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This is math 131AH – Honors Real Analysis I taught by Professor Visan, and our
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§1 Lec 1: Jan 4, 2021

§1.1 Logical Statments & Basic Set Theory

Let A and B be two statements. We write

• A if A is true.

• not A if A is false.

• A and B if both A and B are true.

• A or B if A is true or B is true or both A and B are true (inclusive “or” – it is not
either A or B).

• A =⇒ B︸ ︷︷ ︸: if (A and B) or (not A) – We read this “A implies B” or “If A then B”.

In this case, B is at least as true as A. In particular, a false statement can imply
anything.

Example 1.1

Consider the following statement: If x is a natural number (i.e., x ∈ N = {1, 2, 3, . . .},
then x ≥ 1. In this case, A = “x is a natural number”, B = “x ≥ 1”. Taking x = 3,
we get a T =⇒ T . Taking x = π we get F =⇒ T . If x = 0, we get F =⇒ F .

Example 1.2

Consider the statement: If a number is less than 10︸ ︷︷ ︸
A

, then it’s less than 20︸ ︷︷ ︸
B

.

Taking

number = 5, T =⇒ T

= 15, F =⇒ T

= 25, F =⇒ F

We write A ⇐⇒ B︸ ︷︷ ︸ if A and B are true together or false together. We read this as “A is

equivalent to B” or “A if and only if B”. Compare these notions to similar ones from set
theory. Let X is an ambient space. Let A and B be subsets of X. Then

Ac = {x ∈ X;x /∈ A}
A ∩B = {x ∈ X;x ∈ A and x ∈ B}
A ∪B = {x ∈ X;x ∈ A or x ∈ B or x ∈ A ∩B}
A ⊆ B corresponds to A =⇒ B

A = B A ⇐⇒ B

Truth table:
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A B not A A and B A or B A =⇒ B A ⇐⇒ B

T T F T T T T

T F F F T F F

F T T F T T F

F F T F F T T

Example 1.3

Using the truth table show that A =⇒ B is logically equivalent to (not A) or B.

A B A =⇒ B not A (not A) or B

T T T F T

T F F F F

F T T T T

F F T T T

Homework 1.1. Using the truth table prove De Morgan’s laws:

not (A and B) = (not A) or (not B)

not (A or B) = (not A) and (not B)

Compare this to

(A ∩B)c = Ac ∪Bc

(A ∪B)c = Ac ∩Bc

Exercise 1.1. Negate the following statement: If A then B.
Solution:

not(A =⇒ B) = not ((not A) or B)

= [not(not A) and (not B)]

= A and (not B)

The negation is “A is true and B is false”.

Example 1.4

Negate the following sentence: If I speak in front of the class, I am nervous.
I speak in front of the class and I am not nervous.

Quantifiers:

• ∀ reads “for all” or “for any”

• ∃ reads “there is” or “there exists”

The negation of ∀A,B is true is ∃A s.t. B is false.
The negation of ∃A,B is true is ∀A,B is false.
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Example 1.5

Negate the following: Every student had coffee or is late for class.
∀ student (had coffee) or (is late for class)
∃ student s.t. not[(had coffee) or (is late for class)]
∃ student s.t. not (had coffee) and not (is late for class)
Ans: There is a student that did not have coffee and is not late for class.
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§2 Lec 2: Jan 6, 2021

§2.1 Mathematical Induction

The natural numbers – N = {1, 2, 3, . . .}; they satisfy the Peano axioms:

N1) 1 ∈ N

N2) If n ∈ N then n+ 1 ∈ N

N3) 1 is not the successor of any natural number.

N4) If n,m ∈ N such that n+ 1 = m+ 1 then n = m

N5) Let S ⊆ N. Assume that S satisfies the following two conditions:

(i) 1 ∈ S
(ii) If n ∈ S then n+ 1 ∈ S

Then S = N.

Axiom N5) forms the basis for mathematical induction. Assume we want to prove that a
property P (n) holds for all n ∈ N. Then it suffices to verify two steps:
Step 1 (base step): P (1) holds.
Step 2 (inductive step): If P (n) is true for some n ≥ 1, then P (n + 1) is also true, i.e.,
P (n) =⇒ P (n+ 1)∀n ≥ 1.
Indeed, if we let

S = {n ∈ N : P (n) holds}

then Step 1 implies 1 ∈ S and Step 2 implies if n ∈ S then n+ 1 ∈ S. By Axiom N5 we
deduce S = N.
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Example 2.1

Prove that

12 + 22 + . . .+ n2 =
n(n+ 1)(2n+ 1)

6
∀n ∈ N

Solution: We argue by mathematical induction. For n ∈ N let P (n) denote the
statement

12 + 22 + . . .+ n2 =
n(n+ 1)(2n+ 1)

6

Step 1 (Base step): P (1) is the statement

12 =
1 · 2 · 3

6

which is true, so P (1) holds.
Step 2 (Inductive step): Assume that P (n) holds for some n ∈ N. We want to know
P (n+ 1) holds. We know

12 + . . .+ n2 =
n(n+ 1)(2n+ 1)

6

Let’s add (n+ 1)2 to both sides of P (n)

12 + . . .+ n2 + (n+ 1)2 =
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2

= (n+ 1)

[
n(2n+ 1)

6
+ n+ 1

]
=

(n+ 1)(n+ 2)(2n+ 3)

6

So P (n+ 1) holds.
Collecting the two steps, we conclude P (n) holds ∀n ∈ N.
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Example 2.2

Prove that 2n > n2 for all n ≥ 5.
Solution: We argue by mathematical induction. For n ≥ 5 let P (n) denote the
statement 2n > n2.
Step 1 (base step): P (5) is the statement

32 = 25 > 52 = 25

which is true. So P (5) holds.
Step 2 (Inductive step): Assume P (n) is true for some n ≥ 5 and we want to prove
P (n+ 1). We know

2n > n2

Let us manipulate the above inequality to get P (n+ 1)

2n > n2

2n+1 > 2n2 = (n+ 1)2 + n2 − 2n− 1

2n+1 > (n+ 1)2 + (n− 1)2 − 2

As n ≥ 5 we have (n− 1)2 − 2 ≥ 42 − 2 = 14 ≥ 0. So

2n+1 > (n+ 1)2

So P (n+ 1) holds.
Collecting the two steps, we conclude that P (n) holds ∀n ≥ 5.

Remark 2.3. Each of the two steps are essential when arguing by induction. Note that P (1)
is true. However, our proof of the second step fails if n = 1 : (1− 1)2 − 2 = −2 < 0.
Note that our proof of the second step is valid as soon as

(n− 1)2 − 2 ≥ 0 ⇐⇒ (n− 1)2 ≥ 2 ⇐⇒ n− 1 ≥ 2 ⇐⇒ n ≥ 3

However, P (3) fails.
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Example 2.4

Prove by mathematical induction that the number 4n + 15n− 1 is divisible by 9 for all
n ≥ 1.
Solution: We’ll argue by induction. For n ≥ 1, let P (n) denote the statement that
“4n + 15n− 1 is divisible by 9”. We write this 9/(4n + 15n− 1).
Step 1: 41 + 15 · 1− 1 = 18 = 9 · 2. This is divisible by 9, so P (1) holds.
Step 2: Assume P (n) is true for some n ≥ 1. We want to show P (n+ 1) holds.

4n+1 + 15(n+ 1)− 1 = 4(4n + 15n− 1)− 60n+ 4 + 15n+ 14

= 4(4n + 15n− 1)− 45n+ 18

= 4(4n + 15n− 1)− 9(5n− 2)

By the inductive hypothesis, 9/(4n+15n−1) =⇒ 9/4(4n+15n−1). Also 9/9 (5n− 2)︸ ︷︷ ︸
∈N

.

So
9/ [4(4n + 15n− 1)− 9(5n− 2)]

So P (n+ 1) holds. Collecting the two steps, we conclude P (n) holds ∀n ∈ N.
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Example 2.5

Compute the following sum and then use mathematical induction to prove your answer:
for n ≥ 1

1

1 · 3
+

1

3 · 5
+

1

5 · 7
+ . . .+

1

(2n− 1)(2n+ 1)

Solution: Note that 1
(2n−1)(2n+1) = 1

2

[
1

2n−1 −
1

2n+1

]
∀n ≥ 1. So

1

1 · 3
+

1

3 · 5
+ . . .+

1

(2n− 1)(2n+ 1)
=

1

2

{
1

1
− 1

3
+

1

3
. . .+

1

2n− 1
− 1

2n+ 1

}
=

1

2

2n

2n+ 1
=

n

2n+ 1

For n ≥ 1, let P (n) denote the statement

1

1 · 3
+

1

3 · 5
+ . . .+

1

(2n− 1)(2n+ 1)
=

n

2n+ 1

Step 1: P (1) becomes 1
1·3 = 1

3 , which is true. So P (1) holds.
Step 2: Assume P (n) holds for some n ≥ 1. We want to show P (n+ 1). We know

1

1 · 3
+ . . .+

1

(2n− 1)(2n+ 1)
=

n

2n+ 1

Let’s add 1
(2n+1)(2n+3) to both sides

1

1 · 3
+ . . .+

1

(2n+ 1)(2n+ 3)
=

n

2n+ 1
+

1

(2n+ 1)(2n+ 3)

=
2n2 + 3n+ 1

(2n+ 1)(2n+ 3)

=
(n+ 1)(2n+ 1)

(2n+ 1)(2n+ 3)

=
n+ 1

2n+ 3

So P (n+ 1) holds.
Collecting the two steps, we conclude P (n) holds for ∀n ≥ 1.
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§3 Lec 3: Jan 8, 2021

§3.1 Equivalence Relation

The set of integers is Z = N ∪ {0} ∪ {−n : n ∈ N}.

Definition 3.1 (Equivalence Relation) — An equivalence relation ∼ on a non-empty
set A satisfies the following three properties:

• Reflexivity: a ∼ a,∀a ∈ A

• Symmetry: If a, b ∈ A are such that a ∼ b, then b ∼ a

• Transitivity: If a, b, c ∈ A are such that a ∼ b and b ∼ c, then a ∼ c.

Example 3.2

= is an equivalence relation on Z.

Example 3.3

Let q ∈ N, q > 1. For a, b ∈ Z we write a ∼ b if q/(a − b). This is an equivalence
relation on Z. Indeed, it suffices to check 3 properties:

• Reflexivity: If a ∈ Z then a− a = 0, which is divisible by q. So q/(a− a) ⇐⇒
a ∼ a.

• Symmetry: Let a, b ∈ Z such that a ∼ b ⇐⇒ q/(a− b) which means there exists
k ∈ Z s.t. a− b = kq =⇒ b− a = −k︸︷︷︸

∈Z

·q. So q/(b− a) ⇐⇒ b ∼ a.

• Transitivity: Let a, b, c ∈ Z such that a ∼ b and b ∼ c, a ∼ b ⇐⇒ q/(a− b) =⇒
∃n ∈ Z s.t. a−b = q ·n. And b ∼ c ⇐⇒ q/(b−c) =⇒ ∃m ∈ Z s.t. b−c = q ·m.
So, we must have a− c = q (n+m)︸ ︷︷ ︸

∈Z

. So q/(a− c) ⇐⇒ a ∼ c.

§3.2 Equivalence Class

Definition 3.4 (Equivalence Class) — Let ∼ denote an equivalence relation on a
non-empty set A. The equivalence class of an element a ∈ A is given by

C(a) = {b ∈ A : a ∼ b}

13
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Proposition 3.5 (Properties of Equivalence Classes)

Let ∼ denote an equivalence relation on a non-empty set A. Then

1. a ∈ C(a) ∀a ∈ A.

2. If a, b ∈ A are such that a ∼ b, then C(a) = C(b).

3. If a, b ∈ A are such that a 6∼ b, then C(a) ∩ C(b) = ∅.

4. A =
⋃
a∈AC(a)

Proof. 1. By reflexivity, a ∼ a ∀a ∈ A =⇒ a ∈ C(a) ∀a ∈ A.

2. Assume a, b ∈ A with a ∼ b. Let’s show C(a) ⊆ C(b). Let c ∈ C(a) be arbitrary.
Then a ∼ c (by definition). As a ∼ b (by hypothesis), which implies b ∼ a (by
symmetry). By transitivity, we obtain b ∼ c =⇒ c ∈ C(b). This proves that
C(a) ⊆ C(b).

A similar argument shows that C (b) ⊆ C(a). Putting the two together, we obtain
C(a) = C(b).

3. We argue by contradiction. Assume that a, b ∈ A are such that a 6∼ b, but C(a) ∩
C(b) 6= ∅. Let c ∈ C(a) ∩ C(b).

c ∈ C(a) =⇒ a ∼ c
c ∈ C(b) =⇒ b ∼ c =⇒ c ∼ b (by symmetry)

By transitivity, a ∼ b. This contradicts the hypothesis a 6∼ b. This proves that if a 6∼
then C(a) ∩ C(b) = ∅.

4. Clearly, C(a) ⊆ A ∀a ∈ A, we get⋃
a∈A

C(a) ⊆ A

Conversely, A =
⋃
a∈A {a} ⊆

⋃
a∈AC(a). Putting everything together, we obtain

A =
⋃
a∈AC(a).

Example 3.6

Take q = 2 in our previous example: for a, b ∈ Z we write a ∼ b if 2/(a − b). The
equivalence classes are

C(0) = {a ∈ Z : 2/(a− 0)} = {2n : n ∈ Z}
C(1) = {a ∈ Z : 2/(a− 1)} = {2n+ 1 : n ∈ Z}

Z = C(0) ∪ C(1)

Let F = {(a, b) ∈ Z× Z : b 6= 0}. If (a, b), (c, d) ∈ F we write (a, b) ∼ (c, d) if ad =
bc.

14
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Example 3.7

(1, 2) ∼ (2, 4) ∼ (3, 6) ∼ (−4,−8).

Lemma 3.8

∼ is an equivalence relation on F .

Proof. We have to check 3 properties:

• Reflexivity: Fix (a, b) ∈ F . As ab = ba we have (a, b) ∼ (a, b)

• Symmetry: Let (a, b), (c, d) ∈ F such that

(a, b) ∼ (c, d) ⇐⇒ ad = bc ⇐⇒ cb = da ⇐⇒ (c, d) ∼ (a, b)

• Transitivity: Let (a, b), (c, d), (e, f) ∈ F such that (a, b) ∼ (c, d) and (c, d) ∼ (e, f).

(a, b) ∼ (c, d) ⇐⇒ ad = bc =⇒ adf = bcf

(c, d) ∼ (e, f) ⇐⇒ cf = de =⇒ cfb = deb

=⇒ adf = deb =⇒ d︸︷︷︸
6=0

(af − be) = 0, so af = be ⇐⇒ (a, b) ∼ (e, f).

For (a, b) ∈ F , we denote its equivalence class by a
b . We define addition and multiplication

of equivalence classes as follows:

a

b
+
c

d
=
ad+ bc

bd
;
a

b
· c
d

=
ac

bd

We have to check that these operations are well-defined. Specifically, if (a, b) ∼ (a′, b′) and
(c, d) ∼ (c′, d′) then

(ad+ bc, bd) ∼ (a′d′ + b′c′, b′d′) (1)

(ac, bd) ∼ (a′c′, b′d′) (2)

Let’s check (1). We want to show

(ad+ bc)b′d′ = bd(a′d′ + b′c′)

We know

(a, b) ∼ (a′, b′) ⇐⇒ ab′ = ba′ | · dd′

(c, d) ∼ (c′, d′) ⇐⇒ cd′ = dc′ | · bb′

Adding the two (after multiplying the two terms) together, we have

ab′dd′ + cd′bb′ = ba′dd′ + dc′bb′

(ad+ bc)b′d′ = bd(a′d′ + b′c′)

This proves addition is well defined. Hw: Check
(2)The set of rational numbers is

Q =
{a
b

: (a, b) ∈ F
}

15
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§4 Lec 4: Jan 11, 2021

§4.1 Field & Ordered Field

Definition 4.1 (Field) — A field is a set F with at least two elements with two
operators: addition (denoted +) and multiplication (denoted ·) that satisfy the
following

A1) Closure: if a, b ∈ F then a+ b ∈ F

A2) Commutativity: if a, b ∈ F then a+ b = b+ a

A3) Associativity: if a, b, c ∈ F then (a+ b) + c = a+ (b+ c)

A4) Identity: ∃0 ∈ F s.t. a+ 0 = 0 + a = a ∀a ∈ F

A5) Inverse: ∀a ∈ F∃(−a) ∈ F s.t. a+ (−a) = −a+ a = 0

M1) Closure: if a, b ∈ F then a · b ∈ F

M2) Commutativity: if a, b ∈ F then a · b = b · a

M3) Associativity: if a, b, c ∈ F then (a · b) · c = a · (b · c)

M4) Identity: ∃1 ∈ F s.t. a · 1 = 1 · a = a ∀a ∈ F

M5) Inverse: ∀a ∈ F \ {0} ∃a−1 ∈ F s.t. a · a−1 = a−1 · a = 1

D) Distributivity: if a, b, c ∈ F then (a+ b) · c = a · c+ b · c

Example 4.2

(N,+, ·) is not a field. A4 fails.

Example 4.3

(Z,+, ·) is not a field. M5 fails.

Example 4.4

(Q,+, ·) is a field.

Hw

Recall:
Q =

{a
b

: (a, b) ∈ Z× (Z \ {0})
}

where a
b denotes the equivalence class of (a, b) ∈ Z×(Z \ {0}) with respect to the equivalence

relation
(a, b) ∼ (c, d) ⇐⇒ a · d = b · c

16
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Note 1
2 = 2

4 because (1, 2) ∼ (2, 4). We defined

a

b
+
c

d
=
ad+ bc

bd

a

b
· c
d

=
ac

bd

Additive identity 0
1 equivalence class (0, 1).

Multiplicative identity 1
1 equivalence class of (1, 1).

Additive inverse: a
b ∈ Q has inverse −a

b

Multiplicative inverse: a
b ∈ Q \

{
0
1

}
has inverse b

a .

Proposition 4.5

Let (F,+, ·) be a field. Then

1. The additive and multiplicative identities are unique.

2. The additive and multiplicative inverses are unique.

3. If a, b, c ∈ F s.t. a+ b = a+ c then b = c. In particular, if a+ b = a then b = 0.

3’. If a, b, c ∈ F s.t. a 6= 0 and a · b = a · c then b = c. In particular, a 6= 0 and
a · b = a then b = 1.

4. a · 0 = 0 · a = 0 ∀a ∈ F .

5. If a, b ∈ F then (−a) · b = a · (−b) = −(a · b)

6. If a, b ∈ F then (−a) · (−b) = a · b

7. If a · b = 0 then a = 0 or b = 0.

Proof. 1. We’ll show the additive identity is unique. Assume

∃0, 0′ ∈ F s.t. ∀a ∈ F,

{
a+ 0 = 0 + a = a (i)

a+ 0′ = 0′ + a = a (ii)

Take a = 0′ in (i) and a = 0 in (ii) to get

0′ + 0 = 0′

0′ + 0 = 0

}
=⇒ 0 = 0′

2. We’ll show that the additive inverse is unique. Let a ∈ F . Assume ∃(−a), a′ ∈ F s.t.{
−a+ a = a+ (−a) = 0

a′ + a = a+ a′ = 0

We have

a′ + a = 0 |+ (−a)

(a′ + a) + (−a) = 0 + (−a)
A3,A4
=⇒ a′ + (a+ (−a)) = −a
A5

=⇒ a′ + 0 = −a A4
=⇒ a′ = −a

17
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3. Assume a+ b = a+ c |+ (−a) to the left

−a+ (a+ b) = −a+ (a+ c)

A3
=⇒ (−a+ a) + b = (−a+ a) + c

A5
=⇒ 0 + b = 0 + c

A4
=⇒ b = c

So if a+ b = a = a+ 0, then b = 0.

4.

a · 0 A4
= a · (0 + 0)

D
= a · 0 + a · 0 (3)

=⇒ a · 0 = 0

0 · a A4
= (0 + 0) · a = 0 · a+ 0 · a (3)

=⇒ 0 · a = 0

5. (−a) · b + a · b D
= (−a + a)· A5

= 0 · b (4)
= 0 =⇒ (−a) · b = −(a · b). Similarly,

a · (−b) = −(a · b).

6. (−a) · (−b) + [−(a · b)] (5)
= (−a) · (−b) + (−a) · b D= (−a)(−b+ b)

A5
= (−a) · 0 (4)

= 0. So
(−a) · (−b) = a · b.

7. Assume a · b = 0. Assume a 6= 0. Want to show b = 0. As a 6= 0 then ∃a−1 ∈ F s.t.
a · a−1 = a−1 · a = 1.

a · b = 0 | · a−1 to the left

a−1 · (a · b) = a−1 · 0 M3,(4)
=⇒ (a−1 · a) · b = 0

M5
=⇒ 1 · b = 0

M4
=⇒ b = 0

Definition 4.6 (Order Relation) — An order relation < on a non-empty set A satisfies
the following properties:

• Trichotomy: if a, b ∈ A then one and only one of the following statement holds:
a < b or a = b or b < a.

• Transitivity: if a, b, c ∈ A such that a < b and b < c, then a < c.

Example 4.7

For a, b ∈ Z we write a < b if b− a ∈ N. This is an order relation.

Notation: We write

a > b if b < a

a ≤ b if [a < b or a = b]

a ≥ b if b ≤ a

18
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Definition 4.8 (Ordered Field) — Let (F,+, ·) be a field. We say (F,+, ·) is an
ordered field if it is equipped with an order relation < that satisfies the following

01) if a, b, c ∈ F such that a < b then a+ c < b+ c.

02) if a, b, c ∈ F such that a < b and 0 < c then a · c < b · c.

Note:

To check something is an ordered field, we have to check that it satisfies the properties of order
relation and ordered field.
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§5 Lec 5: Jan 13, 2021

§5.1 Ordered Field (Cont’d)

Proposition 5.1

Let (F,+, ·, <) be an ordered field. Then,

1. a > 0 ⇐⇒ −a < 0.

2. If a, b, c ∈ F are such that a < b and c < 0, then ac > bc.

3. If a ∈ F \ {0} then a2 = a · a > 0. In particular, 1 > 0.

4. If a, b ∈ F are such that 0 < a < b then 0 < b−1 < a−1.

Proof. 1. Let’s prove “ =⇒ ”. Assume a > 0.

01
=⇒ a+ (−a) > 0 + (−a)

A5,A4
=⇒ 0 > −a

Let’s prove “ ⇐= ”. Assume −a < 0

01
=⇒ −a+ a < 0 + a

A5,A4
=⇒ 0 < a

2. Assume a < b and c < 0

a < b

c < 0
01

=⇒ −c > 0

}
02

=⇒ a · (−c) < b · (−c)

01
=⇒ −ac+ (ac+ bc) < −bc+ (ac+ bc)

A3,A2
=⇒ (−ac+ ac) + bc < −bc+ (bc+ ac)

A5,A3
=⇒ 0 + bc < (−bc+ bc) + ac

A4,A5
=⇒ bc < 0 + ac

A4
=⇒ bc < ac

3. By trichotomy, exactly one of the following hold:

a > 0
02

=⇒ a · a > 0 · a =⇒ a2 > 0

or

a < 0
2)

=⇒ a · a > 0 · a =⇒ a2 > 0

4. First we show that if a > 0 then a−1 > 0. Let’s argue by contradiction. Assume
∃a ∈ F s.t. a > 0 but a−1 < 0. Then

a > 0

a−1 < 0

}
(2)

=⇒ a · a−1 < 0
M5
=⇒ 1 < 0
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This contradicts (3). So if a > 0 then a−1 > 0.

Say

0 < a < b | · a−1 · b−1

02
=⇒ 0 · (a−1 · b−1) < a · (a−1 · b−1) < b · (a−1 · b−1)

M3,M2
=⇒ 0 < (a · a−1) · b−1 < b · (b−1 · a−1)

M5,M3
=⇒ 0 < 1 · b−1 < (b · b−1) · a−1

M4,M5
=⇒ 0 < b−1 < 1 · a−1

M4
=⇒ 0 < b−1 < a−1

Theorem 5.2 (Ordered Field)

Let (F,+, ·) be a field. The following are equivalent

1) F is an ordered field.

2) There exists P ⊆ F that satisfies the following properties

01’) For every a ∈ F one and only one of the following statements holds: a ∈ P
or a = 0 or −a ∈ P .

02’) If a, b ∈ P then a+ b ∈ P and a · b ∈ P .

Proof. Let’s show 1) =⇒ 2). Define P = {a ∈ F : a > 0}. Let’s check (01’). Fix a ∈ F .
By trichotomy for the order relation on F we get that exactly one of the following statements
is true:

• a > 0 =⇒ a ∈ P .

• a = 0.

• a < 0 =⇒ −a > 0 =⇒ −a ∈ P .

Let’s check (02’). Fix a, b ∈ P .

a ∈ P =⇒ a > 0

b ∈ P =⇒ b > 0

}
01

=⇒ a+ b > 0 + b
A4
= b > 0 =⇒ a+ b ∈ P

And
a ∈ P =⇒ a > 0 | · b
b ∈ P =⇒ b > 0

}
02

=⇒ a · b > 0 · b = 0 =⇒ a · b ∈ P

Let’s check that 2) =⇒ 1).
For a, b ∈ F we write a < b if b− a ∈ P . Let’s check this is an order relation.
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• Trichotomy: Fix a, b ∈ F . By 01’) exactly one of the following hold:

b− a ∈ P =⇒ a < b

b− a = 0 =⇒ a = b

−(b− a) ∈ P =⇒ a− b ∈ P =⇒ b < a

• Transitivity Assume a, b, c ∈ F s.t. a < b and b < c

a < b =⇒ b− a ∈ P
b < c =⇒ c− b ∈ P

}
02′

=⇒ (b− a) + (c− b) ∈ P =⇒ c− a ∈ P =⇒ a < c

Now let’s check that with this order relation, F is an ordered field. We have to check 01
and 02.

01) Fix a, b, c ∈ F s.t. a < b =⇒ b − a ∈ P =⇒ b − a ∈ P =⇒ (b + c) − (a + c) ∈
P =⇒ a+ c < b+ c.

02) Fix a, b, c ∈ F s.t. a < b and 0 < c

a < b =⇒ b− a ∈ P
0 < c =⇒ c− 0 = c ∈ P

}
02′

=⇒ (b−a)·c ∈ P D
=⇒ b·c−a·c ∈ P =⇒ a·c < b·c

We extend the order relation < from Z to the field (Q,+, ·) by writing a
b > 0 if a · b > 0.

Let’s see this is well defined. Specifically, we need to show that if a
b = c

d , i.e., (a, b) ∼ (c, d)
and a · b > 0 then c · d > 0.

(a, b) ∼ (c, d) =⇒ a · d = b · c | · (ad)

=⇒ 0 < (ad)2 = (ab) · (cd) where a · d 6= 0

So
0 < (ab) · (cd)

0 < ab

}
=⇒ cd > 0 =⇒ c

d
> 0

Let P =
{
a
b ∈ Q : ab > 0

}
. By the theorem, to prove that Q is an ordered field, it suffices

to show that P satisfies (01’) and (02’). Hw: check
(01’) and
(02’)
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§6 Lec 6: Jan 15, 2021

§6.1 Least Upper Bound & Greatest Lower Bound

Definition 6.1 (Boundedness – Maximum and Minimum) — Let (F,+, ·, <) be an
ordered field. Let ∅ 6= A ⊆ F . We say that A is bounded above if ∃M ∈ F s.t.
a ≤M∀a ∈ A. Then M is called an upper bound for A. If moreover, M ∈ A then we
say that M is the maximum of A.
We say that A is bounded below if ∃m ∈ F s.t. m ≤ a∀a ∈ A. Then m is called a
lower bound for A. If moreover, m ∈ A then we say that m is the minimum of A.
We say that A is bounded if A is bounded both above and below.

Example 6.2

A =
{

1 + (−1)n

n : n ∈ N
}

bounded.

• 3 is an upper bound for A.

• 3
2 is the maximum of A.

• 0 is a lower bound for A ; 0 is the minimum of A.

Example 6.3

A =
{
x ∈ Q : 0 < x4 ≤ 16

}
bounded.

• 2 is the maximum of A.

• -2 is the minimum of A.
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Example 6.4

A =
{
x ∈ Q : x2 < 2

}
bounded.

• 2 is an upper bound for A.

• -2 is lower bound for A.

• A does not have a maximum. Indeed, let x ∈ A. We’ll construct y ∈ A s.t. y > x.
Define y = x+ 2−x2

2+x .

x ∈ A =⇒ x ∈ Q =⇒ 2− x2, 2 + x ∈ Q
x ∈ A =⇒ 2 + x > 0 =⇒ 1

2+x ∈ Q

}
=⇒ 2− x2

2 + x
∈ Q =⇒ y ∈ Q(i)

Also note
2− x2 > 0(as x ∈ A)

2 + x > 0 =⇒ 1
2+x > 0

}
=⇒ 2− x2

2 + x
> 0

So y = x+2−x2
2+x > x (ii). Let’s compute y2 =

(
2x+x2+2−x2

2+x

)2
= 2(x2+4x+4)+2x2−4

x2+4x+4
=

2 +
2(x2 − 2)

(x+ 2)2︸ ︷︷ ︸
<0

. So y2 < 2. (iii)

So collecting (i) – (iii) we get y ∈ A and y > x.

Homework 6.1. Show that the maximum and minimum of a set are unique, if they exist.

Definition 6.5 (Least Upper Bound) — Let (F,+, ·, <) be an ordered field. Let ∅ 6=
A ⊆ F and assume A is bounded above. We say that L is the least upper bound of A
if it satisfies:

1. L is an upper bound of A.

2. If M is an upper bound of A then L ≤M .

We write L = supA and we say L is the supremum of A.

Lemma 6.6

The least upper bound of a set is unique, if it exists.

Proof. Say that a set ∅ 6= A ⊆ F , A bounded above, admits two least upper bounds L,M .

L is a least upper bound
(1)

=⇒ L is an upper bound for A.

M is a least upper bound
(2)

=⇒ M ≤ L.

M is a least upper bound for A
(1)

=⇒ M is an upper bound for A =⇒ L is a least upper

bound for A
(2)

=⇒ L ≤ m. So L = M .
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Definition 6.7 (Greatest Lower Bound) — Let (F,+, ·, <) be an ordered field. Let ∅ 6=
A ⊆ F and assumeA is bounded below. We say that l is the greatest lower bound of Aif
it satisfies

1. l is a lower bound of A.

2. If m is a lower bound of A then m ≤ l.

We write l = inf A and we say l is the infimum of A.

Homework 6.2. Show that the greatest lower bound of a set is unique if it exists.

Definition 6.8 (Bound Property) — Let (F,+, ·, <) be an ordered field. Let ∅ 6= S ⊆ F .
We say that S has the the least upper bound property if it satisfies the following: For
any non-empty subset A of S is bounded above, there exists a least upper bound of A
and supA ∈ S.
We say that S has the greatest lower bound property if it satisfies the following:
∀∅ 6= A ⊆ S with A bounded below, ∃ inf A ∈ S.

Example 6.9

(Q,+, ·, <) is an ordered field.
∅ 6= N ⊆ Q, N has the least upper bound property. Indeed if ∅ 6= A ⊆ N, A bounded
above, then the largest elements in A is the least upper bound of A and supA ∈ N. N
also has the greatest lower bound property.

Example 6.10

(Q,+, ·, <) is an ordered field.
∅ 6= Q ⊆ Q, Q does not have the least upper bound property.
Indeed, ∅ 6= A =

{
x ∈ Q : x ≥ 0 and x2 < 2

}
⊆ Q. A is bounded above by 2. However,

supA =
√

2 /∈ Q.

Proposition 6.11

Let (F,+, ·, <) be an ordered field. Then F has the least upper bound property if and
only if it has the greatest lower bound property.

Proof. ( =⇒ ) Assume F has the least upper bound property. Let ∅ 6= A ⊆ F bounded
below. WTS ∃ inf A ∈ F . A is bounded below =⇒ ∃m ∈ F s.t. m ≤ a∀a ∈ A. Let
B = {b ∈ F : b is a lower bound for A}. Note B 6= ∅ (as m ∈ B), B ⊆ F , B is bounded
above (every element in A is an upper bound for B) and F has the least upper bound
property =⇒ supB ∈ F .

Claim 6.1. supB = inf A (to be proven in Lec 7).
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§7 Lec 7: Jan 20, 2021

§7.1 Least Upper & Greatest Lower Bound (Cont’d)

Proof. (Cont’d of proposition 6.11)

Claim 7.1. supB = inf A.

Method 1:

• supB is a lower bound for A. Indeed, let a ∈ A. We know that a ≥ b ∀b ∈ B.
supB is the least upper bound for B =⇒ a ≥ supB. As a ∈ A was arbitrary, we
conclude that supB ≤ a ∀a ∈ A and so supB is a lower bound for A.

• If l is a lower bound for A then l ≤ supB. Well, l is a lower bound for A =⇒ l ∈ B
and supB is an upper bound for B. So l ≤ supB.

Collecting the two bullet points above, we find that inf A = supB.
Method 2: Let ∅ 6= A ⊆ F s.t. A is bounded below. Let B = {−a : a ∈ A}. Note B ⊆ F
by A5. B 6= ∅ because A 6= ∅. B is bounded above: indeed if m is a lower bound for A
then −m is an upper bound for B.

m ≤ a ∀a ∈ A =⇒ −m ≥ −a ∀a ∈ A

F has the least upper bound property. Altogether, it implies that supB ∈ F . In Hw3, you
show − supB = inf A ∈ F (by A5).

Homework 7.1. Prove the “⇐= ” direction.

Theorem 7.1 (Existence of R)
There exists an ordered field with the least upper bound property. We denote it R and
we call it the set of real numbers. R contains Q as a subfield. Moreover, we have the
following uniqueness property: If (F,+, ·, <) is an ordered field with the least upper
bound property, then F is order isomorphic with R, that is, there exists a bijection
φ : R→ F such that

i) φ(x +︸︷︷︸
R

y) = φ(x) +︸︷︷︸
F

φ(y)

ii) φ(x ·︸︷︷︸
R

y) = φ(x) ·︸︷︷︸
F

φ(y)

iii) If x <︸︷︷︸
R

y then φ(x) <︸︷︷︸
F

φ(y)

Theorem 7.2 (Archimedean Property)

R has the Archimedean property, that is, ∀x ∈ R ∃n ∈ N s.t. x < n.
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Proof. We argue by contradiction. Assume

∃x0 ∈ R s.t. x0 ≥ n ∀n ∈ N

Then ∅ 6= N ⊆ R. N is bounded above by x0. R has the least upper bound property
=⇒ ∃L = supN ∈ R.

L = supN
L− 1 < L

}
=⇒ L− 1 is not an upper bound for N

=⇒ ∃n0 ∈ N s.t. n0 > L− 1. So supN = L < n0 + 1 ∈ N, which is a contradiction.

Remark 7.3. Q has the Archimedean property.

If r ∈ Q is s.t. then choose n = 1. For r ∈ Q is s.t. r > 0, then write r = p
q with p, q ∈ N.

Choose n = p+ 1 since p
q < p+ 1.

Corollary 7.4

If a, b ∈ R such that a > 0, b > 0 then there exists n ∈ N s.t. n · a > b.

Proof. Apply the Archimedean Property to x = b
a .

Corollary 7.5

If ε > 0 there exists n ∈ N s.t. 1
n < ε.

Proof. Apply the Archimedean property to x = 1
ε .

Lemma 7.6

For any a ∈ R there exists N ∈ Z s.t. N ≤ a ≤ N + 1.

Proof. Case 1: a = 0. Take N = 0.
Case 2: a > 0. Consider A = {n ∈ Z : n ≤ a} ⊆ R, A 6= ∅(0 ∈ A). A is bounded above by
a. R has the least upper bound property. So ∃L = supA ∈ R.

L− 1 < L = supA =⇒ L− 1 is not an upper bound for A

=⇒ ∃N ∈ A s.t. L− 1 < N =⇒ L < N + 1 but L = supA, so N + 1 /∈ A. So

N ∈ A =⇒ N ≤ a
N + 1 /∈ A =⇒ N + 1 > a

}
=⇒ N ≤ a < N + 1

Case 3: a < 0 =⇒ −a > 0. By case 2, ∃n ∈ Z s.t. n ≤ −a < n+ 1. So −n− 1 < a ≤ −n.
If a = −n, let N = −n and so N ≤ a < N + 1. If a < −n let N = −n − 1 and so
N ≤ a < N + 1.
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Definition 7.7 (Dense Set) — We say that a subset A of R is dense in R if for every
x, y ∈ R such that x < y there exists a ∈ A such that x < a < y.

Lemma 7.8

Q is dense in R.

Proof. Let x, y ∈ R such that x < y. Since y − x > 0 by corollary 7.5, ∃n ∈ N s.t.
1
n < y − x =⇒ 1

n + x < y.
Consider nx ∈ R. By the lemma 7.6, ∃m ∈ Z s.t.

m ≤ nx < m+ 1 =⇒ m

n
≤ x < m+ 1

n

Then

x <
m+ 1

n
=
m

n
+

1

n
≤ x+

1

n
< y

w where m+1
n ∈ Q.

Lemma 7.9

R \Q is dense in R.
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§8 Lec 8: Jan 22, 2021

§8.1 Construction of the Reals

Recall that we say a set A ⊆ R is dense if for every x, y ∈ R s.t. x < y, there exists a ∈ A
s.t. x < a < y. Last time we proved

Lemma 8.1

Q is dense in R.

Remark 8.2. For any two rational numbers r1, r2 ∈ Q s.t. r1 < r2, there exists s ∈ Q s.t.
r1 < s < r2.

Indeed if r1 < 0 < r2 then we may take s = 0.
Assume 0 < r1 < r2. Write r1 = a

b , a2 = c
d with a, b, c, d ∈ N. Take s = ad+bc

2bd ∈ Q. Note
r1 < s < r2.

r1 < s ⇐⇒ a

b
<
ad+ bc

2bd
⇐⇒ 2ad < ad+ bc ⇐⇒ ad < bc ⇐⇒ a

b
<
c

d
⇐⇒ r1 < r2

Homework 8.1. Construct s in the remaining cases.

Lemma 8.3

R \Q is dense in R.

Proof. Let x, y ∈ R s.t. x < y =⇒ x +
√

2 < y +
√

2. Q is dense in R. So ∃q ∈ Q s.t.
(since Q is dense in R)

x+
√

2 < q < y +
√

2 =⇒ x < q −
√

2 < y

Claim 8.1. q −
√

2 ∈ R \Q.

Otherwise, ∃r ∈ Q s.t. q −
√

2 = r =⇒
√

2 = q − r ∈ Q, contradiction.

Theorem 8.4 (Construction of R(Existence))
There exists an ordered field with the least upper bound property. We denote it R
and call it the set of real numbers. R contains Q as a subfield.

Proof. We will construct an ordered field with the least upper bound property using
Dedekind cuts. The elements of the field are certain subsets of Q called cuts.
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Definition 8.5 ((Dedekind) Cuts) — A cut is a set α ⊆ Q that satisfies:

a) ∅ 6= α 6= Q

b) If q ∈ α and p ∈ Q s.t. p < q then p ∈ α.

c) For every q ∈ α there exists r ∈ α s.t. r > q (α has no maximum)

Intuitively, we think of a cut as Q ∩ (∞, a). Of course, at this point we haven’t yet
constructed R . . .
Note that if Q 3 q /∈ α then q > p∀p ∈ α. Indeed, otherwise, if ∃p0 ∈ α s.t. q ≤ p0 then by
ii) we would have q ∈ α. Contradiction.
We define

F = {α : α is a cut}

We will show F is an ordered field with the least upper bound property.
Order: For α, β ∈ F we write α < β if α is a proper subset of β, that is, α ( β

• Transitivity: If α, β, γ ∈ F s.t. α < β and β < γ then α ( β ( γ =⇒ α ( γ =⇒
α < γ.

• Trichotomy: First note that at most one of the following hold

α < β, α = β, β < α

To prove trichotomy, it thus suffices to show that at least one of the following holds:
α < β, α = β, β < α. We show this by contradiction: Assume α < β, α = β, β < α
all fail. Then we have

α * β

α 6= β

β * α

 =⇒

{
∃p ∈ α \ β
∃q ∈ β \ α

Now

p /∈ β =⇒ p > r ∀r ∈ β (1)

q /∈ α =⇒ q > s ∀s ∈ α (2)

Take r = q in (1) and s = p in (2) to get p > q > p. Contradiction!

So < defines an order relation on F .
Let’s show that F has the least upper bound property. Let ∅ 6= A ⊆ F bounded above by
β ∈ F . Define

γ =
⋃
α∈A

α

Claim 8.2. γ ∈ F .

• γ 6= ∅ because A 6= ∅ and ∅ 6= α ∈ A.
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• γ 6= Q because β being an upper bound for A

=⇒ β ≥ α∀α ∈ A =⇒ β ⊇ α∀α ∈ A =⇒ β ⊇
⋃
α∈A

α = γ

As β 6= Q =⇒ γ 6= Q.

• Let q ∈ γ and let p ∈ Q s.t. p < q. As q ∈ γ =⇒ ∃α ∈ A s.t. q ∈ α and Q 3 p < q.
So p ∈ α =⇒ p ∈ γ.

• Let q ∈ γ =⇒ ∃α ∈ A s.t. q ∈ α =⇒ ∃r ∈ α s.t. q < r. Then r ∈ γ and q < r.

Collecting all these properties, we deduce γ ∈ F .

Claim 8.3. γ = supA.

• Note α ⊆ γ∀α ∈ A =⇒ α ≤ γ∀α ∈ A. So γ is an upper bound for A.

• Let δ be an upper bound for A =⇒ δ ≥ α∀α ∈ A =⇒ δ ⊇ α∀α ∈ A. So
δ ⊇

⋃
α∈A α = γ =⇒ δ ≥ γ.

Addition: If α, β ∈ F we define

α+ β = {p+ q : p ∈ α and q ∈ β}

Let’s check A1, namely, α+ β ∈ F .

• Note α + β = ∅ because α 6= ∅ =⇒ ∃p ∈ α and β 6= ∅ =⇒ ∃q ∈ β which implies
p+ q ∈ α+ β.

• Note α + β 6= Q. Indeed αQ =⇒ ∃r ∈ Q \ α =⇒ r > p∀p ∈ α and β 6=
Q =⇒ ∃s ∈ Q \ β =⇒ s > q∀q ∈ β which implies r + s > p + q∀p ∈ α and
∀q ∈ β =⇒ r + s /∈ α+ β

• Let r ∈ α+ β and s ∈ Q s.t. s < r

r ∈ α+ β =⇒ r = p+ q for some p ∈ α and some q ∈ β
s < r =⇒ s < p+ q =⇒ s− p︸ ︷︷ ︸

∈Q

< q︸︷︷︸
∈β

=⇒ s− p ∈ β

So s = p+ (s− p) ∈ α+ β.

• Let r ∈ α+ β =⇒ r = p+ q for some p ∈ α and some q ∈ β

α ∈ F =⇒ ∃p′ ∈ α 3 p′ > p

β ∈ F =⇒ ∃q′ ∈ β 3 q′ > q

}
=⇒ α 3 p′ + q′ ∈ β > p+ q = r

So p′ + q′ ∈ α+ β s.t. p′ + q′ > r.

So collecting all these properties, we see that α+ β ∈ F .
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§9 Lec 9: Jan 25, 2021

§9.1 Construction of the Reals (Cont’d)

Recall: A cut is set α ⊆ Q such that

i) ∅ 6= α 6= Q

ii) If q ∈ α and p ∈ Q with p < q then p ∈ α

iii) ∀q ∈ α ∃r ∈ α s.t. r > q.

We defined
F = {α : α is a cut}

We defined an order relation on F : for α, β ∈ F we write α < β ⇐⇒ α ( β. We showed
that F has the least upper bound property with respect to this order relation.
We defined an addition operation on F : for α, β ∈ F

α+ β = {p+ q : p ∈ α and q ∈ β}

We checked A1. Let’s check A2: for α, β ∈ F

α+ β = {p+ q : p ∈ α, q ∈ β}
= {q + p : q ∈ β, p ∈ α} (since addition in Q satisfies A2)

= β + α

Let’s check A3: for α, β, γ ∈ F

(α+ β) + γ = {s+ r : s ∈ α+ β, r ∈ γ}
= {(p+ q) + r : p ∈ α, q ∈ β, r ∈ γ}
= {p+ (q + r) : p ∈ α, q ∈ β, r ∈ γ} (since addition in Q satisfies A3

= {p+ t : p ∈ α, t ∈ β + γ}
= α+ (β + γ)

Let’s check A4: Let 0∗ = {q ∈ Q : q < 0}.

Claim 9.1. 0∗ ∈ F

• Note 0∗ 6= ∅ since −1 ∈ 0∗

• Note 0∗ = Q since 2 /∈ 0∗

• Let q ∈ 0∗ and let p ∈ Q and p < q

q ∈ 0∗ =⇒ q < 0

p < q

}
=⇒ p < 0

So p ∈ 0∗.

• Let q ∈ 0∗ =⇒ q < 0 =⇒ ∃r ∈ Q s.t. q < r < 0. So r ∈ 0∗ and r > q.
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Collecting all these properties we got 0∗ ∈ F .

Claim 9.2. α+ 0∗ = α ∀α ∈ F .

• Let’s check α+ 0∗ ⊆ α.

Let r ∈ α+ 0∗ =⇒ r = p+ q for some p ∈ α and some q ∈ 0∗. q ∈ 0∗ =⇒ q < 0. So

Q 3 r = p+ q < p

p ∈ α ∈ F

}
=⇒ r ∈ α

As r was arbitrary in α+ 0∗ we find α+ 0∗ ⊆ α.

• Let’s check α ⊆ α+ 0∗. Let p ∈ α =⇒ ∃r ∈ α s.t. r > p. We write

p = r︸︷︷︸
∈α

+ (p− r)︸ ︷︷ ︸
∈0∗

∈ α+ 0∗

As p ∈ α was arbitrary, this shows α ⊆ α+ 0∗

Collecting everything, we get α+ 0∗ = α.
Let’s check A5: Fix α ∈ F . Define

β = {q ∈ Q : ∃r ∈ Q with r > 0 3 −q − r /∈ α}

Claim 9.3. β ∈ F .

• Note that β 6= ∅.
As α 6= Q =⇒ ∃p ∈ Q\α. Then −(p+1) ∈ β because − [−(p+ 1)]−1 = (p+1)−1 =
p /∈ α.

• Note that β 6= Q.

As α 6= ∅ =⇒ ∃p ∈ α. Then −p /∈ β because ∀r ∈ Q, r > 0 we have

−(−p)− r = p− r < p

p ∈ α ∈ F

}
=⇒ p− r ∈ α

So −p /∈ β.

• Let q ∈ β and let p ∈ Q s.t. p < q

q ∈ β =⇒ ∃r ∈ Q, r > 0 3 −q − r /∈ α =⇒ −q − r > s∀s ∈ α

So −p− r > −q − r > s∀s ∈ α =⇒ −p− r /∈ α =⇒ p ∈ β.

• Let q ∈ β. Want to find s ∈ β s.t. s > q.

q ∈ β =⇒ ∃r ∈ Q 3 r > 0 and − q − r /∈ α

=⇒ −
(

2 +
r

2

)
− r

2
= −q − r /∈ α

=⇒ q +
r

2
∈ β

Let s = q + r
2 .
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Collecting all the properties, we get β ∈ F .

Claim 9.4. α+ β = 0∗.

• Let’s check that α+ β ⊆ 0∗.

Let s ∈ α + β =⇒ s = p+ q with p ∈ α and q ∈ β. Since q ∈ β =⇒ ∃r ∈ Q, r >
0 3 −q − r /∈ α =⇒ −q − r > p. So p+ q︸ ︷︷ ︸

∈Q

< −r < 0. So s = p + q ∈ 0∗. Thus

α+ β ⊆ 0∗.

• Let’s check 0∗ ⊆ α+ β. Let r ∈ 0∗ =⇒ r ∈ Q, r < 0.

Claim 9.5. ∃N ∈ N s.t. N ·
(
− r

2

)
∈ α but (N + 1)

(
− r

2

)
/∈ α.

Let’s prove this by contradiction. Assume{
n
(
−r

2

)
: n ∈ N

}
⊆ α

We will show that in this case Q ⊆ α thus reaching a contradiction.

Fix q ∈ Q. By the Archimedean property for Q, ∃n ∈ N s.t. n > q ·
(
−2

r

)
︸ ︷︷ ︸
∈Q

. So

n ·
(
− r

2

)
> q

n ·
(
− r

2

)
∈ α ∈ F

}
=⇒ q ∈ α

As q ∈ Q was arbitrary, this shows Q ⊆ α. Contradiction!

Write r = N
(
−r

2

)
︸ ︷︷ ︸
∈α

+(N + 2) · r2 and note that (N + 2) r2 ∈ β since

−(N + 2) · r
2
− r

2
= (N + 1) ·

(
−r

2

)
/∈ α

As r ∈ 0∗ was arbitrary, this shows 0∗ ⊆ α+ β. Thus, α+ β = 0∗.

Let’s check 01: if α, β, γ ∈ F s.t. α < β =⇒ α ( β then α+γ ( β+γ =⇒ α+γ < β+γ.
WE define multiplication on F as follows: for α < β ∈ F with α > 0, β > 0 we define

α · β = {q ∈ Q : q < r · s for some 0 < r ∈ α and some 0 < s ∈ β}

For α ∈ F we define α · 0∗ = 0∗. We define

α · β =


(−α) · (−β), if α < 0, β < 0

− [(−α) · β] , if α < 0, β > 0

− [α · (−β)] , if α > 0, β < 0

You checked M1 through M5 for positive cuts. This extends readily to all cuts.

Homework 9.1. Check (D) and (02).
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We identify a rational number r ∈ Q with the cut

r∗ = {q ∈ Q : q < r}

One can check that

r∗ + s∗ = (r + s)∗

r∗ · s∗ = (r · s)∗

r < s ⇐⇒ r∗ < s∗
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§10 Lec 10: Jan 27, 2021

§10.1 Sequences

Definition 10.1 (Sequence) — A sequence of real number is a function f : {n ∈ Z : n ≥ m} →
R where m is a fixed integer (m is usually 0 or 1). We write the sequence as
f(m), f(m+ 1), f(m+ 2), . . . or as {f(n)}n≥m or as {fn}n≥m.

Example 10.2 1. {an}n≥1 with an = 3− 1
n bounded, strictly increasing.

2. {an}n≥1 with an = (−1)n bounded, not monotone.

3. {an}n≥0 with an = n2 bounded below, strictly increasing.

4. {an}n≥0 with an = cos
(
nπ
3

)
bounded, not monotone.

Definition 10.3 (Boundedness of Sequence) — We say that a sequence {an}n≥1 of real
numbers is bounded below/bounded above/bounded if the set {an : n ≥ 1} is bounded
below/bounded above/bounded.

We say that the sequence {an}n≥1 is

• increasing if an ≤ an+1 ∀n ≥ 1

• strictly increasing if an < an+1 ∀n ≥ 1

• decreasing if an ≥ an+1 ∀n ≥ 1

• strictly decreasing if an > an+1 ∀n ≥ 1.

• monotone if it’s either increasing or decreasing

To define the notion of convergence of a sequence, we need a notion of distance between
two real numbers.
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Definition 10.4 (Absolute Value) — For x ∈ R, the absolute value of x is

|x| =

{
x, x ≥ 0

−x, x < 0

This function satisfies the following:

1. |x| ≥ 0 ∀x ∈ R

2. |x| = 0 ⇐⇒ x = 0

3. |x+ y| < |x|+ |y| ∀x, y ∈ R (the triangle inequality)

a

b c

|a− b| |c− a|

|c− b|

|c− b|︸ ︷︷ ︸
x+y

≤ |c− a|︸ ︷︷ ︸
x

+ |a− b|︸ ︷︷ ︸
y

4. |x · y| = |x| · |y| ∀x, y ∈ R

Homework 10.1. ||x| − |y|| ≤ |x− y| ∀x, y ∈ R.

We think of |x− y| as the distance between x, y ∈ R.

Definition 10.5 (Convergent Sequence) — We say that a sequence {an}n≥1 of real
numbers converges if

∃a ∈ R 3 ∀ε > 0∃nε ∈ N 3 |an − a| < ε ∀n ≥ nε

We say that a is the limit of {an}n≥1 and we write a = limn→∞ an or an
n→∞−→ a

Lemma 10.6

The limit of a convergent sequence is unique.

Proof. We argue by contradiction. Assume that {an}n≥1 is a convergent sequence and
assume that there exist a, b ∈ R a 6= b and a = limn→∞ an and b = limn→∞ an.

a b

ε ε
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Let 0 < ε < |b−a|
2 (we can choose such an ε because Q is dense in R)

a = lim
n→∞

an =⇒ ∃n1(ε) ∈ N 3 |an − a| < ε∀n ≥ n1(ε)

b = lim
n→∞

an =⇒ ∃n2(ε) ∈ N 3 |an − b| < ε∀n ≥ n2(ε)

Set nε = max {n1(ε), n2(ε)}. Then for n ≥ nε we have

|b− a| = |b− an + an − a| ≤ |b− an|︸ ︷︷ ︸
<ε

+ |an − a|︸ ︷︷ ︸
<ε

< 2ε < |b− a|

Contradiction!

Exercise 10.1. Show that the sequence given by an = 1
n∀n ≥ 1 converges to 0.

Proof. Let ε > 0. By the Archemedean Property, ∃nε ∈ N 3 nε > 1
ε . Then for n ≥ nε we

have ∣∣∣∣0− 1

n

∣∣∣∣ =
1

n
≤ 1

nε
< ε

By definition, limn→∞
1
n = 0.

Exercise 10.2. Show that the sequence given by an = (−1)n∀n ≥ 1 does not converge.

Proof. We argue by contradiction.

a

1−1

Assume ∃a ∈ R s.t. a = limn→∞(−1)n.
Let 0 < ε < 1. Then ∃nε ∈ N s.t.

|a− (−1)n| < ε ∀n ≥ nε

Taking n = 2nε we get |a− 1| < ε and n = 2nε + 1 we get |a+ 1| < ε. By the triangle
inequality,

2 = |1 + 1| = |1− a+ a+ 1| ≤ |1− a|+ |a+ 1| < 2ε < 2

Contradiction!

Lemma 10.7

A convergent sequence is bounded.

Proof. Let {an}n≥1 be a convergent sequence and let a = limn→∞ an.

∃n1 ∈ N 3 |a− an| < 1 ∀n ≥ n1

So |an| ≤ |an − a|+ |a| < 1 + |a| ∀n ≥ n1. Let

M = max {1 + |a|, |a1|, |a2|, . . . , |an1 − 1|}

Clearly, |an| ≤M ∀n ≥ 1 so {an}n≥1 is bounded.
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Theorem 10.8

Let {an}n≥1 be a convergent sequence and let a = limn→∞ an. Then for any k ∈ R,
the sequence {kan}n≥1 converges and limn→∞ kan = ka.

Proof. If k = 0 then kan = 0 ∀n ≥ 1. So limn→∞ kan = 0 = k · a
Assume k 6= 0. Let ε > 0.
Aside: want to find nε ∈ N s.t. ∀n ≥ nε

|kan − ka| < ε ⇐⇒ |an − a| <
ε

|k|

As a = limn→∞ an, ∃nε,k ∈ N s.t.

|an − a| <
ε

|k|
∀n ≥ nε,k

So |kan − ka| = |k| · |an − a| < |k| · ε|k| = ε.
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§11 Lec 11: Jan 29, 2021

§11.1 Convergent and Divergent Sequences

Theorem 11.1 (Properties of Convergent Sequences)

Let {an}n≥1 and {bn}n≥1 be two convergent sequences of real numbers and let a =
limn→∞ an and b = limn→∞ bn. Then

1. the sequence {an + bn}n≥1 converges and limn→∞(an + bn) = a+ b,

2. the sequence {an · bn} converges and limn→∞(anbn) = a · b,

3. if a 6= 0 and an 6= 0∀n ≥ 1 then
{

1
an

}
n≥1

converges and limn→∞
1
an

= 1
a ,

4. if a 6= 0 and an 6= 0∀n ≥ 1, then
{
bn
an

}
n≥1

converges and limn→∞
bn
an

= b
a .

5. for any k ∈ R, {kan}n≥1 converges and limn→∞ kan = ka (from theorem 10.8)

Proof. 1. Let ε > 0.

Aside(Goal): Want to find nε ∈ N s.t. ∀n ≥ nε

|(a+ b)− (an + bn)| < ε

|(a+ b)− (an + bn)| ≤ |a− an|︸ ︷︷ ︸
< ε

2

+ |b− bn|︸ ︷︷ ︸
< ε

2

< ε

Now back to the main proof, as limn→∞ an = a,∃n1(ε) ∈ N s.t.

|a− an| <
ε

2
∀n ≥ n1(ε)

As limn→∞ bn = b,∃n2(ε) ∈ N s.t.

|b− bn| <
ε

2
∀n ≥ n2(ε)

Let nε = max {n1(ε), n2(ε)}. Then for n ≥ nε we have |(a+ b)− (ab + bn)| ≤
|a− an|+ |b− bn| < ε

2 + ε
2 = ε. By definition, limn→∞(ab + bn) = a+ b.

2. Let ε > 0.

Aside(Goal): Want to find nε ∈ N s.t. ∀n ≥ nε

|ab− anbn| < ε

|ab− anbn| = |(a− an)b+ an(b− bn)|
≤ |a− an| · |b|︸ ︷︷ ︸

< ε
2

+ |an| |b− bn|︸ ︷︷ ︸
< ε

2

< ε

Take |a− an| < ε
2(|b|+1) . Take M > 0 s.t. |an| ≤M∀n ≥ 1

|b− bn| <
ε

2M
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Now, back to the main proof, as {an}n≥1 converges, it is bounded. Let M > 0 such
that |an| ≤M ∀n ≥ 1. As limn→∞ an = a,∃n1(ε) ∈ N s.t.

|a− an| <
ε

2(|b|+ 1)
∀n ≥ n1(ε)

As limn→∞ bn = b,∃n2(ε) ∈ N s.t.

|b− bn| <
ε

2M
∀n ≥ n2(ε)

Set nε = max {n1(ε), n2(ε)}. For n ≥ nε we have

|ab− anbn| = |(a− an)b+ an(b− bn)|
≤ |a− an| |b|+ |an| |b− bn|

<
ε

2(|b|+ 1)
· |b|+M · ε

2M
<
ε

2
+
ε

2
= ε

By definition, limn→∞(anbn) = ab.

3. Let ε > 0.

Aside(Goal): Want to find nε ∈ N s.t. ∀n ≥ nε∣∣∣∣1a − 1

an

∣∣∣∣ < ε∣∣∣∣1a − 1

an

∣∣∣∣ =
|an − a|
|a| · |an|

< ε

|an − a| < ε|a| · |an| (!!!− NONONO)

Now, back to the proof, as a = limn→∞ an, ∃n1(a) ∈ N s.t.

|a− an| <
|a|
2

∀n ≥ n1

Then, for all n ≥ n1 we have

|an| ≥ |a| − |a− an| > |a| −
|a|
2

=
|a|
2

As a = limn→∞ an,∃n2(ε, a) s.t.

|a− an| <
ε|a|2

2
∀n ≥ n2(ε, a)

Let nε = max {n1(a), n2(ε, a)}. For n ≥ nε we have∣∣∣∣1a − 1

an

∣∣∣∣ =
|a− an|
|a| · |an|

<
ε|a|2

2|a|
· 2

|a|
= ε

By definition, limn→∞
1
an

= 1
a .
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Example 11.2

Find the limit of

lim
n→∞

n3 + 5n+ 8

3n3 + 2n2 + 7

which can rewritten as

lim
n→∞

1 + 5
n2 + 8

n3

3 + 2
n + 7

n3

=
1 + 5 lim 1

n2 + 8 lim 1
n3

3 + 2 lim 1
n + 7 lim 1

n3

which is equivalent to

=
1 + 5 · 0 + 8 · 0
3 + 2 · 0 + 7 · 0

=
1

3

Theorem 11.3 (Monotone Convergence)

Every bounded monotone sequence converges.

Proof. We’ll show that an increasing sequence bounded above converges. A similar argument
can be used to show that a decreasing sequence bounded below converges. Let {an}n≥1 be
a sequence of real numbers that is bounded above and an+1 ≥ an ∀n ≥ 1.
As ∅ 6= {an : n ≥ 1} ⊆ R is bounded above and R has the least upper bound property,
∃a ∈ R s.t. a = sup {an : n ≥ 1}.

Claim 11.1. a = limn→∞ an.

Let ε > 0. Then a − ε is not an upper bound for {an : n ≥ 1} =⇒ ∃nε ∈ N s.t.
a− ε < anε . Then for n ≥ nε we have

a− ε < anε ≤ an ≤ a < a+ ε ⇐⇒ |an − a| < ε

This proves the claim.

Homework 11.1. Prove for the decreasing sequence.

Definition 11.4 (Divergent Sequence) — Let {an} be a sequence of real numbers. We
write limn→∞ an = ∞ and say that an diverges to +∞ if ∀M > 0, ∃nM ∈ N s.t.
an > M ∀n ≥ nM .
We write limn→∞ an = −∞ and say that an diverges to −∞ if ∀M < 0 ∃nM ∈ N s.t.
an < M ∀n ≥ nM .

Homework 11.2. 1. Show that limn→∞( 3
√
n+ 1) =∞.

2. Show that the sequence given by an = (−1)nn ∀n ≥ 1 does not diverge to ∞ or to
−∞.

3. Let {an}n≥1 be a sequence of positive real numbers. Show that

lim
n→∞

an = 0 ⇐⇒ lim
n→∞

1

an
=∞
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Example 12.1

Show that limn→∞
n2+1
n+3 =∞.

Aside: Want to find nM ∈ N s.t. ∀n ≥ nM we have

n2 + 1

n+ 3
> M

So
n2 + 1

n+ 3
>

n2

n+ 3
>
n2

4n
=
n

4
> M

Now, back to the main proof, let M > 0. By the Archimedean property there exists
nM ∈ N s.t.

nM > 4M

Then for n ≥ nM we have

n2 + 1

n+ 3
>

n2

n+ 3
>
n2

4n
=
n

4
≥ nM

4
> M

By the definition, limn→∞
n2+1
n+3 =∞.

§12.1 Cauchy Sequences

Definition 12.2 (Cauchy Sequence) — We say that a sequence of real numbers {an}n≥1

is a Cauchy sequence if

∀ε > 0 ∃nε ∈ N s.t. |an − am| < ε ∀n,m ≥ nε

Theorem 12.3 (Cauchy Criterion - Sequence)

A sequence of real numbers is Cauchy if and only if it converges.

We will split the proof of this theorem into various lemmas and propositions.

Proposition 12.4

Any convergent sequence is a Cauchy sequence.

Proof. Let {an}n≥1 be a convergent sequence and let a = limn→∞ an. Let ε > 0. As

an
n→∞−→ a, ∃nε ∈ N s.t.

|a− an| <
ε

2
∀n ≥ nε

Then for n,m ≥ nε, we have

|an − am| ≤ |an − a|+ |a− am| <
ε

2
+
ε

2
= ε
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Lemma 12.5

A Cauchy sequence is bounded.

Proof. Let {an}n≥1 be a Cauchy sequence. Then ∃n1 ∈ N s.t. |an − am| < 1 ∀n,m ≥ n1.
So, taking m = n1, we get

|an| ≤ |an1 |+ |an − an1 | < |an1 |+ 1 ∀n ≥ n1

Let M = max {|a1|, |a2|, . . . , |an1−1| , |an1 + 1|}. Clearly, |an| ≤M ∀n ≥ 1.

Definition 12.6 (Subsequence) — Let {kn}n≥1 be a sequence of natural numbers s.t.
k1 ≥ 1 and kn+1 > kn ∀n ≥ 1. Using induction, it’s easy to see that kn ≥ n ∀n ≥ 1.
If {an}n≥1 is a sequence, we say that {akn}n≥1 is a subsequence of {an}n≥1.

Example 12.7

The following are subsequences of {an}n≥1 :

{a2n}n≥1 , {a2n−1}n≥1 , {an2}n≥1 , {apn}n≥1

where pn denotes the nth prime.

Theorem 12.8

Let {an}n≥1 be a sequence of real numbers. Then limn→∞ an = a ∈ R ∪ {±∞} if and
only if every subsequence {akn}n≥1 of {an}n≥1 satisfies limn→∞ akn = a.

Proof. We will consider a ∈ R. The cases a ∈ {±∞} can be handled by analogous
arguments.
“⇐= ” Take kn = n ∀n ≥ 1
“ =⇒ ” Assume limn→∞ an = a and let {akn}n≥1 be a subsequence of {an}n≥1. Let ε > 0.

As an
n→∞−→ a, ∃nε ∈ N s.t.

|a− an| < ε ∀n ≥ nε
Recall that kn ≥ n ∀n ≥ 1. So for n ≥ nε we have kn ≥ n ≥ nε and so

|a− akn | < ε ∀n ≥ nε

By definition,
lim
n→∞

akn = a

Proposition 12.9

Every sequence of real numbers has a monotone subsequence.
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Proof. Let {an}n≥1 be a sequence of real numbers. We say that the nth term is dominant
if

an > am ∀m > n

We distinguished 2 cases:
Case 1: There are infinitely many dominant terms:

Then a subsequence formed by these dominant terms is strictly decreasing.
Case 2: There are none or finitely many dominant terms. Let N be larger than the largest
index of the dominant terms. So ∀n ≥ N an is not dominant. Set k1 = N, ak1 = aN . ak1
is not dominant =⇒ ∃k2 > k1 s.t. ak2 ≥ ak1 , k2 > k1 = N =⇒ ak2 is not dominant
=⇒ ∃k3 > k2 s.t. ak3 ≥ ak2 . Proceeding inductively we construct a subsequence {akn}n≥1

s.t.
akn+1 ≥ akn ∀n ≥ 1

Theorem 12.10 (Bolzano – Weierstrass)

Any bounded sequence has a convergent subsequence.

Proof. Let {an}n≥1 be a bounded sequence. By the previous proposition, there exists
{akn}n≥1 monotone subsequence of {an}n≥1. As {an}n≥1 is bounded, so is {akn}n≥1. As
bounded monotone sequences converge, {akn}n≥1 converges.

Corollary 12.11

Every Cauchy sequence has a convergent subsequence.

Lemma 12.12

A Cauchy sequence with a convergent subsequence converges.

Proof. Let {an}n≥1 be a Cauchy sequence s.t. {akn}n≥1 is a convergent subsequence. Let

a = limn→∞ akn . Let ε > 0. As akn
n→∞−→ a, ∃n1(ε) s.t. |a− akn | < ε

2 ∀n ≥ n1(ε). As
{an}n≥1 is Cauchy, ∃n2(ε) s.t. |an − am| < ε

2 ∀n,m ≥ n2(ε). Let nε = max {n1(ε), n2(ε)}.
Then for n ≥ nε we have

|a− an| ≤ |a− akn |+ |akn − an| <
ε

2
+
ε

2
= ε
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for kn ≥ n ≥ nε. By definition,
lim
n→∞

an = a

Combining the last two results, we see that a Cauchy sequence of real numbers converges.
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§13.1 Limsup and Liminf

Let {an}n≥1 be a bounded sequence of real numbers (convergent or not). The asymptotic
behavior of {an}n≥1 depends on sets of the form {an : n ≥ N} for N ∈ N.

As {an}n≥1, the set {an : n ≥ N} (where N ∈ N is fixed) is a non-empty bounded
subset of R.

As R has the least upper bound property (and so also the greatest lower bound property),
the set {an : n ≥ N} has an infimum and a supremum in R.

For N ≥ 1, let uN = inf {an : n ≥ N} and vN = sup {an : n ≥ N}. Clearly, uN ≤
vN ∀N ≥ 1. For N ≥ 1, {an : n ≥ N} ⊇ {an : n ≥ N + 1}

=⇒

{
inf {an : n ≥ N} ≤ inf {an : n ≥ N + 1}
sup {an : n ≥ N} ≥ sup {an : n ≥ N + 1}

So uN ≤ uN+1 and vN+1 ≤ vN ∀N ≥ 1. Thus {uN}N≥1 is increasing and {vN}N≥1 is
decreasing. Moreover, ∀N ≥ 1 we have

u1 ≤ u2 ≤ . . . ≤ uN ≤ vN ≤ . . . ≤ v2 ≤ v1

So the sequences {uN}N≥1 and {vN}N≥1 are bounded. As monotone bounded sequence
converges, {uN}N≥1 and {vN}N≥1 must converge.

Let

u = lim
N→∞

uN = sup {uN : N ≥ 1} := sup
N
uN

v = lim
N→∞

vN = inf {vN : N ≥ 1} := inf
N
vN

From (*), we see that

uM ≤ vN ∀M,N ≥ 1

=⇒ lim
M→∞

uM ≤ vN ∀N ≥ 1

=⇒ u ≤ vN ∀N ≥ 1

=⇒ u ≤ lim
N→∞

vN

=⇒ u ≤ v

Moreover, if limn→∞ an exists, then for all N ≥ 1, we have

uN = inf {an : n ≥ N} ≤ an ≤ sup {an : n ≥ N} = vN ∀n ≥ N

So

=⇒ uN ≤ lim
n→∞

an ≤ vN

=⇒ u = lim
N→∞

uN ≤ lim
n→∞

an ≤ lim
N→∞

vN = v
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Definition 13.1 (lim sup and lim inf) — Let {an}n≥1 be a sequence of real numbers.
We define

lim sup
n→∞

an = lim
N→∞

sup {an : n ≥ N} = lim
N→∞

vN = inf
N
vN = inf

N
sup
n≥N

an

lim inf
n→∞

an = lim
N→∞

inf {an : n ≥ N} = lim
N→∞

uN = sup
N
uN = sup

N
inf
n≥N

an

with the convention that if {an}n≥1 is unbounded above then

lim sup
n→∞

an =∞

and if {an}n≥1 is unbounded below then

lim inf
n→∞

an = −∞

Remark 13.2.

inf {an : n ≥ 1} ≤ lim inf
n→∞

an ≤ lim sup
n→∞

an ≤ sup {an : n ≥ 1}

where lim infn→∞ an is the smallest value that infinitely many an get close to and lim supn→∞ an
is the largest value that infinitely many an get close to.

Example 13.3

an = 3 + (−1)n

n =⇒ limn→∞ an = 3 =⇒ lim infn→∞ an = lim supn→∞ an = 3

inf {an : n ≥ 1} = 2 6= 3

sup {an : n ≥ 1} =
7

2
6= 3

Theorem 13.4 (lim, lim sup, and lim inf)

Let {an}n≥1 be a sequence of real numbers.

1. If limn→∞ an exists in R ∪ {±∞}, then lim inf an = lim sup an = limn→∞ an.

2. If lim inf an = lim sup an ∈ R ∪ {±∞}, then limn→∞ an exists and

lim
n→∞

an = lim inf
n→∞

an = lim sup
n→∞

an

Proof. 1. We distinguish three cases.

Case i) limn→∞ an = −∞. It’s enough to show lim sup an = −∞ since lim inf an ≤
lim sup an. Fix M < 0. As limn→∞ an = −∞, ∃nM ∈ N s.t. an < M ∀n ≥ nM .
Then for N ≥ nM , we have vN = sup {an : n ≥ N} ≤ M . Note that when taking
sup(inf), < can become ≤ ; e.g. an = 3− 1

n where an < 3 ∀n ≥ 1 but supn≥1 an = 3.
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By definition, lim supn→∞ an = limN→∞ vN = −∞.

Case ii) limn→∞ an =∞ Exercise

Case iii) limn→∞ an = a ∈ R.

Fix ε > 0. Then ∃nε ∈ N s.t. |a− an| < ε ∀n ≥ nε. So

a− ε < an < a+ ε ∀n ≥ nε

Thus for N ≥ nε we have

a− ε ≤ inf {an : n ≥ N} ≤ sup {an : n ≥ N} ≤ a+ ε

a− ε ≤ uN ≤ vN ≤ a+ ε

So

∀N ≥ nε

{
|uN − a| ≤ ε

2 < ε

|vN − a| ≤ ε
2 < ε

By definition, {
lim inf an = limN→∞ uN = a

lim sup an = limN→∞ vN = a

2. We distinguish three cases.

Case i) lim inf an = lim sup an = −∞.

We will use lim sup an = −∞. Fix M < 0. Then since lim sup an = limN→∞ vN =
−∞, ∃NM ∈ N s.t. vN < M ∀N ≥ NM . In particular, vNM = sup {an : n ≥ NM} <
M

=⇒ an < M ∀n ≥ NM

By definition, limn→∞ an = −∞.

Case ii) lim inf an = lim sup an =∞ exercise

Case iii) lim inf an = lim sup an = a ∈ R.

Fix ε > 0.

a = lim inf an = lim
N→∞

uN =⇒ ∃N1(ε) ∈ N 3 |uN − a| < ε ∀N ≥ N1

So a− ε < uN1 = inf {an : n ≥ N1} < a+ ε

=⇒ a− ε < an ∀n ≥ N1

And

a = lim sup an = lim
N→∞

vN =⇒ ∃N2(ε) ∈ N 3 |vN − a| < ε ∀N ≥ N2

So a− ε < vN2 = sup {an : n ≥ N2} < a+ ε.

=⇒ an < a+ ε ∀n ≥ N2

Thus for n ≥ max {N1, N2} we have

a− ε < an < a+ ε ⇐⇒ |an − a| < ε

By definition, limn→∞ an = a.
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§14.1 Limsup and Liminf (Cont’d)

Recall: For a sequence {an}n≥1 of real numbers, we define

lim inf an = sup
N

inf
n≥N

an = lim
N→∞

uN where uN = inf {an : n ≥ N}

lim sup an = inf
N

sup
n≥N

an = lim
N→∞

vN where vN = sup {an : n ≥ N}

Last time, we proved that

lim
n→∞

an exists in R ∪ {±∞} ⇐⇒ lim inf an = lim sup an

Theorem 14.1 (Existence of Monotonic Subsequence)

Let {an}n≥1 be a sequence of real numbers. Then there exists a monotonic subsequence
of {an}n≥1 whose limit is lim sup an. Also, there exists a monotonic subsequence of
{an}n≥1 whose limit is lim inf an.

Proof. We will prove the statement about lim sup an. Similar arguments can be used to
prove the statement about lim inf an. HW!

Note that it suffices to find a subsequence of {akn}n≥1 of {an}n≥1 s.t.

lim
n→∞

akn = lim sup an

As every sequence has a monotone subsequence, {akn}n≥1 has a monotone subsequence{
apkn

}
n≥1

. Then as lim akn exists, limn→∞ apkn exists and

lim
n→∞

apkn = lim akn = lim sup an

Finally, note that
{
apkn

}
n≥1

is a subsequence of {an}n≥1.

Let’s find a subsequence of {an}n≥1 whose limit is lim sup an.
Case 1: lim sup an = −∞.

We showed that in this case, limn→∞ an = −∞. Choose {akn}n≥1 to be {an}n≥1.
Case 2: lim sup an = a ∈ R.

ak2 aak3 ak1

1
3

1
2

1

a = lim sup an = lim
N→∞

vN
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Then ∃N1 ∈ N s.t. |a− vN | < 1 ∀N ≥ N1. In particular,

a− 1 < vN1 < a+ 1

=⇒ a− 1 < sup {an : n ≥ N1}
=⇒ ∃k1 ≥ N1 3 a− 1 < ak1

=⇒ a− 1 < ak1 < vN1 < a+ 1

So |a− ak1 | < 1.
As a = limN→∞ vN , ∃N2 ∈ N s.t. |a− vN | < 1

2 ∀N ≥ N2.

Let Ñ2 = max {N2, k1 + 1}
In particular,

a− 1
2 < vÑ2

< a+ 1
2

a− 1
2 < sup

{
an : n ≥ Ñ2

}
∃k2 ≥ Ñ2 s.t. a− 1

2 < ak2

 =⇒ a− 1

2
< ak2 ≤ vN2 < a+

1

2

So, |a− ak2 | < 1
2 . To construct our subsequence we proceed inductively. Assume we have

found k1 < k2 < . . . < kn and ak1 , . . . , akn s.t.∣∣a− akj ∣∣ < 1

j
∀1 ≤ j ≤ n

As a = limN→∞ vN =⇒ ∃Nn+1 ∈ N s.t. |a− vN | < 1
n+1 ∀N ≥ Nn+1. Let Ñn+1 =

max {Nn+1, kn + 1}. Then

a− 1

n+ 1
< vÑn+1

< a+
1

n+ 1

=⇒ a− 1

n+ 1
< sup

{
an : n ≥ Ñn+1

}
=⇒ ∃kn+1 ≥ Ñn+1 > kn s.t. a− 1

n+ 1
< akn+1

=⇒ a− 1

n+ 1
< akn+1 ≤ vÑn+1

< a+
1

n+ 1

=⇒ |akn+1 − a| <
1

n+ 1

Case 3: lim sup an =∞. HW!

Definition 14.2 (Subsequential Limit) — Let {an}n≥1 be a sequence of real numbers.
A subsequential limit of {an}n≥1 is any a ∈ R∪{±∞} that is the limit of a subsequence
of {an}n≥1.
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Example 14.3 1. an = n (1 + (−1)n)

The subsequential limits are

0 = lim
n→∞

a2n+1

∞ = lim
n→∞

a2n

2. an = cos
(
nπ
3

)
The subsequential limits are

1 = lim
n→∞

a6n

1

2
= lim

n→∞
a6n+1 = lim

n→∞
a6n+5

−1

2
= lim

n→∞
a6n+2 = lim

n→∞
a6n+4

−1 = lim
n→∞

a6n+3

Theorem 14.4 (Properties of the Set of Subsequential Limit)

Let {an}n≥1 be a sequence of real numbers and let A denote its set of subsequential
limits:

A =
{
a ∈ R ∪ {±∞} : ∃ {akn}n≥1 subsequence of {an}n≥1 s.t. lim

n→∞
akn = a

}
Then:

1. A 6= ∅.

2. limn→∞ an exists (in R ∪ {±∞}) ⇐⇒ A has exactly one element.

3. inf A = lim inf an and supA = lim sup an.

Proof. 1. By the previous theorem, lim inf an, lim sup an ∈ A. So A 6= ∅.

2. “ =⇒ ” Assume limn→∞ an exists. Then if {akn}n≥1 is a subsequence of {an}n≥1, we
have

lim
n→∞

akn = lim
n→∞

an

So A = {limn→∞ an}.
“⇐= ” If A has a single element, lim inf an = lim sup an and so limn→∞ an exists.

3. We will prove

Claim 14.1. lim inf an ≤ a ≤ lim sup an ∀a ∈ A.

Assuming the claim, let’s see how to finish the proof. The claim implies
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• lim inf an is a lower bound for A =⇒ lim inf an ≤ infA. On the other hand,
lim inf an ∈ A =⇒ lim inf an ≥ inf A. Thus, lim inf an = inf A.

• lim sup an is an upper bound for A =⇒ lim sup an ≥ supA. But lim sup an ∈
A =⇒ lim sup an ≤ supA. Thus, lim sup an = supA.

Let’s prove the claim. Fix a ∈ A =⇒ ∃{akn}n≥1 subsequence of {an}n≥1 s.t.
limn→∞ akn = a.

{an : n ≥ N} ⊃ {akn : n ≥ N}
=⇒ inf {an : n ≥ N}︸ ︷︷ ︸

increasing seq

≤ inf {akn : n ≥ N}︸ ︷︷ ︸
increasing seq

≤ sup {akn : n ≥ N}︸ ︷︷ ︸
deceasing seq

≤ sup {an : n ≥ N}︸ ︷︷ ︸
decreasing seq

=⇒ lim
N→∞

inf {an : n ≥ N} ≤ lim
N→∞

inf {akn : n ≥ N} ≤ lim
N→∞

sup {akn : n ≥ N}

≤ lim
N→∞

sup {an : n ≥ N}

=⇒ lim inf an ≤ lim inf akn︸ ︷︷ ︸
=lim akn=a

≤ lim sup akn︸ ︷︷ ︸
=lim akn=a

≤ lim sup an
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§15.1 Limsup and Liminf (Cont’d)

Theorem 15.1 (Cesaro – Stolz)

Let {an}n≥1 be a sequence of non-zero real numbers. Then

lim inf

∣∣∣∣an+1

an

∣∣∣∣ 1)

≤ lim inf |an|
1
n

2)

≤ lim sup |an|
1
n

3)

≤ lim sup

∣∣∣∣an+1

an

∣∣∣∣
In particular, if limn→∞

∣∣∣an+1

an

∣∣∣ exists then limn→∞ |an|
1
n exists and

lim
n→∞

|an|
1
n = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣

Example 15.2

Find limn→∞ n
√
n = limn→∞ n

1
n .

If we let an = n then
∣∣∣an+1

an

∣∣∣ = n+1
n

n→∞−→ 1. By Cesaro – Stolz, we get { n
√
n}n≥1

converges and
lim
n→∞

n
√
n = 1

Proof. We will prove inequality 3). Analogous arguments yield inequality 1). Let

l = lim sup |an|
1
n ≥ 0

L = lim sup

∣∣∣∣an+1

an

∣∣∣∣ ≥ 0

We want to show l ≤ L. If L =∞, then it’s clear. Henceforth we assume L ∈ R. We will
prove

Claim 15.1. l is a lower bound for the set

(L,∞) = {M ∈ R : M > L}

Assuming the claim for now, let’s see how to finish the proof. Note (L,∞) is a non-empty
subset of R which is bounded below (by L). As R has the least upper bound property,
inf(L,∞) exists in R. In fact,

inf(L,∞) = L

As l is a lower bound for (L,∞), we must have l ≤ L.
Let’s prove the claim. Fix M ∈ (L,∞). We will show

l ≤M
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We have M > L = lim sup
∣∣∣an+1

an

∣∣∣ = infN supn≥N

∣∣∣an+1

an

∣∣∣.
=⇒ ∃N0 ∈ N 3 sup

n≥N0

∣∣∣∣an+1

an

∣∣∣∣ < M

=⇒
∣∣∣∣an+1

an

∣∣∣∣ < M ∀n ≥ N0

=⇒ |an+1| < M · |an| ∀n ≥ N0

A simple inductive argument yields

|an| < Mn−N0 |aN0 | ∀n > N0

=⇒ |an|
1
n < M

(
|aN0 |
MN0

) 1
n

∀n > N0

=⇒ l = lim sup |an|
1
n ≤ lim supM ·

(
|aN0 |
MN0

) 1
n

= M · lim sup

(
|aN0 |
MN0

) 1
n

(∗)

Claim 15.2. For r > 0 we have limn→∞ r
1
n = 1

Indeed, if r ≥ 1

0 ≤ r
1
n − 1 =

r − 1

rn−1 + rn−2 + . . .+ 1
≤ r − 1

n

n→∞−→ 0

where we use the formula an − bn = (a− b)
(
an−1 + an−2b+ . . .+ abn−2 + bn−1

)
. If r < 1,

then

r
1
n =

1(
1
r

) 1
n

n→∞−→ 1

1
= 1

Taking r =
|aN0 |
MN0

in (*) we conclude that

l ≤M

§15.2 Series

Definition 15.3 (Convergent/Absolutely Convergent Series) — Let {an}n≥1 be a se-
quence of real numbers. For n ≥ 1, we define the partial sum

sn = a1 + . . .+ an

The series
∑∞

n=1 an

(∑
n≥1 an

)
is said to converge if {sn}n≥1 converges.

We say that the series
∑∞

n=1 an converges absolutely if the series
∑∞

n=1 |an| converges.
(Note that

∑∞
n=1 |an| either converges or it diverges to ∞).
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Theorem 15.4 (Cauchy Criterion - Series)

A series
∑

n≥1 an converges if and only if

∀ε > 0 ∃nε ∈ N 3

∣∣∣∣∣
n+p∑

k=n+1

ak

∣∣∣∣∣ < ε ∀n ≥ nε ∀p ∈ N

Proof. The series
∑

n≥1 an converges ⇐⇒ the sequence {sn}n≥1 converges ⇐⇒ {sn}n≥1

is Cauchy ⇐⇒ ∀ε > 0 ∃nε ∈ N s.t. |sm − sn| < ε ∀m,n ≥ nε. Without loss of generality,
we may assume m > n and write m = n+ p for p ∈ N. Note

|sm − sn| =

∣∣∣∣∣
n+p∑
k=1

ak −
n∑
k=1

ak

∣∣∣∣∣ =

∣∣∣∣∣
n+p∑

k=n+1

ak

∣∣∣∣∣
So
∑

n≥1 an converges ⇐⇒ ∀ε > 0∃nε ∈ N s.t.
∣∣∣∑n+p

k=n+1 ak

∣∣∣ < ε ∀n ≥ nε ∀p ∈ N.

Corollary 15.5

If
∑

n≥1 an converges, then limn→∞ an = 0.

Proof. Taking p = 1, we find
∑

n≥1 an converges implies

∀ε > 0 ∃nε ∈ N s.t. |an+1| < ε ∀n ≥ nε

Corollary 15.6

If
∑

n≥1 an converges absolutely, then it converges.

Proof.
∑

n≥1 an converges absolutely =⇒
∑

n≥1 |an| converges.

=⇒ ∀ε > 0 ∃nε ∈ N s.t.

n+p∑
k=n+1

|ak| < ε ∀n ≥ nε ∀p ∈ N

Note that by 4 inequality,∣∣∣∣∣
n+p∑

k=n+1

ak

∣∣∣∣∣ ≤
n+p∑

k=n+1

|ak| < ε ∀n ≥ nε ∀p ∈ N

So
∑

n≥1 an converges by the Cauchy criterion.
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Theorem 15.7 (Comparison Test)

Let
∑

n≥1 an be a series of real numbers with an ≥ 0 ∀n ≥ 1.

1. If
∑

n≥1 an converges and |bn| ≤ an ∀n ≥ 1, then
∑

n≥1 bn converges.

2. If
∑

n≥1 an diverges and bn ≥ an ∀n ≥ 1, then
∑

n≥1 bn diverges.

Proof. 1.
∑

n≥1 an converges =⇒ ∀ε > 0∃nε ∈ N s.t.∣∣∣∣∣
n+p∑

k=n+1

ak

∣∣∣∣∣ < ε ∀n ≥ nε ∀p ∈ N

Then
∣∣∣∑n+p

k=n+1 bk

∣∣∣ ≤ ∑n+p
k=n+1 |bk| ≤

∑n+p
k=n+1 ak < ε∀n ≥ nε ∀p ∈ N. So by the

Cauchy criterion,
∑

n≥1 bn converges.

2. b1 + . . .+ bn ≥ a1 + . . .+ an
n→∞−→ ∞ =⇒

∑
n≥1 bn diverges.

Lemma 15.8

Let r ∈ R. The series
∑

n≥0 r
n converges if and only if |r| < 1. If |r| < 1, then

∑
n≥0

rn =
1

1− r

Proof. First note that if |r| ≥ 1, then

|rn| = |r|n ≥ 1 =⇒ rn 6n→∞−→ 0

By the first corollary,
∑

n≥0 r
n cannot converge. Assume now that |r| < 1. Then

|rn| = |r|n n→∞−→ 0

Also
n∑
k=0

rk =
1− rn+1

1− r
n→∞−→ 1

1− r
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§16.1 Series (Cont’d)

Theorem 16.1 (Dyadic Criterion)

Let {an}n≥1 be a decreasing sequence of real numbers with an ≥ 0 ∀n ≥ 1. Then the
series

∑
n≥1 an converges if and only if the series

∑
n≥0 2na2n converges.

Proof. For n ≥ 1 let sn =
∑n

k=1 ak = a1 + . . . + an. For n ≥ 0 let tn =
∑n

k=0 2ka2k =
a1 + 2a2 + . . .+ 2na2n . Note that {sn}n≥1 and {tn}n≥0 are increasing sequences.
Thus

∑
n≥1 an converges ⇐⇒ {sn}n≥1 is bounded and

∑
n≥0 2na2n converges ⇐⇒

{tn}n≥0 is bounded. We have to prove that {sn}n≥1 is bounded ⇐⇒ {tn}n≥0 is bounded.

2k 2k+1 2k+2

Consider:
2k+1∑
l=2k+1

al

Because {an}n≥1 is decreasing, we get

1

2

(
2k+1a2k+1

)
= 2ka2k+1 ≤

2k+1∑
l=2k+1

al ≤ 2ka2k+1 ≤ 2ka2k

1

2

n∑
k=0

2k+1a2k+1 ≤
n∑
k=0

2k+1∑
l=2k+1

al ≤
n∑
k=0

2ka2k

1

2

n+1∑
l=1

2la2l ≤
2n+1∑
l=2

al ≤ tn

1

2
(tn+1 − a1) ≤ s2n+1 − a1 ≤ tn

=⇒

{
tn+1 ≤ 2s2n+1 − a1

sn ≤ s2n+1 ≤ tn + a1 as n ≤ 2n+1 ∀n ≥ 1

If {sn}n≥1 is bounded =⇒ ∃M > 0 s.t. |sn| ≤M ∀n ≥ 1

=⇒ tn+1 ≤ 2M + a1 ∀n ≥ 1

If {tn}n≥0 is bounded =⇒ ∃L > 0 s.t. |tn| ≤ L∀n ≥ 0

=⇒ sn ≤ L+ a1 ∀n ≥ 1

Corollary 16.2

The series
∑

n≥1
1
nα converges if and only if α > 1.
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Proof. If α ≤ 0 then 1
nα = n−α ≥ 1 ∀n ≥ 1. In particular, 1

nα

n→∞
6−→ 0 so

∑
n≥1

1
nα cannot

converge. Assume α > 0. Then
{

1
nα

}
n≥1

is a decreasing sequence of positive real numbers.
By the dyadic criterion,∑

n≥1

1

nα
converges ⇐⇒

∑
n≥0

2n
1

(2n)α
converges

∑
n≥0

2n

(2n)α
=
∑
n≥0

(
21−α)n =

∑
n≥0

rn where r = 21−α

This converges ⇐⇒ r < 1 ⇐⇒ 21−α < 1 ⇐⇒ 1− α < 0 ⇐⇒ α > 1.

Theorem 16.3 (Root Test)

Let
∑

n≥1 an be a series of real numbers.

1. If lim sup |an|
1
n < 1 then

∑
n≥1 an converges absolutely.

2. If lim inf |an|
1
n > 1 then

∑
n≥1 an diverges.

3. The test is inconclusive if lim inf |an|
1
n ≤ 1 ≤ lim sup |an|

1
n .

Proof. 1. Let L = lim sup |an|
1
n .

L < 1 =⇒ 1− L > 0
Q dense in R

=⇒ ∃ε ∈ R 3 0 < ε < 1− L =⇒ L < L+ ε < 1

So L+ ε > L = lim sup |an|
1
n = infN supn≥N |an|

1
n

=⇒ ∃N0 ∈ N 3 sup
n≥N0

|an|
1
n < L+ ε

=⇒ |an|
1
n < L+ ε ∀n ≥ N0

=⇒ |an| < (L+ ε)n ∀n ≥ N0

As L+ ε < 1, the series∑
n≥N0

(L+ ε)n =
∑
k≥0

(L+ ε)N0+k

= (L+ ε)N0
∑
k≥0

(L+ ε)k

= (L+ ε)N0
1

1− (L+ ε)

By the Comparison Test,
∑

n≥N0
an converges absolutely and note |a1|+. . .+|aN0−1| ∈

R.
=⇒

∑
n≥1

an converges absolutely
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2. Let {akn}n≥1 be a subsequence of {an}n≥1 such that

lim
n→∞

|akn |
1
kn = lim inf |an|

1
n > 1

=⇒ ∃n0 ∈ N 3 |akn |
1
kn > 1 ∀n ≥ n0

=⇒ |akn | > 1 ∀n ≥ n0

=⇒ akn
n→∞
6−→ 0 =⇒ an

n→∞
6−→ 0 =⇒

∑
n≥1

an diverges

3. Consider an = 1
n ∀n ≥ 1. The series

∑
n≥1 an =

∑
n≥1

1
n diverges. However,

lim
n→∞

n
√
an =

1

limn→∞ n
√
n

Cesaro-Stolz
=

1

limn→∞
n+1
n

= 1

So lim inf n
√
an = lim sup n

√
an = 1. Consider now an = 1

n2 ∀n ≥ 1. The series∑
n≥1 an =

∑
n≥1

1
n2 converges.

However,

lim
n→∞

n
√
an =

1

limn→∞
n
√
n2

C-S
=

1

limn→∞
(n+1)2

n2

= 1

So lim inf n
√
an = lim sup n

√
an = 1.

Theorem 16.4 (Ratio Test)

Let
∑

n≥1 an be a series of non-zero real numbers.

1. If lim sup
∣∣∣an+1

an

∣∣∣ < 1 then
∑

n≥1 an converges absolutely.

2. If lim inf
∣∣∣an+1

an

∣∣∣ > 1 then
∑

n≥1 an diverges.

3. The test is conclusive if lim inf
∣∣∣an+1

an

∣∣∣ ≤ 1 ≤ lim sup
∣∣∣an+1

an

∣∣∣
Proof. (1) & (2) follow from the root test and the Cesaro – Stolz theorem:

lim inf

∣∣∣∣an+1

an

∣∣∣∣ ≤ lim inf |an|
1
n ≤ lim sup |an|

1
n ≤ lim sup

∣∣∣∣an+1

an

∣∣∣∣
For (3) consider the same examples as in the previous theorem.

Theorem 16.5 (Abel Criterion)

Let {an}n≥1 be a decreasing sequence with limn→∞ an = 0. Let {bn}n≥1 be a sequence
so that {

∑n
k=1 bk}k≥1 is bounded. Then

∑
n≥1 anbn converges.
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Corollary 16.6 (Leibniz Criterion)

Let {an}n≥1 be a decreasing sequence with limn→∞ an = 0. Then
∑

n≥1(−1)nan
converges.

Proof. (Abel Criterion) Let tn =
∑n

k=1 bk for n ≥ 1. As {tn}n≥1 is bounded ∃M > 0 s.t.
|tn| ≤M ∀n ≥ 1. We will use the Cauchy criterion to prove convergence of

∑
n≥1 anbn. Let

ε > 0.
As lim an = 0 =⇒ ∃nε ∈ N s.t. |an| < ε

2M ∀n ≥ nε. For n ≥ nε and p ∈ N,∣∣∣∣∣
n+p∑

k=n+1

akbk

∣∣∣∣∣ =

∣∣∣∣∣
n+p∑

k=n+1

ak(tk − tk−1)

∣∣∣∣∣
=

∣∣∣∣∣
n+p∑

k=n+1

aktk −
n+p∑

k=n+1

aktk−1

∣∣∣∣∣
=

∣∣∣∣∣
n+p∑

k=n+1

aktk −
n+p−1∑
k=n

ak+1tk

∣∣∣∣∣
=

∣∣∣∣∣
n+p∑
k=n

tk (ak − ak+1)− antn + an+p+1tn+p

∣∣∣∣∣
≤

n+p∑
k=n

|tk| |ak − ak+1|+ |an| · |tn|+ |an+p+1| · |tn+p|

≤
n+p∑
k=n

M(ak − ak+1) + anM + an+p+1M

= M (an− 6 an+p+1) + anM+ 6 an+p+1M

= 2M · an < ε

61



Duc Vu (Winter 2021) 17 Lec 17: Feb 12, 2021

§17 Lec 17: Feb 12, 2021

§17.1 Rearrangements of Series

Definition 17.1 (Rearrangement) — Let k : N → N be a bijective function. For a
sequence {an}n≥1 of real numbers, we denote

ãn = ak(n) = akn

Then
∑

n≥1 ãn is called a rearrangement of
∑

n≥1 an
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Example 17.2

Consider an = (−1)n−1

n ∀n ≥ 1. The series
∑

n≥1 an = 1− 1
2 + 1

3 −
1
4 + 1

5 −
1
6 + 1

7 − . . .
Note that the sequence

{
1
n

}
n≥1

is decreasing and limn→∞
1
n = 0. Thus, by the Leibniz

criterion,
∑

n≥1 an converges. Write the series as follows:

∑
n≥1

an = 1− 1

2
+

1

3
−
∑
k≥2

(
1

2k
− 1

2k + 1

)
Note that for k ≥ 2

0 <
1

2k
− 1

2k + 1
=

1

2k(2k + 1)
<

1

4k2

Recall that the series
∑

k≥2
1

4k2
converges (by the dyadic criterion). By the comparison

test, the series 0 <
∑

k≥2

(
1
2k −

1
2k+1

)
converges. So

∑
n≥1 an < 1− 1

2 + 1
3 = 5

6 .

Consider next the following rearrangement:

1

1
+

1

3
− 1

2
+

1

5
+

1

7
− 1

4
+

1

9
+

1

11
− 1

6
+ . . . =

∑
k≥1

(
1

4k − 3
+

1

4k − 1
− 1

2k

)
Then

0 <
1

4k − 3
+

1

4k − 1
− 1

2k
=

8k2 − 2k + 8k2 − 6k − (16k2 − 16k + 3)

(4k − 3)(4k − 1) · 2k

=
8k − 3

(4k − 3)(4k − 1)2k
<

8k

k · 3k · 2k
=

4

3k2

As the series
∑

k≥1
4

3k2
converges, we deduce that the series

∑
k≥1

(
1

4k − 3
+

1

4k − 1
− 1

2k

)
converges

Moreover,∑
k≥1

(
1

4k − 3
+

1

4k − 1
− 1

2k

)
= 1 +

1

3
− 1

2
+
∑
k≥2

(
1

4k − 3
+

1

4k − 1
− 1

2k

)
> 1 +

1

3
− 1

2
=

5

6

So the two series converge to two different numbers.
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Theorem 17.3 (Riemann)

Let
∑

n≥1 an be a series that converges, but it does not converge absolutely. Let
−∞ ≤ α ≤ β ≤ ∞. Then there exists a rearrangement

∑
n≥1 ãn with partial sums

s̃n =
∑n

k=1 ãk such that

lim inf s̃n = α and lim sup s̃n = β

Proof. For n ≥ 1 let

bn =
|an|+ an

2
=

{
an, an ≥ 0

0, an < 0
=⇒ bn ≥ 0

cn =
|an| − an

2
=

{
0, an ≥ 0

−an, an < 0
=⇒ cn ≥ 0

Claim 17.1. The series
∑

n≥1 bn and
∑

n≥1 cn both diverge.

Note
∑n

k=1 bk −
∑n

k=1 ck =
∑n

k=1(bk − ck) =
∑n

k=1 ak which converges as n→∞.

=⇒
n∑
k=1

bk =
n∑
k=1

ck +
n∑
k=1

ak

So {
∑n

k=1 bk}n≥1 converges if and only if {
∑n

k=1 ck}n≥1 converges. On the other hand if∑
n≥1 bn and

∑
n≥1 cn both converged, then

n∑
k=1

bk +

n∑
k=1

ck︸ ︷︷ ︸
converge as n→∞

=

n∑
k=1

(bk + ck) =

n∑
k=1

|ak|

which diverges as n→∞ – contradiction. Thus
∑

n≥1 bn and
∑

n≥1 cn diverge to infinity.
Note also that

∑
n≥1 an converges =⇒ limn→∞ an = 0 and so limn→∞ bn = limn→∞ cn = 0.

Let B1, B2, B3, . . . denote the non-negative terms in {an}n≥1 in the order which they
appear.

Let C1, C2, C3, . . . denote the absolute values of the negative terms in {an}n≥1, in the
order in which they appear.

Note
∑

n≥1Bn differs
∑

n≥1 bn only by terms that are zero. So
∑

n≥1Bn =∞. Similarly,∑
n≥1Cn differs

∑
n≥1 cn only be terms that are zero. So

∑
n≥1Cn =∞.

Choose sequences {αn}n≥1 and {βn}n≥1 so that
αn

n→∞−→ α

βn
n→∞−→ β

αn < βn ∀n ≥ 1

β1 > 0

E.g.

α1 α2 α3 α β. . . β3 β2 β1. . .
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Next we construct increasing sequences {kn}n≥1 and {jn}n≥1 as follows:

1. Choose k1 and j1 to be the smallest natural numbers so that

x1 = B1 +B2 + . . .+Bk1 > β1 (this is possible because
∑
n≥1

Bn =∞)

y1 = B1 + . . .+Bk1 − C1 − C2 − . . .− Cj1 < α1 (this is possible since
∑
n≥1

Cn =∞)

2. Choose k2 and j2 to be the smallest natural numbers so that

x2 = B1 + . . .+Bk1 − C1 − . . .− Cj1 +Bk1+1 + . . .+Bk2 > β2

y2 = B1 + . . .+Bk1 − C1 − Cj1 +Bk1+1 + . . .+Bk2 − Cj1+1 − . . .− Cj2 < α2

and so on.

Note that by definition,

xn −Bkn ≤ βn =⇒ βn −Bkn < βn < xn ≤ βn +Bkn

=⇒

∣∣∣∣∣∣∣xn − Bn︸︷︷︸
n→∞−→ β

∣∣∣∣∣∣∣ ≤ Bkn n→∞−→ 0

=⇒ lim
n→∞

xn = β

Similarly,

yn + Cjn ≥ αn =⇒ αn − Cjn ≤ yn < αn < αn + Cjn

=⇒

∣∣∣∣∣∣∣yn − αn︸︷︷︸
n→∞−→ α

∣∣∣∣∣∣∣ ≤ Cjn n→∞−→ 0

=⇒ lim
n→∞

yn = α

Finally, note that xn and yn are partial sums in the rearrangement

B1 +B2 + . . .+Bk1 − C1 − . . .− Cj1 +Bk1+1 + . . .+Bk2 − Cj1+1 − . . .− Cj2 + . . .

By construction, no number less than α or larger than β can occur as a subsequential limit
of the partial sums.

Theorem 17.4 (Absolute Convergence and Convergence of Rearrangement)

If a series
∑

n≥1 an converges absolutely, then any rearrangement
∑

n≥1 ãn converges
to
∑

n≥1 an.

Proof. For n ≥ 1 let sn =
∑n

k=1 ak, s̃n =
∑n

k=1 ãk. As
∑

n≥1 an converges absolutely,
∀ε > 0 ∃nε ∈ N s.t.

n+p∑
k=n+1

|ak| < ε ∀n ≥ nε ∀p ∈ N
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Choose Nε sufficiently large so that a1, . . . , anε belong to the set {ã1, ã2, . . . , ãn}. Then for
n > Nε the terms a1, . . . , anε cancel in sn − s̃n

|sn − s̃n| ≤
n∑

k=nε+1

|ak|+
∑

1≤k≤n
|ãk|︸ ︷︷ ︸

finitely many terms and all indices are >nε

< ε (ãk /∈ {a1, . . . , anε})

As limn→∞ sn = s ∈ R we deduce that limn→∞ s̃n = s.
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§18 Lec 18: Feb 17, 2021

§18.1 Functions

Definition 18.1 (Function) — Let A,B be two non-empty sets. A function f : A→ B
is a way of associating to each element a ∈ A exactly one element in B denoted f(a).

a

A B

not a function

A
B

A function

A is called the domain of f .
B is called the range of f .

f(A) = {f(a) : a ∈ A} is called the image of A under f . If A′ ⊆ A then f(A′) =
{f(a) : a ∈ A′} is called the image of A′ under f .

If f(A) = B then we say that f is surjective/onto. In this case, ∀b ∈ B ∃a ∈ A s.t.
f(a) = b.

We say that f is injective if it satisfies: if a1, a2 ∈ A such that f(a1) = f(a2) then
a1 = a2.

We say that f is bijective if f is injective and surjective.

Remark 18.2. The injectivity and surjectivity of a function depend not only on the law f ,
but also on the domain and the range.

Example 18.3

f : Z→ Z, f(n) = 2n which is injective but not surjective.

f(n) = f(m) =⇒ 2n = 2m =⇒ n = m

g : R→ R, g(x) = 2x bijective.

Example 18.4

f : [0,∞) → [0,∞), f(x) = x2 bijective, g : R → R, g(x) = x2 not injective, not
surjective.

Definition 18.5 (Composition) — Let A,B,C be non-empty sets and f : A → B,
g : B → C be two functions. The composition of g with f is a function g ◦ f : A→ C,
(g ◦ f)(a) = g (f(a)).
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Remark 18.6. The composition of two functions need not be commutative.

f : Z→ Z, f(n) = 2n

g : Z→ Z, g(n) = n+ 1

g ◦ f : Z→ Z, (g ◦ f)(n) = g (f(n)) = 2n+ 1

f ◦ g : Z→ Z, (f ◦ g)(n) = f (g(n)) = 2(n+ 1)

Exercise 18.1. The composition of functions is associate: if f : A → B, g : B → C,
h : C → D are three functions, then

(h ◦ g) ◦ f = h ◦ (g ◦ f)

Definition 18.7 (Inverse Function) — Let f : A → B be a bijective function. The
inverse of f is a function f−1 : B → A defined as follows: if b ∈ B then f−1(b) = a
where a is the unique element in A s.t. f(a) = b. The existence of a is guaranteed by
surjectivity and the uniqueness by injectivity.

a
b

A B
f

f−1

So

f ◦ f−1 : B → B(
f ◦ f−1

)
(b) = b

and

f−1 ◦ f : A→ A(
f−1 ◦ f

)
(a) = a

Exercise 18.2. Let f : A → B and g : B → C be two bijective functions. Then
g ◦ f : A→ C is a bijection and

(g ◦ f)−1 = f−1 ◦ g−1

Definition 18.8 (Preimage) — Let f : A → B be a function. If B′ ⊆ B then the
preimage of B′ is f−1(B′) = {a ∈ A : f(a) ∈ B′}. The preimage of a set is well defined
whether or not f is bijective. In fact, if B′ ⊆ B s.t. B′ ∩ f(A) = ∅ then f−1(B′) = ∅.

Exercise 18.3. Let f : A→ B be a function and let A1, A2 ⊆ A and B1, B2 ⊆ B. Then

1. f(A1 ∪A2) = f(A1) ∪ f(A2)
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2. f(A1 ∩A2) ⊆ f(A1) ∩ f(A2)

3. f−1(B1 ∪B2) = f−1(B1) ∪ f−1(B2)

4. f−1(B1 ∩B2) = f−1(B1) ∩ f−1(B2)

5. The following are equivalent:

i) f is injective.

ii) f (A1 ∩A2) = f(A1) ∩ f(A2) for all subsets A1, A2 ⊆ A.

§18.2 Cardinal ity

Definition 18.9 (Equipotent) — We say that two sets A and B have the same
cardinality (or the same cardinal number) if there exists a bijection f : A → B. In
this case we write A ∼ B.

Exercise 18.4. Show that ∼ is an equivalence relation on sets.

Definition 18.10 (Finite Set, Countable vs. Uncountable) — We say that a set A is
finite if A = ∅ (in which case we say that it has cardinality 0) or A ∼ {1, . . . , n} for
some n ∈ N (in which case we say that A has cardinality n).
We say that A is countable if A ∼ N. I this case we say that A has cardinality ℵ0.
We say that A is at most countable if A is finite or countable. If A is not at most
countable we say that A is uncountable.

Lemma 18.11

Let A be a finite set and let B ⊆ A. Then B is finite.

Proof. If B = ∅ then B is finite. Assume now that B 6= ∅ =⇒ A 6= ∅. As A is finite,
∃n ∈ N and ∃f : A→ {1, . . . , n} bijective. Then f |B : B → f(B) is bijective.

WE merely have to relabel the elements in f(B). Let b1 ∈ B be such that f(b1) =
min f(B).
Define g(b1) = 1. If B \ {b1} 6= ∅, let b2 ∈ B be such that f(b2) = min f(B \ {b1}). Define
g(b2) = 2. Keep going. The process terminates in at most n steps.

Example 18.12

f : N ∪ {0,−1,−2, . . . ,−k} → N where k ∈ N

f(n) = n+ k + 1 is bijective

So the cardinality of N ∪ {0,−1, . . . ,−k} is ℵ0.
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Example 18.13

f : Z→ N

f(n) =

{
2n+ 2, n ≥ 0

−2n− 1, n < 0
is bijective

So the cardinality of Z is ℵ0.

Example 18.14

f : N× N→ N

f(n,m) =
(n+m− 1)(n+m− 2)

2
+ n

is bijective. So the cardinality of N× N is ℵ0.

m

n

1

2

3

4

(1, 1)

1 2

(2, 2)

3

(3, 3)

4

(4, 4)

(2, 1) (2, 2) (2, 3) (2, 4)

(3, 1) (3, 2) (3, 3) (3, 4)

(4, 1) (4, 2) (4, 3) (4, 4)

Cont’d in Lec 19.
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§19 Lec 19: Feb 19, 2021

§19.1 Functions & Cardinal ity (Cont’d)

From the last example of Lec 18, f : N × N → N, f(n,m) = (n+m−1)(n+m−2)
2 + n, f is

bijective.
We prove that f is surjective by induction. For k ∈ N let P (k) denoted that statement

∃(n,m) ∈ N× N s.t. f(n,m) = k

Base step: Note that f(1, 1) = 1·0
2 + 1 = 1. So P (1) holds.

Inductive step: Fix k ≥ 1 and assume that P (k) holds. Then ∃(n,m) ∈ N × N s.t.
f(n,m) = k.

=⇒ (n+m− 1)(n+m− 2)

2
+ n+ 1 = k + 1

=⇒ [(n+ 1) + (m− 1)− 1] [(n+ 1) + (m− 1)− 2]

2
+ n+ 1 = k + 1

=⇒ f(n+ 1,m− 1) = k + 1

This works if (n+ 1,m− 1) ∈ N× N ⇐⇒ m− 1 ∈ N ⇐⇒ m ≥ 2. So if m ≥ 2 we found
(n+ 1,m− 1) ∈ N× N s.t. f(n+ 1,m− 1) = k + 1. Assume now m = 1. Then

=⇒ f(n, 1) = k ⇐⇒ n(n− 1)

2
+ n = k ⇐⇒ (n+ 1)n

2
= k

=⇒ (n+ 1)n

2
+ 1 = k + 1

=⇒ [1 + (n+ 1)− 1] [1 + (n+ 1)− 2]

2
+ 1 = k + 1

=⇒ f(1, n+ 1) = k + 1

So if m = 1 we found (1, n+ 1) ∈ N×N s.t. f(1, n+ 1) = k+ 1. This proves P (k+ 1) holds.
By induction, ∀k ∈ N ∃(n,m) ∈ N× N s.t. f(n,m) = k, i.e. f is surjective.

Let (n,m), (a, b) ∈ N× N s.t. f(n,m) = f(a, b). We want to show that (n,m) = (a, b),
thus proving that f is injective.
Case 1:

(n+m−1)(n+m−2)
2 = (a+b−1)(a+b−2)

2

f(n,m) = f(a, b)

}
=⇒ n = a

Then (n+m− 1)(n+m− 2) = (n+ b− 1)(n+ b− 2)

=⇒ n2 + n(2m− 3) +m2 − 3m+ 2 = n2 + n(2b− 3) + b2 − 3b+ 2

=⇒ 2n(m− b) + (m− b)(m+ b)− 3(m− b) = 0

=⇒
(m− b)(2n+m+ b− 3) = 0

2n+m+ b− 3 ≥ 2 + 1 + 1− 3 ≥ 1

}
=⇒ m = b

Case 2: (n+m−1)(n+m−2)
2 = (a+b−1)(a+b−2)

2 + r for some r ∈ N.

Exercise 19.1. Show that this cannot occur.
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Lemma 19.1

Let A be a countable set. Let B be an infinite subset of A.Then B is countable.

Proof. A is countable =⇒ ∃f : N → A bijection. This means we can enumerate the
elements of A :

A = {a1(= f(1)), a2(= f(2)), a3(= f(3)), . . .}

Let k1 = min {n : an ∈ B}. Define g(1) = ak1 . Then B \ {ak1} 6= ∅. Let k2 =
min {n : an ∈ B \ {ak1}}. Define g(2) = ak2 .

We proceed inductively. Assume we found k1 < . . . < kj such that ak1 , . . . , akj ∈ B and
g(1) = ak1 , . . . , g(j) = akj . ThenB\

{
ak1 , . . . , akj

}
6= ∅. Let kj+1 = min

{
n : an ∈ B \

{
ak1 , . . . , akj

}}
.

Define g(j + 1) = akj+1
.

By construction, g : N→ B is bijective.

Lemma 19.2

Let A be a finite set and let B be a proper subset of A. Then A and B are not
equipotent, that is, there is no bijective function f : A→ B.

Proof. If B = ∅ =⇒ A 6= ∅. There is no function f : A → B. Assume B 6= ∅. Assume
towards a contradiction that there exists a bijection f : A→ B.

As B ( A, ∃a0 ∈ A \B.
For n ≥ 1 let an = (f ◦ f ◦ . . . ◦ f)︸ ︷︷ ︸

n times

(a0). Note an+1 = f(an)∀n ≥ 0. Note an ∈ B ∀n ≥ 1.

We will show

Claim 19.1. an 6= am for n 6= m.

If the claim holds then B (and so A) would contain countably many elements. Contra-
diction, since A is finite!

To prove the claim we argue by contradiction. Assume that there exists n, k ∈ N s.t.
an+k = an.

Write

an+k = (f ◦ f ◦ . . . ◦ f)︸ ︷︷ ︸
n times

(ak)

an = (f ◦ f ◦ . . . ◦ f)︸ ︷︷ ︸
n times

(a0)

f injective =⇒ f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸
n times

injective


=⇒ B 3 ak = a0 ∈ A \B

which is a contradiction! This proves the claim and completes the proof of the lemma.

Lemma 19.3

Every infinite set has a countable subset.
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Proof. Let A be an infinite set =⇒ A 6= ∅ =⇒ ∃a1 ∈ A. Then A \ {a1} 6= ∅ =⇒ ∃a2 ∈
A \ {a1}.

We proceed inductively. Having found a1, . . . , an ∈ A distinct, A\{a1, . . . , an} 6= ∅ =⇒
∃an+1 ∈ A \ {a1, . . . , an}. This gives a sequence {an}n≥1 of distinct elements in A.

Theorem 19.4

A set A is infinite if and only if there is a bijection between A and a proper subset of
A.

Proof. “⇐= ” Assume that there is a bijection f : A→ B where B ( A. By Lemma 19.2,
A must be infinite.
“ =⇒ ” Assume that A is infinite. By Lemma 19.3, there exists a countable subset B of A.
Write B = {a1, a2, a3, . . .} with an 6= am if n 6= m. Then A \ {a1} is a proper subset of A.
Define f : A→ A \ {a1} via

f(a) =

{
a, if a ∈ A \B
aj+1, if a = aj for some j ≥ 1

This is a bijective function.
Assume f(a) = f(b).
Case 1: a, b ∈ A \B. Then f(a) = a, f(b) = b and so f(a) = f(b) =⇒ a = b.
Case 2: a, b ∈ B =⇒ ∃i, j ∈ N s.t. a = ai, b = aj

f(a) = f(b) =⇒ ai+1 = aj+1 =⇒ i+ 1 = j + 1 =⇒ i = j =⇒ a = b

Case 3: a ∈ A \B, b ∈ B. Then f(a) ∈ A \B and f(b) ∈ B, which cannot occur.
Case 4: a ∈ B and b ∈ A \B. Argue as for Case 3.

Exercise 19.2. f is surjective.

Theorem 19.5 (Schröder – Bernstein)

Assume that A and B are two sets such that there exists two injective functions
f : A→ B and g : B → A. Then A and B are equipotent.

Example 19.6

f : N→ N× N, f(n) = (1, n) injective

g : N× N→ N, g(n,m) = 2n · 3m injective

By Schröder – Bernstein, N ∼ N× N.
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§20 Lec 20: Feb 22, 2021

§20.1 Countable vs. Uncountable Sets

Proof. (Schröder – Bernstein) We will decompose each of the sets A and B into disjoint
subsets:

A = A1 ∪A2 ∪A3 with Ai ∩Aj = ∅ if i 6= j

B = B1 ∪B2 ∪B3 with Bi ∩Bj = ∅ if i 6= j

and we will show that f : A1 → B1, f : A2 → B2, g : B3 → A3 are bijections.
Then h : A→ B given by

h(a) =

{
f(a), if a ∈ A1 ∪A2

(g|B3)−1 (a), if a ∈ A3

is a bijection. Exc!

For a ∈ A consider the set

Sa =

 a︸︷︷︸
∈A

, g−1(a)︸ ︷︷ ︸
∈B

, f−1 ◦ g−1(a)︸ ︷︷ ︸
∈A

, g−1 ◦ f−1 ◦ g−1(a)︸ ︷︷ ︸
∈B

, . . .


Note that the preimage under f or g is either ∅ or it contains exactly one point (because f
and g are injective).

There are three possibilities:

1. The process defining Sa does not terminate. We can always find a preimage.

2. The process defining Sa terminates in A, that is, the last element x ∈ Sa is x = a or
x = f−1 ◦ g−1 ◦ . . . ◦ g−1(a) and g−1(x) = ∅.

3. The process defining Sa terminates in B, that is, the last element x ∈ Sa is x = g−1(a)
or x = g−1 ◦ f−1 ◦ . . . ◦ g−1(a) and f−1(x) = ∅.

We define

A1 = {a ∈ A : the process defining Sa does not terminate}
A2 = {a ∈ A : the process defining Sa terminates in A}
A3 = {a ∈ A : the process defining Sa terminates in B}

Similarly, for b ∈ B we define the set

Tb =

 b︸︷︷︸
∈B

, f−1(b)︸ ︷︷ ︸
∈A

, g−1 ◦ f−1(b)︸ ︷︷ ︸
∈B

, f−1 ◦ g−1 ◦ f−1(b)︸ ︷︷ ︸
∈A

, . . .


As before we define

B1 = {b ∈ B : the process defining Tb does not terminate}
B2 = {b ∈ B : the process defining Tb ends in A}
B3 = {b ∈ B : the process defining Tb ends in B}
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Let’s show f : A1 → B1 is a bijection. Injectivity is inherited from f : A→ B is injective.
Let b ∈ B1. Then the process defining

Tb =
{
b, f−1(b), g−1 ◦ f−1(b), . . .

}
does not terminate

In particular, ∃a ∈ A s.t. f−1(b) = a. Note that

Sa =
{
a, g−1(a), f−1 ◦ g−1(a), . . .

}
=
{
f−1(b), g−1 ◦ f−1(b), f−1 ◦ g−1 ◦ f−1(b), . . .

}
does not terminate. So a ∈ A1.

This proves f : A1 → B1 is surjective.
Let’s show f : A2 → B2 is a bijection. Again, injectivity is inherited from f : A→ B is

injective.
Let b ∈ B2. Then the process defining

Tb =
{
b, f−1(b), g−1 ◦ f−1(b), . . .

}
terminates in A

In particular, ∃a ∈ A s.t. f−1(b) = a. Note that

Sa =
{
a, g−1(a), . . .

}
=
{
f−1(b), g−1 ◦ f−1(b), . . .

}
terminates in A =⇒ a ∈ A2. So f : A2 → B2 is surjective.

Exercise 20.1. g : B3 → A3 is bijective.

Theorem 20.1 (Union of Countable Sets)

Let {An}n≥1 be a sequence of countable sets. Then

⋃
n≥1

An = {a : a ∈ An for some n ≥ 1}

is countable.

Proof. We define

B1 = A1

Bn+1 = An+1 \
n⋃
k=1

Ak ∀n ≥ 1

By construction, {
Bn ∩Bm = ∅, ∀n 6= m⋃
n≥1Bn =

⋃
n≥1An

Note that each Bn is at most countable.
Let I = {n ∈ N : Bn 6= ∅}. Then

⋃
n≥1Bn =

⋃
n∈I Bn. For n ∈ I, let fn : Bn → In

bijection where In is an at most countable subset of N.
In particular, f1 : B1 → N bijective =⇒ f−1

1 : N→ B1 bijective. To show
⋃
n∈I Bn is

countable, we will use the Schröder – Bernstein theorem.
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Let g : N→
⋃
n∈I Bn, g(n) = f−1

1 (n) ∈ B1 ⊆
⋃
n∈I Bn is injective.

Let h :
⋃
n∈I Bn → N× N defined as follows: if b ∈

⋃
n∈I Bn =⇒ ∃n ∈ I s.t. b ∈ Bn.

Define h(b) = (n, fn(b)). Note that h is injective. Indeed, if h(b1) = h(b2) then
(n1, fn1(b1)) = (n2, fn2(b2))

=⇒

{
n1 = n2

fn1(b1) = fn2(b2)
, fn1 is injective

}
=⇒ b1 = b2

Recall there exists a bijection φ : N × N → N. So φ ◦ h :
⋃
n∈I Bn → N is injective. By

Schröder – Bernstein,
⋃
n∈I Bn =

⋃
n≥1An ∼ N.

Proposition 20.2

Let {An}n≥1 be a sequence of sets such that for each n ≥ 1, An has at least two

elements. Then
∏
n≥1An =

{
{an}n≥1 : an ∈ An ∀n ≥ 1

}
is uncountable.

Proof. We argue by contradiction. Assume that
∏
n≥1An is countable. Thus we may

enumerate the elements of
∏
n≥1An:

a1 = (a11, a12, a13, . . .)

a2 = (a21, a22, a23, . . .)

. . .

an = (an1, an2, an3, . . .)

. . .

Let x = {xn}n≥1 ∈
∏
n≥1An such that xn ∈ An \ {ann}. Then x 6= an ∀n ≥ 1 since

xn 6= ann. This gives a contradiction.

Remark 20.3. The same argument using binary expansion shows that the set (0, 1) is
uncountable.
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§21 Lec 21: Feb 24, 2021

§21.1 Countable vs. Uncountable Sets (Cont’d)

Proposition 21.1

Let {An}n≥1 be a sequence of sets s.t. ∀n ≥ 1, the set An has at least two elements.
Then

∏
n≥1An is uncountable.

Remark 21.2. 1. The Cantor diagonal argument can be used to show that the set (0, 1)
is uncountable (using binary expansion).

2. We can identify{
{an}n≥1 : an ∈ {0, 1} ∀n ≥ 1

}
= {f : N→ {0, 1} : f function}

= {0, 1} × {0, 1} × . . .

= {0, 1}N

By the proposition, this set is uncountable. We say it has cardinality 2ℵ0 .

Theorem 21.3

Let A be any set. Then there exists no bijection between A and the power set of A,
P(A) = {B : B ⊆ A}.

Proof. If A = ∅ then P(A) = {∅}. So the cardinality of A is 0, but the cardinality of P(A)
is 1. Thus A is not equipotent with P(A).

Assume A 6= ∅. We argue by contradiction. Assume that there exists f : A→ P(A) a
bijection.

Let B = {a ∈ A : a /∈ f(a)} ⊆ A. f is surjective =⇒ ∃b ∈ A s.t. f(b) = B
We distinguish two cases:

Case 1: b ∈ B = f(b) =⇒ b /∈ B – Contradiction.
Case 2: b /∈ B = f(b) =⇒ b ∈ B – Contradiction.

So A is not equipotent to P(A)

Theorem 21.4

The set [0, 1) has cardinality 2ℵ0 .

Proof. We write x ∈ [0, 1) using the binary expansion.

x = 0.x1x2x3 . . . with xn ∈ {0, 1} ∀n ≥ 1

=
x1

2
+
x2

22
+
x3

23
+ . . . =

∑
n≥1

xn
2n

with the convention that no expansion ends in all ones.
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×
x

10
x = 0.010 . . .

E.g.

x = 0.x1x2x3 . . . xn0111 . . .

=
x1

2
+ . . .+

xn
2n

+
1

2n+2
+

1

2n+3
+ . . .︸ ︷︷ ︸

= 1
2n+1

=
x1

2
+ . . .+

xn
2n

+
1

2n+1
= 0.x1x2 . . . xn1000 . . .

Note that we can identify [0, 1) with

F = {f : N→ {0, 1} : ∀n ∈ N ∃m > n s.t. f(m) = 0}
⊆ {f : N→ {0, 1} : f function}

In particular, we have an injection φ : [0, 1)→ {f : N→ {0, 1}}. To prove the theorem, by
Schröder – Bernstein, it suffices to construct an injective function ψ : {f : N→ {0, 1}} →
[0, 1). For f : N→ {0, 1} we define

ψ(f) = 0.0f(1)0f(2)0f(3) . . .

=
f(1)

22
+
f(2)

24
+
f(3)

26
+ . . .

=
∑
n≥1

f(n)

22n

Let’s show ψ is an injective. Let f1, f2 : N→ {0, 1} s.t. f1 6= f2. Let n0 = min {n : f1(n) 6= f2(n)}.
Say, f1(n0) = 1 and f2(n0) = 0.

ψ(f1)− ψ(f2) =
∑
n≥1

f1(n)

22n
−
∑
n≥1

f2(n)

22n
=
f1(n0)− f2(n0)

22n0
+

∑
n≥n0+1

f1(n)− f2(n)

22n

≥ 1

22n0
−

∑
n≥n0+1

1

22n

=
1

22n0
− 1

22(n0+1)
· 1

1− 1
2

=
1

22n0+1
> 0

=⇒ ψ(f1) > ψ(f2)
So ψ is injective.
By Schröder – Bernstein, [0, 1) ∼ {f : N→ {0, 1}} and so it has cardinality 2ℵ0 .
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§21.2 Metric Spaces

Definition 21.5 (Metric Space) — Let X be a non-empty set. A metric on X is a
map d : X ×X → R such that

1. d(x, y) ≥ 0∀x, y ∈ X

2. d(x, y) = 0 ⇐⇒ x = y

3. d(x, y) = d(y, x) ∀x, y ∈ X

4. d(x, y) ≤ d(x, z) + d(z, y) ∀x, y, z ∈ X

Then we say (X, d) is a metric space.

Example 21.6 1. X = R, d(x, y) = |x− y| is a metric.

2. X = Rn, d2(x, y) =
√∑n

k=1 |xk − yk|
2 is a metric.

3. X is any non-empty set. The discrete metric

d(x, y) =

{
1, x 6= y

0, x = y

4. Let (X, d) be a metric space. Then d̃ : X×X → R, d̃(x, y) = d(x,y)
1+d(x,y) is a metric.

Let’s see it satisfies (4). Fix x, y, z ∈ X. As d is a metric,

d(x, y) ≤ d(x, z) + d(z, y)

Note a 7→ a
1+a = 1− 1

1+a is increasing on [0,∞). Then,

d̃(x, y) =
d(x, y)

1 + d(x, y)
≤ d(x, z) + d(z, y)

1 + d(x, z) + d(z, y)
≤ d(x, z)

1 + d(x, z)
+

d(z, y)

1 + d(z, y)

= d̃(x, z) + d̃(z, y)

Definition 21.7 ((Un)Bounded Metric Space) — We say that a metric space (X, d) is
bounded if ∃M > 0 s.t. d(x, y) ≤M ∀x, y ∈ X. If (X, d) is not bounded, we say that
it is bounded.

Remark 21.8. If (X, d) is an unbounded metric space then (X, d̃) is a bounded metric space

where d̃(x, y) = d(x,y)
1+d(x,y) .
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Definition 21.9 (Distance Between Sets) — Let (X, d) be a metric space and let
A,B ⊆ X. The distance between A and B is

d(A,B) = inf {d(x, y) : x ∈ A, y ∈ B}

Caution: This does not define a metric on subset of X.
In fact, d(A,B) = 0 does not even imply A ∩B 6= ∅.

Example 21.10

(X, d) = (R, | · |) , A = (0, 1), B = (−1, 0), d(A, b) = 0 but A ∩B = ∅

−ε ε

−1 10

Definition 21.11 (Distance Between Point and Set) — Let (X, d) be a metric space,
A ⊆ X,x ∈ X. The distance from x to A is

d(x,A) = inf {d(x, a) : a ∈ A}

Again, d(x,A) = 0 6=⇒ x ∈ A
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§22 Lec 22: Feb 26, 2021

§22.1 Hölder & Minkowski Inequalit ies

Proposition 22.1 (Hölder’s Inequality)

Fix 1 ≤ p ≤ ∞ and let q denote the dual of p, that is, 1
p + 1

q = 1. Let x = (x1, . . . , xn) ∈
Rn and let y = (y1, . . . , yn) ∈ Rn. Then

n∑
k=1

|xkyk| ≤

(
n∑
k=1

|xk|p
) 1

p
(

n∑
k=1

|yk|q
) 1

q

with the convention that if p =∞, then (
∑n

k=1 |xk|p)
1
p = sup1≤k≤n|xk|

Remark 22.2. If p = 2( =⇒ q = 2) we call this the Cauchy – Schwarz inequality.

Proof. If p = 1, then q =∞.

n∑
k=1

|xkyk| ≤
n∑
k=1

|xk| · sup
1≤l≤n

|yl| ≤

(
n∑
k=1

|xk|

)
· sup

1≤l≤n
|yl|

If p =∞ =⇒ (q = 1) a similar argument yields the claim.
Assume 1 < p <∞. We will use the fact that f : (0,∞)→ R, f(x) = log(x) is a concave
function.

f (b) + t (f (a)− f (b))

f (b + t(a− b))
f (a)

f (b)

f (x)

b a

b + t(a− b) = ta + (1− t)b t ∈ (0, 1)

x

tf(a) + (1− t)f(b) ≤ f (ta+ (1− t)b) ∀(a, b) ∈ (0,∞)∀t ∈ (0, 1)

t log(a) + (1− t) log(b) ≤ log (ta+ (1− t)b)
log(at) + log(b1−t) ≤ log (ta+ (1− t)b)

log
(
atb1−t

)
≤ log (ta+ (1− t)b)

atb1−t ≤ ta+ (1− t)b
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We will apply this inequality with a = |xk|p∑n
l=1 |xl|p

, b = |yk|q∑n
l=1 |yl|q

.

t =
1

p
=⇒ 1− t = 1− 1

p
=

1

q

We get
|xk|

(
∑n

l=1 |xl|p)
1
p

· |yk|

(
∑n

l=1 |yl|q)
1
q

≤ 1

p

|xk|p∑n
l=1 |xl|p

+
1

q

|yk|q∑n
l=1 |yl|q

Sum over 1 ≤ k ≤ n
n∑
k=1

|xk| · |yk|

(
∑n

l=1 |xl|p)
1
p · (

∑n
l=1 |yl|q)

1
q

≤ 1

p

n∑
k=1

|xk|p∑n
l=1 |xl|p

+
1

q

n∑
k=1

|yk|q∑n
l=1 |yl|q

=
1

p
+

1

q
= 1

=⇒
∑n

k=1 |xkyk| ≤ (
∑n

l=1 |xl|p)
1
p · (

∑n
l=1 |yl|q)

1
q .

Corollary 22.3 (Minkowski’s Inequality)

Fix 1 ≤ p ≤ ∞ and let x = (x1, . . . , xn) ∈ Rn, y = (y1, . . . , yn) ∈ Rn. Then(
n∑
k=1

|xk + yk|p
) 1

p

≤

(
n∑
k=1

|xk|p
) 1

p

+

(
n∑
k=1

|yk|p
) 1

p

Proof. If p = 1, this follows from the triangle inequality:

LHS =
n∑
k=1

|xk + yk| ≤
n∑
k=1

|xk|+ |yk| = RHS

If p =∞,
LHS = sup1≤k≤n |xk + yk| ≤ sup

1≤k≤n
|xk|+ sup

1≤k≤n
|yk| = RHS

Assume 1 < p <∞.

n∑
k=1

|xk + yk|p =

n∑
k=1

|xk + yk| |xk + yk|p−1

≤
n∑
k=1

(|xk|+ |yk|) |xk + yk|p−1

=

n∑
k=1

|xk| · |xk + yk|p−1 +

n∑
k=1

|yk| |xk + yk|p−1

(Hölder) ≤

(
n∑
k=1

|xk|p
) 1

p

·

(
n∑
k=1

|xk + yk|(p−1)·q

) 1
q

+

(
n∑
k=1

|yk|p
) 1

p
(

n∑
k=1

|xk + yk|(p−1)q

) 1
q
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1
p + 1

q = 1 =⇒ 1
q = 1− 1

p = p−1
p =⇒ q = p

p−1
Get

n∑
k=1

|xk + yk|p ≤

( n∑
k=1

|xk|p
) 1

p

+

(
n∑
k=1

|yk|p
) 1

p

 ·( n∑
k=1

|xk + yk|p
)1− 1

p

=⇒

(
n∑
k=1

|xk + yk|p
) 1

p

≤

(
n∑
k=1

|xk|p
) 1

p

+

(
n∑
k=1

|yk|p
) 1

p

Corollary 22.4

For 1 ≤ p <∞ let dp : Rn × Rn → R,

dp(x, y) =

(
n∑
k=1

|xk − yk|p
) 1

p

For p =∞ let d∞ : Rn × Rn → R,

d∞(x, y) = sup
1≤k≤n

|xk − yk|

The dp is a metric on Rn ∀1 ≤ p ≤ ∞.

Proof. The triangle inequality follows from Minkowski’s inequality.

Remark 22.5. The Hölder and Minkowski inequalities generalize to sequences. For example,

say {xn}n≥1 and {yn}n≥1 are sequences of real numbers such that
(∑

n≥1 |xn|p
) 1

p

<∞ and(∑
n≥1 |yn|q

) 1
q

<∞. Then for each fixed N ≥ 1,

N∑
n=1

|xkyk|︸ ︷︷ ︸
increasing seq indexed by N

≤

(
N∑

n=1

|xn|p
) 1

p

·

(
N∑

n=1

|yn|q
) 1

q

≤

∑
n≥1

|xn|p
 1

p

·

∑
n≥1

|yn|q
 1

q

<∞

So ∑
n≥1

|xkyk| ≤

∑
n≥1

|xn|p
 1

p

·

∑
n≥1

|yn|q
 1

q

A similar argument gives Minkowski for sequences.

§22.2 Open Sets
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Definition 22.6 (Ball/Neighborhood of a Point) — Let (X, d) be a metric space. A
neighborhood of a point a ∈ X is

Br(a) = {x ∈ X : d(a, x) < r} for some r > 0
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Example 22.7 1. (R2, d2)

B1(0) =
{

(x, y) ∈ R2 : d2 ((x, y), (0, 0)) < 1
}

=
{

(x, y) ∈ R2 : x2 + y2 < 1
}

1 x

y

1

2. (R2, d1)

B1(0) =
{

(x, y) ∈ R2 : |x|+ |y| < 1
}

1

1

−1

−1

x

y

3. (R2, d∞)
B1(0) =

{
(x, y) ∈ R2 : max {|x|, |y|} < 1

}

1

1

x

y
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Definition 22.8 (Interior Point) — Let (X, d) be a metric space and let ∅ 6= A ⊆ X.
We say that a point a ∈ X is an interior point of A if ∃r > 0 s.t. Br(a) ⊆ A.

The set of all interior points of A is denoted Å and is called the interior of A.
We say that A is open if A = Å.

Example 22.9 1. ∅, X are open sets.

2. Br(a) is an open set ∀a ∈ X, ∀r > 0.
Indeed, let x ∈ Br(a) =⇒ d(x, a) < r =⇒ ρ = r − d(x, a) > 0

y

x

a

Claim 22.1. Bρ(x) ⊆ Br(a) and so x ∈ ˚̂
Br(a)

Proof. Let y ∈ Bρ(x) =⇒ d(x, y) < ρ

d(y, a) ≤ d(y, x) + d(x, a) < ρ+ d(x, a) = r =⇒ y ∈ Br(a)

Remark 22.10. Å ⊆ A. To prove A is open, it suffices to show A ⊆ Å.
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§23 Lec 23: Mar 1, 2021

§23.1 Open Sets (Cont’d)

Proposition 23.1

Let (X, d) be a metric space and let A,B ⊆ X. Then

1. If A ⊆ B then Å ⊆ B̊

2. Å ∪ B̊ ⊆ ˚̂
A ∪B

3. Å ∩ B̊ =
˚̂

A ∩B

4.
˚̊
A = Å. In particular, Å is an open set.

5. Å is the largest open set contained in A.

6. A finite intersection of open sets is an open set.

7. An arbitrary union of open sets is an open set.

Remark 23.2. An arbitrary intersection of open sets need not be open. E.g.⋂
n≥1

(
− 1

n
,

1

n

)
︸ ︷︷ ︸
B 1

n
(0)∈(R,|·|)

= {0}

Note that {0} is not an open set because it does not contain any neighborhood of 0.

Proof. (Of the proposition):

1. If Å = ∅ this is clear. Assume Å 6= ∅. Let a ∈ Å =⇒ ∃r > 0 s.t.

Br(a) ⊆ A
A ⊆ B

}
=⇒ Br(a) ⊆ B

So a ∈ B̊.

2. Consider:

A ⊆ A ∪B (1)
=⇒ Å ⊆ ˚̂

A ∪B

B ⊆ A ∪B (1)
=⇒ B̊ ⊆ ˚̂

A ∪B

 =⇒ Å ∪ B̊ ⊆ ˚̂
A ∪B

3. Consider:

A ∩B ⊆ A (1)
=⇒ ˚̂

A ∩B ⊆ Å

A ∩B ⊆ B (2)
=⇒ ˚̂

A ∩B ⊆ B̊

 =⇒ ˚̂
A ∩B ⊆ Å ∩ B̊

Now let x ∈ Å ∩ B̊

=⇒

{
∃r1 > 0 s.t. Br1(x) ⊆ A
∃r2 > 0 s.t. Br2(x) ⊆ B
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Let r = min {r1, r2} > 0. Then Br(x) ⊆ Br1(x) ∩ Br2(x) ⊆ A ∩ B =⇒ x ∈ ˚̂
A ∩B.

So Å ∩ B̊ ⊆ ˚̂
A ∩B

4. Å ⊆ A
(1)

=⇒ ˚̊
A ⊆ Å. Let x ∈ Å =⇒ ∃r > 0 s.t. Br(x) ⊆ A

(1)
=⇒ Br(x) =

˚̂
Br(x) ⊆

Å =⇒ x ∈ ˚̊
A. So Å ⊆ ˚̊

A.

5. By (4), Å is an open set contained in A. Let B ⊆ A be an open set. Then by (1),
B = B̊ ⊆ Å.

6. Using (3) and (4) we see that if A = Å and B = B̊ then A ∩B =
˚̂

A ∩B is an open
set.

A simple inductive argument yields the claim.

7. Let {Ai}i∈I be a family of open sets. Let’s show

˚̂⋃
i∈I

Ai =
⋃
i∈I

Ai

Let x ∈
⋃
i∈I Ai =⇒ ∃i0 ∈ I s.t.

x ∈ Ai0
Ai0 = Åi0

}
=⇒ ∃r > 0 s.t. Br(x) ⊆ Ai0

So Br(x) ⊆
⋃
i∈I Ai =⇒ x ∈ ˚̂⋃

i∈I Ai. Thus,
⋃
i∈I Ai ⊆

˚̂⋃
i∈I Ai.

§23.2 Closed Sets

Definition 23.3 (Closed Set) — Let (X, d) be a metric space. A set A ⊆ X is closed
if cA is open.
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Example 23.4 1. φ,X are closed.

2. If a ∈ X, r > 0, then cBr(a) = {x ∈ X : d(a, x) ≥ r} is a closed set.

3. If a ∈ X, r > 0, then Kr(a) = {x ∈ X : d(a, x) ≤ r} is a closed set.

Let’s show cKr(a) = {x ∈ X : d(a, x) > r} is open. Let x ∈ cKr(a) =⇒
d(a, x) > r and let ρ = d(a, x)− r > 0

a

x

y

r

Claim 23.1. Bρ(x) ⊆ cKr(a)

Let y ∈ Bρ(x) =⇒ d(x, y) < ρ. By the triangle inequality,

d(a, y) ≥ d(a, x)− d(x, y) > d(a, x)− ρ = r =⇒ y ∈ cKr(a)

So Bρ(x) ⊆ Kr(a) =⇒ x ∈ ˚̂cKr(a). Thus, cKr(a) is an open set.

4. There are sets that are neither open nor closed. E.g. (0, 1] is not open and is not
closed.

Definition 23.5 (Adherent Point) — Let (X, d) be a metric space and let A ⊆ X. A
point a ∈ X is an adherent point for A if

∀r > 0 we have Br(a) ∩A 6= ∅

The set of all adherent points of A is denoted A and is called the closure of A.

Definition 23.6 (Isolated Point) — An adherent point a of A is called isolated if

∃r > 0 s.t. Br(a) ∩A = {a} (a ∈ A)

If every point in A is an isolated point of A then A is called an isolated set.
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Definition 23.7 (Accumulation Point) — An adherent point a of A that is not isolated
is called an accumulation point for A. The set of accumulation points of A is denoted
A′. Note that

a ∈ A′ ⇐⇒ ∀r > 0 Br(a) ∩A \ {a} 6= ∅

Example 23.8

(R, | · |) , A =
{

1
n : n ≥ 1

}
. A is isolated. Indeed B 1

n(n+1)

(
1
n

)
∩A =

{
1
n

}
.

A′ = {0} since ∀r > 0Br(0) = (−r, r) intersects A \ {0} = A.

Remark 23.9. 1. A ⊆ A

2. A = A′ ∪A

Proposition 23.10

Let (X, d) be a metric space and let A,B ⊆ X. Then

1.
c
(A) =

˚̂cA

2.
c
(Å) = cA

3. A is closed set ⇐⇒ A = A

4. If A ⊆ B then A ⊆ B

5. A ∩B ⊆ A ∩B

6. A ∪B = A ∪B

7. A = A. In particular, A is a closed set.

8. A is the smallest closed set containing A.

9. A finite union of closed sets is a closed set.

10. An arbitrary intersection of closed sets is a closed set.

Remark 23.11. An arbitrary union of closed sets need not be a closed set. E.g.⋃
n≥1

[
1

n
, 1

]
︸ ︷︷ ︸
closed

= (0, 1]︸ ︷︷ ︸
not closed

Proof. (of the proposition)
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1. Consider

x ∈ c
(A) ⇐⇒ x /∈ A ⇐⇒ ∃r > 0 s.t. Br(x) ∩A = ∅

⇐⇒ ∃r > 0 s.t. Br(x) ⊆ cA

⇐⇒ x ∈ ˚̂cA

2. Apply (1) to cA.

3. A is closed ⇐⇒ cA is open

⇐⇒ cA =
˚̂cA

(1)⇐⇒ cA =
c
(A)

⇐⇒ A = A

We continue in the next lecture.
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§24 Lec 24: Mar 3, 2021

§24.1 Closed Sets (Cont’d)

Proposition 24.1

Let (X, d) be a metric space and let A,B ⊆ X . Then

1.
c
(A) =

˚̂cA

2.
c
(Å) = cA

3. A is closed set ⇐⇒ A = A

4. If A ⊆ B then A ⊆ B

5. A ∩B ⊆ A ∩B

6. A ∪B = A ∪B

7. A = A. In particular, A is a closed set.

8. A is the smallest closed set containing A.

9. A finite union of closed sets is a closed set.

10. An arbitrary intersection of closed sets is a closed set.

Proof. (Cont’d from last lecture)

4. If A = ∅ then clearly A ⊆ B. Assume A 6= ∅. Let a ∈ A =⇒ ∀r > 0,

Br(a) ∩A 6= ∅
A ⊆ B

}
=⇒ Br(a) ∩B 6= ∅ ∀r > 0

=⇒ a ∈ B

So A ⊆ B

5. Have:

A ∩B ⊆ A (4)
=⇒ A ∩B ⊆ A

A ∩B ⊆ B (4)
=⇒ A ∩B ⊆ B

 =⇒ A ∩B ⊆ A ∩B

6. Have

c(
A ∪B

) (1)
=

˚̂c(A ∪B) =
˚̂cA ∩ cB =

˚̂cA ∩ ˚̂cB
(1)
=

c(
A
)
∩ c(

B
)

=
c(
A ∪B

)
=⇒ A ∪B = A ∪B
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7. Clearly, A ⊆ A (4)
=⇒ A ⊆ A. Want to show A ⊆ A. Let a ∈ A. Want to prove that

∀r > 0Br(a) ∩A 6= ∅.

Fix r > 0. As a ∈ A =⇒ Br(a) ∩A 6= ∅. Let x ∈ Br(a) ∩A

x ∈ A =⇒ ∀ρ > 0, Bρ(x) ∩A 6= ∅

Choose ρ = r − d(a, x) > 0. Then

Bρ(x) ⊆ Br(a)

Bρ(x) ∩A 6= ∅

}
=⇒ Br(a) ∩A 6= ∅

So a ∈ A.

8. Note A is a closed subset containing A. Let B be a closed set containing A.

A ⊆ B (4)
=⇒ A ⊆ B (3)

= B

9. Let {An}Nn=1 be a closed sets. Then cAn is an open set ∀1 ≤ n ≤ N . Then
⋂N
n=1

cAn

is an open set. Now
⋂N
n=1

cAn =
c(⋃N

n=1An

)
open =⇒

⋃N
n=1An closed.

10. Let {Ai}i∈I be a family of closed sets. Then cAi is open ∀i ∈ I

=⇒
⋃
i∈I

cAi =

c(⋂
i∈I

Ai

)
is open

=⇒
⋂
i∈I

Ai is closed

§24.2 Subspaces of Metric Spaces

Definition 24.2 (Subspace of Metric Space) — Let (X, d) be a metric space and let
∅ 6= Y ⊆ X. Then d1 : Y × Y → R, d1(x, y) = d(x, y) ∀x, y ∈ Y is a metric on Y and
is called the induced metric on Y . (Y, d1) is called a subspace of (X, d).

Proposition 24.3

Let (X, d) be a metric space and let ∅ 6= Y ⊆ X equipped with the induced metric d1.

1. A set D ⊆ Y is open in (Y, d1) if and only if there exists O ⊆ X open in (X, d)
s.t. D = O ∩ Y .

2. A set F ⊆ Y is closed in (Y, d1) if and only if there exists C ⊆ X closed in (X, d)
s.t. F = C ∩ Y .

Proof. 1. “ =⇒ ” Let D ⊆ Y be open in (Y, d1). Then ∀a ∈ D ∃ra > 0 s.t. By
ra(a) =

{y ∈ Y : d(a, y) < ra} ⊆ D. Note By
ra(a) = Bx

ra(a) ∩ Y . So

D =
⋃
a∈D

By
ra(a) =

⋃
a∈D

[
Bx
ra(a) ∩ Y

]
=

(⋃
a∈D

Bx
ra(a)

)
︸ ︷︷ ︸

open in (X,d)

∩Y

93



Duc Vu (Winter 2021) 24 Lec 24: Mar 3, 2021

“ ⇐= ” Assume that D = O ∩ Y for O open in (X, d). Let a ∈ D ⊆ O =⇒ ∃r > 0
s.t. Bx

r (a) ⊆ O

=⇒ By
r (a) = Bx

r (a)∩Y ⊆ O∩Y = D =⇒ a is an interior point of D in the (Y, d1)

So D is open in (Y, d1).

2. F ⊆ Y is closed in (Y, d1) ⇐⇒ Y \ F is open in (Y, d1)
(1)⇐⇒ ∃O open set in (X, d)

s.t. Y \ F = O ∩ Y . But

F = Y \ (Y \ F ) = Y \ (O ∩ Y ) = Y ∩ c(O ∩ Y ) = Y ∩ (cO ∪ cY )

= (Y ∩ cO) ∪ (Y ∩ cY )︸ ︷︷ ︸
=∅

= Y ∩ cO︸︷︷︸
closed in (X,d)

Example 24.4 1. [0, 1) is not an open set in (R, | · |), but it is open in ([0, 2), | · |).
Say [0, 1) = (−1, 1) ∩ [0, 2).

2. (0, 1] is not a closed set in (R, | · |), but it is closed in ((0, 2), | · |). Say (0, 1] =
[−1, 1] ∩ (0, 2).

Proposition 24.5

Let (X, d) be a metric space and let ∅ 6= Y ⊆ X equipped with the induced metric.
The followings are equivalent:

1. Any A ⊆ Y that is open (closed) in Y is also open(closed) in X.

2. Y is open(closed) in X.

Proof. 1) =⇒ 2) Take A = Y .
2) =⇒ 1) Assume Y is open in X. Let A ⊆ Y be open in Y =⇒ ∃O open in X s.t.
A = O︸︷︷︸

open in X

∩ Y︸︷︷︸
open in X

open in X.

Proposition 24.6

Let (X, d) be a metric space and let ∅ 6= Y ⊆ X equipped with the induced metric.
For a set A ⊆ Y ,

A
Y

= A
X ∩ Y

Proof. Have:

a ∈ AY ⇐⇒ ∀r > 0 By
r (a) ∩A 6= ∅

⇐⇒ ∀r > 0 Bx
r (a) ∩ Y ∩A︸ ︷︷ ︸

=A

6= ∅

⇐⇒ a ∈ AX ∩ Y
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§24.3 Complete Metric Spaces

Definition 24.7 (Sequential Limit) — Let (X, d) be a metric space and let {xn}n≥1 ⊆
X. We say {xn}n≥1 converges to a point x ∈ X if

∀ε > 0 ∃nε ∈ N s.t. d(xn, x) < ε ∀n ≥ nε

Then x is called the limit of {xn}n≥1 and we write x = limn→∞ xn or xn
d−→

n→∞
x.

Exercise 24.1. The limit of a convergent sequence is unique.

Exercise 24.2. A sequence of {xn}n≥1 converges to x ∈ X if and only if every subsequences
of {xn}n≥1 converges to x.

Remark 24.8. If xn
d−→

n→∞
x and yn

d−→
n→∞

y, then d(xn, yn) −→
n→∞

d(x, y).

Indeed,

|d(xn, yn)− d(x, y)| ≤ |d(xn, yn)− d(xn, y)|+ |d(xn, y)− d(x, y)|
≤ d(yn, y) + d(xn, x) −→

n→∞
0

Definition 24.9 (Cauchy Sequence (MS)) — Let (X, d) be a metric space. We say
that {xn}n≥1 ⊆ X is Cauchy if

∀ε > 0 ∃nε ∈ N s.t. d(xn, xm) < ε ∀n,m ≥ nε

Exercise 24.3. Every convergent sequence is Cauchy.

Caution: Not every Cauchy sequence is convergent in an arbitrary metric space.

Example 24.10 1. (X, d) = ((0, 1), | · |) , xn = 1
n ∀n ≥ 2 is Cauchy but does not

converge in X.

2. (X, d) = (Q, | · |) , x1 = 3, xn+1 = xn
2 + 1

xn
∀n ≥ 1. Then {xn}n≥1 is Cauchy but

does not converge in X.

Definition 24.11 (Complete Metric Space) — A metric space (X, d) is complete if
every Cauchy sequence in X converges in X.

Example 24.12

(R, | · |) is a complete metric space.

Exercise 24.4. Show that a Cauchy sequence with a convergent subsequence converges.
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§25 Lec 25: Mar 5, 2021

§25.1 Complete Metric Spaces (Cont’d)

Lemma 25.1

Let (X, d) be a metric space and let ∅ 6= F ⊆ X. The following equivalent:

1. a ∈ F

2. There exists {an}n≥1 ⊆ F s.t. an
d−→

n→∞
a

Proof. 1) =⇒ 2) Assume a ∈ F . Then

∀r > 0, Br(a) ∩ F 6= ∅

For n ≥ 1, take r = 1
n . Then B 1

n
(a) ∩ F 6= ∅. Let an ∈ B 1

n
(a) ∩ F . Consider {an}n≥1 ⊆ F .

We have ∀n ≥ 1,

d(an, a) <
1

n
−→
n→∞

0 =⇒ an
d−→

n→∞
a

2) =⇒ 1) Assume ∃ {an}n≥1 ⊆ F s.t. an
d−→

n→∞
a. Fix r > 0. Then ∃nr ∈ N s.t.

d(an, a) < r ∀n ≥ nr. In particular, ∀n ≥ nr, an ∈ Br(a) ∩ F =⇒ Br(a) ∩ F 6= ∅. As r
was arbitrary, we get a ∈ F .

Theorem 25.2

Let (X, d) be a metric space. The following are equivalent:

1. (X, d) is a complete metric space.

2. For every sequence {Fn}n≥1 of non-empty closed subset of X, that is nested
(that is, Fn+1 ⊆ Fn ∀n ≥ 1), and satisfies δ(Fn) −→

n→∞
0, we have

⋂
n≥1 Fn = {a}

for some a ∈ X.

Proof. 1) =⇒ 2) Assume (X, d) is complete. As Fn 6= ∅ ∀n ≥ 1, ∃an ∈ Fn.

Claim 25.1. {an}n≥1 is Cauchy.

Let ε > 0. As δ(Fn) −→
n→∞

0, ∃nε ∈ N s.t. δ(Fn) < ε ∀n ≥ nε. Let m,n ≥ nε. Since

{Fn}n≥1 is nested, Fn ⊆ Fnε , Fm ⊆ Fnε . So

d(an, am) ≤ δ(Fnε) < ε

So this proves the claim.

As (X, d) is complete, ∃a ∈ X s.t. an
d−→

n→∞
a. For ∀n ≥ 1, {am}m≥n ⊆ Fn =⇒ a ∈

Fn = Fn. So a ∈
⋂
n≥1 Fn.
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It remains to show a is the only point in
⋂
n≥1 Fn. Assume, toward a contradiction, that

∃y 6= a s.t. y ∈
⋂
n≥1 Fn. Then y ∈ Fn ∀n ≥ 1 =⇒ d(y, a) ≤ δ(Fn) −→

n→∞
0 =⇒ y = a –

Contradiction!
2) =⇒ 1) Want to show (X, d) is complete. Let {xn}n≥1 ⊆ X be a Cauchy sequence. To
prove that {xn}n≥1 converges in X, it suffices to show that {xn}n≥1 admits a subsequence
that converges in X.
{xn}n≥1 is Cauchy =⇒ ∃n1 ∈ N s.t. d(xn, xm) < 1

22
∀n,m ≥ n1. Let k1 = n1 and

select xk1 .
{xn}n≥1 is Cauchy =⇒ ∃n2 ∈ N s.t. d(xn, xm) < 1

23
, ∀n,m ≥ n2. Let k2 =

max {n2, k1 + 1} and select xk2 .
Proceeding inductively, we find a strictly increasing sequence {kn}n≥1 ⊆ N s.t.

d(xl, xm) <
1

2n+1
∀l,m ≥ kn

For n ≥ 1, let Fn = K 1
2n

(Xkn) =
{
x ∈ X : d(x, xkn) < 1

2n

}
. Note ∅ 6= Fn = Fn and

δ(Fn) ≤ 2 · 1
2n −→n→∞ 0.

Claim 25.2. Fn+1 ⊆ Fn ∀n ≥ 1.

Let y ∈ Fn+1 =⇒ d(y, xkn+1 ≤ 1
2n+1 . By the triangle inequality,

d(y, xkn) ≤ d(y, xkn+1) + d
(
xkn+1 , xkn

)
≤ 1

2n+1
+

1

2n+1
=

1

2n

So y ∈ Fn. As y ∈ Fn+1 was arbitrary, we get Fn+1 ⊆ Fn.
By hypothesis,

⋂
n≥1 Fn = {a} for some a ∈ X. As ∀n ≥ 1, a ∈ Fn we have d(a, xkn) ≤

1
2n −→n→∞ 0

xkn
d−→

n→∞
a

{xn}n≥1 is Cauchy

 =⇒ xn
d−→

n→∞
a

§25.2 Examples of Complete Metric Spaces

Recall (R, | · |) is a complete metric space.

Lemma 25.3

Assume (A, d1) and (B, d2) are complete metric spaces. We define d : (A×B)× (A×
B)→ R via

d ((a1, b1), (a2, b2)) =
√
d2

1(a1, a2) + d2
2(b1, b2)

Then (A×B, d) is a complete metric space.

Exercise 25.1. Show that d is a metric on A×B.

Proof. Let’s show A×B is complete. Let {(an, bn)}n≥1 ⊆ A×B be a Cauchy sequence.
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Fix ε > 0, ∃nε ∈ N s.t. d ((an, bn), (am, bm)) < ε∀n,m ≥ nε.

=⇒
√
d2

1(an, am) + d2
2(bn, bm) < ε ∀n,m ≥ nε

=⇒

{
d1(an, am) < ε ∀n,m ≥ nε
d2(bn, bm) < ε ∀n,m ≥ nε

So {
{an}n≥1 is Cauchy sequence in A

{bn}n≥1 is Cauchy sequence in B

As A and B are complete metric spaces, ∃a ∈ A, ∃b ∈ B s.t. an
d1−→

n→∞
a and bn

d2−→
n→∞

b.

Claim 25.3. (an, bn)
d−→

n→∞
(a, b).

Indeed,

d ((an, bn), (a, b)) =
√
d2

1(an, a) + d2
2(bn, b)

≤ d1(an, a) + d2(bn, b) −→
n→∞

0

=⇒ (an, bn)
d−→

n→∞
(a, b).

Corollary 25.4

For n ≥ 2, (Rn, d2) is a complete metric space.

Proof. Use induction. Exc!

Exercise 25.2. Show that for all n ≥ 2, (Rn, dp) is a complete metric space ∀1 ≤ p ≤ ∞.

We define

l2 =

{xn}n≥1 ⊆ R :
∑
n≥1

|xn|2 <∞


We define a metric on l2 as follows: for x = {xn}n≥1 and y = {yn}n≥1 ∈ l2,

d2(x, y) =

√∑
n≥1

|xn − yn|2

The fact this is a metric follows from Minkowski’s inequality.

Claim 25.4.
(
l2, d2

)
is a complete metric space.
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Proof. Let
{
x(d)

}
k≥1

be a Cauchy sequence in l2.

x(1) =
{
x

(1)
1 , x

(1)
2 , x

(1)
3 , . . .

}
x(2) =

{
x

(2)
1 , x

(2)
2 , x

(2)
3 , . . .

}
. . .

x(n) =
{
x

(n)
1 , x

(n)
2 , x

(n)
3 , . . .

}
We continue in the next lecture.
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§26 Lec 26: Mar 8, 2021

§26.1 Examples of Complete Metric Spaces (Cont’d)

Recall

l2 =

{xn}n≥1 ⊆ R :
∑
n≥1

|xn|2 <∞


We define a metric d2 : l2 × l2 → R via

d2

(
{xn}n≥1 , {yn}n≥1

)
=

√∑
n≥1

|xn − yn|2

Then (l2, d2) is a complete metric space. To see this, let
{
x(k)

}
k≥1

be a Cauchy sequence

in l2. Then ∀ε > 0 ∃kε ∈ N s.t. d2

(
x(k), x(l)

)
< ε∀k, l ≥ kε. So

d2

(
x(k), x(l)

)
=

√∑
n≥1

∣∣∣x(k)
n − x(l)

n

∣∣∣2 < ε ∀k, l ≥ kε

=⇒
∑
n≥1

∣∣∣x(k)
n − x(l)

n

∣∣∣2 < ε2 k, l ≥ kε

=⇒ ∀n ≥ 1 we have
∣∣∣x(k)
n − x(l)

n

∣∣∣ < ε ∀k, l ≥ kε

So ∀n ≥ 1, the sequence
{
x

(k)
n

}
k≥1

is Cauchy in (R, | · |). As (R, | · |) is complete, ∃xn ∈ R

s.t. x
(k)
n

R−→
k→∞

xn.

Let x = {xn}n≥1

Claim 26.1. x ∈ l2 and x(k) l2−→
k→∞

x.

Note d2

(
x(k), x

)
=

√∑
n≥1

∣∣∣x(k)
n − xn

∣∣∣2. While
∣∣∣x(k)
n − xn

∣∣∣ −→
k→∞

0 ∀n ≥ 1, the limit

theorems do not apply to yield ∑
n≥1

∣∣∣x(k)
n − xn

∣∣∣2 −→
k→∞

0

Instead, we argue as follows:
Fix ε > 0. As

{
x(k)

}
k≥1

is Cauchy in l2, ∃kε ∈ N s.t. d2

(
x(k), x(l)

)
< ε∀k, l ≥ kε. In

particular,
∑

n≥1

∣∣∣x(k)
n − x(l)

n

∣∣∣2 < ε2 ∀k, l ≥ kε. So for each fixed N ∈ N we have

N∑
n=1

∣∣∣x(k)
n − x(l)

n

∣∣∣2 < ε2 ∀k, l ≥ kε
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Note liml→∞

∣∣∣x(k)
n − x(l)

n

∣∣∣ =
∣∣∣x(k)
n − xn

∣∣∣ ∀n ≥ 1, ∀k ≥ kε. By the limit theorems,

lim
l→∞

N∑
n=1

∣∣∣x(k)
n − x(l)

n

∣∣∣2 ≤ ε2 ∀k ≥ kε

=⇒
N∑
n=1

∣∣∣x(k)
n − xn

∣∣∣2 ≤ ε2 ∀k ≥ kε

Note

{∑N
n=1

∣∣∣x(k)
n − xn

∣∣∣2}
N≥1

is an increasing sequence bounded above by ε2. So

∑
n≥1

∣∣∣x(k)
n − xn

∣∣∣2 ≤ ε2 ∀k ≥ kε

=⇒ d2

(
x(k), x

)
≤ ε ∀k ≥ kε.

So x(k) l2−→
k→∞

x. Finally, x ∈ l2 ⇐⇒ d2(x, 0) <∞. But

d2(x, 0) ≤ d2(x, x(k))︸ ︷︷ ︸
≤ε ∀k≥kε

+ d2

(
x(k), 0

)
︸ ︷︷ ︸

<∞ since x(k)∈l2

<∞

Exercise 26.1. 1. Fix 1 ≤ p <∞ and let

lp =

{xn}n≥1 ⊆ R :
∑
n≥1

|xn|p <∞


We define dp : lp × lp → R via

dp

(
{xn}n≥1 , {yn}n≥1

)
=

∑
n≥1

|xn − yn|p
 1

p

Then (lp, dp) is a complete metric space.

2. Define l∞ =
{
{xn}n≥1 ⊆ R : supn≥1 |xn| <∞

}
. We define d∞ : l∞ × l∞ → R via

d∞

(
{xn}n≥1 , {yn}n≥1

)
= sup

n≥1
|xn − yn|

Show (l∞, d∞) is a complete metric space.

§26.2 Connected Sets

Definition 26.1 (Separated Set) — Let (X, d) be a metric space and let A,B ⊆ X.
We say that A and B are separated if

A ∩B = ∅ and A ∩B = ∅
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Remark 26.2. Separated sets are disjoint: A∩B ⊆ A∩B = ∅. But disjoint sets need not be
separated. For example,

(X, d) = (R, | · |) , A = (−1, 0), B = [0, 1)

Then A ∩B = ∅ but A ∩B = {0} 6= ∅ so A,B are not separated.

Remark 26.3. If A and B are separated and A1 ⊆ A and B1 ⊆ B, then A1 and B1 are
separated.

Lemma 26.4

Let (X, d) be a metric space and let A,B ⊆ X. If d(A,B) > 0 then A and B are
separated.

Proof. Assume, towards a contradiction that A and B are not separated. Then, A∩B 6= ∅
or A ∩B 6= ∅. Say A ∩B 6= ∅. Let a ∈ A ∩B.

a ∈ B
a ∈ A =⇒ d(a,A) = 0

}
=⇒ d(A,B) = 0 – Contradiction!

Remark 26.5. Two sets A and B can be separated even if d(A,B) = 0.

Example 26.6

A = (0, 1) and B = (1, 2) separated, but d(A,B) = 0.

Proposition 26.7 1. Two closed sets A and B are separated ⇐⇒ A ∩B = ∅.

2. Two open sets A and B are separated ⇐⇒ A ∩B = ∅.

Proof. Two separated sets are disjoint. So we only have to prove “ ⇐= ” in both cases.

1. Assume A∩B = ∅. Then A closed =⇒ A = A and so A∩B = A∩B = ∅. Similarly,
B closed =⇒ B = B and so B ∩A = B ∩A = ∅. So A and B are separated.

2. Assume A ∩B = ∅ =⇒ A ⊆ cB where cB is closed since B is open.

=⇒ A ⊆ cB = cB =⇒ A ∩B = ∅

A similar argument shows that B ∩A = ∅ and so A and B are separated.
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Proposition 26.8 1. If an open set D is the union of two separated sets A and B,
then A and B are both open.

2. If a closed set F is the union of two separated sets A and B, then A and B are
both closed.

Proof. 1. If A = ∅, then since D = A ∪B we have B = D and so A and B are open.

Assume A 6= ∅. We want to show A is open ⇐⇒ A = Å. Let a ∈ A ⊆ D and D
open =⇒ ∃r > 0 s.t. Br1(a) ⊆ D. A and B are separated =⇒ A ∩ B = ∅. So

a ∈ A ⊆ c(
B
)

=
˚̂cB

=⇒ ∃r2 > 0 s.t. Br2(a) ⊆ cB

Let r = min {r1, r2}. Then

Br(a) ⊆ D ∩ cB = (A ∪B) ∩ cB = A

so a ∈ Å.

This shows A is open. A similar argument shows B is open.

2. Let’s show A is closed ⇐⇒ A = A.

A ⊆ F
F closed ⇐⇒ F = F

}
=⇒ A ⊆ F = F

So A = A ∩ F = A ∩ (A ∪B) =
(
A ∩A

)︸ ︷︷ ︸
=A

∪(A ∩B︸ ︷︷ ︸
=∅

) = A.

Similarly, one can show that B = B and so B is closed.
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§27 Lec 27: Mar 10, 2021

§27.1 Connected Sets (Cont’d)

Definition 27.1 (Connected/Disconnected Set) — Let (X, d) be a metric space and
let A ⊆ X. We say that A is disconnected if it can be written as the union of two
non-empty separated sets, that is,

∃B,C ⊆ X s.t. B 6= ∅, C 6= ∅, B ∩ C = C ∩B = ∅, A = B ∪ C

We say that A is connected if it’s not disconnected.

Lemma 27.2

Let (X, d) be a metric space and let Y ⊆ X be equipped with the induced metric d1.
Then Y is connected in (Y, d1) if and only if Y is connected in (X, d).

Proof. “ =⇒ ” Assume that Y is connected in (Y, d1). We argue by contradiction. Assume

that Y is not connected in (X, d). Then ∃A,B ⊆ X, A 6= ∅, B 6= ∅, AX ∩B = B
X ∩A = ∅,

Y = A ∩B.

Claim 27.1. A,B are separated in (Y, d1). Then Y = A ∪ B is disconnected in (Y, d1).
Contradiction!

Indeed,

A
Y ∩B =

(
A
X ∩ Y

)
∩B = A

X ∩ Y ∩B︸ ︷︷ ︸
=B

= A
X ∩B = ∅

B
Y ∩A =

(
B
X ∩ Y

)
∩A = B

X ∩ (Y ∩A)︸ ︷︷ ︸
=A

= B
X ∩A = ∅

So A and B are separated in (Y, d1).
“ ⇐= ” Assume Y is connected in (X, d). We argue by contradiction. Assume that Y is

disconnected in (Y, d1). So ∃A,B ⊆ Y, A 6= ∅, B 6= ∅, AY ∩B = B
Y ∩A = ∅, Y = A ∪B.

Claim 27.2. A,B are separated in (X, d). Then Y = A ∪ B is disconnected in (X, d).
Contradiction!

Indeed,

A
X ∩B = A

X ∩ (Y ∩B) =
(
A
X ∩ Y

)
∩B = A

Y ∩B = ∅

B
X ∩A = B

X ∩ (Y ∩A) =
(
B
X ∩ Y

)
∩A = B

Y ∩A = ∅

So A and B are separated in (X, d).
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Proposition 27.3

Let (X, d) be a metric space. Then X is connected if and only if the only subsets of
X that are both open and closed are ∅ and X.

Proof. “ =⇒ ” Assume X is connected. We argue by contradiction. Assume ∃∅ 6= A ( X
s.t. A is both open and closed. Let

B = X \A 6= ∅ (since A 6= X)

B 6= X (since A 6= ∅)
B is open (since A is closed)

B is closed (since A is open)

As A and B are closed and A∩B = A∩ (X \A) = ∅, we have that A and B are separated.
So

X = A ∪ (X \A) = A ∪B
A 6= ∅, B 6= ∅, A and B are separated

}
=⇒ X is disconnected – Contradiction!

“ ⇐= ” Assume that the only subsets of X that are both open and closed in (X, d) are ∅
and X. We argue by contradiction. Assume that X is disconnected. Then ∃A,B ⊆ X s.t.
A 6= ∅, B 6= ∅, A ∩B = B ∩A = ∅, X = A ∪B. As X is open (and closed) we get that A
and B are both open (and closed).

A and B are both open and closed

A 6= ∅, B 6= ∅

}
=⇒ A = B = X

But then A ∩B = X ∩X = X ∩X = X 6= ∅. Contradiction!

Corollary 27.4

Let (X, d) be a metric space and let ∅ 6= A ⊆ X. The following are equivalent:

1. A is disconnected.

2. A ⊆ D1∪D2 with D1, D2 open in (X, d), A∩D1 6= ∅, A∩D2 6= ∅, A∩D1∩D2 = ∅.

3. A ⊆ F1∪F2 with F1, F2 closed in (X, d), A∩F1 6= ∅, A∩F2 6= ∅, A∩F1∩F2 = ∅.

Proof. We’ll show 1) =⇒ 3) =⇒ 2) =⇒ 1).
1) =⇒ 3) Assume A is disconnected. By the Proposition 27.3, there exists ∅ 6= B ( A s.t.
B is both open and closed in A. Let C = A \B. Then C 6= ∅, C 6= A, and C is both open
and closed in A.

B closed in A =⇒ ∃F1 ⊆ X closed in (X, d) s.t. B = A ∩ F1 6= ∅
C closed in A =⇒ ∃F2 ⊆ X closed in (X, d) s.t. C = A ∩ F2 6= ∅

Note that A ∩ F1 ∩ F2 = (A ∩ F1) ∩ (A ∩ F2) = B ∩ C = B ∩ (A \B) = ∅.
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3) =⇒ 2) Assume A ⊆ F1 ∪ F2, F1, F2 closed in (X, d), A ∩ F1 6= ∅, A ∩ F2 6= ∅,
A ∩ F1 ∩ F2 = ∅. Define D1 = cF1 open in (X, d) and D2 = cF2 open in (X, d).

A ⊆ F1 ∪ F2 = cD1 ∪ cD2 = c(D1 ∩D2) =⇒ A ∩ (D1 ∩D2) = ∅
∅ = A ∩ F1 ∩ F2 = A ∩ (cD1 ∩ cD2) = A ∩ c(D1 ∪D2) =⇒ A ⊆ D1 ∪D2

Let’s show A∩D1 6= ∅. We argue by contradiction. Assume A∩D1 = ∅ =⇒ A ⊆ cD1 = F1.
But the ∅ = A ∩ F1︸ ︷︷ ︸

=A

∩F2 = A ∩ F2 6= ∅. Contradiction! This shows A ∩D1 6= ∅. A similar

argument gives A ∩D2 6= ∅.
2) =⇒ 1) Assume A ⊆ D1 ∪ D2, D1, D2 open in (X, d), A ∩ D1 6= ∅, A ∩ D2 6= ∅,
A ∩D1 ∩D2 = ∅. Let

B = A ∩D1 6= ∅ open in A (since D1 is open in X)

C = A ∩D2 6= ∅ open in A (since D2 is open in X)

B ∩ C = (A ∩D1) ∩ (A ∩D2) = A ∩D1 ∩D2 = ∅

So

B and C are separated in A

A ⊆ D1 ∪D2 =⇒ A = (D1 ∪D2) ∩A = (D1 ∩A) ∪ (D2 ∩A) = B ∪ C
B 6= ∅, C 6= ∅

 =⇒

=⇒ A is disconnected in A =⇒ A is disconnected in X.

Proposition 27.5

Let (X, d) be a metric space and let A ⊆ X be disconnected. Let F1, F2 ⊆ X be closed
in (X, d) s.t. A ⊆ F1 ∪ F2, A ∩ F1 6= ∅, A ∩ F2 6= ∅, A ∩ F1 ∩ F2 = ∅. If B ⊆ A is
connected then B ⊆ F1 or B ⊆ F2.
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§28 Lec 28: Mar 12, 2021

§28.1 Connected Sets (Cont’d)

Proposition 28.1

Let (X, d) be a metric space and let A ⊆ X be disconnected. Let F1, F2 be closed in
X s.t. A ⊆ F1∪F2, A∩F1 6= ∅, A∩F2 6= ∅, A∩F1∩F2 = ∅. Let B ⊆ A be connected.
Then B ⊆ F1 or B ⊆ F2.

Proof. We argue by contradiction. Assume B * F1 and B * F2.

B ⊆ A ⊆ F1 ∪ F2

B * F1

}
=⇒ B ∩ F2 6= ∅

B ⊆ F1 ∪ F2

B * F2

}
=⇒ B ∩ F1 6= ∅

B ∩ F1 ∩ F2 ⊆ A ∩ F1 ∩ F2 = ∅
B ⊆ F1 ∪ F2


=⇒ B is disconnected – Contradiction!

Remark 28.2. One can replace the closed sets (in X) F1 and F2 by open sets (in X) D1 and
D2 and the same conclusion holds.

Proposition 28.3

Let (X, d) be a metric space and let A ⊆ X be connected. Then if A ⊆ B ⊆ A−X ,
then B is connected.

Proof. We argue by contradiction. Assume B is disconnected. Then ∃F1, F2 ⊆ X, closed
in X, s.t. 

B ⊆ F1 ∪ F2

B ∩ F1 6= ∅
B ∩ F2 6= ∅
B ∩ F1 ∩ F2 = ∅

and
A ⊆ B ⊆ F1 ∪ F2

A connected

}
=⇒ A ⊆ F1 or A ⊆ F2

Say A ⊆ F1 =⇒ B ⊆ A−X ⊆ F−X1 = F1. Then ∅ = B ∩ F1︸ ︷︷ ︸
=B

∩F2 = B ∩ F2 6= ∅.

Contradiction!
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§28.2 Connected Subsets

Proposition 28.4

Let (X, d) be a metric space and let {Ai}i∈I be a family of connected subsets of X.
Assume that each two of these sets are not separated, that is, ∀i, j ∈ I, i 6= j, we have
Ai ∩Aj 6= ∅ or Ai ∩Aj 6= ∅. Then

⋃
i∈I Ai is connected.

Proof. We argue by contradiction. Assume
⋃
i∈I Ai is disconnected =⇒ ∃B,C non-empty

separated sets s.t. ⋃
i∈I

Ai = B ∪ C

Fix i ∈ I. Then Ai ⊆ B ∪ C.

=⇒ Ai = (B ∪ C) ∩Ai = (B ∩Ai) ∪ (C ∩Ai)
B,C separated =⇒ B ∩Ai, C ∩Ai separated

Ai is connected

 =⇒


B ∩Ai = ∅

or

C ∩Ai = ∅

Then

Ai ⊆ B ∪ C
Ai ∩B = ∅

}
=⇒ Ai ⊆ C

Ai ⊆ B ∪ C
Ai ∩ C = ∅

}
=⇒ Ai ⊆ B

So for each i ∈ I, the set Ai satisfies Ai ⊆ B or Ai ⊆ C. As
⋃
i∈I Ai = B∪C =⇒ ∃i, j ∈ I

s.t. Ai ∩B 6= ∅ and Aj ∩ C 6= ∅

=⇒ Ai ⊆ B and Aj ⊆ C
B and C are separated

}
=⇒ Ai, Aj are separated – Contradiction!

Corollary 28.5

Let (X, d) be a metric space and let {Ai}i∈I be connected subsets of X. Assume
∀i 6= j we have Ai ∩Aj 6= ∅. Then

⋃
i∈I Ai is connected.

Proposition 28.6

R is connected.

Proof. Assume, towards a contradiction, that R is disconnected. Then ∃A,B non-empty
subsets of R, both open and closed in R, disjoint, such that R ⊆ A ∪B.

A 6= ∅ =⇒ ∃a1 ∈ A
B 6= ∅ =⇒ ∃b1 ∈ B
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Let α1 = a1+b1
2 ∈ R = A ∪B =⇒ α1 ∈ A or α1 ∈ B. If

α1 ∈ A let (a2, b2) := (α1, b1)

α1 ∈ B let (a2, b2) := (a1, α1)

Let α2 = a2+b2
2 ∈ R = A ∪B =⇒ α2 ∈ A or α2 ∈ B. If

α2 ∈ A let (a3, b3) := (α2, b2)

α2 ∈ B let (a3, b3) := (a2, α2)

Continuing this process, we find

• an increasing sequence {an}n≥1 ⊆ A bounded above by b1.

• a decreasing sequence {bn}n≥1 ⊆ B bounded below by a1.

So {an}n≥1 and {bn}n≥1 converge in R. Let

a = lim
n→∞

an ∈ A = A

b = lim
n→∞

bn ∈ B = B

Note that by contradiction, bn+1 − an+1 = bn−an
2 ∀n ≥ 1

=⇒ |bn+1 − an+1| =
|bn − an|

2
= . . . =

|b1 − a1|
2n

−→
n→∞

0

=⇒ |b− a| = 0 =⇒ a = b ∈ A ∩B = ∅

Contradiction!

Proposition 28.7

The only non-empty connected subsets of R are the intervals.

Proof. The argument in the previous proof extends easily to show that intervals are
connected subset of R.

It remains to show that if ∅ 6= A ⊆ R is connected, then A is an interval. Let

α = inf A (α = −∞ if A is unbounded below)

β = supA (β =∞ if A is unbounded above)

Claim 28.1. (α, β) ⊆ A. This shows A is an interval.

We argue by contradiction. Assume ∃c ∈ (α, β) \A. Let D1 = (−∞, c) open in R and
D2 = (c,∞) open in R.

A ⊆ R \ {c} = D1 ∪D2

A ∩D1 ∩D2 = ∅
A ∩D1 6= ∅ (because inf A = α < c)

A ∩D2 6= ∅ (because supA = β > c)

 =⇒ A is disconnected – Contradiction!
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Proposition 28.8

Let (X, d) be a metric space. Assume that for every pair of points in X, there exists a
connected subset of X that contains them. Then X is connected.

Proof. Assume, towards a contradiction, that X is disconnected. Then there exists two
non-empty separated sets A,B ⊆ X s.t. X = A ∪B.

A 6= ∅ =⇒ ∃a ∈ A
B 6= ∅ =⇒ ∃b ∈ B

}
=⇒ ∃C ⊆ X connected s.t. {a, b} ⊆ C

C ⊆ X = A ∪B
C connected

X closed =⇒ A,B closed

 =⇒
C ⊆ A︸ ︷︷ ︸
b∈A∩B

or C ⊆ B︸ ︷︷ ︸
a∈B∩A

A ∩B = ∅

 =⇒ Contradiction!

Let (X, d) be a metric space. For a, b ∈ X, we write a ∼ b if there exists a connected subset
of X, Aab ⊆ X s.t. {a, b} ⊆ Aab.

Exercise 28.1. ∼ defines an equivalence relation of X.

For a ∈ X, let Ca denote the equivalence class of a.

Exercise 28.2. 1. Ca is a connected subset of X.

2. Ca is the largest connected set containing a.

3. Ca is closed in X.

4. If a 6∼ b then Ca and Cb are separated.

We can decompose X =
⋃
a∈X Ca as a union of connected components.

We will continue the class with Professor Visan again in Spring 2021 through
131BH – Honors Real Analysis II.
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