Inductive step): Assume that $P(n)$ holds for some $n \in \mathbb{N}$. We want to know $\overline{P(n+1)}$ holds. We know

$$
1^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Let's add $(n+1)^{2}$ to both sides of $P(n)$

$$
\begin{aligned}
1^{2}+\ldots+n^{2}+(n+1)^{2} & =\frac{n(n+1)(2 n+1)}{6}+(n+1)^{2} \\
& =(n+1)\left[\frac{n(2 n+1)}{6}+n+1\right] \\
& =\frac{(n+1)(n+2)(2 n+3)}{6}
\end{aligned}
$$

So $P(n+1)$ holds.
Collecting the two steps, we conclude $P(n)$ holds $\forall n \in \mathbb{N}$.

Example 2.2

Prove that $2^{n}>n^{2}$ for all $n \geq 5$.
Solution: We argue by mathematical induction. For $n \geq 5$ let $P(n)$ denote the statement $2^{n}>n^{2}$.
Step 1 (base step): $P(5)$ is the statement

$$
32=2^{5}>5^{2}=25
$$

which is true. So $P(5)$ holds.
Step 2 (Inductive step): Assume $P(n)$ is true for some $n \geq 5$ and we want to prove $\overline{P(n+1)}$. We know

$$
2^{n}>n^{2}
$$

Let us manipulate the above inequality to get $P(n+1)$

$$
\begin{gathered}
2^{n}>n^{2} \\
2^{n+1}>2 n^{2}=(n+1)^{2}+n^{2}-2 n-1 \\
2^{n+1}>(n+1)^{2}+(n-1)^{2}-2
\end{gathered}
$$

As $n \geq 5$ we have $(n-1)^{2}-2 \geq 4^{2}-2=14 \geq 0$. So

$$
2^{n+1}>(n+1)^{2}
$$

So $P(n+1)$ holds.
Collecting the two steps, we conclude that $P(n)$ holds $\forall n \geq 5$.

Remark 2.3. Each of the two steps are essential when arguing by induction. Note that $P(1)$ is true. However, our proof of the second step fails if $n=1:(1-1)^{2}-2=-2<0$. Note that our proof of the second step is valid as soon as

$$
(n-1)^{2}-2 \geq 0 \Longleftrightarrow(n-1)^{2} \geq 2 \Longleftrightarrow n-1 \geq 2 \Longleftrightarrow n \geq 3
$$

However, $P(3)$ fails.

Example 2.4

Prove by mathematical induction that the number $4^{n}+15 n-1$ is divisible by 9 for all $n \geq 1$.
Solution: We'll argue by induction. For $n \geq 1$, let $P(n)$ denote the statement that " $4^{n}+15 n-1$ is divisible by 9 ". We write this $9 /\left(4^{n}+15 n-1\right)$.
Step 1: $4^{1}+15 \cdot 1-1=18=9 \cdot 2$. This is divisible by 9 , so $P(1)$ holds.
Step 2: Assume $P(n)$ is true for some $n \geq 1$. We want to show $P(n+1)$ holds.

$$
\begin{aligned}
4^{n+1}+15(n+1)-1 & =4\left(4^{n}+15 n-1\right)-60 n+4+15 n+14 \\
& =4\left(4^{n}+15 n-1\right)-45 n+18 \\
& =4\left(4^{n}+15 n-1\right)-9(5 n-2)
\end{aligned}
$$

By the inductive hypothesis, $9 /\left(4^{n}+15 n-1\right) \Longrightarrow 9 / 4\left(4^{n}+15 n-1\right)$. Also $9 / 9 \underbrace{(5 n-2)}_{\in \mathbb{N}}$.
So

$$
9 /\left[4\left(4^{n}+15 n-1\right)-9(5 n-2)\right]
$$

So $P(n+1)$ holds. Collecting the two steps, we conclude $P(n)$ holds $\forall n \in \mathbb{N}$.

Example 2.5

Compute the following sum and then use mathematical induction to prove your answer: for $n \geq 1$

$$
\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+\ldots+\frac{1}{(2 n-1)(2 n+1)}
$$

Solution: Note that $\frac{1}{(2 n-1)(2 n+1)}=\frac{1}{2}\left[\frac{1}{2 n-1}-\frac{1}{2 n+1}\right] \forall n \geq 1$. So

$$
\begin{aligned}
\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\ldots+\frac{1}{(2 n-1)(2 n+1)} & =\frac{1}{2}\left\{\frac{1}{1}-\frac{1}{3}+\frac{1}{3} \ldots+\frac{1}{2 n-1}-\frac{1}{2 n+1}\right\} \\
& =\frac{1}{2} \frac{2 n}{2 n+1}=\frac{n}{2 n+1}
\end{aligned}
$$

For $n \geq 1$, let $P(n)$ denote the statement

$$
\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\ldots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}
$$

Step 1: $P(1)$ becomes $\frac{1}{1 \cdot 3}=\frac{1}{3}$, which is true. So $P(1)$ holds.
Step 2: Assume $P(n)$ holds for some $n \geq 1$. We want to show $P(n+1)$. We know

$$
\frac{1}{1 \cdot 3}+\ldots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}
$$

Let's add $\frac{1}{(2 n+1)(2 n+3)}$ to both sides

$$
\begin{aligned}
\frac{1}{1 \cdot 3}+\ldots+\frac{1}{(2 n+1)(2 n+3)} & =\frac{n}{2 n+1}+\frac{1}{(2 n+1)(2 n+3)} \\
& =\frac{2 n^{2}+3 n+1}{(2 n+1)(2 n+3)} \\
& =\frac{(n+1)(2 n+1)}{(2 n+1)(2 n+3)} \\
& =\frac{n+1}{2 n+3}
\end{aligned}
$$

So $P(n+1)$ holds.
Collecting the two steps, we conclude $P(n)$ holds for $\forall n \geq 1$.

§3 Lec 3: Jan 8, 2021

§3.1 Equivalence Relation

The set of integers is $\mathbb{Z}=\mathbb{N} \cup\{0\} \cup\{-n: n \in \mathbb{N}\}$.

Definition 3.1 (Equivalence Relation) - An equivalence relation \sim on a non-empty set A satisfies the following three properties:

- Reflexivity: $a \sim a, \forall a \in A$
- Symmetry: If $a, b \in A$ are such that $a \sim b$, then $b \sim a$
- Transitivity: If $a, b, c \in A$ are such that $a \sim b$ and $b \sim c$, then $a \sim c$.

Example 3.2

$=$ is an equivalence relation on \mathbb{Z}.

Example 3.3

Let $q \in \mathbb{N}, q>1$. For $a, b \in \mathbb{Z}$ we write $a \sim b$ if $q /(a-b)$. This is an equivalence relation on \mathbb{Z}. Indeed, it suffices to check 3 properties:

- Reflexivity: If $a \in \mathbb{Z}$ then $a-a=0$, which is divisible by q. So $q /(a-a) \Longleftrightarrow$ $a \sim a$.
- Symmetry: Let $a, b \in \mathbb{Z}$ such that $a \sim b \Longleftrightarrow q /(a-b)$ which means there exists $\overline{k \in \mathbb{Z} \text { s.t. }} a-b=k q \Longrightarrow b-a=\underbrace{-k}_{\in \mathbb{Z}} \cdot q$. So $q /(b-a) \Longleftrightarrow b \sim a$.
- Transitivity: Let $a, b, c \in \mathbb{Z}$ such that $a \sim b$ and $b \sim c, a \sim b \Longleftrightarrow q /(a-b) \Longrightarrow$ $\exists n \in \mathbb{Z}$ s.t. $a-b=q \cdot n$. And $b \sim c \Longleftrightarrow q /(b-c) \Longrightarrow \exists m \in \mathbb{Z}$ s.t. $b-c=q \cdot m$. So, we must have $a-c=q \underbrace{(n+m)}_{\in \mathbb{Z}}$. So $q /(a-c) \Longleftrightarrow a \sim c$.

§3.2 Equivalence Class

Definition 3.4 (Equivalence Class) - Let ~ denote an equivalence relation on a non-empty set A. The equivalence class of an element $a \in A$ is given by

$$
C(a)=\{b \in A: a \sim b\}
$$

Proposition 3.5 (Properties of Equivalence Classes)

Let \sim denote an equivalence relation on a non-empty set A. Then

1. $a \in C(a) \quad \forall a \in A$.
2. If $a, b \in A$ are such that $a \sim b$, then $C(a)=C(b)$.
3. If $a, b \in A$ are such that $a \nsim b$, then $C(a) \cap C(b)=\emptyset$.
4. $A=\bigcup_{a \in A} C(a)$

Proof. 1. By reflexivity, $a \sim a \quad \forall a \in A \Longrightarrow a \in C(a) \quad \forall a \in A$.
2. Assume $a, b \in A$ with $a \sim b$. Let's show $C(a) \subseteq C(b)$. Let $c \in C(a)$ be arbitrary. Then $a \sim c$ (by definition). As $a \sim b$ (by hypothesis), which implies $b \sim a$ (by symmetry). By transitivity, we obtain $b \sim c \Longrightarrow c \in C(b)$. This proves that $C(a) \subseteq C(b)$.
A similar argument shows that $C(b) \subseteq C(a)$. Putting the two together, we obtain $C(a)=C(b)$.
3. We argue by contradiction. Assume that $a, b \in A$ are such that $a \nsim b$, but $C(a) \cap$ $C(b) \neq \emptyset$. Let $c \in C(a) \cap C(b)$.

$$
\begin{gathered}
c \in C(a) \Longrightarrow a \sim c \\
c \in C(b) \Longrightarrow b \sim c \Longrightarrow c \sim b \quad \text { (by symmetry) }
\end{gathered}
$$

By transitivity, $a \sim b$. This contradicts the hypothesis $a \nsim b$. This proves that if $a \nsim$ then $C(a) \cap C(b)=\emptyset$.
4. Clearly, $C(a) \subseteq A \quad \forall a \in A$, we get

$$
\bigcup_{a \in A} C(a) \subseteq A
$$

Conversely, $A=\bigcup_{a \in A}\{a\} \subseteq \bigcup_{a \in A} C(a)$. Putting everything together, we obtain $A=\bigcup_{a \in A} C(a)$.

Example 3.6

Take $q=2$ in our previous example: for $a, b \in \mathbb{Z}$ we write $a \sim b$ if $2 /(a-b)$. The equivalence classes are

$$
\begin{aligned}
C(0) & =\{a \in \mathbb{Z}: 2 /(a-0)\}=\{2 n: n \in \mathbb{Z}\} \\
C(1) & =\{a \in \mathbb{Z}: 2 /(a-1)\}=\{2 n+1: n \in \mathbb{Z}\} \\
\mathbb{Z} & =C(0) \cup C(1)
\end{aligned}
$$

Let $F=\{(a, b) \in \mathbb{Z} \times \mathbb{Z}: b \neq 0\}$. If $(a, b),(c, d) \in F$ we write $(a, b) \sim(c, d)$ if $a d=$ bc.

Example 3.7

$(1,2) \sim(2,4) \sim(3,6) \sim(-4,-8)$.

Lemma 3.8

\sim is an equivalence relation on F.

Proof. We have to check 3 properties:

- Reflexivity: Fix $(a, b) \in F$. As $a b=b a$ we have $(a, b) \sim(a, b)$
- Symmetry: Let $(a, b),(c, d) \in F$ such that

$$
(a, b) \sim(c, d) \Longleftrightarrow a d=b c \Longleftrightarrow c b=d a \Longleftrightarrow(c, d) \sim(a, b)
$$

- Transitivity: Let $(a, b),(c, d),(e, f) \in F$ such that $(a, b) \sim(c, d)$ and $(c, d) \sim(e, f)$.

$$
\begin{gathered}
(a, b) \sim(c, d) \Longleftrightarrow a d=b c \Longrightarrow a d f=b c f \\
(c, d) \sim(e, f) \Longleftrightarrow c f=d e \Longrightarrow c f b=d e b \\
\Longrightarrow a d f=d e b \Longrightarrow \underbrace{d}_{\neq 0}(a f-b e)=0, \text { so } a f=b e \Longleftrightarrow(a, b) \sim(e, f)
\end{gathered}
$$

For $(a, b) \in F$, we denote its equivalence class by $\frac{a}{b}$. We define addition and multiplication of equivalence classes as follows:

$$
\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d} ; \frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d}
$$

We have to check that these operations are well-defined. Specifically, if $(a, b) \sim\left(a^{\prime}, b^{\prime}\right)$ and $(c, d) \sim\left(c^{\prime}, d^{\prime}\right)$ then

$$
\begin{align*}
(a d+b c, b d) & \sim\left(a^{\prime} d^{\prime}+b^{\prime} c^{\prime}, b^{\prime} d^{\prime}\right) \tag{1}\\
(a c, b d) & \sim\left(a^{\prime} c^{\prime}, b^{\prime} d^{\prime}\right) \tag{2}
\end{align*}
$$

Let's check (1). We want to show

$$
(a d+b c) b^{\prime} d^{\prime}=b d\left(a^{\prime} d^{\prime}+b^{\prime} c^{\prime}\right)
$$

We know

$$
\begin{aligned}
& (a, b) \sim\left(a^{\prime}, b^{\prime}\right) \Longleftrightarrow a b^{\prime}=b a^{\prime} \quad \mid \cdot d d^{\prime} \\
& (c, d) \sim\left(c^{\prime}, d^{\prime}\right) \Longleftrightarrow c d^{\prime}=d c^{\prime} \quad \mid \cdot b b^{\prime}
\end{aligned}
$$

Adding the two (after multiplying the two terms) together, we have

$$
\begin{aligned}
a b^{\prime} d d^{\prime}+c d^{\prime} b b^{\prime} & =b a^{\prime} d d^{\prime}+d c^{\prime} b b^{\prime} \\
(a d+b c) b^{\prime} d^{\prime} & =b d\left(a^{\prime} d^{\prime}+b^{\prime} c^{\prime}\right)
\end{aligned}
$$

This proves addition is well defined. \qquad
The set of rational numbers is

$$
\mathbb{Q}=\left\{\frac{a}{b}:(a, b) \in F\right\}
$$

§4 Lec 4: Jan 11, 2021

§4.1 Field \& Ordered Field

Definition 4.1 (Field) - A field is a set F with at least two elements with two operators: addition (denoted +) and multiplication (denoted \cdot) that satisfy the following

A1) Closure: if $a, b \in F$ then $a+b \in F$
A2) Commutativity: if $a, b \in F$ then $a+b=b+a$
A3) Associativity: if $a, b, c \in F$ then $(a+b)+c=a+(b+c)$
A4) Identity: $\exists 0 \in F$ s.t. $a+0=0+a=a \forall a \in F$
A5) Inverse: $\forall a \in F \exists(-a) \in F$ s.t. $a+(-a)=-a+a=0$
M1) Closure: if $a, b \in F$ then $a \cdot b \in F$
M2) Commutativity: if $a, b \in F$ then $a \cdot b=b \cdot a$
M3) Associativity: if $a, b, c \in F$ then $(a \cdot b) \cdot c=a \cdot(b \cdot c)$
M4) Identity: $\exists 1 \in F$ s.t. $a \cdot 1=1 \cdot a=a \forall a \in F$
M5) Inverse: $\forall a \in F \backslash\{0\} \exists a^{-1} \in F$ s.t. $a \cdot a^{-1}=a^{-1} \cdot a=1$
D) Distributivity: if $a, b, c \in F$ then $(a+b) \cdot c=a \cdot c+b \cdot c$

Example 4.2

$(\mathbb{N},+, \cdot)$ is not a field. A4 fails.

Example 4.3

$(\mathbb{Z},+, \cdot)$ is not a field. M5 fails.

Example 4.4

$(\mathbb{Q},+, \cdot)$ is a field.
Hw

Recall:

$$
\mathbb{Q}=\left\{\frac{a}{b}:(a, b) \in \mathbb{Z} \times(\mathbb{Z} \backslash\{0\})\right\}
$$

where $\frac{a}{b}$ denotes the equivalence class of $(a, b) \in \mathbb{Z} \times(\mathbb{Z} \backslash\{0\})$ with respect to the equivalence relation

$$
(a, b) \sim(c, d) \Longleftrightarrow a \cdot d=b \cdot c
$$

Note $\frac{1}{2}=\frac{2}{4}$ because $(1,2) \sim(2,4)$. We defined

$$
\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d} \quad \frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d}
$$

Additive identity $\frac{0}{1}$ equivalence class $(0,1)$.
Multiplicative identity $\frac{1}{1}$ equivalence class of $(1,1)$.
Additive inverse: $\frac{a}{b} \in \mathbb{Q}$ has inverse $-\frac{a}{b}$
Multiplicative inverse: $\frac{a}{b} \in \mathbb{Q} \backslash\left\{\frac{0}{1}\right\}$ has inverse $\frac{b}{a}$.

Proposition 4.5

Let $(F,+, \cdot)$ be a field. Then

1. The additive and multiplicative identities are unique.
2. The additive and multiplicative inverses are unique.
3. If $a, b, c \in F$ s.t. $a+b=a+c$ then $b=c$. In particular, if $a+b=a$ then $b=0$.

3'. If $a, b, c \in F$ s.t. $a \neq 0$ and $a \cdot b=a \cdot c$ then $b=c$. In particular, $a \neq 0$ and $a \cdot b=a$ then $b=1$.
4. $a \cdot 0=0 \cdot a=0 \forall a \in F$.
5. If $a, b \in F$ then $(-a) \cdot b=a \cdot(-b)=-(a \cdot b)$
6. If $a, b \in F$ then $(-a) \cdot(-b)=a \cdot b$
7. If $a \cdot b=0$ then $a=0$ or $b=0$.

Proof. 1. We'll show the additive identity is unique. Assume

$$
\exists 0,0^{\prime} \in F \text { s.t. } \forall a \in F,\left\{\begin{array}{l}
a+0=0+a=a \tag{i}\\
a+0^{\prime}=0^{\prime}+a=a
\end{array}\right.
$$

Take $a=0^{\prime}$ in (i) and $a=0$ in (ii) to get

$$
\left.\begin{array}{l}
0^{\prime}+0=0^{\prime} \\
0^{\prime}+0=0
\end{array}\right\} \Longrightarrow 0=0^{\prime}
$$

2. We'll show that the additive inverse is unique. Let $a \in F$. Assume $\exists(-a), a^{\prime} \in F$ s.t.

$$
\left\{\begin{array}{l}
-a+a=a+(-a)=0 \\
a^{\prime}+a=a+a^{\prime}=0
\end{array}\right.
$$

We have

$$
\begin{aligned}
a^{\prime}+a=0 & \mid+(-a) \\
\left(a^{\prime}+a\right)+(-a)=0+(-a) & \stackrel{A 3, A 4}{\Longrightarrow} a^{\prime}+(a+(-a))=-a \\
& \stackrel{A 5}{\Longrightarrow} a^{\prime}+0=-a \xlongequal{\text { A4 }} a^{\prime}=-a
\end{aligned}
$$

3. Assume $a+b=a+c \quad \mid+(-a)$ to the left

$$
\begin{aligned}
-a+(a+b) & =-a+(a+c) \\
\xlongequal{A 3}(-a+a)+b & =(-a+a)+c \\
\xlongequal{A 5} 0+b & =0+c \stackrel{A 4}{\Longrightarrow} b=c
\end{aligned}
$$

So if $a+b=a=a+0$, then $b=0$.
4.

$$
\begin{aligned}
& a \cdot 0 \stackrel{A 4}{=} a \cdot(0+0) \stackrel{D}{=} a \cdot 0+a \cdot 0 \xlongequal{(3)} a \cdot 0=0 \\
& 0 \cdot a \stackrel{A 4}{=}(0+0) \cdot a=0 \cdot a+0 \cdot a \stackrel{(3)}{\Longrightarrow} 0 \cdot a=0
\end{aligned}
$$

5. $(-a) \cdot b+a \cdot b \stackrel{D}{=}(-a+a) \cdot \stackrel{A 5}{=} 0 \cdot b \stackrel{(4)}{=} 0 \Longrightarrow(-a) \cdot b=-(a \cdot b)$. Similarly, $a \cdot(-b)=-(a \cdot b)$.
6. $(-a) \cdot(-b)+[-(a \cdot b)] \stackrel{(5)}{=}(-a) \cdot(-b)+(-a) \cdot b \stackrel{D}{=}(-a)(-b+b) \stackrel{A 5}{=}(-a) \cdot 0 \stackrel{(4)}{=} 0$. So $(-a) \cdot(-b)=a \cdot b$.
7. Assume $a \cdot b=0$. Assume $a \neq 0$. Want to show $b=0$. As $a \neq 0$ then $\exists a^{-1} \in F$ s.t. $a \cdot a^{-1}=a^{-1} \cdot a=1$.

$$
\begin{gathered}
a \cdot b=0 \quad \mid \cdot a^{-1} \text { to the left } \\
a^{-1} \cdot(a \cdot b)=a^{-1} \cdot 0 \stackrel{M 3,(4)}{\Longrightarrow}\left(a^{-1} \cdot a\right) \cdot b=0 \stackrel{M 5}{\Longrightarrow} 1 \cdot b=0 \stackrel{M 4}{\Longrightarrow} b=0
\end{gathered}
$$

Definition 4.6 (Order Relation) - An order relation < on a non-empty set A satisfies the following properties:

- Trichotomy: if $a, b \in A$ then one and only one of the following statement holds: $a<b$ or $a=b$ or $b<a$.
- Transitivity: if $a, b, c \in A$ such that $a<b$ and $b<c$, then $a<c$.

Example 4.7

For $a, b \in \mathbb{Z}$ we write $a<b$ if $b-a \in \mathbb{N}$. This is an order relation.

Notation: We write

$$
\begin{aligned}
& a>b \text { if } b<a \\
& a \leq b \text { if }[a<b \text { or } a=b] \\
& a \geq b \text { if } b \leq a
\end{aligned}
$$

Definition 4.8 (Ordered Field) - Let $(F,+, \cdot)$ be a field. We say $(F,+, \cdot)$ is an ordered field if it is equipped with an order relation $<$ that satisfies the following

1) if $a, b, c \in F$ such that $a<b$ then $a+c<b+c$.
2) if $a, b, c \in F$ such that $a<b$ and $0<c$ then $a \cdot c<b \cdot c$.

Note:
To check something is an ordered field, we have to check that it satisfies the properties of order relation and ordered field.

$\S 5 \mid$ Lec 5: Jan 13, 2021

§5.1 Ordered Field (Cont'd)

Proposition 5.1

Let $(F,+, \cdot,<)$ be an ordered field. Then,

1. $a>0 \Longleftrightarrow-a<0$.
2. If $a, b, c \in F$ are such that $a<b$ and $c<0$, then $a c>b c$.
3. If $a \in F \backslash\{0\}$ then $a^{2}=a \cdot a>0$. In particular, $1>0$.
4. If $a, b \in F$ are such that $0<a<b$ then $0<b^{-1}<a^{-1}$.

Proof. 1. Let's prove" \Longrightarrow ". Assume $a>0$.

$$
\stackrel{01}{\Longrightarrow} a+(-a)>0+(-a) \stackrel{A 5, A 4}{\Longrightarrow} 0>-a
$$

Let's prove " $\Longleftarrow "$. Assume $-a<0$

$$
\stackrel{01}{\Longrightarrow}-a+a<0+a \stackrel{A 5, A 4}{\Longrightarrow} 0<a
$$

2. Assume $a<b$ and $c<0$

$$
\begin{aligned}
a<b<0 \stackrel{01}{\Longrightarrow}-c>0\} & \stackrel{02}{\Longrightarrow} a \cdot(-c)<b \cdot(-c) \\
& \stackrel{01}{\Longrightarrow}-a c+(a c+b c)<-b c+(a c+b c) \\
& \stackrel{A 3, A 2}{\Longrightarrow}(-a c+a c)+b c<-b c+(b c+a c) \\
& \stackrel{A 5, A 3}{\Longrightarrow} 0+b c<(-b c+b c)+a c \\
& \stackrel{A 4, A 5}{\Longrightarrow} b c<0+a c \\
& \stackrel{A 4}{\Longrightarrow} b c<a c
\end{aligned}
$$

3. By trichotomy, exactly one of the following hold:

$$
a>0 \stackrel{02}{\Longrightarrow} a \cdot a>0 \cdot a \Longrightarrow a^{2}>0
$$

or

$$
a<0 \stackrel{2)}{\Longrightarrow} a \cdot a>0 \cdot a \Longrightarrow a^{2}>0
$$

4. First we show that if $a>0$ then $a^{-1}>0$. Let's argue by contradiction. Assume $\exists a \in F$ s.t. $a>0$ but $a^{-1}<0$. Then

$$
\left.\begin{array}{l}
a>0 \\
a^{-1}<0
\end{array}\right\} \stackrel{(2)}{\Longrightarrow} a \cdot a^{-1}<0 \stackrel{M 5}{\Longrightarrow} 1<0
$$

This contradicts (3). So if $a>0$ then $a^{-1}>0$.
Say

$$
\begin{aligned}
0<a<b \mid \cdot a^{-1} \cdot b^{-1} & \\
& \stackrel{02}{\Longrightarrow} 0 \cdot\left(a^{-1} \cdot b^{-1}\right)<a \cdot\left(a^{-1} \cdot b^{-1}\right)<b \cdot\left(a^{-1} \cdot b^{-1}\right) \\
& \stackrel{M 3, M 2}{\Longrightarrow} 0<\left(a \cdot a^{-1}\right) \cdot b^{-1}<b \cdot\left(b^{-1} \cdot a^{-1}\right) \\
& \stackrel{M 5, M 3}{\Longrightarrow} 0<1 \cdot b^{-1}<\left(b \cdot b^{-1}\right) \cdot a^{-1} \\
& \stackrel{M 4, M 5}{\Longrightarrow} 0<b^{-1}<1 \cdot a^{-1} \\
& \stackrel{M 4}{\Longrightarrow} 0<b^{-1}<a^{-1}
\end{aligned}
$$

Theorem 5.2 (Ordered Field)

Let $(F,+, \cdot)$ be a field. The following are equivalent

1) F is an ordered field.
2) There exists $P \subseteq F$ that satisfies the following properties

01 ') For every $a \in F$ one and only one of the following statements holds: $a \in P$ or $a=0$ or $-a \in P$.
02') If $a, b \in P$ then $a+b \in P$ and $a \cdot b \in P$.

Proof. Let's show 1) $\Longrightarrow 2)$. Define $P=\{a \in F: a>0\}$. Let's check (01'). Fix $a \in F$. By trichotomy for the order relation on F we get that exactly one of the following statements is true:

- $a>0 \Longrightarrow a \in P$.
- $a=0$.
- $a<0 \Longrightarrow-a>0 \Longrightarrow-a \in P$.

Let's check (02'). Fix $a, b \in P$.

$$
\left.\begin{array}{l}
a \in P \Longrightarrow a>0 \\
b \in P \Longrightarrow b>0
\end{array}\right\} \stackrel{01}{\Longrightarrow} a+b>0+b \stackrel{A 4}{=} b>0 \Longrightarrow a+b \in P
$$

And

$$
\left.\begin{array}{l}
a \in P \Longrightarrow a>0 \\
b \in P \Longrightarrow b>0
\end{array}\right\} \stackrel{\Longrightarrow}{ } \quad \Longrightarrow \quad \stackrel{02}{\Longrightarrow} a \cdot b>0 \cdot b=0 \Longrightarrow a \cdot b \in P
$$

Let's check that 2$) \Longrightarrow 1$).
For $a, b \in F$ we write $a<b$ if $b-a \in P$. Let's check this is an order relation.

- Trichotomy: Fix $a, b \in F$. By 01 ') exactly one of the following hold:

$$
\begin{aligned}
b-a \in P & \Longrightarrow a<b \\
b-a=0 & \Longrightarrow a=b \\
-(b-a) \in P & \Longrightarrow a-b \in P \Longrightarrow b<a
\end{aligned}
$$

- Transitivity Assume $a, b, c \in F$ s.t. $a<b$ and $b<c$

$$
\left.\begin{array}{l}
a<b \Longrightarrow b-a \in P \\
b<c \Longrightarrow c-b \in P
\end{array}\right\} \stackrel{02^{\prime}}{\Longrightarrow}(b-a)+(c-b) \in P \Longrightarrow c-a \in P \Longrightarrow a<c
$$

Now let's check that with this order relation, F is an ordered field. We have to check 01 and 02 .

1) Fix $a, b, c \in F$ s.t. $a<b \Longrightarrow b-a \in P \Longrightarrow b-a \in P \Longrightarrow(b+c)-(a+c) \in$ $P \Longrightarrow a+c<b+c$.
2) Fix $a, b, c \in F$ s.t. $a<b$ and $0<c$

$$
\left.\begin{array}{l}
a<b \Longrightarrow b-a \in P \\
0<c \Longrightarrow c-0=c \in P
\end{array}\right\} \stackrel{02^{\prime}}{\Longrightarrow}(b-a) \cdot c \in P \xlongequal{D} b \cdot c-a \cdot c \in P \Longrightarrow a \cdot c<b \cdot c
$$

We extend the order relation $<$ from \mathbb{Z} to the field $(\mathbb{Q},+, \cdot)$ by writing $\frac{a}{b}>0$ if $a \cdot b>0$. Let's see this is well defined. Specifically, we need to show that if $\frac{a}{b}=\frac{c}{d}$, i.e., $(a, b) \sim(c, d)$ and $a \cdot b>0$ then $c \cdot d>0$.

$$
\begin{aligned}
(a, b) \sim(c, d) & \Longrightarrow a \cdot d=b \cdot c \quad \mid \cdot(a d) \\
& \Longrightarrow 0<(a d)^{2}=(a b) \cdot(c d) \text { where } a \cdot d \neq 0
\end{aligned}
$$

So

$$
\left.\begin{array}{l}
0<(a b) \cdot(c d) \\
0<a b
\end{array}\right\} \Longrightarrow c d>0 \Longrightarrow \frac{c}{d}>0
$$

Let $P=\left\{\frac{a}{b} \in \mathbb{Q}: \frac{a}{b}>0\right\}$. By the theorem, to prove that \mathbb{Q} is an ordered field, it suffices to show that P satisfies (01^{\prime}) and (02^{\prime}).

§6 Lec 6: Jan 15, 2021

§6.1 Least Upper Bound \& Greatest Lower Bound

Definition 6.1 (Boundedness - Maximum and Minimum) - Let $(F,+, \cdot,<)$ be an ordered field. Let $\emptyset \neq A \subseteq F$. We say that A is bounded above if $\exists M \in F$ s.t. $a \leq M \forall a \in A$. Then M is called an upper bound for A. If moreover, $M \in A$ then we say that M is the maximum of A.
We say that A is bounded below if $\exists m \in F$ s.t. $m \leq a \forall a \in A$. Then m is called a lower bound for A . If moreover, $m \in A$ then we say that m is the minimum of A . We say that A is bounded if A is bounded both above and below.

Example 6.2

$A=\left\{1+\frac{(-1)^{n}}{n}: n \in \mathbb{N}\right\}$ bounded.

- 3 is an upper bound for A.
- $\frac{3}{2}$ is the maximum of A.
- 0 is a lower bound for $A ; 0$ is the minimum of A.

Example 6.3

$A=\left\{x \in \mathbb{Q}: 0<x^{4} \leq 16\right\}$ bounded.

- 2 is the maximum of A.
- -2 is the minimum of A.

Example 6.4

$A=\left\{x \in \mathbb{Q}: x^{2}<2\right\}$ bounded.

- 2 is an upper bound for A.
- -2 is lower bound for A.
- A does not have a maximum. Indeed, let $x \in A$. We'll construct $y \in A$ s.t. $y>x$. Define $y=x+\frac{2-x^{2}}{2+x}$.

$$
\left.\begin{array}{l}
x \in A \Longrightarrow x \in \mathbb{Q} \Longrightarrow 2-x^{2}, 2+x \in \mathbb{Q} \\
x \in A \Longrightarrow 2+x>0 \Longrightarrow \frac{1}{2+x} \in \mathbb{Q}
\end{array}\right\} \Longrightarrow \frac{2-x^{2}}{2+x} \in \mathbb{Q} \Longrightarrow y \in \mathbb{Q}(i)
$$

Also note

$$
\left.\begin{array}{l}
2-x^{2}>0(\text { as } x \in A) \\
2+x>0 \Longrightarrow \frac{1}{2+x}>0
\end{array}\right\} \Longrightarrow \frac{2-x^{2}}{2+x}>0
$$

So $y=x+\frac{2-x^{2}}{2+x}>x$ (ii). Let's compute $y^{2}=\left(\frac{2 x+x^{2}+2-x^{2}}{2+x}\right)^{2}=\frac{2\left(x^{2}+4 x+4\right)+2 x^{2}-4}{x^{2}+4 x+4}=$ $2+\underbrace{\frac{2\left(x^{2}-2\right)}{(x+2)^{2}}}_{<0}$. So $y^{2}<2$.

So collecting (i) - (iii) we get $y \in A$ and $y>x$.

Homework 6.1. Show that the maximum and minimum of a set are unique, if they exist.

Definition 6.5 (Least Upper Bound) - Let $(F,+, \cdot,<)$ be an ordered field. Let $\emptyset \neq$ $A \subseteq F$ and assume A is bounded above. We say that L is the least upper bound of A if it satisfies:

1. L is an upper bound of A.
2. If M is an upper bound of A then $L \leq M$.

We write $L=\sup A$ and we say L is the supremum of A.

Lemma 6.6

The least upper bound of a set is unique, if it exists.
Proof. Say that a set $\emptyset \neq A \subseteq F, A$ bounded above, admits two least upper bounds L, M. L is a least upper bound $\xlongequal{(1)} L$ is an upper bound for A.
M is a least upper bound $\xlongequal{(2)} M \leq L$.
M is a least upper bound for $A \xlongequal{(1)} M$ is an upper bound for $A \Longrightarrow L$ is a least upper bound for $A \xrightarrow{(2)} L \leq m$. So $L=M$.

Definition 6.7 (Greatest Lower Bound) - Let $(F,+, \cdot,<)$ be an ordered field. Let $\emptyset \neq$ $A \subseteq F$ and assume A is bounded below. We say that l is the greatest lower bound of Aif it satisfies

1. l is a lower bound of A.
2. If m is a lower bound of A then $m \leq l$.

We write $l=\inf A$ and we say l is the infimum of A.

Homework 6.2. Show that the greatest lower bound of a set is unique if it exists.

Definition 6.8 (Bound Property) - Let $(F,+, \cdot,<)$ be an ordered field. Let $\emptyset \neq S \subseteq F$. We say that S has the the least upper bound property if it satisfies the following: For any non-empty subset \bar{A} of S is bounded above, there exists a least upper bound of A and $\sup A \in S$.
We say that S has the greatest lower bound property if it satisfies the following: $\forall \emptyset \neq A \subseteq S$ with A bounded below, $\exists \inf A \in S$.

Example 6.9

$(\mathbb{Q},+, \cdot,<)$ is an ordered field.
$\emptyset \neq \mathbb{N} \subseteq \mathbb{Q}, \mathbb{N}$ has the least upper bound property. Indeed if $\emptyset \neq A \subseteq \mathbb{N}, A$ bounded above, then the largest elements in A is the least upper bound of A and $\sup A \in \mathbb{N}$. \mathbb{N} also has the greatest lower bound property.

Example 6.10

$(\mathbb{Q},+, \cdot,<)$ is an ordered field.
$\emptyset \neq \mathbb{Q} \subseteq \mathbb{Q}, \mathbb{Q}$ does not have the least upper bound property.
Indeed, $\emptyset \neq A=\left\{x \in \mathbb{Q}: x \geq 0\right.$ and $\left.x^{2}<2\right\} \subseteq \mathbb{Q}$. A is bounded above by 2. However, $\sup A=\sqrt{2} \notin \mathbb{Q}$.

Proposition 6.11

Let $(F,+, \cdot,<)$ be an ordered field. Then F has the least upper bound property if and only if it has the greatest lower bound property.

Proof. (\Longrightarrow) Assume F has the least upper bound property. Let $\emptyset \neq A \subseteq F$ bounded below. WTS $\exists \inf A \in F$. A is bounded below $\Longrightarrow \exists m \in F$ s.t. $m \leq a \forall a \in A$. Let $B=\{b \in F: b$ is a lower bound for $A\}$. Note $B \neq \emptyset$ (as $m \in B$), B $\subseteq F, B$ is bounded above (every element in A is an upper bound for B) and F has the least upper bound property $\Longrightarrow \sup B \in F$.

Claim 6.1. $\sup B=\inf A$ (to be proven in Lec 7).

$\S 7 \mid$ Lec 7: Jan 20, 2021

§7.1 Least Upper \& Greatest Lower Bound (Cont'd)

Proof. (Cont'd of proposition 6.11)
Claim 7.1. $\sup B=\inf A$.

Method 1:

- $\sup B$ is a lower bound for A. Indeed, let $a \in A$. We know that $a \geq b \quad \forall b \in B$. $\sup B$ is the least upper bound for $B \Longrightarrow a \geq \sup B$. As $a \in A$ was arbitrary, we conclude that $\sup B \leq a \quad \forall a \in A$ and so $\sup B$ is a lower bound for A.
- If l is a lower bound for A then $l \leq \sup B$. Well, l is a lower bound for $A \Longrightarrow l \in B$ and $\sup B$ is an upper bound for B. So $l \leq \sup B$.

Collecting the two bullet points above, we find that $\inf A=\sup B$.
Method 2: Let $\emptyset \neq A \subseteq F$ s.t. A is bounded below. Let $B=\{-a: a \in A\}$. Note $B \subseteq F$ by A5. $B \neq \emptyset$ because $A \neq \emptyset . B$ is bounded above: indeed if m is a lower bound for A then $-m$ is an upper bound for B.

$$
m \leq a \quad \forall a \in A \Longrightarrow-m \geq-a \quad \forall a \in A
$$

F has the least upper bound property. Altogether, it implies that $\sup B \in F$. In Hw3, you show $-\sup B=\inf A \in F($ by A5).

Homework 7.1. Prove the " $\Longleftarrow "$ direction.

Theorem 7.1 (Existence of \mathbb{R})

There exists an ordered field with the least upper bound property. We denote it \mathbb{R} and we call it the set of real numbers. \mathbb{R} contains \mathbb{Q} as a subfield. Moreover, we have the following uniqueness property: If $(F,+, \cdot,<)$ is an ordered field with the least upper bound property, then F is order isomorphic with \mathbb{R}, that is, there exists a bijection $\phi: \mathbb{R} \rightarrow F$ such that
i) $\phi(x \underbrace{+}_{\mathbb{R}} y)=\phi(x) \underbrace{+}_{F} \phi(y)$
ii) $\phi(x \underbrace{\dot{-}}_{\mathbb{R}} y)=\phi(x) \underbrace{\bullet-}_{F} \phi(y)$
iii) If $x \underbrace{<}_{\mathbb{R}} y$ then $\phi(x) \underbrace{<}_{F} \phi(y)$

Theorem 7.2 (Archimedean Property)
\mathbb{R} has the Archimedean property, that is, $\forall x \in \mathbb{R} \quad \exists n \in \mathbb{N}$ s.t. $x<n$.

Proof. We argue by contradiction. Assume

$$
\exists x_{0} \in \mathbb{R} \text { s.t. } x_{0} \geq n \quad \forall n \in \mathbb{N}
$$

Then $\emptyset \neq \mathbb{N} \subseteq \mathbb{R}$. \mathbb{N} is bounded above by $x_{0} . \mathbb{R}$ has the least upper bound property $\Longrightarrow \exists L=\sup \mathbb{N} \in \mathbb{R}$.

$$
\left.\begin{array}{l}
L=\sup \mathbb{N} \\
L-1<L
\end{array}\right\} \Longrightarrow L-1 \text { is not an upper bound for } \mathbb{N}
$$

$\Longrightarrow \exists n_{0} \in \mathbb{N}$ s.t. $n_{0}>L-1$. So $\sup \mathbb{N}=L<n_{0}+1 \in \mathbb{N}$, which is a contradiction.

Remark 7.3. \mathbb{Q} has the Archimedean property.

If $r \in \mathbb{Q}$ is s.t. then choose $n=1$. For $r \in \mathbb{Q}$ is s.t. $r>0$, then write $r=\frac{p}{q}$ with $p, q \in \mathbb{N}$. Choose $n=p+1$ since $\frac{p}{q}<p+1$.

Corollary 7.4

If $a, b \in \mathbb{R}$ such that $a>0, b>0$ then there exists $n \in \mathbb{N}$ s.t. $n \cdot a>b$.

Proof. Apply the Archimedean Property to $x=\frac{b}{a}$.

Corollary 7.5

If $\epsilon>0$ there exists $n \in \mathbb{N}$ s.t. $\frac{1}{n}<\epsilon$.

Proof. Apply the Archimedean property to $x=\frac{1}{\epsilon}$.

Lemma 7.6

For any $a \in \mathbb{R}$ there exists $N \in \mathbb{Z}$ s.t. $N \leq a \leq N+1$.

Proof. Case 1: $a=0$. Take $N=0$.
Case 2: $a>0$. Consider $A=\{n \in \mathbb{Z}: n \leq a\} \subseteq \mathbb{R}, A \neq \emptyset(0 \in A)$. A is bounded above by $a . \mathbb{R}$ has the least upper bound property. So $\exists L=\sup A \in \mathbb{R}$.

$$
L-1<L=\sup A \Longrightarrow L-1 \text { is not an upper bound for } A
$$

$\Longrightarrow \exists N \in A$ s.t. $L-1<N \Longrightarrow L<N+1$ but $L=\sup A$, so $N+1 \notin A$. So

$$
\left.\begin{array}{l}
N \in A \Longrightarrow N \leq a \\
N+1 \notin A \Longrightarrow N+1>a
\end{array}\right\} \Longrightarrow N \leq a<N+1
$$

Case 3: $a<0 \Longrightarrow-a>0$. By case $2, \exists n \in \mathbb{Z}$ s.t. $n \leq-a<n+1$. So $-n-1<a \leq-n$. If $a=-n$, let $N=-n$ and so $N \leq a<N+1$. If $a<-n$ let $N=-n-1$ and so $N \leq a<N+1$.

Definition 7.7 (Dense Set) - We say that a subset A of \mathbb{R} is dense in \mathbb{R} if for every $x, y \in \mathbb{R}$ such that $x<y$ there exists $a \in A$ such that $x<a<y$.

Lemma 7.8

\mathbb{Q} is dense in \mathbb{R}.

Proof. Let $x, y \in \mathbb{R}$ such that $x<y$. Since $y-x>0$ by corollary $7.5, \exists n \in \mathbb{N}$ s.t. $\frac{1}{n}<y-x \Longrightarrow \frac{1}{n}+x<y$.
Consider $n x \in \mathbb{R}$. By the lemma $7.6, \exists m \in \mathbb{Z}$ s.t.

$$
m \leq n x<m+1 \Longrightarrow \frac{m}{n} \leq x<\frac{m+1}{n}
$$

Then

$$
x<\frac{m+1}{n}=\frac{m}{n}+\frac{1}{n} \leq x+\frac{1}{n}<y
$$

w where $\frac{m+1}{n} \in \mathbb{Q}$.

Lemma 7.9

$\mathbb{R} \backslash \mathbb{Q}$ is dense in \mathbb{R}.

§8 Lec 8: Jan 22, 2021

§8.1 Construction of the Reals

Recall that we say a set $A \subseteq \mathbb{R}$ is dense if for every $x, y \in \mathbb{R}$ s.t. $x<y$, there exists $a \in A$ s.t. $x<a<y$. Last time we proved

Lemma 8.1

\mathbb{Q} is dense in \mathbb{R}.

Remark 8.2. For any two rational numbers $r_{1}, r_{2} \in \mathbb{Q}$ s.t. $r_{1}<r_{2}$, there exists $s \in \mathbb{Q}$ s.t. $r_{1}<s<r_{2}$.

Indeed if $r_{1}<0<r_{2}$ then we may take $s=0$.
Assume $0<r_{1}<r_{2}$. Write $r_{1}=\frac{a}{b}, a_{2}=\frac{c}{d}$ with $a, b, c, d \in \mathbb{N}$. Take $s=\frac{a d+b c}{2 b d} \in \mathbb{Q}$. Note $r_{1}<s<r_{2}$.

$$
r_{1}<s \Longleftrightarrow \frac{a}{b}<\frac{a d+b c}{2 b d} \Longleftrightarrow 2 a d<a d+b c \Longleftrightarrow a d<b c \Longleftrightarrow \frac{a}{b}<\frac{c}{d} \Longleftrightarrow r_{1}<r_{2}
$$

Homework 8.1. Construct s in the remaining cases.

Lemma 8.3

$\mathbb{R} \backslash \mathbb{Q}$ is dense in \mathbb{R}.

Proof. Let $x, y \in \mathbb{R}$ s.t. $x<y \Longrightarrow x+\sqrt{2}<y+\sqrt{2}$. \mathbb{Q} is dense in \mathbb{R}. So $\exists q \in \mathbb{Q}$ s.t. (since \mathbb{Q} is dense in \mathbb{R})

$$
x+\sqrt{2}<q<y+\sqrt{2} \Longrightarrow x<q-\sqrt{2}<y
$$

Claim 8.1. $q-\sqrt{2} \in \mathbb{R} \backslash \mathbb{Q}$.
Otherwise, $\exists r \in \mathbb{Q}$ s.t. $q-\sqrt{2}=r \Longrightarrow \sqrt{2}=q-r \in \mathbb{Q}$, contradiction.

Theorem 8.4 (Construction of \mathbb{R} (Existence))
There exists an ordered field with the least upper bound property. We denote it \mathbb{R} and call it the set of real numbers. \mathbb{R} contains \mathbb{Q} as a subfield.

Proof. We will construct an ordered field with the least upper bound property using Dedekind cuts. The elements of the field are certain subsets of \mathbb{Q} called cuts.

Definition 8.5 ((Dedekind) Cuts) - A cut is a set $\alpha \subseteq \mathbb{Q}$ that satisfies:
a) $\emptyset \neq \alpha \neq \mathbb{Q}$
b) If $q \in \alpha$ and $p \in \mathbb{Q}$ s.t. $p<q$ then $p \in \alpha$.
c) For every $q \in \alpha$ there exists $r \in \alpha$ s.t. $r>q$ (α has no maximum)

Intuitively, we think of a cut as $\mathbb{Q} \cap(\infty, a)$. Of course, at this point we haven't yet constructed \mathbb{R}...
Note that if $\mathbb{Q} \ni q \notin \alpha$ then $q>p \forall p \in \alpha$. Indeed, otherwise, if $\exists p_{0} \in \alpha$ s.t. $q \leq p_{0}$ then by ii) we would have $q \in \alpha$. Contradiction.

We define

$$
F=\{\alpha: \alpha \text { is a cut }\}
$$

We will show F is an ordered field with the least upper bound property.
Order: For $\alpha, \beta \in F$ we write $\alpha<\beta$ if α is a proper subset of β, that is, $\alpha \subsetneq \beta$

- Transitivity: If $\alpha, \beta, \gamma \in F$ s.t. $\alpha<\beta$ and $\beta<\gamma$ then $\alpha \subsetneq \beta \subsetneq \gamma \Longrightarrow \alpha \subsetneq \gamma \Longrightarrow$ $\alpha<\gamma$.
- Trichotomy: First note that at most one of the following hold

$$
\alpha<\beta, \quad \alpha=\beta, \quad \beta<\alpha
$$

To prove trichotomy, it thus suffices to show that at least one of the following holds: $\alpha<\beta, \alpha=\beta, \beta<\alpha$. We show this by contradiction: Assume $\alpha<\beta, \alpha=\beta, \beta<\alpha$ all fail. Then we have

$$
\left.\begin{array}{l}
\alpha \nsubseteq \beta \\
\alpha \neq \beta \\
\beta \nsubseteq \alpha
\end{array}\right\} \Longrightarrow\left\{\begin{array}{l}
\exists p \in \alpha \backslash \beta \\
\exists q \in \beta \backslash \alpha
\end{array}\right.
$$

Now

$$
\begin{array}{ll}
p \notin \beta \Longrightarrow p>r & \forall r \in \beta \\
q \notin \alpha \Longrightarrow q>s & \forall s \in \alpha \tag{2}
\end{array}
$$

Take $r=q$ in (1) and $s=p$ in (2) to get $p>q>p$. Contradiction!
So $<$ defines an order relation on F.
Let's show that F has the least upper bound property. Let $\emptyset \neq A \subseteq F$ bounded above by $\beta \in F$. Define

$$
\gamma=\bigcup_{\alpha \in A} \alpha
$$

Claim 8.2. $\gamma \in F$.

- $\gamma \neq \emptyset$ because $A \neq \emptyset$ and $\emptyset \neq \alpha \in A$.
- $\gamma \neq \mathbb{Q}$ because β being an upper bound for A

$$
\Longrightarrow \beta \geq \alpha \forall \alpha \in A \Longrightarrow \beta \supseteq \alpha \forall \alpha \in A \Longrightarrow \beta \supseteq \bigcup_{\alpha \in A} \alpha=\gamma
$$

As $\beta \neq \mathbb{Q} \Longrightarrow \gamma \neq \mathbb{Q}$.

- Let $q \in \gamma$ and let $p \in \mathbb{Q}$ s.t. $p<q$. As $q \in \gamma \Longrightarrow \exists \alpha \in A$ s.t. $q \in \alpha$ and $\mathbb{Q} \ni p<q$. So $p \in \alpha \Longrightarrow p \in \gamma$.
- Let $q \in \gamma \Longrightarrow \exists \alpha \in A$ s.t. $q \in \alpha \Longrightarrow \exists r \in \alpha$ s.t. $q<r$. Then $r \in \gamma$ and $q<r$.

Collecting all these properties, we deduce $\gamma \in F$.
Claim 8.3. $\gamma=\sup A$.

- Note $\alpha \subseteq \gamma \forall \alpha \in A \Longrightarrow \alpha \leq \gamma \forall \alpha \in A$. So γ is an upper bound for A.
- Let δ be an upper bound for $A \Longrightarrow \delta \geq \alpha \forall \alpha \in A \Longrightarrow \delta \supseteq \alpha \forall \alpha \in A$. So $\delta \supseteq \bigcup_{\alpha \in A} \alpha=\gamma \Longrightarrow \delta \geq \gamma$.

Addition: If $\alpha, \beta \in F$ we define

$$
\alpha+\beta=\{p+q: p \in \alpha \text { and } q \in \beta\}
$$

Let's check A1, namely, $\alpha+\beta \in F$.

- Note $\alpha+\beta=\emptyset$ because $\alpha \neq \emptyset \Longrightarrow \exists p \in \alpha$ and $\beta \neq \emptyset \Longrightarrow \exists q \in \beta$ which implies $p+q \in \alpha+\beta$.
- Note $\alpha+\beta \neq \mathbb{Q}$. Indeed $\alpha \mathbb{Q} \Longrightarrow \exists r \in \mathbb{Q} \backslash \alpha \Longrightarrow r>p \forall p \in \alpha$ and $\beta \neq$ $\mathbb{Q} \Longrightarrow \exists s \in \mathbb{Q} \backslash \beta \Longrightarrow s>q \forall q \in \beta$ which implies $r+s>p+q \forall p \in \alpha$ and $\forall q \in \beta \Longrightarrow r+s \notin \alpha+\beta$
- Let $r \in \alpha+\beta$ and $s \in \mathbb{Q}$ s.t. $s<r$

$$
\begin{gathered}
r \in \alpha+\beta \Longrightarrow r=p+q \text { for some } p \in \alpha \text { and some } q \in \beta \\
s<r \Longrightarrow s<p+q \Longrightarrow \underbrace{s-p}_{\in \mathbb{Q}}<\underbrace{q}_{\in \beta} \Longrightarrow s-p \in \beta
\end{gathered}
$$

So $s=p+(s-p) \in \alpha+\beta$.

- Let $r \in \alpha+\beta \Longrightarrow r=p+q$ for some $p \in \alpha$ and some $q \in \beta$

$$
\left.\begin{array}{r}
\alpha \in F \Longrightarrow \exists p^{\prime} \in \alpha \ni p^{\prime}>p \\
\beta \in F \Longrightarrow \exists q^{\prime} \in \beta \ni q^{\prime}>q
\end{array}\right\} \Longrightarrow \alpha \ni p^{\prime}+q^{\prime} \in \beta>p+q=r
$$

So $p^{\prime}+q^{\prime} \in \alpha+\beta$ s.t. $p^{\prime}+q^{\prime}>r$.
So collecting all these properties, we see that $\alpha+\beta \in F$.

§9 Lec 9: Jan 25, 2021

§9.1 Construction of the Reals (Cont'd)

Recall: A cut is set $\alpha \subseteq \mathbb{Q}$ such that
i) $\emptyset \neq \alpha \neq \mathbb{Q}$
ii) If $q \in \alpha$ and $p \in \mathbb{Q}$ with $p<q$ then $p \in \alpha$
iii) $\forall q \in \alpha \quad \exists r \in \alpha$ s.t. $r>q$.

We defined

$$
F=\{\alpha: \alpha \text { is a cut }\}
$$

We defined an order relation on $F:$ for $\alpha, \beta \in F$ we write $\alpha<\beta \Longleftrightarrow \alpha \subsetneq \beta$. We showed that F has the least upper bound property with respect to this order relation.
We defined an addition operation on $F:$ for $\alpha, \beta \in F$

$$
\alpha+\beta=\{p+q: p \in \alpha \text { and } q \in \beta\}
$$

We checked A1. Let's check A2: for $\alpha, \beta \in F$

$$
\begin{aligned}
\alpha+\beta & =\{p+q: p \in \alpha, q \in \beta\} \\
& =\{q+p: q \in \beta, p \in \alpha\} \text { (since addition in } \mathbb{Q} \text { satisfies A2) } \\
& =\beta+\alpha
\end{aligned}
$$

Let's check A3: for $\alpha, \beta, \gamma \in F$

$$
\begin{aligned}
(\alpha+\beta)+\gamma & =\{s+r: s \in \alpha+\beta, r \in \gamma\} \\
& =\{(p+q)+r: p \in \alpha, q \in \beta, r \in \gamma\} \\
& =\{p+(q+r): p \in \alpha, q \in \beta, r \in \gamma\} \quad \text { (since addition in } \mathbb{Q} \text { satisfies A3 } \\
& =\{p+t: p \in \alpha, t \in \beta+\gamma\} \\
& =\alpha+(\beta+\gamma)
\end{aligned}
$$

Let's check A4: Let $0^{*}=\{q \in \mathbb{Q}: q<0\}$.
Claim 9.1. $0^{*} \in F$

- Note $0^{*} \neq \emptyset$ since $-1 \in 0^{*}$
- Note $0^{*}=\mathbb{Q}$ since $2 \notin 0^{*}$
- Let $q \in 0^{*}$ and let $p \in \mathbb{Q}$ and $p<q$

$$
\left.q \in 0^{*} \Longrightarrow \begin{array}{c}
q<0 \\
p<q
\end{array}\right\} \Longrightarrow p<0
$$

So $p \in 0^{*}$.

- Let $q \in 0^{*} \Longrightarrow q<0 \Longrightarrow \exists r \in \mathbb{Q}$ s.t. $q<r<0$. So $r \in 0^{*}$ and $r>q$.

Collecting all these properties we got $0^{*} \in F$.
Claim 9.2. $\alpha+0^{*}=\alpha \quad \forall \alpha \in F$.

- Let's check $\alpha+0^{*} \subseteq \alpha$.

Let $r \in \alpha+0^{*} \Longrightarrow r=p+q$ for some $p \in \alpha$ and some $q \in 0^{*} . q \in 0^{*} \Longrightarrow q<0$. So

$$
\left.\begin{array}{l}
\mathbb{Q} \ni r=p+q<p \\
p \in \alpha \in F
\end{array}\right\} \Longrightarrow r \in \alpha
$$

As r was arbitrary in $\alpha+0^{*}$ we find $\alpha+0^{*} \subseteq \alpha$.

- Let's check $\alpha \subseteq \alpha+0^{*}$. Let $p \in \alpha \Longrightarrow \exists r \in \alpha$ s.t. $r>p$. We write

$$
p=\underbrace{r}_{\in \alpha}+\underbrace{(p-r)}_{\in 0^{*}} \in \alpha+0^{*}
$$

As $p \in \alpha$ was arbitrary, this shows $\alpha \subseteq \alpha+0^{*}$
Collecting everything, we get $\alpha+0^{*}=\alpha$.
Let's check A5: Fix $\alpha \in F$. Define

$$
\beta=\{q \in \mathbb{Q}: \exists r \in \mathbb{Q} \text { with } r>0 \ni-q-r \notin \alpha\}
$$

Claim 9.3. $\beta \in F$.

- Note that $\beta \neq \emptyset$.

As $\alpha \neq \mathbb{Q} \Longrightarrow \exists p \in \mathbb{Q} \backslash \alpha$. Then $-(p+1) \in \beta$ because $-[-(p+1)]-1=(p+1)-1=$ $p \notin \alpha$.

- Note that $\beta \neq \mathbb{Q}$.

As $\alpha \neq \emptyset \Longrightarrow \exists p \in \alpha$. Then $-p \notin \beta$ because $\forall r \in \mathbb{Q}, r>0$ we have

$$
\left.\begin{array}{l}
-(-p)-r=p-r<p \\
p \in \alpha \in F
\end{array}\right\} \Longrightarrow p-r \in \alpha
$$

So $-p \notin \beta$.

- Let $q \in \beta$ and let $p \in \mathbb{Q}$ s.t. $p<q$

$$
\begin{aligned}
& \quad q \in \beta \Longrightarrow \exists r \in \mathbb{Q}, r>0 \ni-q-r \notin \alpha \Longrightarrow-q-r>s \forall s \in \alpha \\
& \text { So }-p-r>-q-r>s \forall s \in \alpha \Longrightarrow-p-r \notin \alpha \Longrightarrow p \in \beta .
\end{aligned}
$$

- Let $q \in \beta$. Want to find $s \in \beta$ s.t. $s>q$.

$$
\begin{aligned}
q \in \beta & \Longrightarrow \exists r \in \mathbb{Q} \ni r>0 \text { and }-q-r \notin \alpha \\
& \Longrightarrow-\left(2+\frac{r}{2}\right)-\frac{r}{2}=-q-r \notin \alpha \\
& \Longrightarrow q+\frac{r}{2} \in \beta
\end{aligned}
$$

Let $s=q+\frac{r}{2}$.

Collecting all the properties, we get $\beta \in F$.
Claim 9.4. $\alpha+\beta=0^{*}$.

- Let's check that $\alpha+\beta \subseteq 0^{*}$.

Let $s \in \alpha+\beta \Longrightarrow s=p+q$ with $p \in \alpha$ and $q \in \beta$. Since $q \in \beta \Longrightarrow \exists r \in \mathbb{Q}, r>$ $0 \ni-q-r \notin \alpha \Longrightarrow-q-r>p$. So $\underbrace{p+q}_{\in \mathbb{Q}}<-r<0$. So $s=p+q \in 0^{*}$. Thus $\alpha+\beta \subseteq 0^{*}$.

- Let's check $0^{*} \subseteq \alpha+\beta$. Let $r \in 0^{*} \Longrightarrow r \in \mathbb{Q}, r<0$.

Claim 9.5. $\exists N \in \mathbb{N}$ s.t. $N \cdot\left(-\frac{r}{2}\right) \in \alpha$ but $(N+1)\left(-\frac{r}{2}\right) \notin \alpha$.
Let's prove this by contradiction. Assume

$$
\left\{n\left(-\frac{r}{2}\right): n \in \mathbb{N}\right\} \subseteq \alpha
$$

We will show that in this case $\mathbb{Q} \subseteq \alpha$ thus reaching a contradiction.
Fix $q \in \mathbb{Q}$. By the Archimedean property for $\mathbb{Q}, \exists n \in \mathbb{N}$ s.t. $n>\underbrace{q \cdot\left(-\frac{2}{r}\right)}_{\in \mathbb{Q}}$. So

$$
\left.\begin{array}{l}
n \cdot\left(-\frac{r}{2}\right)>q \\
n \cdot\left(-\frac{r}{2}\right) \in \alpha \in F
\end{array}\right\} \Longrightarrow q \in \alpha
$$

As $q \in \mathbb{Q}$ was arbitrary, this shows $\mathbb{Q} \subseteq \alpha$. Contradiction!
Write $r=\underbrace{N\left(-\frac{r}{2}\right)}_{\in \alpha}+(N+2) \cdot \frac{r}{2}$ and note that $(N+2) \frac{r}{2} \in \beta$ since

$$
-(N+2) \cdot \frac{r}{2}-\frac{r}{2}=(N+1) \cdot\left(-\frac{r}{2}\right) \notin \alpha
$$

As $r \in 0^{*}$ was arbitrary, this shows $0^{*} \subseteq \alpha+\beta$. Thus, $\alpha+\beta=0^{*}$.
Let's check 01: if $\alpha, \beta, \gamma \in F$ s.t. $\alpha<\beta \Longrightarrow \alpha \subsetneq \beta$ then $\alpha+\gamma \subsetneq \beta+\gamma \Longrightarrow \alpha+\gamma<\beta+\gamma$. WE define multiplication on F as follows: for $\alpha<\beta \in F$ with $\alpha>0, \beta>0$ we define

$$
\alpha \cdot \beta=\{q \in \mathbb{Q}: q<r \cdot s \text { for some } 0<r \in \alpha \text { and some } 0<s \in \beta\}
$$

For $\alpha \in F$ we define $\alpha \cdot 0^{*}=0^{*}$. We define

$$
\alpha \cdot \beta=\left\{\begin{array}{l}
(-\alpha) \cdot(-\beta), \text { if } \alpha<0, \beta<0 \\
-[(-\alpha) \cdot \beta], \text { if } \alpha<0, \beta>0 \\
-[\alpha \cdot(-\beta)], \text { if } \alpha>0, \beta<0
\end{array}\right.
$$

You checked M1 through M5 for positive cuts. This extends readily to all cuts.
Homework 9.1. Check (D) and (02).

We identify a rational number $r \in \mathbb{Q}$ with the cut

$$
r^{*}=\{q \in \mathbb{Q}: q<r\}
$$

One can check that

$$
\begin{aligned}
r^{*}+s^{*} & =(r+s)^{*} \\
r^{*} \cdot s^{*} & =(r \cdot s)^{*} \\
r<s & \Longleftrightarrow r^{*}<s^{*}
\end{aligned}
$$

§10| Lec 10: Jan 27, 2021

§10.1 Sequences

Definition 10.1 (Sequence) - A sequence of real number is a function $f:\{n \in \mathbb{Z}: n \geq m\} \rightarrow$ \mathbb{R} where m is a fixed integer (m is usually 0 or 1). We write the sequence as $f(m), f(m+1), f(m+2), \ldots$ or as $\{f(n)\}_{n \geq m}$ or as $\left\{f_{n}\right\}_{n \geq m}$.

Example 10.2 1. $\left\{a_{n}\right\}_{n \geq 1}$ with $a_{n}=3-\frac{1}{n}$ bounded, strictly increasing.
2. $\left\{a_{n}\right\}_{n \geq 1}$ with $a_{n}=(-1)^{n}$ bounded, not monotone.
3. $\left\{a_{n}\right\}_{n \geq 0}$ with $a_{n}=n^{2}$ bounded below, strictly increasing.
4. $\left\{a_{n}\right\}_{n \geq 0}$ with $a_{n}=\cos \left(\frac{n \pi}{3}\right)$ bounded, not monotone.

Definition 10.3 (Boundedness of Sequence) - We say that a sequence $\left\{a_{n}\right\}_{n \geq 1}$ of real numbers is bounded below/bounded above/bounded if the set $\left\{a_{n}: n \geq 1\right\}$ is bounded below/bounded above/bounded.

We say that the sequence $\left\{a_{n}\right\}_{n \geq 1}$ is

- increasing if $a_{n} \leq a_{n+1} \quad \forall n \geq 1$
- strictly increasing if $a_{n}<a_{n+1} \quad \forall n \geq 1$
- decreasing if $a_{n} \geq a_{n+1} \quad \forall n \geq 1$
- strictly decreasing if $a_{n}>a_{n+1} \quad \forall n \geq 1$.
- monotone if it's either increasing or decreasing

To define the notion of convergence of a sequence, we need a notion of distance between two real numbers.

Definition 10.4 (Absolute Value) - For $x \in \mathbb{R}$, the absolute value of x is

$$
|x|=\left\{\begin{array}{l}
x, x \geq 0 \\
-x, x<0
\end{array}\right.
$$

This function satisfies the following:

1. $|x| \geq 0 \quad \forall x \in \mathbb{R}$
2. $|x|=0 \Longleftrightarrow x=0$
3. $|x+y|<|x|+|y| \quad \forall x, y \in \mathbb{R}$ (the triangle inequality)

$$
\underbrace{|c-b|}_{x+y} \leq \underbrace{|c-a|}_{x}+\underbrace{|a-b|}_{y}
$$

4. $|x \cdot y|=|x| \cdot|y| \quad \forall x, y \in \mathbb{R}$

Homework 10.1. $||x|-|y|| \leq|x-y| \quad \forall x, y \in \mathbb{R}$.
We think of $|x-y|$ as the distance between $x, y \in \mathbb{R}$.

Definition 10.5 (Convergent Sequence) - We say that a sequence $\left\{a_{n}\right\}_{n \geq 1}$ of real numbers converges if

$$
\exists a \in \mathbb{R} \ni \forall \epsilon>0 \exists n_{\epsilon} \in \mathbb{N} \ni\left|a_{n}-a\right|<\epsilon \quad \forall n \geq n_{\epsilon}
$$

We say that a is the limit of $\left\{a_{n}\right\}_{n \geq 1}$ and we write $a=\lim _{n \rightarrow \infty} a_{n}$ or $a_{n} \xrightarrow{n \rightarrow \infty} a$

Lemma 10.6

The limit of a convergent sequence is unique.

Proof. We argue by contradiction. Assume that $\left\{a_{n}\right\}_{n \geq 1}$ is a convergent sequence and assume that there exist $a, b \in \mathbb{R} a \neq b$ and $a=\lim _{n \rightarrow \infty} a_{n}$ and $b=\lim _{n \rightarrow \infty} a_{n}$.

Let $0<\epsilon<\frac{|b-a|}{2}$ (we can choose such an ϵ because \mathbb{Q} is dense in \mathbb{R})

$$
\begin{aligned}
a & =\lim _{n \rightarrow \infty} a_{n} \\
b & \Longrightarrow \exists n_{1}(\epsilon) \in \mathbb{N} \ni\left|a_{n}-a\right|<\epsilon \forall n \geq n_{1}(\epsilon) \\
\lim _{n \rightarrow \infty} a_{n} & \Longrightarrow \exists n_{2}(\epsilon) \in \mathbb{N} \ni\left|a_{n}-b\right|<\epsilon \forall n \geq n_{2}(\epsilon)
\end{aligned}
$$

Set $n_{\epsilon}=\max \left\{n_{1}(\epsilon), n_{2}(\epsilon)\right\}$. Then for $n \geq n_{\epsilon}$ we have

$$
|b-a|=\left|b-a_{n}+a_{n}-a\right| \leq \underbrace{\left|b-a_{n}\right|}_{<\epsilon}+\underbrace{\left|a_{n}-a\right|}_{<\epsilon}<2 \epsilon<|b-a|
$$

Contradiction!
Exercise 10.1. Show that the sequence given by $a_{n}=\frac{1}{n} \forall n \geq 1$ converges to 0 .
Proof. Let $\epsilon>0$. By the Archemedean Property, $\exists n_{\epsilon} \in \mathbb{N} \ni n_{\epsilon}>\frac{1}{\epsilon}$. Then for $n \geq n_{\epsilon}$ we have

$$
\left|0-\frac{1}{n}\right|=\frac{1}{n} \leq \frac{1}{n_{\epsilon}}<\epsilon
$$

By definition, $\lim _{n \rightarrow \infty} \frac{1}{n}=0$.
Exercise 10.2. Show that the sequence given by $a_{n}=(-1)^{n} \forall n \geq 1$ does not converge.
Proof. We argue by contradiction.

Assume $\exists a \in \mathbb{R}$ s.t. $a=\lim _{n \rightarrow \infty}(-1)^{n}$.
Let $0<\epsilon<1$. Then $\exists n_{\epsilon} \in \mathbb{N}$ s.t.

$$
\left|a-(-1)^{n}\right|<\epsilon \quad \forall n \geq n_{\epsilon}
$$

Taking $n=2 n_{\epsilon}$ we get $|a-1|<\epsilon$ and $n=2 n_{\epsilon}+1$ we get $|a+1|<\epsilon$. By the triangle inequality,

$$
2=|1+1|=|1-a+a+1| \leq|1-a|+|a+1|<2 \epsilon<2
$$

Contradiction!

Lemma 10.7

A convergent sequence is bounded.

Proof. Let $\left\{a_{n}\right\}_{n \geq 1}$ be a convergent sequence and let $a=\lim _{n \rightarrow \infty} a_{n}$.

$$
\exists n_{1} \in \mathbb{N} \ni\left|a-a_{n}\right|<1 \quad \forall n \geq n_{1}
$$

So $\left|a_{n}\right| \leq\left|a_{n}-a\right|+|a|<1+|a| \quad \forall n \geq n_{1}$. Let

$$
M=\max \left\{1+|a|,\left|a_{1}\right|,\left|a_{2}\right|, \ldots,\left|a_{n_{1}}-1\right|\right\}
$$

Clearly, $\left|a_{n}\right| \leq M \quad \forall n \geq 1$ so $\left\{a_{n}\right\}_{n \geq 1}$ is bounded.

Theorem 10.8

Let $\left\{a_{n}\right\}_{n \geq 1}$ be a convergent sequence and let $a=\lim _{n \rightarrow \infty} a_{n}$. Then for any $k \in \mathbb{R}$, the sequence $\left\{k a_{n}\right\}_{n \geq 1}$ converges and $\lim _{n \rightarrow \infty} k a_{n}=k a$.

Proof. If $k=0$ then $k a_{n}=0 \quad \forall n \geq 1$. So $\lim _{n \rightarrow \infty} k a_{n}=0=k \cdot a$
Assume $k \neq 0$. Let $\epsilon>0$.
Aside: want to find $n_{\epsilon} \in \mathbb{N}$ s.t. $\forall n \geq n_{\epsilon}$

$$
\left|k a_{n}-k a\right|<\epsilon \Longleftrightarrow\left|a_{n}-a\right|<\frac{\epsilon}{|k|}
$$

As $a=\lim _{n \rightarrow \infty} a_{n}, \exists n_{\epsilon, k} \in \mathbb{N}$ s.t.

$$
\left|a_{n}-a\right|<\frac{\epsilon}{|k|} \quad \forall n \geq n_{\epsilon, k}
$$

So $\left|k a_{n}-k a\right|=|k| \cdot\left|a_{n}-a\right|<|k| \cdot \frac{\epsilon}{|k|}=\epsilon$.

§11 Lec 11: Jan 29, 2021

§11.1 Convergent and Divergent Sequences

Theorem 11.1 (Properties of Convergent Sequences)

Let $\left\{a_{n}\right\}_{n \geq 1}$ and $\left\{b_{n}\right\}_{n \geq 1}$ be two convergent sequences of real numbers and let $a=$ $\lim _{n \rightarrow \infty} a_{n}$ and $b=\lim _{n \rightarrow \infty} b_{n}$. Then

1. the sequence $\left\{a_{n}+b_{n}\right\}_{n \geq 1}$ converges and $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=a+b$,
2. the sequence $\left\{a_{n} \cdot b_{n}\right\}$ converges and $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=a \cdot b$,
3. if $a \neq 0$ and $a_{n} \neq 0 \forall n \geq 1$ then $\left\{\frac{1}{a_{n}}\right\}_{n \geq 1}$ converges and $\lim _{n \rightarrow \infty} \frac{1}{a_{n}}=\frac{1}{a}$,
4. if $a \neq 0$ and $a_{n} \neq 0 \forall n \geq 1$, then $\left\{\frac{b_{n}}{a_{n}}\right\}_{n \geq 1}$ converges and $\lim _{n \rightarrow \infty} \frac{b_{n}}{a_{n}}=\frac{b}{a}$.
5. for any $k \in \mathbb{R},\left\{k a_{n}\right\}_{n \geq 1}$ converges and $\lim _{n \rightarrow \infty} k a_{n}=k a$ (from theorem 10.8)

Proof. 1. Let $\epsilon>0$.
Aside(Goal): Want to find $n_{\epsilon} \in \mathbb{N}$ s.t. $\forall n \geq n_{\epsilon}$

$$
\begin{gathered}
\left|(a+b)-\left(a_{n}+b_{n}\right)\right|<\epsilon \\
\left|(a+b)-\left(a_{n}+b_{n}\right)\right| \leq \underbrace{\left|a-a_{n}\right|}_{<\frac{\epsilon}{2}}+\underbrace{\left|b-b_{n}\right|}_{<\frac{\epsilon}{2}}<\epsilon
\end{gathered}
$$

Now back to the main proof, as $\lim _{n \rightarrow \infty} a_{n}=a, \exists n_{1}(\epsilon) \in \mathbb{N}$ s.t.

$$
\left|a-a_{n}\right|<\frac{\epsilon}{2} \quad \forall n \geq n_{1}(\epsilon)
$$

As $\lim _{n \rightarrow \infty} b_{n}=b, \exists n_{2}(\epsilon) \in \mathbb{N}$ s.t.

$$
\left|b-b_{n}\right|<\frac{\epsilon}{2} \quad \forall n \geq n_{2}(\epsilon)
$$

Let $n_{\epsilon}=\max \left\{n_{1}(\epsilon), n_{2}(\epsilon)\right\}$. Then for $n \geq n_{\epsilon}$ we have $\left|(a+b)-\left(a_{b}+b_{n}\right)\right| \leq$ $\left|a-a_{n}\right|+\left|b-b_{n}\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$. By definition, $\lim _{n \rightarrow \infty}\left(a_{b}+b_{n}\right)=a+b$.
2. Let $\epsilon>0$.

Aside(Goal): Want to find $n_{\epsilon} \in \mathbb{N}$ s.t. $\forall n \geq n_{\epsilon}$

$$
\begin{gathered}
\left|a b-a_{n} b_{n}\right|<\epsilon \\
\left|a b-a_{n} b_{n}\right|=\left|\left(a-a_{n}\right) b+a_{n}\left(b-b_{n}\right)\right| \\
\leq \underbrace{\left|a-a_{n}\right| \cdot|b|}_{<\frac{\epsilon}{2}}+\underbrace{\left|a_{n}\right|\left|b-b_{n}\right|}_{<\frac{\epsilon}{2}}<\epsilon
\end{gathered}
$$

Take $\left|a-a_{n}\right|<\frac{\epsilon}{2(|b|+1)}$. Take $M>0$ s.t. $\left|a_{n}\right| \leq M \forall n \geq 1$

$$
\left|b-b_{n}\right|<\frac{\epsilon}{2 M}
$$

Now, back to the main proof, as $\left\{a_{n}\right\}_{n \geq 1}$ converges, it is bounded. Let $M>0$ such that $\left|a_{n}\right| \leq M \forall n \geq 1$. As $\lim _{n \rightarrow \infty} a_{n}=a, \exists n_{1}(\epsilon) \in \mathbb{N}$ s.t.

$$
\left|a-a_{n}\right|<\frac{\epsilon}{2(|b|+1)} \quad \forall n \geq n_{1}(\epsilon)
$$

As $\lim _{n \rightarrow \infty} b_{n}=b, \exists n_{2}(\epsilon) \in \mathbb{N}$ s.t.

$$
\left|b-b_{n}\right|<\frac{\epsilon}{2 M} \quad \forall n \geq n_{2}(\epsilon)
$$

Set $n_{\epsilon}=\max \left\{n_{1}(\epsilon), n_{2}(\epsilon)\right\}$. For $n \geq n_{\epsilon}$ we have

$$
\begin{aligned}
\left|a b-a_{n} b_{n}\right| & =\left|\left(a-a_{n}\right) b+a_{n}\left(b-b_{n}\right)\right| \\
& \leq\left|a-a_{n}\right||b|+\left|a_{n}\right|\left|b-b_{n}\right| \\
& <\frac{\epsilon}{2(|b|+1)} \cdot|b|+M \cdot \frac{\epsilon}{2 M}<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
\end{aligned}
$$

By definition, $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=a b$.
3. Let $\epsilon>0$.

Aside(Goal): Want to find $n_{\epsilon} \in \mathbb{N}$ s.t. $\forall n \geq n_{\epsilon}$

$$
\begin{aligned}
&\left|\frac{1}{a}-\frac{1}{a_{n}}\right|<\epsilon \\
&\left|\frac{1}{a}-\frac{1}{a_{n}}\right|=\frac{\left|a_{n}-a\right|}{|a| \cdot\left|a_{n}\right|}<\epsilon \\
&\left|a_{n}-a\right|<\epsilon|a| \cdot\left|a_{n}\right| \quad(!!!-\text { NONONO })
\end{aligned}
$$

Now, back to the proof, as $a=\lim _{n \rightarrow \infty} a_{n}, \exists n_{1}(a) \in \mathbb{N}$ s.t.

$$
\left|a-a_{n}\right|<\frac{|a|}{2} \quad \forall n \geq n_{1}
$$

Then, for all $n \geq n_{1}$ we have

$$
\left|a_{n}\right| \geq|a|-\left|a-a_{n}\right|>|a|-\frac{|a|}{2}=\frac{|a|}{2}
$$

As $a=\lim _{n \rightarrow \infty} a_{n}, \exists n_{2}(\epsilon, a)$ s.t.

$$
\left|a-a_{n}\right|<\frac{\epsilon|a|^{2}}{2} \quad \forall n \geq n_{2}(\epsilon, a)
$$

Let $n_{\epsilon}=\max \left\{n_{1}(a), n_{2}(\epsilon, a)\right\}$. For $n \geq n_{\epsilon}$ we have

$$
\left|\frac{1}{a}-\frac{1}{a_{n}}\right|=\frac{\left|a-a_{n}\right|}{|a| \cdot\left|a_{n}\right|}<\frac{\epsilon|a|^{2}}{2|a|} \cdot \frac{2}{|a|}=\epsilon
$$

By definition, $\lim _{n \rightarrow \infty} \frac{1}{a_{n}}=\frac{1}{a}$.

Example 11.2

Find the limit of

$$
\lim _{n \rightarrow \infty} \frac{n^{3}+5 n+8}{3 n^{3}+2 n^{2}+7}
$$

which can rewritten as

$$
\lim _{n \rightarrow \infty} \frac{1+\frac{5}{n^{2}}+\frac{8}{n^{3}}}{3+\frac{2}{n}+\frac{7}{n^{3}}}=\frac{1+5 \lim \frac{1}{n^{2}}+8 \lim \frac{1}{n^{3}}}{3+2 \lim \frac{1}{n}+7 \lim \frac{1}{n^{3}}}
$$

which is equivalent to

$$
=\frac{1+5 \cdot 0+8 \cdot 0}{3+2 \cdot 0+7 \cdot 0}=\frac{1}{3}
$$

Theorem 11.3 (Monotone Convergence)

Every bounded monotone sequence converges.

Proof. We'll show that an increasing sequence bounded above converges. A similar argument can be used to show that a decreasing sequence bounded below converges. Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence of real numbers that is bounded above and $a_{n+1} \geq a_{n} \quad \forall n \geq 1$.
As $\emptyset \neq\left\{a_{n}: n \geq 1\right\} \subseteq \mathbb{R}$ is bounded above and \mathbb{R} has the least upper bound property, $\exists a \in \mathbb{R}$ s.t. $a=\sup \left\{a_{n}: n \geq 1\right\}$.

Claim 11.1. $a=\lim _{n \rightarrow \infty} a_{n}$.
Let $\epsilon>0$. Then $a-\epsilon$ is not an upper bound for $\left\{a_{n}: n \geq 1\right\} \Longrightarrow \exists n_{\epsilon} \in \mathbb{N}$ s.t. $a-\epsilon<a_{n_{\epsilon}}$. Then for $n \geq n_{\epsilon}$ we have

$$
a-\epsilon<a_{n_{\epsilon}} \leq a_{n} \leq a<a+\epsilon \Longleftrightarrow\left|a_{n}-a\right|<\epsilon
$$

This proves the claim.
Homework 11.1. Prove for the decreasing sequence.

Definition 11.4 (Divergent Sequence) - Let $\left\{a_{n}\right\}$ be a sequence of real numbers. We write $\lim _{n \rightarrow \infty} a_{n}=\infty$ and say that a_{n} diverges to $+\infty$ if $\forall M>0, \quad \exists n_{M} \in \mathbb{N}$ s.t. $a_{n}>M \quad \forall n \geq n_{M}$.
We write $\lim _{n \rightarrow \infty} a_{n}=-\infty$ and say that a_{n} diverges to $-\infty$ if $\forall M<0 \quad \exists n_{M} \in \mathbb{N}$ s.t. $a_{n}<M \quad \forall n \geq n_{M}$.

Homework 11.2. 1. Show that $\lim _{n \rightarrow \infty}(\sqrt[3]{n}+1)=\infty$.
2. Show that the sequence given by $a_{n}=(-1)^{n} n \quad \forall n \geq 1$ does not diverge to ∞ or to $-\infty$.
3. Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence of positive real numbers. Show that

$$
\lim _{n \rightarrow \infty} a_{n}=0 \Longleftrightarrow \lim _{n \rightarrow \infty} \frac{1}{a_{n}}=\infty
$$

§ 12 Lec 12: Feb 1, 2021

Example 12.1

Show that $\lim _{n \rightarrow \infty} \frac{n^{2}+1}{n+3}=\infty$.
Aside: Want to find $n_{M} \in \mathbb{N}$ s.t. $\forall n \geq n_{M}$ we have

$$
\frac{n^{2}+1}{n+3}>M
$$

So

$$
\frac{n^{2}+1}{n+3}>\frac{n^{2}}{n+3}>\frac{n^{2}}{4 n}=\frac{n}{4}>M
$$

Now, back to the main proof, let $M>0$. By the Archimedean property there exists $n_{M} \in \mathbb{N}$ s.t.

$$
n_{M}>4 M
$$

Then for $n \geq n_{M}$ we have

$$
\frac{n^{2}+1}{n+3}>\frac{n^{2}}{n+3}>\frac{n^{2}}{4 n}=\frac{n}{4} \geq \frac{n_{M}}{4}>M
$$

By the definition, $\lim _{n \rightarrow \infty} \frac{n^{2}+1}{n+3}=\infty$.

§12.1 Cauchy Sequences

Definition 12.2 (Cauchy Sequence) - We say that a sequence of real numbers $\left\{a_{n}\right\}_{n \geq 1}$ is a Cauchy sequence if

$$
\forall \epsilon>0 \quad \exists n_{\epsilon} \in \mathbb{N} \quad \text { s.t. }\left|a_{n}-a_{m}\right|<\epsilon \quad \forall n, m \geq n_{\epsilon}
$$

Theorem 12.3 (Cauchy Criterion - Sequence)

A sequence of real numbers is Cauchy if and only if it converges.
We will split the proof of this theorem into various lemmas and propositions.

Proposition 12.4

Any convergent sequence is a Cauchy sequence.
Proof. Let $\left\{a_{n}\right\}_{n \geq 1}$ be a convergent sequence and let $a=\lim _{n \rightarrow \infty} a_{n}$. Let $\epsilon>0$. As $a_{n} \xrightarrow{n \rightarrow \infty} a, \exists n_{\epsilon} \in \mathbb{N}$ s.t.

$$
\left|a-a_{n}\right|<\frac{\epsilon}{2} \quad \forall n \geq n_{\epsilon}
$$

Then for $n, m \geq n_{\epsilon}$, we have

$$
\left|a_{n}-a_{m}\right| \leq\left|a_{n}-a\right|+\left|a-a_{m}\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

Lemma 12.5

A Cauchy sequence is bounded.

Proof. Let $\left\{a_{n}\right\}_{n \geq 1}$ be a Cauchy sequence. Then $\exists n_{1} \in \mathbb{N}$ s.t. $\left|a_{n}-a_{m}\right|<1 \quad \forall n, m \geq n_{1}$. So, taking $m=n_{1}$, we get

$$
\left|a_{n}\right| \leq\left|a_{n_{1}}\right|+\left|a_{n}-a_{n_{1}}\right|<\left|a_{n_{1}}\right|+1 \quad \forall n \geq n_{1}
$$

Let $M=\max \left\{\left|a_{1}\right|,\left|a_{2}\right|, \ldots,\left|a_{n_{1}-1}\right|,\left|a_{n_{1}}+1\right|\right\}$. Clearly, $\left|a_{n}\right| \leq M \quad \forall n \geq 1$.

Definition 12.6 (Subsequence) - Let $\left\{k_{n}\right\}_{n \geq 1}$ be a sequence of natural numbers s.t. $k_{1} \geq 1$ and $k_{n+1}>k_{n} \quad \forall n \geq 1$. Using induction, it's easy to see that $k_{n} \geq n \quad \forall n \geq 1$. If $\left\{a_{n}\right\}_{n \geq 1}$ is a sequence, we say that $\left\{a_{k_{n}}\right\}_{n \geq 1}$ is a subsequence of $\left\{a_{n}\right\}_{n \geq 1}$.

Example 12.7

The following are subsequences of $\left\{a_{n}\right\}_{n \geq 1}$:

$$
\left\{a_{2 n}\right\}_{n \geq 1},\left\{a_{2 n-1}\right\}_{n \geq 1},\left\{a_{n^{2}}\right\}_{n \geq 1},\left\{a_{p_{n}}\right\}_{n \geq 1}
$$

where p_{n} denotes the $n^{\text {th }}$ prime.

Theorem 12.8

Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence of real numbers. Then $\lim _{n \rightarrow \infty} a_{n}=a \in \mathbb{R} \cup\{ \pm \infty\}$ if and only if every subsequence $\left\{a_{k_{n}}\right\}_{n \geq 1}$ of $\left\{a_{n}\right\}_{n \geq 1}$ satisfies $\lim _{n \rightarrow \infty} a_{k_{n}}=a$.

Proof. We will consider $a \in \mathbb{R}$. The cases $a \in\{ \pm \infty\}$ can be handled by analogous arguments.
$" \Longleftarrow "$ Take $k_{n}=n \quad \forall n \geq 1$
" \Longrightarrow " Assume $\lim _{n \rightarrow \infty} a_{n}=a$ and let $\left\{a_{k_{n}}\right\}_{n \geq 1}$ be a subsequence of $\left\{a_{n}\right\}_{n \geq 1}$. Let $\epsilon>0$.
As $a_{n} \xrightarrow{n \rightarrow \infty} a, \quad \exists n_{\epsilon} \in \mathbb{N}$ s.t.

$$
\left|a-a_{n}\right|<\epsilon \quad \forall n \geq n_{\epsilon}
$$

Recall that $k_{n} \geq n \forall n \geq 1$. So for $n \geq n_{\epsilon}$ we have $k_{n} \geq n \geq n_{\epsilon}$ and so

$$
\left|a-a_{k_{n}}\right|<\epsilon \quad \forall n \geq n_{\epsilon}
$$

By definition,

$$
\lim _{n \rightarrow \infty} a_{k_{n}}=a
$$

Proposition 12.9

Every sequence of real numbers has a monotone subsequence.

Proof. Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence of real numbers. We say that the $n^{\text {th }}$ term is dominant if

$$
a_{n}>a_{m} \quad \forall m>n
$$

We distinguished 2 cases:
Case 1: There are infinitely many dominant terms:

Then a subsequence formed by these dominant terms is strictly decreasing.
Case 2: There are none or finitely many dominant terms. Let N be larger than the largest index of the dominant terms. So $\forall n \geq N a_{n}$ is not dominant. Set $k_{1}=N, a_{k_{1}}=a_{N}$. $a_{k_{1}}$ is not dominant $\Longrightarrow \exists k_{2}>k_{1}$ s.t. $a_{k_{2}} \geq a_{k_{1}}, k_{2}>k_{1}=N \Longrightarrow a_{k_{2}}$ is not dominant $\Longrightarrow \exists k_{3}>k_{2}$ s.t. $a_{k_{3}} \geq a_{k_{2}}$. Proceeding inductively we construct a subsequence $\left\{a_{k_{n}}\right\}_{n \geq 1}$ s.t.

$$
a_{k_{n+1}} \geq a_{k_{n}} \quad \forall n \geq 1
$$

Theorem 12.10 (Bolzano - Weierstrass)
Any bounded sequence has a convergent subsequence.

Proof. Let $\left\{a_{n}\right\}_{n \geq 1}$ be a bounded sequence. By the previous proposition, there exists $\left\{a_{k_{n}}\right\}_{n \geq 1}$ monotone subsequence of $\left\{a_{n}\right\}_{n \geq 1}$. As $\left\{a_{n}\right\}_{n \geq 1}$ is bounded, so is $\left\{a_{k_{n}}\right\}_{n \geq 1}$. As bounded monotone sequences converge, $\left\{a_{k_{n}}\right\}_{n \geq 1}$ converges.

Corollary 12.11

Every Cauchy sequence has a convergent subsequence.

Lemma 12.12

A Cauchy sequence with a convergent subsequence converges.

Proof. Let $\left\{a_{n}\right\}_{n \geq 1}$ be a Cauchy sequence s.t. $\left\{a_{k_{n}}\right\}_{n \geq 1}$ is a convergent subsequence. Let $a=\lim _{n \rightarrow \infty} a_{k_{n}}$. Let $\epsilon>0$. As $a_{k_{n}} \xrightarrow{n \rightarrow \infty} a, \exists n_{1}(\epsilon)$ s.t. $\left|a-a_{k_{n}}\right|<\frac{\epsilon}{2} \forall n \geq n_{1}(\epsilon)$. As $\left\{a_{n}\right\}_{n \geq 1}$ is Cauchy, $\exists n_{2}(\epsilon)$ s.t. $\left|a_{n}-a_{m}\right|<\frac{\epsilon}{2} \forall n, m \geq n_{2}(\epsilon)$. Let $n_{\epsilon}=\max \left\{n_{1}(\epsilon), n_{2}(\epsilon)\right\}$. Then for $n \geq n_{\epsilon}$ we have

$$
\left|a-a_{n}\right| \leq\left|a-a_{k_{n}}\right|+\left|a_{k_{n}}-a_{n}\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

for $k_{n} \geq n \geq n_{\epsilon}$. By definition,

$$
\lim _{n \rightarrow \infty} a_{n}=a
$$

Combining the last two results, we see that a Cauchy sequence of real numbers converges.
$\S 13 \mid$ Lec 13: Feb 3, 2021

§13.1 Limsup and Liminf

Let $\left\{a_{n}\right\}_{n \geq 1}$ be a bounded sequence of real numbers (convergent or not). The asymptotic behavior of $\left\{a_{n}\right\}_{n>1}$ depends on sets of the form $\left\{a_{n}: n \geq N\right\}$ for $N \in \mathbb{N}$.

As $\left\{a_{n}\right\}_{n \geq 1}$, the set $\left\{a_{n}: n \geq N\right\}$ (where $N \in \mathbb{N}$ is fixed) is a non-empty bounded subset of \mathbb{R}.

As \mathbb{R} has the least upper bound property (and so also the greatest lower bound property), the set $\left\{a_{n}: n \geq N\right\}$ has an infimum and a supremum in \mathbb{R}.

For $N \geq 1$, let $u_{N}=\inf \left\{a_{n}: n \geq N\right\}$ and $v_{N}=\sup \left\{a_{n}: n \geq N\right\}$. Clearly, $u_{N} \leq$ $v_{N} \quad \forall N \geq 1$. For $N \geq 1,\left\{a_{n}: n \geq N\right\} \supseteq\left\{a_{n}: n \geq N+1\right\}$

$$
\Longrightarrow\left\{\begin{array}{l}
\inf \left\{a_{n}: n \geq N\right\} \leq \inf \left\{a_{n}: n \geq N+1\right\} \\
\sup \left\{a_{n}: n \geq N\right\} \geq \sup \left\{a_{n}: n \geq N+1\right\}
\end{array}\right.
$$

So $u_{N} \leq u_{N+1}$ and $v_{N+1} \leq v_{N} \quad \forall N \geq 1$. Thus $\left\{u_{N}\right\}_{N \geq 1}$ is increasing and $\left\{v_{N}\right\}_{N \geq 1}$ is decreasing. Moreover, $\forall N \geq 1$ we have

$$
u_{1} \leq u_{2} \leq \ldots \leq u_{N} \leq v_{N} \leq \ldots \leq v_{2} \leq v_{1}
$$

So the sequences $\left\{u_{N}\right\}_{N \geq 1}$ and $\left\{v_{N}\right\}_{N \geq 1}$ are bounded. As monotone bounded sequence converges, $\left\{u_{N}\right\}_{N \geq 1}$ and $\left\{v_{N}\right\}_{N \geq 1}$ must converge.

Let

$$
\begin{aligned}
& u=\lim _{N \rightarrow \infty} u_{N}=\sup \left\{u_{N}: N \geq 1\right\}:=\sup _{N} u_{N} \\
& v=\lim _{N \rightarrow \infty} v_{N}=\inf \left\{v_{N}: N \geq 1\right\}:=\inf _{N} v_{N}
\end{aligned}
$$

From (*), we see that

$$
\begin{aligned}
& u_{M} \leq v_{N} \quad \forall M, N \geq 1 \\
\Longrightarrow & \lim _{M \rightarrow \infty} u_{M} \leq v_{N} \quad \forall N \geq 1 \\
\Longrightarrow & u \leq v_{N} \quad \forall N \geq 1 \\
\Longrightarrow & u \leq \lim _{N \rightarrow \infty} v_{N} \\
\Longrightarrow & u \leq v
\end{aligned}
$$

Moreover, if $\lim _{n \rightarrow \infty} a_{n}$ exists, then for all $N \geq 1$, we have

$$
u_{N}=\inf \left\{a_{n}: n \geq N\right\} \leq a_{n} \leq \sup \left\{a_{n}: n \geq N\right\}=v_{N} \quad \forall n \geq N
$$

So

$$
\begin{aligned}
& \Longrightarrow u_{N} \leq \lim _{n \rightarrow \infty} a_{n} \leq v_{N} \\
& \Longrightarrow u=\lim _{N \rightarrow \infty} u_{N} \leq \lim _{n \rightarrow \infty} a_{n} \leq \lim _{N \rightarrow \infty} v_{N}=v
\end{aligned}
$$

Definition 13.1 (limsup and liminf) - Let $\left\{a_{n}\right\}_{n>1}$ be a sequence of real numbers. We define

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} a_{n}=\lim _{N \rightarrow \infty} \sup \left\{a_{n}: n \geq N\right\}=\lim _{N \rightarrow \infty} v_{N}=\inf _{N} v_{N}=\inf _{N} \sup _{n \geq N} a_{n} \\
& \liminf _{n \rightarrow \infty} a_{n}=\lim _{N \rightarrow \infty} \inf \left\{a_{n}: n \geq N\right\}=\lim _{N \rightarrow \infty} u_{N}=\sup _{N} u_{N}=\sup _{N} \inf _{n \geq N} a_{n}
\end{aligned}
$$

with the convention that if $\left\{a_{n}\right\}_{n \geq 1}$ is unbounded above then

$$
\limsup _{n \rightarrow \infty} a_{n}=\infty
$$

and if $\left\{a_{n}\right\}_{n \geq 1}$ is unbounded below then

$$
\liminf _{n \rightarrow \infty} a_{n}=-\infty
$$

Remark 13.2.

$$
\inf \left\{a_{n}: n \geq 1\right\} \leq \liminf _{n \rightarrow \infty} a_{n} \leq \limsup _{n \rightarrow \infty} a_{n} \leq \sup \left\{a_{n}: n \geq 1\right\}
$$

where $\liminf _{n \rightarrow \infty} a_{n}$ is the smallest value that infinitely many a_{n} get close to and $\lim _{\sup _{n \rightarrow \infty}} a_{n}$ is the largest value that infinitely many a_{n} get close to.

Example 13.3

$a_{n}=3+\frac{(-1)^{n}}{n} \Longrightarrow \lim _{n \rightarrow \infty} a_{n}=3 \Longrightarrow \liminf _{n \rightarrow \infty} a_{n}=\lim \sup _{n \rightarrow \infty} a_{n}=3$

$$
\begin{aligned}
\inf \left\{a_{n}: n \geq 1\right\} & =2 \neq 3 \\
\sup \left\{a_{n}: n \geq 1\right\} & =\frac{7}{2} \neq 3
\end{aligned}
$$

Theorem 13.4 (lim, lim sup, and liminf)
Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence of real numbers.

1. If $\lim _{n \rightarrow \infty} a_{n}$ exists in $\mathbb{R} \cup\{ \pm \infty\}$, then $\liminf a_{n}=\limsup a_{n}=\lim _{n \rightarrow \infty} a_{n}$.
2. If $\liminf a_{n}=\limsup a_{n} \in \mathbb{R} \cup\{ \pm \infty\}$, then $\lim _{n \rightarrow \infty} a_{n}$ exists and

$$
\lim _{n \rightarrow \infty} a_{n}=\liminf _{n \rightarrow \infty} a_{n}=\limsup _{n \rightarrow \infty} a_{n}
$$

Proof. 1. We distinguish three cases.
Case i) $\lim _{n \rightarrow \infty} a_{n}=-\infty$. It's enough to show $\limsup a_{n}=-\infty$ since $\liminf a_{n} \leq$ $\overline{\limsup } a_{n}$. Fix $M<0$. As $\lim _{n \rightarrow \infty} a_{n}=-\infty, \exists n_{M} \in \mathbb{N}$ s.t. $a_{n}<M \quad \forall n \geq n_{M}$. Then for $N \geq n_{M}$, we have $v_{N}=\sup \left\{a_{n}: n \geq N\right\} \leq M$. Note that when taking $\sup (\inf),<$ can become \leq; e.g. $a_{n}=3-\frac{1}{n}$ where $a_{n}<3 \quad \forall n \geq 1$ but $\sup _{n \geq 1} a_{n}=3$.

By definition, $\lim \sup _{n \rightarrow \infty} a_{n}=\lim _{N \rightarrow \infty} v_{N}=-\infty$.
Case ii) $\lim _{n \rightarrow \infty} a_{n}=\infty$ \qquad
Case iii) $\lim _{n \rightarrow \infty} a_{n}=a \in \mathbb{R}$.
Fix $\epsilon>0$. Then $\exists n_{\epsilon} \in \mathbb{N}$ s.t. $\left|a-a_{n}\right|<\epsilon \quad \forall n \geq n_{\epsilon}$. So

$$
a-\epsilon<a_{n}<a+\epsilon \quad \forall n \geq n_{\epsilon}
$$

Thus for $N \geq n_{\epsilon}$ we have

$$
\begin{gathered}
a-\epsilon \leq \inf \left\{a_{n}: n \geq N\right\} \leq \sup \left\{a_{n}: n \geq N\right\} \leq a+\epsilon \\
a-\epsilon \leq u_{N} \leq v_{N} \leq a+\epsilon
\end{gathered}
$$

So

$$
\forall N \geq n_{\epsilon}\left\{\begin{array}{l}
\left|u_{N}-a\right| \leq \frac{\epsilon}{2}<\epsilon \\
\left|v_{N}-a\right| \leq \frac{\epsilon}{2}<\epsilon
\end{array}\right.
$$

By definition,

$$
\left\{\begin{array}{l}
\liminf a_{n}=\lim _{N \rightarrow \infty} u_{N}=a \\
\limsup a_{n}=\lim _{N \rightarrow \infty} v_{N}=a
\end{array}\right.
$$

2. We distinguish three cases.

Case i) $\lim \inf a_{n}=\lim \sup a_{n}=-\infty$.
We will use $\lim \sup a_{n}=-\infty$. Fix $M<0$. Then since $\limsup a_{n}=\lim _{N \rightarrow \infty} v_{N}=$ $-\infty, \exists N_{M} \in \mathbb{N}$ s.t. $v_{N}<M \quad \forall N \geq N_{M}$. In particular, $v_{N_{M}}=\sup \left\{a_{n}: n \geq N_{M}\right\}<$ M

$$
\Longrightarrow a_{n}<M \quad \forall n \geq N_{M}
$$

By definition, $\lim _{n \rightarrow \infty} a_{n}=-\infty$.
Case ii) $\liminf a_{n}=\limsup a_{n}=\infty$ \qquad
Case iii) $\lim \inf a_{n}=\limsup a_{n}=a \in \mathbb{R}$.
Fix $\epsilon>0$.

$$
a=\liminf a_{n}=\lim _{N \rightarrow \infty} u_{N} \Longrightarrow \exists N_{1}(\epsilon) \in \mathbb{N} \ni\left|u_{N}-a\right|<\epsilon \quad \forall N \geq N_{1}
$$

So $a-\epsilon<u_{N_{1}}=\inf \left\{a_{n}: n \geq N_{1}\right\}<a+\epsilon$

$$
\Longrightarrow a-\epsilon<a_{n} \quad \forall n \geq N_{1}
$$

And

$$
a=\lim \sup a_{n}=\lim _{N \rightarrow \infty} v_{N} \Longrightarrow \exists N_{2}(\epsilon) \in \mathbb{N} \ni\left|v_{N}-a\right|<\epsilon \quad \forall N \geq N_{2}
$$

So $a-\epsilon<v_{N_{2}}=\sup \left\{a_{n}: n \geq N_{2}\right\}<a+\epsilon$.

$$
\Longrightarrow a_{n}<a+\epsilon \quad \forall n \geq N_{2}
$$

Thus for $n \geq \max \left\{N_{1}, N_{2}\right\}$ we have

$$
a-\epsilon<a_{n}<a+\epsilon \Longleftrightarrow\left|a_{n}-a\right|<\epsilon
$$

By definition, $\lim _{n \rightarrow \infty} a_{n}=a$.

§14 Lec 14: Feb 5, 2021

§14.1 Limsup and Liminf (Cont'd)

Recall: For a sequence $\left\{a_{n}\right\}_{n \geq 1}$ of real numbers, we define

$$
\begin{aligned}
\liminf a_{n} & =\sup _{N} \inf _{n \geq N} a_{n}=\lim _{N \rightarrow \infty} u_{N} \text { where } u_{N}=\inf \left\{a_{n}: n \geq N\right\} \\
\limsup a_{n} & =\inf _{N} \sup _{n \geq N} a_{n}=\lim _{N \rightarrow \infty} v_{N} \text { where } v_{N}=\sup \left\{a_{n}: n \geq N\right\}
\end{aligned}
$$

Last time, we proved that

$$
\lim _{n \rightarrow \infty} a_{n} \text { exists in } \mathbb{R} \cup\{ \pm \infty\} \Longleftrightarrow \liminf a_{n}=\limsup a_{n}
$$

Theorem 14.1 (Existence of Monotonic Subsequence)

Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence of real numbers. Then there exists a monotonic subsequence of $\left\{a_{n}\right\}_{n \geq 1}$ whose limit is $\lim \sup a_{n}$. Also, there exists a monotonic subsequence of $\left\{a_{n}\right\}_{n \geq 1}$ whose limit is $\lim \inf a_{n}$.

Proof. We will prove the statement about $\lim \sup a_{n}$. Similar arguments can be used to prove the statement about $\lim \inf a_{n}$.

Note that it suffices to find a subsequence of $\left\{a_{k_{n}}\right\}_{n \geq 1}$ of $\left\{a_{n}\right\}_{n \geq 1}$ s.t.

$$
\lim _{n \rightarrow \infty} a_{k_{n}}=\lim \sup a_{n}
$$

As every sequence has a monotone subsequence, $\left\{a_{k_{n}}\right\}_{n \geq 1}$ has a monotone subsequence $\left\{a_{p_{k_{n}}}\right\}_{n \geq 1}$. Then as $\lim a_{k_{n}}$ exists, $\lim _{n \rightarrow \infty} a_{p_{k_{n}}}$ exists and

$$
\lim _{n \rightarrow \infty} a_{p_{k_{n}}}=\lim a_{k_{n}}=\lim \sup a_{n}
$$

Finally, note that $\left\{a_{p_{k_{n}}}\right\}_{n \geq 1}$ is a subsequence of $\left\{a_{n}\right\}_{n \geq 1}$.
Let's find a subsequence of $\left\{a_{n}\right\}_{n \geq 1}$ whose limit is $\lim \sup a_{n}$.
Case 1: $\limsup a_{n}=-\infty$.
We showed that in this case, $\lim _{n \rightarrow \infty} a_{n}=-\infty$. Choose $\left\{a_{k_{n}}\right\}_{n \geq 1}$ to be $\left\{a_{n}\right\}_{n \geq 1}$.
Case 2: $\lim \sup a_{n}=a \in \mathbb{R}$.

$$
a=\lim \sup a_{n}=\lim _{N \rightarrow \infty} v_{N}
$$

Then $\exists N_{1} \in \mathbb{N}$ s.t. $\left|a-v_{N}\right|<1 \quad \forall N \geq N_{1}$. In particular,

$$
\begin{aligned}
& a-1<v_{N_{1}}<a+1 \\
\Longrightarrow & a-1<\sup \left\{a_{n}: n \geq N_{1}\right\} \\
\Longrightarrow & \exists k_{1} \geq N_{1} \quad \ni \quad a-1<a_{k_{1}} \\
\Longrightarrow & a-1<a_{k_{1}}<v_{N_{1}}<a+1
\end{aligned}
$$

So $\left|a-a_{k_{1}}\right|<1$.
As $a=\lim _{N \rightarrow \infty} v_{N}, \exists N_{2} \in \mathbb{N}$ s.t. $\left|a-v_{N}\right|<\frac{1}{2} \quad \forall N \geq N_{2}$.
Let $\tilde{N}_{2}=\max \left\{N_{2}, k_{1}+1\right\}$
In particular,

$$
\left.\begin{array}{l}
a-\frac{1}{2}<v_{\tilde{N}_{2}}<a+\frac{1}{2} \\
a-\frac{1}{2}<\sup \left\{a_{n}: n \geq \tilde{N}_{2}\right\} \\
\exists k_{2} \geq \tilde{N}_{2} \text { s.t. } a-\frac{1}{2}<a_{k_{2}}
\end{array}\right\} \Longrightarrow a-\frac{1}{2}<a_{k_{2}} \leq v_{N_{2}}<a+\frac{1}{2}
$$

So, $\left|a-a_{k_{2}}\right|<\frac{1}{2}$. To construct our subsequence we proceed inductively. Assume we have found $k_{1}<k_{2}<\ldots<k_{n}$ and $a_{k_{1}}, \ldots, a_{k_{n}}$ s.t.

$$
\left|a-a_{k_{j}}\right|<\frac{1}{j} \quad \forall 1 \leq j \leq n
$$

As $a=\lim _{N \rightarrow \infty} v_{N} \Longrightarrow \exists N_{n+1} \in \mathbb{N}$ s.t. $\left|a-v_{N}\right|<\frac{1}{n+1} \quad \forall N \geq N_{n+1}$. Let $\tilde{N}_{n+1}=$ $\max \left\{N_{n+1}, k_{n}+1\right\}$. Then

$$
\begin{aligned}
a & -\frac{1}{n+1}<v_{\tilde{N}_{n+1}}<a+\frac{1}{n+1} \\
& \Longrightarrow a-\frac{1}{n+1}<\sup \left\{a_{n}: n \geq \tilde{N}_{n+1}\right\} \\
& \Longrightarrow \exists k_{n+1} \geq \tilde{N}_{n+1}>k_{n} \text { s.t. } a-\frac{1}{n+1}<a_{k_{n+1}} \\
& \Longrightarrow a-\frac{1}{n+1}<a_{k_{n+1}} \leq v_{\tilde{N}_{n+1}}<a+\frac{1}{n+1} \\
& \Longrightarrow\left|a_{k_{n+1}}-a\right|<\frac{1}{n+1}
\end{aligned}
$$

Case 3: $\lim \sup a_{n}=\infty$. \qquad HW!

Definition 14.2 (Subsequential Limit) - Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence of real numbers. A subsequential limit of $\left\{a_{n}\right\}_{n \geq 1}$ is any $a \in \mathbb{R} \cup\{ \pm \infty\}$ that is the limit of a subsequence of $\left\{a_{n}\right\}_{n \geq 1}$.

Example 14.3 1. $a_{n}=n\left(1+(-1)^{n}\right)$
The subsequential limits are

$$
\begin{aligned}
0 & =\lim _{n \rightarrow \infty} a_{2 n+1} \\
\infty & =\lim _{n \rightarrow \infty} a_{2 n}
\end{aligned}
$$

2. $a_{n}=\cos \left(\frac{n \pi}{3}\right)$

The subsequential limits are

$$
\begin{aligned}
1 & =\lim _{n \rightarrow \infty} a_{6 n} \\
\frac{1}{2} & =\lim _{n \rightarrow \infty} a_{6 n+1}=\lim _{n \rightarrow \infty} a_{6 n+5} \\
-\frac{1}{2} & =\lim _{n \rightarrow \infty} a_{6 n+2}=\lim _{n \rightarrow \infty} a_{6 n+4} \\
-1 & =\lim _{n \rightarrow \infty} a_{6 n+3}
\end{aligned}
$$

Theorem 14.4 (Properties of the Set of Subsequential Limit)

Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence of real numbers and let A denote its set of subsequential limits:

$$
A=\left\{a \in \mathbb{R} \cup\{ \pm \infty\}: \exists\left\{a_{k_{n}}\right\}_{n \geq 1} \text { subsequence of }\left\{a_{n}\right\}_{n \geq 1} \text { s.t. } \lim _{n \rightarrow \infty} a_{k_{n}}=a\right\}
$$

Then:

1. $A \neq \emptyset$.
2. $\lim _{n \rightarrow \infty} a_{n}$ exists (in $\mathbb{R} \cup\{ \pm \infty\}$) $\Longleftrightarrow A$ has exactly one element.
3. $\inf A=\liminf a_{n}$ and $\sup A=\limsup a_{n}$.

Proof. 1. By the previous theorem, $\lim \inf a_{n}, \lim \sup a_{n} \in A$. So $A \neq \emptyset$.
2. " $\Longrightarrow "$ Assume $\lim _{n \rightarrow \infty} a_{n}$ exists. Then if $\left\{a_{k_{n}}\right\}_{n \geq 1}$ is a subsequence of $\left\{a_{n}\right\}_{n \geq 1}$, we have

$$
\lim _{n \rightarrow \infty} a_{k_{n}}=\lim _{n \rightarrow \infty} a_{n}
$$

So $A=\left\{\lim _{n \rightarrow \infty} a_{n}\right\}$.
$" \Longleftarrow "$ If A has a single element, $\lim \inf a_{n}=\lim \sup a_{n}$ and so $\lim _{n \rightarrow \infty} a_{n}$ exists.
3. We will prove

Claim 14.1. $\lim \inf a_{n} \leq a \leq \limsup a_{n} \quad \forall a \in A$.
Assuming the claim, let's see how to finish the proof. The claim implies

- $\liminf a_{n}$ is a lower bound for $A \Longrightarrow \liminf a_{n} \leq \inf A$. On the other hand, $\liminf a_{n} \in A \Longrightarrow \liminf a_{n} \geq \inf A$. Thus, $\lim \inf a_{n}=\inf A$.
- $\lim \sup a_{n}$ is an upper bound for $A \Longrightarrow \lim \sup a_{n} \geq \sup A$. But $\lim \sup a_{n} \in$ $A \Longrightarrow \lim \sup a_{n} \leq \sup A$. Thus, $\lim \sup a_{n}=\sup A$.

Let's prove the claim. Fix $a \in A \Longrightarrow \exists\left\{a_{k_{n}}\right\}_{n \geq 1}$ subsequence of $\left\{a_{n}\right\}_{n \geq 1}$ s.t. $\lim _{n \rightarrow \infty} a_{k_{n}}=a$.

$$
\begin{aligned}
& \left\{a_{n}: n \geq N\right\} \supset\left\{a_{k_{n}}: n \geq N\right\} \\
& \Longrightarrow \underbrace{\inf \left\{a_{n}: n \geq N\right\}}_{\text {increasing seq }} \leq \underbrace{\inf \left\{a_{k_{n}}: n \geq N\right\}}_{\text {increasing seq }} \leq \underbrace{\sup \left\{a_{k_{n}}: n \geq N\right\}}_{\text {deceasing seq }} \leq \underbrace{\sup \left\{a_{n}: n \geq N\right\}}_{\text {decreasing seq }} \\
& \Longrightarrow \lim _{N \rightarrow \infty} \inf \left\{a_{n}: n \geq N\right\} \leq \lim _{N \rightarrow \infty} \inf \left\{a_{k_{n}}: n \geq N\right\} \leq \lim _{N \rightarrow \infty} \sup \left\{a_{k_{n}}: n \geq N\right\} \\
& \leq \lim _{N \rightarrow \infty} \sup \left\{a_{n}: n \geq N\right\} \\
& \Longrightarrow \liminf a_{n} \leq \underbrace{\liminf a_{k_{n}}}_{=\lim a_{k_{n}}=a} \leq \underbrace{\lim \sup a_{k_{n}}}_{=\lim a_{k_{n}}=a} \leq \limsup a_{n}
\end{aligned}
$$

§15 Lec 15: Feb 8, 2021

§15.1 Limsup and Liminf (Cont'd)

Theorem 15.1 (Cesaro - Stolz)

Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence of non-zero real numbers. Then

$$
\lim \inf \left|\frac{a_{n+1}}{a_{n}}\right| \stackrel{1)}{\leq} \liminf \left|a_{n}\right|^{\frac{1}{n}} \stackrel{2)}{\leq} \lim \sup \left|a_{n}\right|^{\frac{1}{n}} \stackrel{3)}{\leq} \lim \sup \left|\frac{a_{n+1}}{a_{n}}\right|
$$

In particular, if $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$ exists then $\lim _{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}}$ exists and

$$
\lim _{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}}=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|
$$

Example 15.2

Find $\lim _{n \rightarrow \infty} \sqrt[n]{n}=\lim _{n \rightarrow \infty} n^{\frac{1}{n}}$.
If we let $a_{n}=n$ then $\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{n+1}{n} \xrightarrow{n \rightarrow \infty} 1$. By Cesaro - Stolz, we get $\{\sqrt[n]{n}\}_{n \geq 1}$ converges and

$$
\lim _{n \rightarrow \infty} \sqrt[n]{n}=1
$$

Proof. We will prove inequality 3). Analogous arguments yield inequality 1). Let

$$
\begin{aligned}
l & =\lim \sup \left|a_{n}\right|^{\frac{1}{n}} \geq 0 \\
L & =\lim \sup \left|\frac{a_{n+1}}{a_{n}}\right| \geq 0
\end{aligned}
$$

We want to show $l \leq L$. If $L=\infty$, then it's clear. Henceforth we assume $L \in \mathbb{R}$. We will prove
Claim 15.1. l is a lower bound for the set

$$
(L, \infty)=\{M \in \mathbb{R}: M>L\}
$$

Assuming the claim for now, let's see how to finish the proof. Note (L, ∞) is a non-empty subset of \mathbb{R} which is bounded below (by L). As \mathbb{R} has the least upper bound property, $\inf (L, \infty)$ exists in \mathbb{R}. In fact,

$$
\inf (L, \infty)=L
$$

As l is a lower bound for (L, ∞), we must have $l \leq L$. Let's prove the claim. Fix $M \in(L, \infty)$. We will show

$$
l \leq M
$$

We have $M>L=\lim \sup \left|\frac{a_{n+1}}{a_{n}}\right|=\inf _{N} \sup _{n \geq N}\left|\frac{a_{n+1}}{a_{n}}\right|$.

$$
\begin{aligned}
& \Longrightarrow \exists N_{0} \in \mathbb{N} \ni \sup _{n \geq N_{0}}\left|\frac{a_{n+1}}{a_{n}}\right|<M \\
& \Longrightarrow\left|\frac{a_{n+1}}{a_{n}}\right|<M \quad \forall n \geq N_{0} \\
& \Longrightarrow\left|a_{n+1}\right|<M \cdot\left|a_{n}\right| \quad \forall n \geq N_{0}
\end{aligned}
$$

A simple inductive argument yields

$$
\begin{align*}
& \left|a_{n}\right|<M^{n-N_{0}}\left|a_{N_{0}}\right| \quad \forall n>N_{0} \\
& \Longrightarrow\left|a_{n}\right|^{\frac{1}{n}}<M\left(\frac{\left|a_{N_{0}}\right|}{M^{N_{0}}}\right)^{\frac{1}{n}} \quad \forall n>N_{0} \\
& \Longrightarrow l=\lim \sup \left|a_{n}\right|^{\frac{1}{n}} \leq \lim \sup M \cdot\left(\frac{\left|a_{N_{0}}\right|}{M^{N_{0}}}\right)^{\frac{1}{n}}=M \cdot \lim \sup \left(\frac{\left|a_{N_{0}}\right|}{M^{N_{0}}}\right)^{\frac{1}{n}} \tag{*}
\end{align*}
$$

Claim 15.2. For $r>0$ we have $\lim _{n \rightarrow \infty} r^{\frac{1}{n}}=1$
Indeed, if $r \geq 1$

$$
0 \leq r^{\frac{1}{n}}-1=\frac{r-1}{r^{n-1}+r^{n-2}+\ldots+1} \leq \frac{r-1}{n} \xrightarrow{n \rightarrow \infty} 0
$$

where we use the formula $a^{n}-b^{n}=(a-b)\left(a^{n-1}+a^{n-2} b+\ldots+a b^{n-2}+b^{n-1}\right)$. If $r<1$, then

$$
r^{\frac{1}{n}}=\frac{1}{\left(\frac{1}{r}\right)^{\frac{1}{n}}} \xrightarrow{n \rightarrow \infty} \frac{1}{1}=1
$$

Taking $r=\frac{\left|a_{N_{0}}\right|}{M^{N_{0}}}$ in $\left(^{*}\right)$ we conclude that

$$
l \leq M
$$

§15.2 Series

Definition 15.3 (Convergent/Absolutely Convergent Series) - Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence of real numbers. For $n \geq 1$, we define the partial sum

$$
s_{n}=a_{1}+\ldots+a_{n}
$$

The series $\sum_{n=1}^{\infty} a_{n}\left(\sum_{n \geq 1} a_{n}\right)$ is said to converge if $\left\{s_{n}\right\}_{n \geq 1}$ converges.
We say that the series $\sum_{n=1}^{\infty} a_{n}$ converges absolutely if the series $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges. (Note that $\sum_{n=1}^{\infty}\left|a_{n}\right|$ either converges or it diverges to ∞).

Theorem 15.4 (Cauchy Criterion - Series)

A series $\sum_{n \geq 1} a_{n}$ converges if and only if

$$
\forall \epsilon>0 \quad \exists n_{\epsilon} \in \mathbb{N} \ni\left|\sum_{k=n+1}^{n+p} a_{k}\right|<\epsilon \quad \forall n \geq n_{\epsilon} \forall p \in \mathbb{N}
$$

Proof. The series $\sum_{n \geq 1} a_{n}$ converges \Longleftrightarrow the sequence $\left\{s_{n}\right\}_{n \geq 1}$ converges $\Longleftrightarrow\left\{s_{n}\right\}_{n \geq 1}$ is Cauchy $\Longleftrightarrow \forall \epsilon>\overline{0} \exists n_{\epsilon} \in \mathbb{N}$ s.t. $\left|s_{m}-s_{n}\right|<\epsilon \quad \forall m, n \geq n_{\epsilon}$. Without loss of generality, we may assume $m>n$ and write $m=n+p$ for $p \in \mathbb{N}$. Note

$$
\left|s_{m}-s_{n}\right|=\left|\sum_{k=1}^{n+p} a_{k}-\sum_{k=1}^{n} a_{k}\right|=\left|\sum_{k=n+1}^{n+p} a_{k}\right|
$$

So $\sum_{n \geq 1} a_{n}$ converges $\Longleftrightarrow \forall \epsilon>0 \exists n_{\epsilon} \in \mathbb{N}$ s.t. $\left|\sum_{k=n+1}^{n+p} a_{k}\right|<\epsilon \forall n \geq n_{\epsilon} \forall p \in \mathbb{N}$.

Corollary 15.5

If $\sum_{n \geq 1} a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$.

Proof. Taking $p=1$, we find $\sum_{n \geq 1} a_{n}$ converges implies

$$
\forall \epsilon>0 \quad \exists n_{\epsilon} \in \mathbb{N} \text { s.t. }\left|a_{n+1}\right|<\epsilon \quad \forall n \geq n_{\epsilon}
$$

Corollary 15.6

If $\sum_{n \geq 1} a_{n}$ converges absolutely, then it converges.

Proof. $\sum_{n \geq 1} a_{n}$ converges absolutely $\Longrightarrow \sum_{n \geq 1}\left|a_{n}\right|$ converges.

$$
\Longrightarrow \forall \epsilon>0 \quad \exists n_{\epsilon} \in \mathbb{N} \text { s.t. } \sum_{k=n+1}^{n+p}\left|a_{k}\right|<\epsilon \quad \forall n \geq n_{\epsilon} \forall p \in \mathbb{N}
$$

Note that by \triangle inequality,

$$
\left|\sum_{k=n+1}^{n+p} a_{k}\right| \leq \sum_{k=n+1}^{n+p}\left|a_{k}\right|<\epsilon \quad \forall n \geq n_{\epsilon} \forall p \in \mathbb{N}
$$

So $\sum_{n \geq 1} a_{n}$ converges by the Cauchy criterion.

Theorem 15.7 (Comparison Test)

Let $\sum_{n \geq 1} a_{n}$ be a series of real numbers with $a_{n} \geq 0 \quad \forall n \geq 1$.

1. If $\sum_{n \geq 1} a_{n}$ converges and $\left|b_{n}\right| \leq a_{n} \forall n \geq 1$, then $\sum_{n \geq 1} b_{n}$ converges.
2. If $\sum_{n \geq 1} a_{n}$ diverges and $b_{n} \geq a_{n} \forall n \geq 1$, then $\sum_{n \geq 1} b_{n}$ diverges.

Proof. 1. $\sum_{n \geq 1} a_{n}$ converges $\Longrightarrow \forall \epsilon>0 \exists n_{\epsilon} \in \mathbb{N}$ s.t.

$$
\left|\sum_{k=n+1}^{n+p} a_{k}\right|<\epsilon \quad \forall n \geq n_{\epsilon} \forall p \in \mathbb{N}
$$

Then $\left|\sum_{k=n+1}^{n+p} b_{k}\right| \leq \sum_{k=n+1}^{n+p}\left|b_{k}\right| \leq \sum_{k=n+1}^{n+p} a_{k}<\epsilon \forall n \geq n_{\epsilon} \forall p \in \mathbb{N}$. So by the Cauchy criterion, $\sum_{n \geq 1} b_{n}$ converges.
2. $b_{1}+\ldots+b_{n} \geq a_{1}+\ldots+a_{n} \xrightarrow{n \rightarrow \infty} \infty \Longrightarrow \sum_{n \geq 1} b_{n}$ diverges.

Lemma 15.8

Let $r \in \mathbb{R}$. The series $\sum_{n \geq 0} r^{n}$ converges if and only if $|r|<1$. If $|r|<1$, then

$$
\sum_{n \geq 0} r^{n}=\frac{1}{1-r}
$$

Proof. First note that if $|r| \geq 1$, then

$$
\left|r^{n}\right|=|r|^{n} \geq 1 \quad \Longrightarrow r^{n} \xrightarrow{n \rightarrow \infty} 0
$$

By the first corollary, $\sum_{n \geq 0} r^{n}$ cannot converge. Assume now that $|r|<1$. Then

$$
\left|r^{n}\right|=|r|^{n} \xrightarrow{n \rightarrow \infty} 0
$$

Also

$$
\sum_{k=0}^{n} r^{k}=\frac{1-r^{n+1}}{1-r} \xrightarrow{n \rightarrow \infty} \frac{1}{1-r}
$$

§16 Lec 16: Feb 10, 2021

§16.1 Series (Cont'd)

Theorem 16.1 (Dyadic Criterion)

Let $\left\{a_{n}\right\}_{n>1}$ be a decreasing sequence of real numbers with $a_{n} \geq 0 \forall n \geq 1$. Then the series $\sum_{n \geq 1} a_{n}$ converges if and only if the series $\sum_{n \geq 0} 2^{n} a_{2^{n}}$ converges.

Proof. For $n \geq 1$ let $s_{n}=\sum_{k=1}^{n} a_{k}=a_{1}+\ldots+a_{n}$. For $n \geq 0$ let $t_{n}=\sum_{k=0}^{n} 2^{k} a_{2^{k}}=$ $a_{1}+2 a_{2}+\ldots+2^{n} a_{2^{n}}$. Note that $\left\{s_{n}\right\}_{n \geq 1}$ and $\left\{t_{n}\right\}_{n \geq 0}$ are increasing sequences.
Thus $\sum_{n \geq 1} a_{n}$ converges $\Longleftrightarrow\left\{s_{n}\right\}_{n \geq 1}$ is bounded and $\sum_{n \geq 0} 2^{n} a_{2^{n}}$ converges \Longleftrightarrow $\left\{t_{n}\right\}_{n \geq 0}$ is bounded. We have to prove that $\left\{s_{n}\right\}_{n \geq 1}$ is bounded $\Longleftrightarrow\left\{t_{n}\right\}_{n \geq 0}$ is bounded.

Consider:

$$
\sum_{l=2^{k}+1}^{2^{k+1}} a_{l}
$$

Because $\left\{a_{n}\right\}_{n \geq 1}$ is decreasing, we get

$$
\begin{aligned}
& \frac{1}{2}\left(2^{k+1} a_{2^{k+1}}\right)=2^{k} a_{2^{k+1}} \leq \sum_{l=2^{k}+1}^{2^{k+1}} a_{l} \leq 2^{k} a_{2^{k}+1} \leq 2^{k} a_{2^{k}} \\
& \frac{1}{2} \sum_{k=0}^{n} 2^{k+1} a_{2^{k+1}} \leq \sum_{k=0}^{n} \sum_{l=2^{k}+1}^{2^{k+1}} a_{l} \leq \sum_{k=0}^{n} 2^{k} a_{2^{k}} \\
& \frac{1}{2} \sum_{l=1}^{n+1} 2^{l} a_{2^{l}} \leq \sum_{l=2}^{2^{n+1}} a_{l} \leq t_{n} \\
& \Longrightarrow\left\{\begin{array}{l}
\frac{1}{2}\left(t_{n+1}-a_{1}\right) \leq s_{2^{n+1}}-a_{1} \leq t_{n} \\
t_{n+1} \leq 2 s_{2^{n+1}}-a_{1} \\
s_{n} \leq s_{2^{n+1}} \leq t_{n}+a_{1} \text { as } n \leq 2^{n+1} \forall n \geq 1
\end{array}\right.
\end{aligned}
$$

If $\left\{s_{n}\right\}_{n \geq 1}$ is bounded $\Longrightarrow \exists M>0$ s.t. $\left|s_{n}\right| \leq M \forall n \geq 1$

$$
\Longrightarrow t_{n+1} \leq 2 M+a_{1} \quad \forall n \geq 1
$$

If $\left\{t_{n}\right\}_{n \geq 0}$ is bounded $\Longrightarrow \exists L>0$ s.t. $\left|t_{n}\right| \leq L \forall n \geq 0$

$$
\Longrightarrow s_{n} \leq L+a_{1} \quad \forall n \geq 1
$$

Corollary 16.2

The series $\sum_{n \geq 1} \frac{1}{n^{\alpha}}$ converges if and only if $\alpha>1$.

Proof. If $\alpha \leq 0$ then $\frac{1}{n^{\alpha}}=n^{-\alpha} \geq 1 \forall n \geq 1$. In particular, $\frac{1}{n^{\alpha}} \stackrel{n \rightarrow \infty}{\nrightarrow} 0$ so $\sum_{n \geq 1} \frac{1}{n^{\alpha}}$ cannot converge. Assume $\alpha>0$. Then $\left\{\frac{1}{n^{\alpha}}\right\}_{n \geq 1}$ is a decreasing sequence of positive real numbers. By the dyadic criterion,

$$
\begin{aligned}
& \sum_{n \geq 1} \frac{1}{n^{\alpha}} \text { converges } \Longleftrightarrow \sum_{n \geq 0} 2^{n} \frac{1}{\left(2^{n}\right)^{\alpha}} \text { converges } \\
& \sum_{n \geq 0} \frac{2^{n}}{\left(2^{n}\right)^{\alpha}}=\sum_{n \geq 0}\left(2^{1-\alpha}\right)^{n}=\sum_{n \geq 0} r^{n} \text { where } r=2^{1-\alpha}
\end{aligned}
$$

This converges $\Longleftrightarrow r<1 \Longleftrightarrow 2^{1-\alpha}<1 \Longleftrightarrow 1-\alpha<0 \Longleftrightarrow \alpha>1$.

Theorem 16.3 (Root Test)

Let $\sum_{n \geq 1} a_{n}$ be a series of real numbers.

1. If $\lim \sup \left|a_{n}\right|^{\frac{1}{n}}<1$ then $\sum_{n \geq 1} a_{n}$ converges absolutely.
2. If $\lim \inf \left|a_{n}\right|^{\frac{1}{n}}>1$ then $\sum_{n \geq 1} a_{n}$ diverges.
3. The test is inconclusive if $\lim \inf \left|a_{n}\right|^{\frac{1}{n}} \leq 1 \leq \limsup \left|a_{n}\right|^{\frac{1}{n}}$.

Proof. 1. Let $L=\limsup \left|a_{n}\right|^{\frac{1}{n}}$.

$$
L<1 \Longrightarrow 1-L>0 \stackrel{\mathbb{Q} \text { dense in } \mathbb{R}}{\Longrightarrow} \exists \epsilon \in \mathbb{R} \ni 0<\epsilon<1-L \Longrightarrow L<L+\epsilon<1
$$

So $L+\epsilon>L=\limsup \left|a_{n}\right|^{\frac{1}{n}}=\inf _{N} \sup _{n \geq N}\left|a_{n}\right|^{\frac{1}{n}}$

$$
\begin{aligned}
& \Longrightarrow \exists N_{0} \in \mathbb{N} \ni \sup _{n \geq N_{0}}\left|a_{n}\right|^{\frac{1}{n}}<L+\epsilon \\
& \Longrightarrow\left|a_{n}\right|^{\frac{1}{n}}<L+\epsilon \quad \forall n \geq N_{0} \\
& \Longrightarrow\left|a_{n}\right|<(L+\epsilon)^{n} \quad \forall n \geq N_{0}
\end{aligned}
$$

As $L+\epsilon<1$, the series

$$
\begin{aligned}
\sum_{n \geq N_{0}}(L+\epsilon)^{n} & =\sum_{k \geq 0}(L+\epsilon)^{N_{0}+k} \\
& =(L+\epsilon)^{N_{0}} \sum_{k \geq 0}(L+\epsilon)^{k} \\
& =(L+\epsilon)^{N_{0}} \frac{1}{1-(L+\epsilon)}
\end{aligned}
$$

By the Comparison Test, $\sum_{n \geq N_{0}} a_{n}$ converges absolutely and note $\left|a_{1}\right|+\ldots+\left|a_{N_{0}-1}\right| \in$ \mathbb{R}.

$$
\Longrightarrow \sum_{n \geq 1} a_{n} \text { converges absolutely }
$$

2. Let $\left\{a_{k_{n}}\right\}_{n \geq 1}$ be a subsequence of $\left\{a_{n}\right\}_{n \geq 1}$ such that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|a_{k_{n}}\right|^{\frac{1}{k_{n}}}=\liminf \left|a_{n}\right|^{\frac{1}{n}}>1 \\
& \Longrightarrow \exists n_{0} \in \mathbb{N} \ni\left|a_{k_{n}}\right|^{\frac{1}{k_{n}}}>1 \quad \forall n \geq n_{0} \\
& \Longrightarrow\left|a_{k_{n}}\right|>1 \quad \forall n \geq n_{0} \\
& \Longrightarrow a_{k_{n}} \xrightarrow{n \rightarrow \infty} \neq 0 \Longrightarrow a_{n} \xrightarrow{n \rightarrow \infty} \neq 0 \Longrightarrow \sum_{n \geq 1} a_{n} \text { diverges }
\end{aligned}
$$

3. Consider $a_{n}=\frac{1}{n} \forall n \geq 1$. The series $\sum_{n \geq 1} a_{n}=\sum_{n \geq 1} \frac{1}{n}$ diverges. However,

$$
\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\frac{1}{\lim _{n \rightarrow \infty} \sqrt[n]{n}} \stackrel{\text { Cesaro-Stolz }}{=} \frac{1}{\lim _{n \rightarrow \infty} \frac{n+1}{n}}=1
$$

So $\liminf \sqrt[n]{a_{n}}=\limsup \sqrt[n]{a_{n}}=1$. Consider now $a_{n}=\frac{1}{n^{2}} \forall n \geq 1$. The series $\sum_{n \geq 1} a_{n}=\sum_{n \geq 1} \frac{1}{n^{2}}$ converges.
However,

$$
\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\frac{1}{\lim _{n \rightarrow \infty} \sqrt[n]{n^{2}}} \stackrel{\mathrm{C}-\mathrm{S}}{=} \frac{1}{\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{n^{2}}}=1
$$

So $\liminf \sqrt[n]{a_{n}}=\limsup \sqrt[n]{a_{n}}=1$.

Theorem 16.4 (Ratio Test)

Let $\sum_{n \geq 1} a_{n}$ be a series of non-zero real numbers.

1. If $\lim \sup \left|\frac{a_{n+1}}{a_{n}}\right|<1$ then $\sum_{n \geq 1} a_{n}$ converges absolutely.
2. If $\lim \inf \left|\frac{a_{n+1}}{a_{n}}\right|>1$ then $\sum_{n \geq 1} a_{n}$ diverges.
3. The test is conclusive if $\lim \inf \left|\frac{a_{n+1}}{a_{n}}\right| \leq 1 \leq \lim \sup \left|\frac{a_{n+1}}{a_{n}}\right|$

Proof. (1) \& (2) follow from the root test and the Cesaro - Stolz theorem:

$$
\lim \inf \left|\frac{a_{n+1}}{a_{n}}\right| \leq \liminf \left|a_{n}\right|^{\frac{1}{n}} \leq \lim \sup \left|a_{n}\right|^{\frac{1}{n}} \leq \lim \sup \left|\frac{a_{n+1}}{a_{n}}\right|
$$

For (3) consider the same examples as in the previous theorem.

Theorem 16.5 (Abel Criterion)

Let $\left\{a_{n}\right\}_{n \geq 1}$ be a decreasing sequence with $\lim _{n \rightarrow \infty} a_{n}=0$. Let $\left\{b_{n}\right\}_{n \geq 1}$ be a sequence so that $\left\{\sum_{k=1}^{n} b_{k}\right\}_{k \geq 1}$ is bounded. Then $\sum_{n \geq 1} a_{n} b_{n}$ converges.

Corollary 16.6 (Leibniz Criterion)

Let $\left\{a_{n}\right\}_{n \geq 1}$ be a decreasing sequence with $\lim _{n \rightarrow \infty} a_{n}=0$. Then $\sum_{n \geq 1}(-1)^{n} a_{n}$ converges.

Proof. (Abel Criterion) Let $t_{n}=\sum_{k=1}^{n} b_{k}$ for $n \geq 1$. As $\left\{t_{n}\right\}_{n \geq 1}$ is bounded $\exists M>0$ s.t. $\left|t_{n}\right| \leq M \forall n \geq 1$. We will use the Cauchy criterion to prove convergence of $\sum_{n \geq 1} a_{n} b_{n}$. Let $\epsilon>0$.
As $\lim a_{n}=0 \Longrightarrow \exists n_{\epsilon} \in \mathbb{N}$ s.t. $\left|a_{n}\right|<\frac{\epsilon}{2 M} \forall n \geq n_{\epsilon}$. For $n \geq n_{\epsilon}$ and $p \in \mathbb{N}$,

$$
\begin{aligned}
\left|\sum_{k=n+1}^{n+p} a_{k} b_{k}\right| & =\left|\sum_{k=n+1}^{n+p} a_{k}\left(t_{k}-t_{k-1}\right)\right| \\
& =\left|\sum_{k=n+1}^{n+p} a_{k} t_{k}-\sum_{k=n+1}^{n+p} a_{k} t_{k-1}\right| \\
& =\left|\sum_{k=n+1}^{n+p} a_{k} t_{k}-\sum_{k=n}^{n+p-1} a_{k+1} t_{k}\right| \\
& =\left|\sum_{k=n}^{n+p} t_{k}\left(a_{k}-a_{k+1}\right)-a_{n} t_{n}+a_{n+p+1} t_{n+p}\right| \\
& \leq \sum_{k=n}^{n+p}\left|t_{k}\right|\left|a_{k}-a_{k+1}\right|+\left|a_{n}\right| \cdot\left|t_{n}\right|+\left|a_{n+p+1}\right| \cdot\left|t_{n+p}\right| \\
& \leq \sum_{k=n}^{n+p} M\left(a_{k}-a_{k+1}\right)+a_{n} M+a_{n+p+1} M \\
& =M\left(a_{n}-a_{n+p+1}\right)+a_{n} M+a_{n+p+1} M \\
& =2 M \cdot a_{n}<\epsilon
\end{aligned}
$$

§17| Lee 17: Feb 12, 2021
§17.1 Rearrangements of Series
Definition 17.1 (Rearrangement) - Let $k: \mathbb{N} \rightarrow \mathbb{N}$ be a bijective function. For a sequence $\left\{a_{n}\right\}_{n \geq 1}$ of real numbers, we denote

$$
\tilde{a}_{n}=a_{k(n)}=a_{k_{n}}
$$

Then $\sum_{n \geq 1} \tilde{a}_{n}$ is called a rearrangement of $\sum_{n \geq 1} a_{n}$

Example 17.2

Consider $a_{n}=\frac{(-1)^{n-1}}{n} \forall n \geq 1$. The series $\sum_{n \geq 1} a_{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\ldots$ Note that the sequence $\left\{\frac{1}{n}\right\}_{n \geq 1}$ is decreasing and $\lim _{n \rightarrow \infty} \frac{1}{n}=0$. Thus, by the Leibniz criterion, $\sum_{n \geq 1} a_{n}$ converges. Write the series as follows:

$$
\sum_{n \geq 1} a_{n}=1-\frac{1}{2}+\frac{1}{3}-\sum_{k \geq 2}\left(\frac{1}{2 k}-\frac{1}{2 k+1}\right)
$$

Note that for $k \geq 2$

$$
0<\frac{1}{2 k}-\frac{1}{2 k+1}=\frac{1}{2 k(2 k+1)}<\frac{1}{4 k^{2}}
$$

Recall that the series $\sum_{k \geq 2} \frac{1}{4 k^{2}}$ converges (by the dyadic criterion). By the comparison test, the series $0<\sum_{k \geq 2}\left(\frac{1}{2 k}-\frac{1}{2 k+1}\right)$ converges. So $\sum_{n \geq 1} a_{n}<1-\frac{1}{2}+\frac{1}{3}=\frac{5}{6}$.
Consider next the following rearrangement:

$$
\frac{1}{1}+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6}+\ldots=\sum_{k \geq 1}\left(\frac{1}{4 k-3}+\frac{1}{4 k-1}-\frac{1}{2 k}\right)
$$

Then

$$
\begin{aligned}
0<\frac{1}{4 k-3}+\frac{1}{4 k-1}-\frac{1}{2 k} & =\frac{8 k^{2}-2 k+8 k^{2}-6 k-\left(16 k^{2}-16 k+3\right)}{(4 k-3)(4 k-1) \cdot 2 k} \\
& =\frac{8 k-3}{(4 k-3)(4 k-1) 2 k}<\frac{8 k}{k \cdot 3 k \cdot 2 k}=\frac{4}{3 k^{2}}
\end{aligned}
$$

As the series $\sum_{k \geq 1} \frac{4}{3 k^{2}}$ converges, we deduce that the series

$$
\sum_{k \geq 1}\left(\frac{1}{4 k-3}+\frac{1}{4 k-1}-\frac{1}{2 k}\right) \text { converges }
$$

Moreover,

$$
\begin{aligned}
\sum_{k \geq 1}\left(\frac{1}{4 k-3}+\frac{1}{4 k-1}-\frac{1}{2 k}\right) & =1+\frac{1}{3}-\frac{1}{2}+\sum_{k \geq 2}\left(\frac{1}{4 k-3}+\frac{1}{4 k-1}-\frac{1}{2 k}\right) \\
& >1+\frac{1}{3}-\frac{1}{2}=\frac{5}{6}
\end{aligned}
$$

So the two series converge to two different numbers.

Theorem 17.3 (Riemann)

Let $\sum_{n \geq 1} a_{n}$ be a series that converges, but it does not converge absolutely. Let $-\infty \leq \alpha \leq \beta \leq \infty$. Then there exists a rearrangement $\sum_{n \geq 1} \tilde{a}_{n}$ with partial sums $\tilde{s}_{n}=\sum_{k=1}^{n} \tilde{a}_{k}$ such that

$$
\liminf \tilde{s}_{n}=\alpha \text { and } \limsup \tilde{s}_{n}=\beta
$$

Proof. For $n \geq 1$ let

$$
\begin{aligned}
& b_{n}=\frac{\left|a_{n}\right|+a_{n}}{2}=\left\{\begin{array}{ll}
a_{n}, & a_{n} \geq 0 \\
0, & a_{n}<0
\end{array} \quad \Longrightarrow b_{n} \geq 0\right. \\
& c_{n}=\frac{\left|a_{n}\right|-a_{n}}{2}=\left\{\begin{array}{ll}
0, & a_{n} \geq 0 \\
-a_{n}, & a_{n}<0
\end{array} \quad \Longrightarrow c_{n} \geq 0\right.
\end{aligned}
$$

Claim 17.1. The series $\sum_{n \geq 1} b_{n}$ and $\sum_{n \geq 1} c_{n}$ both diverge.
Note $\sum_{k=1}^{n} b_{k}-\sum_{k=1}^{n} c_{k}=\sum_{k=1}^{n}\left(b_{k}-c_{k}\right)=\sum_{k=1}^{n} a_{k}$ which converges as $n \rightarrow \infty$.

$$
\Longrightarrow \sum_{k=1}^{n} b_{k}=\sum_{k=1}^{n} c_{k}+\sum_{k=1}^{n} a_{k}
$$

So $\left\{\sum_{k=1}^{n} b_{k}\right\}_{n \geq 1}$ converges if and only if $\left\{\sum_{k=1}^{n} c_{k}\right\}_{n \geq 1}$ converges. On the other hand if $\sum_{n \geq 1} b_{n}$ and $\sum_{n \geq 1} c_{n}$ both converged, then

$$
\underbrace{\sum_{k=1}^{n} b_{k}+\sum_{k=1}^{n} c_{k}}_{\text {converge as } n \rightarrow \infty}=\sum_{k=1}^{n}\left(b_{k}+c_{k}\right)=\sum_{k=1}^{n}\left|a_{k}\right|
$$

which diverges as $n \rightarrow \infty$ - contradiction. Thus $\sum_{n \geq 1} b_{n}$ and $\sum_{n \geq 1} c_{n}$ diverge to infinity. Note also that $\sum_{n \geq 1} a_{n}$ converges $\Longrightarrow \lim _{n \rightarrow \infty} a_{n}=0$ and so $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} c_{n}=0$.

Let $B_{1}, B_{2}, B_{3}, \ldots$ denote the non-negative terms in $\left\{a_{n}\right\}_{n \geq 1}$ in the order which they appear.

Let $C_{1}, C_{2}, C_{3}, \ldots$ denote the absolute values of the negative terms in $\left\{a_{n}\right\}_{n \geq 1}$, in the order in which they appear.

Note $\sum_{n \geq 1} B_{n}$ differs $\sum_{n \geq 1} b_{n}$ only by terms that are zero. So $\sum_{n \geq 1} B_{n}=\infty$. Similarly, $\sum_{n \geq 1} C_{n}$ differs $\sum_{n \geq 1} c_{n}$ only be terms that are zero. So $\sum_{n \geq 1} C_{n}=\infty$.

Choose sequences $\left\{\alpha_{n}\right\}_{n \geq 1}$ and $\left\{\beta_{n}\right\}_{n \geq 1}$ so that

$$
\left\{\begin{array}{l}
\alpha_{n} \xrightarrow{n \rightarrow \infty} \alpha \\
\beta_{n} \xrightarrow{n \rightarrow \infty} \beta \\
\alpha_{n}<\beta_{n} \quad \forall n \geq 1 \\
\beta_{1}>0
\end{array}\right.
$$

E.g.

Next we construct increasing sequences $\left\{k_{n}\right\}_{n \geq 1}$ and $\left\{j_{n}\right\}_{n \geq 1}$ as follows:

1. Choose k_{1} and j_{1} to be the smallest natural numbers so that

$$
\begin{aligned}
& x_{1}=B_{1}+B_{2}+\ldots+B_{k_{1}}>\beta_{1}\left(\text { this is possible because } \sum_{n \geq 1} B_{n}=\infty\right) \\
& y_{1}=B_{1}+\ldots+B_{k_{1}}-C_{1}-C_{2}-\ldots-C_{j_{1}}<\alpha_{1}\left(\text { this is possible since } \sum_{n \geq 1} C_{n}=\infty\right)
\end{aligned}
$$

2. Choose k_{2} and j_{2} to be the smallest natural numbers so that

$$
\begin{aligned}
x_{2} & =B_{1}+\ldots+B_{k_{1}}-C_{1}-\ldots-C_{j_{1}}+B_{k_{1}+1}+\ldots+B_{k_{2}}>\beta_{2} \\
y_{2} & =B_{1}+\ldots+B_{k_{1}}-C_{1}-C_{j_{1}}+B_{k_{1}+1}+\ldots+B_{k_{2}}-C_{j_{1}+1}-\ldots-C_{j_{2}}<\alpha_{2}
\end{aligned}
$$

and so on.
Note that by definition,

$$
\begin{aligned}
x_{n}-B_{k_{n}} \leq \beta_{n} & \Longrightarrow \beta_{n}-B_{k_{n}}<\beta_{n}<x_{n} \leq \beta_{n}+B_{k_{n}} \\
& \Longrightarrow|x_{n}-\underbrace{B_{n}}_{n \rightarrow \infty}| \leq B_{k_{n}} \xrightarrow{n \rightarrow \infty} 0 \\
& \Longrightarrow \lim _{n \rightarrow \infty} x_{n}=\beta
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& y_{n}+C_{j_{n}} \geq \alpha_{n} \Longrightarrow \alpha_{n}-C_{j_{n}} \leq y_{n}<\alpha_{n}<\alpha_{n}+C_{j_{n}} \\
& \Longrightarrow \left\lvert\, \begin{array}{l}
y_{n}-\underbrace{\alpha_{n}}_{\substack{n \rightarrow \infty}} \mid \leq C_{j_{n}} \xrightarrow{n \rightarrow \infty} 0 \\
\end{array}\right. \\
& \Longrightarrow \lim _{n \rightarrow \infty} y_{n}=\alpha
\end{aligned}
$$

Finally, note that x_{n} and y_{n} are partial sums in the rearrangement

$$
B_{1}+B_{2}+\ldots+B_{k_{1}}-C_{1}-\ldots-C_{j_{1}}+B_{k_{1}+1}+\ldots+B_{k_{2}}-C_{j_{1}+1}-\ldots-C_{j_{2}}+\ldots
$$

By construction, no number less than α or larger than β can occur as a subsequential limit of the partial sums.

Theorem 17.4 (Absolute Convergence and Convergence of Rearrangement)

If a series $\sum_{n \geq 1} a_{n}$ converges absolutely, then any rearrangement $\sum_{n \geq 1} \tilde{a}_{n}$ converges to $\sum_{n \geq 1} a_{n}$.

Proof. For $n \geq 1$ let $s_{n}=\sum_{k=1}^{n} a_{k}, \tilde{s}_{n}=\sum_{k=1}^{n} \tilde{a}_{k}$. As $\sum_{n \geq 1} a_{n}$ converges absolutely, $\forall \epsilon>0 \exists n_{\epsilon} \in \mathbb{N}$ s.t.

$$
\sum_{k=n+1}^{n+p}\left|a_{k}\right|<\epsilon \quad \forall n \geq n_{\epsilon} \forall p \in \mathbb{N}
$$

Choose N_{ϵ} sufficiently large so that $a_{1}, \ldots, a_{n_{\epsilon}}$ belong to the set $\left\{\tilde{a}_{1}, \tilde{a}_{2}, \ldots, \tilde{a}_{n}\right\}$. Then for $n>N_{\epsilon}$ the terms $a_{1}, \ldots, a_{n_{\epsilon}}$ cancel in $s_{n}-\tilde{s}_{n}$

$$
\left|s_{n}-\tilde{s}_{n}\right| \leq \underbrace{\sum_{k=n_{\epsilon}+1}^{n}\left|a_{k}\right|+\sum_{1 \leq k \leq n}\left|\tilde{a}_{k}\right|}_{\text {finitely many terms and all indices are }>n_{\epsilon}}<\epsilon \quad\left(\tilde{a}_{k} \notin\left\{a_{1}, \ldots, a_{n_{\epsilon}}\right\}\right)
$$

As $\lim _{n \rightarrow \infty} s_{n}=s \in \mathbb{R}$ we deduce that $\lim _{n \rightarrow \infty} \tilde{s}_{n}=s$.

$\S 18$ Lec 18: Feb 17, 2021

§18.1 Functions

Definition 18.1 (Function) - Let A, B be two non-empty sets. A function $f: A \rightarrow B$ is a way of associating to each element $a \in A$ exactly one element in B denoted $f(a)$.

A is called the domain of f.
B is called the range of f.
$f(A)=\{f(a): a \in A\}$ is called the image of A under f. If $A^{\prime} \subseteq A$ then $f\left(A^{\prime}\right)=$ $\left\{f(a): a \in A^{\prime}\right\}$ is called the image of A^{\prime} under f.

If $f(A)=B$ then we say that f is surjective/onto. In this case, $\forall b \in B \quad \exists a \in A$ s.t. $f(a)=b$.

We say that f is injective if it satisfies: if $a_{1}, a_{2} \in A$ such that $f\left(a_{1}\right)=f\left(a_{2}\right)$ then $a_{1}=a_{2}$.

We say that f is bijective if f is injective and surjective.
Remark 18.2. The injectivity and surjectivity of a function depend not only on the law f, but also on the domain and the range.

Example 18.3

$f: \mathbb{Z} \rightarrow \mathbb{Z}, f(n)=2 n$ which is injective but not surjective.

$$
f(n)=f(m) \Longrightarrow 2 n=2 m \Longrightarrow n=m
$$

$g: \mathbb{R} \rightarrow \mathbb{R}, g(x)=2 x$ bijective.

Example 18.4
$f:[0, \infty) \rightarrow[0, \infty), f(x)=x^{2}$ bijective, $g: \mathbb{R} \rightarrow \mathbb{R}, g(x)=x^{2}$ not injective, not surjective.

Definition 18.5 (Composition) - Let A, B, C be non-empty sets and $f: A \rightarrow B$, $g: B \rightarrow C$ be two functions. The composition of g with f is a function $g \circ f: A \rightarrow C$, $(g \circ f)(a)=g(f(a))$.

Remark 18.6. The composition of two functions need not be commutative.

$$
\begin{aligned}
f: \mathbb{Z} \rightarrow \mathbb{Z}, & f(n)=2 n \\
g: \mathbb{Z} \rightarrow \mathbb{Z}, & g(n)=n+1 \\
g \circ f: \mathbb{Z} \rightarrow \mathbb{Z}, & (g \circ f)(n)=g(f(n))=2 n+1 \\
f \circ g: \mathbb{Z} \rightarrow \mathbb{Z}, & (f \circ g)(n)=f(g(n))=2(n+1)
\end{aligned}
$$

Exercise 18.1. The composition of functions is associate: if $f: A \rightarrow B, g: B \rightarrow C$, $h: C \rightarrow D$ are three functions, then

$$
(h \circ g) \circ f=h \circ(g \circ f)
$$

Definition 18.7 (Inverse Function) - Let $f: A \rightarrow B$ be a bijective function. The inverse of f is a function $f^{-1}: B \rightarrow A$ defined as follows: if $b \in B$ then $f^{-1}(b)=a$ where a is the unique element in A s.t. $f(a)=b$. The existence of a is guaranteed by surjectivity and the uniqueness by injectivity.

So

$$
\begin{aligned}
& f \circ f^{-1}: B \rightarrow B \\
& \left(f \circ f^{-1}\right)(b)=b
\end{aligned}
$$

and

$$
\begin{aligned}
& f^{-1} \circ f: A \rightarrow A \\
& \left(f^{-1} \circ f\right)(a)=a
\end{aligned}
$$

Exercise 18.2. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be two bijective functions. Then $g \circ f: A \rightarrow C$ is a bijection and

$$
(g \circ f)^{-1}=f^{-1} \circ g^{-1}
$$

Definition 18.8 (Preimage) - Let $f: A \rightarrow B$ be a function. If $B^{\prime} \subseteq B$ then the preimage of B^{\prime} is $f^{-1}\left(B^{\prime}\right)=\left\{a \in A: f(a) \in B^{\prime}\right\}$. The preimage of a set is well defined whether or not f is bijective. In fact, if $B^{\prime} \subseteq B$ s.t. $B^{\prime} \cap f(A)=\emptyset$ then $f^{-1}\left(B^{\prime}\right)=\emptyset$.

Exercise 18.3. Let $f: A \rightarrow B$ be a function and let $A_{1}, A_{2} \subseteq A$ and $B_{1}, B_{2} \subseteq B$. Then

1. $f\left(A_{1} \cup A_{2}\right)=f\left(A_{1}\right) \cup f\left(A_{2}\right)$
2. $f\left(A_{1} \cap A_{2}\right) \subseteq f\left(A_{1}\right) \cap f\left(A_{2}\right)$
3. $f^{-1}\left(B_{1} \cup B_{2}\right)=f^{-1}\left(B_{1}\right) \cup f^{-1}\left(B_{2}\right)$
4. $f^{-1}\left(B_{1} \cap B_{2}\right)=f^{-1}\left(B_{1}\right) \cap f^{-1}\left(B_{2}\right)$
5. The following are equivalent:
i) f is injective.
ii) $f\left(A_{1} \cap A_{2}\right)=f\left(A_{1}\right) \cap f\left(A_{2}\right)$ for all subsets $A_{1}, A_{2} \subseteq A$.

§18.2 Cardinality

Definition 18.9 (Equipotent) - We say that two sets A and B have the same cardinality (or the same cardinal number) if there exists a bijection $f: A \rightarrow B$. In this case we write $A \sim B$.

Exercise 18.4. Show that \sim is an equivalence relation on sets.

Definition 18.10 (Finite Set, Countable vs. Uncountable) - We say that a set A is finite if $A=\emptyset$ (in which case we say that it has cardinality 0) or $A \sim\{1, \ldots, n\}$ for some $n \in \mathbb{N}$ (in which case we say that A has cardinality n).
We say that A is countable if $A \sim \mathbb{N}$. I this case we say that A has cardinality \aleph_{0}.
We say that A is at most countable if A is finite or countable. If A is not at most countable we say that A is uncountable.

Lemma 18.11

Let A be a finite set and let $B \subseteq A$. Then B is finite.

Proof. If $B=\emptyset$ then B is finite. Assume now that $B \neq \emptyset \Longrightarrow A \neq \emptyset$. As A is finite, $\exists n \in \mathbb{N}$ and $\exists f: A \rightarrow\{1, \ldots, n\}$ bijective. Then $\left.f\right|_{B}: B \rightarrow f(B)$ is bijective.

WE merely have to relabel the elements in $f(B)$. Let $b_{1} \in B$ be such that $f\left(b_{1}\right)=$ $\min f(B)$.
Define $g\left(b_{1}\right)=1$. If $B \backslash\left\{b_{1}\right\} \neq \emptyset$, let $b_{2} \in B$ be such that $f\left(b_{2}\right)=\min f\left(B \backslash\left\{b_{1}\right\}\right)$. Define $g\left(b_{2}\right)=2$. Keep going. The process terminates in at most n steps.

Example 18.12

$f: \mathbb{N} \cup\{0,-1,-2, \ldots,-k\} \rightarrow \mathbb{N}$ where $k \in \mathbb{N}$

$$
f(n)=n+k+1 \text { is bijective }
$$

So the cardinality of $\mathbb{N} \cup\{0,-1, \ldots,-k\}$ is \aleph_{0}.

Example 18.13

$f: \mathbb{Z} \rightarrow \mathbb{N}$

$$
f(n)=\left\{\begin{array}{l}
2 n+2, n \geq 0 \\
-2 n-1, n<0
\end{array} \quad\right. \text { is bijective }
$$

So the cardinality of \mathbb{Z} is \aleph_{0}.

Example 18.14
$f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$

$$
f(n, m)=\frac{(n+m-1)(n+m-2)}{2}+n
$$

is bijective. So the cardinality of $\mathbb{N} \times \mathbb{N}$ is \aleph_{0}.

Cont'd in Lec 19.

§19 Lec 19: Feb 19, 2021

§19.1 Functions \& Cardinality (Cont'd)

From the last example of Lec $18, f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}, f(n, m)=\frac{(n+m-1)(n+m-2)}{2}+n, f$ is bijective.
We prove that f is surjective by induction. For $k \in \mathbb{N}$ let $P(k)$ denoted that statement

$$
\exists(n, m) \in \mathbb{N} \times \mathbb{N} \text { s.t. } f(n, m)=k
$$

Base step: Note that $f(1,1)=\frac{1.0}{2}+1=1$. So $P(1)$ holds.
Inductive step: Fix $k \geq 1$ and assume that $P(k)$ holds. Then $\exists(n, m) \in \mathbb{N} \times \mathbb{N}$ s.t. $f(n, m)=k$.

$$
\begin{aligned}
& \Longrightarrow \frac{(n+m-1)(n+m-2)}{2}+n+1=k+1 \\
& \Longrightarrow \frac{[(n+1)+(m-1)-1][(n+1)+(m-1)-2]}{2}+n+1=k+1 \\
& \Longrightarrow f(n+1, m-1)=k+1
\end{aligned}
$$

This works if $(n+1, m-1) \in \mathbb{N} \times \mathbb{N} \Longleftrightarrow m-1 \in \mathbb{N} \Longleftrightarrow m \geq 2$. So if $m \geq 2$ we found $(n+1, m-1) \in \mathbb{N} \times \mathbb{N}$ s.t. $f(n+1, m-1)=k+1$. Assume now $m=1$. Then

$$
\begin{aligned}
& \Longrightarrow f(n, 1)=k \Longleftrightarrow \frac{n(n-1)}{2}+n=k \Longleftrightarrow \frac{(n+1) n}{2}=k \\
& \Longrightarrow \frac{(n+1) n}{2}+1=k+1 \\
& \Longrightarrow \frac{[1+(n+1)-1][1+(n+1)-2]}{2}+1=k+1 \\
& \Longrightarrow f(1, n+1)=k+1
\end{aligned}
$$

So if $m=1$ we found $(1, n+1) \in \mathbb{N} \times \mathbb{N}$ s.t. $f(1, n+1)=k+1$. This proves $P(k+1)$ holds. By induction, $\forall k \in \mathbb{N} \exists(n, m) \in \mathbb{N} \times \mathbb{N}$ s.t. $f(n, m)=k$, i.e. f is surjective.

Let $(n, m),(a, b) \in \mathbb{N} \times \mathbb{N}$ s.t. $f(n, m)=f(a, b)$. We want to show that $(n, m)=(a, b)$, thus proving that f is injective.

Case 1:

$$
\left.\begin{array}{l}
\frac{(n+m-1)(n+m-2)}{2}=\frac{(a+b-1)(a+b-2)}{2} \\
f(n, m)=f(a, b)
\end{array}\right\} \Longrightarrow n=a
$$

Then $(n+m-1)(n+m-2)=(n+b-1)(n+b-2)$

$$
\left.\begin{array}{rl}
\Longrightarrow & n^{2}+n(2 m-3)+m^{2}-3 m+2=n^{2}+n(2 b-3)+b^{2}-3 b+2 \\
\Longrightarrow & 2 n(m-b)+(m-b)(m+b)-3(m-b)=0 \\
& (m-b)(2 n+m+b-3)=0 \\
& 2 n+m+b-3 \geq 2+1+1-3 \geq 1
\end{array}\right\} \Longrightarrow m=b
$$

Case 2: $\frac{(n+m-1)(n+m-2)}{2}=\frac{(a+b-1)(a+b-2)}{2}+r$ for some $r \in \mathbb{N}$.
Exercise 19.1. Show that this cannot occur.

Lemma 19.1

Let A be a countable set. Let B be an infinite subset of A. Then B is countable.

Proof. A is countable $\Longrightarrow \exists f: \mathbb{N} \rightarrow A$ bijection. This means we can enumerate the elements of A :

$$
A=\left\{a_{1}(=f(1)), a_{2}(=f(2)), a_{3}(=f(3)), \ldots\right\}
$$

Let $k_{1}=\min \left\{n: a_{n} \in B\right\}$. Define $g(1)=a_{k_{1}}$. Then $B \backslash\left\{a_{k_{1}}\right\} \neq \emptyset$. Let $k_{2}=$ $\min \left\{n: a_{n} \in B \backslash\left\{a_{k_{1}}\right\}\right\}$. Define $g(2)=a_{k_{2}}$.

We proceed inductively. Assume we found $k_{1}<\ldots<k_{j}$ such that $a_{k_{1}}, \ldots, a_{k_{j}} \in B$ and $g(1)=a_{k_{1}}, \ldots, g(j)=a_{k_{j}}$. Then $B \backslash\left\{a_{k_{1}}, \ldots, a_{k_{j}}\right\} \neq \emptyset$. Let $k_{j+1}=\min \left\{n: a_{n} \in B \backslash\left\{a_{k_{1}}, \ldots, a_{k_{j}}\right\}\right\}$. Define $g(j+1)=a_{k_{j+1}}$.

By construction, $g: \mathbb{N} \rightarrow B$ is bijective.

Lemma 19.2

Let A be a finite set and let B be a proper subset of A. Then A and B are not equipotent, that is, there is no bijective function $f: A \rightarrow B$.

Proof. If $B=\emptyset \Longrightarrow A \neq \emptyset$. There is no function $f: A \rightarrow B$. Assume $B \neq \emptyset$. Assume towards a contradiction that there exists a bijection $f: A \rightarrow B$.

As $B \subsetneq A, \exists a_{0} \in A \backslash B$.
For $n \geq 1$ let $a_{n}=\underbrace{(f \circ f \circ \ldots \circ f)}_{n \text { times }}\left(a_{0}\right)$. Note $a_{n+1}=f\left(a_{n}\right) \forall n \geq 0$. Note $a_{n} \in B \forall n \geq 1$.
We will show
Claim 19.1. $a_{n} \neq a_{m}$ for $n \neq m$.
If the claim holds then B (and so A) would contain countably many elements. Contradiction, since A is finite!

To prove the claim we argue by contradiction. Assume that there exists $n, k \in \mathbb{N}$ s.t. $a_{n+k}=a_{n}$.

Write

$$
\left.\begin{array}{l}
a_{n+k}=\underbrace{(f \circ f \circ \ldots \circ f)}_{n \text { times }}\left(a_{k}\right) \\
a_{n}=\underbrace{(f \circ f \circ \ldots \circ f)}_{n \text { times }}\left(a_{0}\right) \\
f \text { injective } \Longrightarrow \underbrace{f \circ f \circ \ldots \circ f}_{n \text { times }} \text { injective }
\end{array}\right\} \Longrightarrow B \ni a_{k}=a_{0} \in A \backslash B
$$

which is a contradiction! This proves the claim and completes the proof of the lemma.

Lemma 19.3

Every infinite set has a countable subset.

Proof. Let A be an infinite set $\Longrightarrow A \neq \emptyset \Longrightarrow \exists a_{1} \in A$. Then $A \backslash\left\{a_{1}\right\} \neq \emptyset \Longrightarrow \exists a_{2} \in$ $A \backslash\left\{a_{1}\right\}$.

We proceed inductively. Having found $a_{1}, \ldots, a_{n} \in A$ distinct, $A \backslash\left\{a_{1}, \ldots, a_{n}\right\} \neq \emptyset \Longrightarrow$ $\exists a_{n+1} \in A \backslash\left\{a_{1}, \ldots, a_{n}\right\}$. This gives a sequence $\left\{a_{n}\right\}_{n \geq 1}$ of distinct elements in A.

Theorem 19.4

A set A is infinite if and only if there is a bijection between A and a proper subset of A.

Proof. " $\Longleftarrow "$ Assume that there is a bijection $f: A \rightarrow B$ where $B \subsetneq A$. By Lemma 19.2, A must be infinite.
$" \Longrightarrow "$ Assume that A is infinite. By Lemma 19.3, there exists a countable subset B of A. Write $B=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ with $a_{n} \neq a_{m}$ if $n \neq m$. Then $A \backslash\left\{a_{1}\right\}$ is a proper subset of A. Define $f: A \rightarrow A \backslash\left\{a_{1}\right\}$ via

$$
f(a)=\left\{\begin{array}{l}
a, \text { if } a \in A \backslash B \\
a_{j+1}, \text { if } a=a_{j} \text { for some } j \geq 1
\end{array}\right.
$$

This is a bijective function.
Assume $f(a)=f(b)$.
Case 1: $a, b \in A \backslash B$. Then $f(a)=a, f(b)=b$ and so $f(a)=f(b) \Longrightarrow a=b$.
Case 2: $a, b \in B \Longrightarrow \exists i, j \in \mathbb{N}$ s.t. $a=a_{i}, b=a_{j}$

$$
f(a)=f(b) \Longrightarrow a_{i+1}=a_{j+1} \Longrightarrow i+1=j+1 \Longrightarrow i=j \Longrightarrow a=b
$$

Case 3: $a \in A \backslash B, b \in B$. Then $f(a) \in A \backslash B$ and $f(b) \in B$, which cannot occur.
Case 4: $a \in B$ and $b \in A \backslash B$. Argue as for Case 3.
Exercise 19.2. f is surjective.

Theorem 19.5 (Schröder - Bernstein)

Assume that A and B are two sets such that there exists two injective functions $f: A \rightarrow B$ and $g: B \rightarrow A$. Then A and B are equipotent.

Example 19.6

$$
\begin{array}{ll}
f: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}, & f(n)=(1, n) \text { injective } \\
g: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}, & g(n, m)=2^{n} \cdot 3^{m} \text { injective }
\end{array}
$$

By Schröder - Bernstein, $\mathbb{N} \sim \mathbb{N} \times \mathbb{N}$.
$\S 20 \mid$ Lec 20: Feb 22, 2021

§20.1 Countable vs. Uncountable Sets

Proof. (Schröder - Bernstein) We will decompose each of the sets A and B into disjoint subsets:

$$
\begin{aligned}
& A=A_{1} \cup A_{2} \cup A_{3} \text { with } A_{i} \cap A_{j}=\emptyset \text { if } i \neq j \\
& B=B_{1} \cup B_{2} \cup B_{3} \text { with } B_{i} \cap B_{j}=\emptyset \text { if } i \neq j
\end{aligned}
$$

and we will show that $f: A_{1} \rightarrow B_{1}, f: A_{2} \rightarrow B_{2}, g: B_{3} \rightarrow A_{3}$ are bijections.
Then $h: A \rightarrow B$ given by

$$
h(a)=\left\{\begin{array}{l}
f(a), \quad \text { if } a \in A_{1} \cup A_{2} \\
\left(\left.g\right|_{B_{3}}\right)^{-1}(a), \text { if } a \in A_{3}
\end{array}\right.
$$

is a bijection.
Exc!
For $a \in A$ consider the set

$$
S_{a}=\{\underbrace{a}_{\in A}, \underbrace{g^{-1}(a)}_{\in B}, \underbrace{f^{-1} \circ g^{-1}(a)}_{\in A}, \underbrace{g^{-1} \circ f^{-1} \circ g^{-1}(a)}_{\in B}, \ldots\}
$$

Note that the preimage under f or g is either \emptyset or it contains exactly one point (because f and g are injective).

There are three possibilities:

1. The process defining S_{a} does not terminate. We can always find a preimage.
2. The process defining S_{a} terminates in A, that is, the last element $x \in S_{a}$ is $x=a$ or $x=f^{-1} \circ g^{-1} \circ \ldots \circ g^{-1}(a)$ and $g^{-1}(x)=\emptyset$.
3. The process defining S_{a} terminates in B, that is, the last element $x \in S_{a}$ is $x=g^{-1}(a)$ or $x=g^{-1} \circ f^{-1} \circ \ldots \circ g^{-1}(a)$ and $f^{-1}(x)=\emptyset$.

We define

$$
\begin{aligned}
& A_{1}=\left\{a \in A: \text { the process defining } S_{a} \text { does not terminate }\right\} \\
& A_{2}=\left\{a \in A: \text { the process defining } S_{a} \text { terminates in } A\right\} \\
& A_{3}=\left\{a \in A: \text { the process defining } S_{a} \text { terminates in } B\right\}
\end{aligned}
$$

Similarly, for $b \in B$ we define the set

$$
T_{b}=\{\underbrace{b}_{\in B}, \underbrace{f^{-1}(b)}_{\in A}, \underbrace{g^{-1} \circ f^{-1}(b)}_{\in B}, \underbrace{f^{-1} \circ g^{-1} \circ f^{-1}(b)}_{\in A}, \cdots\}
$$

As before we define

$$
\begin{aligned}
& B_{1}=\left\{b \in B: \text { the process defining } T_{b} \text { does not terminate }\right\} \\
& B_{2}=\left\{b \in B: \text { the process defining } T_{b} \text { ends in } A\right\} \\
& B_{3}=\left\{b \in B: \text { the process defining } T_{b} \text { ends in } B\right\}
\end{aligned}
$$

Let's show $f: A_{1} \rightarrow B_{1}$ is a bijection. Injectivity is inherited from $f: A \rightarrow B$ is injective. Let $b \in B_{1}$. Then the process defining

$$
T_{b}=\left\{b, f^{-1}(b), g^{-1} \circ f^{-1}(b), \ldots\right\} \text { does not terminate }
$$

In particular, $\exists a \in A$ s.t. $f^{-1}(b)=a$. Note that

$$
S_{a}=\left\{a, g^{-1}(a), f^{-1} \circ g^{-1}(a), \ldots\right\}=\left\{f^{-1}(b), g^{-1} \circ f^{-1}(b), f^{-1} \circ g^{-1} \circ f^{-1}(b), \ldots\right\}
$$

does not terminate. So $a \in A_{1}$.
This proves $f: A_{1} \rightarrow B_{1}$ is surjective.
Let's show $f: A_{2} \rightarrow B_{2}$ is a bijection. Again, injectivity is inherited from $f: A \rightarrow B$ is injective.

Let $b \in B_{2}$. Then the process defining

$$
T_{b}=\left\{b, f^{-1}(b), g^{-1} \circ f^{-1}(b), \ldots\right\} \text { terminates in } A
$$

In particular, $\exists a \in A$ s.t. $f^{-1}(b)=a$. Note that

$$
S_{a}=\left\{a, g^{-1}(a), \ldots\right\}=\left\{f^{-1}(b), g^{-1} \circ f^{-1}(b), \ldots\right\}
$$

terminates in $A \Longrightarrow a \in A_{2}$. So $f: A_{2} \rightarrow B_{2}$ is surjective.
Exercise 20.1. $g: B_{3} \rightarrow A_{3}$ is bijective.

Theorem 20.1 (Union of Countable Sets)

Let $\left\{A_{n}\right\}_{n \geq 1}$ be a sequence of countable sets. Then

$$
\bigcup_{n \geq 1} A_{n}=\left\{a: a \in A_{n} \text { for some } n \geq 1\right\}
$$

is countable.

Proof. We define

$$
\begin{aligned}
B_{1} & =A_{1} \\
B_{n+1} & =A_{n+1} \backslash \bigcup_{k=1}^{n} A_{k} \quad \forall n \geq 1
\end{aligned}
$$

By construction,

$$
\left\{\begin{array}{l}
B_{n} \cap B_{m}=\emptyset, \forall n \neq m \\
\bigcup_{n \geq 1} B_{n}=\bigcup_{n \geq 1} A_{n}
\end{array}\right.
$$

Note that each B_{n} is at most countable.
Let $I=\left\{n \in \mathbb{N}: B_{n} \neq \emptyset\right\}$. Then $\bigcup_{n \geq 1} B_{n}=\bigcup_{n \in I} B_{n}$. For $n \in I$, let $f_{n}: B_{n} \rightarrow I_{n}$ bijection where I_{n} is an at most countable subset of \mathbb{N}.

In particular, $f_{1}: B_{1} \rightarrow \mathbb{N}$ bijective $\Longrightarrow f_{1}^{-1}: \mathbb{N} \rightarrow B_{1}$ bijective. To show $\bigcup_{n \in I} B_{n}$ is countable, we will use the Schröder - Bernstein theorem.

Let $g: \mathbb{N} \rightarrow \bigcup_{n \in I} B_{n}, g(n)=f_{1}^{-1}(n) \in B_{1} \subseteq \bigcup_{n \in I} B_{n}$ is injective.
Let $h: \bigcup_{n \in I} B_{n} \rightarrow \mathbb{N} \times \mathbb{N}$ defined as follows: if $b \in \bigcup_{n \in I} B_{n} \Longrightarrow \exists n \in I$ s.t. $b \in B_{n}$.
Define $h(b)=\left(n, f_{n}(b)\right)$. Note that h is injective. Indeed, if $h\left(b_{1}\right)=h\left(b_{2}\right)$ then $\left(n_{1}, f_{n_{1}}\left(b_{1}\right)\right)=\left(n_{2}, f_{n_{2}}\left(b_{2}\right)\right)$

$$
\Longrightarrow\left\{\begin{array}{l}
n_{1}=n_{2} \\
f_{n_{1}}\left(b_{1}\right)=f_{n_{2}}\left(b_{2}\right)
\end{array} \quad, f_{n_{1}} \text { is injective }\right\} \Longrightarrow b_{1}=b_{2}
$$

Recall there exists a bijection $\phi: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$. So $\phi \circ h: \bigcup_{n \in I} B_{n} \rightarrow \mathbb{N}$ is injective. By Schröder - Bernstein, $\bigcup_{n \in I} B_{n}=\bigcup_{n \geq 1} A_{n} \sim \mathbb{N}$.

Proposition 20.2

Let $\left\{A_{n}\right\}_{n \geq 1}$ be a sequence of sets such that for each $n \geq 1, A_{n}$ has at least two elements. Then $\prod_{n \geq 1} A_{n}=\left\{\left\{a_{n}\right\}_{n \geq 1}: a_{n} \in A_{n} \forall n \geq 1\right\}$ is uncountable.

Proof. We argue by contradiction. Assume that $\prod_{n \geq 1} A_{n}$ is countable. Thus we may enumerate the elements of $\prod_{n \geq 1} A_{n}$:

$$
\begin{aligned}
& a_{1}=\left(a_{11}, a_{12}, a_{13}, \ldots\right) \\
& a_{2}=\left(a_{21}, a_{22}, a_{23}, \ldots\right) \\
& \ldots \\
& a_{n}=\left(a_{n 1}, a_{n 2}, a_{n 3}, \ldots\right)
\end{aligned}
$$

Let $x=\left\{x_{n}\right\}_{n \geq 1} \in \prod_{n \geq 1} A_{n}$ such that $x_{n} \in A_{n} \backslash\left\{a_{n n}\right\}$. Then $x \neq a_{n} \forall n \geq 1$ since $x_{n} \neq a_{n n}$. This gives a contradiction.

Remark 20.3. The same argument using binary expansion shows that the set $(0,1)$ is uncountable.

$\S 21 \mid$ Lec 21: Feb 24, 2021

$\S 21.1$ Countable vs. Uncountable Sets (Cont'd)

Proposition 21.1

Let $\left\{A_{n}\right\}_{n \geq 1}$ be a sequence of sets s.t. $\forall n \geq 1$, the set A_{n} has at least two elements. Then $\prod_{n \geq 1} A_{n}$ is uncountable.

Remark 21.2. 1. The Cantor diagonal argument can be used to show that the set $(0,1)$ is uncountable (using binary expansion).
2. We can identify

$$
\begin{aligned}
\left\{\left\{a_{n}\right\}_{n \geq 1}: a_{n} \in\{0,1\} \forall n \geq 1\right\} & =\{f: \mathbb{N} \rightarrow\{0,1\}: f \text { function }\} \\
& =\{0,1\} \times\{0,1\} \times \ldots \\
& =\{0,1\}^{\mathbb{N}}
\end{aligned}
$$

By the proposition, this set is uncountable. We say it has cardinality $2^{\aleph_{0}}$.

Theorem 21.3

Let A be any set. Then there exists no bijection between A and the power set of A, $\mathcal{P}(A)=\{B: B \subseteq A\}$.

Proof. If $A=\emptyset$ then $\mathcal{P}(A)=\{\emptyset\}$. So the cardinality of A is 0 , but the cardinality of $\mathcal{P}(A)$ is 1 . Thus A is not equipotent with $\mathcal{P}(A)$.

Assume $A \neq \emptyset$. We argue by contradiction. Assume that there exists $f: A \rightarrow \mathcal{P}(A)$ a bijection.

Let $B=\{a \in A: a \notin f(a)\} \subseteq A . f$ is surjective $\Longrightarrow \exists b \in A$ s.t. $f(b)=B$
We distinguish two cases:
Case 1: $b \in B=f(b) \Longrightarrow b \notin B$ - Contradiction.
Case 2: $b \notin B=f(b) \Longrightarrow b \in B$ - Contradiction.
So A is not equipotent to $\mathcal{P}(A)$

Theorem 21.4

The set $[0,1)$ has cardinality $2^{\aleph_{0}}$.

Proof. We write $x \in[0,1)$ using the binary expansion.

$$
\begin{aligned}
x & =0 . x_{1} x_{2} x_{3} \ldots \quad \text { with } x_{n} \in\{0,1\} \quad \forall n \geq 1 \\
& =\frac{x_{1}}{2}+\frac{x_{2}}{2^{2}}+\frac{x_{3}}{2^{3}}+\ldots=\sum_{n \geq 1} \frac{x_{n}}{2^{n}}
\end{aligned}
$$

with the convention that no expansion ends in all ones.

E.g.

$$
\begin{aligned}
x & =0 . x_{1} x_{2} x_{3} \ldots x_{n} 0111 \ldots \\
& =\frac{x_{1}}{2}+\ldots+\frac{x_{n}}{2^{n}}+\underbrace{\frac{1}{2^{n+2}}+\frac{1}{2^{n+3}}+\ldots}_{=\frac{1}{2^{n+1}}} \\
& =\frac{x_{1}}{2}+\ldots+\frac{x_{n}}{2^{n}}+\frac{1}{2^{n+1}}=0 . x_{1} x_{2} \ldots x_{n} 1000 \ldots
\end{aligned}
$$

Note that we can identify $[0,1)$ with

$$
\begin{aligned}
\mathcal{F} & =\{f: \mathbb{N} \rightarrow\{0,1\}: \forall n \in \mathbb{N} \exists m>n \text { s.t. } f(m)=0\} \\
& \subseteq\{f: \mathbb{N} \rightarrow\{0,1\}: f \text { function }\}
\end{aligned}
$$

In particular, we have an injection $\phi:[0,1) \rightarrow\{f: \mathbb{N} \rightarrow\{0,1\}\}$. To prove the theorem, by Schröder - Bernstein, it suffices to construct an injective function $\psi:\{f: \mathbb{N} \rightarrow\{0,1\}\} \rightarrow$ $[0,1)$. For $f: \mathbb{N} \rightarrow\{0,1\}$ we define

$$
\begin{aligned}
\psi(f) & =0.0 f(1) 0 f(2) 0 f(3) \ldots \\
& =\frac{f(1)}{2^{2}}+\frac{f(2)}{2^{4}}+\frac{f(3)}{2^{6}}+\ldots \\
& =\sum_{n \geq 1} \frac{f(n)}{2^{2 n}}
\end{aligned}
$$

Let's show ψ is an injective. Let $f_{1}, f_{2}: \mathbb{N} \rightarrow\{0,1\}$ s.t. $f_{1} \neq f_{2}$. Let $n_{0}=\min \left\{n: f_{1}(n) \neq f_{2}(n)\right\}$. Say, $f_{1}\left(n_{0}\right)=1$ and $f_{2}\left(n_{0}\right)=0$.

$$
\begin{aligned}
\psi\left(f_{1}\right)-\psi\left(f_{2}\right)=\sum_{n \geq 1} \frac{f_{1}(n)}{2^{2 n}}-\sum_{n \geq 1} \frac{f_{2}(n)}{2^{2 n}} & =\frac{f_{1}\left(n_{0}\right)-f_{2}\left(n_{0}\right)}{2^{2 n_{0}}}+\sum_{n \geq n_{0}+1} \frac{f_{1}(n)-f_{2}(n)}{2^{2 n}} \\
& \geq \frac{1}{2^{2 n_{0}}}-\sum_{n \geq n_{0}+1} \frac{1}{2^{2 n}} \\
& =\frac{1}{2^{2 n_{0}}}-\frac{1}{2^{2\left(n_{0}+1\right)}} \cdot \frac{1}{1-\frac{1}{2}} \\
& =\frac{1}{2^{2 n_{0}+1}}>0
\end{aligned}
$$

$\Longrightarrow \psi\left(f_{1}\right)>\psi\left(f_{2}\right)$
So ψ is injective.
By Schröder - Bernstein, $[0,1) \sim\{f: \mathbb{N} \rightarrow\{0,1\}\}$ and so it has cardinality $2^{\aleph_{0}}$.

§21.2 Metric Spaces

Definition 21.5 (Metric Space) - Let X be a non-empty set. A metric on X is a map $d: X \times X \rightarrow \mathbb{R}$ such that

1. $d(x, y) \geq 0 \forall x, y \in X$
2. $d(x, y)=0 \Longleftrightarrow x=y$
3. $d(x, y)=d(y, x) \forall x, y \in X$
4. $d(x, y) \leq d(x, z)+d(z, y) \forall x, y, z \in X$

Then we say (X, d) is a metric space.

Example 21.6 1. $X=\mathbb{R}, d(x, y)=|x-y|$ is a metric.
2. $X=\mathbb{R}^{n}, d_{2}(x, y)=\sqrt{\sum_{k=1}^{n}\left|x_{k}-y_{k}\right|^{2}}$ is a metric.
3. X is any non-empty set. The discrete metric

$$
d(x, y)=\left\{\begin{array}{l}
1, x \neq y \\
0, x=y
\end{array}\right.
$$

4. Let (X, d) be a metric space. Then $\tilde{d}: X \times X \rightarrow \mathbb{R}, \tilde{d}(x, y)=\frac{d(x, y)}{1+d(x, y)}$ is a metric. Let's see it satisfies (4). Fix $x, y, z \in X$. As d is a metric,

$$
d(x, y) \leq d(x, z)+d(z, y)
$$

Note $a \mapsto \frac{a}{1+a}=1-\frac{1}{1+a}$ is increasing on $[0, \infty)$. Then,

$$
\begin{aligned}
\tilde{d}(x, y)=\frac{d(x, y)}{1+d(x, y)} \leq \frac{d(x, z)+d(z, y)}{1+d(x, z)+d(z, y)} & \leq \frac{d(x, z)}{1+d(x, z)}+\frac{d(z, y)}{1+d(z, y)} \\
& =\tilde{d}(x, z)+\tilde{d}(z, y)
\end{aligned}
$$

Definition 21.7 ((Un)Bounded Metric Space) - We say that a metric space (X, d) is bounded if $\exists M>0$ s.t. $d(x, y) \leq M \forall x, y \in X$. If (X, d) is not bounded, we say that it is bounded.

Remark 21.8. If (X, d) is an unbounded metric space then (X, \tilde{d}) is a bounded metric space where $\tilde{d}(x, y)=\frac{d(x, y)}{1+d(x, y)}$.

Definition 21.9 (Distance Between Sets) - Let (X, d) be a metric space and let $A, B \subseteq X$. The distance between A and B is

$$
d(A, B)=\inf \{d(x, y): x \in A, y \in B\}
$$

Caution: This does not define a metric on subset of X. In fact, $d(A, B)=0$ does not even imply $A \cap B \neq \emptyset$.

Example 21.10
$(X, d)=(\mathbb{R},|\cdot|), A=(0,1), B=(-1,0), d(A, b)=0$ but $A \cap B=\emptyset$

Definition 21.11 (Distance Between Point and Set) - Let (X, d) be a metric space, $A \subseteq X, x \in X$. The distance from x to A is

$$
d(x, A)=\inf \{d(x, a): a \in A\}
$$

Again, $d(x, A)=0 \nRightarrow x \in A$

$\S 22$ Lec 22: Feb 26, 2021

§22.1 Hölder \& Minkowski Inequalities

Proposition 22.1 (Hölder's Inequality)

Fix $1 \leq p \leq \infty$ and let q denote the dual of p, that is, $\frac{1}{p}+\frac{1}{q}=1$. Let $x=\left(x_{1}, \ldots, x_{n}\right) \in$ \mathbb{R}^{n} and let $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$. Then

$$
\sum_{k=1}^{n}\left|x_{k} y_{k}\right| \leq\left(\sum_{k=1}^{n}\left|x_{k}\right|^{p}\right)^{\frac{1}{p}}\left(\sum_{k=1}^{n}\left|y_{k}\right|^{q}\right)^{\frac{1}{q}}
$$

with the convention that if $p=\infty$, then $\left(\sum_{k=1}^{n}\left|x_{k}\right|^{p^{\frac{1}{p}}}=\sup _{1 \leq k \leq n}\left|x_{k}\right|\right.$

Remark 22.2. If $p=2(\Longrightarrow q=2)$ we call this the Cauchy - Schwarz inequality.
Proof. If $p=1$, then $q=\infty$.

$$
\sum_{k=1}^{n}\left|x_{k} y_{k}\right| \leq \sum_{k=1}^{n}\left|x_{k}\right| \cdot \sup _{1 \leq l \leq n}\left|y_{l}\right| \leq\left(\sum_{k=1}^{n}\left|x_{k}\right|\right) \cdot \sup _{1 \leq l \leq n}\left|y_{l}\right|
$$

If $p=\infty \Longrightarrow(q=1)$ a similar argument yields the claim.
Assume $1<p<\infty$. We will use the fact that $f:(0, \infty) \rightarrow \mathbb{R}, f(x)=\log (x)$ is a concave function.

$$
\begin{aligned}
t f(a)+(1-t) f(b) & \leq f(t a+(1-t) b) \quad \forall(a, b) \in(0, \infty) \forall t \in(0,1) \\
t \log (a)+(1-t) \log (b) & \leq \log (t a+(1-t) b) \\
\log \left(a^{t}\right)+\log \left(b^{1-t}\right) & \leq \log (t a+(1-t) b) \\
\log \left(a^{t} b^{1-t}\right) & \leq \log (t a+(1-t) b) \\
a^{t} b^{1-t} & \leq t a+(1-t) b
\end{aligned}
$$

We will apply this inequality with $a=\frac{\left|x_{k}\right|^{p}}{\sum_{l=1}^{n}\left|x_{l}\right|^{p}}, b=\frac{\left|y_{k}\right|^{q}}{\sum_{l=1}^{n}\left|y_{l}\right|^{q}}$.

$$
t=\frac{1}{p} \Longrightarrow 1-t=1-\frac{1}{p}=\frac{1}{q}
$$

We get

$$
\frac{\left|x_{k}\right|}{\left(\sum_{l=1}^{n}\left|x_{l}\right|^{p}\right)^{\frac{1}{p}}} \cdot \frac{\left|y_{k}\right|}{\left(\sum_{l=1}^{n}\left|y_{l}\right|^{q}\right)^{\frac{1}{q}}} \leq \frac{1}{p} \frac{\left|x_{k}\right|^{p}}{\sum_{l=1}^{n}\left|x_{l}\right|^{p}}+\frac{1}{q} \frac{\left|y_{k}\right|^{q}}{\sum_{l=1}^{n}\left|y_{l}\right|^{q}}
$$

Sum over $1 \leq k \leq n$

$$
\begin{aligned}
& \sum_{k=1}^{n} \frac{\left|x_{k}\right| \cdot\left|y_{k}\right|}{\left(\sum_{l=1}^{n}\left|x_{l}\right|^{p}\right)^{\frac{1}{p}} \cdot\left(\sum_{l=1}^{n}\left|y_{l}\right|^{q}\right)^{\frac{1}{q}}} \leq \frac{1}{p} \sum_{k=1}^{n} \frac{\left|x_{k}\right|^{p}}{\sum_{l=1}^{n}\left|x_{l}\right|^{p}}+\frac{1}{q} \sum_{k=1}^{n} \frac{\left|y_{k}\right|^{q}}{\sum_{l=1}^{n}\left|y_{l}\right|^{q}}=\frac{1}{p}+\frac{1}{q}=1 \\
& \Longrightarrow \sum_{k=1}^{n}\left|x_{k} y_{k}\right| \leq\left(\sum_{l=1}^{n}\left|x_{l}\right|^{p}\right)^{\frac{1}{p}} \cdot\left(\sum_{l=1}^{n}\left|y_{l}\right|^{q}\right)^{\frac{1}{q}} .
\end{aligned}
$$

Corollary 22.3 (Minkowski's Inequality)

Fix $1 \leq p \leq \infty$ and let $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$. Then

$$
\left(\sum_{k=1}^{n}\left|x_{k}+y_{k}\right|^{p}\right)^{\frac{1}{p}} \leq\left(\sum_{k=1}^{n}\left|x_{k}\right|^{p}\right)^{\frac{1}{p}}+\left(\sum_{k=1}^{n}\left|y_{k}\right|^{p}\right)^{\frac{1}{p}}
$$

Proof. If $p=1$, this follows from the triangle inequality:

$$
\text { LHS }=\sum_{k=1}^{n}\left|x_{k}+y_{k}\right| \leq \sum_{k=1}^{n}\left|x_{k}\right|+\left|y_{k}\right|=\text { RHS }
$$

If $p=\infty$,

$$
\text { LHS }=\sup _{1 \leq k \leq n}\left|x_{k}+y_{k}\right| \leq \sup _{1 \leq k \leq n}\left|x_{k}\right|+\sup _{1 \leq k \leq n}\left|y_{k}\right|=\text { RHS }
$$

Assume $1<p<\infty$.

$$
\begin{aligned}
\sum_{k=1}^{n}\left|x_{k}+y_{k}\right|^{p} & =\sum_{k=1}^{n}\left|x_{k}+y_{k}\right|\left|x_{k}+y_{k}\right|^{p-1} \\
& \leq \sum_{k=1}^{n}\left(\left|x_{k}\right|+\left|y_{k}\right|\right)\left|x_{k}+y_{k}\right|^{p-1} \\
& =\sum_{k=1}^{n}\left|x_{k}\right| \cdot\left|x_{k}+y_{k}\right|^{p-1}+\sum_{k=1}^{n}\left|y_{k}\right|\left|x_{k}+y_{k}\right|^{p-1} \\
\text { (Hölder) } \leq & \left(\sum_{k=1}^{n}\left|x_{k}\right|^{p}\right)^{\frac{1}{p}} \cdot\left(\sum_{k=1}^{n}\left|x_{k}+y_{k}\right|^{(p-1) \cdot q}\right)^{\frac{1}{q}} \\
& +\left(\sum_{k=1}^{n}\left|y_{k}\right|^{p}\right)^{\frac{1}{p}}\left(\sum_{k=1}^{n}\left|x_{k}+y_{k}\right|^{(p-1) q}\right)^{\frac{1}{q}}
\end{aligned}
$$

$\frac{1}{p}+\frac{1}{q}=1 \Longrightarrow \frac{1}{q}=1-\frac{1}{p}=\frac{p-1}{p} \Longrightarrow q=\frac{p}{p-1}$
Get

$$
\begin{aligned}
& \sum_{k=1}^{n}\left|x_{k}+y_{k}\right|^{p} \leq\left[\left(\sum_{k=1}^{n}\left|x_{k}\right|^{p}\right)^{\frac{1}{p}}+\left(\sum_{k=1}^{n}\left|y_{k}\right|^{p}\right)^{\frac{1}{p}}\right] \cdot\left(\sum_{k=1}^{n}\left|x_{k}+y_{k}\right|^{p}\right)^{1-\frac{1}{p}} \\
& \Longrightarrow\left(\sum_{k=1}^{n}\left|x_{k}+y_{k}\right|^{p}\right)^{\frac{1}{p}} \leq\left(\sum_{k=1}^{n}\left|x_{k}\right|^{p}\right)^{\frac{1}{p}}+\left(\sum_{k=1}^{n}\left|y_{k}\right|^{p}\right)^{\frac{1}{p}}
\end{aligned}
$$

Corollary 22.4

For $1 \leq p<\infty$ let $d_{p}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
d_{p}(x, y)=\left(\sum_{k=1}^{n}\left|x_{k}-y_{k}\right|^{p}\right)^{\frac{1}{p}}
$$

For $p=\infty$ let $d_{\infty}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
d_{\infty}(x, y)=\sup _{1 \leq k \leq n}\left|x_{k}-y_{k}\right|
$$

The d_{p} is a metric on $\mathbb{R}^{n} \forall 1 \leq p \leq \infty$.

Proof. The triangle inequality follows from Minkowski's inequality.

Remark 22.5. The Hölder and Minkowski inequalities generalize to sequences. For example, say $\left\{x_{n}\right\}_{n \geq 1}$ and $\left\{y_{n}\right\}_{n \geq 1}$ are sequences of real numbers such that $\left(\sum_{n \geq 1}\left|x_{n}\right|^{p}\right)^{\frac{1}{p}}<\infty$ and $\left(\sum_{n \geq 1}\left|y_{n}\right|^{q}\right)^{\frac{1}{q}}<\infty$. Then for each fixed $N \geq 1$,

$$
\underbrace{\sum_{n=1}^{N}\left|x_{k} y_{k}\right|} \leq\left(\sum_{n=1}^{N}\left|x_{n}\right|^{p}\right)^{\frac{1}{p}} \cdot\left(\sum_{n=1}^{N}\left|y_{n}\right|^{q}\right)^{\frac{1}{q}} \leq\left(\sum_{n \geq 1}\left|x_{n}\right|^{p}\right)^{\frac{1}{p}} \cdot\left(\sum_{n \geq 1}\left|y_{n}\right|^{q}\right)^{\frac{1}{q}}<\infty
$$

increasing seq indexed by N
So

$$
\sum_{n \geq 1}\left|x_{k} y_{k}\right| \leq\left(\sum_{n \geq 1}\left|x_{n}\right|^{p}\right)^{\frac{1}{p}} \cdot\left(\sum_{n \geq 1}\left|y_{n}\right|^{q}\right)^{\frac{1}{q}}
$$

A similar argument gives Minkowski for sequences.

§22.2 Open Sets

Definition 22.6 (Ball/Neighborhood of a Point) — Let (X, d) be a metric space. A neighborhood of a point $a \in X$ is

$$
B_{r}(a)=\{x \in X: d(a, x)<r\} \text { for some } r>0
$$

Example 22.7 1. $\left(\mathbb{R}^{2}, d_{2}\right)$

$$
\begin{aligned}
B_{1}(0) & =\left\{(x, y) \in \mathbb{R}^{2}: d_{2}((x, y),(0,0))<1\right\} \\
& =\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\}
\end{aligned}
$$

2. $\left(\mathbb{R}^{2}, d_{1}\right)$

$$
B_{1}(0)=\left\{(x, y) \in \mathbb{R}^{2}:|x|+|y|<1\right\}
$$

3. $\left(\mathbb{R}^{2}, d_{\infty}\right)$

$$
B_{1}(0)=\left\{(x, y) \in \mathbb{R}^{2}: \max \{|x|,|y|\}<1\right\}
$$

Definition 22.8 (Interior Point) - Let (X, d) be a metric space and let $\emptyset \neq A \subseteq X$. We say that a point $a \in X$ is an interior point of A if $\exists r>0$ s.t. $B_{r}(a) \subseteq A$.
The set of all interior points of A is denoted \AA and is called the interior of A. We say that A is open if $A=\AA$.

Example 22.9 1. \emptyset, X are open sets.
2. $B_{r}(a)$ is an open set $\forall a \in X, \forall r>0$.

Indeed, let $x \in B_{r}(a) \Longrightarrow d(x, a)<r \Longrightarrow \rho=r-d(x, a)>0$

Claim 22.1. $B_{\rho}(x) \subseteq B_{r}(a)$ and so $x \in \widehat{B_{r}(a)}$
Proof. Let $y \in B_{\rho}(x) \Longrightarrow d(x, y)<\rho$

$$
d(y, a) \leq d(y, x)+d(x, a)<\rho+d(x, a)=r \Longrightarrow y \in B_{r}(a)
$$

Remark 22.10. $\AA \subseteq A$. To prove A is open, it suffices to show $A \subseteq \AA$.
§23 Lec 23: Mar 1, 2021

§23.1 Open Sets (Cont'd)

Proposition 23.1

Let (X, d) be a metric space and let $A, B \subseteq X$. Then

1. If $A \subseteq B$ then $A \subseteq B$
2. $A \cup B \subseteq \widehat{A \cup B}$
3. $\AA \cap \dot{B}=\widehat{A \cap B}$
4. $\AA=\AA$. In particular, \AA is an open set.
5. \AA is the largest open set contained in A.
6. A finite intersection of open sets is an open set.
7. An arbitrary union of open sets is an open set.

Remark 23.2. An arbitrary intersection of open sets need not be open. E.g.

$$
\bigcap_{n \geq 1} \underbrace{\left(-\frac{1}{n}, \frac{1}{n}\right)}_{B_{\frac{1}{n}}(0) \in(\mathbb{R},|\cdot|)}=\{0\}
$$

Note that $\{0\}$ is not an open set because it does not contain any neighborhood of 0 .
Proof. (Of the proposition):

1. If $\AA=\emptyset$ this is clear. Assume $\AA \neq \emptyset$. Let $a \in \AA \Longrightarrow \exists r>0$ s.t.

$$
\left.\begin{array}{l}
B_{r}(a) \subseteq A \\
A \subseteq B
\end{array}\right\} \Longrightarrow B_{r}(a) \subseteq B
$$

So $a \in \stackrel{B}{B}$.
2. Consider:

$$
\left.\begin{array}{l}
A \subseteq A \cup B \xlongequal{(1)} \AA \subseteq \widehat{A \cup B} \\
B \subseteq A \cup B \xlongequal{(1)} \stackrel{\circ}{\Longrightarrow} \subseteq \widehat{A \cup B}
\end{array}\right\} \Longrightarrow \AA \cup \circ \subseteq \widehat{A \cup B}
$$

3. Consider:

$$
\begin{aligned}
& \left.A \cap B \subseteq A \xlongequal{(1)} \widehat{\widehat{A \cap B} \subseteq \AA} \subseteq \begin{array}{l}
\circ \\
A \cap B \subseteq B \xlongequal{(2)} \widehat{A \cap B} \subseteq \AA
\end{array}\right\} \Longrightarrow \widehat{A \cap B} \subseteq \AA \cap \dot{B}, ~
\end{aligned}
$$

Now let $x \in \AA \cap B$

$$
\Longrightarrow\left\{\begin{array}{l}
\exists r_{1}>0 \text { s.t. } B_{r_{1}}(x) \subseteq A \\
\exists r_{2}>0 \text { s.t. } B_{r_{2}}(x) \subseteq B
\end{array}\right.
$$

Let $r=\min \left\{r_{1}, r_{2}\right\}>0$. Then $B_{r}(x) \subseteq B_{r_{1}}(x) \cap B_{r_{2}}(x) \subseteq A \cap B \Longrightarrow x \in \widehat{\circ} \cap B$. So $\AA \cap B \subseteq \widehat{A \cap B}$
4. $\AA \subseteq A \xlongequal{(1)} \AA \circ \AA$. Let $x \in \AA \Longrightarrow \exists r>0$ s.t. $B_{r}(x) \subseteq A \xlongequal{(1)} B_{r}(x)=\widehat{\widehat{B_{r}(x)} \subseteq}$ $\AA \Longrightarrow x \in \stackrel{\circ}{A}$. So $\AA \subseteq \AA$.
5. By (4), A is an open set contained in A. Let $B \subseteq A$ be an open set. Then by (1), $B=B \subseteq \AA$.
6. Using (3) and (4) we see that if $A=\AA$ A and $B=\stackrel{\circ}{B}$ then $A \cap B=\widehat{A \cap B}$ is an open set.
A simple inductive argument yields the claim.
7. Let $\left\{A_{i}\right\}_{i \in I}$ be a family of open sets. Let's show

$$
\widehat{\bigcup_{i \in I} A_{i}}=\bigcup_{i \in I} A_{i}
$$

Let $x \in \bigcup_{i \in I} A_{i} \Longrightarrow \exists i_{0} \in I$ s.t.

$$
\left.\begin{array}{l}
x \in A_{i_{0}} \\
A_{i_{0}}=\stackrel{\circ}{A_{i_{0}}}
\end{array}\right\} \Longrightarrow \exists r>0 \text { s.t. } B_{r}(x) \subseteq A_{i_{0}}
$$

So $B_{r}(x) \subseteq \bigcup_{i \in I} A_{i} \Longrightarrow x \in \widehat{\bigcup_{i \in I} A_{i}}$. Thus, $\bigcup_{i \in I} A_{i} \subseteq \widehat{\bigcup_{i \in I} A_{i}}$.

§23.2 Closed Sets

Definition 23.3 (Closed Set) - Let (X, d) be a metric space. A set $A \subseteq X$ is closed if ${ }^{c} A$ is open.

Example 23.4 1. ϕ, X are closed.
2. If $a \in X, r>0$, then ${ }^{c} B_{r}(a)=\{x \in X: d(a, x) \geq r\}$ is a closed set.
3. If $a \in X, r>0$, then $K_{r}(a)=\{x \in X: d(a, x) \leq r\}$ is a closed set.

Let's show ${ }^{c} K_{r}(a)=\{x \in X: d(a, x)>r\}$ is open. Let $x \in{ }^{c} K_{r}(a) \Longrightarrow$ $d(a, x)>r$ and let $\rho=d(a, x)-r>0$

Claim 23.1. $B_{\rho}(x) \subseteq{ }^{c} K_{r}(a)$
Let $y \in B_{\rho}(x) \Longrightarrow d(x, y)<\rho$. By the triangle inequality,

$$
d(a, y) \geq d(a, x)-d(x, y)>d(a, x)-\rho=r \Longrightarrow y \in{ }^{c} K_{r}(a)
$$

So $B_{\rho}(x) \subseteq K_{r}(a) \Longrightarrow x \in \widehat{{ }^{c}} \widehat{K_{r}(a)}$. Thus, ${ }^{c} K_{r}(a)$ is an open set.
4. There are sets that are neither open nor closed. E.g. (0,1] is not open and is not closed.

Definition 23.5 (Adherent Point) - Let (X, d) be a metric space and let $A \subseteq X$. A point $a \in X$ is an adherent point for A if

$$
\forall r>0 \text { we have } B_{r}(a) \cap A \neq \emptyset
$$

The set of all adherent points of A is denoted \bar{A} and is called the closure of A.

Definition 23.6 (Isolated Point) - An adherent point a of A is called isolated if

$$
\exists r>0 \text { s.t. } B_{r}(a) \cap A=\{a\} \quad(a \in A)
$$

If every point in A is an isolated point of A then A is called an isolated set.

Definition 23.7 (Accumulation Point) - An adherent point a of A that is not isolated is called an accumulation point for A. The set of accumulation points of A is denoted A^{\prime}. Note that

$$
a \in A^{\prime} \Longleftrightarrow \forall r>0 \quad B_{r}(a) \cap A \backslash\{a\} \neq \emptyset
$$

Example 23.8

$(\mathbb{R},|\cdot|), \quad A=\left\{\frac{1}{n}: n \geq 1\right\} . A$ is isolated. Indeed $B_{\frac{1}{n(n+1)}}\left(\frac{1}{n}\right) \cap A=\left\{\frac{1}{n}\right\}$.
$A^{\prime}=\{0\}$ since $\forall r>0 B_{r}(0)=(-r, r)$ intersects $A \backslash\{0\}=A$.

Remark 23.9. 1. $A \subseteq \bar{A}$
2. $\bar{A}=A^{\prime} \cup A$

Proposition 23.10

Let (X, d) be a metric space and let $A, B \subseteq X$. Then

1. ${ }^{c}(\bar{A})=\stackrel{\circ}{{ }^{c} A}$
2. ${ }^{c}(\AA)=\overline{{ }^{c}} A$
3. A is closed set $\Longleftrightarrow A=\bar{A}$
4. If $A \subseteq B$ then $\bar{A} \subseteq \bar{B}$
5. $\overline{A \cap B} \subseteq \bar{A} \cap \bar{B}$
6. $\bar{A} \cup \bar{B}=\overline{A \cup B}$
7. $\overline{\bar{A}}=\bar{A}$. In particular, \bar{A} is a closed set.
8. \bar{A} is the smallest closed set containing A.
9. A finite union of closed sets is a closed set.
10. An arbitrary intersection of closed sets is a closed set.

Remark 23.11. An arbitrary union of closed sets need not be a closed set. E.g.

$$
\bigcup_{n \geq 1} \underbrace{\left[\frac{1}{n}, 1\right]}_{\text {closed }}=\underbrace{(0,1]}_{\text {not closed }}
$$

Proof. (of the proposition)

1. Consider

$$
\begin{aligned}
x \in^{c}(\bar{A}) \Longleftrightarrow x \notin \bar{A} & \Longleftrightarrow \exists r>0 \text { s.t. } B_{r}(x) \cap A=\emptyset \\
& \Longleftrightarrow \exists r>0 \text { s.t. } B_{r}(x) \subseteq{ }^{c} A \\
& \Longleftrightarrow x \in{ }^{\circ} A
\end{aligned}
$$

2. Apply (1) to ${ }^{c} A$.
3. A is closed $\Longleftrightarrow{ }^{c} A$ is open

$$
\begin{aligned}
& \Longleftrightarrow{ }^{c} A=\stackrel{\circ}{{ }^{c} A} \\
& \stackrel{(1)}{\Longleftrightarrow}{ }^{c} A={ }^{c}(\bar{A}) \\
& \Longleftrightarrow A=\bar{A}
\end{aligned}
$$

We continue in the next lecture.
$\S 24 \mid$ Lec 24: Mar 3, 2021

§24.1 Closed Sets (Cont'd)

Proposition 24.1

Let (X, d) be a metric space and let $A, B \subseteq X$. Then

1. ${ }^{c}(\bar{A})=\stackrel{\circ}{{ }^{c} A}$
2. ${ }^{c}(\AA)=\bar{c} A$
3. A is closed set $\Longleftrightarrow A=\bar{A}$
4. If $A \subseteq B$ then $\bar{A} \subseteq \bar{B}$
5. $\overline{A \cap B} \subseteq \bar{A} \cap \bar{B}$
6. $\bar{A} \cup \bar{B}=\overline{A \cup B}$
7. $\overline{\bar{A}}=\bar{A}$. In particular, \bar{A} is a closed set.
8. \bar{A} is the smallest closed set containing A.
9. A finite union of closed sets is a closed set.
10. An arbitrary intersection of closed sets is a closed set.

Proof. (Cont'd from last lecture)
4. If $\bar{A}=\emptyset$ then clearly $\bar{A} \subseteq \bar{B}$. Assume $\bar{A} \neq \emptyset$. Let $a \in \bar{A} \Longrightarrow \forall r>0$,

$$
\left.\begin{array}{rl}
B_{r}(a) \cap A \neq \emptyset \\
A \subseteq B
\end{array}\right\} ⿻ B_{r}(a) \cap B \neq \emptyset \forall r>0
$$

So $\bar{A} \subseteq \bar{B}$
5. Have:

$$
\left.\begin{array}{l}
A \cap B \subseteq A \xlongequal{(4)} \overline{A \cap B} \subseteq \bar{A} \\
A \cap B \subseteq B \xlongequal{(4)} \overline{A \cap B} \subseteq \bar{B}
\end{array}\right\} \Longrightarrow \overline{A \cap B} \subseteq \bar{A} \cap \bar{B}
$$

6. Have

$$
\begin{aligned}
& { }^{c}(\overline{A \cup B}) \stackrel{(1)}{=}\left(\widehat{\circ}(\overline{A \cup B})=\widehat{c} \widehat{\cap^{c} B}=\stackrel{\circ}{{ }^{c} A} \cap \stackrel{\circ}{{ }^{c} B} \stackrel{(1)}{=}{ }^{c}(\bar{A}) \cap{ }^{c}(\bar{B})\right. \\
& ={ }^{c}(\bar{A} \cup \bar{B}) \\
& \Longrightarrow \overline{A \cup B}=\bar{A} \cup \bar{B}
\end{aligned}
$$

7. Clearly, $A \subseteq \bar{A} \xlongequal{(4)} \bar{A} \subseteq \overline{\bar{A}}$. Want to show $\overline{\bar{A}} \subseteq \bar{A}$. Let $a \in \overline{\bar{A}}$. Want to prove that $\forall r>0 B_{r}(a) \cap A \neq \emptyset$.
Fix $r>0$. As $a \in \overline{\bar{A}} \Longrightarrow B_{r}(a) \cap \bar{A} \neq \emptyset$. Let $x \in B_{r}(a) \cap \bar{A}$

$$
x \in \bar{A} \Longrightarrow \forall \rho>0, B_{\rho}(x) \cap A \neq \emptyset
$$

Choose $\rho=r-d(a, x)>0$. Then

$$
\left.\begin{array}{l}
B_{\rho}(x) \subseteq B_{r}(a) \\
B_{\rho}(x) \cap A \neq \emptyset
\end{array}\right\} \Longrightarrow B_{r}(a) \cap A \neq \emptyset
$$

So $a \in \bar{A}$.
8. Note \bar{A} is a closed subset containing A. Let B be a closed set containing A.

$$
A \subseteq B \xlongequal{(4)} \bar{A} \subseteq \bar{B} \stackrel{(3)}{=} B
$$

9. Let $\left\{A_{n}\right\}_{n=1}^{N}$ be a closed sets. Then ${ }^{c} A_{n}$ is an open set $\forall 1 \leq n \leq N$. Then $\bigcap_{n=1}^{N}{ }^{c} A_{n}$ is an open set. Now $\bigcap_{n=1}^{N}{ }^{c} A_{n}={ }^{c}\left(\bigcup_{n=1}^{N} A_{n}\right)$ open $\Longrightarrow \bigcup_{n=1}^{N} A_{n}$ closed.
10. Let $\left\{A_{i}\right\}_{i \in I}$ be a family of closed sets. Then ${ }^{c} A_{i}$ is open $\forall i \in I$

$$
\begin{aligned}
& \Longrightarrow \bigcup_{i \in I}^{c} A_{i}={ }^{c}\left(\bigcap_{i \in I} A_{i}\right) \text { is open } \\
& \Longrightarrow \bigcap_{i \in I} A_{i} \text { is closed }
\end{aligned}
$$

$\S 24.2$ Subspaces of Metric Spaces

Definition 24.2 (Subspace of Metric Space) - Let (X, d) be a metric space and let $\emptyset \neq Y \subseteq X$. Then $d_{1}: Y \times Y \rightarrow \mathbb{R}, d_{1}(x, y)=d(x, y) \forall x, y \in Y$ is a metric on Y and is called the induced metric on Y. $\left(Y, d_{1}\right)$ is called a subspace of (X, d).

Proposition 24.3

Let (X, d) be a metric space and let $\emptyset \neq Y \subseteq X$ equipped with the induced metric d_{1}.

1. A set $D \subseteq Y$ is open in $\left(Y, d_{1}\right)$ if and only if there exists $O \subseteq X$ open in (X, d) s.t. $D=O \cap Y$.
2. A set $F \subseteq Y$ is closed in $\left(Y, d_{1}\right)$ if and only if there exists $C \subseteq X$ closed in (X, d) s.t. $F=C \cap Y$.

Proof. 1. " $\Longrightarrow "$ Let $D \subseteq Y$ be open in $\left(Y, d_{1}\right)$. Then $\forall a \in D \exists r_{a}>0$ s.t. $B_{r_{a}}^{y}(a)=$ $\left\{y \in Y: d(a, y)<r_{a}\right\} \subseteq D$. Note $B_{r_{a}}^{y}(a)=B_{r_{a}}^{x}(a) \cap Y$. So

$$
D=\bigcup_{a \in D} B_{r_{a}}^{y}(a)=\bigcup_{a \in D}\left[B_{r_{a}}^{x}(a) \cap Y\right]=\underbrace{\left(\bigcup_{a \in D} B_{r_{a}}^{x}(a)\right)}_{\text {open in }(X, d)} \cap Y
$$

" $\Longleftarrow "$ Assume that $D=O \cap Y$ for O open in (X, d). Let $a \in D \subseteq O \Longrightarrow \exists r>0$ s.t. $B_{r}^{x}(a) \subseteq O$
$\Longrightarrow B_{r}^{y}(a)=B_{r}^{x}(a) \cap Y \subseteq O \cap Y=D \Longrightarrow a$ is an interior point of D in the $\left(Y, d_{1}\right)$
So D is open in $\left(Y, d_{1}\right)$.
2. $F \subseteq Y$ is closed in $\left(Y, d_{1}\right) \Longleftrightarrow Y \backslash F$ is open in $\left(Y, d_{1}\right) \stackrel{(1)}{\Longleftrightarrow} \exists O$ open set in (X, d) s.t. $Y \backslash F=O \cap Y$. But

$$
\begin{aligned}
F & =Y \backslash(Y \backslash F)=Y \backslash(O \cap Y)=Y \cap{ }^{c}(O \cap Y)=Y \cap\left({ }^{c} O \cup{ }^{c} Y\right) \\
& =\left(Y \cap{ }^{c} O\right) \cup \underbrace{\left(Y \cap{ }^{c} Y\right)}_{=\emptyset}=Y \cap \underbrace{{ }^{c} O}_{\text {closed in }(X, d)}
\end{aligned}
$$

Example 24.4 1. $[0,1)$ is not an open set in $(\mathbb{R},|\cdot|)$, but it is open in $([0,2),|\cdot|)$. Say $[0,1)=(-1,1) \cap[0,2)$.
2. $(0,1]$ is not a closed set in $(\mathbb{R},|\cdot|)$, but it is closed in $((0,2),|\cdot|)$. Say $(0,1]=$ $[-1,1] \cap(0,2)$.

Proposition 24.5

Let (X, d) be a metric space and let $\emptyset \neq Y \subseteq X$ equipped with the induced metric. The followings are equivalent:

1. Any $A \subseteq Y$ that is open (closed) in Y is also open(closed) in X.
2. Y is open(closed) in X.

Proof. 1) \Longrightarrow 2) Take $A=Y$.
2) $\Longrightarrow 1)$ Assume Y is open in X. Let $A \subseteq Y$ be open in $Y \Longrightarrow \exists O$ open in X s.t. $A=\underbrace{O}_{\text {open in } \mathrm{X}} \cap \underbrace{Y}_{\text {open in } \mathrm{X}}$ open in X.

Proposition 24.6

Let (X, d) be a metric space and let $\emptyset \neq Y \subseteq X$ equipped with the induced metric. For a set $A \subseteq Y$,

$$
\bar{A}^{Y}=\bar{A}^{X} \cap Y
$$

Proof. Have:

$$
\begin{aligned}
a \in \bar{A}^{Y} & \Longleftrightarrow \forall r>0 \quad B_{r}^{y}(a) \cap A \neq \emptyset \\
& \Longleftrightarrow \forall r>0 \quad B_{r}^{x}(a) \cap \underbrace{Y \cap A}_{=A} \neq \emptyset \\
& \Longleftrightarrow a \in \bar{A}^{X} \cap Y
\end{aligned}
$$

$\S 24.3$ Complete Metric Spaces

Definition 24.7 (Sequential Limit) - Let (X, d) be a metric space and let $\left\{x_{n}\right\}_{n \geq 1} \subseteq$ X. We say $\left\{x_{n}\right\}_{n \geq 1}$ converges to a point $x \in X$ if

$$
\forall \epsilon>0 \quad \exists n_{\epsilon} \in \mathbb{N} \text { s.t. } d\left(x_{n}, x\right)<\epsilon \quad \forall n \geq n_{\epsilon}
$$

Then x is called the limit of $\left\{x_{n}\right\}_{n \geq 1}$ and we write $x=\lim _{n \rightarrow \infty} x_{n}$ or $x_{n} \xrightarrow[n \rightarrow \infty]{\stackrel{d}{\longrightarrow}} x$.

Exercise 24.1. The limit of a convergent sequence is unique.
Exercise 24.2. A sequence of $\left\{x_{n}\right\}_{n \geq 1}$ converges to $x \in X$ if and only if every subsequences of $\left\{x_{n}\right\}_{n \geq 1}$ converges to x.

Remark 24.8. If $x_{n} \xrightarrow[n \rightarrow \infty]{d} x$ and $y_{n} \xrightarrow[n \rightarrow \infty]{d} y$, then $d\left(x_{n}, y_{n}\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow} d(x, y)$.
Indeed,

$$
\begin{aligned}
\left|d\left(x_{n}, y_{n}\right)-d(x, y)\right| & \leq\left|d\left(x_{n}, y_{n}\right)-d\left(x_{n}, y\right)\right|+\left|d\left(x_{n}, y\right)-d(x, y)\right| \\
& \leq d\left(y_{n}, y\right)+d\left(x_{n}, x\right) \underset{n \rightarrow \infty}{\longrightarrow} 0
\end{aligned}
$$

Definition 24.9 (Cauchy Sequence (MS)) - Let (X, d) be a metric space. We say that $\left\{x_{n}\right\}_{n \geq 1} \subseteq X$ is Cauchy if

$$
\forall \epsilon>0 \quad \exists n_{\epsilon} \in \mathbb{N} \text { s.t. } d\left(x_{n}, x_{m}\right)<\epsilon \quad \forall n, m \geq n_{\epsilon}
$$

Exercise 24.3. Every convergent sequence is Cauchy.
Caution: Not every Cauchy sequence is convergent in an arbitrary metric space.

Example 24.10 1. $(X, d)=((0,1),|\cdot|), x_{n}=\frac{1}{n} \forall n \geq 2$ is Cauchy but does not converge in X.
2. $(X, d)=(\mathbb{Q},|\cdot|), x_{1}=3, x_{n+1}=\frac{x_{n}}{2}+\frac{1}{x_{n}} \forall n \geq 1$. Then $\left\{x_{n}\right\}_{n \geq 1}$ is Cauchy but does not converge in X.

Definition 24.11 (Complete Metric Space) - A metric space (X, d) is complete if every Cauchy sequence in X converges in X.

Example 24.12
$(\mathbb{R},|\cdot|)$ is a complete metric space.
Exercise 24.4. Show that a Cauchy sequence with a convergent subsequence converges.

§25 Lec 25: Mar 5, 2021

§25.1 Complete Metric Spaces (Cont'd)

Lemma 25.1

Let (X, d) be a metric space and let $\emptyset \neq F \subseteq X$. The following equivalent:

1. $a \in \bar{F}$
2. There exists $\left\{a_{n}\right\}_{n \geq 1} \subseteq F$ s.t. $a_{n} \xrightarrow[n \rightarrow \infty]{d} a$

Proof. 1) \Longrightarrow 2) Assume $a \in \bar{F}$. Then

$$
\forall r>0, \quad B_{r}(a) \cap F \neq \emptyset
$$

For $n \geq 1$, take $r=\frac{1}{n}$. Then $B_{\frac{1}{n}}(a) \cap F \neq \emptyset$. Let $a_{n} \in B_{\frac{1}{n}}(a) \cap F$. Consider $\left\{a_{n}\right\}_{n \geq 1} \subseteq F$. We have $\forall n \geq 1$,

$$
d\left(a_{n}, a\right)<\frac{1}{n} \underset{n \rightarrow \infty}{\longrightarrow} 0 \Longrightarrow a_{n} \xrightarrow[n \rightarrow \infty]{\stackrel{d}{\longrightarrow}} a
$$

2) $\Longrightarrow 1)$ Assume $\exists\left\{a_{n}\right\}_{n \geq 1} \subseteq F$ s.t. $a_{n} \xrightarrow[n \rightarrow \infty]{\xrightarrow{d}} a$. Fix $r>0$. Then $\exists n_{r} \in \mathbb{N}$ s.t. $d\left(a_{n}, a\right)<r \forall n \geq n_{r}$. In particular, $\forall n \geq n_{r}, a_{n} \in B_{r}(a) \cap F \Longrightarrow B_{r}(a) \cap F \neq \emptyset$. As r was arbitrary, we get $a \in \bar{F}$.

Theorem 25.2

Let (X, d) be a metric space. The following are equivalent:

1. (X, d) is a complete metric space.
2. For every sequence $\left\{F_{n}\right\}_{n>1}$ of non-empty closed subset of X, that is nested (that is, $F_{n+1} \subseteq F_{n} \forall n \geq 1$), and satisfies $\delta\left(F_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow} 0$, we have $\bigcap_{n \geq 1} F_{n}=\{a\}$ for some $a \in X$.

Proof. 1) $\Longrightarrow 2)$ Assume (X, d) is complete. As $F_{n} \neq \emptyset \forall n \geq 1, \exists a_{n} \in F_{n}$.
Claim 25.1. $\left\{a_{n}\right\}_{n \geq 1}$ is Cauchy.
Let $\epsilon>0$. As $\delta\left(F_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow} 0, \exists n_{\epsilon} \in \mathbb{N}$ s.t. $\delta\left(F_{n}\right)<\epsilon \forall n \geq n_{\epsilon}$. Let $m, n \geq n_{\epsilon}$. Since $\left\{F_{n}\right\}_{n \geq 1}$ is nested, $F_{n} \subseteq F_{n_{\epsilon}}, F_{m} \subseteq F_{n_{\epsilon}}$. So

$$
d\left(a_{n}, a_{m}\right) \leq \delta\left(F_{n_{\epsilon}}\right)<\epsilon
$$

So this proves the claim.
As (X, d) is complete, $\exists a \in X$ s.t. $a_{n} \xrightarrow[n \rightarrow \infty]{d} a$. For $\forall n \geq 1,\left\{a_{m}\right\}_{m \geq n} \subseteq F_{n} \Longrightarrow a \in$ $\overline{F_{n}}=F_{n}$. So $a \in \bigcap_{n \geq 1} F_{n}$.

It remains to show a is the only point in $\bigcap_{n>1} F_{n}$. Assume, toward a contradiction, that $\exists y \neq a$ s.t. $y \in \bigcap_{n \geq 1} F_{n}$. Then $y \in F_{n} \forall n \geq 1 \Longrightarrow d(y, a) \leq \delta\left(F_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow} 0 \Longrightarrow y=a-$ Contradiction!
$2) \Longrightarrow 1)$ Want to show (X, d) is complete. Let $\left\{x_{n}\right\}_{n \geq 1} \subseteq X$ be a Cauchy sequence. To prove that $\left\{x_{n}\right\}_{n \geq 1}$ converges in X, it suffices to show that $\left\{x_{n}\right\}_{n \geq 1}$ admits a subsequence that converges in X.
$\left\{x_{n}\right\}_{n \geq 1}$ is Cauchy $\Longrightarrow \exists n_{1} \in \mathbb{N}$ s.t. $d\left(x_{n}, x_{m}\right)<\frac{1}{2^{2}} \forall n, m \geq n_{1}$. Let $k_{1}=n_{1}$ and select $x_{k_{1}}$.
$\left\{x_{n}\right\}_{n \geq 1}$ is Cauchy $\Longrightarrow \exists n_{2} \in \mathbb{N}$ s.t. $d\left(x_{n}, x_{m}\right)<\frac{1}{2^{3}}, \forall n, m \geq n_{2}$. Let $k_{2}=$ $\max \left\{n_{2}, \bar{k}_{1}+1\right\}$ and select $x_{k_{2}}$.

Proceeding inductively, we find a strictly increasing sequence $\left\{k_{n}\right\}_{n \geq 1} \subseteq \mathbb{N}$ s.t.

$$
d\left(x_{l}, x_{m}\right)<\frac{1}{2^{n+1}} \quad \forall l, m \geq k_{n}
$$

For $n \geq 1$, let $F_{n}=K_{\frac{1}{2^{n}}}\left(X_{k_{n}}\right)=\left\{x \in X: d\left(x, x_{k_{n}}\right)<\frac{1}{2^{n}}\right\}$. Note $\emptyset \neq F_{n}=\overline{F_{n}}$ and $\delta\left(F_{n}\right) \leq 2 \cdot \frac{1}{2^{n}} \underset{n \rightarrow \infty}{\longrightarrow} 0$.
Claim 25.2. $F_{n+1} \subseteq F_{n} \quad \forall n \geq 1$.
Let $y \in F_{n+1} \Longrightarrow d\left(y, x_{k_{n+1}} \leq \frac{1}{2^{n+1}}\right.$. By the triangle inequality,

$$
d\left(y, x_{k_{n}}\right) \leq d\left(y, x_{k_{n+1}}\right)+d\left(x_{k_{n+1}}, x_{k_{n}}\right) \leq \frac{1}{2^{n+1}}+\frac{1}{2^{n+1}}=\frac{1}{2^{n}}
$$

So $y \in F_{n}$. As $y \in F_{n+1}$ was arbitrary, we get $F_{n+1} \subseteq F_{n}$.
By hypothesis, $\bigcap_{n \geq 1} F_{n}=\{a\}$ for some $a \in X$. As $\forall n \geq 1, a \in F_{n}$ we have $d\left(a, x_{k_{n}}\right) \leq$ $\frac{1}{2^{n}} \underset{n \rightarrow \infty}{\longrightarrow} 0$

$$
\left.\begin{array}{l}
x_{k_{n}} \xrightarrow[n \rightarrow \infty]{d} a \\
\left\{x_{n}\right\}_{n \geq 1} \text { is Cauchy }
\end{array}\right\} \Longrightarrow x_{n} \xrightarrow[n \rightarrow \infty]{\xrightarrow{d}} a
$$

§25.2 Examples of Complete Metric Spaces

Recall $(\mathbb{R},|\cdot|)$ is a complete metric space.

Lemma 25.3

Assume $\left(A, d_{1}\right)$ and $\left(B, d_{2}\right)$ are complete metric spaces. We define $d:(A \times B) \times(A \times$ $B) \rightarrow \mathbb{R}$ via

$$
d\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right)=\sqrt{d_{1}^{2}\left(a_{1}, a_{2}\right)+d_{2}^{2}\left(b_{1}, b_{2}\right)}
$$

Then $(A \times B, d)$ is a complete metric space.

Exercise 25.1. Show that d is a metric on $A \times B$.
Proof. Let's show $A \times B$ is complete. Let $\left\{\left(a_{n}, b_{n}\right)\right\}_{n \geq 1} \subseteq A \times B$ be a Cauchy sequence.

Fix $\epsilon>0, \exists n_{\epsilon} \in \mathbb{N}$ s.t. $d\left(\left(a_{n}, b_{n}\right),\left(a_{m}, b_{m}\right)\right)<\epsilon \forall n, m \geq n_{\epsilon}$.

$$
\begin{aligned}
& \Longrightarrow \sqrt{d_{1}^{2}\left(a_{n}, a_{m}\right)+d_{2}^{2}\left(b_{n}, b_{m}\right)}<\epsilon \quad \forall n, m \geq n_{\epsilon} \\
& \Longrightarrow \begin{cases}d_{1}\left(a_{n}, a_{m}\right)<\epsilon & \forall n, m \geq n_{\epsilon} \\
d_{2}\left(b_{n}, b_{m}\right)<\epsilon & \forall n, m \geq n_{\epsilon}\end{cases}
\end{aligned}
$$

So

$$
\left\{\begin{array}{l}
\left\{a_{n}\right\}_{n \geq 1} \text { is Cauchy sequence in } A \\
\left\{b_{n}\right\}_{n \geq 1} \text { is Cauchy sequence in } B
\end{array}\right.
$$

As A and B are complete metric spaces, $\exists a \in A, \exists b \in B$ s.t. $a_{n} \xrightarrow[n \rightarrow \infty]{d_{1}} a$ and $b_{n} \xrightarrow[n \rightarrow \infty]{\stackrel{d_{2}}{\longrightarrow}} b$.
Claim 25.3. $\left(a_{n}, b_{n}\right) \xrightarrow[n \rightarrow \infty]{d}(a, b)$.
Indeed,

$$
\begin{aligned}
d\left(\left(a_{n}, b_{n}\right),(a, b)\right) & =\sqrt{d_{1}^{2}\left(a_{n}, a\right)+d_{2}^{2}\left(b_{n}, b\right)} \\
& \leq d_{1}\left(a_{n}, a\right)+d_{2}\left(b_{n}, b\right) \underset{n \rightarrow \infty}{\longrightarrow} 0
\end{aligned}
$$

$$
\Longrightarrow\left(a_{n}, b_{n}\right) \xrightarrow[n \rightarrow \infty]{\stackrel{d}{\longrightarrow}}(a, b) .
$$

Corollary 25.4

For $n \geq 2,\left(\mathbb{R}^{n}, d_{2}\right)$ is a complete metric space.

Proof. Use induction. \qquad
Exercise 25.2. Show that for all $n \geq 2$, $\left(\mathbb{R}^{n}, d_{p}\right)$ is a complete metric space $\forall 1 \leq p \leq \infty$.
We define

$$
l^{2}=\left\{\left\{x_{n}\right\}_{n \geq 1} \subseteq \mathbb{R}: \sum_{n \geq 1}\left|x_{n}\right|^{2}<\infty\right\}
$$

We define a metric on l^{2} as follows: for $x=\left\{x_{n}\right\}_{n \geq 1}$ and $y=\left\{y_{n}\right\}_{n \geq 1} \in l^{2}$,

$$
d_{2}(x, y)=\sqrt{\sum_{n \geq 1}\left|x_{n}-y_{n}\right|^{2}}
$$

The fact this is a metric follows from Minkowski's inequality.
Claim 25.4. $\left(l^{2}, d_{2}\right)$ is a complete metric space.

Proof. Let $\left\{x^{(d)}\right\}_{k \geq 1}$ be a Cauchy sequence in l^{2}.

$$
\begin{aligned}
x^{(1)} & =\left\{x_{1}^{(1)}, x_{2}^{(1)}, x_{3}^{(1)}, \ldots\right\} \\
x^{(2)} & =\left\{x_{1}^{(2)}, x_{2}^{(2)}, x_{3}^{(2)}, \ldots\right\} \\
& \ldots \\
x^{(n)} & =\left\{x_{1}^{(n)}, x_{2}^{(n)}, x_{3}^{(n)}, \ldots\right\}
\end{aligned}
$$

We continue in the next lecture.
$\S 26 \mid \operatorname{Lec} 26:$ Mar 8, 2021

§26.1 Examples of Complete Metric Spaces (Cont'd)

Recall

$$
l^{2}=\left\{\left\{x_{n}\right\}_{n \geq 1} \subseteq \mathbb{R}: \sum_{n \geq 1}\left|x_{n}\right|^{2}<\infty\right\}
$$

We define a metric $d_{2}: l^{2} \times l^{2} \rightarrow \mathbb{R}$ via

$$
d_{2}\left(\left\{x_{n}\right\}_{n \geq 1},\left\{y_{n}\right\}_{n \geq 1}\right)=\sqrt{\sum_{n \geq 1}\left|x_{n}-y_{n}\right|^{2}}
$$

Then $\left(l^{2}, d_{2}\right)$ is a complete metric space. To see this, let $\left\{x^{(k)}\right\}_{k \geq 1}$ be a Cauchy sequence in l^{2}. Then $\forall \epsilon>0 \exists k_{\epsilon} \in \mathbb{N}$ s.t. $d_{2}\left(x^{(k)}, x^{(l)}\right)<\epsilon \forall k, l \geq k_{\epsilon}$. So

$$
\begin{gathered}
d_{2}\left(x^{(k)}, x^{(l)}\right)=\sqrt{\sum_{n \geq 1}\left|x_{n}^{(k)}-x_{n}^{(l)}\right|^{2}}<\epsilon \quad \forall k, l \geq k_{\epsilon} \\
\Longrightarrow \sum_{n \geq 1}\left|x_{n}^{(k)}-x_{n}^{(l)}\right|^{2}<\epsilon^{2} \quad k, l \geq k_{\epsilon} \\
\Longrightarrow \forall n \geq 1 \text { we have }\left|x_{n}^{(k)}-x_{n}^{(l)}\right|<\epsilon \quad \forall k, l \geq k_{\epsilon}
\end{gathered}
$$

So $\forall n \geq 1$, the sequence $\left\{x_{n}^{(k)}\right\}_{k \geq 1}$ is Cauchy in $(\mathbb{R},|\cdot|)$. As $(\mathbb{R},|\cdot|)$ is complete, $\exists x_{n} \in \mathbb{R}$ s.t. $x_{n}^{(k)} \underset{k \rightarrow \infty}{\mathbb{R}} x_{n}$.

Let $x=\left\{x_{n}\right\}_{n \geq 1}$
Claim 26.1. $x \in l^{2}$ and $x^{(k)} \xrightarrow[k \rightarrow \infty]{l^{2}} x$.
Note $d_{2}\left(x^{(k)}, x\right)=\sqrt{\sum_{n \geq 1}\left|x_{n}^{(k)}-x_{n}\right|^{2}}$. While $\left|x_{n}^{(k)}-x_{n}\right| \underset{k \rightarrow \infty}{\longrightarrow} 0 \forall n \geq 1$, the limit theorems do not apply to yield

$$
\sum_{n \geq 1}\left|x_{n}^{(k)}-x_{n}\right|^{2} \underset{k \rightarrow \infty}{\longrightarrow} 0
$$

Instead, we argue as follows:
Fix $\epsilon>0$. As $\left\{x^{(k)}\right\}_{k \geq 1}$ is Cauchy in $l^{2}, \exists k_{\epsilon} \in \mathbb{N}$ s.t. $d_{2}\left(x^{(k)}, x^{(l)}\right)<\epsilon \forall k, l \geq k_{\epsilon}$. In particular, $\sum_{n \geq 1}\left|x_{n}^{(k)}-x_{n}^{(l)}\right|^{2}<\epsilon^{2} \forall k, l \geq k_{\epsilon}$. So for each fixed $N \in \mathbb{N}$ we have

$$
\sum_{n=1}^{N}\left|x_{n}^{(k)}-x_{n}^{(l)}\right|^{2}<\epsilon^{2} \quad \forall k, l \geq k_{\epsilon}
$$

Note $\lim _{l \rightarrow \infty}\left|x_{n}^{(k)}-x_{n}^{(l)}\right|=\left|x_{n}^{(k)}-x_{n}\right| \forall n \geq 1, \forall k \geq k_{\epsilon}$. By the limit theorems,

$$
\begin{aligned}
& \lim _{l \rightarrow \infty} \sum_{n=1}^{N}\left|x_{n}^{(k)}-x_{n}^{(l)}\right|^{2} \leq \epsilon^{2} \quad \forall k \geq k_{\epsilon} \\
& \Longrightarrow \sum_{n=1}^{N}\left|x_{n}^{(k)}-x_{n}\right|^{2} \leq \epsilon^{2} \quad \forall k \geq k_{\epsilon}
\end{aligned}
$$

Note $\left\{\sum_{n=1}^{N}\left|x_{n}^{(k)}-x_{n}\right|^{2}\right\}_{N \geq 1}$ is an increasing sequence bounded above by ϵ^{2}. So

$$
\sum_{n \geq 1}\left|x_{n}^{(k)}-x_{n}\right|^{2} \leq \epsilon^{2} \quad \forall k \geq k_{\epsilon}
$$

$\Longrightarrow d_{2}\left(x^{(k)}, x\right) \leq \epsilon \quad \forall k \geq k_{\epsilon}$.
So $x^{(k)} \underset{k \rightarrow \infty}{l^{2}} x$. Finally, $x \in l^{2} \Longleftrightarrow d_{2}(x, 0)<\infty$. But

$$
d_{2}(x, 0) \leq \underbrace{d_{2}\left(x, x^{(k)}\right)}_{\leq \in \forall k \geq k_{\epsilon}}+\underbrace{d_{2}\left(x^{(k)}, 0\right)}_{<\infty \text { since } x^{(k)} \in l^{2}}<\infty
$$

Exercise 26.1. 1. Fix $1 \leq p<\infty$ and let

$$
l^{p}=\left\{\left\{x_{n}\right\}_{n \geq 1} \subseteq \mathbb{R}: \sum_{n \geq 1}\left|x_{n}\right|^{p}<\infty\right\}
$$

We define $d_{p}: l^{p} \times l^{p} \rightarrow \mathbb{R}$ via

$$
d_{p}\left(\left\{x_{n}\right\}_{n \geq 1},\left\{y_{n}\right\}_{n \geq 1}\right)=\left(\sum_{n \geq 1}\left|x_{n}-y_{n}\right|^{p}\right)^{\frac{1}{p}}
$$

Then $\left(l^{p}, d_{p}\right)$ is a complete metric space.
2. Define $l^{\infty}=\left\{\left\{x_{n}\right\}_{n \geq 1} \subseteq \mathbb{R}: \sup _{n \geq 1}\left|x_{n}\right|<\infty\right\}$. We define $d_{\infty}: l^{\infty} \times l^{\infty} \rightarrow \mathbb{R}$ via

$$
d_{\infty}\left(\left\{x_{n}\right\}_{n \geq 1},\left\{y_{n}\right\}_{n \geq 1}\right)=\sup _{n \geq 1}\left|x_{n}-y_{n}\right|
$$

Show $\left(l^{\infty}, d_{\infty}\right)$ is a complete metric space.

§26.2 Connected Sets

Definition 26.1 (Separated Set) - Let (X, d) be a metric space and let $A, B \subseteq X$. We say that A and B are separated if

$$
\bar{A} \cap B=\emptyset \text { and } A \cap \bar{B}=\emptyset
$$

Remark 26.2. Separated sets are disjoint: $A \cap B \subseteq \bar{A} \cap B=\emptyset$. But disjoint sets need not be separated. For example,

$$
(X, d)=(\mathbb{R},|\cdot|), \quad A=(-1,0), \quad B=[0,1)
$$

Then $A \cap B=\emptyset$ but $\bar{A} \cap B=\{0\} \neq \emptyset$ so A, B are not separated.

Remark 26.3. If A and B are separated and $A_{1} \subseteq A$ and $B_{1} \subseteq B$, then A_{1} and B_{1} are separated.

Lemma 26.4

Let (X, d) be a metric space and let $A, B \subseteq X$. If $d(A, B)>0$ then A and B are separated.

Proof. Assume, towards a contradiction that A and B are not separated. Then, $\bar{A} \cap B \neq \emptyset$ or $A \cap \bar{B} \neq \emptyset$. Say $\bar{A} \cap B \neq \emptyset$. Let $a \in \bar{A} \cap B$.

$$
\left.\begin{array}{l}
a \in B \\
a \in \bar{A} \Longrightarrow d(a, A)=0
\end{array}\right\} \Longrightarrow d(A, B)=0 \quad \text { - Contradiction! }
$$

Remark 26.5. Two sets A and B can be separated even if $d(A, B)=0$.

```
Example 26.6
A=(0,1) and B=(1,2) separated, but d(A,B)=0.
```

Proposition 26.7 1. Two closed sets A and B are separated $\Longleftrightarrow A \cap B=\emptyset$.
2. Two open sets A and B are separated $\Longleftrightarrow A \cap B=\emptyset$.

Proof. Two separated sets are disjoint. So we only have to prove " $\Longleftarrow "$ in both cases.

1. Assume $A \cap B=\emptyset$. Then A closed $\Longrightarrow A=\bar{A}$ and so $\bar{A} \cap B=A \cap B=\emptyset$. Similarly, B closed $\Longrightarrow \bar{B}=B$ and so $\bar{B} \cap A=B \cap A=\emptyset$. So A and B are separated.
2. Assume $A \cap B=\emptyset \Longrightarrow A \subseteq{ }^{c} B$ where ${ }^{c} B$ is closed since B is open.

$$
\Longrightarrow \bar{A} \subseteq \overline{{ }^{c} B}={ }^{c} B \Longrightarrow \bar{A} \cap B=\emptyset
$$

A similar argument shows that $\bar{B} \cap A=\emptyset$ and so A and B are separated.

Proposition 26.8 1. If an open set D is the union of two separated sets A and B, then A and B are both open.
2. If a closed set F is the union of two separated sets A and B, then A and B are both closed.

Proof. 1. If $A=\emptyset$, then since $D=A \cup B$ we have $B=D$ and so A and B are open. Assume $A \neq \emptyset$. We want to show A is open $\Longleftrightarrow A=A$. Let $a \in A \subseteq D$ and D open $\Longrightarrow \exists r>0$ s.t. $B_{r_{1}}(a) \subseteq D . A$ and B are separated $\Longrightarrow A \cap \bar{B}=\emptyset$. So $a \in A \subseteq{ }^{c}(\bar{B})=\stackrel{\dot{c}}{{ }^{\circ}}$

$$
\Longrightarrow \exists r_{2}>0 \text { s.t. } B_{r_{2}}(a) \subseteq{ }^{c} B
$$

Let $r=\min \left\{r_{1}, r_{2}\right\}$. Then

$$
B_{r}(a) \subseteq D \cap{ }^{c} B=(A \cup B) \cap{ }^{c} B=A
$$

so $a \in \AA$.
This shows A is open. A similar argument shows B is open.
2. Let's show A is closed $\Longleftrightarrow \bar{A}=A$.

$$
\left.\begin{array}{l}
A \subseteq F \\
F \text { closed } \Longleftrightarrow F=\bar{F}
\end{array}\right\} \Longrightarrow \bar{A} \subseteq \bar{F}=F
$$

So $\bar{A}=\bar{A} \cap F=\bar{A} \cap(A \cup B)=\underbrace{(\bar{A} \cap A)}_{=A} \cup(\underbrace{\bar{A} \cap B}_{=\emptyset})=A$.
Similarly, one can show that $\bar{B}=B$ and so B is closed.
$\S 27 \mid$ Lec 27: Mar 10, 2021

§27.1 Connected Sets (Cont'd)

Definition 27.1 (Connected/Disconnected Set) - Let (X, d) be a metric space and let $A \subseteq X$. We say that A is disconnected if it can be written as the union of two non-empty separated sets, that is,

$$
\exists B, C \subseteq X \text { s.t. } B \neq \emptyset, C \neq \emptyset, \bar{B} \cap C=\bar{C} \cap B=\emptyset, A=B \cup C
$$

We say that A is connected if it's not disconnected.

Lemma 27.2

Let (X, d) be a metric space and let $Y \subseteq X$ be equipped with the induced metric d_{1}. Then Y is connected in $\left(Y, d_{1}\right)$ if and only if Y is connected in (X, d).

Proof. " \Longrightarrow "Assume that Y is connected in $\left(Y, d_{1}\right)$. We argue by contradiction. Assume that Y is not connected in (X, d). Then $\exists A, B \subseteq X, A \neq \emptyset, B \neq \emptyset, \bar{A}^{X} \cap B=\bar{B}^{X} \cap A=\emptyset$, $Y=A \cap B$.

Claim 27.1. A, B are separated in $\left(Y, d_{1}\right)$. Then $Y=A \cup B$ is disconnected in $\left(Y, d_{1}\right)$. Contradiction!

Indeed,

$$
\begin{aligned}
& \bar{A}^{Y} \cap B=\left(\bar{A}^{X} \cap Y\right) \cap B=\bar{A}^{X} \cap \underbrace{Y \cap B}_{=B}=\bar{A}^{X} \cap B=\emptyset \\
& \bar{B}^{Y} \cap A=\left(\bar{B}^{X} \cap Y\right) \cap A=\bar{B}^{X} \cap \underbrace{(Y \cap A)}_{=A}=\bar{B}^{X} \cap A=\emptyset
\end{aligned}
$$

So A and B are separated in $\left(Y, d_{1}\right)$.
$" \Longleftarrow "$ Assume Y is connected in (X, d). We argue by contradiction. Assume that Y is disconnected in $\left(Y, d_{1}\right)$. So $\exists A, B \subseteq Y, A \neq \emptyset, B \neq \emptyset, \bar{A}^{Y} \cap B=\bar{B}^{Y} \cap A=\emptyset, Y=A \cup B$.

Claim 27.2. A, B are separated in (X, d). Then $Y=A \cup B$ is disconnected in (X, d). Contradiction!

Indeed,

$$
\begin{aligned}
& \bar{A}^{X} \cap B=\bar{A}^{X} \cap(Y \cap B)=\left(\bar{A}^{X} \cap Y\right) \cap B=\bar{A}^{Y} \cap B=\emptyset \\
& \bar{B}^{X} \cap A=\bar{B}^{X} \cap(Y \cap A)=\left(\bar{B}^{X} \cap Y\right) \cap A=\bar{B}^{Y} \cap A=\emptyset
\end{aligned}
$$

So A and B are separated in (X, d).

Proposition 27.3

Let (X, d) be a metric space. Then X is connected if and only if the only subsets of X that are both open and closed are \emptyset and X.

Proof." " "Assume X is connected. We argue by contradiction. Assume $\exists \emptyset \neq A \subsetneq X$ s.t. A is both open and closed. Let

$$
\begin{aligned}
& B=X \backslash A \neq \emptyset(\text { since } A \neq X) \\
& B \neq X \text { (since } A \neq \emptyset) \\
& B \text { is open (since A is closed) } \\
& B \text { is closed (since A is open) }
\end{aligned}
$$

As A and B are closed and $A \cap B=A \cap(X \backslash A)=\emptyset$, we have that A and B are separated. So

$$
\left.\begin{array}{l}
X=A \cup(X \backslash A)=A \cup B \\
A \neq \emptyset, B \neq \emptyset, A \text { and } B \text { are separated }
\end{array}\right\} \Longrightarrow X \text { is disconnected - Contradiction! }
$$

$" \Longleftarrow "$ Assume that the only subsets of X that are both open and closed in (X, d) are \emptyset and X. We argue by contradiction. Assume that X is disconnected. Then $\exists A, B \subseteq X$ s.t. $A \neq \emptyset, B \neq \emptyset, \bar{A} \cap B=\bar{B} \cap A=\emptyset, X=A \cup B$. As X is open (and closed) we get that A and B are both open (and closed).

$$
\left.\begin{array}{l}
A \text { and } B \text { are both open and closed } \\
A \neq \emptyset, B \neq \emptyset
\end{array}\right\} \Longrightarrow A=B=X
$$

But then $\bar{A} \cap B=\bar{X} \cap X=X \cap X=X \neq \emptyset$. Contradiction!

Corollary 27.4

Let (X, d) be a metric space and let $\emptyset \neq A \subseteq X$. The following are equivalent:

1. A is disconnected.
2. $A \subseteq D_{1} \cup D_{2}$ with D_{1}, D_{2} open in $(X, d), A \cap D_{1} \neq \emptyset, A \cap D_{2} \neq \emptyset, A \cap D_{1} \cap D_{2}=\emptyset$.
3. $A \subseteq F_{1} \cup F_{2}$ with F_{1}, F_{2} closed in $(X, d), A \cap F_{1} \neq \emptyset, A \cap F_{2} \neq \emptyset, A \cap F_{1} \cap F_{2}=\emptyset$.

Proof. We'll show 1) $\Longrightarrow 3) \Longrightarrow 2) \Longrightarrow 1$).
$1) \Longrightarrow 3)$ Assume A is disconnected. By the Proposition 27.3 , there exists $\emptyset \neq B \subsetneq A$ s.t. B is both open and closed in A. Let $C=A \backslash B$. Then $C \neq \emptyset, C \neq A$, and C is both open and closed in A.

$$
\begin{aligned}
& B \text { closed in } A \Longrightarrow \exists F_{1} \subseteq X \text { closed in }(X, d) \text { s.t. } B=A \cap F_{1} \neq \emptyset \\
& C \text { closed in } A \Longrightarrow \exists F_{2} \subseteq X \text { closed in }(X, d) \text { s.t. } C=A \cap F_{2} \neq \emptyset
\end{aligned}
$$

Note that $A \cap F_{1} \cap F_{2}=\left(A \cap F_{1}\right) \cap\left(A \cap F_{2}\right)=B \cap C=B \cap(A \backslash B)=\emptyset$.
3) $\Longrightarrow 2)$ Assume $A \subseteq F_{1} \cup F_{2}, F_{1}, F_{2}$ closed in ($\left.X, d\right), A \cap F_{1} \neq \emptyset, A \cap F_{2} \neq \emptyset$, $A \cap F_{1} \cap F_{2}=\emptyset$. Define $D_{1}={ }^{c} F_{1}$ open in (X, d) and $D_{2}={ }^{c} F_{2}$ open in (X, d).

$$
\begin{gathered}
A \subseteq F_{1} \cup F_{2}={ }^{c} D_{1} \cup{ }^{c} D_{2}={ }^{c}\left(D_{1} \cap D_{2}\right) \Longrightarrow A \cap\left(D_{1} \cap D_{2}\right)=\emptyset \\
\emptyset= \\
\emptyset \cap F_{1} \cap F_{2}=A \cap\left({ }^{c} D_{1} \cap{ }^{c} D_{2}\right)=A \cap{ }^{c}\left(D_{1} \cup D_{2}\right) \Longrightarrow A \subseteq D_{1} \cup D_{2}
\end{gathered}
$$

Let's show $A \cap D_{1} \neq \emptyset$. We argue by contradiction. Assume $A \cap D_{1}=\emptyset \Longrightarrow A \subseteq{ }^{c} D_{1}=F_{1}$. But the $\emptyset=\underbrace{A \cap F_{1}}_{=A} \cap F_{2}=A \cap F_{2} \neq \emptyset$. Contradiction! This shows $A \cap D_{1} \neq \emptyset$. A similar argument gives $A \cap D_{2} \neq \emptyset$.
2) $\Longrightarrow 1)$ Assume $A \subseteq D_{1} \cup D_{2}, D_{1}, D_{2}$ open in $(X, d), A \cap D_{1} \neq \emptyset, A \cap D_{2} \neq \emptyset$, $A \cap D_{1} \cap D_{2}=\emptyset$. Let

$$
\begin{aligned}
B & \left.=A \cap D_{1} \neq \emptyset \text { open in } A \text { (since } D_{1} \text { is open in } X\right) \\
C & \left.=A \cap D_{2} \neq \emptyset \text { open in } A \text { (since } D_{2} \text { is open in } X\right) \\
B \cap C & =\left(A \cap D_{1}\right) \cap\left(A \cap D_{2}\right)=A \cap D_{1} \cap D_{2}=\emptyset
\end{aligned}
$$

So
B and C are separated in A
$\left.\begin{array}{l}A \subseteq D_{1} \cup D_{2} \Longrightarrow A=\left(D_{1} \cup D_{2}\right) \cap A=\left(D_{1} \cap A\right) \cup\left(D_{2} \cap A\right)=B \cup C \\ B \neq \emptyset, \quad C \neq \emptyset\end{array}\right\} \Longrightarrow$
$\Longrightarrow A$ is disconnected in $A \Longrightarrow A$ is disconnected in X.

Proposition 27.5

Let (X, d) be a metric space and let $A \subseteq X$ be disconnected. Let $F_{1}, F_{2} \subseteq X$ be closed in (X, d) s.t. $A \subseteq F_{1} \cup F_{2}, A \cap F_{1} \neq \emptyset, A \cap F_{2} \neq \emptyset, A \cap F_{1} \cap F_{2}=\emptyset$. If $B \subseteq A$ is connected then $B \subseteq F_{1}$ or $B \subseteq F_{2}$.
$\S 28 \mid$ Lec 28: Mar 12, 2021

§28.1 Connected Sets (Cont'd)

Proposition 28.1

Let (X, d) be a metric space and let $A \subseteq X$ be disconnected. Let F_{1}, F_{2} be closed in X s.t. $A \subseteq F_{1} \cup F_{2}, A \cap F_{1} \neq \emptyset, A \cap F_{2} \neq \emptyset, A \cap F_{1} \cap F_{2}=\emptyset$. Let $B \subseteq A$ be connected. Then $B \subseteq F_{1}$ or $B \subseteq F_{2}$.

Proof. We argue by contradiction. Assume $B \nsubseteq F_{1}$ and $B \nsubseteq F_{2}$.

$$
\left.\begin{array}{l}
B \subseteq A \subseteq F_{1} \cup F_{2} \\
B \nsubseteq F_{1} \\
B \subseteq F_{1} \cup F_{2} \\
B \nsubseteq F_{2} \\
B \cap F_{1} \cap F_{2} \subseteq A \cap F_{1} \cap F_{2}=\emptyset \\
B \subseteq F_{1} \cup F_{2}
\end{array}\right\} \Longrightarrow B \cap F_{1} \neq \emptyset \quad \emptyset \quad \Longrightarrow B \text { is disconnected - Contradiction! }
$$

Remark 28.2. One can replace the closed sets (in X) F_{1} and F_{2} by open sets (in X) D_{1} and D_{2} and the same conclusion holds.

Proposition 28.3

Let (X, d) be a metric space and let $A \subseteq X$ be connected. Then if $A \subseteq B \subseteq A^{-X}$, then B is connected.

Proof. We argue by contradiction. Assume B is disconnected. Then $\exists F_{1}, F_{2} \subseteq X$, closed in X, s.t.

$$
\left\{\begin{array}{l}
B \subseteq F_{1} \cup F_{2} \\
B \cap F_{1} \neq \emptyset \\
B \cap F_{2} \neq \emptyset \\
B \cap F_{1} \cap F_{2}=\emptyset
\end{array}\right.
$$

and

$$
\left.\begin{array}{l}
A \subseteq B \subseteq F_{1} \cup F_{2} \\
A \text { connected }
\end{array}\right\} \Longrightarrow A \subseteq F_{1} \text { or } A \subseteq F_{2}
$$

Say $A \subseteq F_{1} \Longrightarrow B \subseteq A^{-X} \subseteq F_{1}^{-X}=F_{1}$. Then $\emptyset=\underbrace{B \cap F_{1}}_{=B} \cap F_{2}=B \cap F_{2} \neq \emptyset$. Contradiction!

§28.2 Connected Subsets

Proposition 28.4

Let (X, d) be a metric space and let $\left\{A_{i}\right\}_{i \in I}$ be a family of connected subsets of X. Assume that each two of these sets are not separated, that is, $\forall i, j \in I, i \neq j$, we have $\overline{A_{i}} \cap A_{j} \neq \emptyset$ or $A_{i} \cap \overline{A_{j}} \neq \emptyset$. Then $\bigcup_{i \in I} A_{i}$ is connected.

Proof. We argue by contradiction. Assume $\bigcup_{i \in I} A_{i}$ is disconnected $\Longrightarrow \exists B, C$ non-empty separated sets s.t.

$$
\bigcup_{i \in I} A_{i}=B \cup C
$$

Fix $i \in I$. Then $A_{i} \subseteq B \cup C$.

$$
\left.\begin{array}{l}
\Longrightarrow A_{i}=(B \cup C) \cap A_{i}=\left(B \cap A_{i}\right) \cup\left(C \cap A_{i}\right) \\
B, C \text { separated } \Longrightarrow B \cap A_{i}, C \cap A_{i} \text { separated } \\
A_{i} \text { is connected }
\end{array}\right\} \Longrightarrow\left\{\begin{array}{c}
B \cap A_{i}=\emptyset \\
\text { or } \\
C \cap A_{i}=\emptyset
\end{array}\right.
$$

Then

$$
\left.\begin{array}{l}
A_{i} \subseteq B \cup C \\
A_{i} \cap B=\emptyset
\end{array}\right\} \Longrightarrow A_{i} \subseteq C
$$

So for each $i \in I$, the set A_{i} satisfies $A_{i} \subseteq B$ or $A_{i} \subseteq C$. As $\bigcup_{i \in I} A_{i}=B \cup C \Longrightarrow \exists i, j \in I$ s.t. $A_{i} \cap B \neq \emptyset$ and $A_{j} \cap C \neq \emptyset$

$$
\left.\begin{array}{l}
\Longrightarrow A_{i} \subseteq B \text { and } A_{j} \subseteq C \\
B \text { and } C \text { are separated }
\end{array}\right\} \Longrightarrow A_{i}, A_{j} \text { are separated - Contradiction! }
$$

Corollary 28.5

Let (X, d) be a metric space and let $\left\{A_{i}\right\}_{i \in I}$ be connected subsets of X. Assume $\forall i \neq j$ we have $A_{i} \cap A_{j} \neq \emptyset$. Then $\bigcup_{i \in I} A_{i}$ is connected.

Proposition 28.6

\mathbb{R} is connected.

Proof. Assume, towards a contradiction, that \mathbb{R} is disconnected. Then $\exists A, B$ non-empty subsets of \mathbb{R}, both open and closed in \mathbb{R}, disjoint, such that $\mathbb{R} \subseteq A \cup B$.

$$
\begin{aligned}
& A \neq \emptyset \Longrightarrow \exists a_{1} \in A \\
& B \neq \emptyset \Longrightarrow \exists b_{1} \in B
\end{aligned}
$$

Let $\alpha_{1}=\frac{a_{1}+b_{1}}{2} \in \mathbb{R}=A \cup B \Longrightarrow \alpha_{1} \in A$ or $\alpha_{1} \in B$. If

$$
\begin{aligned}
& \alpha_{1} \in A \text { let }\left(a_{2}, b_{2}\right):=\left(\alpha_{1}, b_{1}\right) \\
& \alpha_{1} \in B \text { let }\left(a_{2}, b_{2}\right):=\left(a_{1}, \alpha_{1}\right)
\end{aligned}
$$

Let $\alpha_{2}=\frac{a_{2}+b_{2}}{2} \in \mathbb{R}=A \cup B \Longrightarrow \alpha_{2} \in A$ or $\alpha_{2} \in B$. If

$$
\begin{aligned}
& \alpha_{2} \in A \text { let }\left(a_{3}, b_{3}\right):=\left(\alpha_{2}, b_{2}\right) \\
& \alpha_{2} \in B \text { let }\left(a_{3}, b_{3}\right):=\left(a_{2}, \alpha_{2}\right)
\end{aligned}
$$

Continuing this process, we find

- an increasing sequence $\left\{a_{n}\right\}_{n \geq 1} \subseteq A$ bounded above by b_{1}.
- a decreasing sequence $\left\{b_{n}\right\}_{n \geq 1} \subseteq B$ bounded below by a_{1}.

So $\left\{a_{n}\right\}_{n \geq 1}$ and $\left\{b_{n}\right\}_{n \geq 1}$ converge in \mathbb{R}. Let

$$
\begin{aligned}
a & =\lim _{n \rightarrow \infty} a_{n} \in \bar{A}=A \\
b & =\lim _{n \rightarrow \infty} b_{n} \in \bar{B}=B
\end{aligned}
$$

Note that by contradiction, $b_{n+1}-a_{n+1}=\frac{b_{n}-a_{n}}{2} \forall n \geq 1$

$$
\begin{aligned}
& \Longrightarrow\left|b_{n+1}-a_{n+1}\right|=\frac{\left|b_{n}-a_{n}\right|}{2}=\ldots=\frac{\left|b_{1}-a_{1}\right|}{2^{n}} \underset{n \rightarrow \infty}{\longrightarrow} 0 \\
& \Longrightarrow|b-a|=0 \Longrightarrow a=b \in A \cap B=\emptyset
\end{aligned}
$$

Contradiction!

Proposition 28.7

The only non-empty connected subsets of \mathbb{R} are the intervals.

Proof. The argument in the previous proof extends easily to show that intervals are connected subset of \mathbb{R}.

It remains to show that if $\emptyset \neq A \subseteq \mathbb{R}$ is connected, then A is an interval. Let

$$
\begin{aligned}
& \alpha=\inf A \quad(\alpha=-\infty \text { if } A \text { is unbounded below }) \\
& \beta=\sup A \quad(\beta=\infty \text { if } A \text { is unbounded above })
\end{aligned}
$$

Claim 28.1. $(\alpha, \beta) \subseteq A$. This shows A is an interval.
We argue by contradiction. Assume $\exists c \in(\alpha, \beta) \backslash A$. Let $D_{1}=(-\infty, c)$ open in \mathbb{R} and $D_{2}=(c, \infty)$ open in \mathbb{R}.

$$
\left.\begin{array}{l}
A \subseteq \mathbb{R} \backslash\{c\}=D_{1} \cup D_{2} \\
A \cap D_{1} \cap D_{2}=\emptyset \\
A \cap D_{1} \neq \emptyset(\text { because } \inf A=\alpha<c) \\
\left.A \cap D_{2} \neq \emptyset \text { (because } \sup A=\beta>c\right)
\end{array}\right\} \Longrightarrow A \text { is disconnected - Contradiction! }
$$

Proposition 28.8

Let (X, d) be a metric space. Assume that for every pair of points in X, there exists a connected subset of X that contains them. Then X is connected.

Proof. Assume, towards a contradiction, that X is disconnected. Then there exists two non-empty separated sets $A, B \subseteq X$ s.t. $X=A \cup B$.

$$
\left.\left.\left.\begin{array}{rl}
A \neq \emptyset \Longrightarrow \exists a \in A \\
B \neq \emptyset \Longrightarrow \exists b \in B
\end{array}\right\} \Longrightarrow \begin{array}{l}
\exists C \subseteq X \text { connected s.t. }\{a, b\} \subseteq C \\
C \subseteq X=A \cup B \\
C \text { connected } \\
X \text { closed } \Longrightarrow A, B \text { closed }
\end{array}\right\} \Longrightarrow \begin{array}{l}
\underbrace{C \subseteq A}_{b \in A \cap B} \text { or } \underbrace{C \subseteq B}_{a \in B \cap A} \\
A \cap B=\emptyset
\end{array}\right\} \Longrightarrow \text { Contradiction! }
$$

Let (X, d) be a metric space. For $a, b \in X$, we write $a \sim b$ if there exists a connected subset of $X, A_{a b} \subseteq X$ s.t. $\{a, b\} \subseteq A_{a b}$.

Exercise 28.1. ~ defines an equivalence relation of X.
For $a \in X$, let C_{a} denote the equivalence class of a.
Exercise 28.2. 1. C_{a} is a connected subset of X.
2. C_{a} is the largest connected set containing a.
3. C_{a} is closed in X.
4. If $a \not \nsim b$ then C_{a} and C_{b} are separated.

We can decompose $X=\bigcup_{a \in X} C_{a}$ as a union of connected components.

We will continue the class with Professor Visan again in Spring 2021 through 131BH - Honors Real Analysis II.

