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Duc Vu (Winter-Spring 2021) About the Notes

This is math 131AH & 131BH — Undergraduate Honors Real Analysis sequence at
UCLA. We meet weekly on MWEF from 10:00am — 10:50am for lectures. There are
two textbooks associated to the class, Principles of Mathematical Analysis by Rudin
and Metric Spaces by Copson. Keep in mind that there are a total of 57 lectures; the
first 28 are for 131AH, and the rest of them is from 131BH. Thus, the lecture number
would be adjusted accordingly for each class. All the typos/errors in the notes are
my responsibility, and please let me know through my email if you spot any of them.
Additional details with regard to note taking in live lecture and other course notes can
also be found at my blog site.
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§1 ‘ Lec 1: Jan 4, 2021

§1.1 Logical Statments & Basic Set Theory

Let A and B be two statements. We write
o A if A is true.

e not A if A is false.

e A and B if both A and B are true.

e Aor Bif Ais true or B is true or both A and B are true (inclusive “or” — it is
not either A or B).

e A = B: if (A and B) or (not A) — We read this “A implies B” or “If A then
—_—

B”. In this case, B is at least as true as A. In particular, a false statement can
imply anything.

Example 1.1

Consider the following statement: If x is a natural number (i.e., z € N = {1,2,3,...},
then > 1. In this case, A = “z is a natural number”, B = “x > 1”. Taking z = 3,
wegetal — T. Takingz=nwweget F — T. If =0, we get FF — F.

Example 1.2

Taking

Consider the statement: If a number is less than 10, then it’s less than 20.

N~

A B

number =5, T = T
=15, F =T
= 25, F = F

We write A <= B if A and B are true together or false together. We read this as “A
——

is equivalent to B” or “A if and only if B”. Compare these notions to similar ones from
set theory. Let X is an ambient space. Let A and B be subsets of X. Then

Truth table:

A°={r e X;z ¢ A}
ANB={r € X;x € A and z € B}
AUB={rzeX;z € Aorxe€ Borz € AN B}

A C B corresponds to A = B

A=1B A << B
A|B|lntA|AandB|AorB|A — B|A < B
T|T F T T T T
T|F F F T F F
F|T T F T T F
F|F T F F T T

12
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Example 1.3
Using the truth table show that A = B is logically equivalent to (not A) or B.

A = B | not A | (not A)or B

esllesl N el e
|l et s los)

=3[ =l =
=3[ = = =
=3[ =l =

Homework 1.1. Using the truth table prove De Morgan’s laws:

not (A and B) = (not A) or (not B)
not (A or B) = (not A) and (not B)

Compare this to
(AN B)° = A°UB°
(AUB) = A°NB°

Exercise 1.1. Negate the following statement: If A then B.
Solution:

not(A = B) = not ((not A) or B)
= [not(not A) and (not B)]
= A and (not B)

The negation is “A is true and B is false”.

Example 1.4

Negate the following sentence: If I speak in front of the class, I am nervous.
I speak in front of the class and I am not nervous.

Quantifiers:
e V reads “for all” or “for any”
e Jreads “there is” or “there exists”

The negation of VA, B is true is 94 s.t. B is false.
The negation of 3A, B is true is VA, B is false.

Example 1.5

Negate the following: Every student had coffee or is late for class.

V student (had coffee) or (is late for class)

3 student s.t. not[(had coffee) or (is late for class)]

3 student s.t. not (had coffee) and not (is late for class)

Ans: There is a student that did not have coffee and is not late for class.

13
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§2 ‘ Lec 2: Jan 6, 2021

§2.1 Mathematical Induction

The natural numbers — N = {1,2,3,...}; they satisfy the Peano axioms:

Nl) 1eN

N2) f ne Nthenn+1e€N

)
)
N3) 1 is not the successor of any natural number.
)
)

N4) If n,,m € Nsuch that n+1=m+ 1 then n =m
N5) Let S C N. Assume that S satisfies the following two conditions:
(i) 1e8
(ii) If ne€ Sthenn+1€ S
Then S = N.

Axiom Nb5) forms the basis for mathematical induction. Assume we want to prove that
a property P(n) holds for all n € N. Then it suffices to verify two steps:

Step 1 (base step): P(1) holds.

Step 2 (inductive step): If P(n) is true for some n > 1, then P(n + 1) is also true, i.e.,
P(n) = P(n+1)Vn > 1.

Indeed, if we let

S ={n € N: P(n) holds}

then Step 1 implies 1 € S and Step 2 implies if n € S then n +1 € S. By Axiom N5 we
deduce S = N.

14
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Example 2.1

Prove that
n(n+1)2n+1)

6

Solution: We argue by mathematical induction. For n € N let P(n) denote the
statement

124224+ . +n2= Vn € N

n(n+1)(2n+1)

124224+ . . +n2= o

Step 1 (Base step): P(1) is the statement

1-2-3
6

12 =

which is true, so P(1) holds.
Step 2 (Inductive step): Assume that P(n) holds for some n € N. We want to know
P(n+ 1) holds. We know

24+ an?e nn+1)2n+1)
6

Let’s add (n + 1)? to both sides of P(n)

n(n+1
P+, .. +n2+(n+1)?2= ( + (n+1)2

™o
S

.

=

So P(n + 1) holds.
Collecting the two steps, we conclude P(n) holds Vn € N. O

15
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Example 2.2

Prove that 2" > n? for all n > 5.

Solution: We argue by mathematical induction. For n > 5 let P(n) denote the
statement 2" > n?.

Step 1 (base step): P(5) is the statement
32=2">5=25

which is true. So P(5) holds.

Step 2 (Inductive step): Assume P(n) is true for some n > 5 and we want to prove
P(n+1). We know

2" > n?
Let us manipulate the above inequality to get P(n + 1)
2" > n?
2"l S o2 =(n+1)24+n?-2n—1
2l > (n+1)2 4+ (n—1)2-2

Asn>5wehave (n—1)2-2>42-2=14>0. So
2n+1>(n+1)2

So P(n + 1) holds.
Collecting the two steps, we conclude that P(n) holds ¥n > 5. O

Remark 2.3. Each of the two steps are essential when arguing by induction. Note that
P(1) is true. However, our proof of the second step fails if n =1: (1-1)2-2= -2 <0.
Note that our proof of the second step is valid as soon as

n—12%2-2>0 <= n—-12>2 <= n—-1>2 < n>3

However, P(3) fails.

16
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Example 2.4

Prove by mathematical induction that the number 4™ + 15n — 1 is divisible by 9 for
all n > 1.

Solution: We’ll argue by induction. For n > 1, let P(n) denote the statement that
“4™ 4 15n — 1 is divisible by 9”. We write this 9/(4" + 15n — 1).

Step 1: 41 +15-1—1 =18 =9 - 2. This is divisible by 9, so P(1) holds.

Step 2: Assume P(n) is true for some n > 1. We want to show P(n + 1) holds.

4" L 15(n4+1) —1=4(4" + 15n — 1) — 60n + 4 + 15n + 14
=4(4" +15n — 1) — 45n + 18
= 4(4" + 15n — 1) — 9(5n — 2)
By the inductive hypothesis, 9/(4" + 15n — 1) = 9/4(4™ + 15n — 1). Also
9/9 (5n — 2). So
~—_——

= 9/ [4(4" + 15n — 1) — 9(5n — 2)]

So P(n + 1) holds. Collecting the two steps, we conclude P(n) holds Vn € N. [

17
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Example 2.5

Compute the following sum and then use mathematical induction to prove your
answer: forn >1

! + ! + = oo r =
1-3 35 5.7 7 (2n—-1)2n+1)
‘o 1 _ 1] 1 1
Solution: Note that @n=T)@nTT) = 2 [2n_1 — 2n+1} VYn>1. So
1 n 1 o " 1 _ 1 1+1 W 1 1
1-3 3.5 77 @2n—-12n+1) 211 3 37 2n-1 2n+1

For n > 1, let P(n) denote the statement

L S 1 _on
1-3 3.5 77 2n—-1)@2n+1) 2n+1

Step 1: P(1) becomes 15 = 1, which is true. So P(1) holds.
Step 2: Assume P(n) holds for some n > 1. We want to show P(n + 1). We know

1 n o 1 _n
-3 777 2n-1D2n+1) 2n+1
) 1 :
Let’s add O EnE3) to both sides
L 1 __n 1
1-3 777 2n+1)2n+3) 2n+1  (2n+1)(2n+3)

2n? +3n+1
(2n+1)(2n + 3)
_ (n+1)(2n+1)

(2n+1)(2n + 3)

_n+1
C 2n+3
So P(n + 1) holds.
Collecting the two steps, we conclude P(n) holds for Vn > 1. O

18
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§3 ‘ Lec 3: Jan 8, 2021

§3.1 Equivalence Relation

The set of integers is Z=NU{0} U{—n:n € N}.

Definition 3.1 (Equivalence Relation) — An equivalence relation ~ on a non-empty
set A satisfies the following three properties:

e Reflexivity: a ~ a,Va € A

e Symmetry: If a,b € A are such that a ~ b, then b ~ a

e Transitivity: If a,b,c € A are such that a ~ b and b ~ ¢, then a ~ c.

- J

Example 3.2

= is an equivalence relation on Z.

Example 3.3

Let g € N,g > 1. For a,b € Z we write a ~ b if ¢/(a — b). This is an equivalence
relation on Z. Indeed, it suffices to check 3 properties:

e Reflexivity: If a € Z then a —a = 0, which is divisible by ¢. So ¢/(a —a) <~
a~ a.

e Symmetry: Let a,b € Z such that a ~ b <= ¢/(a — b) which means there
istskeZst.a—b=k b—a= —k q. b— b~ a.
exists k € Z s.t. a qg = a q. So q/(b—a) < a
€z
e Transitivity: Let a,b,c¢ € Z such that a ~band b~ ¢, a ~b < q/(a —

b)) = Ine€Zst.a—b=qg-n. Andb~c < q/(b—c¢) = Im e Zs.t.
b—c=q-m. So, we must have a —c=¢q(n+m). Sog/(a—c) <= a~c.
~——

EZL

§3.2 Equivalence Class

Definition 3.4 (Equivalence Class) — Let ~ denote an equivalence relation on a
non-empty set A. The equivalence class of an element a € A is given by

Cla)={bcA:a~0b}

19
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\

Proposition 3.5 (Properties of Equivalence Classes)

Let ~ denote an equivalence relation on a non-empty set A. Then
1. a€ C(a) Vae A
2. If a,b € A are such that a ~ b, then C(a) = C(b).

3. If a,b € A are such that a ¢ b, then C(a) N C(b) = 0.

4. A= c
g Usea Cla) )

Proof. 1. By reflexivity, a~a Va€ A = a € C(a) Va € A.

2. Assume a,b € A with a ~ b. Let’s show C(a) C C(b). Let ¢ € C(a) be arbitrary.
Then a ~ ¢ (by definition). As a ~ b (by hypothesis), which implies b ~ a (by
symmetry). By transitivity, we obtain b ~ ¢ = ¢ € C(b). This proves that
C(a) C C(b).

A similar argument shows that C (b) C C'(a). Putting the two together, we obtain
C(a) = C(b).

3. We argue by contradiction. Assume that a,b € A are such that a ¢ b, but
C(a)NC(b) # 0. Let c € C(a) N C(b).
ceCla) = ar~c
ceCb) = b~c = c~b (by symmetry)

By transitivity, a ~ b. This contradicts the hypothesis a «¢ b. This proves that if
a 4 then C(a) N C(b) = 0.

4. Clearly, C(a) C A Va € A, we get
UJc@ca
acA

Conversely, A = (J,ca {a} € Ugea C(a). Putting everything together, we obtain
A=U,eaCla). O

Example 3.6

Take ¢ = 2 in our previous example: for a,b € Z we write a ~ b if 2/(a — b). The
equivalence classes are

C0O)={a€Z:2/(a—0)}={2n:necZ}
Cl)={{a€Z:2/(a—1D}={2n+1:n€eZ}
Z=C0)ucC(1)

Let F' = {(a,b) € ZxZ:b#0}. If (a,b),(c,d) € F we write (a,b) ~ (c,d) if ad =
be.

Example 3.7
(172) ~ (2’4) ~ (3a6) ~ (_4a _8)

20
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Lemma 3.8

~ is an equivalence relation on F'.

Proof. We have to check 3 properties:
o Reflexivity: Fix (a,b) € F. As ab = ba we have (a,b) ~ (a,b)
e Symmetry: Let (a,b), (¢, d) € F such that

(a,b) ~ (¢,d) <= ad=bc <= cb=da <= (c,d) ~ (a,b)

e Transitivity: Let (a,b), (¢, d), (e, f) € F such that (a,b) ~ (¢,d) and (c,d) ~ (e, f).

(a,b) ~ (¢,d) <= ad =bc = adf = bcf
(¢,d) ~ (e, f) <= cf =de = cfb=deb

= adf = deb = \cL(af—be):O, so af =be <= (a,b) ~ (e, f).
£0
O

For (a,b) € F, we denote its equivalence class by §. We define addition and multiplication
of equivalence classes as follows:

a c ad+bc'a & ac

b d” " bd b d b
We have to check that these operations are well-defined. Specifically, if (a,b) ~ (a’,b)
and (c,d) ~ (¢, d’) then

(ad + be,bd) ~ (a'd + b V'd") (1)
(ac,bd) ~ (a'c,b'd) (2)

Let’s check (1). We want to show
(ad + be)b/'d' = bd(a'd + b'c)
We know

(a,b) ~ (a',V) < ab =bd" | -dd
(c,d) ~ (d,d') < cd =dd |- b

Adding the two (after multiplying the two terms) together, we have

ab'dd’ + cd'bb’ = ba'dd' + dc'bb’
(ad + be)b/'d' = bd(a'd + b'c)

This proves addition is well defined.

The set of rational numbers is

Q:{%mmmeF}

21
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§4 ‘ Lec 4: Jan 11, 2021

§4.1 Field & Ordered Field

(Definition 4.1 (Field) — A field is a set F' with at least two elements with two
operators: addition (denoted +) and multiplication (denoted -) that satisfy the
following

A1l) Closure: if a,b € F thena+b e F

A2) Commutativity: if a,b € F thena+b=0b+a

A4

)
)
A3) Associativity: if a,b,c € F then (a+b) +c=a+ (b+¢)
) Identity: 30 € F'st. a+0=0+a=aVa € F

)

A5) Inverse: Va € F3(—a) € Fst. a+(—a)=—-a+a=0

Closure: if a,b € F thena-b € F

=

1

=

2) Commutativity: if a,b € F thena-b=1b-a

M4

)
)
M3) Associativity: if a,b,c € F then (a-b)-c=a-(b-c)
) Identity: 31 € Fst. a-1=1-a=aVac F

)

M5) Inverse: Va € F\{0}3a ' € Fst.a-al=a1l-a=1

D) Distributivity: if a,b,c € F then (a+b)-c=a-c+b-c
- J

Example 4.2
(N, +,-) is not a field. A4 fails.

Example 4.3
(Z,+,-) is not a field. M5 fails.

Example 4.4
(Q, +, ) is a field.

(Hw ]

Recall: a
Q= {7 (@b ezx@\{0h}

where § denotes the equivalence class of (a,b) € Z x (Z\ {0}) with respect to the

equivalence relation
(a,b) ~ (¢,d) <= a-d=b-c

Note 2 = 2 because (1,2) ~ (2,4). We defined
ad + be

¢ a.c
d  bd b d bd

_l’_

SallES!
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Additive identity ¢ equivalence class (0,1).

Multiplicative identity % equivalence class of (1,1).

Additive inverse: § € Q has inverse —¢

b

a

Multiplicative inverse: 4 € Q\ {9} has inverse

Proposition 4.5
Let (F,+,-) be a field. Then

1. The additive and multiplicative identities are unique.
2. The additive and multiplicative inverses are unique.

3. If a,b,c € F's.t. a+ b= a+ cthen b = c. In particular, if a + b = a then
b=0.

3. Ifa,b,ce Fst. a#0and a-b=a-cthen b=c. In particular, a # 0 and
a-b=a then b=1.

4. a-0=0-a=0VacF.
5. If a,b € F then (—a)-b=a-(-b) = —(a-b)
6. If a,b € F then (—a)-(—=b)=a-b

\_ 7. If a-b=0thena=0or b=0. )

Proof. 1. We’ll show the additive identity is unique. Assume

0,0 € Fst VacFd0T0=0+ra=a ()
a+0=0+a=a (i)

Take a = 0’ in (i) and @ = 0 in (ii) to get

0+0=0 ,
vio=of "7

2. We'll show that the additive inverse is unique. Let a € F. Assume 3(—a),d’ € F
s.t.
—a+a=a+(—a)=0
ad+a=a+d =0
We have

A3,A4

(@' +a)+(—a) =0+ (—a) = d + (a+(—a)) = —a
g a,—|—O:—a % a = —a

3. Assume a+b=a+c |+ (—a) to the left
—a+(a+b)=—-a+(a+c¢)
2 (—ata)+b=(—ata)+c
A 04+b=0+c 22 p=c

Soifa+b=a=a+0, then b =0.
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4,
a0 0r02a-0+a-0& a0=0
0- a2 040 -a=0-a+0-a % 0.a=0
P 5@ _ .
5. (—a)-b+a-b=(-a+a) =0-b =0 = (—a)-b= —(a-b). Similarly,
a-(=b)=—(a-b).

6. (~a) - (=) + [~(a-0)] 2 (~a) (=5) + (~0) - b 2 (-a)(=b+ 1) £ (~a) -0 D0,

So (—a)-(—=b) =a-b.

7. Assume a-b = 0. Assume a # 0. Want to show b = 0. As a # 0 then Ja=! € I

st.a-at=a'ta=1.

a-b=0 |-a"! to the left

a_l-(a-b):a_l-OMé@(a_l-a)-b:()g1-b=0£>b:0 O

/Definition 4.6 (Order Relation) — An order relation < on a non-empty set A
satisfies the following properties:

e Trichotomy: if a,b € A then one and only one of the following statement
holds: a <bora="borb<a.

e Transitivity: if a,b,c € A such that a < b and b < ¢, then a < c.
\_ J

Example 4.7
For a,b € Z we write a < b if b — a € N. This is an order relation.

Notation: We write
a>bifb<a
a<bif [a<bora=>h
a>bifb<a

/Definition 4.8 (Ordered Field) — Let (F,+,-) be a field. We say (F,+,) is an\
ordered field if it is equipped with an order relation < that satisfies the following

01) if a,b,c € F such that a < b then a +c < b+ c.

02) if a,b,c € F such that a <band 0 < cthena-c<b-c. y

Note:
To check something is an ordered field, we have to check that it satisfies the properties of J

order relation and ordered field.

24



Duc Vu (Winter-Spring 2021) 131AH Lectures

§5 ‘ Lec 5: Jan 13, 2021

§5.1 Ordered Field (Cont’d)

Proposition 5.1
Let (F,+,-,<) be an ordered field. Then,

1. a>0 <= —a<0.
2. If a,b,c € F are such that a < b and ¢ < 0, then ac > be.

3. If a € F\ {0} then a® = a-a > 0. In particular, 1 > 0.

9 4. If a,b € F are such that 0 < a < bthen 0 < b~ ! < oL )

Proof. 1. Let’s prove “ = 7. Assume a > 0.

2 a+(—a)>0+(—a)A2>40>—a

Let’s prove “ <— 7. Assume —a < 0

01 A5,A4
— —a+a<0+a = 0<a

2. Assume a < band ¢ <0

a<b 02
o1 = a-(—¢)<b-(—c)
c<0 = —c>0

A g+ (ac+ be) < —be + (ac + be)

842 (—ac+ ac) + be < —be + (be + ac)

B0 4 pe < (=bc + be) + ac

A4, A5
== bc< 0+ ac

A4
= be < ac

3. By trichotomy, exactly one of the following hold:

02
a>0 = a-a>0-a = a>>0

or
2
a<0 :)> a-a>0-a = a’>>0

4. First we show that if a > 0 then a~! > 0. Let’s argue by contradiction. Assume
Ja € F s.t. a>0but a=! < 0. Then

a>0
. B a0 22 1<
a <0

This contradicts (3). So if @ > 0 then a=! > 0.
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Say

0<a<b |-at-b7!

20 (et b H<a (@t b )<b-(@t b

MAP <@ at) bt <b (b 0 Y

M1 bt < (b-b7Y) at

M4, M5 _ _
== 0<bl<1-a!

M4 _ _
= 0<bl<al

/
Theorem 5.2 (Ordered Field)
Let (F,+,-) be a field. The following are equivalent

1) F is an ordered field.

2) There exists P C F that satisfies the following properties

01’) For every a € F one and only one of the following statements holds:
ac€Pora=0or —ac€ P.

02’) If a,b€ Pthena+be Panda-be P.
- J

Proof. Let’s show 1) = 2). Define P = {a € F': a > 0}. Let’s check (01’). Fix a € F.
By trichotomy for the order relation on F' we get that exactly one of the following
statements is true:

e a>0 — acP.
e ¢ =0.
e 0<0 = —a>0 = —a€eP.

Let’s check (02’). Fix a,b € P.

a€P = a>0 01 A4
— a+b>04+b=0>0 — a+beP
beP — b>0

And

acEP = a>0 |b 02
= a-b>0-b=0 = a-be P
beP — b>0

Let’s check that 2) = 1).
For a,b € F we write a < b if b — a € P. Let’s check this is an order relation.

e Trichotomy: Fix a,b € F. By 01’) exactly one of the following hold:

b—acP = a<b
b—a=0 = a=b
—(b—a)eP = a—beP = b<a
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e Transitivity Assume a,b,c € F's.t. a <band b < ¢

a<b—=>b—acP 02/
= (b—a)+(c—b)eP = c—a€P = a<c
b<c = c—beP

Now let’s check that with this order relation, F' is an ordered field. We have to check 01
and 02.

01) Fixa,b,ce Fst.a<b = b—a€P = b—acP = (b+c¢)—(a+c) €
P = a+c<b+ec

02) Fix a,b,c€ Fst. a<band 0 <c

a<b=b—a€eP 02’ D
= (b—a)-c€e P = bc—aceP = a-c<bc
0<c= c—-0=ceP

O]

We extend the order relation < from Z to the field (Q, +,-) by writing § > 0 if a-b > 0.
Let’s see this is well defined. Specifically, we need to show that if 7 = 7, i.e., (a,b) ~ (c,d)
and a-b > 0 then c-d > 0.

(a,b) ~(¢,d) = a-d=b-c |-(ad)
— 0 < (ad)? = (ab) - (cd) where a -d # 0

— cd>0 = E>O

0 < (ab) - (cd)
d

0<ab

Let P = {% €Q: 7> 0}. By the theorem, to prove that Q is an ordered field, it suffices
to show that P satisfies (01”) and (02’).

27
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§6 ‘ Lec 6: Jan 15, 2021

§6.1 Least Upper Bound & Greatest Lower Bound

(Definition 6.1 (Boundedness — Maximum and Minimum) — Let (F,+,-,<) be an\
ordered field. Let ) # A C F. We say that A is bounded above if M € F s.t.
a < MVa € A. Then M is called an upper bound for A. If moreover, M € A then
we say that M is the maximum of A.

We say that A is bounded below if 9m € F' s.t. m < aVa € A. Then m is called a
lower bound for A. If moreover, m € A then we say that m is the minimum of A.
We say that A is bounded if A is bounded both above and below.

J

Example 6.2
A= {1—i— # in e N} bounded.

e 3 is an upper bound for A.

° % is the maximum of A.

e 0 is a lower bound for A ; 0 is the minimum of A.

Example 6.3
A= {x €eQ:0<zt< 16} bounded.

e 2 is the maximum of A.

e -2 is the minimum of A.
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Example 6.4
A= {x €Q:2%2< 2} bounded.

e 2 is an upper bound for A.
e -2 is lower bound for A.

e A does not have a maximum. Indeed, let x € A. We'll construct y € A s.t.

Yy > . Deﬁney:x—i—é_jj.
T€EA = 2eQ = 2-2224+2€Q 9 — g2 )
) €Q = yeQi)

Also note

>0

242>0 = >0 2+ x

2—z2>0(as € A) } 2 — 2
—
2+x

2 2 2
Soy = x+ 21‘5 > z (ii). Let’s compute y? = <2w+z;jx2_w2) =" +;l2$j4lgizx I
2(x? — 2)
(z +2)?
—_———

<0

2+ . So y? < 2. (iii)

So collecting (i) — (iii) we get y € A and y > =.

Homework 6.1. Show that the maximum and minimum of a set are unique, if they
exist.

(Definition 6.5 (Least Upper Bound) — Let (F,+,, <) be an ordered field. Let () 75\
A C F and assume A is bounded above. We say that L is the least upper bound of A
if it satisfies:

1. L is an upper bound of A.

2. If M is an upper bound of A then L < M.

We write L = sup A and we say L is the supremum of A.

Lemma 6.6

The least upper bound of a set is unique, if it exists.

Proof. Say that a set ) # A C F, A bounded above, admits two least upper bounds
L, M.

L is a least upper bound g L is an upper bound for A.

M is a least upper bound & M < L.

M is a least upper bound for A g M is an upper bound for A = L is a least
upper bound for A g L<m.SoL=M. O
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[Definition 6.7 (Greatest Lower Bound) — Let (F,+,-, <) be an ordered field. Let\
() # A C F and assume A is bounded below. We say that [ is the greatest lower bound
of A if it satisfies

1. [ is a lower bound of A.

2. If m is a lower bound of A then m <.

We write [ = inf A and we say [ is the infimum of A.

J

Homework 6.2. Show that the greatest lower bound of a set is unique if it exists.

(Definition 6.8 (Bound Property) — Let (F,+,-, <) be an ordered field. Let\

) #S C F. We say that S has the the least upper bound property if it satisfies
the following: For any non-empty subset A of S is bounded above, there exists a
least upper bound of A and sup A € S.

We say that S has the greatest lower bound property if it satisfies the following:

\V(/J #+ A C S with A bounded below, Jinf A € S. y

Example 6.9

(Q,+,, <) is an ordered field.

() # N C Q, N has the least upper bound property. Indeed if ) # A C N, A bounded
above, then the largest elements in A is the least upper bound of A and sup A € N.
N also has the greatest lower bound property.

Example 6.10

(Q,+,-,<) is an ordered field.

0 # Q C Q, Q does not have the least upper bound property.

Indeed, ) # A = {z€Q:z>0and 2> <2} C Q. A is bounded above by 2.
However, sup A = v/2 ¢ Q.

Proposition 6.11 A

Let (F,+,-, <) be an ordered field. Then F' has the least upper bound property if
and only if it has the greatest lower bound property. )

Proof. (=) Assume F has the least upper bound property. Let () # A C F bounded
below. WTS dinf A € F'. A is bounded below =— dIm € F s.t. m < aVa € A. Let
B={be F :bis alower bound for A}. Note B # () (as m € B), B C F', B is bounded
above (every element in A is an upper bound for B) and F' has the least upper bound
property =—> sup B € F.

Claim 6.1. sup B = inf A (to be proven in Lec 7). O
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§7‘ Lec 7: Jan 20, 2021

§7.1 Least Upper & Greatest Lower Bound (Cont’d)

Proof. (Cont’d of proposition 6.11)
Claim 7.1. sup B = inf A.
Method 1:

e sup B is a lower bound for A. Indeed, let a € A. We know that a > b Vb € B.
sup B is the least upper bound for B = a > sup B. As a € A was arbitrary, we
conclude that supB < a Va € A and so sup B is a lower bound for A.

e If [ is a lower bound for A then [ < sup B. Well, [ is a lower bound for A — [ € B
and sup B is an upper bound for B. So [ < sup B.

Collecting the two bullet points above, we find that inf A = sup B.

Method 2: Let ) # A C F s.t. A is bounded below. Let B = {—a:a € A}. Note
B C F by A5. B # () because A # (). B is bounded above: indeed if m is a lower bound
for A then —m is an upper bound for B.

m<a Va€eA —= —-m>-a Vae€A

I has the least upper bound property. Altogether, it implies that sup B € F'. In Hw3,
you show —sup B =inf A € F (by A5). O

Homework 7.1. Prove the “ <" direction.

/Theorem 7.1 (Existence of R) b

There exists an ordered field with the least upper bound property. We denote it R
and we call it the set of real numbers. R contains Q as a subfield. Moreover, we
have the following uniqueness property: If (F,+,-, <) is an ordered field with the
least upper bound property, then F' is order isomorphic with R, that is, there exists
a bijection ¢ : R — F' such that

) oz +_y) =¢(@) & o)
R F
ii) ¢(33\',_,y) = ¢(f’3)\'/¢(y)
R F
iii) If 2 _<_y then ¢(x) _<_o(y)
N : § 7

Theorem 7.2 (Archimedean Property)
R has the Archimedean property, that is, Vx €¢ R dn € Ns.t. x <n.

Proof. We argue by contradiction. Assume

drg e Rst. zg>n VYneN
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Then ) # N C R. N is bounded above by zy. R has the least upper bound property
— dL =supN e R.

L =supN

—> L — 1 is not an upper bound for N
L-1<L

= dng € Ns.it. ng >L—1. SosupN =L <ng+1 €N, which is a contradiction. [

I Remark 7.3. Q has the Archimedean property.

If » € Q is s.t. then choose n = 1. For r € Q is s.t. r > 0, then write r = g with
p,q € N. Choose n = p + 1 since % <p+1.

Corollary 7.4
If a,b € R such that a > 0,b > 0 then there exists n € Ns.t. n-a > b.

o~
|

Proof. Apply the Archimedean Property to x = ¢

Corollary 7.5
If € > 0 there exists n € N s.t. % < €.

|—=
U

Proof. Apply the Archimedean property to x = £

Lemma 7.6
For any a € R there exists N € Z s.t. N <a < N +1.

Proof. Case 1: a =0. Take N = 0.
Case 2: a > 0. Consider A={ne€Z:n<a} CR, A#((0 € A). Aisbounded above
by a. R has the least upper bound property. So 4L = sup A € R.

L—-—1<L=supA = L —1isnot an upper bound for A
— IN€Ast. L—-1<N = L<N+1but L=supA,soN+1¢ A. So

NeA — N<a

s N<a<N+1
N+1¢A:>N+1>a} =1

Case 3: a <0 = —a>0.Bycase2,In€Zst. n<—a<n+l. So—n—-1<a< —n.
Ifa=-n,let N=-nandso N <a<N+1 Ifa< -nlet N=-n—1and so
N<a<N-+1. ]

Definition 7.7 (Dense Set) — We say that a subset A of R is dense in R if for
every z,y € R such that z < y there exists a € A such that z < a < y.
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Lemma 7.8
Q is dense in R.

Proof. Let z,y € R such that z < y. Since y — x > 0 by corollary 7.5, dn € N s.t.
%<y—az - %+x<y.
Consider nx € R. By the lemma 7.6, dm € Z s.t.

m m+1
m<nr<m+l = —<zr<
n n
Then
m—+ 1 m 1 1
T < =—+-—<z+-—-<y
n noon n
+1
w where ™= € Q. O
Lemma 7.9

R\ Q is dense in R.

33



Duc Vu (Winter-Spring 2021) 131AH Lectures

§8 ‘ Lec 8: Jan 22, 2021

§8.1 Construction of the Reals

Recall that we say a set A C R is dense if for every =,y € R s.t. = < y, there exists
a € Ast. z<a<y. Last time we proved

Lemma 8.1
Q is dense in R.

Remark 8.2. For any two rational numbers r1,79 € Q s.t. 1 < ro, there exists s € Q s.t.
ry <s<ry.

Indeed if 71 < 0 < 79 then we may take s = 0.
Assume 0 < 7y <79. Write 71 = §,a2 = § with a,b,¢,d € N. Take s = “ggjc € Q. Note
ry < s<ro.

r <s < %<% <— 2ad < ad+bc < ad < bc < %<§ — r1 <71y

Homework 8.1. Construct s in the remaining cases.

Lemma 8.3
R\ Q is dense in R.

Proof. Let 2,y € Rst. 1 <y = x4+ 2 <y++2. QisdenseinR. So g € Q s.t.
(since Q is dense in R)

THV2<qg<y+V2 = r<q—V2<y

Claim 8.1. ¢ — V2 € R\ Q.
Otherwise, Ir € Q s.t. ¢ — V2 =r = 2 =¢—r € Q, contradiction. O

Theorem 8.4 (Construction of R(Existence))

There exists an ordered field with the least upper bound property. We denote it R
and call it the set of real numbers. R contains Q as a subfield.

Proof. We will construct an ordered field with the least upper bound property using
Dedekind cuts. The elements of the field are certain subsets of Q called cuts.
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(Definition 8.5 ((Dedekind) Cuts) — A cut is a set o C Q that satisfies: A
a) 0 #a#Q
b) If g€ aand p € Q s.t. p < g then p € .

9 c¢) For every q € a there exists r € a s.t. r > ¢ (o has no maximum) y

Intuitively, we think of a cut as Q N (o0, a). Of course, at this point we haven’t yet
constructed R. ..
Note that if Q 5 ¢ ¢ « then ¢ > pVp € . Indeed, otherwise, if Ipy € a s.t. ¢ < py then
by ii) we would have ¢ € a. Contradiction.
We define
F ={a:«aisacut}
We will show F' is an ordered field with the least upper bound property.
Order: For a, 8 € F' we write a < § if « is a proper subset of 3, that is, « C 3

e Transitivity: If o, 8,7 € Fst. a<fand f<ythena TSy = al vy =
a <.

e Trichotomy: First note that at most one of the following hold
a<fB, a=p§ <«

To prove trichotomy, it thus suffices to show that at least one of the following holds:
a< B,a= 0,6 < a We show this by contradiction: Assume a < 5, = 5,8 < «
all fail. Then we have

& p . {Elpeoz\ﬁ

a# B
8¢ a dgepf\a

Now
péps = p>r Vrep (1)
§¢a = qg>s Vs€a (2)

Take r = ¢ in (1) and s = p in (2) to get p > g > p. Contradiction!

So < defines an order relation on F.
Let’s show that F' has the least upper bound property. Let () # A C F bounded above

by 8 € F'. Define
v=a

Claim 8.2. v € F.
o v # () because A # () and ) # o € A.

e v # QQ because [ being an upper bound for A

— f>aVa €A — [DaVae A — 3D UQZV
acA

Asf7#Q = 7 #Q.
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eletgevyandlet pe Qst. p<q. Asgqey = da € Ast. g € aand
Qap<qg Sopea = pen.

eletgey = JacAst.qgea = Irecast. ¢g<r. Thenr €~yand qg<r.
Collecting all these properties, we deduce v € F.
Claim 8.3. v = sup A.

e Note a CYWae€e A = a<~Va € A. So v is an upper bound for A.

e Let § be an upper bound for A = 6§ > aVa € A = § O aVa € A. So
0D Upecnax=v = d>1.

Addition: If «, 8 € F we define

at+B={p+qg:pcaandqecpf}
Let’s check Al, namely, a + 5 € F.

e Note a+ =0 because a #() = Ip € a and 8 # 0 = Jq € S which implies
p+qea+p.

e Note a+ 3 # Q. Indeed aQ = JIr € Q\a = r > pVp € a and
B#Q = Fse€Q\ S = s> q¥q € S which implies  + s > p + ¢Vp € a and
Vgef = r+s¢a+p

e letrca+pfandseQst. s<r

rea+pf = r=p+ q for some p € a and some q € 3
s<r = s<p+q = s—p< q = s—pefP
——
€Q €p

Sos=p+(s—p) €a+p.
o Letrea+pf = r=p+ q for some p € o and some q € 3

aceF = I ecas>p >p

GeF — 3q'€,39q’>q} — as3p+d€ef>ptqg=r

Sop+¢d ea+pfst.p+q >r.

So collecting all these properties, we see that o + 3 € F. O
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89 ‘ Lec 9: Jan 25, 2021

§9.1 Construction of the Reals (Cont’d)
Recall: A cut is set o € Q such that

i) 0#£a#Q

ii) If ¢ € a and p € Q with p < ¢ then p € «

iii) Ve a Ireast. r>q.

We defined
F ={a:«aisacut}

We defined an order relation on F' : for o, € F we write a < f <= o C 5. We
showed that F' has the least upper bound property with respect to this order relation.
We defined an addition operation on F : for o, 5 € F'

a+B8={p+q:p€aandqepf}

We checked A1l. Let’s check A2: for a, 5 € F

atB={p+q:p€aqep}
={q+p:q€p,pea} (since addition in Q satisfies A2)

Let’s check A3: for a, 5,7 € F
(a+B)+y={s+r:sca+p,re~}
={lp+a+r:peaqgep,ren}
={p+(¢g+r):p€a,qge p,r €} (since addition in Q satisfies A3
={p+t:peateB+}
=a+(B+7)

Let’s check A4: Let 0* = {qg € Q: ¢ < 0}.
Claim 9.1. 0* € F

e Note 0* # () since —1 € 0*

e Note 0" = Q since 2 ¢ 0*

e et ge0* andlet p€ Q and p < ¢

el = ¢g<0

= p<0
p<gq

So p € 0*.
e letgel = ¢g<0 = IreQst. g<r<0. Sore0*andr >gq.

Collecting all these properties we got 0* € F.

Claim 9.2. a4+ 0* =« Va € F.
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e Let’s check a + 0* C au.
Let r € a+0* = r =p+ q for some p € o and some g € 0*. ¢ € 0* — ¢ < 0.

So
Qor=p+qg<p
— rcuw
peEacF

As r was arbitrary in a + 0" we find o 4+ 0* C a.

o Let’'s check a Ca+0*. Let pe a = Jr € as.t. v > p. We write

~—

p=_1r +(p—-r)€a+0"
——
ca c0*

As p € a was arbitrary, this shows a C o + 0*

Collecting everything, we get o + 0* = «a.
Let’s check A5: Fix a € F. Define

B={¢qeQ:IreQwithr>0>—qg—1r¢a}

Claim 9.3. S € F.

e Note that 8 # 0.

Asa#Q = Jp € Q\a. Then —(p+1) € B because —[—(p+1)] -1 =
p+1l)—1=p¢a.

e Note that 8 # Q.
Asa# () = 3Jp € a. Then —p ¢ B because Vr € Q,r > 0 we have

—(=p)—r=p-r<p

pEacF }:>p—7“€oz

So —p ¢ B.
eletgefandlet peQs.t. p<gq
gep = IreQr>03—gq-—-r¢a = —q—r>sVsca
So—p—r>—q—r>sVsca = —p—ré¢a = pep.
e Let ¢ € B. Want to find s € 3 s.t. s> q.
geB = IreQosr>0and —qg—1r¢a«
A I
= q+g€6
Let s =q+ 5.
Collecting all the properties, we get 5 € F.

Claim 9.4. o+ 5 =0*.
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e Let’s check that o+ 8 C 0*.

Let sca+p = s=p+qgwithpcaandqge . Sinceqge f = FIre€Q,r>
0>5—q-r¢a = —q—r>p Sop+q<—-r<0. Sos=p+qec0" Thus
——

€Q
a+ 3 C0".

e Let’'scheck 0" Ca+ 6. Let r € 0" —= reQ,r <0.
Claim 9.5. 3N e Ns.t. N- (=) € a but (N +1) (—%) ¢ o

Let’s prove this by contradiction. Assume

{n(ff) :nEN} Cuao
2
We will show that in this case Q C « thus reaching a contradiction.

2
Fix ¢ € Q. By the Archimedean property for Q, In € Ns.t. n > ¢ - <—> So
T

N——
€Q

n-(=3) >q

n'(—;)EOéEF} — 4c«a

As g € Q was arbitrary, this shows Q C «. Contradiction!

Write r = N (—g) +(N +2) - £ and note that (N 4 2)% € 3 since
€
«

~(N+2)- s —2=(N+1)-(-3) ¢a

As r € 0* was arbitrary, this shows 0* C a + 5. Thus, a + 8 = 0*.

Let’s check 01: ifa, B,y € Fs.t. a < f = a C fthena+y C f+7 = a+y < +7.
WE define multiplication on F' as follows: for o < § € F with o > 0, 8 > 0 we define

a-f={¢e€Q:q<r-sforsome0<reaandsomel<sefj}
For a € F we define « - 0* = 0*. We define

(—a)-(=p), fa<0,6<0
a-f=9—[(-a)-4],ifa<0,8>0
—[a-(=p)], ifa>0,8<0

You checked M1 through M5 for positive cuts. This extends readily to all cuts.
Homework 9.1. Check (D) and (02).

We identify a rational number r € Q with the cut
" ={qeQ:qg<r}

One can check that

r<s < r*<s*
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§10 ‘ Lec 10: Jan 27, 2021

§10.1 Sequences

.

Definition 10.1 (Sequence) — A sequence of real number is a function f :
{n€Z:n>m} — R where m is a fixed integer (m is usually 0 or 1). We
write the sequence as f(m), f(m+1), f(m+2),... or as {f(n)},>, or as {fu}, >

Example 10.2 1. {a’"}nZI with a, =3 — % bounded, strictly increasing.
2. {an}, >, with a, = (=1)" bounded, not monotone.
3. {an},>o with a, = n? bounded below, strictly increasing.

4. {an},>o with a, = cos () bounded, not monotone.

.

\

Definition 10.3 (Boundedness of Sequence) — We say that a sequence {ay},~; of
real numbers is bounded below /bounded above/bounded if the set {a, : n > 1} is
bounded below/bounded above/bounded.

We say that the sequence {a,},~ is

e increasing if a, < apy1 Yn>1

strictly increasing if a, < apy1 Vn > 1

decreasing if a,, > ap11 Vn >1

strictly decreasing if a, > apy1 Vn > 1.

monotone if it’s either increasing or decreasing

J

To define the notion of convergence of a sequence, we need a notion of distance between
two real numbers.
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[Definition 10.4 (Absolute Value) — For z € R, the absolute value of x is A

z,x >0
|z =
—x,x <0
This function satisfies the following:
1. |z] >0 VzeR
2. jz|=0 <= =0

3. [+ y| <|z|+ |y| Vz,y € R (the triangle inequality)

b |c — b c
lc —b] <|c—al|+]a—b|
N~ Y>> Y~

Tty x Y

4. |-yl =|z|-|y| Vo,yeR
\_ J

Homework 10.1. ||z]| — |y|| < |z —y| Va,y € R.

We think of |z — y| as the distance between x,y € R.

Definition 10.5 (Convergent Sequence) — We say that a sequence {a,},,~; of real
numbers converges if

JaeR>Ve>0In. NS a, —al| <e Vn>n,

We say that a is the limit of {a,},~,; and we write a = lim,_, ay or a, [t

- J

Lemma 10.6

The limit of a convergent sequence is unique.

Proof. We argue by contradiction. Assume that {a,}, -, is a convergent sequence and
assume that there exist a,b € R a # b and a = lim,,_, a, and b = lim,, o ay.

€ €
e R

{ | { |
A} T

a b

Let 0 < e < @ (we can choose such an € because Q is dense in R)

a= lim a, = 3ni(e) € N> |a, —a| < e¥n > ny(e)

n—oo

b= lim a, = Ins(e) € N3 |a, — b < eVn > nay(e)

n—oo
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Set ne = max {ni(e),n2(e)}. Then for n > n. we have
b—al=1b—an+ap,—a| <|b—an|+|a, —al <2e<|b—al
H<,—/ H<,—/

Contradiction! O

Exercise 10.1. Show that the sequence given by a, = %Vn > 1 converges to 0.

Proof. Let € > 0. By the Archemedean Property, dn. € N 5 n, > % Then for n > n,
we have

By definition, lim;, o 2 = 0. O
Exercise 10.2. Show that the sequence given by a,, = (—1)"Vn > 1 does not converge.

Proof. We argue by contradiction.

Assume Ja € R s.t. a = lim, oo (—1)".
Let 0 < e < 1. Then dn. € N s.t.

la — (—1)"| <e ¥n>ne

Taking n = 2n, we get |a — 1| < € and n = 2n, + 1 we get |a + 1] < e. By the triangle
inequality,
2=1+1=[l-a+a+1|<|[l1—a|+|a+1]<2e<2

Contradiction! O

Lemma 10.7

A convergent sequence is bounded.

Proof. Let {an}n21 be a convergent sequence and let @ = lim, oo ap.
dni eNsSla—ay| <1 Yn>mn
So |an| < lan —al +|a| <14 ]a|] VYn >mn;. Let
M = max {1+ |a|, |a1|, |az2], ..., |an, — 1|}

Clearly, |a,| <M Vn >1so0 {an},>; is bounded. O

Theorem 10.8

Let {an}n21 be a convergent sequence and let a = lim,,_, a,. Then for any k£ € R,
the sequence {kay},~, converges and lim, . ka, = ka.

42



Duc Vu (Winter-Spring 2021) 131AH Lectures

Proof. If k =0 then ka,, =0 Vn >1. Solim, ,ocka, =0=Fk-a
Assume k # 0. Let € > 0.
Aside: want to find n. € N s.t. Vn > n,

|kan, — ka| < € <= ]an—a\<‘%

As a = limy, o @y, Ine i € N sit.

€

— <
lan =l < 7

Vn > Nek

So\kan—ka\:]k|-|an—a\<|k\-ﬁ:€_ 0
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§11 ‘ Lec 11: Jan 29, 2021

§11.1 Convergent and Divergent Sequences

~

Theorem 11.1 (Properties of Convergent Sequences)

Let {an},~; and {b,},~; be two convergent sequences of real numbers and let
a = lim,, s an and b = lim,,_, b,. Then

—

. the sequence {a,, + bn}n21 converges and lim,_,o(an, + by) = a + b,

2. the sequence {a, - by} converges and lim, o (anb,) = a - b,

3. if a # 0 and a, # 0Vn > 1 then {ai} . converges and lim,,_, . ai =1
n ni n

a’

4. if a # 0 and a,, # 0Vn > 1, then {Z—”} . converges and lim,, oo — b
n Jn>

an  a

5. for any k € R, {k:an}n21 converges and lim,,_,, ka, = ka (from theorem 10.8)

- J
Proof. 1. Let € > 0.
Aside(Goal): Want to find n. € N s.t. Vn > n,

[(a+b)— (an +by)| <€
|(a+b) — (an +bn)| <la—ap|+|b—0by| <e€
—_—— N——

< <

(S
wla

Now back to the main proof, as lim,, o a, = a,Ing(€) € N s.t.
la — ay| <§ Vn > ny(e)

As limy, o0 by = b, Ina(e) € N s.t.

Ib— by < % Y > na(e)

Let ne = max{ni(e),na2(e)}. Then for n > n. we have |(a + b) — (ap + by)| <
la — an| +1b —by| < § + § = €. By definition, lim,, oo (ap + b,) = a + b.
2. Let € > 0.
Aside(Goal): Want to find ne € N s.t. Vn > n,
lab — anby| < €
lab — anby| = (@ — an)b + an(b — by,)|
< @ — aul - 16|+ [an] [b — ba] < ¢

' NV
€ €
<3 <3

Take |a — a,| < m. Take M > 0 s.t. |ap| < MVn>1
.

2M

Now, back to the main proof, as {an}n21 converges, it is bounded. Let M > 0
such that |a,| < M ¥Yn > 1. As lim,, ar, = a,3ni(€) € N s.t.

|b—by| <

la —an| < =/ Vn > ny(e)
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As limy, o0 by = b, Ina(e) € N s.t.
€
2M
Set n. = max {ny(€),n2(¢)}. For n > n, we have
lab — anby| = [(a — an)b + an(b — by)|
< 10— n] bl + Jan] o — b

|b—bp| < Vn > na(e)

€ € € €
</ bW+ M ——<-+-=
s Mg <gtaTe
By definition, lim;,,_,(a,by,) = ab.
3. Let e > 0.
Aside(Goal): Want to find n. € N s.t. Vn > n,
1 1
—-——|<e€
a ap
1 1 —
- — = lan —al <e€
a  Gn laf - |an|

lan, — a| < €lal - |an| ("M — NONONO)

Now, back to the proof, as a = lim,_,« ay, Ini(a) € N s.t.

|a—an|<g‘ Yn > ny
Then, for all n > n; we have
la| _ |a]
> la| = |a — an| > |a| — = = &
an] > la] ~ la — @] > |a] — 19 = 1
As a = limy, 00 ap, Inz(€, a) s.t.
2
la —an| < 6|;’ Vn > na(e, a)
Let n = max {ni(a),na2(e,a)}. For n > n. we have
1 1 la —an|  €lal® 2
- — — | = . — =€
a an| |af-lan|  2la] |al
By definition, lim,, o a% = é
O
Example 11.2
Find the limit of
n®+5n +8

im ———————
n—oo 3n3 + 2n2 + 7

which can rewritten as

y 1+ 5 +%  1+5limL +8limL%
11m =
nwoo 342 4 T 34 2lim L4 7lim &

which is equivalent to
_1+5-0+8-0 1

- 34+42-0+7-0 3
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Theorem 11.3 (Monotone Convergence)

Every bounded monotone sequence converges.

Proof. We’ll show that an increasing sequence bounded above converges. A similar
argument can be used to show that a decreasing sequence bounded below converges. Let
{an},~; be a sequence of real numbers that is bounded above and a,41 > a, Vn > 1.
As () # {a, : n > 1} C R is bounded above and R has the least upper bound property,
Ja € R s.t. a =sup{a,:n>1}

Claim 11.1. a = lim, o -

Let € > 0. Then a — € is not an upper bound for {a, : n>1} = 3dn. € N s.t.
a — € < ap,. Then for n > n, we have

a—e<ap, <a,<a<a+te <<= |a,—a|<e
This proves the claim. ]

Homework 11.1. Prove for the decreasing sequence.

Definition 11.4 (Divergent Sequence) — Let {a,} be a sequence of real numbers.
We write lim,,_, a,, = 0o and say that a, diverges to 400 if VM >0, dny € N
s.t. ap > M Vn > ny.
We write lim,,_, o, a, = —00 and say that a,, diverges to —co if VM <0 dny € N
s.t. ap, <M Vn > nyy.

Homework 11.2. 1. Show that lim, o (/n + 1) = cc.

2. Show that the sequence given by a,, = (—1)"n Vn > 1 does not diverge to oo or
to —oo.

3. Let {an},~, be a sequence of positive real numbers. Show that

lim a, =0 < lim — =0
n—o00 n—00 Qy,
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§12 ‘ Lec 12: Feb 1, 2021

Example 12.1

Show that lim,,_ % = 0.
Aside: Want to find nys € N s.t. Vn > njs we have

n?+1

M
n+3 -

So 2 2 2
n°+1 n n n
> >—=—=—>M
n—+3 n+3 4n 4

Now, back to the main proof, let M > 0. By the Archimedean property there exists

ny € N s.t.
ny > 4M
Then for n > n; we have
2 2 2
n°+1 n n n _ Ny
> >—=—2>—>M

n+3 n+3 4n 4 = 4

By the definition, lim, ’f—_irgl = 0.
§12.1 Cauchy Sequences

Definition 12.2 (Cauchy Sequence) — We say that a sequence of real numbers

{an},~; is a Cauchy sequence if

Ve>0 3dne €N st la, —ap| <€ VYn,m > n,

Theorem 12.3 (Cauchy Criterion - Sequence)

A sequence of real numbers is Cauchy if and only if it converges.

We will split the proof of this theorem into various lemmas and propositions.

Proposition 12.4

Any convergent sequence is a Cauchy sequence.

Proof. Let {a,},~, be a convergent sequence and let a = lim;_,oc a,. Let € > 0. As
n—00 N
an — a, In € N s.t.
€
la —ap| < 3 Vn > ne

Then for n, m > n., we have

€ €
|an—am|§|an—a|+|a—am|<§+§:6 O
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Lemma 12.5

A Cauchy sequence is bounded.

Proof. Let {ay},~; be a Cauchy sequence. Then In; € Ns.t. |a, —am| <1 Vn,m >
ni. So, taking m = ny, we get

lan| < lan, |+ lan — any| < lan,|+1 Vn>m

Let M = max {|ai|, |az], ..., |an, 1|, |an, + 1|}. Clearly, |a,| < M Vn > 1. O

Definition 12.6 (Subsequence) — Let {ky},~; be a sequence of natural numbers
st. ki > 1 and ky41 > ky, VYn > 1. Using induction, it’s easy to see that
kn>n Vn>1.If {an},~, is a sequence, we say that {ay, },~, is a subsequence

of {an}nzl'

Example 12.7

The following are subsequences of {a,},>; :

{a2n}n21 ) {a2n—1}n21 ) {an2}n21 ) {apn}nz]_

where p,, denotes the n'® prime.

(Theorem 12.8 A

Let {an},~; be a sequence of real numbers. Then lim, o a, = a € RU {£oo} if
and only if every subsequence {ay, },~; of {an},~, satisfies lim, o ay, = a.

J

Proof. We will consider a € R. The cases a € {+o00} can be handled by analogous
arguments.
“«<—=7Takek,=n VYn>1

“ = 7 Assume lim,_, a, = a and let {ay, },~, be a subsequence of {a,}, . Let

€>0. As a, =% a, dn. € Ns.t.

la —a,| <€ VYn>n,
Recall that k,, > nVn > 1. So for n > n. we have k,, > n > n. and so
la —ak, | <e VYn>n,

By definition,

lim ag, =a O
n—oo

Proposition 12.9

Every sequence of real numbers has a monotone subsequence.

48



Duc Vu (Winter-Spring 2021) 131AH Lectures

Proof. Let {a},~, be a sequence of real numbers. We say that the n*™ term is dominant
if
ap > Gy VYm>n

We distinguished 2 cases:
Case 1: There are infinitely many dominant terms:

Then a subsequence formed by these dominant terms is strictly decreasing.
Case 2: There are none or finitely many dominant terms. Let N be larger than the
largest index of the dominant terms. So Vn > N a,, is not dominant. Set k; = N, ai, =
an. ag, is not dominant = Jky > ky s.it. ag, > ag,, ke > ki = N = ayg, is
not dominant == 3k3 > kg s.t. ar, > ax,. Proceeding inductively we construct a
subsequence {ag, },~; s.t.
- ag, ., = ag, Vn=>1 O

Theorem 12.10 (Bolzano — Weierstrass)

Any bounded sequence has a convergent subsequence.

Proof. Let {an},~; be a bounded sequence. By the previous proposition, there exists
{a, },,~,; monotone subsequence of {an},~;. As {an},~, is bounded, so is {a, },~-
As bounded monotone sequences converge, {a, },~; converges. O

Corollary 12.11

Every Cauchy sequence has a convergent subsequence.

Lemma 12.12

A Cauchy sequence with a convergent subsequence converges.

Proof. Let {an}n21 be a Cauchy sequence s.t. {ay, },~; is a convergent subsequence. Let
a = lim, o0 ag,. Let € > 0. As ap, "= a, Iny(e) s.t. |a—ay,| < $Vn > ni(e). As
{an}, >, is Cauchy, Ina(€) s.t. |an — am| < §Vn,m > na(€). Let ne = max {ny(€), na(€)}.
Then for n > n. we have
€ €
la —ap| < la—ag,| + |ag, — an| < 5—}-5 =¢
for k, > n > n.. By definition,

lim a, =a
n—oo

Combining the last two results, we see that a Cauchy sequence of real numbers converges.
O
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§13 ‘ Lec 13: Feb 3, 2021

§13.1 Limsup and Liminf

Let {an},~; be a bounded sequence of real numbers (convergent or not). The asymptotic
behavior of {a,},~, depends on sets of the form {a, : n > N} for N € N.

As {an}, >, the set {a, :n > N} (where N € N is fixed) is a non-empty bounded
subset of R.

As R has the least upper bound property (and so also the greatest lower bound
property), the set {a, : n > N} has an infimum and a supremum in R.

For N > 1, let uy = inf{a, : n > N} and vy = sup{a, : n > N}. Clearly, uy <
vy VN >1.For N>1,{a,:n>N}2D{a,:n>N+1}

inf {a, : n > N} <inf{a,:n>N+1}
sup{a, :n >N} >sup{a, :n>N+1}

So uy <unt1 and vn41 <oy VN > 1. Thus {un} s is increasing and {vn}y~q is
decreasing. Moreover, VN > 1 we have

U1§u2<...§uN§UN§...§U2§U1

So the sequences {un}y>; and {vy}ys; are bounded. As monotone bounded sequence
converges, {un}y~; and {vn}y~; must converge.
Let - -

u= lim uy =sup{un: N > 1} :=supun
N—o0 N

= 1l = inf :N >1} =inf
v= lim vy =in {vn > 1} inf oy
From (*), we see that
upy < UN VM,N >1
= lim uy <oy VN > 1
M—o0

— u <oy VN > 1
= u < lim vy
N—oo
— u <0
Moreover, if lim,,_,o @y, €xists, then for all N > 1, we have
uy =inf{a, :n >N} <a, <sup{a,:n>N}=vy Yn>N
So
— uy < lim a, < vy
n—oo

— u= lim uy < lim a, < lim vy =v
N—oo n—oo N—oo
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Definition 13.1 (limsup and liminf) — Let {an},>; be a sequence of real numbers.
We define

limsupa, = lim sup{a,:n > N} = lim vy = infuy = inf sup a,
n—00 N—o0 N—o0 N N p>N

liminfa, = lim inf{a,:n > N} = lim uy =supuy = sup inf a,
n—o0 N—oo N—oo N N n>N

with the convention that if {a},~; is unbounded above then

lim sup a,, = oo
n—o0

and if {a},~, is unbounded below then

lim inf a,, = —©
n—o0

- J

Remark 13.2.

inf {a,, : n > 1} <liminfa, <limsupa, <sup{a,:n > 1}
n—0o0 n—00

where liminf, .. a, is the smallest value that infinitely many a, get close to and
lim sup,,_, ., an is the largest value that infinitely many a,, get close to.

Example 13.3

an =3+ % = limp o0 ap =3 = liminf, , a, =limsup,,_,,, a, =3
inf {a, :n>1}=2+#3

7
sup{an:nZI}zi#?)

/Theorem 13.4 A
Let {an},~; be a sequence of real numbers.
1. If limy,— 00 @y, exists in R U {£o00}, then liminf a,, = limsup a,, = limy, ;o0 ay.
2. If liminf a,, = limsup a,, € R U {£o0}, then lim,_,~ a, exists and
ILm an = liminf a,, = limsup a,,
n—00 n—00 =69
\\ 4
Proof. 1. We distinguish three cases.
Case i) limy,_,« a, = —00. It’s enough to show lim sup a,, = —oo since lim inf a,, <

limsupa,. Fix M < 0. As lim, ,oc ap = —00, dnpyr € Nsit. a, <M Vn > nyy.
Then for N > njs, we have vy = sup{a, :n > N} < M. Note that when tak-
ing sup(inf), < can become < ; e.g. a, = 3 — % where a, < 3 Vn > 1 but
Sup,,>1 an = 3.

By definition, lim sup,, ,., an = limy_,oo vy = —00.

Case ii) lim,, o a;, = 00

Exercise
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Case iii) lim;, oo a, = a € R.

Fix € > 0. Then dn. € Ns.t. [a —ap| <€ Vn >ne So
a—e<ap,<a+e Vn > ne
Thus for N > n. we have

a—e<inf{a,:n>N} <sup{a,:n>N}<a+e
a—e<uy<uvy<a+te

<€
<€

—al <
VNan{WN a <

[SITORNNTEN

oy —al <

By definition,
liminf a, = limy_souny = a
limsupa, = limy_o vy = a

2. We distinguish three cases.

Case i) liminf a,, = limsup a, = —oc.

We will use limsup a,, = —oco. Fix M < 0. Then since limsup a,, = limy_o0 vy =
—00, 3Ny € Nsit. oy < M VYN > Ny Inparticular, vy, =sup{a, :n > Ny} <
M

= ap, < M Vn > Ny

By definition, lim, . a, = —o0.

Case ii) liminf a,, = limsupa, = 0o exercise

Case iii) liminf a, = limsupa, =a € R.

Fix e > 0.

a =liminfa, = lim uy = 3INi(e) e N> Juy —a|<e VN >N
N—o0

Soa—e<uy, =inf{a,:n>Ni} <a+e

== a—ec<ap Vn > Nj
And

azlimsupan:]\}gnoov]v = dNa(e) e N> |oy —al] <e VN >N,

Soa—e<wy, =sup{a,:n > No} <a-+e

= ap,<at+e Vn> Ny
Thus for n > max { N1, Na} we have

a—e<ap<at+e < la, —a|<e

By definition, lim,, . a, = a.
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§14 ‘ Lec 14: Feb 5, 2021

§14.1 Limsup and Liminf (Cont’d)
Recall: For a sequence {ay},; of real numbers, we define

liminf a,, = sup inf a, = lim uy where uy = inf {a, : n > N}
N n>N N—o0

limsup a,, = inf sup a, = lim vy where vy =sup{a, :n > N}
n>N N—o0

Last time, we proved that

lim a, exists in RU{£o0} <= liminfa, = limsupa,
n—oo

Theorem 14.1

Let {an},~; be a sequence of real numbers. Then there exists a monotonic sub-
sequence of {an},~,; whose limit is limsupa,. Also, there exists a monotonic
subsequence of {a,},~, whose limit is lim inf a,,.

Proof. We will prove the statement about lim sup a,,. Similar arguments can be used to
prove the statement about liminf a,,. HW!
Note that it suffices to find a subsequence of {ax, },,~; of {an},>; s.t.

lim a, = limsupa,
n—oo

As every sequence has a monotone subsequence, {ag,, }n21 has a monotone subsequence
{apkn }n21. Then as lim ag,, exists, lim,, o Qp,, ~€xists and

lim a =lima = limsupa
n—sco Pkn kn b dn

Finally, note that {ap, } ., isa subsequence of {an}, .

Let’s find a subsequence of {a,},~, whose limit is lim sup a,.
Case 1: limsup a,, = —o0.

We showed that in this case, lim, o a, = —00. Choose {a, },,~; to be {an},~-
Case 2: limsupa, =a € R.

T
.
.~
B

L~

4P

a =limsupa, = lim vy
N—o0
Then IN; € Ns.t. |a —vny| <1 VN > Nj. In particular,

a—1<ovy <a+1
= a—1<sup{a,:n> N}
= dk1 >N 3 a-1<ay
= a—1<ap <vn, <a-+1
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So |a —ag,| < 1.

As a = limy_yoo vy, INs € N s.t. |a - UN| < % VN > Ns.
Let NQ = max {Ng,kl -+ 1}

In particular,

1 1
a—35<vg <a+tgj

1 ~ 1 1
a—§<sup{an:nZN2} :>a—§<ak2§v]v2<a+§
akQZNQ s.t. a—%<ak2

So, |a — ag,| < % To construct our subsequence we proceed inductively. Assume we
have found k1 < ky < ... < ky, and ag,, ..., ag, s.t.

‘a—akj|<; Vi<ji<n

As a = limy oo vy = INp41 € Nsit. Ja—on| < n%q VN > Npi1. Let Npyq =
max { Ny 41, k, + 1}. Then

a_n—ll—l < VN, a+n—1|—1
- a_n41—1 <sup{an:n2]\~fn+1}
= dkpq1 > Nn_l,_l >k, s.t. a— n—:il—l < g,y
= a— 1 < Gk, SUNRH <a+n+1
= |ag,,, —al < nJlrl
Case 3: limsupa,, = oo. O 1 HW!
Definition 14.2 (Subsequential Limit) — Let {ay},~; be a sequence of real numbers.

A subsequential limit of {an},s, is any a € R U {&oo} that is the limit of a
subsequence of {a,}, .
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Example 14.3 1. a, =n(1+ (-1)")
The subsequential limits are
0= Jim canis

oo = lim agy,
n—oo

2. a, = cos (%)

The subsequential limits are

= lim QAen
n—oo

= lim agpy1 = lim agnys
n—oo n—oo

N RN~ =

= lim agpi2 = lim agni4
n—oo n—oo

—1 = lim A6n+3
n—00

KTheorem 14.4 A

Let {an},~; be a sequence of real numbers and let A denote its set of subsequential
limits:

A= {a € RU{%o0}: 3{a, },,~,; subsequence of {ay},~; s.t. li_>m ak, = a}
- - n—oo
Then:

1. A#0.

2. lim,, o0 ay, exists (in RU {£o0}) <= A has exactly one element.

3. inf A = liminf a,, and sup A = lim sup a,,.

Proof. 1. By the previous theorem, liminf a,, limsupa, € A. So A # (.

2. “=" Assume lim,,_, a, exists. Then if {ay, },~, is a subsequence of {a,},~q,
we have
lim ag, = lim a,
n—oo n—oo
So A = {limy,—y00 an }

“<«<=" If A has a single element, liminf a,, = lim sup a,, and so lim,, . a, exists.

3. We will prove
Claim 14.1. liminfa, < a <limsupa, Va € A.
Assuming the claim, let’s see how to finish the proof. The claim implies

e liminf a, is a lower bound for A — liminf a, < infA. On the other hand,
liminfa, € A = liminf a, > inf A. Thus, liminf a,, = inf A.

e lim sup a,, is an upper bound for A — limsup a, > sup A. But limsup a,, €
A = limsupa, <supA. Thus, limsupa, = sup A.
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Let’s prove the claim. Fix a € A = 3{ay, },>; subsequence of {a,},~; s.t.
lim, o ag, = a.

{an, :n >N} D{ag, :n>N}

= inf{a, :n >N} <inf{ag, :n> N} <sup{ag, :n> N} <sup{a,:n >N}

increasing seq increasing seq deceasing seq decreasing seq

— lim inf{a,:n > N} < lim inf{ag, :n > N} < lim sup{ag, : n > N}
N—o00 N—o0 N—o0
< lim sup{a,:n > N}
N—o0

—> liminfa, <liminfa;, <limsupay, < limsupa, O

=lim ay,, =a =limay,, =a
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8§15 ‘ Lec 15: Feb 8, 2021

§15.1 Limsup and Liminf (Cont’d)

(- )
Theorem 15.1 (Cesaro — Stolz)
Let {an},,~,; be a sequence of non-zero real numbers. Then
o c|antr| DL 12 13) an+1
lim inf < liminf |a,|» < limsup |a,|» < limsup
n n
1
In particular, if lim, . agzl exists then lim,, o |a,|" exists and
. 1 . An+1
lim |ay|™ = lim
n—00 n—oo | A
- J

Example 15.2
Find lim;, 00 /n = limy,_ nw.
If we let a, = n then )GZ—T‘ — ntl "% 1 By Cesaro — Stolz, we get {¥/n}>1

n
converges and

lim {/n=1

n—o0

Proof. We will prove inequality 3). Analogous arguments yield inequality 1). Let

1
[ =limsup |a,|™ >0

an+1

L = limsup >0

n
We want to show [ < L. If L = oo, then it’s clear. Henceforth we assume L € R. We
will prove

Claim 15.1. [ is a lower bound for the set
(Lyoo)={M eR: M > L}

Assuming the claim for now, let’s see how to finish the proof. Note (L,o0) is a
non-empty subset of R which is bounded below (by L). As R has the least upper bound
property, inf(L, co0) exists in R. In fact,

inf(L,00) =L

As [ is a lower bound for (L, c0), we must have [ < L.
Let’s prove the claim. Fix M € (L, 00). We will show

[ <M
We have M > L = limsup |“2* | = infy sup,,» y [“25
a
= dNp € N> sup UamY PV
n>No | An

a

e MY > N

Qp

- |an+1]<:ﬂl-]an| Vn > Ny
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A simple inductive argument yields

|an‘<iﬂln_Ab’aAm’ Vn > Ny

1
— |any% <M<|]\a4]\]f\‘;o|> Vn > Ny

1 1
. 1 . v an, n . an n
= ! =limsuplan[* < limsup M- (|MJ\?0|> =M lmsup (J|\4130|> (%)

Claim 15.2. For r > 0 we have lim,, rwo=1

Indeed, if r > 1

0<rn—1= r-1 < Tl
e e | n
where we use the formula a" — b" = (a — b) (a" '+ a"2b+ ... +ab" 2+ 0" ). If
r < 1, then

1 1 n—oo 1
e Y =1

’aNo‘
MNo

Taking r = in (*) we conclude that

<M O

§15.2 Series

(Definition 15.3 (Convergent/Absolutely Convergent Series) — Let {an},~; be a\

sequence of real numbers. For n > 1, we define the partial sum
Sp=a1+ ...+ ay

The series Y 2 an (Zn>1 an> is said to converge if {s,},~, converges.

We say that the series Y ° | a,, converges absolutely if the series Y7, |a,| converges.
(Note that Y7, |an| either converges or it diverges to 0o).

J

4 I
Theorem 15.4 (Cauchy Criterion - Series)
A series ZnZl a, converges if and only if
n—+p

Ve>0 IneeN>| > apf<e ¥n>nVpeN

k=n+1

. J

Proof. The series ) -, an converges <= the sequence {s}, -, converges <=
{sn},>1 is Cauchy <= Ve >0 In. € Ns.t. |sp, —s,| <e Vm,n >n.. Without loss
of generality, we may assume m > n and write m = n + p for p € N. Note

n-+p n-+p
“nl= - Yw=| 3w
k=n+1

So Zn>1 a, converges <= Ve > 0dn,. € N s.t. ‘Zk Lt ak‘ <eVn>nVpeN O
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Corollary 15.5

If Zn21 ay converges, then lim, . a, = 0.

Proof. Taking p =1, we find ), -, a, converges implies

Ve >0 3dne € Ns.t. |apy1] <e Vn>ne

O
Corollary 15.6
If Zn21 an converges absolutely, then it converges.
Proof. >, <, an converges absolutely = ) . |a,| converges.
n—+p
= VYe>0 dn.eNs.t. Z lax| <e VYn>n.VpeN
k=n+1
Note that by A inequality,
n+p n+p
Z ap| < Z lag| <e Yn>n.VpeN
k=n-+1 k=n+1
So Y ,~1 an converges by the Cauchy criterion. O
. )
Theorem 15.7 (Comparison Test)
Let )~ an be a series of real numbers with a, >0 Vn > 1.
1. If En21 an converges and |b,| < a, Vn > 1, then En21 b, converges.
2. If Y -, ay diverges and b, > a, Vn > 1, then ) - b, diverges.
_ _ J
Proof. 1. anl a, converges =—> Ve > 0dn. € N s.t.
n—+p
Z ap|l <e Yn>n.VpeN
k=n+1

Then [S3H7 bk < S0, Il < X320, ak < €9 = nVp € N, So by the

Cauchy criterion, }, - b, converges.

2 b4 ... +by>ar+...+a, =3 00 = anlbn diverges.

O
/Lemma 15.8 b
Let r € R. The series ), 7" converges if and only if |r| < 1. If [r| < 1, then
D
11—
n>0
- J
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Proof. First note that if |r| > 1, then
M=r">1 = "0
By the first corollary, ), ., 7" cannot converge. Assume now that |r| < 1. Then

=1l = 0

Also

n

k 1_,,.TL+]. n—oo 1

rre==——
1—r 1—r

k=0
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§16 ‘ Lec 16: Feb 10, 2021

§16.1 Series (Cont’d)

Theorem 16.1 (Dyadic Criterion)

Let {an},~; be a decreasing sequence of real numbers with a,, > 0Vn > 1. Then
the series ) -, a, converges if and only if the series ) -, 2"agn converges.

Proof. Forn>1let s, =Y ; jar =a1+...+ay. Forn>0let t, =Y, _, 2P agn =
a1 + 2as + ...+ 2"asn. Note that {sn}n>1 and {tn}n>0 are increasing sequences.

Thus En>l ap converges < {sn}n>1 is bounded and ), -, 2"azn converges <=
{tn}n>0 is bounded. We have to prove that {s,},>; is bounded <= {t,},5 is
bounded.

| S Y I | |
L L L T

ok 9k+1 9k+2

Consider:
2k:+1

2, @
1=2F+1

Because {ay},~; is decreasing, we get

2k:+1
(2k+1a2k+1> = a1 < Z ar < 2%age ) < 2Fag
1=2k41
n 2k+l
I I D
k=0[=2k+41
n+1 ontl

722a21<2al<tn
1

5 (tn1 —a1) < sgni1 —a1 <ty

tht1 < 289n+1 — ay
Sp < Son+1 <ty +ag asn <2Hvn > 1

N | =

If {sn},>1 is bounded = IM > 0s.t. [s,| < MVn > 1
= thy1 <2M +a; Vn2>1
If {tn},>0 is bounded = 3L > 0s.t. [t,| < LVn >0

= s, <L+a; VYn>1 O

Corollary 16.2

The series > n>1 e converges if and only if a > 1.
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n—o0

Proof. If a < 0 then n% =n"%2>1Vn > 1. In particular, n% +— 0 so Zn21 n%
cannot converge. Assume « > 0. Then {n%}n>1 is a decreasing sequence of positive
real numbers. By the dyadic criterion, a

1 1
Z o Comverges = Z 2" )" converges

n>1 n>0
2n 1—a\7™ 1—
S B S X w2
n>0 n>0 n>0
This converges <= r<1 <= 21"%<1 <<= 1-a<0 < a> 1 O
4 I
Theorem 16.3 (Root Test)
Let >~ an be a series of real numbers.
1. If lim sup |an|% < 1then ) - an converges absolutely.
2. If lim inf |an]% > 1 then ) - an diverges.
3. The test is inconclusive if lim inf \an\% <1 < limsup ]an\%. )

Proof. 1. Let L = limsup |an|%.

L<l = 1-L>00928m Ry cpsgcecl—L — L<Lte<l

1 1
So L +¢€> L = limsup |a,|" = infx sup, >y |an|™

1
= dNp € N> sup |ap|» < L+e
n>Ng

= ]an|%<L+6 Vn > Ny
= lan| <(L+€)" Vn=No

As L + € < 1, the series

S (L+er =) (L+eoth

n>No k>0
=L+ (L+e)f
k>0
= (L + E)NO ;
1—(L+e)
By the Comparison Test, >, -y, an converges absolutely and note [ai| + ... +

|(1N0—1| e R.
— Z an converges absolutely
n>1

2. Let {a, },>, be a subsequence of {a},~; such that

lim \akn\ﬁ = liminf|an\% > 1
n—oo

1
= EInOEN9|akn\W>1 Vn > ng
= |ag, | >1 Vn > ng

n—oo n—o0
= ai, /—~ 0 = a, /— 0 = Zan diverges
n>1
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. 1 . 1 q:
3. Consider a,, = ;;Vn > 1. The series ) -, a, =), 3 diverges. However,

lim W 1 Cesar%—Stolz 1 -1

n—o0 lim,, 00 /00 limy, 00 251

So liminf /a, = limsup /a, = 1. Consider now a, = #Vn > 1. The series
1
D on>10n = D51 pz converges.
However,
1 C-S 1

lim Ya, = = > =1
n—reo limy, o0 Vn? lim,,— o0 (nt1)

n2
So liminf /a, = limsup ¥a, = 1.

O
4 )
Theorem 16.4 (Ratio Test)
Let >, ~1 an be a series of non-zero real numbers.
1. If limsup aZ—:l < 1then }_, -, a, converges absolutely.
2. If liminf | #2541 > 1 then 37 -, ay, diverges.
3. The test is conclusive if lim inf % <1 < limsup “Z—:l
- J
Proof. (1) & (2) follow from the root test and the Cesaro — Stolz theorem:
lim inf | 22+ < lim inf |an|% < lim sup |an|% < lim sup fnt1
n n
For (3) consider the same examples as in the previous theorem. O

Theorem 16.5 (Abel Criterion)

Let {a,},~,; be a decreasing sequence with lim,_,ca, = 0. Let {b,},~; be a
sequence so that {d7)_; bx},~, is bounded. Then Y7 -, anby, converges.

Corollary 16.6 (Leibniz Criterion)

Let {an}n21 be a decreasing sequence with lim,_,. a, = 0. Then Zn21(—1)”an
converges.

Proof. (Abel Criterion) Let t, = > ;_, by for n > 1. As {t,},~, is bounded 3M > 0 s.t.
|tn] < M Vn > 1. We will use the Cauchy criterion to prove convergence of ) - anby.
Let € > 0. N
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Aslima, =0 = In. € Ns.t. |ay| < ﬁVan. For n > n. and p € N,

n+p

Z akbk

k=n-+1

n+p

k=n+1
n+p
= Z apty —
k=n+1
n—+p
= Z apte —
k=n+1
n—+p

k=n
n+p

=1 Y arlte — tro1)

n+p

Z apti—1

k=n+1
n+p—1

Z A1k
k=n

= Z tr (ak — Akt1) — Antn + Angpritngp

< Z Itkl lak — ap1| + lan| - [tn] + |antps1] - [tnspl

k=n
n—+p

< Z M(ay — ap1) + anM + anqpi1 M

k=n

=M (an— finipr1) + anM+ finip 1M

=2M -a, <€

64



Duc Vu (Winter-Spring 2021) 131AH Lectures

§17‘ Lec 17: Feb 12, 2021

§17.1 Rearrangements of Series

(Definition 17.1 (Rearrangement) — Let k& : N — N be a bijective function. For a
sequence {ay},~; of real numbers, we denote

An = Ag(n) = Gk,

Then ), -, @y is called a rearrangement of " -, a,

- _ - _ J

Example 17.2
1,1

_1\yn—1
Consider a,, = %Vn > 1. The series anlan = 1—%—1—% 4—|—f—f—|—7—...
Note that the sequence {%}n21 is decreasing and 1imnﬁoo% = 0. Thus, by the
Leibniz criterion, ) -, a, converges. Write the series as follows:

1 1 1 1
San=1-3+5-3 (5 5551
= 2 3 = 2% 2k +1
Note that for £ > 2

1 1 1 1

0< ok " Zh+1 W@k LD AR

Recall that the series » ; -, ﬁ converges (by the dyadic criterion). By the compari-

son test, the series 0 < > ;<5 (ﬁ = ﬁ) converges. S0 Y . ~q ap <1 — % + % = %
Consider next the following rearrangement:

1 '3 257 4 9 11 6 “'_k>1 4k -3  4k-1 2k
Then
e 1 N 1 1 8k*—2k+ 8k — 6k — (16k> — 16k +3)
4k -3  4k—1 2%k (4k — 3)(4k — 1) - 2k
8k —3 8k 4

T @k —3)@k—1)2k "k 3k-2k 3K

As the series >, 5% converges, we deduce that the series

3 (R S S
4k—3 " 4dk—1 2k

k>1

converges. Moreover,

Z 1+1_i711
4k —3  4k—1 2k/) 3
1
3

1
<4l<: 3 4/<:—1 2k>

—> converge to two different numbers

k>1

1+

V

N = l\’)\)—*

o1
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/Theorem 17.3 (Riemann) R

Let ), -, an be a series that converges, but it does not converge absolutely. Let
—00 < a < B < oo. Then there exists a rearrangement » -, @, with partial sums
$n = Y p_q i such that

liminf 5,, = o and limsup §,, =

- J

Proof. For n > 1 let

>
by = Lot Jn an 20y sy
2 0, a,<0
_ >
Cn:|an| an _ 0, an=>0 — ¢, >0
2 An, ap <0

Claim 17.1. The series > -, b, and ) -, ¢, both diverge.
Note > 7 1 b —> i ¢k = > py(bp —ck) = > p_; ar which converges as n — co.
n n n
— SuY ety
k=1 k=1 k=1

So {> 41 br},~; converges if and only if {d ) ¢}, -, converges. On the other hand
if 37,51 bn and 37, o ¢, both converged, then -

n

Zbk+zck22(bk+ck) :Z\ak\
k=1 k=1

k=1 k=1

converge as n— 00

which diverges as n — oo — contradiction. Thus Zn21 b, and Zn21 ¢, diverge to
infinity.

Note also that ), -, ay converges = lim, o0 @y, = 0 and so limy, o0 by, = limy, 00 ¢ =
0 >

Let By, Bo, Bs, ... denote the non-negative terms in {an}n21 in the order which they
appear.
Let C1,Cs,Cs3, ... denote the absolute values of the negative terms in {ay},~, in the

order in which they appear.
Note >~ By differs ) -, b, only by terms that are zero. So ) .4 B, = oo.
Similarly, 3 o, C,, differs 3" - ¢, only be terms that are zero. So >, -, C,, = o0.
Choose sequences {ay,},5; and {B,},~; so that B

n—,oo
a, — «

Bn =3 B
ap < PBn Yn>1
B1>0

| | | | |
T T T T T

1 1
T T T
a; oy a3 -« B - Pz B2 B

Next we construct increasing sequences {ky},~; and {jn},~, as follows:

|

66



Duc Vu (Winter-Spring 2021) 131AH Lectures

1. Choose k1 and j; to be the smallest natural numbers so that

x1 = By + By + ...+ By, > (1 (this is possible because Z B, = )
n>1
y1=Bi1+...+ By, —C1 —Cy— ... = Cj, < (this is possible sinceZC = 00)

n>1

2. Choose ko and jo to be the smallest natural numbers so that

JIQZBl—I-...—I—Bkl—Cl—...—le—{—Bk1+1+...—|—Bk2>52
y2231+---+Bk1*lecjj+Bk1+1+~--+Bk2*Cj1+1*'--*0j2<a2
and so on.

Note that by definition,
xn_Bkn < Bn = Bn_Bkn </6n<xn§ﬁn+Bkn

n—oo

= |z, — Bp | <Bp, —0

~~— | — "

= lim z, =0
n—oo

Similarly,

yn +Cj, > ap = ap —Cj, <yp <oy <a,+Cj,

= |yp — an SCjnnifO
~—

n—rQo

= lim y, =«

n—oo

Finally, note that x,, and y,, are partial sums in the rearrangement
Bl+B2+---+Bkl —Cl—...—le +Bk1+1+---+Bk2 —Cj1+1—...—Cj2+...

By construction, no number less than « or larger than 5 can occur as a subsequential
limit of the partial sums. ]

Theorem 17.4

If a series ), a, converges absolutely, then any rearrangement >, - @, converges
to Zn21 G-

Proof. Forn > 11let s, = > p_jak, $n = Y p_q Gk. As >, -, a, converges absolutely,
Ve > 0dn, € N s.t.

n—+p
Z lay| <€ VYn>nVpeN
k=n+1
Choose N, sufficiently large so that aq,...,a,, belong to the set {a1,as,...,a,}. Then
for n > N, the terms a1, ...,a,, cancel in s, — 5,
n
S — 8n| < S lakl+ D laxl <e (ap¢{ai,...,an})
k=n+1 1<k<n

J/

finitely many terms and all indices are >n.

As lim;,, s 5, = s € R we deduce that lim,,_.o 5, = s. O
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§18 ‘ Lec 18: Feb 17, 2021

§18.1 Functions

(Definition 18.1 (Function) — Let A, B be two non-empty sets. A function\
f:A— B is a way of associating to each element a € A exactly one element in B
denoted f(a).

A B A
. i : iB
not a function A function

A is called the domain of f.
B is called the range of f.

J

f(A) = {f(a): a € A} is called the image of A under f. If A’ C A then f(4') =
{f(a): a € A’} is called the image of A" under f.

If f(A) = B then we say that f is surjective/onto. In this case, Vb € B Ja € A s.t.
fla) =b.

We say that f is injective if it satisfies: if a1,a2 € A such that f(a1) = f(az2) then
ai = as.

We say that f is bijective if f is injective and surjective.

Remark 18.2. The injectivity and surjectivity of a function depend not only on the law f,
but also on the domain and the range.

Example 18.3
f:Z —Z, f(n) = 2n which is injective but not surjective.

f(n)=f(m) = 2n=2m = n=m

g:R = R, g(z) = 2z bijective.

Example 18.4
f:]0,00) — [0,00), f(z) = 2% bijective, g : R — R, g(x) = x? not injective, not
surjective.

(Definition 18.5 (Composition) — Let A, B, C be non-empty sets and f: A — B,\

g : B — C be two functions. The composition of g with f is a function gof : A — C,

\(QOf)(a)zg(f(a))- )
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Remark 18.6. The composition of two functions need not be commutative.

f:Z—=7, f(n)=2n

g:Z—1Z, gln)=n+1
gof:Z—17Z, (gof)(n)=g(f(n))=2n+1
fog:Z—17, (fog)(n)=f(9(n))=2(n+1)

Exercise 18.1. The composition of functions is associate: if f: A = B, g: B — C,
h: C — D are three functions, then

(hog)of=ho(gef)

(Definition 18.7 (Inverse Function) — Let f: A — B be a bijective function. The\
inverse of f is a function f~!: B — A defined as follows: if b € B then f~1(b) = a
where a is the unique element in A s.t. f(a) = b. The existence of a is guaranteed
by surjectivity and the uniqueness by injectivity.

So
fof7':B—>B
(fof =0
and
flof:A— A
g (fof)(a)=a )

Exercise 18.2. Let f : A — B and g : B — C be two bijective functions. Then
go f: A— C is a bijection and

Definition 18.8 (Preimage) — Let f: A — B be a function. If B’ C B then the
preimage of B' is f~1(B’') = {a € A: f(a) € B'}. The preimage of a set is well
defined whether or not f is bijective. In fact, if B C B s.t. B'N f(A) = () then
fH(B) =0.

Exercise 18.3. Let f : A — B be a function and let A1, Ao C A and By, Bo C B. Then
L f(A1UAg) = f(A1) U f(A2)
2. f(A1NAs) C f(A1)N f(A2)
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3. fUB1UBs) = f 4B U fY(By)
4. f~HB1NBy) = f~H(B1) N fH(Be)
5. The following are equivalent:
i) f is injective.
i) f(A1NA2) = f(A1)N f(Az) for all subsets Aj, Ay C A.

§18.2 Cardinality

Definition 18.9 (Equipotent) — We say that two sets A and B have the same
cardinality (or the same cardinal number) if there exists a bijection f: A — B. In
this case we write A ~ B.

Exercise 18.4. Show that ~ is an equivalence relation on sets.

(Definition 18.10 (Finite Set, Countable vs. Uncountable) — We say that a set A is\
finite if A = () (in which case we say that it has cardinality 0) or A ~ {1,...,n} for
some n € N (in which case we say that A has cardinality n).

We say that A is countable if A ~ N. I this case we say that A has cardinality Ng.
We say that A is at most countable if A is finite or countable. If A is not at most
countable we say that A is uncountable. )

Lemma 18.11
Let A be a finite set and let B € A. Then B is finite.

Proof. If B = () then B is finite. Assume now that B # ) = A # (). As A is finite,
dn € Nand 3f : A — {1,...,n} bijective. Then f|p : B — f(B) is bijective.

WE merely have to relabel the elements in f(B). Let by € B be such that f(b;) =
min f(B).
Define g(by) = 1. If B\ {b1} # 0, let bs € B be such that f(by) = min f(B \ {bl}).
Define g(be) = 2. Keep going. The process terminates in at most n steps.

Example 18.12
f:Nu{0,-1,-2,...,—k} —» N where kK € N

f(n) =n+k+ 1 is bijective

So the cardinality of NU {0, —1,..., —k} is Np.

Example 18.13
f:Z—-N

2n+2,n>0 s e .
n) = - is bijective
f(n) {—2n—1,n<0 )

So the cardinality of Z is Ng.
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Example 18.14
f*NxN—>N

Cont’d in Lec 19.

fn,m) =

(n+m—1)(n+m—2) n

2

is bijective. So the cardinality of N x N is Ng.
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§19 ‘ Lec 19: Feb 19, 2021

§19.1 Functions & Cardinality (Cont’d)

From the last example of Lec 18, f : N x N — N, f(n,m) = (n+m71)2("+m72) +mn, fis
bijective.
We prove that f is surjective by induction. For k € N let P(k) denoted that statement

I(n,m) e NxNs.t. f(n,m)==k

Base step: Note that f(1,1) = % +1=1. So P(1) holds.
Inductive step: Fix k& > 1 and assume that P(k) holds. Then 3(n,m) € N x N s.t.
f(n,m) = k.
(n+m—1)2(n+m—2) el ka1
(n+1)+(m—-1)—1][(n+1)+(m—1) — 2]
2
= f(n+1lm—-1)=k+1

+n+l=Fk+1

This works if (n+1,m —1) e NXN <= m—-1€eN < m>2. Soif m > 2 we
found (n+1,m —1) e Nx Ns.t. f(n+1,m—1)=k+ 1. Assume now m = 1. Then

= fn,1) =k < n(nQ_l)—Fn:k — (n+21)n:k
(n+21)n+1—k+1
I R GRS e LGRS V) P

2
= f(l,n+1)=k+1

So if m =1 we found (1,n+1) € Nx Ns.t. f(1,n+1) =k + 1. This proves P(k + 1)
holds.
By induction, Yk € N3(n,m) € N x N s.t. f(n,m) =k, i.e. f is surjective.

Let (n,m), (a,b) € NxNs.t. f(n,m)= f(a,b). We want to show that (n,m) = (a,b),
thus proving that f is injective.
Case 1:

2 2
f(nvm) :f(a’b)
Then (n+m—1)(n+m—-2)=(n+b—-1)(n+b—2)

(ntm—1)(n+m—2) _ (a+b—1)(a+b—2)
} = n=aq

— n2+n2m—3)+m? —3m+2=n>+n(2b—3)+b*—3b+2
= 2n(m —b)+ (m —b)(m+b) —3(m—>b) =0

(m—=b)2n+m+b—-3)=0
— m=25b
n+m+b—-3>2+1+1-32>1

Case 2: ("+m_1)2("+m_2) = (a+b_1)2(a+b_2) + r for some r € N.

Exercise 19.1. Show that this cannot occur.
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Lemma 19.1
Let A be a countable set. Let B be an infinite subset of A.Then B is countable.

Proof. A is countable = df : N — A bijection. This means we can enumerate the
elements of A :
A ={ai(= f(1)), a2(= f(2)),as(= f(3)),.. .}

Let k&1 = min{n:a, € B}. Define g(1) = ag,. Then B\ {ar,} # 0. Let ko =
min{n : a, € B\ {ag, }}. Define ¢(2) = ag,.

We proceed inductively. Assume we found k; < ... < kj such that ay,, ..., ax; € B and
g(1) = aky, -, 9(j) = ag,. ThenB\{akl,...,akj} #0. Let kj1 = min{n tan € B\ {akl,...jakj}}.
Define g(j + 1) = ay,, -

By construction, g : N — B is bijective. 0

Lemma 19.2

Let A be a finite set and let B be a proper subset of A. Then A and B are not
equipotent, that is, there is no bijective function f : A — B.

Proof. If B=0 = A # (). There is no function f: A — B. Assume B # (). Assume
towards a contradiction that there exists a bijection f: A — B.
As BC A, Jag € A\ B.
Forn>1leta, = (fofo...of)(ap). Note any1 = f(an)¥n > 0. Note a,, € B¥Vn > 1.
—_——

n times

We will show
Claim 19.1. a, # a,, for n # m.

If the claim holds then B (and so A) would contain countably many elements.
Contradiction, since A is finite!

To prove the claim we argue by contradiction. Assume that there exists n, k € N s.t.
Aptk = Qn.

Write

antk = (fofo...of)(ar) )
n times
an = (fo fo...o f)(a)
—_——

n times

= B>ay,=a9€ A\ B

f injective = fo fo...o f injective
N———
n times

which is a contradiction! This proves the claim and completes the proof of the lemma. [

Lemma 19.3

Every infinite set has a countable subset.

Proof. Let A be an infinite set = A #0 = 3Ja; € A. Then A\ {a1} # 0 =
Jag € A\ {a1}.

We proceed inductively. Having found ay,...,a, € A distinct, A\ {a1,...,a,} #
) = Fan+1 € A\ {ai,...,a,}. This gives a sequence {a,},~, of distinct elements in
A. O
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Theorem 19.4

A set A is infinite if and only if there is a bijection between A and a proper subset
of A.

Proof. “ <=7 Assume that there is a bijection f : A — B where B C A. By Lemma 19.2,
A must be infinite.

“ =" Assume that A is infinite. By Lemma 19.3, there exists a countable subset B of
A. Write B = {a1, ag,as, ...} with a, # a,, if n # m. Then A\ {a1} is a proper subset
of A. Define f: A — A\ {a1} via

fla) = {a, ifac A\ B

aj41, if a = a; for some j > 1

This is a bijective function.

Assume f(a) = f(b).

Case 1: a,b€ A\ B. Then f(a) =a, f(b) =b and so f(a) = f(b) = a=0b.
Case 2: a,bc B = Ji,j€Nst. a=a;, b=aq;

fla)=f(b) = a1 =041 = i+1l=j+1 = i=j = a=0D

Case 3: ac€ A\ B,be B. Then f(a) € A\ B and f(b) € B, which cannot occur.
Case 4: a € B and b€ A\ B. Argue as for Case 3.

Exercise 19.2. f is surjective. O

KTheorem 19.5 (Schroder — Bernstein) b

Assume that A and B are two sets such that there exists two injective functions
f:A— Bandg: B— A. Then A and B are equipotent. )

Example 19.6

f:N—=NxN, f(n)=(1,n) injective
g:NxN—=N, g(n,m)=2"-3" injective

By Schroder — Bernstein, N ~ N x N.
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§20 ‘ Lec 20: Feb 22, 2021

§20.1 Countable vs. Uncountable Sets

Proof. (Schréder — Bernstein) We will decompose each of the sets A and B into disjoint
subsets:

A:A1UA2UA3WithAimAj:(Z)if’i#j
B:B1UBQUngithBimBj:wifi#j

and we will show that f: Ay — By, f: As — Bs, g : B3 — Aj are bijections.
Then h : A — B given by

h(a) = f(a), _lifae.AluAg
(9lBs)” (a), ifa € A3

i a bijection.

For a € A consider the set

Sa=1-g '(a).ftog a),g o f P og (a),. ..
€A oh > ~;

Note that the preimage under f or g is either ) or it contains exactly one point (because
f and g are injective).
There are three possibilities:

1. The process defining S, does not terminate. We can always find a preimage.

2. The process defining S, terminates in A, that is, the last element x € S, is z = a
orz=floglo...og7!(a)and g~!(z) = 0.

3. The process defining S, terminates in B, that is, the last element z € S, is
r=g Y a)orz=gtoflo...og7 (a) and f~1(x) = 0.

We define

A1 ={a € A: the process defining S, does not terminate}
Ay = {a € A: the process defining S, terminates in A}
Az ={a € A: the process defining S, terminates in B}

Similarly, for b € B we define the set

T, = \[i_,vfil(b)vgilofil(b),filOgiloffl(b)w”

€B  ¢ca €B cA

As before we define

B; = {b € B : the process defining T} does not terminate}
By = {b € B : the process defining T} ends in A}
Bs = {b € B : the process defining T} ends in B}
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Let’s show f : Ay — Bj is a bijection. Injectivity is inherited from f : A — B is injective.
Let b € By. Then the process defining

Ty, = {b, L), g7 o (D), .. .} does not terminate
In particular, 3a € A s.t. f~!(b) = a. Note that
Sa={a,g7 ), ftog  a),...} ={f1®)g o fTHD), T ogT o fTHD), )

does not terminate. So a € Aj.

This proves f : Ay — Bj is surjective.

Let’s show f : A3 — Bs is a bijection. Again, injectivity is inherited from f: A — B
is injective.

Let b € By. Then the process defining

T, = {b, FYB), g7 o (), .. } terminates in A
In particular, 3a € A s.t. f~(b) = a. Note that
Sa={a,97"(a),-..} = {f71(®), g7 0 f(D),.. .}

terminates in A = a € As. So f: Ay — Bs is surjective.

Exercise 20.1. g : By — As is bijective.

O
/Theorem 20.1 A
Let {A,},>; be a sequence of countable sets. Then
UAn:{a:aeAn for some n > 1}
n>1
\is countable. )

Proof. We define
By = A

n
Bn+1 == An+1 \ U Ak n 2 1
k=1

By construction,
B,NBpy=0,Yn#m
UnZl B, = Unzl An

Note that each B,, is at most countable.
Let I = {neN:B, #0}. Then ,~1 Bn = UperBn. Forn € I, let f, : B, — I,
bijection where I,, is an at most countable subset of N.

In particular, fi : B; — N bijective = f;!: N — Bj bijective. To show Uner Bn
is countable, we will use the Schroder — Bernstein theorem.

Let g: N = U,c; Bn, g(n) = f{'(n) € Bi € U,,o; Bn is injective.

Let h: U,c; Bn — N x N defined as follows: if b € | J,,c; Bn = In € ls.t. be By,.
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Define h(b) = (n, fn(b)). Note that h is injective. Indeed, if h(b1) = h(bz) then
(1, fny (01)) = (n2, fns (b2))

fnl(bl) = fns (b2)

Recall there exists a bijection ¢ : N x N = N. So ¢ o h:J,c; Bn — N is injective. By
Schréder — Bernstein, U, Bn = U,,>1 4n ~ N O

ny=n
- { ! 2 y fny 1S injective} = b =by

Proposition 20.2

Let {An},,~; be a sequence of sets such that for each n > 1, A, has at least two

elements. Then [, 4, = {{an}n21 tap € ApVn > 1} is uncountable.

Proof. We argue by contradiction. Assume that [],~, A, is countable. Thus we may
enumerate the elements of [], -, An:

a1 = (ai1,a12,a13, . . .)

as = (as1, age, ass, .. .)

ap = (anb an2, An3, - . )

Let 2 = {zn},>; € [[,>1 An such that z, € Ap \ {ann}. Then z # a,Vn > 1 since
Ty # Gnn. This gives a contradiction. O

Remark 20.3. The same argument using binary expansion shows that the set (0, 1) is
uncountable.
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§21 ‘ Lec 21: Feb 24, 2021

§21.1 Countable vs. Uncountable Sets (Cont’d)

Proposition 21.1

Let {A4,},~, be a sequence of sets s.t. Vn > 1, the set A, has at least two elements.
Then [],,~; An is uncountable.

.

Remark 21.2. 1. The Cantor diagonal argument can be used to show that the set
(0,1) is uncountable (using binary expansion).

2. We can identify

{{an}n21 tan €{0,1} Vn > 1} ={f:N—={0,1} : f function}
={0,1} x {0,1} x ...
= {Oal}N

By the proposition, this set is uncountable. We say it has cardinality 2%°.

(Theorem 21.3

Let A be any set. Then there exists no bijection between A and the power set of A,
\P(A) ={B:BC A}.

Proof. If A =0 then P(A) = {0@}. So the cardinality of A is 0, but the cardinality of
P(A) is 1. Thus A is not equipotent with P(A).

Assume A # (). We argue by contradiction. Assume that there exists f: A — P(4) a
bijection.

Let B={acA:a¢ f(a)} CA. fissurjective = Jbec As.t. f(b)=1B

We distinguish two cases:
Case 1: be B= f(b) = b ¢ B — Contradiction.
Case 2: b¢ B = f(b) = b€ B — Contradiction.

So A is not equipotent to P(A) O

Theorem 21.4
The set [0,1) has cardinality 2%°.

Proof. We write z € [0,1) using the binary expansion.

x =0.x12923... withz, € {0,1} Vn >1
_fr T2 13 — Ln
—p tm it on

n>1

with the convention that no expansion ends in all ones.
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E.g.

z = 0.z12973...2,0111...
1 1

_.7}1 I
_?++27+W+W+
__1
T on+1
Ea| L,

Note that we can identify [0, 1) with

F={f:N—={0,1} : Vn € NIm > n s.t. f(m)=0}
C{f:N—{0,1}: f function}

In particular, we have an injection ¢ : [0,1) — {f:N—{0,1}}. To prove the
theorem, by Schroder — Bernstein, it suffices to construct an injective function v :
{f:N—={0,1}} — [0,1). For f: N — {0,1} we define

Y(f) =0.0f(1)0f(2)0f(3)...
OPICIc)

:22+24+26

—y 1

n>1

+ ...

Let’s show 1 is an injective. Let fi,fo : N — {0,1} s.t. fi # fo. Let ng =
min{n : fi(n) # fa(n)}. Say, fi(no) =1 and fa(ng) = 0.

¢(f1)—¢(f2)zzf;§:) _Zf;g:) _ filno) = fo(no) 3 W

22710
n>1 n>1 n>ng+1

92n9  92(no+1) ' 1— %

= (f1) > ¢¥(f2)
So v is injective.
By Schréder — Bernstein, [0,1) ~ {f : N — {0,1}} and so it has cardinality 2%°. O
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§21.2 Metric Spaces

(Definition 21.5 (Metric Space) — Let X be a non-empty set. A metric on X is a
map d : X x X — R such that

Then we say (X, d) is a metric space.

Example 21.6 1. X =R, d(z,y) = |z — y| is a metric.

2. X =R", dy(z,y) = \/22:1 |z, — yi|® is a metric.

3. X is any non-empty set. The discrete metric

Lz#y
d(w,y)Z{O v —y

4. Let (X,d) be a metric space. Then d : X x X — R, d(z,y) = li(dw(f)y) is a
metric.

Let’s see it satisfies (4). Fix z,y,z € X. As d is a metric,

d(z,y) < d(z,2) + d(z,y)

a 1 _ 1 . g
Note a — %= =1 — 7 is increasing on [0,00). Then,

- _ d(z,y) d(z,z) +d(z,y) d(z, 2) d(z,y)
W) = T i) = T+ dw,2) +d(zp) = 1+ d(w,2) T 1+d(z,0)

=d(x,2) + d(z,v)

(Definition 21.7 ((Un)Bounded Metric Space) — We say that a metric space (X, d)\
is bounded if IM > 0 s.t. d(z,y) < M Vz,y € X. If (X, d) is not bounded, we say
that it is bounded.

- J

Remark 21.8. If (X, d) is an unbounded metric space then (X, d) is a bounded metric
d(z,y)
1+d(z,y) "

space where d(z,y) =

80



Duc Vu (Winter-Spring 2021) 131AH Lectures

[Definition 21.9 (Distance Between Sets) — Let (X, d) be a metric space and let
A, B C X. The distance between A and B is

d(A,B) =inf{d(z,y) : x € A,y € B}

Caution: This does not define a metric on subset of X.
\In fact, d(A, B) = 0 does not even imply AN B # (.

Example 21.10
(X,d)=(R,|-]), A=(0,1),B=(-1,0), d(A,b) =0but ANB =10

/Definition 21.11 (Distance Between Point and Set) — Let (X, d) be a metric space,
A C X,x € X. The distance from x to A is

d(z,A) = inf{d(z,a) : a € A}

\Again, dlz,A)=0 =5 z€ A
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§22 ‘ Lec 22: Feb 26, 2021

§22.1 Holder & Minkowski Inequalities

Proposition 22.1 (Hdlder's Inequality)

(x1,...,2y) € R" and let y = (y1,...,yn) € R™. Then

> el = (Z |xk|p>; (; w);

k=1 k=1

1
with the convention that if p = oo, then (3°)_; |2xP)? = supi<ip<n|Ti|

Fix 1 < p < oo and let ¢ denote the dual of p, that is, % + % = 1. Let z =

~

I Remark 22.2. If p = 2( = ¢ = 2) we call this the Cauchy — Schwarz inequality.

Proof. If p =1, then g = c©
n n n
Sl <3 feal - sup il < (3 feal | - sup [l
k=1 k=1 1<i<n =1 1<I<n

If p=oc0c = (¢=1) a similar argument yields the claim.

Assume 1 < p < oo. We will use the fact that f : (0,00) — R, f(x) = log(x) is a concave

function.

|

b+tla—b)=ta+(1—1tb te(0,1)

tf(a)+ (1 —=1t)f(b) < f(ta+ (1 —1t)b) V(a,b) € (0,00)Vt € (0,1)
tlog(a) + (1 —t)log(b) < log(ta+ (1 —t)b)
log(a’) +log(b'™") < log (ta + (1 — t)b)
log (a'd'™") < log (ta+ (1 —t)b)
atb' =t <ta+ (1 —t)b
We will apply this inequality with a = lefk‘l:ﬁzlp’ b= E{Lfﬂf ||(;l‘q.
p=t =t
p p q
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We get
|z |? 1 Jygl?

ol w1
Tl lmlP o g Y e

1 1
oty fmfP)r oy lwil )
Sumover 1 <k <n
n n
EAR 1 |z |P |y |? 11
Z " I » ;<*ZZ | |p Zzn I =-+-=
=1 Qi [mlP)? - (2 wil9) e =1 2e1=11T1 =119 poq

1
= Do oyl < 0 [mlP)r - G2y [wl?) e

Sl

f
Corollary 22.3 (Minkowski's Inequality)

Fix 1 <p<ooandlet z = (x1,...,2,) ER", y = (y1,...,yn) € R". Then

n

(im +yk|p>; < <Z I:cklp); + (é ka|”>;
J

k=1 k=1

-
Proof. 1f p = 1, this follows from the triangle inequality:

n n
LHS =) "|a +yel < |ak| + |ye| = RHS

k=1 k=1
If p= oo,
LHS = supi<k<n |z + yr| < sup |zg|+ sup |yx| = RHS
1<k<n 1<k<n
Assume 1 < p < 0.
n
Z |z + yl” = Z |25 + il |+ yelP!
o
< (ol + lywl) 2 + yalP™
k=1
n
Z k] - o+ oyl Z il |k + yel”
k=1 k=1
1 1
n P
(Holder) < <Z ]a;k]p> . (Z\xk + | PV q>
k=1 k=1
1 1
n D n q
1
() (S wio )
k=1 k=1
1,1 _ 1_q1_1_p1 - P
p+q_1 = q_l p = p T 4T
Get
1 1 1_1
n n P n P n P
|2k + yil” < < |xk|f’> + (Z |yk\p> : (Z En +yk\p>
k=1 k=1 k=1 k=1
1 1 1
n ) n P n P
— (Z|ﬂfk+yk\p> < <Z |~’Ck!p> + (Z |yk|p)
k=1 k=1 k=1
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/Corollary 22.4 A
For 1 <p<ooletd,:R" xR" =R,
1
n P
dp(z,y) = (Z |2k — yk\p)
k=1
For p=oolet dy : R" x R" — R,
doo(,y) = sup |z — yil
1<k<n
The d), is a metric on R™ V1 < p < oo.
J
Proof. The triangle inequality follows from Minkowski’s inequality. O

Remark 22.5. The Holder and Minkowski inequalities generalize to sequences. For example,
1

say {zn},>; and {yn},>, are sequences of real numbers such that (an1 |xn\1’> 7 < oo
1

and (an1 |yn|q) " < 00. Then for each fixed N > 1,

ﬁ: || < <XN: Iwnl”) ;<i:1 Iyn|q>; < (Z Iwn|p> E~ (Z ynlq) q <00

n=1 n=1 n>1

-
=

increasing seq indexed by N

So

1

Siamiz (Ser) (£ )

n>1 n>1 n>1

A similar argument gives Minkowski for sequences.

§22.2 Open Sets

Definition 22.6 (Ball/Neighborhood of a Point) — Let (X, d) be a metric space. A
neighborhood of a point a € X is

By(a) ={z € X : d(a,z) < r} for some r >0
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Example 22.7 1. (R?,d,)

(2,) € B : da ((2,9), 0,0)) < 1}

B1(0) = {
= {(:U,y) eR?: 22 +¢% < 1}

2
&7

2. (R?%,dy)
B1(0) = {(z,y) € R?: |z +|y| < 1}

3. (R2,ds)
B1(0) = {(z,y) € R? : max {|z|, |y[} < 1}

(Definition 22.8 (Interior Point) — Let (X, d) be a metric space and let § # A C X.\
We say that a point a € X is an interior point of A if 3r > 0 s.t. B.(a) C A.
The set of all interior points of A is denoted A and is called the interior of A.
We say that A is open if A = A.

- _ J
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Example 22.9 1. (), X are open sets.

2. By(a) is an open set Ya € X, Vr > 0.
Indeed, let € By(a) = d(z,a) <r = p=r—d(z,a) >0

o
—

Claim 22.1. B,(z) C B,(a) and so x € B,(a)
Proof. Let y € B,(z) = d(z,y) <p

d(y,a) < d(y,z) +d(z,a) < p+d(z,a) =r = y € By(a)

I Remark 22.10. A C A. To prove A is open, it suffices to show A C A.
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§23 ‘ Lec 23: Mar 1, 2021

§23.1 Open Sets (Cont’d)

/Proposition 23.1 A
Let (X, d) be a metric space and let A, B C X. Then
1. IfAQBthenAQé
2. AUBCAUB
3. ANB=ANB
4. A=A In particular, Ais an open set.
5. A is the largest open set contained in A.
6. A finite intersection of open sets is an open set.
7. An arbitrary union of open sets is an open set.
- J
Remark 23.2. An arbitrary intersection of open sets need not be open. E.g.
11
ﬂ (n’n) = {0}
n>1
B1(0)e®,|])
Note that {0} is not an open set because it does not contain any neighborhood of 0.

Proof. (Of the proposition):
1. If A = 0 this is clear. Assume A # 0. Let a € A = Ir>0st.

B,(a) C A
= B,(a) CB
ACB
So a € B.
2. Consider: i
acAauB X AcauB . e
) e — AUBCAUB
BcAauB ‘&L BCAUB
3. Consider:

Now let z € AN B
{E!n > 0s.t. By (z)

cA
Jrg > 0s.t. By,(z) C B

Let r = min {ry,r2} > 0. Then B,(z) C By, ()N By,(x) CANB = =z € ANB.
So jlﬂf?gA/ﬂ\B
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4.AQAQ>}1§ZL Let z € A = Ir > 0s.t. BT(JL‘)QAQBT(JJ):

— °

B(z) CA = z €A So/olgfgl.

5. By (4), A is an open set contained in A. Let B C A be an open set. Then by (1),
B=BCA.

6. Using (3) and (4) we see that if A = A and B = B then AN B = ANDBis an
open set.

A simple inductive argument yields the claim.

7. Let {A;}..; be a family of open sets. Let’s show

el
—
Ua:=Ua
el el

Let x € Uie] A; = dig € 1 s.t.

x € Aio
. = dr > 0s.t. B.(z) C 4,
Ay = Ay,
So Br(l') C Uiel A = x € UZ/EI\‘AZ Thus, Uie[ A; C UZ/EI\‘4@ O

§23.2 Closed Sets

Definition 23.3 (Closed Set) — Let (X,d) be a metric space. A set A C X is
closed if “A is open.
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Example 23.4 1. ¢, X are closed.
2. Ifae X, r >0, then °B,(a) = {z € X : d(a,x) > r} is a closed set.

3. Ifae X, r >0, then K,(a) ={zx € X : d(a,z) <r} is a closed set.

Let’s show “K.(a) = {x € X : d(a,z) > r} is open. Let z € ‘K, (a) =
d(a,xz) > r and let p =d(a,z) —r >0

)1‘

Claim 23.1. B,(z) C °K .(a)
Let y € B,(x) = d(x,y) < p. By the triangle inequality,

d(avy) > d(a,m) - d(:l?,y) > d(a,x) —p=T = Y& CKT(G’)

So By(z) C Ky(a) = =z € Cm). Thus, °K,(a) is an open set.

4. There are sets that are neither open nor closed. E.g. (0,1] is not open and is
not closed.

(Definition 23.5 (Adherent Point) — Let (X, d) be a metric space and let A C X.\

A point a € X is an adherent point for A if

Vr > 0 we have B.(a) N A # 0

The set of all adherent points of A is denoted A and is called the closure of A. )

Definition 23.6 (Isolated Point) — An adherent point a of A is called isolated if
Jr>0st. Bra)nA={a} (a€A)

If every point in A is an isolated point of A then A is called an isolated set.

Definition 23.7 (Accumulation Point) — An adherent point a of A that is not
isolated is called an accumulation point for A. The set of accumulation points of
A is denoted A’. Note that

ac€A = Vr>0 B.(a)NA\{a} #0
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Example 23.8
R,|-]), A={i:n>1}. Aisisolated. Indeed B_1 (3)nA={i}.

n(n+1

A" = {0} since Vr > 0 B,(0) = (—r,r) intersects A\ {0} = A.

Remark 23.9. 1. ACA

2. A=A UA
(Proposition 23.10 A
Let (X, d) be a metric space and let A, B C X. Then
1. °(A) = °A
2. ‘(4) =74
3. Aisclosed set <= A=A
4. fAC Bthen ACB
5. ANBC ANB
6. AUB=AUB
7. A=A In particular, A is a closed set.
8. A is the smallest closed set containing A.
9. A finite union of closed sets is a closed set.
10. An arbitrary intersection of closed sets is a closed set.
- J
Remark 23.11. An arbitrary union of closed sets need not be a closed set. E.g.
U= e
”Zlm not closed

Proof. (of the proposition)
1. Consider

€A = ¢ A = FIr>0st. B(z)NA=10
<= Jr >0st. B.(zr) C°A

— T € 0/1\4
2. Apply (1) to “A.

3. Ais closed <= €A is open
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We continue in the next lecture. O
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§24 ‘ Lec 24: Mar 3, 2021

§24.1 Closed Sets (Cont’d)

Proposition 24.1
Let (X,d) be a metric space and let A, B C X . Then

1. °(A) = °A

2. ‘(4) =74

3. Aisclosed set «—= A=A
4. fAC Bthen ACB

5 ANBC ANB

6. AUB=AUB

Pl
||

= A. In particular, A is a closed set.
8. A is the smallest closed set containing A.

9. A finite union of closed sets is a closed set.

10. An arbitrary intersection of closed sets is a closed set.

- J

Proof. (Cont’d from last lecture)

4. If A = ( then clearly A C B. Assume A # (. Let a € A = Vr >0,

Br(a)NA#D
B, NB A 0
ACB = B,(a) # 0vr >
— a€B
So ACB
5. Have:
AnBCcA L AaBCA o
@ — ANBCANB
ANBCB = ANBCRB
6. Have
c (_Uc/o\ _C/O\c _C/C\ C/D\(i)cf c /=
(AUB) =°(AUB) =°AN‘B=°An‘B = "(A)n"(B)

—“(AUB)

— AUB=AUB

7. Clearly, A C A g AC A. Want to show A CA. Letac A. Want to prove
that Vr > 0 B,.(a) N A # 0.

Fixr>0. Asa€ A = By(a)NA#0. Let z € Bu(a)N A

z€A = VYp>0,By(x)NA#D
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Choose p =r —d(a,x) > 0. Then

By(x) € Br(a)

Bp(x)mA#@} = By(a)NA#D

Soac A.
8. Note A is a closed subset containing A. Let B be a closed set containing A.

ACB HOR ZQE(:)B

9. Let {A,})_, be a closed sets. Then °A, is an open set ¥1 < n < N. Then
C
ﬂgzl €A, is an open set. Now ﬂf:[:l A, = (ngl An> open —> ngl Ap

closed.

10. Let {A;},c; be a family of closed sets. Then “A; is open Vi € I

— UCAi = (ﬂ Ai> is open

i€l i€l
= m A; is closed ]
el

§24.2 Subspaces of Metric Spaces

Definition 24.2 (Subspace of Metric Space) — Let (X, d) be a metric space and
let ) £Y C X. Thend; : Y xY = R, di(z,y) = d(z,y)Vo,y €Y is a metric on
Y and is called the induced metric on Y. (Y,d;) is called a subspace of (X, d).

[Proposition 24.3 b

Let (X, d) be a metric space and let ) #Y C X equipped with the induced metric
dy.

1. Aset D CY is open in (Y,d;) if and only if there exists O C X open in
(X,d)st. D=0NY.

2. Aset FF CY isclosed in (Y, d;) if and only if there exists C' C X closed in
(X,d)st. F=CnY.

J

Proof. 1. “ = 7 Let D C Y be open in (Y,d;). Then VYa € D3r, > 0 s.t.
BY,(a) ={y €Y :d(a,y) <ra} € D. Note Bf,(a) = Bf (a)NY. So

D=|]JBY(a)= ] [Bi(a)nY] = (U ija(a)) ny

a€D a€D a€D
—_——
open in (X,d)

“ <= " Assume that D = ONY for O openin (X,d). Leta€e D CO = Ir >0
s.t. B¥(a) CO

= BY(a) = B;(a)NY CONY =D = a is an interior point of D in the (Y, d;)

So D is open in (Y,dy).
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2. F CYisclosed in (Y,d;) < Y \ F is open in (Y, d) JONSET open set in
(X,d)st. Y\F=0nNnY. But

F=Y\(Y\F)=Y\(0ONY)=YN%0ONY)=YN(OUY)
—(YNO)U(YNY)=Yn <O
——

~—
=0 closed in (X,d)

Example 24.4 1. [0,1) is not an open set in (R, |-|), but it is open in ([0, 2),] - |).
Say [0,1) = (—1,1)N[0,2).

2. (0,1] is not a closed set in (R,| - |), but it is closed in ((0,2),|-|). Say
(07 1] = [_17 1] N (07 2)

Proposition 24.5 b

Let (X, d) be a metric space and let ) #Y C X equipped with the induced metric.
The followings are equivalent:

1. Any A CY that is open (closed) in Y is also open(closed) in X.

2. Y is open(closed) in X. )

Proof. 1) = 2) Take A=Y.

2) = 1) Assume Y is open in X. Let A C Y be open in Y = 3O open in X s.t.

A= O n Y openin X. O
~~ ~~

open in X open in X

Proposition 24.6

Let (X, d) be a metric space and let ) #Y C X equipped with the induced metric.

For aset ACY,
A" =A% ny

Proof. Have:
acd’ = ¥r>0 BY(a)NA#0D

< Vr>0 Bf(a)Nn ﬂA;«fé@
i

e ac ANy O

§24.3 Complete Metric Spaces

/Definition 24.7 (Sequential Limit) — Let (X, d) be a metric space and let {zn},,5, §\

X. We say {xy},~, converges to a point z € X if

Ve >0 dneeNst. d(zg,z) <e Vn>n

Then z is called the limit of {xn}n>1 and we write x = lim,, oo &, O Tp, i) x.
n—0o0

- J
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Exercise 24.1. The limit of a convergent sequence is unique.

Exercise 24.2. A sequence of {mn}n21 converges to z € X if and only if every
subsequences of {z,}, - converges to .

Remark 24.8. If z,, -% = and Un 4, y, then d(xy,,y,) — d(z,y).

n—oo

Indeed,

< d(yn,y) + d(zp,2) — 0

Definition 24.9 (Cauchy Sequence (MS)) — Let (X, d) be a metric space. We say
that {z,},~; C X is Cauchy if

Ve >0 dne € Ns.t. dxp,xm) <€ VYn,m > n,

Exercise 24.3. Every convergent sequence is Cauchy.

Caution: Not every Cauchy sequence is convergent in an arbitrary metric space.

Example 24.10 1. (X,d) = ((0,1),]]), 2, = £ Vn > 2 is Cauchy but does not
converge in X.

2. (X,d)=(Q,|-]), 21 =3, Tpy1 =%+ %Vn > 1. Then {zy},-, is Cauchy
but does not converge in X.

(Definition 24.11 (Complete Metric Space) — A metric space (X, d) is complete if\
every Cauchy sequence in X converges in X.

Example 24.12

(R,|-]) is a complete metric space.

Exercise 24.4. Show that a Cauchy sequence with a convergent subsequence converges.
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§25 ‘ Lec 25: Mar 5, 2021

§25.1 Complete Metric Spaces (Cont’d)

KLemma 25.1 A
Let (X, d) be a metric space and let ) # F C X. The following equivalent:
l.acF
2. There exists {an}, >, C F s.t. ap _}i> a
n—oo
. J

Proof. 1) = 2) Assume a € F. Then
Vr >0, B.(a)NF #0

Forn > 1, taker = % Then Bi(a)NF # (. Let a, € Bi(a)NF. Consider {an}n21 CF.
We have Vn > 1,

1 d
dap,a) < — — 0 = a, — a
n n—o0 n—00

2) = 1) Assume 3{an},>; C F s.t. ay %, . Fix r > 0. Then In, € N s.t.

n—oo

d(an,a) <rVn > n,. In particular, Vn > n,, a,, € By(a) N F = B,(a)NF #0. Asr
was arbitrary, we get a € F. O

(Theorem 25.2 A

Let (X, d) be a metric space. The following are equivalent:
1. (X,d) is a complete metric space.

2. For every sequence {Fn}n21 of non-empty closed subset of X, that is nested
(that is, Fy,41 C F;, Vn > 1), and satisfies 6(F;,,) — 0, we have ()~ Fr, =
n—0o0 —

{a} for some a € X.
- J

Proof. 1) = 2) Assume (X,d) is complete. As F,, # )Vn > 1, Ja,, € F,.
Claim 25.1. {a,},; is Cauchy.

Let € > 0. As §(F, )—>0 dne € Ns.t. §(F,) < e¥n > n.. Let m,n > n.. Since
{Fn},>1 is nested, I, CFn,F C Fj,.. So

d(an,am) < 6(F,,) <€

So this proves the claim.
As (X,d) is complete, Ja € X s.t. ay %, a. For Vn > 1, {am}

n—oo

F,=F, Soa€c(),> F

It remains to show a is the only point in (N,>1 Fn- Assume, toward a contradiction, that
Jy#ast. y€,> Fn. Theny € F,Vn >1 = d(y,a) < (F,) — 0 = y=a-
Contradiction!
2) = 1) Want to show (X, d) is complete. Let {z,},~; € X be a Cauchy sequence.
To prove that {z,},~, converges in X, it suffices to show that {z,},, admits a
subsequence that converges in X. -

CF, = ac

m>n
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{zn},>1 is Cauchy = 3dn; € Ns.t. d(zp, zp) < 2%Vn,m > ni. Let ky = n; and
select x, .

{zn}, > is Cauchy = dng € N st. d(zp,zm) < 23, Vn,m > no. Let ko =
max {ng, k1 + 1} and select zy,.

Proceeding inductively, we find a strictly increasing sequence {k,},~; C N s.t.

1
d(ﬁl,l’m) < W VZ,TI”L Z k‘n
Forn > 1, let F, = K1 (Xy,) = {z € X : d(x,2,) < 3 }. Note ) # F, = F, and
2TL

§(Fn) <25 — 0.
n—oo
Claim 25.2. Fj,;1 CF, Vn2>1.

Let y € Foy1 = d(y, Tp,yy < 271% By the triangle inequality,

1 1 1

Soy € F,. As y € F,,+1 was arbitrary, we get Fj,+1 C F),.

By hypothesis, (,,~; F»n = {a} for some a € X. AsVn > 1, a € F}, we have d(a, z,) <
= — 0
n—oo
Tk, i} a d
n—00 == T, — a O
{zn},>; is Cauchy e

§25.2 Examples of Complete Metric Spaces

Recall (R, |- |) is a complete metric space.

/Lemma 25.3

Assume (A, d;) and (B, ds) are complete metric spaces. We define d : (A x B) X
(A x B) — R via

d((ar,b1), (az,b2)) = y/d (a1, a2) + d (b1, bo)

Then (A x B,d) is a complete metric space.

J

Exercise 25.1. Show that d is a metric on A x B.

Proof. Let’s show A x B is complete. Let {(an,bn)},>; € A x B be a Cauchy sequence.
Fix € > 0, In € Ns.t. d((an,bpn), (am, b)) < €Vn,m > n..

= \/d%(an7am) + d%(bp, b)) <€ VYn,m > n,

dy(an,am) <€ Vn,m > ne
da(bn,bm) <€ Yn,m > ne

{an},~; is Cauchy sequence in A
{bn},>1 is Cauchy sequence in B

As A and B are complete metric spaces, da € A, 3b € B s.t. ay, H a and b, NS

n—oo
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Claim 25.3. (an,bn) —= (a,b).
n—oo

Indeed,

A ((an.bn). (@,5)) = \/d(an, @) + (b, b)
< di(an, 0) + da(bn,b) — 0

= (an,bp) -2 (a,b). O

n—o0

Corollary 25.4

For n > 2, (R™,dy) is a complete metric space.

Proof. Use induction. O

Exercise 25.2. Show that for all n > 2, (R", d,,) is a complete metric space V1 < p < oc.

We define

? = {zn},>1 CR: Z |l2n|? < 00

n>1

We define a metric on [? as follows: for x = {zn},>1 and y = {yn}, > € 12,

2
do(z,y) = Z|xn—yn‘
n>1
The fact this is a metric follows from Minkowski’s inequality.

Claim 25.4. (l2, dg) is a complete metric space.

Proof. Let {x(d)} x>1 Pe a Cauchy sequence in 1.

+M = {x&l),xél),a:gl), .. }
22 — {$(2) +2 @ }
1 4o 43 5.

2™ :{ gn),xé"),:rgn),...}

‘We continue in the next lecture. O

98



Duc Vu (Winter-Spring 2021) 131AH Lectures

8§26 ‘ Lec 26: Mar 8, 2021

§26.1 Examples of Complete Metric Spaces (Cont’d)

Recall

P =} SR fan)? < oo

n>1

We define a metric ds : 2 x 2 — R via

da <{xn}n21 ) {yn}n21> oy /Z |20 — yn|2

Then (12, dy) is a complete metric space. To see this, let {x(k) }k>1 be a Cauchy sequence
in 12. Then Ve > 03k, € Ns.t. do (z(®,20) < €Vk,1 > k. So

.Q?(k) x(l) — §
d2 ( ’ ) n>1
Z

n>1

2

e B 2O <6 Wk 1>k

2
z® —x,(f)‘ <& ki>ke

2% — 20l < ¢ VEk, 1>k

n n

—> Vn > 1 we have

So Vn > 1, the sequence {x%k)}kx is Cauchy in (R,|-|). As (R,|-]) is complete,

dx,, € R s.t. x%k) & T,
k—oo

Let z = {:L’n}n21

2
Claim 26.1. z € [2 and z(®) l—> T.
k—o00

(k)

xn - I’n

(k)

:L’n - .’L‘n

2
. While

Note ds (20, z) = \/En>1 " 0Vn > 1, the limit
- —00

theorems do not apply to yield

>

n>1

2

— 0

k—o0

Instead, we argue as follows:
Fix e > 0. As {x(k)}k>1 is Cauchy in 12, 3k, € N s.t. do (x(k),x(l)) < eVk,l > ke In
(k) O]

2
x| — x| < €2Vk,1 > k.. So for each fixed N € N we have

particular, > -

N 2
el -l < VE 1>k
n=1
Note lim;_, xq(lk) — xg)‘ = ‘:U,(lk) —xpn| Vn > 1, Vk > k.. By the limit theorems,
N 2
lim a:%k) — xg) < Yk >k
l—00 —
N 2
— Z‘ng)—a:n <e Vk>k
n=1
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(k)

In  — Tn

Note {25:1

2
} is an increasing sequence bounded above by €. So
N>1

< Yk >k

>

n>1

= dy (zW,2) <€ Vk >k

Soz® Ly 4 Finally, x € I? <= da(x,0) < co. But
k—o00

dy(,0) < dy(z, )+ dy <a:(k),0) < 00
————

—_—
<eVk>ke
=eve= <o since z(k) gl

Exercise 26.1. 1. Fix 1 <p < oo and let

P = {zn},> CR: Z |25 |P < o0

n>1

We define d,, : IP x [P — R via

3=

dyp <{$n}nz1 ) {Z/n}n21> = Z [Zn — ynl”

n>1
Then (I?,d,) is a complete metric space.
2. Define [*° = {{:zsn}n21 CR: sup,>; 2| < oo}. We define dy : [° X I*° — R via
Ao ({20}t > {Wnbst ) = sup 20 =
- - n>1
Show (I?°,ds) is a complete metric space.

§26.2 Connected Sets

/Definition 26.1 (Separated Set) — Let (X, d) be a metric space and let A, B C X.
We say that A and B are separated if

L ANB=0and ANB=1

Remark 26.2. Separated sets are disjoint: AN B C AN B = (. But disjoint sets need not
be separated. For example,

(de):(Ra||)v A:(*I,O), B:[Ovl)

Then ANB =0 but AN B = {0} # 0 so A, B are not separated.

Remark 26.3. If A and B are separated and A; C A and B; C B, then A; and B, are
separated.
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Lemma 26.4

Let (X,d) be a metric space and let A, B C X. If d(A, B) > 0 then A and B are
separated.

Proof. Assume, towards a contradiction that A and B are not separated. Then, ANB # ()
or ANB#(. Say ANB # 0. Let a € AN B.

a€B

_ = d(A,B) =0 - Contradiction! O
ac€A = d(a,A)=0

I Remark 26.5. Two sets A and B can be separated even if d(A4, B) = 0.

Example 26.6
A=(0,1) and B = (1,2) separated, but d(A, B) = 0.

\
Proposition 26.7 1. Two closed sets A and B are separated <= AN B = ().

9 2. Two open sets A and B are separated < AN DB = (). )

Proof. Two separated sets are disjoint. So we only have to prove “ <= ” in both cases.

1. Assume AN B = (. Then A closed = A= Aandso ANB =ANB = 0.
Similarly, B closed => B = B andso BNA=BNA=1(. So A and B are
separated.

2. Assume ANB =0 = A C “B where °B is closed since B is open.
— AC°B=°B = ANB=1

A similar argument shows that BN A = () and so A and B are separated. O

Proposition 26.8 1. If an open set D is the union of two separated sets A and
B, then A and B are both open.

2. If a closed set F'is the union of two separated sets A and B, then A and B
are both closed.

Proof. 1. If A =10, then since D = AU B we have B = D and so A and B are open.

Assume A # (). We want to show A is open <= A = A Letac A CDand D
open = Ir > 0s.t. By (a) C D. A and B are separated = AN B = (. So

acAC C(E) —°B
= dro > 0s.t. By,(a) C°B
Let 7 = min {ry,72}. Then
B.(a) CDN°B=(AUB)N‘B=A
so a € A.

This shows A is open. A similar argument shows B is open.

101



Duc Vu (Winter-Spring 2021) 131AH Lectures

2. Let’s show A is closed <— A = A.

ACF _
_y — ACF=F
F closed <— F=F

SoA=ANF=AN(AUB)=(AnA)UANnB) = A.
—
—A =0
Similarly, one can show that B = B and so B is closed. O
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§27‘ Lec 27: Mar 10, 2021

§27.1 Connected Sets (Cont’d)

/Definition 27.1 (Connected/Disconnected Set) — Let (X, d) be a metric space and\
let A C X. We say that A is disconnected if it can be written as the union of two
non-empty separated sets, that is,

dB,CC X st. B0, C#0,BNC=CNB=0,A=BuUC

We say that A is connected if it’s not disconnected.

Lemma 27.2

Let (X, d) be a metric space and let Y C X be equipped with the induced metric
dy. Then Y is connected in (Y, d;) if and only if Y is connected in (X, d).

Proof. “ = 7 Assume that Y is connected in (Y, d;). We argue by contradiction.
Assume that Y is not connected in (X, d). Then 3A, B C X, A # (), B # 0, AXnB=
B NA=0Y=ANB.

Claim 27.1. A, B are separated in (Y,d;). Then Y = AU B is disconnected in (Y, d;).
Contradiction!

Indeed,
A nB= (ZXDY)HB:ZXQYHB:ZXQB:@
=B
B nA= (EXmY)mAZEXm(YmA)ZEXmAzw
=A

So A and B are separated in (Y, dy).

“ <= 7 Assume Y is connected in (X, d). We argue by contradiction. Assume that
Y is disconnected in (Y,d;). So JA,B C Y, A # (), B # (), ANB=B"nA-= 0,
Y =AUB.

Claim 27.2. A, B are separated in (X, d). Then Y = AU B is disconnected in (X, d).
Contradiction!

Indeed,
nB=An(ynB) = (ZXmY)mB:ZYnBzw
BXnA=B"n¥YnA)= (EXHY)HA:EYQA:(Z)
So A and B are separated in (X, d). O

Proposition 27.3

Let (X, d) be a metric space. Then X is connected if and only if the only subsets
of X that are both open and closed are ) and X.
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Proof. “ = 7 Assume X is connected. We argue by contradiction. Assume 3() # A C
X s.t. A is both open and closed. Let

B=X\A#0 (since A # X)
B # X (since A # ()
B is open (since A is closed

)
B is closed (since A is open)
0,

As A and B are closed and ANB = AN (X \ A) = 0, we have that A and B are

separated. So

X=AU(X\A)=AUB

— X is disconnected — Contradiction!
A#(, B#0,A and B are separated

“ <= 7 Assume that the only subsets of X that are both open and closed in (X, d) are
() and X. We argue by contradiction. Assume that X is disconnected. Then 34, B C X
st. A0, B#0, ANB=BNA=0, X =AUB. As X is open (and closed) we get
that A and B are both open (and closed).

A and B are both open and closed

A=B=X
A£0,B 40 }:>

But then ANB=XNX=XNX =X # (). Contradiction! O

KCorollary 27.4
Let (X,d) be a metric space and let ) # A C X. The following are equivalent:

1. A is disconnected.

2. A C D1UDs with D1, Dy open in (X, d), ANDy # @, ANDy # @, ANDiNDy =
0.

3. A C FiUF; with Fy, F5 closed in (X, d), ANFy # @, ANFy # 0, ANFiNFy = (Z)/

Proof. We'll show 1) = 3) = 2) = 1).

1) = 3) Assume A is disconnected. By the Proposition 27.3, there exists ) # B C A
s.t. B is both open and closed in A. Let C = A\ B. Then C # (), C # A, and C is
both open and closed in A.

B closed in A = 3F; C X closed in (X,d) s.t. B=ANF, #0
C closed in A = 3F, C X closed in (X,d) s.t. C=ANF, # 0

Note that ANFiNEF,=(ANF)N(ANF,)=BNC=BnN(A\B)=0.
3) = 2) Assume A C Fy UF,, F1,F; closed in (X,d), ANF, #0, AN Fy, # 0,
AN F,NF,={. Define D; = °Fy open in (X,d) and Dy = °F5 open in (X, d).

ACFUF,=°D, UCDQZC(DlﬁDQ) - Aﬂ(DlﬂDg)Zm
@ZAﬂFlﬂFQZAﬂ(CDl ﬂCDQ):Aﬂc(DlUDQ) =— A C D;UDs

Let’s show AND; # (). We argue by contradiction. Assume AND; =0 = AC°D; =
Fi. But the ) = ANFyNFy, = AN F, # (). Contradiction! This shows AN Dy # 0. A
~——

similar argument gi:/es AN Dy # (.
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2) = 1) Assume A C D1 U Do, Dy, D5 open in (X,d), AN Dy # (0, AN Dy # 0,
ANDiNDy=10. Let
B = AND; # 0 open in A (since D; is open in X)
C = AN Dy # () open in A (since Dy is open in X)
BNC=(AND1)N(ANDy)=AND1NDy=1

So

B and C are separated in A
AngUDQ:>A:(DlUDQ)ﬂA:(DlﬂA)U(DgﬂA):BUC —
B#£0, C=#0

= A is disconnected in A = A is disconnected in X. O

Proposition 27.5

Let (X, d) be a metric space and let A C X be disconnected. Let Fy, Fo C X be
closed in (X,d) st. ACFIUF,, ANFI #0, ANF,#0, ANFiNF,=0. If
B C A is connected then B C Fj or B C Fy.
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§28 ‘ Lec 28: Mar 12, 2021

§28.1 Connected Sets (Cont’d)

Proposition 28.1

Let (X, d) be a metric space and let A C X be disconnected. Let Fy, F5 be closed
inXst. ACRUFR, ANFL #0, ANE, #0, ANFLNF,=(. Let BC A be
connected. Then B C F; or B C F5.

Proof. We argue by contradiction. Assume B ¢ Fy and B ¢ Fs.

BCACF UF
B¢ Fy
BCFUF,
B¢ F,
BNFINEBCANFINF, =10
BCFRUF,

} — BNF,#0

} — BNEF#0 = B is disconnected — Contradiction!

O]

Remark 28.2. One can replace the closed sets (in X) Fy and F; by open sets (in X) D,
and D> and the same conclusion holds.

Proposition 28.3

Let (X,d) be a metric space and let A C X be connected. Then if A C B C A=X,
then B is connected.

Proof. We argue by contradiction. Assume B is disconnected. Then 3F}, Fr, C X, closed
in X, s.t.

B C F4 U Fy

BNF #10

BN #10

BNFiNE =10
and

ACBCFHUF,

= ACF,or ACF
A connected } =1 =2

Ssy ACF, = BCAXCF ™ =F. Then) = BNFiNF, = BNF, # 0.
=B
Contradiction! ]

§28.2 Connected Subsets
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Proposition 28.4

Let (X, d) be a metric space and let {A;},.; be a family of connected subsets of X.
Assume that each two of these sets are not separated, that is, Vi,j € I, i # j, we
have A; N A; # 0 or A;N A; # (). Then (J;c; As is connected.

Proof. We argue by contradiction. Assume |J;.; 4; is disconnected = 3B, C non-
empty separated sets s.t.

UAZ»:BUC
el
FixieI. Then A; C BUC.
— A;=(BUC)NA; =(BNA)U(CNA) BnA; =0
B, C separated — BN A;, C N A; separated ) — or
A; is connected CNA; =0
Then
A; CBUC
A;NB=10
A; CBUC
AZﬂC:@

So for each i € I, the set A; satisfies A; C B or A; € C. As |J,c; 4 = BUC
= Ji,jelst. AinB#0and A;NC #0

— AngandAng

= A;, A; are separated — Contradiction! O
B and C are separated

Corollary 28.5

Let (X, d) be a metric space and let {4;},.; be connected subsets of X. Assume
Vi # j we have A; N A; # (. Then J;c; A; is connected.

Proposition 28.6

R is connected.

Proof. Assume, towards a contradiction, that R is disconnected. Then A, B non-empty
subsets of R, both open and closed in R, disjoint, such that R C AU B.

A#() = Ja; € A
B#() = 3 €B

Let a; = 24 e R=AUB = a1 € Aorag € B. If

ay € Alet (ag,bs) = (a1,by)
ay € B let (ag,be) == (a1, 1)
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Let ap = 22 e R=AUB = as€ Aoraz € B. If

ag € Alet (as, bs) = (a2, be)
ag € B let (ag,bs) == (a2, a2)

Continuing this process, we find
e an increasing sequence {a,},~; C A bounded above by b;.
e a decreasing sequence {by},>; € B bounded below by a;.

So {an},>; and {bn},>; converge in R. Let

a= lima,c A=A

n—oo

b= lim b, € B=B

n—oo

Note that by contradiction, by41 — ant1 = b”;“” Vn >1

b, —a blfal
— ’bn+1_an+1’:|n2n|:.-.:|2n|njo>oo

= [b—a|=0 = a=beANB=10

Contradiction! O

Proposition 28.7

The only non-empty connected subsets of R are the intervals.

Proof. The argument in the previous proof extends easily to show that intervals are
connected subset of R.
It remains to show that if ) # A C R is connected, then A is an interval. Let

a=1inf A (a = —o0 if A is unbounded below)
B =supA (B =ocif Ais unbounded above)

Claim 28.1. («, ) C A. This shows A is an interval.

We argue by contradiction. Assume Jc € (o, 3) \ A. Let D; = (—o0, ¢) open in R and
Dy = (¢,00) open in R.

ACR\{c}=DyUDs
ANDiNDy=10

AN Dy #0D (because inf A =a < c)
AN Dy # 0 (because sup A = > ¢)

= A is disconnected — Contradiction! O

Proposition 28.8

Let (X,d) be a metric space. Assume that for every pair of points in X, there
exists a connected subset of X that contains them. Then X is connected.
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Proof. Assume, towards a contradiction, that X is disconnected. Then there exists two
non-empty separated sets A, B C X s.t. X = AU B.

A#) = Jac A

— JC C X connected s.t. {a,b} CC
B+#0 = 3eB

CCX=AUB CCAor CCB
C' connected = beAnB aeBnA p — Contradiction! [
X closed = A, B closed ANB=1

Let (X,d) be a metric space. For a,b € X, we write a ~ b if there exists a connected
subset of X, Ay C X s.t. {a,b} C Ag.

Exercise 28.1. ~ defines an equivalence relation of X.
For a € X, let C, denote the equivalence class of a.
Exercise 28.2. 1. C, is a connected subset of X.

2. C, is the largest connected set containing a.

3. C, is closed in X.
4. If a ¢ b then C, and C} are separated.

We can decompose X = J,cx Cq as a union of connected components.
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§29 ‘ Lec 1: Mar 29, 2021

§29.1 Compactness

/Definition 29.1 (Open Cover) — Let (X, d) be a metric space and let A C X. An\

open cover of A is a family {G;};.; of open sets in X such that
AC U G;
il

The open cover is called finite if the cardinality of I is finite. If it’s not finite, the
open cover is called infinite.

J

[Definition 29.2 (Compactness & Precompactness) — Let (X, d) be a metric space
and let K C X.

1. We say that K is a compact set if every open cover {G;},.; of K admits a
finite subcover, that is,

In>1and Jiy,...,in € Ist. KC ]Gy
j=1

2. We say that a set A C X is precompact if A is compact.
J

/Lemma 29.3 A

Let (X,d) be a metric space and let ) #Y C X. We equip Y with the induced
metric d; : Y XY — R, di(y1,y2) = d(y1,y2). Let K CY C X. The followings are
equivalent:

1. K is compact in (X, d).

2. K is compact in (Y, dy).

J

Proof. 1) == 2) Assume K is compact in (X, d). Let {V;};.; be a family of open sets
in (Y,dy) s.t.

K cJVi
el
For ¢ € I fixed, V; is open in (Y,d;) = 3G; C X open in (X, d) s.t.
Vi=G,NY
Then
K CUier Vi CUier Gi

. = dn >1and Jiy,...,i, € [ s.t.
K compact in (X, d)

n

n n
j}:>Kg|JQjﬂY:U«%ﬂﬂ:Lﬂ@
j=1 j=1

j=1

K Ui, G,
KCY
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So K is compact in (Y, dy).
2) = 1) Assume K is compact in (Y,d1). Let {G;},c; be a family of open sets in
(X,d) s.t.

K C - G)NY =1, (G;NnY
KgUielGi = (Uzel 1) UzEI( ? )
open in Y —
KCY . .
K is compact in (Y, d;)
= In>1and Jiy,...,i, € Ist. K CUj_, (G, nY) CUj_, Gy O

Proposition 29.4

Let (X, d) be a metric space and let K C X be compact. Then K is closed and
bounded.

Proof. Let’s prove K is closed. We’ll show °K is open.
Case 1: °K = (). This is open.
Case 2: °K # (). Let z € °K
For y € K let ry = @. Note r, > 0 (since z € °K and y € K).

Note

K g UyEK BTy (y) n
open — dn>1and Jy1,...,yn € K s.t. K C UBTj(yj)

K is compact j=1

where we use the shorthand r; = Ty,
Let r = minlSan i > 0.
By construction, B,(x) N B, (y;) =0 V1 <j<n.

= By(z) C°By;(y;) YV1<ji<n
n € n
= Bu(x) S ()°Br,w) = | B, | C°K
i=1 j=1

r €K

— ‘K =°K
x € °K was arbitrary
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Let’s show K is bounded. Note
K g UyeK Bl (y)
——

n
open — dn >1 and Eiyl,...,yneKs.t. K C UBl(yj)

K compact J
For 2 <j <mn,let r; =d(y1,y;) + 1.
Claim 29.1. Bi(y;) C By, (y1)

L5

Indeed, if x € Bi(y;) = d(x,y;) < 1. By the triangle inequality

=1

d(y1, ) < d(yj, ) +d(y1,y5) <1+d(y1,y;) =r; = x € By (1)

So with r = maXQSjgn T‘j,

K C | Bi(y) € Be(w)
j=1

Proposition 29.5

Let (X, d) be a metric space and let F' C K C X such that F' is closed in X and K

is compact. Then F' is compact.

Proof. Let {G;};c; be a family of open sets in X s.t.
FC U G;
el

Then
KCFU°F ClJ;,;GiU  °F

~—~
open in X -
K compact

= dn >1and Jiy,...,0, € I s.t.

FCK —
7j=1

So F'is compact.
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Corollary 29.6

Let (X, d) be a metric space and let F' C X be closed and let K C X be compact.
Then K N F' is compact.

Proof. K is compact. So

K closed K N F is closed
F closed K NF C K compact

} = K N F is compact

§29.2 Sequential Compactness

Definition 29.7 (Sequential Compactness) — Let (X, d) be a metric space. A set
K C X is called sequentially compact if every sequence {a:n}n21 C K admits a
subsequence that converges in K.
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8§30 ‘ Lec 2: Mar 31, 2021

§30.1 Sequential Compactness (Cont’d)

~

Theorem 30.1 (Bolzano — Weierstrass)
Let (X, d) be a metric space and let K C X be infinite. The following are equivalent:

1. K is sequentially compact.

9 2. For every infinite A C K we have A’ N K # (). y

Proof. 1) = 2) Let A C K be infinite. As every infinite set has a countable subset
we can find a sequence {an}n21 C A such that a, # an Vn # m. As K is sequentially
compact, 3{ay, },~; subsequence of {ay},~; s.t.

d

aknn:;aEK

Claim 30.1. a € A’ < Vr >0 B,(a) N A\ {a} # 0.
Indeed, fix r > 0.

s ¢ = 3n, eNsit. d(a,ar,) <r VYn>n,

n—oo
As ap # am V0 # m, Ing > ny st ay, # a. Then ay, € Br(a)N A\ {a}. We get
ac€ ANK.
2) = 1) Let {an},,~; € K. We distinguish two cases:
Case 1: The sequence {an},~; contains a constant subsequence. That subsequence
converges to an element in K.
Case 2: {ay},~; does not contain a constant subsequence. Then A = {a,, : n > 1} is
infinite and A C K. So A'N K # . Let a € A’ N K. Then 3{ay, },,~, subsequence of

Qg

n

d
{an}t,>1 st ag, =

Bi(a) N A\ {a} 70
Bmin{%,d(a,akl)}(a) nA \ {CL} 7é (Z)

. ko > ki

Theorem 30.2

Let (X,d) be a metric space and let K C X be compact. Then K is sequentially
compact.
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Proof. If K is finite, then any sequence {x,},-; C K will have a constant subsequence.
Assume now K is infinite. We will use the Bolzano — Weierstrass theorem. It suffices
to prove that for any infinite A C K we have A’ N K # ().

Note A C K then A’ C K’

— ACK — ANK=A
K compact = K closed — K'C K

We argue by contradiction. Assume A’ = (). Then for z € K wehavex ¢ A’ = Jr, >0
st. Br (x)NA\{z} =0. So

K C U,ex Br.(z)
open = dn >1and dzq,...,z, € K s.t.

K compact

n
K C U By, (z;) where rj = 1,
j=1

In particular,

4= (Grte) A= U ) L ()

By construction, B, (z;) N A C {x;} infinite  j=1
—_——
finite
— Contradiction! So A" # (). O

Proposition 30.3

Let (X,d) be a metric space and let K C X be sequentially compact. Then K is
closed and bounded.

Proof. Let’s show K is closed «— K =K.

We know K C K. We need to show K C K. Let z € K — El{:zzn}n21 C K s.t.
2y L .

n—o0
K sequentially compact = 3{zy, },, subsequence of {z,},~; s.t.

Tk, i)yEK

n—oo
d d _

Tp — T = T, —> T — r=yck
n—oo n—oo

Limits of convergent sequences are unique

As 2 € K was arbitrary, we get K C K.
Let’s show K is bounded. We argue by contradiction. Assume K is not bounded. Let
a1 € K.

K not bounded = K ¢ Bi(a1) = 3Jas € K s.t. d(a1,a2) > 1
K not bounded = K & Bii4(,a,)(a1) = 3az € K s.t. d(ay,a3) > 1+ d(a1, az)

Proceeding inductively, we find a sequence {a,},,~; C K s.t. d(a1, ant1) > 1+d(a1, an).
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2 7

a3
ay

By construction,
|d(a1,am) —d(ai,an)| > n—m| Vn,m>1
By the triangle inequality,
d(an, am) > |d(a1,an) — d(ar,am)| > |n—m| VYn,m >1

This sequence cannot have a convergent (Cauchy) subsequence, thus contradiction the
hypothesis that K is sequentially compact. So K is bounded. O

(Definition 30.4 (Totally Bounded) — Let (X, d) be a metric space. A set A C X
is totally bounded if for every € > 0, A can be covered by finitely many balls of
\radius E.

Remark 30.5. 1. A totally bounded = A bounded.
Indeed, taking e =1, 3n > 1 and Jz4,...,2z, € X s.t.

AC U Bi(z;) C Br(71)
j=1
where 7 = 1 + maxo< <y, d(21, 2;).
2. A bounded =% A totally bounded.
Consider N equipped with the discrete metric

0,n=m
d(n,m){1 n % m

Then N = By(1), but N cannot be covered by finitely many balls of radius % since

B, (n) = {n}. ’

3. On (R",dy), A bounded = A totally bounded. Indeed, A bounded — A C
Br(0) for some R > 0. Br(0) can be covered by 106 (g)n many balls of radius €.
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§31 ‘ Lec 3: Apr 2, 2021

§31.1 Heine — Borel Theorem

KTheorem 31.1 A
Let (X,d) be a metric space and let K C X. The following are equivalent:
1. K is sequentially compact.
2. K is complete and totally bounded.
- J

Proof. 1) = 2) Let’s show K is complete. Let {zy},~,; be a Cauchy sequence with
T, € K Vn>1.
K sequentially compact = 3{zy, },~; subsequence of {z,},~; s.t.

d
l’kn—)yGK d

n—o0 :>ajn—>yEK
n—00

{#n},>; is Cauchy

As {x,},~; € K was arbitrary, we get that K is complete.
Let’s show K is totally bounded. Fix ¢ > 0 and a; € K.

o If K C B.(ay), then K is totally bounded.

(a1)
o If K ¢ B.(ay), then Jay € K s.t. d(aj,az) > ¢
e If K C B.(a1) U B:(az), then K is totally bounded.
o If K ¢ B.(a1) U Bc(az), then Jaz € K s.t. d(a1,as) > ¢ and d(ag,a3) > ¢

We distinguish two cases:

Case 1: The process terminates in finitely many steps = K is totally bounded.
Case 2: The process does not terminate in finitely many steps. Then we find {a,},~; C
K s.t. d(an,a,) > e V¥n # m. This sequence does not admit a convergent subsequence,
contradicting the fact that K is sequentially compact.

2) — 1) Let {an}n>1 C K. K totally bounded — jl finite and {xgl)} 7 - X
Z JEN

s.t.
(1)

1(a

K C
U]Ejl i )} = Jj1 € T st Hn G, eBl(ﬂcg))H =Ng

{an}nZI g K
Let {a%l)} . be the corresponding subsequence.
n

K totally bounded = 375 finite and {$§2)} C X s.t.

JET2
K C U l(x@))
{ag)} c K = djs € T2 s.t. Hn a,, €B1( )H—NO
n>1 "~

Let {a,(f)} . denote the corresponding subsequence.
n>
We proceed inductively. We find that Vk > 1

° {aﬁf“)}nﬂ subsequence of {a%k)}

n>1
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=

° {agk)}n>1 - Bk (xy:)) for some ) € X.

Jk

We consider the subsequence {a%n)} . of {an}n21.

{a%l)}@l:(agl)’ ag)j agn’ )
{(1512)}”21:( NOR ) )

{af’)}@l:( aﬁg), aé?’), a:(,)S), )

(k)

For n,m > k the a;n), a%ﬂ ) belong to the subsequence {an } o1 In particular,
nz

n m * Yk Jk

2
d(a™, al™) < d(al™ :C(k)) +d(ali, x(k)) <% Vn,m >k

This shows {aﬁ{‘)} is Cauchy and K is complete, so a%n) 4 ae K. As {an}, >
n>1 n—oo =

was arbitrary, we get that K is sequentially compact. O

Lemma 31.2

Let (X, d) be a sequentially compact metric space. Let {G;},.; be an open cover
of X. Then there exists € > 0 such that every ball of radius € is contained in at
least one Gj.

Proof. We argue by contradiction. Then

Yn>1 da, € X s.t. Bi(ay) is not contained in any G;

X is sequentially compact = 3{ax, },~, subsequence of {an},>; s.t.

ar,, N aEX:UGi = dig e ls.t. aeGy
1€

Gi, open = Jr > 0s.t. By(a) C Gy,

n—oo

ag, 0 = Ini(r) € Ns.t. d(ag,ax,) < gVn >ny

Let no(r) s.t. ng > 2.

Claim 31.1. Vn > n, = max {nj,n2} we have B%(akn) C By(a) € Gy, thefore giving

a contradiction!
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Fix z € Bl% (ak,). Then

1
dWJﬂSﬂ%%J+ﬂ%M®<E;+g<g+g:r

Theorem 31.3

A sequentially compact metric space (X, d) is compact.

Proof. Let {G;},c; be an open cover of X. Let ¢ be given by the previous lemma. X

sequentially compact = X totally bounded = 3n > 1 and

1,10 € X st X =Uj, Bg(a:j)} "

— X = U Gi
Vi<j<n 3ijelst. Br;)C Gy e

Collecting our results so far we obtain

/
Theorem 31.4 (Heine — Borel)
Let (X, d) be a metric space and let K C X. The following are equivalent:

1. K is compact,
2. K is sequentially compact,
3. K is complete and totally bounded,

4. Every infinite subset of K has an accumulation point in K.

I Remark 31.5. In R”, K is compact <= K is closed and bounded.

Definition 31.6 (Finite Intersection Property) — An infinite family {F;},.; of closed

sets is said to have the finite intersection property if V7 C I finite we have

() Fy#0

€T

(Theorem 31.7

sets with the finite intersection property satisfies

ﬂm#@

il

A metric space (X, d) is compact if and only if every infinite family {F;},.; of closed

~
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Proof. “ = " We argue by contradiction. Assume 3 {F;},.; closed sets with the finite
intersection property s.t. (\;c; Fi =0

X = c(miel Fi) = User °Fi
open p = 37 C I finite st. X = | J °F

X compact jesg

C
= 0= U °Fj | = ﬂ F; — Contradiction!
jeT JjeJ
“ <= 7 We argue by contradiction. Assume 3{G;},.; open cover of X that does not
admit a finite subcover.
So V7 C I finite X # U;e7 G5 = 0 # Njes °Gj. So {“Gi}cr is a family of
~~

closed
closed sets with the finite intersection property. Then

G #0 = | JGi#X

i€l el

Contradiction! ]
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§32 ‘ Lec 4: Apr 5, 2021

§32.1 Continuity

(Definition 32.1 (Continuous Function) — Let (X, dx) and (Y,dy) be two metric\
spaces. We say that a function f: X — Y is continuous at a point zy € X if

Ve >0 30 >0s.t. dx(z,z9) < then dy (f(x), f(x0)) <€
We say f is continuous (on X) if f is continuous at every point in X.

X
Y

- J

Remark 32.2. f: X — Y is continuous at every isolated point in X. Indeed, if zg € X is
isolated, then 30 > 0 s.t. B (x0) = {xo}. Then dx(z,z0) <& = dy (f(z), f(z0)) =0

Proposition 32.3 A

Let (X,dx), (Y,dy) be two metric spaces and f : X — Y be a function. The
following are equivalent:

1. f is continuous at zg € X.

2. For any {zn},~; € X s.t. o, X, xo we have f(z,) Ay, f(zo).
= n— 00 n—o0

- J

Proof. 1) = 2) Let {xp},5; C X s.t. ap X, xo.

n—oo

Let € > 0. f continuous at g = 36 > 0 s.t.

dx(z,70) <6 = dy (f(z), f(wo)) <e¢

= d Tn), f(xg)) <€
Tn Ax, xo = Ins € Ns.t. dx(xn, o) < 6Yn > ns x (f(2n), £ (20))

n—0o0

for each n > ns.
2) = 1) We argue by contradiction. Assume

Jep > 0s.t. Vo >0 dxs € X s.t. dx(zs,z0) < d but dy (f(x5), f(x0)) > €0

Letting § = 2 we find {zn},~; C X s.t. dx(2z,,20) < £ but dy (f(zn), f(z0)) > €0 —
Contradiction! - O
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/Theorem 324 A

Let (X,dx), (Y,dy) be two metric spaces and let f : X — Y be a function. The
following are equivalent:

1. f is continuous.
2. for any G open in Y, f~HG) ={zr € X : f(X) € G} is open in X.
3. for any F closed in Y, f~!(F) is closed in X.

4. forany BCY, f~1(B) C f~4B).

5. for any A C X, f(A) C f(A).

Proof. We will show 1) = 2) = 3) = 4) = 5) = 1).
1) = 2) Let G CY be open.

| 0

f(xo) € G
G open in Y

Let 29 € f~1(G)
} — Je>0s.t. BY (f(zo) € G

f is continuous
= 35> 0s.t. f (B (x0)) € BY (f(x0)) CG

= Bj(20) € [1(G) = wo € [7UG)

So f~Y@) is open in X.
2) = 3) Let F CY beclosed = “F =Y \ Fis open in Y. By assumption,

f~1(°F) is open in X

FLER) = )] = X f‘l(F)} T dosedin X

FRONE) =W\ FHE) =X\ fH(F)
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3) = 4) Let BCY = B closed in Y. By assumption,

~1(B) closed in 7 B
f7(B) closed X} — [ (B)C f~Y(B)=f"YB)

f7HB) 2 f71(B)

4) = 5) Let A C X. Use the hypothesis with B = f(A). We have

ACFI(A) 7 (FA) = F@) < FA)

5) = 1) We argue by contradiction. Assume Jzy € X s.t. f is not continuous at zg.
Then Je¢ > 0 and Iz, i—X> xo but dy (f(zn), f(xo)) > eo.
n—,oo

Let A= {z, :n >1}. Then 29 € A but f(zo) ¢ {f(xn): n > 1} = f(A). On the other
hand, we must have

F4) < f(A)} s flro) e FA)
o€ A

Contradiction! O

Proposition 32.5

Let (X,dx), (Y,dy),(Z,dz) be metric spaces and assume f : X — Y is continuous
at o € X and g : Y — Z is continuous at f(zg) € Y. Then go f : X — Z is
continuous at x.

Proof. Fix e > 0.

g continuous at f(xg) = 30 > 0 s.t. dy (y, f(x0)) <d = dz (9(y), 9 (f(x0))) < e
f continuous at xg = In > 0 s.t. dx(z,z0) <n = dy (f(z), f(zg)) <o

| ” | @
! ) €
So if dx (z,x0) < n then dz (g (f(x)),g(f(x0))) < e. O

Exercise 32.1. Let (X,d) be a metric space and let f,g : X — R be continuous at
29 € X. Then f + g, f g are continuous at xg. If g(xg) # 0 then 5 : X > Ris
continuous at xg.

Exercise 32.2. Let (X,d) be a metric space and let fi1,...,f, : X — R. Then
f=(f1,.-.,fn) : X = R™ is continuous at xg € X if and only if fi,..., f, are
continuous at zg.

Hint: [fi(x) — fi(wo)| < d2 (f(2), f(20)) = \/Z?:l |fi() = fi (o).
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§32.2 Continuity and Compactness

Theorem 32.6

Let (X,dx),(Y,dy) be metric spaces and let f : X — Y be continuous. If K is
compact in X, then f(K) is compact in Y.

Proof. Method 1: Let {G},.; be a family of open sets in Y s.t.

fEycl e = Kgf—1< Gi> =Js @G

K compact = In > 1 and Ji,...,4, € I s.t.
KclUsfrtGy) = {UG, | = rmcle,
j=1 j=1 j=1

Method 2: Let’s show f(K) is sequentially compact. Let {yn},~; C f(K).
Yyn € f(K) = Fzn = f'(yn) € K

As K is sequentially compact, 3{zy, },~, subsequence of {z,},; s.t.

dx
K, — xo € K d
n—0o0 = f(zr,) — f(xo) € f(K) O
N—— N—00

f is continuous _
=Ykn
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8§33 ‘ Lec 5: Apr 7, 2021

§33.1 Continuity and Compactness (Cont’d)

Corollary 33.1

Let (X, dx) be a compact metric space and let f : X — R” be continuous. Then
f(X) is closed and bounded.

Corollary 33.2

Let (X,dx) be a compact metric space and let f : X — R be continuous. Then
there exists 1,z € X s.t.

flz1) =inf{f(x): 2 € X} and f(z2) =sup{f(z): z € X}

Proof. f(x) is closed and bounded.

Boundedness = inf f(x) and sup f(z) are well defined
Closedness = inf f(z), sup f(z) € f(z) = f(z) O

Proposition 33.3

Let (X,dx), (Y, dy) be metric spaces s.t. X is compact. Let f: X — Y be bijective
and continuous. Then f~!:Y — X is continuous.

Proof. 1f suffices to show that for every closed set F' C X, we have

P ={yeY: iy e F)

is closed in Y.

But (f~1)7" (F) = f(F).

F closed in X compact = F'compact .
. . = f(F) is compact and closed [
f: X — Y is continuous

Definition 33.4 (Uniform Continuity) — Let (X,dx), (Y, dy) be metric spaces. We
say that a function f: X — Y is uniformly continuous if

Ve >0 3d=94(e) s.t. dx(z,y) <d = dy (f(z), f(y)) <e
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Compare this with g : X — Y is continuous if

Vee X Ve>0 35=0d(g,x)st. dx(z,y) <0 = dy (f(x), f(y)) <e

Remark 33.5. 1. Continuity is defined pointwise. Uniform continuity is a property of
a function on a set.

2. Uniform continuity = continuity.

3. There are continuous functions that are not uniformly continuous.
For example, consider
f:R=R, f(z)=a?
Let xn:n—f—%,yn:n

1
|Tp —yn| =— — 0
n n—oo

B 1\’ S S
o) = fn)| = (n+ 1) = =24 >

f(x)

i — :

0 0

Theorem 33.6

Let (X, dx), (Y, dy) be metric spaces with X compact. Let f : X — Y continuous.
Then f is uniformly continuous.

Proof. We argue by contradiction. Assume f is not uniformly continuous = Jegg > 0
s.t. V8 > 03xs,ys € X s.t. dx(zs,ys) < but dy (f(xs), f(ys)) > 0.
Let 6 = 1 to get {2n},51 {Untns1 © X st dx(wn,yn) < 3 but dy (f(an), f(yn)) 2
€0
X compact = I{zy, },>; subsequence of {z},; s.t.
dx

Tk, —> To € X
n—00
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By the triangle inequality,

d
@ (- 70) < (@, y0,) + (g, 70) — 0 = g, 5 g

TV
11 — 0
<kn§nn*>ooo n— 00

f continuous — ”d_;"o
f (k) = flzo)
But
g0 < dy (f(z,), f(yr,)) < dy (f(2h,), f(20)) +dyv (f (20), [ (yk,)) —= O
—0 —0
Contradiction! O

§33.2 Continuity and Connectedness

Theorem 33.7

Let (X,dx), (Y,dy) be metric spaces s.t. X is connected. Let f : X — Y be
continuous. Then f(X) is connected.

Proof. Method 1: Abusing notation we write f : X — f(z). It suffices to show that if
) # B C f(x) is both open and closed in f(z) then B = f(x).
As f is continuous, f~!(B) # 0 is both open and closed in X. But X is connected
which implies f~1(B) = X and f(z) = B.
Method 2: Assume that f(z) is not connected. Then 30 # B; C Y, 30 # By C Y s.t.
f(l‘) C By U B3 and
BiNBy=0=DBNDBy

let

Have

f(X)CBUBy, = X C fY(BiUBy) = f1(B)UfH(By) = A1 U Ay
AiNAy=fHB)Nf1(B2) C 1B NfHB2) = fH(BiNBy)
=710 =90
Similarly, A2 N A1 =10 .
This contradicts that X is connected. O
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4 I
Corollary 33.8 (Darboux’s Property)

Let (X,dx) be a metric space and let f : X — R be continuous. If A C X is
connected then f(A) is an interval in R.

In particular, if X = R, and a,b € R s.t. a < b and yg lies between f(a) and
f(b), then 3z¢ € (a,b) s.t. f(zo) = yo.

0] se—

- J

I Remark 33.9. There are function that have the Darboux property, but are not continuous.

For example, consider

sin(%),az;&o

where ¢ € [—1,1]
c, =0

f:]0,00) = R, f(:/v):{

) N nn .
[\ il

T/
7 .\ .
N UbU

Notice f is continuous on (0, 00) implies f has the Darboux property on (0, c0).
f has the Darboux property on [0, c0), but is not continuous at z = 0.

———1 |
|
——1
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8§34 ‘ Lec 6: Apr 9, 2021

§34.1 Continuity and Connectedness (Cont’d)

/Proposition 34.1 A
Let (X,dx) and (Y, dy) be two connected metric spaces. Then (X x Y, d) where
d((z1,1), (x2,42)) = Vdx (21, 22)2 + dy (y1,2)?

is a connected metric space. )

Remark 34.2. One could replace the distance d by

di ((z1,91), (2,y2)) = dx (w1, 22) + dy (y1, y2)
doo ((21,y1), (T2,92)) = max {dx (21, 72), dy (Y1, y2) }

Proof. We will use the fact that a metric space is connected if and only if any two points
are contained in a connected subset of the metric space.

A\ B

So to show X x Y is connected if suffices to show that if (a,b), (¢,d) € X x Y, then
there exists C' C X x Y connected s.t. (a,b), (c,d) € C.

F------9

=)

Let f: X — X xY where f(x) = (z,b)

Claim 34.1. f is continuous.
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Take § = ¢ in the definition of continuity. As X is connected, f(X) = X x {b} is
connected.

Similarly, g : ¥ — X x Y, g(y) = (¢,y) is continuous and since Y is connected,
g(Y) ={c} x Y is connected.

Finally, f(x) Ng(y) 3 (¢,b) and so f(x), g(y) are not separated. As the union of two
connected not separated sets is connected we get f(x) U g(y) is connected.

D,

Note (a,b), (¢,d) € f(x) U g(y). O

Definition 34.3 (Path) — Let (X, d) be a metric space. A path is a continuous
function 7 : [0,1] — X. «(0) is called the origin of the path and ~(1) is called the
end of the path.

As [0,1] is compact and connected and + is continuous, 7 ([0, 1]) is compact and
connected.

Given 7 : [0,1] — X a path, we define
v~ [0,1] = X, v~ (t) = v(1 —t) is a path
Given 71,72 : [0,1] — X paths s.t. y1(1) = v2(0).

71(1) = 72(0)

Y2(1)
71(0)
We define
Y1V yg: [0,1]—>X
via
2t ifo<t<i
71V As(t) = 71(2t) o =2
1(2t-1) if5<t<1
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/Proposition 34.4 b

Let (X,d) be a metric space and let A C X. Then 1) <= 2) = 3) where

1. Ja € As.t. Vo € A3y, : [0,1] — A path s.t.
72(0) = a and 7,(1) = 2
2. Vz,y € A3y, :[0,1] — A path s.t.

’Vm,y(o) =z and ’Vm,y(l) =Y

\ 3. A is connected. )

Proof. 1) = 2) Let z,y € A. By hypothesis, 3v,,v, : [0,1] — A paths s.t.

72(0) = %(0) =a, (l)=z, x(1)=y

4!

V2

Then v, V7, : [0,1] — A is the desired path.
2) = 1)Choose a € A arbitrary.
1) = 3) Given z € A, let A; =7, (]0,1]) connected. Note

a € m A; = no two sets A, A, are separated
z€A

Then A = J,c 4 Az is connected. O

Definition 34.5 (Path Connected) — If either 1) or 2) holds in the Proposition 34.4,
we say that A is path connected. Note A is path connected implies A is connected.
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Example 34.6
R?\ Q? is path connected.

A

/2

-————---9

\/

>

We will show that any (z,y) € R?\ Q? can be joined via path in R? \ Q? to
(V2,v3).
(z,9) eR’\Q* = 2¢ Qory ¢ Q
Say z ¢ Q. Then {z} x R C R?\ Q2. Note also that R x {v2} C R?\ Q2. Let
7:[0,1] = R*\Q?, v =71 V 72 where

v [0,1] = R2\ Q2, m(t) = (\/§+t(a: —V2), x/i) path
12 [0,1] = RE\ @ 7(t) = (w,V2+t(y - v2)) path
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Example 34.7
A connected set which is not path connected. Let f : [0,00) — R s.t.

sin (L 7
f(x)z{ &), @70

where a € [—1, 1] fixed.
Then I'y = {(z, f(x)) : € [0,00)} is connected, but not path connected.

A f(x)

v

Let’s show I's is connected. The function g : [0,00) = R?, g(z) = (z, f(z)) is
continuous on (0,00) = ¢ ((0,00)) is connected.

Also, g ({0}) = {(0,a)} is connected. We will show that (0,a) € g ((0,00)) and
so {(0,a)}, g((0,00)) are not separated. Then

I't=g([0,00)) =9¢({0})Ug((0,00)) is connected

To see (0,a) € ¢g(0,00) we need to find x,, — 0 s.t.

1

L 1 —_nT
SroSm oI where arcsina € [ I 2].

Take x,, =
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Example 34.8 (Cont’d from above)

Now let’s show I'y is not path connected. Assume towards a contradiction that
there exists v : [0,1] — I'y a path s.t.

1O =00, 2= (7.0)

Note IT; o : [0,1] — R is continuous

1
(L o7)(0) =0, (Mio7)(1)=—
Let b € [-1,1]\ {a}. By the Darboux property, 3t, € (0, 1) s.t.

1

T
I 09) (ta) = ——— where arcsinb € [, 7]
(TTy 0 7) (tn) arcsinb + 2nw where arcsinb 2’9

As [0, 1] is compact, Jtx, — teo € [0,1].
n— oo
v continuous = v (t,) —> Y(teo)
n—o0

¥ (th,) = (Mb) — (0,b)

n—oo

= Y(too) = (0,0) ¢ T'f
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8§35 ‘ Lec 7: Apr 12, 2021
§35.1

Continuity and Connectedness (Cont’d)

Example 35.1

Two connected sets A, B C [—1,1]x[—1
B, ANB=0. Let f:[-1,1] — [-1,1],

f(z) = x—%smg, 0<z<3
xz, %Sxﬁl
Let g: [-1,1] — [-1,1],
Lz —1<2<0
g(z) = —x—%sm%, 0<x§%
—x, %gxgl

Let

] st (=1,-1),(1,1) € 4, (-1,1),(1,-1) €
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Example 35.2 (Cont’d from above)
Let’s prove AN B = (. If

-1 <2 <0, f(a:)zg(:c)(z)gjglzlgx(:)le
O<:1:§%, f(z)=g(zx) <= =0
SSe<l f@)=gln) <= z=0
Also
f(-1)=-1 = (-1,-1)€ A
fl)=1 = (1,1)e A
g(-1)=1 = (-1,1)eB
g(1)=-1 = (1,-1)€ B

Let’s show that A is connected. A similar argument can be used to prove that B is
connected.

We write A = A; U Ay where A; = {(z, f(z)) : =1 <2z <0} and
Ag = {(z, f(z)) : 0 <2 < 1}. Note that h : [-1,1] — R? where h(z) = (z, f(z)) is
continuous on [—1,0] and (0, 1].

Since [—1,0] and (0, 1] are connected sets, we get that h([—1,0]) = A; and
h((0,1]) = Ag are connected.

To show that A = A; U A5 is connected, it suffices to show that A; and Ay are
not separated. We will show (0,—%) € A; N Ay. It’s clear that f(0) = —% =
(0, —%) € Ay. To show that (0, —%) € Ay we need to find a decreasing sequence
Ty, — 0 s.t.

1 . 1
f(mn):fﬁn—ismanio—§
We take x,, s.t. sini =1 <— i =5 t2nr = 1z, = Zjﬁ — 0. Notice that
2 1 1
= — = H _—
f@n) = 7 7 3.5% 2

§35.2 Convergent Sequences of Functions

Definition 35.3 (Pointwise Convergence) — Let (X,dx),(Y,dy) be two metric
spaces and let f, : X — Y be a sequence of functions. We say that {f.},,~;
converges pointwise if for all z € X the sequence {f,,(z)},>; converges in Y. The
limit lim,, oo fn(z) = f(2) defines a function f: X =Y.

Remark 35.4. {f,,},-, converges pointwise to f if

Ve X Ve>0 3n(e,z) € Nst. dy (fu(z), f(z)) <e Vn>n(e x)

Note that for ¢ > 0 fixed, n(e,-) : X — N can be bounded or unbounded. If it is
bounded, we get the following
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[Definition 35.5 (Uniform Convergence) — Let (X, dx), (Y, dy) be metric spaces and
let fr, : X — Y be asequence of functions. We say that { f,,},~; converges uniformly
to a function f: X — Y if

Ve >0 3n. € Nst. dy (f(x), fu(z)) <e Vn>n.VreX

We denote f, — f.
n—o0

- J

Remark 35.6. Let (X, dx), (Y, dy) be metric spaces, B(X,Y) = {f : X = Y; f is bounded},
d: B(X,Y)x B(X,Y) =R via

d(f,9) = sup dy (f(x),g(x))

zeX

Exercise 35.1. Show that (B(X,Y),d) is a metric space.
Note that f, — f <= M, =d(fn, f) — 0.
— 00 n—oo

n

“ <= "Ve>0dn.eNst. M, <eVn>n,

= d(fn, f) = sup dy (fu(x), f(x)) <e VYn>n.

= dy (fu(z), f(x)) <e VYn>n. VereX
“ : 2

I %;f — Ve >0 3n.eNst. dy (fu(z), f(z) <

n

< Vn>n.Vere X

\)

= supdy (fn(x), f(x)) < S<e Wn > ne
zeX 2

-~

d(fn;f):Mn

Remark 35.7. 1. Uniform convergence = pointwise convergence

2. Pointwise convergence =~ uniform convergence

fn : [07 1] — R, fn(w) ="
{Q 0<z<l1

o o om
{fn}tn>1 converges pointwise : nh_}rrgo fo(x) = lim 2" = I 2=

n—o0

Let

Note fi, 7uL> f since
d(fn, f) = sup |fu(z) = f(z)| = sup |2"[=1 - 0

z€[0,1] z€[0,1) Nn—00

Theorem 35.8 (Weierstrass)

Let (X,dx), (Y, dy) be metric spaces and let f,, : X — Y be a sequence of functions
that converges uniformly to a function f: X — Y. If Yn > 1, f,, is continuous at
xo € X then f is continuous at xg.
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Corollary 35.9

A uniform limit of continuous functions is a continuous function.

Proof. (of theorem) Fix ¢ > 0.

fn i}o f — Hng € N s.t. dY (fn(x)vf('r)) <

n

Yn>nVeeX

Wl ™

Fix ng > n.. fn, is continuous at zg
= 39 > 0 s.t. if dx(zg,z) <6

then
dy (fne(%0), fro(2)) <

c
3

Then for z € Bs(xg) we have

dy (f(2), f(20)) < dy (f(2), fng(2)) + d (fno (%), fro(20)) + d (fno(20), f(20))

<S4+i4i-=¢
3 3 3

By definition, f is continuous at xg. O
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§36 ‘ Lec 8: Apr 14, 2021

§36.1 Convergent Sequences of Functions (Cont’d)

KTheorem 36.1 (Dini) b

Let (X,d) be a compact metric space and let f, : X — R be a sequence of
continuous functions that converges pointwise to a continuous function f : X — R.
Assume that {fy},,~; is monotone in the sense that either {f,(z)},~; is increasing
for all z € X or {f, ()}, is decreasing for all z € X. Then, N

fn n%))of ie. d(fn, f) = sg§|fn(:c) —f(z)] — 0O

n—oo

- J

Proof. Assume that {f.},>, is increasing. Then {f — f»},5 is decreasing and for all
x € X we have

lim [f(2) ~ fule)] = inf [f(2) ~ ful@)] = 0

n—oo n—o0

Then Ve >0 3n(e,x) € Ns.t. Vn > n(e,z) we have
0< f(x) = falz) < f(2) = fro.(2) <e
As f — fn., is continuous at z, 30(e,x) > 0 s.t.
d(z,y) < deo = [[f(2) = fo..(@)] = [f(¥) = fn..W)]| <e
By the triangle inequality, we get

0<f¥) = fooo (W) < |[f (@) = fren(@)] = [F(W) = Frea @)]] + F(2) = fro . (@)
<e+e=2

whenever y € Bs, (x). In particular,

0<f(y) = fu(y) < fY) = faea(y) <26 Vn2>n.,, Vy € Bs, () (*)

Note
X = UIGX Bss,z (IL')

— 3J C N finit d3I{z;}. ., X
X compact } J & fute an {$J}J€J

st. X = ez Bs,(z;) and where §; = (¢, z;).
Let n. = maxjes n(e,z;). Fixn>n. andz € X. Asz € X =J;c7 Bs;(2;) = Jj €
J s.t. ¥ € Bs,(x;). By (*), we have
0< fx) = falr) <2
As x € X was arbitrary we get

d(f, fn) <2e Vn > ne O

I Remark 36.2. The compactness of X is necessary in Dini’s theorem.
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Example 36.3
fn:(0,1) = R, fr(z) = 2™ continuous

far1(z) < fo(x) Yn>1 Vze(0,1)
fn(2) —20 Vz € (0,1)

Let f:(0,1) =2 R, f(x) =0 Vz € (0,1). It’s continuous. But

d(fo, )= sup |77 =1 > 0 —> fr s f

z€(0,1) n—o0 n—00

n

Note that f, : [0,1] — R, fu(z x

) = continuous, {f,},>; is decreasing and
converge pointwise to f : [0,1] — R,

0, 0<zx<1 C o .
flx) = {1 - ) which is not continuous
y L=

This also shows that the continuity of the limit function is necessary in Dini’s
theorem.

I Remark 36.4. Monotonicity is necessary in Dini’s theorem.

Example 36.5

fn 1 [0,1] — R is continuous. {f,},; converges pointwise to f : [0,1] — R,
f(z) = 0Vx € [0, 1] figure here f is continuous. But

d(farf) = sup |ful@)| =1 - 0 = fu > f

z€0,1] n—00 n—00

Note that {f,},>; is not monotone!

§36.2 Space of Functions
Fix a,b € R, a < b. We define
C ([a,b]) ={f : [a,b] = R; f is continuous}
We equip C ([a, b]) with the metric d : C ([a,b]) x C ([a,b]) — R, given by

d(f,g) = sup |f(z)— g(x)]

z€[a,b]

Then (C ([a,b]),d) is a metric space.
Completeness: Let {f,},~; € C ([a,b]) be Cauchy. SoVe > 03n. € Ns.t. d(fn, fm) <€
Vn, m > n. B

= |fo(z) — fm(z)| <e VYn,m>n. V€ la,b]

So {fu(®)},>; is Cauchy Vz € [a,b]. As R is complete,

Vo € [a,b]  fu(z) — f(z) €R

n—o0
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This defines a function f : [a,b] — R. Recall that for all € > 0, there exists n. € N s.t.

|fn(z) — f(z)]| <e Vn>n. VY€ la,b
:>d(fn,f)§€ V"%Zne

So fn — f. By Weierstrass, f € C ([a,b]). Thus (C ([a,b]),d) is a complete metric
space.
Compactness: Note that (C ([a, b]) , d) is not bounded and so not compact.

Example 36.6
fn i ]a,b] = R, fp(z) =n for all z € [a,].

Connectedness: (C ([a,b]),d) is path connected and so connected.
Let f,g € C([a,b]). Define v : [0,1] — C([a,b]) via v(t) = f + t(g — f). Note
vt € [0,1], v(t) € C([a,b]) and

v0)=f, (1) =g

To see that v is a path we compute
d(y(t),7(s)) = P (8 2) — y(s; )]
xE|a,

= sup [t —s[[g(z) — f(z)
z€[a,b]

=|t—sldlg,f) — 0
—— |t—5|—0
€eR

So 7 is a continuous function and so a path.
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§37‘ Lec 9: Apr 16, 2021

§37.1 Arzela—Ascoli Theorem
For a,b € R with a < b, we define

C (la,b)) = {f : [a,b] — R; f continuous}
We equip C ([a, b]) with the uniform metric

d(f,g) = sup |f(z) — g(x)]

z€[a,b]

We showed that (C'([a,b]),d) is a complete, connected metric space, but it’s not
compact.

(Definition 37.1 (Equicontinuity) — We say that a set F C C ([a, b]) is equicontinuous\
if

Ve >0 3d(e) >0s.t. |f(z)— fy)] <e Va,y € a,b] with |z —y| < d(e)

and for all f € F.
(S J

Note: For a fixed function f € F C C ([a,b]), we have that f is uniformly continuous
(since f is continuous on [a, b] compact) which means for all € > 0, there exists d(e, f) > 0
s.t.

[f(z) = f(y)l <e Vz,y€la,b] with |z —y| <d(e, f)

Note that for an equicontinuous family F, J. can be chosen uniformly for f € F.

Definition 37.2 (Uniformly Bounded) — We say that a set F C C([a,b]) is
uniformly bounded if 3M > 0 s.t. |f(z)| < M Vz € [a,b] Vf € F.

Note: For a fixed f € F C C|[a, b] we have that f ([a,b]) is bounded (since f continuous
and [a,b] compact which implies f ([a,b]) is compact and so bounded). So IM; > 0 s.t.
|f(x)] < My Vo € [a,b]. For a uniformly bounded family F, we can choose the bound
M uniformly for f € F.

4 )
Theorem 37.3 (Arzela-Ascoli)
Let F C C ([a,b]). The following are equivalent:
1. F is uniformly bounded and equicontinuous.
2. Every sequence in F admits a convergent subsequence. )

Caution: We cannot guarantee that the limit of the convergent subsequence belongs to
F, unless F is closed in C ([a,b]). If F is closed in C ([a,b]), then the theorem becomes

F is compact <= F is uniformly bounded and equicontinuous

Proof. 2) = 1)
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Claim 37.1. F is totally bounded.
Fix e > 0. Let f; € F.

If 7 C B.(f1) then F is totally bounded
If 7 € Bc(f1) then 3f € F s.t. d(f1, f2) > ¢
If 7 C B.(f1) U B:(f2) then F is totally bounded

d(f1,f3) =2 ¢
d(f2: f3) =

If the process terminates in finitely many steps, then F is totally bounded. Otherwise,
we find {fn},~1 € F s.t. d(fn, fm) > €Vn # m. This sequence does not admit a
convergent subsequence, leading a contradiction.

Let’s show that F is uniformly bounded. As F is totally bounded, dn > 1 and
If1,..., fn € F s.t.

If 7 ¢ Bo(f1) U Bo(f2) then 3fs € F s.t. {

U 1(f5) € Br(f1)
where r = 1 + maxo<j<, d(f1, f;). In particular, for all f € F,

d(fafl) <r

f1 is continuous on compact [a,b] = My, > 0 s.t.
[fi(@)] < My, Yz € [a,b]
So for f € F

[f (@) < [f(x) = @) + [fi(@)| <d(f, f1) + My, <r+ My, Vo € [a,b]

So F is uniformly bounded.
Let’s show that F is equicontinuous. Let ¢ > 0. As F is totally bounded, 3n > 1 and

3f1,..., fan € F s.t.
U

For each 1 < j <, f; is uniformly continuous on [a,b]. So 30;(¢) > 0 s.t.
€ :
[fi(@) = i)l < 3 Y,y € [a,0] with |z —y| <J;(e)

Let §. = mini<j<, 0;(e) > 0.
Fix f e F = 31 <j<nst. f€B:(f;). Then for z,y € [a,b] with [z — y| < d. we
have

|f(@) = f)| < |f(@) = fi(@)] + [ fi(x) = f(w)] +1£5(y) = f(y)]
<2d(f, fj) + 1fi(x) — £ (y)]

N
3 3
This shows F is equicontinuous.
1) = 2) Let {fn},>; € F. As F is uniformly bounded,

M >0st. |f(z)| <M Vzx€la,b VfeF
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In particular, |f,(z)| < M Vz € [a,b] Vn > 1.
Let {rn},>; denote an enumeration of the rationals in [a,b]. As {fu(r1)},>; € R

is bounded by M, 3 {f,(LI)} . subsequence of {f.},>; s.t. {fél)(rl)} ,, converges.
n>

{#02)}
{f,(f) (7“2)} ;1 converges.

n_

Proceeding inductively we find Vk > 1 { fT(Lk+1)}

{fék) (rk)} , converges.

We consider { f,(l")}

: y (2) [ (1)
. C R is bounded by M — 4 {fn }n21 subsequence of {fn } s.t.

n>1

is a subsequence of { f,(Lk)} and
n>1 n>1

subsequence of {f,}, -
n>1 -

For n,m > k, fr(Ln), qulm) are elements in {fT(Lk)} o So {fT(Ln)} ., converges at 7.

Caution: The convergence is not uniform in k.
Fix ¢ > 0. As F is equicontinuous, 36 > 0 s.t.

@)~ fWl <5 Vryelabllz—yl <5V F
In particular,
Fa@) = @) < 5 Vey€lad] o -y <5, Vn>1 ")
Let r1,...,rxv € QNJa,b] s.t. a=rog <11 <...<ry<ryy1=>band
|71 — 15| <9 0<j<N

Note N ~ mf;b'. For each 1 < j < N, dnj(e) € N s.t.

n m €
) = S| <5 vnm = my(e)
Let n. = maxj<j<n n;j(e). Note
M) = S| <5 ¥nmzne VISGSN (%)

Let x € [a,b] = 31 < j < N s.t. |[v—rj| <d. Then

F@) = S50 @)| < [£50@) = )| + [£065) = 50 )| + [0 ) = 15 @)

By (*) and (**)<2'§+%:€ Vn,m > n.

So { fén)} . is uniformly Cauchy and so uniformly convergent. O
n>

I Remark 37.4. One can replace [a,b] by any other compact metric space (X, d).
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§38 ‘ Lec 10: Apr 19, 2021

§38.1 Arzela-Ascoli Theorem (Cont’d)

Remark 38.1. The compactness of the set on which the functions are defined is necessary
in Arzela-Ascoli.

Example 38.2

F={fRoR[f(z) - fy)| < |z —y| Yo,y € R and sup,cg |f(z)| < 1}. Note
F is equicontinuous and uniformly bounded. Let f: R — R, f(z) = ﬁ

Claim 38.1. f € F.

Indeed,

1
sup | f(x)| = sup =1
mER’ @) zeR 1+ 2
Moreover, for x,y € R
1 1 |x2—y2’
|f(z) = f(y)| = 1+ 22 1+12| (1+22)(1+42)
=lz—y| 7+ 5]
(1+22)(1+y?)
|z |yl
< |y —
<z 3l (g + 7o)
SN—— N— —
<3 <4
< |z —yl
So f e F.
Forn>1,let f, : R - R, fp(x) = f(z —n). Note f, € F since sup g | fn(2)] =

1
SupmeR m = 1,

[fu(@) = faW)l = flx =n) = fly —=n)[ < |(z —n) = (y — n)|
= |z —yl
Note that {f,},; converge pointwise to f : R — R, f(z) = 0 since lim;,—,o fn(z) =
limy, o0 m = 0. However, { fn}n21 does not admit a subsequence that
converges uniformly since Vn > 1

A(fa, ) = sp |fn(@)| =1 "o

xe

I Remark 38.3. Uniform boundedness is necessary in Arzela-Ascoli.
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Example 38.4

F={f: [0,1] — R; fis continuous and sup |f(z)| <1}.
——

z€[0,1]
compact

—~
uniformly bounded

Claim 38.2. F is not equicontinuous.

For n > 1, let f, : [0,1] = R, fu(z) = sin(nz). Note f, € F. Let z,, = 3~

o
Un = 3. Then |z, —yy| =2 ivd 0 but

| fo(@n) = fr(yn)| =2
So {fn},>1 is not equicontinuous == F is not equicontinuous.
Claim 38.3. {f,},>; does not admit a convergent subsequence.

Assume, towards a contradiction, that there exists a subsequence {f, },~; of
{fn},;>1 that converges uniformly to f : [0,1] — R. By Weierstrass,

fec(o1])
fkn(O) =0 Vn >1

} — jo =0 Ve>030>0st. [f(z)| <eVO<z<q
fin(0) =2 £(0) =

T s f — 3n. € Ns.t. d(fr,,f) <e¥n > n.. In particular, for 0 < z < ¢

n—,oo
and n > n. we have

| fro ()] < [ (@) = F(@)| + [f(@)] < d(fop, [) +8 < 2

Choosing € < % and N large so that N > Me=1 and 5 < (552% we find

= ‘ka (%)’ <2 <1 Contradiction!

§38.2 The oscillation of a Real Function

(Definition 38.5 (Oscillation of a Function) — Let (X, d) be a metric space and 1et\
f: X — R be a function. For ) # A C X, the oscillation of f on A is

w(f, 4) = sup f(z) — inf f(z) = sup [f(z)~f(y)] =0
€A z€ T,ycA

Note that if A C B then
w(f,A) <w(f, B)

For g € X, the oscillation of f at xg is given by

w(fa $0) = égf(‘)w(fa Bd($0))
- J
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Proposition 38.6

Let (X, d) be a metric space and let f : X — R be a function. Then f is continuous
at a point xp € X if and only if w(f, zo) = 0.

Proof. “ = 7" Fix e > 0. As f is continuous at zg, 36 > 0 s.t. |f(x) — f(wo)| < §
Vx € Bg(l‘o).

— 17(@) = FW)] < 1f@) = F@o)l + F (o) = fW)| < 5 Vay € Bs(ao)
— w(f, Bs(xo) = sup [f(a) — f)] < 5 <=
z,y€Bs(x0)

= w(f,z0) <w(f,Bs(xp)) <e

As e > 0 was arbitrary, w(f,zg) = 0.
“ <= 7" Fix € > 0. Then w(f,z9) =0 < ¢ implies 36 > 0 s.t. w(f, Bs(zo)) < ¢

= |f(z) — f(y)l <e  Va,y € Bs(wo)
= |f(z) — f(z0)| <e  Vz € Bs(xo)

So f is continuous at xg. O

Lemma 38.7
Let (X, d) be a metric space and let f: X — R be a function. Then for any o > 0,

{r e X:w(f,z) <a} isopenin X

Proof. Fix a > 0 and let A = {z € X : w(f,z) <a}. Fixzp € A = w(f,x0) =
infs~ow (f, Bs(20)) < a.

= 36 > 0s.t. w(f,Bs(xo)) <«

Claim 38.4. Bj(z) C A (which implies 29 € A and so A = A).
Let x € Bs(xp). Then r =0 — d(z,z9) > 0 and B,(x) C Bs(xo)

= w(f, Br(x)) <w ([, Bs(w)) < a
= w(f,2) <w(f,Br(z))<a = z€A O

Remark 38.8. Let (X, d) be a metric space and let f: X — R be a function. Then

{r € X : fis continuous at z} = {z € X : w(f,z) =0}

zﬂ{xeX:w(f,x)<i}

n>1

=Gn

By the lemma, G,, = Gn VYn > 1. Also, Gp4+1 C Gy, Vn > 1. This observation allows us
to prove that there are no functions f : R — R that are continuous at every rational
point and discontinuous at every irrational point.
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8§39 ‘ Lec 11: Apr 21, 2021

§39.1 Oscillation of a Function (Cont’d)

Recall from last lecture that there are no functions f : R — R that are continuous at
every rational point and discontinuous at every irrational point.

Proof. (Sketch) Assume, towards a contradiction, that f : R — R is such a function.
Then
Q={x €R: fiscontinuous at x} = ﬂ G, with G,, open in R
n>1

NoteVn>1, Q C G,

— R=QCG,CR
— G, =Rie. G, is densein R

Let {gn},>; be an enumeration of Q. For each n > 1, let H, = R\ {g} = (—00,¢n) U

(gn,00). Note H,, is open and dense (H, = R) in R. Also

() H. =R\ Q
n>1
So
(NG () Hn=QNR\Q =0

n>1 n>1
This contradicts the following property of R:

Exercise 39.1. If {A,}, -, is a countable collection of open and dense subsets of R,

then
()4, =R
n>1
Apply this exercise with {4, : n > 1} ={Gp: n > 1} U{H, : n > 1}. O

§39.2 Weierstrass Approximation Theorem

\
Theorem 39.1 (Weierstrass Approximation)

Fix a,b € R with a < b. Let f : [a,b] — R be a continuous function. Then, there
exists a sequence of polynomials {F,},~; with deg P, <n Vn > 1 s.t.

}%zﬁ:;;)f on [aam

- J

Proof. First, we reduce to the case when [a,b] is [0,1]. Let ¢ : [0,1] — [a,b], ¢(t) =
a+t(b—a). Note ¢ is a continuous, bijective function with the inverse

a .
continuous

o a5 0,1, 67 @) =

As f :[a,b] — R is continuous, f o ¢ :[0,1] — R is continuous.
If {Pn}n21 is a sequence of polynomials with deg P, < n s.t.

P, - fo¢on [0,1]
n—oo
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then P, o ¢! _% f on [a,b]. Indeed,
n oo

sup |(Poo¢™") (x) = f(z)] = sup |Pu(t) = (f o))

x€la,b] z=¢(t) ¢e[0,1]

— 0
n— oo

Therefore, we may assume f : [0, 1] — R is continuous. Define the Bernstein polynomials

via "
- Z f <7]z> (Z) zk (1-— x)”_k deg P, <n
k=0

Note that if f is a constant, say f(z) = ¢ Vx € [0, 1] then
ZCZ() 1-—z)"F=cl@+l-a)"=c Vzel0,1]Vn>1

We want to show P, nﬁo f on [0,1]. Fix z € [0,1]. Consider
|f($)—Pn(x)\=‘f(x)§:(Z>x (1—a) Zf< ) < > K1 — gk

k=0
e ()0

B

To estimate the sum we use the following

(]

N
M=
P

k=0

e when % is close to x, we use the continuity of f.

e when % is far from x, we use the fact that z % 2¥(1 — 2)"* has a local maximum
k

at = o
g (@) =ka* 11 —2)"F — (n — k)aF (1 — )kt

21— )RR - 2) — (n - k)2)
21— )Rk — na)
>0 ifz<
= { 0 ifx=

<0 ifx>

Sl3l= 3

f:10,1] — R is continuous = f is uniformly continuous. Fix € > 0. Then 3¢ > 0 s.t.
@) - f@)l <e whenever w,ye[0,1], |z—y <9
f:10,1] = R is continuous = f is bounded. Let M > 0 be s.t.

|f(x)| <M vV € [0,1]
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We estimate

0<k<n

‘x—%‘<5 <e

k

+ X -1 (5)| (a0

0<k<n

|25 |>8 <oM

ny k k ( E)2 n\ k k

<e < >x (1—2)" " +2M Z 5 <k>x (1—a2)""

0<k<n 0<k<n

Observe that

Zn: (nx — k) (Z) 21— o) = 22 3 <Z> (1 ot

k=0

k=0 k=
Then
- n! " n!
k (1 -z k=2 * (1 — )k
kZ:O kl(n — k)! = (k—1D!(n—k)!
n—1
_ (n-=1)! n—1-1
= ot T
=0
:(x+f:m)"*1
=nx
and

So
Z(n:c —k)? <n> (1 — )" = n22% — 20222 + n(n — 1)a® + na

=nz(l —x)
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We get

7(@) ~ Paf@)] < =+ gy - na(1 — )

<€+% sup z(1 —x)
N no? z€[0,1]

<e+ M <2
€+ —— 15
- 25%n

M

provided n > 55—

. So P, %fon [0, 1]. O
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§4()‘ Lec 12: Apr 23, 2021

§40.1 Weierstrass Approximation Theorem (Cont’d)

/Corollary 40.1 A

Let M > 0. Then there exists a sequence of polynomials {P,},~; s.t.

deg P, <n Vn >1

P,(0)=0 Vn >1

P, % |z| on [—-M, M]
n—oo

- J

Proof. Let f:[-M,M] — R, f(x) = |z|. Then f is continuous and [—M, M| compact.
By Weierstrass Approximation, 3{@n},>; sequence of polynomials s.t.

deg @, <n Vn >1
Qn — fon [-M, M]

n—oo

Note @, ni)o f = Qun(0) — f(0)=0.

n—oo

Let P,(z) = Qn(z) — Q1 (0). Then

deg P, <n Vn >1
P,(0)=0 Vn>1

For = € [-M, M],

— d(Pa, f) < d(Qu, ) +1Qu(0)] — 0 0

§40.2 Stone-Weierstrass Theorem

(Definition 40.2 (Algebra) — Let (X, d) be a metric space and let
AC{f:X — R(or C); f is a function}
We say that A is an algebra if
1. f+g€e A Vf, g€ A.
2. fge A Vf,ge A
3. \fed Vfe AVYA e R(or C)

We say that the algebra A separates points if whenever x,y € X with z # y then

f € Ast. f(z) 4 [(y).
We say that the algebra A vanishes at no point in X if Vo € X 3f € As.t. f(z) #

\0.

J
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Lemma 40.3

Let (X,d) be a compact metric space and let A C C(X) be an algebra. Then its
closure A with respect to the uniform topology is also an algebra.

Proof. Let f,g € A. Then

If, e Ast. f, — fon X
n—oo

Jgn € Ast. g — gon X
—00

n

— f+gc A
fn + gn € A (because A is an algebra)

Similarly, for A € R,

d(Afn, Af) < Nd (fn, f) — 0 _
nmree — A eA
Afn € A (because A is an algebra)

Then

d(fngm fg) = Sup |fn(x)gn(x) - f(x)g(x”

zeX

< sup [|fu(z) = f(@)] lgn(@)| + |f ()] |lgn(z) — g(2)]]

xeX
< d(fn, f) sup |gn(z)| + d(gn, g) sup | f ()]
rxeX xeX

By Weierstrass,

fni>fonX} feC(X)}
n—oo :>

= dM > 0s.t. sup|f(x)| <M
fn € C(X) X compact

reX
Similarly, g € C(X) = 3IMs > 0 s.t. sup,cx |g(x)] < Ms

d(gn,0) < d(gn,g) +d(g,0) <1+ My Vn>m

Let M3 = max < 1+ Ma,d(g1,0),...,d(gn,,0) p. So d(gn,0) < M3¥n > 1. Thus
—— ———

<oo <oo
d(fngn, fg) < d(fn, f) - M3 +d(gn,g) - M1 — 0 _
fngn € A (since A is an algebra)
~

KLemma 40.4

Let (X, d) be a compact metric space and let A C C'(X) be an algebra that separates
points and vanishes at no point in X. Then

f(z1) =«

f(z2) =P

Va,8 € R Vi, x9 € X s.t. 21 # o ElfGAs.t.{
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Proof. Fix o, 8 € R. Fix x1, x5 € X s.t. x1 # z2. We would like
@) | @)

u(z1) v(x1)

flz) =

for u,v € A s.t.

u(x1) #0 and wu(xzg) =0
v(r1) =0 and wv(xz)#0
Then f € A (because A is an algebra) is the desired function.

As A separates points, 3g € A s.t. g(x1) # g(z2).
As A vanishes at no point in X,

dh e Ast h(z1) #0
dk € As.t. k(xzg) #0

Then, we define

Theorem 40.5 (Stone-Weierstrass)

Let (X,d) be a compact metric space and let A C C(X) be an algebra that
separates points and vanishes no point in X. Then A is dense in C(X), i.e.,
A=C(X)={f:X — R; f continuous}.

Proof. Want to show Vf € C(X) Ve >0 3g € As.t. d(f,g) <e.
Step 1: If f € Athen |f|€ A Let f € A = 3f, € As.t.
ni> on X
f”—>00f }:>feC(X)
fn € C(X)

As X is compact, IM > 0 s.t. |f(x)] < M Vz € X. By the previous Corollary 40.1,
I{Pn},>1 sequence of polynomials with deg P, <n Vn > 1 s.t.

P, n%o |z|on [—M, M) Y
= Pu(f) — [flon X

If Py(z) =Y 1 ckx® then P,(f) = Y_}_; ek f* € A which implies |f| € A.
Step 2: If f,g € A then max {f, g}, min{f, g} € A.

Step 3: Vf € O(X), Vo € X, Ve >0, 3g € A s.t.

g(x) = f(x) and g(y) > fly) —¢ VyeX

Continue in the next lecture. O
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8§41 ‘ Lec 13: Apr 26, 2021

§41.1 Stone-Weierstrass Theorem (Cont’d)

We continue with the proof of Stone-Weierstrass from lecture 12. Recall that we are at
step 3 so far.

Proof. Step 3: For any f € C(X), z € X, € > 0, there exists g € A s.t.

{g(x) = f(x)
gly) > fly) —e  WyeX

g f

/
7

For any y € X, there exists h, € A s.t.

As hy € A, hy is continuous. Thus, h, — f is continuous at y. So 33, > 0 s.t.
|hy(2) — f(2)| <&, Vz € Bs,(y). In particular,

hy(z) > f(z) — ¢ Vz € Bs,(y)

Note that
X = UyeX B(;y (y)

= dN >1and Jy1,...,yvn € X
X compact

st. X = UT]Ll Bs,, (yn) where 6, = 6y,
Take g = max {hy,,...,hyy} (by step 2). By construction, g(z) = f(z). Also if y € X,
J1<n < Nst. ye€ Bs, (yn). So

9(y) = hy, (y) > f(y) —¢

Step 4: For all f € C(X) and ¢ >0, 3g € As.t. d(f,g) <e. Fix f € C(X),e >0
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Gy f+e
f
f—e
P
///
/
/
X

For z € X, let g, € A be the function given by step 3. In particular, g,(x) = f(z),

9:(y) > fly)—e  VyeX

As g, € A, the function g, — f is continuous at x. So 35, > 0 s.t. |g.(y) — f(y)| < &,
Yy € Bs,(z). In particular,

9:(y) < fly) +e  Vy € Bs, (v)

Note

} = dN > 1 and Jdzq,..., 25 € X s.t.
X compact

X = ngl Bs, (v5,) where 6, = &z,
Take g = min{gy,,..., 9z} € A (by step 2).
Fory e X, 31 <n < N s.t. y € Bs, (x,) and so
9(Y) < gz (y) < fly) +¢
Moreover, as ¢z, (y) > f(y) — ¢, Vy € X, V1 <n < N, we have
9(y) > fly) - WyeX
This shows C(X) C A=A C C(X). O

§41.2 Differentiation

(Definition 41.1 (Limit) — Let (X,dx), (Y,dy) be metric spaces, let ) # A C X,\

let f: A—Y. For zp € A’ and yp € Y we write

[z, w or Jlim f@) =w

if Ve > 0, 30 > 0 s.t. dy (f(x),y0) < € whenever 0 < dx (z,zg) < 9.
Equivalently, limg_,,, f(x) = yp if

lim f(z,) = yo for every sequence {xy},~; € A\ {zo} s.t. z, 4, xo

- J

Note also that if 29 € A’ N A then f is continuous at zg <= limg_., f(z) = f(z0).
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Exercise 41.1. Let (X, d) be a metric space, 0 # AC X, f: A—Randg: A — R be
functions. Assume that at a point a € A’ we have

lim f(z) =a and lim g(z)=p

Then
1. limgosay (Af(2)) = A, A € R
2. limg o, (f(2) + 9(x) =+
3. limga, (f(2)9(7)) = - B

4. If B # 0 then limg_,z, % -

(z

™R

/Definition 41.2 (Differentiability) — Let I be an open interval and let f: [ — R\

be a function. We say that f is differentiable at a € I if

i £@) = 1)

T—a T —a

exists and is finite

in which case we denote it f’(a).

J
Example 41.3
Fixn>1andlet f:R— R, f(z) =2". Fora € R and z # a
f@) = f(@) _a"—a"
T —a T—a
=" 142" 2% +.. . +a¥ ! — na™ !
So f is differentiable at a and f’(a) = na™!.

/Theorem 41.4 A
Let I be an open interval and let f : I — R be differentiable at a € I. Then f is
\continuous at a. y

Proof. For x € I\ {a}, we write
flz) = fla
fa) =TI o)y s0) s f) 0
r—a N—— ~—— T—a
— f'(a) ;’)10 ac——n>1f(a)
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[Theorem 41.5 A

Let I be an open interval and let f : I — R and g : I — R be two functions
differentiable at a € I. Then

1. VA € R, \f is differentiable at a and
(Af) (a) = Af'(a)
2. f + g is differentiable at a and
(f +9)' (a) = f'(a) + ¢'(a)
3. f - g is differentiable at a and
(f-9)" (a) = f'(a)g(a) + f(a)g'(a)
4. L is differentiable at a if g(a) # 0 and

| (i) () = F@9(a) - H(@)g (@)

L g 9%(a) )
Proof. For z # a
1. Consider
M) =M@ @) =S
r—a r—a T—a
2. Consider
() + o)) = (F(e) +(0) _ f@) = Fl0) | g&) =ol@) _ vy
Tr—a Tr—a Tr—a r—ra
3. Consider
TOZH9 o)+ gta) - 2D=0D s playg(a) + fla)g' (o)
~~ ~— r—a  xoa
) @ @ T
4. Consider
W0 e S =S 1 @) 1
T—a T —a g(x) T —a g(x) g(a)
i) 1 — 0@
z—a ) z—a AT e)

f'(a) _ g'(a)

voa gla)  g*(a)

f(a)
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8§42 ‘ Lec 14: Apr 28, 2021

§42.1 Chain Rule

KTheorem 42.1 (Chain Rule) b

Let I and J be two open intervals and let f : I — R and g : J — R be two functions.
Assume that f is differentiable at a € I and that g is differentiable at f(a) € J.
Then g o f is well defined on a neighborhood of a, g o f is differentiable at a, and

9 (go f) (a) =g (f(a))- f(a) )

Proof. Consider:

fla)yeJ

' } = Je>0st. (f(a)—¢, fla)+e)CJ
J is open

f is differentiable at a = f is continuous at a = 39 > 0s.t. f((a —d,a+0)NI) C
(f(a) —€,f(a)+¢€). As a € I and I is open, shrinking § if necessary, me may assume
that (a —d,a+9) C I.

Then g o f is well-defined on (a — §,a + 9).

(a—d,a+8) L (fla) —e, fla) + ) S R

cr cJ

Caution: The following argument does not work

9(f(x)) —g(fla)) _g(f(x) —g(f(a)) flx)—fla)
r—a f(z) = f(a) r—a
g/ (f(a)) ()

because f is continuous at a = f(x) *=% f(a)

Instead, we argue as follows: Define h: J — R,

Mw_{“T%$W ity € 7\ {/(0))
g (f(a), ify=f(a)

As g is differentiable at f(a), h is continuous at f(a). Moreover, we can write
9(y) =g (f(@)) =h(y) - (v = fa)) VyeJ
Forz € (a—d,a+9) = f(x) € J. Soforz € (a—d,a+9)\{a},
@) =9 (@) _ o) f@ = 1@
a —— x

T — —a
s —_——
—>h(f((l)) @f’(a)
So lim, ., w =h(f(a) f'(a) =g (f(a))- f(a). O
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Lemma 42.2

Let f : (a,b) — R be a differentiable function. If f is increasing then f/(z) > 0Vz €
(a,b) or decreasing then f'(z) < 0Vz € (a,b).

Proof. Assume f is increasing (if f is decreasing, replace f by —f in what follows). Fix
x € (a,b) and let {gﬂn}n21 be an increasing from (a,b) with lim, . z, = z.

Then f/(x) = limy— o0 Hen)=f@) > () where f (xn) — f(z) <0 and z, —x <O0. O

Tp—T

Theorem 42.3

Let f : (a,b) — R be a function. Assume that xg € (a,b) is a point of local
maximum/minimum for f. Assume also that f is differentiable at xy. Then

f/(xo) = 0.

Proof. Assume that z( is a point of local maximum for f (if zp is a point of local
minimum, replace f by —f in what follows).
Then 36 > 0s.t. f(z) < f(zo) VYa € (xg— 3,20+ 0)N(a,b). For x,, € (xg — d,20) N

(a,b) s.t. zp =2 @0, we have

>0

f'(z0) = lim f(xy) — fzo) <0

n—oo X, — 29 <0
On the other hand, for y,, € (xo,z0 +9) N (a,b) s.t. y, —> x0, we have
n—oo

Fag) = lim LW = F(@) <0

<0
n—00 Yn — To > 0

Thus, we get f'(z) = 0. O

§42.2 Mean Value Theorem

Theorem 42.4 (Rolle)

Let f : [a,b] — R be a function which is continuous on the [a, b], differentiable on
(a,b), and s.t. f(a) = f(b). Then there exists (at least one) x € (a,b) s.t. f'(x) =0.
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Proof. Consider:

f :[a,b] — R continuous

[a,b] compact } = Jxo,y0 € [a,b]

s.t.
f(zo) = sup f(z) and f(yo) = inf f(z)

x€[a,b] xz€la,b|
So f(yo) < f(z) < f(z0) Vz € [a,b].
Case 1: We have
{1’0, yO} - {a7 b}
f(a) = f(b)

} = f(z0) = f(yo) = f constant = f'(x) =0Vzx € (a,b)

Case 2: {zo,y0} € {a,b} = x0 ¢ {a,b} or yo & {a,b}. Say o ¢ {a,b} = o €

(a,b). By Theorem 42.3, we get f'(zq) = 0.

O]

/Theorem 42.5 (Mean Value)

exists (at least one) y € (a,b) s.t.

.

Let f : [a,b] — R be continuous on [a, b] and differentiable on (a,b). Then there

~

J

Remark 42.6. The Mean Value Theorem implies Rolle’s Theorem. We will see from the
proof that Rolle’s Theorem implies the Mean Value Theorem, so the two are equivalent.

Proof. We define [ : [a,b] — R where
o) = 1O =T o4 ()

Note that [ is continuous on [a, b], differentiable on (a,b), and

U(z) = JO =0y, e (a,b)
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= f(z) — l(x). Then g is continuous on [a, b], differentiable on

Let g : [a,b] — R, g(z)
= g(b). Then Rolle’s implies that Jy € (a,b) s.t.

(a,b), and g(a) =0

Jy)=0 = fy) =l'ly) =0 = f(y) =

Corollary 42.7
If f:(a,b) — R is differentiable and f’(z) = 0Vz € (a,b), then f is a constant.

Proof. Assume f is not a constant. Then da < x1 < z9 < b s.t.

f@1) # f(x2)

Then f is continuous on [z1, x3], differentiable on (z1,x2). By Mean Value, Jy € (1, x2)

s.t.
f’(y) _ flz1) — f(z2) £0

Tr1 — T2
Contradiction! O

Corollary 42.8
If f,g: (a,b) = R are differentiable s.t. f'(z) = ¢'(x)Vz € (a,b), then Ic € R s.t.

f(z) =g(x) +c  Vre(ab)
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8§43 ‘ Lec 15: Apr 30, 2021

§43.1 Mean Value Theorem (Cont’d)

Theorem 43.1

Let f:[a,b] = R, g : [a,b] — R be continuous on [a, b] and differentiable on (a,b).
Then there exists (at least one) ¢ € (a,b) s.t.

f1(e) [9(0) — g(a)] = ¢'(c) [£(b) = f(a)]

Remark 43.2. Taking g(xz) =  we recover the Mean Value theorem. In fact, the two
results are equivalent, as can be seen from the proof.

Proof. We define h : [a,b] — R
h(z) = f(x) [9(b) — g(a)] — g(x) [f(b) — f(a)]
Note that h is continuous on [a, b] and differentiable on (a,b). Moreover,

h(a) = £(a) [9(b) — 9(a)] = 9(a) [£(b) — (a)] = F(a)g(b) — g(a) £ (D) -
h(b) = F(b) [9(b) — g(a)] — g(B) [£(8) — f(@)] = —F(b)g(a) + g(b) f(a)} = hia) = h(b)

By Rolle’s theorem, 3¢ € (a,b) s.t h'(¢) = 0. O

/Corollary 43.3 A
Let f: (a,b) — R be differentiable.

1. If f/(x) > 0 Vz € (a,b) then f is strictly increasing.
2. If f'(x) > 0 V& € (a,b) then f is increasing.
() (a,)
(z) (a,)

3. If f/(z) < 0Vax € (a,b) then f is strictly decreasing.

<
4. If f'(z) <0 Vz € (a,b) then f is decreasing.

J

Proof. We only present the details for (1).
Fix a < x; < x2 < b. f is differentiable on (a,b) = f is continuous on [z}, z2] and
differentiable on (z1,x2). By the Mean Value theorem, Jc € (x1, z2) s.t.

f(z2) — f(x1)

T2 — T

0< f'(c)=

= f(21) < f(=2)

As a < 1 < 9 < b were arbitrary, f is strictly increasing. O
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Example 43.4

The derivative of a differentiable function need not be continuous
21
= 0
fR=R, f(x)= sing, o7
0, B=_0

f is continuous on R\ {0}. To see that it’s continuous at 0,

£(2) — F(0)] = x2sini’ 2?0 -

z—0

f is differentiable on R \ {0}. To see that it’s differentiable at 0, we compute

f(ﬂ;)—(,);((]) :xsiné 3:50 (as in (*))

x#0:
So f’(0) = 0. Thus,

N 2xsin%—|—x2(:os%-;—2l,x7é0 B Qmsin%—COS%, z#0
fix) = =
O’ :L':O 0, xZO

f’ is continuous on R\ {0} (not continuous at 0). While lim,_,o2zsini = 0, for
each A € [—1,1], there exists z,(A) — 0 s.t. cos%(/\) = A. Nevertheless, the
n—,oo &

derivative of a differentiable function has the Darboux property.

~

Theorem 43.5 (Intermediate Value for Derivatives)

Let f: (a,b) = R be differentiable. Then f’ has the Darboux property, that is, if
a <z < w2 <band A lies between f/(x1) and f/(x2), then there exists ¢ € (z1,x2)
s.t.

") = A
N fi(e y

Proof. Let g : (a,b) — R, g(x) = f(x) — Azx. g is differentiable on (a,b) — ¢ is
continuous on (a,b). Fix a < x1 < x3 < b and assume without loss of generality

fl@) <X < f(22)

Then

g is continuous on [z1, z2]

= Jc € [z1,29] s.t. g(c) = inf g(z)

T€[x1,22]
If we can prove that ¢ € (z1,x2) then ¢'(¢) = 0. To see that ¢ # x1 we argue as follows:

9(@) — g(x1)

0> g'(xl) = lim = 361 >0
T—T1 Tr — I
s.t. if 0 < |z — x1| < 071 then
o)~ olr) _,
r — I
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In particular, for x € (x1,21 + d1) we have

9(x) — g(@1)

r — I
N——
>0

<0 = g(z) < g(z1)

—> ¢ cannot attain its minimum at x;

Similarly,
0< g(zg) = lim LB =92 55
T—T2 r — T2
s.t. if 0 < |z — x2| < 02 then
o) ~ 9(w) _
Xr — I9
In particular, if z € (xg — 02, x2) then
g\xr) — g\x2
)= 902 ga) < glan)
Xr — X9
<0
— ¢ cannot attain its minimum at zs O
§43.2 Derivative of Inverse Functions

KTheorem 43.6 A

Let I be an open interval and let f : I — R be continuous and injective. Then
f(I) = J is an interval and f : I — J is bijective. If f is differentiable at xo € I
and f'(wg) # 0 then f=1:.J — I is differentiable at yo = f(z0) and

(7Y @) = e = Frrpes
9 (o) f' (f1(v0)) )

Proof. The proof uses the following two exercises:

Exercise 43.1. Let I be an interval and let f : I — R be continuous and injective.
Then f is strictly monotone.

Exercise 43.2. Let I be an interval and let f : I — R be strictly increasing and so that
f(I) is an interval. Then f is continuous.

Using exercise 1, we find that f is strictly monotone. Assume f is strictly increasing
— f~!is strictly increasing.
Using exercise 2 with g = f~!: J — I, we find that f~! is continuous.

Claim 43.1. J is an open interval.

Assume, towards a contradiction, that inf J € J = f(I) = Ja € I s.t. f(a) =inf J.

ITopen — 30 >0s.t. (a—d,a+9)CI

f is strictly increasing

} = J:f(I)9f<a—g> < f(a) =infJ

Contradiction!
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Similarly, one can show that sup J ¢ J

fisdiff at g = f/'(z0) = limf(x)f(xo)}
T—T0 —
f(@o) # 0 and f(z) # f(zo) Yz # 0
= lim i _ 1
w=wo f(z) — f(zo)  f'(20)
= Ve>0 30>0st O<\x—x\<5:>' r=% 1 <e
o ° f() = f(zo)  f'(x0)
f~1is continuous at yog = I > 0s.t. 0 < |y — yo| < n implies
0<|f ) —f'(wo)| <6
So for 0 < |y — yo| < n we get
—1 _ -1 1
[y -f (yo)_, <
Y — Y f'(@o)
which implies
-1 ~1
1y/ , (y) =~ (vo) 1
= lim = O
™) o) Y=o Y=Y f'(z0)
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8§44 ‘ Lec 16: May 3, 2021

§44.1 L’Hopital Rule

.

(Definition 44.1 (Existence of Limit) — Let —co <a <b<ooandlet f: (a,b) > R

\

be a function. For ¢ € (a,b) U {a} we write

lim f(z) =L € RU{*o0}

Tz—ct

if for every sequence {zy},~; C (¢, b) s.t. lim, o x,, = ¢ we have

lim f(z,)=1L

n—o0
For c € (a,b) U {b} we write

lim f(z) =M € RU{+o0}

xr—rc—
if for every sequence {z,},~; C (a,c) s.t. lim,_oc z, = ¢ we have

li_)m flzn) =M
n—,o0 /

Remark 44.2. In general, if ¢ € (a,b) we have

7€) # lim f(z) # lm_ f(z) # £(c)

f(@)
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4 )
Theorem 44.3 (L'Hopital)
Let —oo < a < b < oo and let f,g: (a,b) = R be differentiable. Assume that
g (z) # 0 Va € (a,b) and that
G
Jim S =LERU {£o0}
Assume also that either
lim f(z)= lim g(z) =0 (1)
z—at z—at
or
lim_|g()| = o0 @
Tr—ra
Then
im 1@ _
z—at g(z)
- J

Remark 44.4. lim,_,,+ in the theorem can be replaced by lim,_,;- or by lim,_,. for some
c € (a,b).

Proof. We’ll present the details for L € R. We’ll prove
Claim 44.1. Ve > 0 30;(¢) > 0 s.t.

M<L+5 vz € (a,a+ &)

g(x)
Claim 44.2. Ve > 0 302(¢) > 0 s.t.

()

—e < —= Vz € (a,a+ o
g9(x) ( ?)

Then taking d(¢) = min {01(g), d2(e)} we get

f(@_L‘<5 Vz € (a,a+ 6)

9(x)
= lim, 0+ {80 = L.
Note: If L = —oo then it suffices to prove Claim 1 with L + ¢ replaced by M < 0.
If L = oo then it suffices to prove Claim 2 with L — ¢ replaced by M > 0.
By assumption, ¢'(z) # 0 Vx € (a,b). As g is differentiable on (a,b), ¢’ has the Darboux
property. So either ¢'(x) < 0 Va € (a,b) or ¢'(x) > 0 Vx € (a,b).
Assume ¢'(x) < 0 Vz € (a,b) = g strictly decreasing on (a,b). In case 1,

lim g(xz) =0

z—at

As g is strictly decreasing, we get
g(x) <0 Vz € (a,b)

In case 2,

lim [g(z)| = oo
z—a™t
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As g is strictly decreasing, we get

lim g(z) = o0
z—at

and so Jc € (a,b) s.t. g(x) > 0 Vx € (a,c) (**). In particular, in both cases g(z) # 0
Va € (a,c). We prove claim 1:
Fix & > 0. As lim,_q+ L8 = L, 351 () > 0 s.t.

f'(@) €
L+ - J
g’(m)< +3 Vo € (a,a+ 01)
Fix a < © < y < min(a + 1, ¢). By (an equivalent formulation of) Mean Value theorem,
Jdz € (z,y) s.t.
@)~ 1) _ £G)
9(x) —gly)  g(2)
t

In case 1, take the limit z — a™ in (¥) to get

@<L—|—E<L+5 Va < y < min(a + 41, ¢)

9(y) ~ 2

In case 2, we write

&
L — *k
< +2 (*)

flz) _ f@) = f) 9(z) —9(y)  f)
g(x)  g(x) —g(y) g9(z) g9(z)

By (**) we have g(x) > g(y) >0 = % > 0. So

For y fixed, lim,_, +

- —(L+§ ~
= 3d1(e) > 0 s.t. 1) ( 2) 9) < < Vo € (a, a+ 51)
9(z) 2

In particular,

f(z) : -

<L+e Va <z <minsa+d1,a+ d1,c¢

g9(z)

Exercise 44.1. Prove claim 2. O

§44.2 Taylor’s Theorem
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[Definition 44.5 (Taylor Expansion) — Let I be an open interval and let f: I — R\

be differentiable of any order. For xzy € I, the series
O () (g
> e
I

is called the Taylor expansion of f about zg. For n > 1, we define the remainder

i O
Rala) = 1) ~ Y2 L3 (o — )
k=0

- J

/Theorem 44.6 (Taylor) b

Let n > 1 and assume f : (a,b) — R is n times differentiable. Let o € (a,b). Then
for any = € (a,b) \ {zo} there exists y between x and g s.t.

(n)
Ro(x) = f n!(y) (z — z0)"

In particular,

n=1 c(k)(, (n)
fa) =3 Lo o gy ¢ LW gy

k!
k=0

- J

Proof. Fix z € (a,b) \ {x0}. Define M € R to be the unique solution to the equation

—_

3

(k) (1
£y =S T g
< .

=0

(x — xo)™
n!

We want to show that there exists y between x and zg s.t.

M = f"(y)
Let g: (a,b) = R
n—1 (k) " oy
o(t) = 1) - 3 T gy (2 00)

Note g is n times differentiable. For 1 <1 <n —1,

00 = 100 3" 2 et gl

= (n—=1D!
gty = fM(t) - M

In particular, if 0 <1 <n—1,

9" (o) = £ (wo) — fO(a0) = 0

Also g(x) = 0 by contradiction.
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g is continuous on [z, zg], differentiable on (x, zp) and
g(z) = g(z0) =0 = 31 € (z,70) s.t. ¢’ (1) =0
By Rolle’s theorem,

Jzy € (z1,70) st. ¢"(z2) =0

Az, € (Tp—1,%0) s.t. g(”)(xn) =

Set y = xp,. O
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8§45 ‘ Lec 17: May 5, 2021

§45.1 Taylor’s Theorem (Cont’d)

/Corollary 45.1 A

Fix @ > 0 and let f : (—a,a) — R be a function differentiable of any order. Assume
that all derivatives of f are uniformly bounded on (—a,a), that is,

IM > 0 s.t. )f(”)(x)‘gM Ve € (—a,a), ¥n>1

Then .
n—
_ FP0) 4w
R, (x) = f(x) — kz_o e 0 on (—a,a)
- _ J
Proof. Fix x € (—a,a) \ {0}. By Taylor, there exists y between x and 0 s.t.
Ro(x) = 170,
" )
— |Rp(z)] < M@ <M
n n!
= sup |Rp(z)|<M-— — 0 O
z€(—a,a) n: n—oo

Example 45.2
f:R—=R, f(x) =cosx

—sinz, n=1+4k
—cosz, n=2+4k

™) (z) = for k > 0
fr@) sinz, n=3+4k o=
cosx, n =4k
So |f(")(:c)‘ <1VzxeRVn>0. We get
N ¢(n)
f(z) =u— lim f—(o):c” on (—a,a) for any a > 0

N—o0 n!
n=0

Let n =21

= (-1

—1, iflodd
= f™(0) = {

1, if [ even

n!
n>0 1>0

(n) —1)!

A similar argument gives
_1)nx2n+1

N
sm:c—z @n+ 1)

n>0
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Example 45.3
f R — R where

for z € R\ {0},
(@) =

)

where
1

m

X

Note f is differentiable of any order on R. Clearly, this holds on R\ {0}. In fact,

To see that f is differentiable at 0 we compute

1
= t 1
fim 2 - i 2 = im = tim — =0
=0t a0t g7z t—oo el t—oo 2tet
Similarly,
lim 29— i L g
z—0— T t——oo ¢t

Proceeding inductively, we can prove that f is differentiable of any order at 0 and

1

< )+

2
3

f(0) =0
We consider
(n) P, (L) e 22 P
i 100y PG B0
=0+ T z—0+ T t—oo el
and -
RLLON
r—0— X
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Example 45.4 (Cont’d from above)
Thus,

(n)
10 .,
n!

At leading order as z — 0,
3n

F (@) ~ 2 ( ! > e et

2

vl

In L
22

The function g : (0,00) = R, g(t) = —t + 3 Int achieves its maximum at

3n 3n
/t: —]_ _— = t:—
Jg(t)=0 <= +2t 0 < 3

[2 Donicayn o b e 3n\ 5
Sof(”)( 37>N2ne 2 T2 IS L 9ne (ze)NQn(QLC}V — 0.

n—oo

KTheorem 45.5 A

Assume that f, : [a,b] — R are continuous on [a,b] and differentiable on (a,b).
Assume also that

L. {fn},>1 converges uniformly on (a, b)
2. {fn},>1 converges at some zo in [a, ]

Then {fyn},>; converges uniformly on [a,b] to some function f. Moreover, f is
differentiable on (a,b) and

fl(z) = 1i_>m fr(x) Vx € (a,b)
. . Y,

Remark 45.6. We can restate the conclusion as follows:
lim Gim 28 =@ SO ZI@ oy iy i 20 = (@)

Y—T n—00 W) = a8 y—x y—x n—00 Yy—T y—x

Proof. Let’s prove that {f,},~; converges uniformly on [a,b]. Fix € > 0.
{fh}n>1 converges uniformly on (a,b) which implies { £y}, is uniformly Cauchy on
(a,b) which also implies In;(¢) € N s.t.

‘f,’L(:c) — f,'n(a:)’ <e VYn,m >ni(e) Vzx € (a,b)

Also, we know that {f,(z0)},>; converges which means {f,(2o)} is Cauchy which
implies Ing(e) € N s.t.

|fn($0) - fm($0)| <e Vn’m > n2(5)
For z € [a,b] \ {z0},
[fn(@) = fm(2)] < |fn(0) = fm(20)| + [[fn(2) = fin(2)] = [fn(20) = fin(0)]]

By the Mean Value theorem, there exists y between = and z¢ s.t.

| [fn(@) = fn(@)] = [fa(@0) = fm(zo)] | = [f1(y) = [ @)] |2 — wo| <e(b—a)
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So for n,m > n(e) = max {ni(e),na2(e)} we get

[fn(2) = fn(@)] < | fu(20) = fm(z0)[ +e(b—a) <e(1+b—a)
= SUPzc(a,b] ’fn(w) - fm($)’ < 5(1 +b— a) Yn, m > n(s)

So {fn},>1 are uniformly Cauchy on [a, b] and so converge to a function f = lim,ec fp-
It remains to show that f is differentiable on (a,b) and

F(x) = lim fi(2)

which we will prove in the next lecture. ]
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8§46 ‘ Lec 18: May 7, 2021

§46.1 Taylor’s Theorem (Cont’d)

Proof. (Cont’d from lecture 17) Fix x € (a,b). We want to show that f is differentiable

at x and
fi(w) = lim_ f(x)
We define
g:la, b\ {z} =R, g(y) = f(y;:i(w)
adn [CL, b] \ {x} N R7 gn(y) — fn(yy : in(.%)

Since f, — f we have
n—oo

Since f, is differentiable at x,

lim g, (y) = f,(x)

y—z
Let L(z) = lim, oo f1,(x). We want to show that
Ve >0 30 >0st. |g(y) — L(x)| < e whenever 0 < |y —z| <0 y € [a, b

Fix € > 0. By the triangle inequality,
9(y) = L(2)| < |9(y) = gn()| + |ga(y) = fr(@)] + [ f1(2) = L(z)]

We have {f}},, converges uniformly on (a,b) == {f,},>; is uniformly Cauchy on
(a,b) = 3Ini(e) € N s.t.
|fn(z) = fr(2)| <e Vn,m > ni(e) Vz € (a,b) (1)
Letting m — oo we get
|fi(z) = L(z)| <e  V¥n>ni(e) Vz€ (a,b)

For y € [a,b] \ {z}, by the Mean Value theorem, we can find a point z between x and y
so that

fa(y) — ful2) _ fm(y) — fm(2)
y—x y—x
ly — |

F2) = fo(2)| Lo Vnm = mae)

‘gn(y) - gm(y)| =

=|
Letting m — oo we find
9n(y) —9(y)l <& Vn2>mai(e) Wy € [a,b]\ {z} (3)
Fix n > nj(e). As f, is differentiable at = we find § = d(¢,n) > 0 s.t.
lgn(y) — fu(@)| <e YO<|y—z|<d y€a] (4)
Thus for this n > ny(e) and 0 < |y — x| < § we have

l9(y) — L(2)| < lg(y) — ga ()] + |gn(y) — fr(@)| + | fr(z) — L(2)]
by (2)7 (3)7 (4) < 3e U
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Example 46.1
fan: R =R, fo(z) = =%, fn is differentiable and

1+nz2>

£(2) 1 T 2nx 1 — nz?
€Tr) = = =]
" 14+nz2 (14+n2?2)?2 (1+nz?)?

Now
fo = f=0
n—oo
1 =0
folz) — 40 F
n—oo |0, =z 7& 0

Note that f], do not converge uniformly since their limit is not continuous.

fn(y) — £n(0) = lim . (0) =1

lim lim "
n—o0 y—0 Yy — 0 n—o00
but "
lim tim 2@ =8O 6
y—0n—o0 Y — 0 y—0

§46.2 Darboux Integral

(Definition 46.2 (Partition) — Let f : [a,b] — R be a bounded function. If S C [a, b]

we denote

M(f;S) =sup f(z) and m(f;S) = inf f(z)
TES zes

A partition of [a, ] is a finite ordered set P C [a,b]. We write

P:{a=t0<t1<...<tn:b}

for some n > 1.

\
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[Definition 46.3 (Darboux Sum) — The upper Darboux sum of f with respect to\
P is

U(f; P) =Y M (f;[th-1.tr]) (te — tr—1)

k=1

The lower Darboux sum of f with respect to P is

L(f; P) = m(f;[te—1,ts]) (tk — th-1)
L k=1 )

Note that
m (f;a,b]) (b —a) < L(f; P) <U(f; P) < M (f;[a,b]) (b —a)
So

{L(f;P): P partition of [a,b]} is bounded above
{U(f; P) : P partition of [a,b]} is bounded below

[Definition 46.4 (Darboux Integral) — The upper Darboux integral of f on [a,b] is
U(f) =inf {U(f; P): P partition of [a,b]}
The lower Darboux integral of f on [a, b] is
L(f) =sup{L(f; P): P partition of [a,b]}

We say that f is Darboux integrable on [a,b] if U(f) = L(f). In this case we write

b
/ f(z)dz = U(f) = L(f)
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Example 46.5
Let f:[0,M] = R, f(z) = 23. Then f is Darboux integrable.
Let P={0=1ty < ... <ty = M} be a partition of [0, M] and

ZM fi [tk—1, tk]) (tk — tk—1)

> Zt% (tk — tk—1)
k=1

Similarly,

L(f;P) = ) m(f;[tr—1,tk]) (tk — th-1) Ztk 1 (tk — te-1)

k=1

Taketk:%()gk:gn. Then

U(f-P):n EMN® M _ MY~ 5 M [n(n+1)? Mt
’ n n  nt nt 2 n—oo 4
k=1 k=1
n n—1
(k—1)M\*> M _ M* 5 M*[n(n—1)? M*
L(f;P)= R = k° = A -
(fa ) < - n n4 ’I’L4 2 n—oo 4
k=1 k=0
So, U(f) < MT4 and L(f) > M4 and we will show that L( ) < U(f) which imply
U(f)=L(f) = MT4. o fis Darboux integrable and fo x)dr = MT.

Example 46.6

Given
1, z€[0,11nQ

0, z€[0,1]\Q

f is not Darboux integrable. For any partition P, U(f; P) =1 and L(f;P) =0
which implies U(f) =1 and L(f) = 0.

f:00,1] =R, f(x)Z{
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§47‘ Lec 19: May 10, 2021

§47.1 Darboux Integral (Cont’d)
Recall: If f : [a,b] — R bounded
P={a=1ty<...<ty,=>b} partition of [a,b]

then

ZM filtk—1, te]) (T — ti—1)

Zm s[tk—1,tk]) (B — th-1)

are the upper and lower Darboux sum associated with P, respectively f is Darboux
integrable if U(f) = L(f) where

U()=nfU(f:P) and L(f)=sup L(: P)

Proposition 47.1
Let f : [a,b] — R be two bounded and let P and @ be partitions of [a,b] s.t. P C Q.
Then

L(f;p) < L(£;Q) <U(f;Q) < U(f; P)

Proof. We will prove the third inequality. The first inequality follows from a similar
argument. Arguing by induction, it suffices to prove the claim when the partition ()
contains exactly one extra point compared to the partition P. Let
P={a=ty<t1 <...<t, =10}
Q={a=ty<...<ti1<s<ty<...<t,=0b}

for some 1 <[ <n.

-1

U(f;Q) =Y M (f;[t—1,tx]) (= i) +M (f5 [t1-1, 8]) (s — i)+ M (f; [s, 1)) (=)

k=1

+ Z M (f; [te—1,tk]) (b — th—1)

k=1+1
Clearly,
M (f;[ti-1,s]) < M (f;[ti-1, 1))
M (f;[s,ti]) < M (f;[ti-1, )
So
U(f;Q) <ZM k=1, tk]) (b — temr) = U(f; P) H
k=1
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/Corollary 47.2 A

Let f : [a,b] — R be bounded and let P,Q be two partitions of [a, b]. Then

L(f;P) <U(f;Q)

Consequently,
9 L(f) <U(f) )
Proof. Consider the partition P U Q. We have

L(f;P)<L(f;PUQ)<U(f;PUQ) <U(f;Q)
= L(f) = s%pL(f;P) <U(f;Q)
= L) <mfU(f;Q) =U(f) O

Theorem 47.3
Let f : [a,b] = R be bounded. Then f is Darboux integrable if and only if

Ve >0 dJP partitions of [a,b] > U(f;P)—L(f;P)<e

Proof. ¢ <= 7 Fix e > 0. Then there exists P partition of [a, b] s.t. U(f; P)—L(f; P) <
5

= U(f) SU(f; P) <L(f;P)+e < L(f) +e¢

U(f) < L(f) += U(f) < L(f) B
- } - L(f)SU(f)} = =)

= f is Darboux integrable

€ > 0 was arbitrary

“ = ” Fix € > 0, f is Darboux integrable implies
U(f) = L(f)
Then
U(f)= ilfl)fU(f;P) = 3P partition of [a,b] s.t. U(f; P1) <U(f) +

M| M

L(f) =sup L(f; P) = 3P, partition of [a,b] s.t. L(f; P2) > L(f) —
P

Consider the partition Py U Py. Then
L(fiR) < L(f; AUR) SU(f; AUR) <U(f;P1)
So

U(f;PlUP2)—L(f;P1UP2)<U(f)+%—(L(f)—i):g 0

Definition 47.4 (Mesh) — Let P ={a =1ty <t1 <...<t, = b} be a partition of
[a,b]. The mesh of P is given by

mesh(P) = max (ty — tx—1)
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/Theorem 47.5 b
Let f: [a,b] = R be bounded. Then f is Darboux integrable if and only if
Ve >0 3§ > 0s.t. if P is a partition of [a,b] with mesh(P) < §
then
9 U(f; P) = L(f; P) <e )

Proof. * <= 7 By the previous theorem, it suffices to show that ¥4 > 0 3P partition
of [a,b] with mesh(P) < . For § >0, let P ={a =1y < ... <ty = b} where

2(b—a)

tk:a—l—k-g for 0<k<| |=n-1

and t, = b. Clearly,

mesh(P) = g <d

“ = 7 Fix € > 0. By the previous theorem, as f is Darboux integrable, there exists a
partition Py = {a =s9 < ... < 8y, = b} of [a,}] s.t.

U(f; Po) — L(f; Po) <

| M

Let 0 < § < mesh(FPp) to be chosen later and let P = {a =1ty < ... <t, =b} be a
partition of [a,b] with mesh(P) < §

U(f; P)— L(f; P) <U(f; P) = U(f; o) + U(f; Bo) — L(f; Po) + L(f; Po) — L(f; P)
< S+ U P) = U(fi Po) + L(fi Ro) = L(f; P)
Consider the partition P U Py. Then
U(f; P)=U(f; Po) <U(f; P) - U(f; PUR)

As mesh(P) < 6 < mesh(Fy), there must be at most one point from Py in each
[tk—1,tx]. Only subintervals [t5_1,t;] with an s; € Py [ty_1,tx] contribute to U(f; P) —
U (f; PoUP). There are only m many such intervals. The contribution of one such
interval to U (f; P) — U (f; Py U P) is

M (f; [tr—1stk]) (b = tem1) = M (f; [tr—1, 85]) (55 — tr1) — M (f s, tk]) (B — 55)
As f is bounded, 3M > 0 s.t. |f(z)] < M Vz € [a,b]. Note

M (f;[th—1,te)) < M
M (f;[tk-1,8i]) > —M; M (f;[sj,tx]) > —M

So

M (f; [te—1, tk]) (b — tr—1) — M (f; [tk—1, 55]) (55 — tr—1) — M (f;[sj, tk]) (tk — s5)
which is smaller than or equal to

M (ty, —th—1) — (=M) [(sj — tg—1) + (tx — 55)] = 2M (t — tp—1) < 2M - mesh(P)

Thus
U(f;P)—U(f;Py) <m-2M - mesh(P)

183



Duc Vu (Winter-Spring 2021) 131BH Lectures

Similarly,
L(f; Po) — L(f; P) < m-2M - mesh(P)

which requires
€

8Mm
Thus, § < min{sj\flm,mesh(Po)}. O

4Mm - mesh(P) < % <= mesh(P) <
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8§48 ‘ Lec 20: May 12, 2021

§48.1 Riemann Integral

/Definition 48.1 (Riemann Sum) — Let f : [a,b] — R be a function and let\
P ={a=ty<ti <...<ty,=>} be a partition of [a,b]. A Riemann sum of f
associated to P is a sum of the form

S = Zf(wk) (te — tr—1) where zy, € [tp—1,tx] V1<k<n
k=1

- J

Note: If S is a Riemann sum associated with a partition P of [a,b] then

L(f;P) < S <U(f; P)

[Definition 48.2 (Riemann Integrable) — We say that f is Riemann integrable if\
dJreRst. Ve>036>0s.t.
|IS—r|<e

for any Riemann sum S of f associated with a partition P with mesh(P) < §. Then
r is called the Riemann integral of f and we write

b
r:R/ f(z)dx
- ¢ J

Lemma 48.3
If f:]a,b] — R is Riemann integrable, then f is bounded.

Proof. Let r = Rfabf(m) dx. Taking ¢ = 1 we find § > 0 s.t. |[§ —r| < 1 for any
Riemann sum S of f associated to a partition P with mesh(P) < 0.

Let P = {a=ty<t1 <...<t,=>} with mesh(P) < ¢. Fix 1 < k < n. Fix
xp € [t1—1, 4] for 1 <1< n,l#k. For z € [ty_1,t;] we have

D f@) (i —ti) + f@) (e —tea) —r| < 1

£k
r=1=>" 4 f@)(ti—t1—1) T+r=30 4 fx)(ti—ti—1)
l?kk*tlc—l < f(x) < lf:*tkq —
x € [ty—1,tx] is arbitrary
is bounded on |tg_1,t
d . [k 1 t] = [ is bounded on [a, b] O
1 <k <nis arbitrary
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/Theorem 48.4 b
Let f: [a,b] — R. The following are equivalent
1. f is Riemann integrable.
2. f is bounded and Darboux integrable.
If either conditions holds, then the integrals agree. )

Proof. 2) = 1) Fix e > 0.

f is Darboux integrable — 36 > 0 s.t. U(f; P) — L(f; P) < ¢ for any partition P
with mesh(P) < 6. Let P be a partition of [a,b] with mesh(P < §). If S is a Riemann
sum of f associated to P, then

S<U(f;P) < L(f; P) +e < L(f) +¢ =fbf(:v)dw+€}
S>L(f;P)>U(f; P)—e>U(f) — ff:v dr — ¢

By definition, f is Riemann integrable and Rf: f(z)dx = f; f(z)dz
1) = 2) By the previous lemma, f is bounded. Fix ¢ > 0. Let r = ’R,ff f(z)dz. Then

35 > 0 s.t. B
S — <
5 —rl <

for any Riemann sum of f associated with a partition of P with mesh(P) < §. Fix
P ={a=t <t; <....<t,=>b} be a partition with (mesh(P) < §. There exist

Th, Yk € [th—1, k] s.t.

flxg) > M (f;[te—1,t]) — 57—
flye) <m (f; [te—1, tx]) +

Then

n

Si= 3 J @) (= 1) > U P) = 50— 5 3t = tha)

k=1 k=1

=U(f;P>—§

3

Sy = fy) (t — th1) < L(f; P
k=1

k:l

m

=L(f; P)+

N |

However, |S1 —r| < § and [S2 — 7| < 5. So
Uf;P)—5<Si<r+5 = U(f)<U(f;P)<r+e
r—5<S <L(f;P)+5 = r—e<L(f; P) < L(f)
r—s<L(f)§U(f)<r+e}
-

b
} = f is Darboux integrable and / f(x)de =r
€ > 0 arbitrary a

O
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Theorem 48.5
Let f : [a,b] — R be monotonic. Then f is integrable.

Proof. Assume f is increasing. Then

fla) < f(x) < f(b)  Va €la,b]

So f is bounded.
Let P={a=ty<t; <...<t,=>b} with mesh(P) < § for § to be chosen later. Then

n

U(f; P) = L(f; P) = > [M (f;[tk—1:ta]) = m (f; [t—r, ta])] (ke — tr)

Taking § < m we see that f is Darboux integrable. O

Theorem 48.6
Let f: [a,b] — R be continuous. Then f is integrable.

Proof. We have

f : [a’ b] — R continuous '
[a,b] compact = f is bounded

Fix € > 0. As f is continuous on [a,b] compact, f is uniformly continuous. So 3§ > 0
s.t.

@) = f@)] < 57— Vay € lab] with |2 —y| <

Let P={a=ty<...<t, =0b} with mesh(P) < d.

n

U(f; P) = L(f; P) = > [M (f;[tr-1, tx]) — m (f; [te1, ta])] (te — tr—1)

k=1
f continuous on [tx—_1, tx] compact implies g,y € [tp—1, k] S.t.

fzr) = M (f; [te-1,tk])
(k) = m (f; [te—1, t])

So
U(f; P) = L(f; P) = > [f(wr) = F(ur)]) (b — ti1)
k=1
-
< (ty —tp—1) =€
; b—a k k-1
Then f is Darboux integrable. O
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/Theorem 48.7
Let f,g : [a,b] = R be Riemann integrable.

1. For any a € R, af is Riemann integrable and
b b
/ (af)(z)dx = a/ f(z)dx

2. f + g is Riemann integrable and

/b<f+g><w>dx:/bﬂm)dm/bg(x)dw
g . . .

~

Proof. 1. If @ = 0 this is clear. Assume « > 0. For any S C [a, b]

M(af;S) = aM(f;S)
m(af;S) = am(f;S)

For by partition P of [a, ],
Ulaf; P)=aU(f; P) = Ulaf) =supU(af;P)
P

:sgp[a'U(f;P)]

=asupU(f; P) = aU(f)
P

Similarly,

= af is Darboux integrable and f;(af)(a:)dx = af: f(z)dw.
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8§49 ‘ Lec 21: May 14, 2021

§49.1 Riemann Integral (Cont’d)

Recall from last lecture, we have the following theorem,

KTheorem 49.1 A
Let f,g : [a,b] = R be Riemann integrable.
1. For any a € R, af is Riemann integrable and
b b
[ @z =a [ fa)ds
2. f 4+ g is Riemann integrable and
b b b
[G+o@ds= [ f@dn+ [ ga)ds
\ a a a j

Proof. 1. Last time we proved the result for « > 0. Assume a < 0. For S C [a, ],
we have

M(af;S) = am(f;5) and m(af;S) = aM(f;S)
If P is a partition of [a, b],

Ulaf; P)=aL(f;P) and L(af;P)=aU(f;P)
Thus,

Uef) = infp U(af; P) = infp aL(f; P) = asupp L(f; P) = aL(f)
L(af)=...=aU(f) =
f is Riemann integrable = f bounded and L(f) = U(f) = f; f(z)dx

= «af is bounded and L(af) = U(af) = a/bf(x) dx

b b
= «af is Riemann integrable and / (af)(x)dx = a/ f(x)dx

2. As f, g are Riemann integrable, f + ¢ is bounded and f, g are Darboux integrable.
Fix ¢ > 0. Then, f is Darboux integrable implies 3P; partition of [a, ] s.t.
€
U(f; 1) — L(f; P1) < 5
g is Darboux integrable implies 3P, partition of [a, ] s.t.

Ul(g; P2) — L(g; P») <

| ™

Let P = P; U P,. Then, we have

U(f;P)— L(f; P) <5 and U(g; P) - L(g; P) <

| ™
DN ™
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For S C [a, b],

M(f+g;5)
m(f+g;9)

M(f;S)+ M(g;S)

<
>m(f;S) +m(g;9S)
So

U(f +g;P) SU(f; P) + Ulg; P>}
L(f +g; P) > L(f; P) + L(g; P)

= U(f+9¢;P)—L(f+g;P) <U(f; P) = L(f; P)+U(g; P) — L(g; P) < ¢

f + g is Darboux integrable

f + g is bounded } = f + g is Riemann integrable
g is bounde

Moreover,

U(f+g9) <U(f+gP)<U(f; P)+U(g; P)
< L(f;P)+ L(g; P) + ¢

b b
<L)+ Lo +e= [ fadnt [ oyt

Similarly,

L(f+g) > L(f +g; P) > L(f; P) + L(g; P)
>U(f; P)+U(g; P) —¢

b b
> U(f)+U(g) - < = / f(z)dz + / g(x)dz — ¢

Let ¢ — 0, we get

/ab<f+g><x>dx—/abf<x>d:c+/abg<x>dx 0

Theorem 49.2
Let f,g : [a,b] — R be Riemann integrable. Assume f(x) < g(x) Vx € [a,b]. Then

/abf(x)da; < /abg(a:)d:v

Proof. By the previous theorem, h : [a,b] — R, h = g — f is Riemann integrable.
Moreover, since h > 0, we have

/b h(z) dx = L(h) = sup L(h; P) >0
a P

which implies

o< [(nwyar= [ pwar= [ @ [ s =
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Theorem 49.3
Let f : [a,b] — R be Riemann integrable. Then |f| is Riemann integrable and

/abf(az) dz

Proof. Let f is Riemann integrable. Then, f is bounded and Darboux integrable. So
|f| is bounded. For S C [a, b] we have

M (|f;8) =m(|f|;S) =sup|f(x)| — inf |f(y)|
eSS yes

= sup|f(x)| +sup —|f(y)|
€S

< [Ven e

yeSs
= sup {|f(z)| = [f(W)[}
z,yeS
< xs;lepslf(w) - )l
= sup {f(z) = f(y)}
=sup f(x) — inf f(y)
zes yes

= M(f;5) —m(f;5)
So for any partition P of [a,b] we have
U(fl; P) = L(|f; P) <U(f; P) = L(f; P)
f Darboux integrable = Ve > 0 3P partition of [a, b] s.t.
U(f;P)— L(f; P) <e
= Ve > 03P partition of [a,b] s.t. U(|f|; P) — L(|f|; P) < e

| f| is Darboux integrable

I£] is bounded } — |f| is Riemann integrable
is bounde

‘We have
—[f@)] < f(2) < [f(@)]  Vz€[ab]

By the previous theorem,

_/ab|f(x)|dx:/ab—|f(x)|dx</abf(w>dx</ab\f(w)\dw

which implies
b b
[ twds| < [ 11)] do =
a a

(Theorem 49.4 A

Let f : [a,b] — R be a function and let a < ¢ < b. Assume f is Riemann integrable
on [a,c] and on [¢,b]. Then f is Riemann integrable on [a, b] and

/abf(:z:)d$:/:f(a:)der/cbf(x)dx
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Proof. f is Riemann integrable on [a, c] and on [c, b]

— f bounded on [a,c] and on [c,b]
= f bounded on |[a,b]

Fix € > 0. As f is Riemann integrable on [a, ¢], f is Darboux integrable on [a, c|

— 3P, partition of [a,d] s.t. US(f; Py) — LE(f; P1) < g

Similarly, as f is Riemann integrable on [¢,b] = f Darboux integrable on |[c, ]

—> 3P, partition of [c,b] s.t. US(f; P2) — L2(f; Py) <

N ™

Let P = P, U P, partition on [a,b] and
U(f: P) = Us(f; Pr) + UZ(f: Po)
L(f;P) = Lg(f: 1) + L(f; )

So
U(f;P)—L(f; P) <

Therefore, as f is Darboux integrable and bounded on [a, ], f is Riemann integrable on
[a, b]. Moreover,

| ™

U(f) SU(f; P) =UL(f; Pu) + ULfi Po) < LE(f Py) + LA f o) + €

/f dm+/f )dz + e

c b
Lz [ fa@ydos [ g
Since € > 0 is arbitrary,

/abf(:c)da::/:f(x)da:%—/cbf(x)d:c O

\

Similarly,

/Lemma 49.5

Let f,g : [a,b] — R be functions s.t. f is Riemann integrable and g(z) = f(z)
except at finitely many points in [a,b]. Then ¢ is Riemann integrable and

/abg(a:)da:: /abf(x)dx

- J

Proof. Arguing by induction, we may assume that there exists exactly one point xg €
[a,b] s.t. f(xo) # g(xg). Let B > 0 s.t. |f(zx)] < B and |g(x)| < B Vz € [a,b]. Let
P={a=ty<...<t,=0b}. We consider

U(f; P)—Ulg; P)

L(f; P) — L(g; P)
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lr—1 xo =t 748}

The largest contribution occurs when xg = t; for some 1 < k <n — 1.

[ M (f; [tr—1,te]) — M (g5 [tr—1, te])| < [B — (=B)] (tk — ti—1)

< 2B mesh(P)
= |U(f;P) —U(g; P)| < 4B mesh(P)
Similarly,
|m (f; [tk—1, tk]) — m (g; [tk—1,tx])| < 2B mesh(P)
— |L(f; P) — L(g; P)| < 4B mesh(P)
Thus,

U(g; P) = L(g; P) SU(f; P) = L(f; P) + [U(f; P) = U(g; P)|
+|L(f; P) — L(g; P)|
<U(f;P)— L(f; P) + 8B mesh(P)
f Darboux integrable = Ve > 0 46 > 0 s.t.

U(f; P)— L(f; P) < VP partition with mesh(P) < o

€
2
Choose 0 even smaller if necessary so that

& g
8B(5<§<:>5<16—B

Then U(g; P) — L(g; P) < ¢ for all P partition with mesh(P) < 4.

g is Darboux integrable

bounded } —> ¢ is Riemann integrable
g bounde

Exercise 49.1. Show fabg(x) dx = fab f(z)dz. O
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8§50 ‘ Lec 22: May 17, 2021

§50.1 Riemann Integral (Cont’d)

Definition 50.1 (Piecewise Monotone) — We say that a function f : [a,b] — R is
piecewise monotone if there exists a partition P = {a =ty < ... <t, =b} s.t. fis
monotone on (tx_1,t) for each 1 < k < n.

Definition 50.2 (Piecewise Continuous) — We say that f : [a,b] — R is piecewise
continuous if there exists a partition P = {a =ty < ... < t, = b} s.t. f is uniformly
continuous on (tx_1,t;) for each 1 < k < n.

(Theorem 50.3 A
Let f:[a,b] — R be a function that satisfies
1. f is bounded and piecewise monotone.
or
2. f is piecewise continuous.
Then f is Riemann integrable. )

Proof. Let P ={a =1ty < ...<t, =>b} be a partition of [a,b] s.t. 1) f is monotone or
2) f is uniformly continuous on (t;_1,tx) V1 < k < n.

If f is monotone on (tx_1,%x), then f can be extended to a monotone function on f,
on [tg_1,tx]. For example, if f is increasing on (tx_1,tx) we define

infie, o) f(), t=tp
fe(t) = € f(1), t€ (tp—1,tk)
SUD¢e (¢4 1 ,tk) ft), t=ty

As fi is monotone on [tx_1, tx], fr is Riemann integrable on [tx_1,%;]. As f differs from
fr at most two points, f is Riemann integrable on [t;_1, ;] and

Tk tr
f@)dt = fu(t) dt
tp—1 tp—1
If f is uniformly continuous on (tx_1,t;), then f admits a continuous extension fj to
[tk—1,tk]. Then fi is Riemann integrable on [t;_1, x| and so f is Riemann integrable

on [ty_1,tx] and
123 123

f@ydt= [ fdt

tk—1 tk—1

By the last theorem from last lecture, we conclude that f is Riemann integrable on [a, b]

and
/bf(t)dtzzn:/tk £t dt O
@ k=1"tk—1
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Theorem 50.4 (Intermediate Value Property for Integrals)

Let f : [a,b] — R be a continuous function. Then there exists ¢ € [a, ] s.t.

b
1O = 5= [ F@)do

Proof. f is continuous on [a, b] compact which implies there exist g, yo € [a, ] s.t.

{f(a:o) = infyciap /(@)
f(y()) = SUDgzela,b] f(‘T)

So
b b b
- a)fla) = [ fade < [ fa)de< [ ) do= b~ )
= flwo) < 55 [ f(@)dx < f(yo) .
f is continuous = f has the Darboux property
= 3Jc between xg and yo s.t. f(c) = ;= ff f(z)dw. O

§50.2 Fundamental Theorem of Calculus

Definition 50.5 (Riemann Integrable — “Extension”) — We say that a function
f : (a,b) — R is Riemann integrable on [a,b] if every extension of f to [a,b] is
Riemann integrable. In this case, ff f(t)dt does not depend on the values of the
extension at a and at b.

(" )
Theorem 50.6 (Fundamental Theorem of Calculus Part II)

Let f : [a,b] — R be continuous on [a, b] and differentiable on (a, b). If f’ is Riemann
integrable on [a, b] then

b
/ f(z) dz = £(b) - f(a)
\ ¢ J

Proof. Fix € > 0. As f’ is Riemann integrable on [a,b], 3P = {a =ty < ... < t, = b}
s.t.
U(fsP) = L(f;P) <e

where f is continuous on [t;_1,t;] and differentiable on (tx_1,¢x). So, by the Mean
Value theorem, Jxy € (tx—_1,tx) s.t.

f(tr) = f(tr-1)

bt — t—1

flay) =

In particular,

D F ()t —tia) = Y [f (k) = f(te1)] = £(b) = f(a)

k=1 k=1
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is a Riemann sum of f’ associated to the partition P. Moreover,

(f" P) < f()—f()<U(f/‘P)<L(f';P)+6} _
L(f <f f'(x)dx <U(f'; P) < L(f"; P) +

dxf(b)f()]<2€} /f (oo o

€ > 0 was arbitrary

4 )
Theorem 50.7 (Integration by Parts)

Let f, g : [a,b] = R be continuous on [a, b] and differentiable on (a,b). If f' and ¢’
are Riemann integrable on [a, b], then

/ (@) (z) do + / e — F(B)g(b) — F(a)g(a)
\ J

Proof. By Exc 1 from Hw 8, the product of two Riemann integrable functions is Riemann
integrable. In particular, f'g and fg¢’ are Riemann integrable. Let h : [a,b] — R,
h(z) = f(z)g(x). We have h is continuous on [a, b], differentiable on (a,b) and

W(x) = f'(z)g(z) + f(2)g'(x)

B’ is Riemann integrable on [a, b]. By Fundamental Theorem of Calculus Part II,
b
/ W (z) dz = h(b) — h(a)
b ‘ b
= / f'(z)g(z) dz +/ f(2)g'(z) dz = f(b)g(b) — f(a)g(a) O

(Theorem 50.8 (Fundamental Theorem of Calculus Part I)
Let f : [a,b] — R be Riemann integrable. For x € [a, b], we define

:/axf(t)dt

Then F is continuous on [a, b]. Moreover, if f is continuous at a point zg € (a,b),
then F is differentiable at z¢ and

_ ~ Y,

Proof. Fora <z <y<b,
Py - F@) = [ 1@d- [ s
:/wf(t)dtJr/yf(t)dt— " rydr

:/:f(t)dt a

196



Duc Vu (Winter-Spring 2021) 131BH Lectures

f is Riemann integrable = f is bounded = 3IM > 0 s.t.

|fl@)| <M Vx€la,b]

Fly) ~ F@)l < [ 170] de < by~
This shows [ is uniformly continuous on [a,b]. For each € > 0 if |y — x| < ;5 then
[F(y) — F(x)| <e
Assume f is continuous at zg € (a,b). For x € [a,b] \ {zo},

M_f(xo): _1 /xf(t)dt—f(fco)
T o X i)

ST UKy UL

/ () — f(xo)] dt

.73—.%‘0
Fix € > 0. As f is continuous at xg, 30 > 0 s.t.
lf(z) = f(xo)| <e  V]xr—ax0|<d z€]la,b

So for z € [a,b] with 0 < |z — xo| < 6,

F(z) - F(x
(@) = Fla) ] /|f o
T — To x0|
< / edt =¢
‘.%' - $0| 0
Since € > 0 is arbitrary, F is differentiable at z¢ and F'(zo) = f(x0). O
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§51 ‘ Lec 23: May 19, 2021

§51.1 Change of Variables

/Theorem 51.1 (Change of Variables) b

Let J be an open interval in R and let u : J — R be differentiable with u’ continuous
on J. Let I be an open interval in R s.t. u(J) C I and let f: I — R be continuous.
Then fowu:J — R is continuous and for any a,b € J with a < b we have

b u(b)
/ £ (u(@)) - o (z) dz = / @) dy
a u(a)
\_ J

Proof. As f ow and «’ are continuous on [a, b, the function z — (f o u)(x) - v/(z) is
continuous on [a, b] and so it’s Riemann integrable on [a, b].

Fix ¢ € I and consider F(z) = [ f(t)dt. By Fundamental Theorem of Calculus Part
I, F is differentiable on I (because f is continuous on I) and F'(x) = f(z) Vx € I.
Consider x — (F ou)(z) is differentiable on J and

(Fou)(z)=f(u(z)) () Voeld

By the Fundamental Theorem of Calculus Part II,

b
/ (Fou)(z)dz = (Fou)(b) — (Fou)a)

which implies
b u(b) u(a) u(b)
— [y o (z) dz = Fly) dy — fly)dy = fy)dy O
/a (u()) - (x) da / (v) dy / (v) dy / o

Exercise 51.1. Let I be an open interval in R and let f : I — R be injective and
differentiable with f’ continuous on I. Then J = f(I) is an open interval and f=1: J — [
is differentiable.

Then for any a,b € I with a < b we have

b f()
/ f(@)de + / F () dy = bf(b) — af(a)
a f(a)

Proof. Consider:
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v

I'y={(z,f(z)): a<x<b}= {(f_l(y),y) : y between f(a) and f(b)}

We perform a change of variables:

/ f(j) - | s
where y = f(z) and dy = f'dz
/f dx—/b:vf’(a:)d:r
:xa () x:b/bfaz da
 bf(b) — af(a /f 0

~

/Theorem 51.2
Let f, : [a,b] — R be Riemann integrable s.t. f, _)i> f on [a,b]. Then f is
n—,oo

Riemann integrable and

b b b
lim fn(2) da::/ nli_}rgofn(x)dx:/ f(z)dz

n—oo

\_ ¢ Y

Proof. For n > 1 let d;, = sup,ejap [fu(®) — f(z)|. As fo _)i> f on [a,b] we have
dy, — 0. In particular, f,(z) —d, < f(z) < fo(x) +d, for all x € [a,b] (and thus f is

bounded). For any partition P of [a, b], we have

U(fn; P)—dp(b—a) <U(f; P) SU(fn; P) + dn(b—a)
L(fn; P) — dn(b—a) < L(f; P) < L(fn; P) + dn(b — a)

So
U(f; P) = L(f; P) S U(fn; P) = L(fn; P) + 2dy(b — a)
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Fixe > 0. Asd, — 0, In. € N s.t.
n—oo

Then for each n > n. (fixed) there exists a partition P = P(e,n) of [a, b] s.t.

U(fn;P) —L(fn;P) <

N ™

For n > n. and P = P(e,n) as above we get

U(f;P) - L(f;P)<e

As € > 0 is arbitrary, this shows that f is Riemann integrable (since it’s Darboux
integrable and bounded). Moreover,

b
/ (@) de < U(f: P) < U(fui P) + dolb— a)

e €
L n;P 5 n
< L(f )+2+4
b
< fn(ac)dx—k%
Similarly,
b
[ $@de > L) 2 s P) = dafb - )
e €
Ufni P) ==
U P) 5~
b
> fn(x)dzfﬁ
o 4
Thus,
b b 3e
= /f(:n)d:v— fn(z)dz <7 Vn > ne
’ . b
li_}m fn(x)dx = (z)dz O

§51.2 Lebesgue Criterion

.

Definition 51.3 (Zero Outer Measure) — A set A C R is said to have zero outer
measure if for every € > 0 there exists a countable collection of open intervals

{(am bn)}n21 s.t.
{A C Uns1(an,bn)
anl(bn —ap) <€

J

Remark 51.4. 1. If A C R has zero outer measure and B C A, then B has zero outer
measure.

2. If {An}n21 is a sequence of zero outer measure sets, then UnZl Ay, has zero outer
measure.

3. If A is a set that is at most countable, then A has zero outer measure.
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Proof. 2. Fix € > 0. For each n > 1, let {(a,(g), bg@)} be open intervals s.t.

m2>1

An € Uiy (af?057)
S (B —af) < 5

Then {(agg), b,(ﬁ))} . is a countable collection of open intervals s.t.

Unz14n € Upmst (agf),b,(ff))
2ozt 2mz (bﬁﬁ) B a’(”)) <Dnzigw =€

O]

(" )
Theorem 51.5 (Lebesgue Criterion)

Let f : [a,b] — R be bounded. Then f is Riemann integrable if and only if the set

P ={x € [a,b] : f is not continuous at x}

has zero outer measure. j

.

Proof. We have

Dy ={x € a,b] : w(f,z) =0}

where
(f7 ) lan(f,Bg( ))
- égg L:;ﬁx) ) = yéglaf(ﬂﬁ) f(y)]
= Inf [M (f; Bs(x)) = m (f; Bs(«))]
Then

Py ={x € [a,b] : w(f,x)>0}

Key Observation: If P = {a =1ty < ... <t, = b} then

n

U(f;P) = L(f; P) = > [M (f; [tk tx)) — m (f; [th-1, ta))] (b — tr1)
k=1

—Zw Plte—1,tk]) (e — th—1)

We will continue with this proof in the next lecture. O
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§52 ‘ Lec 24: May 21, 2021

§52.1 Lebesgue Criterion (Cont’d)
Proof. (Cont’d) “ = ” Assume that f is Riemann integrable. We denote

Py ={x € la,b] : w(f,xz)>0}

-U {x € [a,0] : w(f,z) > 711}

n>1

Forn > 1, let F}, = {z € [a,b] : w(f,x) > 2}. To show that Z; has zero outer measure,
it suffices to prove that F;, has zero outer measure for all n > 1.

Fix N > 1 and € > 0. As f is Riemann integrable, there exists a partition P =
{a=ty<...<t,=0>}st.

g

U(f;P) = L(f;P) <

Let I = {1 <k<n: Fyxn (tkfl,tk) %+ (Z)} Then
Fy CJ (b1, te) U P
kel
As P is finite, it has zero outer measure. Thus, it suffices to show that
Z (tk — tk—l) <e
kel

Then,

n
9

N > UL P) = L(f;iP)= D M (f; [trrs ta]) = m(f; [trors t])] (e — tr)

which implies

Z(tk — tk,1> <e€

kel
“ &= " Assume that 9 has zero outer measure.

f bounded = IM >0s.t. |f(z)| <M Vz € [a, b
Fix € > 0 and let o > 0 to be chosen later. Consider

Fo={z€a,b]: w(f,z)>a} C 2

— F,, has zero outer measure
9 has zero outer measure

F, C UnZl(an’ bn)
ZnZl(bn - an) <e

Let A= [a,b]\ Fy. For any x € A, w(f,z) < a = 3(cz,dy) neighborhood of z s.t.

— I{(an,b) }psy St {

w(f;lea, do]) < @
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So

la,b] = F, UA C Un21(am bn) U U;peA(Crv dz)
[a,b] is compact

which implies there exists ngp € N and J C A finite s.t.

[a,b) € | (an, br) U | (2, da)
k=1 z€J

Let P be a partition of [a, b] formed by the points

<{a b}UU{a:cub}UU{cmd }> [a, b]

zeJ
SayP:{a:t0<...<tn:b}. For any 1 <[ < n, we have

[tl—l,tl] - [ak, bk] for some 1 < k < no

or
[ti—1,t1] C [cq,dy] for some z € J
Let
L={1<1<n: [ti—1,t] C[ag,bx] for some 1 <k < ng}
L={1,....n}\ 1
Note that
Ztl_tl 1 SZ K — ai)
lel; k=1
Le D, w(filtit]) Sw (files,da]) <a
Then,

n

U(f;P) ~ L(f: P) = Z (M (f; [t t]) = m (F T, )] (8 — tioa)

= M (f;[ti—1,ta]) = m (f3 [tien, )] (B — tiy)

lel

+ Y w (st tl) (= i)

lels
Notice that

DM (filtirsta]) = m (i [, )] (0 = tia) S 2M ) (= tio1) < 2Me

leh leh
So
> w(filtien b)) (= tic) <@ (t—ti)
lely lels
n
<ad (t—ti)
=1
=alb—a)

Choose a < 3= to get
U(f; P)— L(f; P) <2Me + ¢

As ¢ is arbitrary, this shows that f is Darboux integrable, and thus Riemann integrable.
O
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§52.2 Improper Riemann Integrals

Definition 52.1 (Locally Riemann Integrable) — Let —oo < a < b < co. We say
that f : [a,b) — R is locally Riemann integrable if f is integrable on [a, ¢| for any
€ (a,b).

Definition 52.2 (Improper Riemann Integral) — Let —oco < a < b < oo and
f :[a,b) — R is locally Riemann integrable. In addition,

lim/ f(z) dx exists in R

c—=b Jq

We denote it ff f(x)dx and we call it the improper Riemann integral of f. In this
case we say that the improper Riemann integral of f converges. If

C
lim | f(z)dxr =+o0
c—

a

then we write f; f(z)dz = £oo and we say that the improper Riemann integral of
L f diverges to +o0.

J

Remark 52.3. One can make a similar definition if —co <a < b < oo and f : (a,b] = R

orif —co<a<b<ooand f:(a,b) > R.

/Theorem 52.4
Let —00o < a < b < oo and let f: [a,b) — R be locally Riemann integrable and

any extension f : [a,b] — R of f to [a,b] is Riemann integrable and

/abf(a:)dazz /abf(x)dx

.

~

bounded. Then the improper Riemann integral ff f(x)dx converges. Moreover,

J

Proof. Let f : [a,b] — R be an extension of f to [a,b]. As f is bounded, IM > 0 s.t.

F@|<M  vaelay

For c € (a,b),

US(F) = US(F) + Ub(f / f(@)dz + UY(F) )

LY(f) = LE(f) + Lo (f /f )dx + L2(f)
= UM(f) — L4(f) = UL(F) — LA(f)

Ul( ( c) — UY(f)— LY(f) <2M(b— )
=M '

—b
%0

) <
LY(f)| <
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This shows that f is Riemann integrable. Moreover, by (*),

/f do =tiny [ (@) da

Thus, the improper Riemann integral of f converges and

/abf(:r)d:v:/abf(x)dx O
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§53 ‘ Lec 25: May 24, 2021

§53.1 Improper Riemann Integrals (Cont’d)

KProposition 53.1 )

Let —co < a < b < oo andlet f,g: [a,b) — R be locally Riemann integrable s.t.
the improper Riemann integrals of f and g converge. Then

1. For any o € R, the improper Riemann integral of a.f converges and

/ il —c / ’ fla) de

2. The improper Riemann integral of f + g converges and

/ab<f+g><x>dx=Abf<x>dx+/abg<x>dx

- J
Proof. 1. Consider:

]R9a/bf(a:)dac—a(lji_lg/cf(x)dx—(lzi_rfll)a/cf(x)dx

(f is locally Riemann integrable) = lim (a () dx

c—b

So the improper Riemann integral of af converges and

b c b
/(af)(x)dleim (ozf)(x)dx:a/ f(x)dx

c—=b Jq

2. Consider:

C

b b
RB/ f(m)da:+/ g(z )dx—hm f( )derhrrIl) g(z)dz

a

_gg}){/f dx—l—/ (x)d:c]

= lim [f( ) +9(2)] da

c—=b Jq

So the improper Riemann integral of f 4+ g converges and

[Gro@a=ny [Gro@a= 1w [swa o

Remark 53.2. If f, g : [a,b] — R are Riemann integrable functions, then
e |f| is Riemann integrable.
e f.g is Riemann integrable.

However, if f, g : [a,b) are locally integrable functions s.t. the improper Riemann integrals
of f and g converge, then

o the improper Riemann integral of |f| need not converge.

e the improper Riemann integral of f - g need not converge.
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Example 53.3
Let f,g: (0,1] — R, f(z) = g(x) = ﬁ The improper Riemann integral of f

converges
1 1
1
flz dz‘z/ —dz =2z
[ r@a= | 7

The improper Riemann integral of f - g does not converge

/Cl F(@)g(z) dz = /Cl édaz .

More generally, we can take f,g: (0,1] = R

1
=2—-2v/e— 2
c—0

=G

r=
x

ap=Il
=—lnc— >
T=cC c—0

1 1
f($):xja 9(33)29673 with 0<a,8<1 and a+5>1

[Lemma 53.4 (Cauchy Criterion) b

Let —oo < a < b<oo. Let f:]a,b) — R be locally integrable. Then the improper
Riemann integral of f converges if and only if

Cc2
Ve >0 3e € (a,b) s.t. / fx)dz| <e Ve.<ecp <cp<b
N - J

Proof. * = 7 Assume that the improper Riemann integral of f converges. Let

a:/bf(a:)da:G]R

We have

a=Ilim [ f(z)dx
c—=b Jq4

Then Ve > 0 3c. € (a,b) s.t.

a/:f(x)da:

For ¢ < ¢1 < ¢y < b we have
c2 C1
/ f(m)da:—/ f(x)dx
a a

/:2 f(x)dx
/aCQf(m)dx—a a—/aqf(x)dac

<E+§_E
2 2

€
<§ Ve <e<b

< +

“ <= 7 Fix ¢ > 0 and let ¢. € (a,b) s.t.

/:2 f(x)dx

Let {cn}n21 C (a,b) s.t. ¢, — b. Then In. € Ns.t. ¢ < ¢, <bforalln>n.. In

n—oo

<e€ Vee < g <eg<b
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particular,

<e n, M > Ng

/:m f(z) do — /an f(z) do /nm (o) do

== { / f(x) dx} C R is Cauchy and so convergent
a n>1

Let a = limy, 00 f;" f(x) dz. To prove that the Riemann integral of f converges, we need
to show that a does not depend on {c,},5;. Let {dn},5; C (a,b) s.t. limy o0 dp = b.

Consider
2 = c. ifn =2k for k> 1
dp ifn=2k-1

Then x,, — b. From the same argument used for the sequence {c,},~, we conclude
n—,oo -

that {fax” f(zx) d:I;}n>1 is Cauchy and so convergent. So

Ton T2n—1
nh_)n(r)lo ’ f(x)dx = nh_}Iglo ’ f(x)dx
Cn dn
a = lim f(z)dz = lim f(z)dx O
n—,oo a n—oo a

[Theorem 53.5 (Abel Criterion) b

Let —o0o < a < b<ooandlet f,g: [a,b) — R be locally integrable. Assume that g
is decreasing and lim,_,; g(xz) = 0. Assume also that there exists M > 0 s.t.

/:f(.f)dzb

Then the improper Riemann integral of f - g converges.

<M Va<c<b

Remark 53.6. Compare this with the series version

= Z anby, converges

{an}n21 is decreasing with lim, .. a, = 0}
n>1

IM >0st. D i bkl <M VYn>1

Proof. We’ll use the Cauchy Criterion. Fix ¢ > 0.

lin})g(m) =0 = dc. € (a,b) s.t. |g(x)|<e Ve <z <b
T—

Fix ¢. < ¢1 < ¢2 < b and consider fccf f(z)g(z)dz. Using exercise #6 in HWS8, we can
find zg € [c1, co] s.t.

/6102 f(x)g(x)dr = g(c1) /:O f(x)dz + g(co) /30:2 f(z)dx

— st | [ s@rao [ o) de]

+ g(c2) [/ f(z)dx — /:0 f(x) d:p]
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which implies

+

/ F(2)g() da

< g(e1) [

[ @]+ | [ @) as
[ s+ | [7 o) as|

As ¢, < c¢1,c9 < b are arbitrary and € > 0 is arbitrary, we conclude that the improper
Riemann integral of fg converges. O

+g(c2) [ +

< 4Me
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8§54 ‘ Lec 26: May 26, 2021

§54.1 Improper Riemann Integrals (Cont’d)

Exercise 54.1. Show that the improper Riemann integral

> sinx
dxr  converges
0 T

but the improper Riemann integral

r

Proof. To show that fooo Sigxd:z converges, we have to prove that

sinz

dxr  does not converge
x

. M gin g . .
lim dr existsin R
M—oc0 0 X

sinx 0
D At T #
1, =0

Note that

is continuous on on [0,00) and so it is Riemann integrable on [0, M| for each M > 0.
For M > 1, we write

M _: 1 . M _:
s ax sSinx sinx
dx = dx + dx
0 X 0 x 1 X
~—_———

€R

Note that f,g:[1,00) = R, f(z) =sinz and g(z) = 1 are continuous and so Riemann
integrable on [1, M| VM > 1. Also,

e g is decreasing and lim, o, g(z) =0

M
/ sinx dz
1
oo sin(z)

So by the Abel Criterion, the improper Riemann integral fl e
over,

e In addition,

=|cos1 —cos M| <2 VM >1

dx converges. More-

* sinx . M gin z Lsing . M gin gz
dr = lim dr = dr + lim dz

Lsinz *sinz
= dr + dx
o 1 x

Let’s show that the improper Riemann integral fooo ‘Sixixldaz diverges to co. We'll use
that

|sin x| > on [lwr + E,lm+ 571

6 6

N |
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for all £ > 0. So

0 | o k45T | .
/ | sin z| deZ/ 6 |sinz] dx
0 z lm+g x

k>0
5% s
5 Ww.[@ ) (o)
2 1 1
—Z k:+1 _3;201%1_OO -

(Proposition 54.1 A

Let —oo < a<b<ooandlet f:[a,b) = R be locally Riemann integrable s.t. the
improper Riemann integral of | f| converges. Then the improper Riemann integral

of f converges and
b
2)ds| < [ |f(@)] do

_ ¢ Y,

Proof. As the improper Riemann integral of |f| converges, by the Cauchy Criterion we
have

c2
Ve >0 Elcge(a,b)s.t./ |f(x)| der<e Vee<ecp<eca<b

c1

As f is locally integrable, f is integrable on [c1, c2] and

x) dx

c2
g/ |f(x)] de <e  Vee<er<ca<b
c1

By the Cauchy Criterion, the improper Riemann integral of f converges. Moreover,

hm / f(x)dz| =

(f is locally integrable) < hm / |f(z)| dx

/|f )| d -

Definition 54.2 (Absolute Convergence — Integral) — Let —00 < a < b < oo and
f :[a,b) — R be locally integrable. We say that the improper Riemann integral of
f converges absolutely if the improper Riemann integral of |f| converges.

= hm

x)dx| =
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Remark 54.3. 1. If the improper Riemann integral of f converges absolutely, then it
converges.

2. The improper Riemann integral of f converges absolutely if and only if

lin%)/ |f(z)]dr € R <= 3M > 0 s.t. / |f(z)| de < M Ve € [a,b)
G a a

3. If f,g : [a,b) — R are locally integrable s.t. |f(z)| < |g(z)| Vx € [a,b) and the
improper Riemann integral of g converges absolutely, then the improper Riemann
integral of f converges absolutely.

4. If f,g : [a,b) — R are locally integrable and their improper Riemann integrals
converge absolutely, then the improper Riemann integral of f+ g converges absolutely.

5. If f,g: [a,b) — R are locally integrable s.t. f is bounded and the improper Riemann
integral of g converges absolutely, then the improper Riemann integral of f - g
converges absolutely.

§54.2 Continuous 1-Periodic Functions

Definition 54.4 (Convolution) — Let f,g : R — C be continuous functions with
period 1, that is,

fle+1)=f(z) and g(z+1)=g(x) 2z€R

Their convolution f * g : R — C is defined via

1
(f *9)(x) = / f@)ele —v) dy
_ 0 Y,

Claim 1:
a+1

(f*g)(w)Z/ fWglx—y)dy VaeR, VzeR

This is obviously true if a = k € Z. For y = k + z,
k+1 1
/k f(y)g(m—y)dyz/o flk+2)g(x — 2 — k) dz

1
(f&eg periodic) = /0 f(2)glw - 2)dz = (f * 9)(a)

Next, decomposing a = [a] 4+ {a} we see that it suffices to prove the claim for a € (0,1).
~—
<z el

[ twate—vav= [ wate -t [ rwate - va
:Llf(y)g(x—y)dy+/Jaf(z+1)9(37—2— 1) dz
= [ sty + [ 1ot a:
= /01 fWg(x —y)dy = (f * g)(x)
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Claim 2: f * g is 1-periodic.

1 1
(f*g)(w+1)=/0 f(y)g(:v+1—y)dy=/0 fWg(x —y)dy = (f * g)(x)

Claim 3: f * g is continuous

1
(f * 9) (1) — ( * 9)(w2)]| = /0 £() 91 — ) — glaz — )] dy

1
< /0 F@) gz —v) — g2 — )] dy

g continuous on [0, 2] compact = g is uniformly continuous on [0, 2], and since g is
1-periodic, we conclude that ¢ is uniformly continuous on R. So Ve > 0 3§ > 0 s.t.

l9(z) —g(y)l <e  V]r—y[<d
f is continuous on [0, 1] compact = M > 0 s.t.
f@)| <M Vzelo1]

So
1
I(f*g)(wl)—(f*g)(xz)lé/o M-edy=M-c Yz -] <6

Claim 4: fxg=gx* f. For z =z — y,

z—1

1
(g% )(x) = /0 o) —y)dy = / gz — 2)f() dz
~ [ttt -y
1
- /O fw)g(z - y) dy
— (f+9)(@)

Claim 5: For all o € C,

(af)xg=f*(ag) =a(f*g)

Claim 6: If f, g, h are continuous, 1-periodic functions,

{f*(g+h)=f*g+f*h
(fxg)xh=fx*(gxh)

(Left as exercise! )
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§55 ‘ Lec 27: May 28, 2021

§55.1 Continuous 1-Periodic Functions (Cont’d)

Definition 55.1 (Approximation to the ldentity) — A sequence of continuous, 1-
periodic functions K, : R — C is called an approximation to the identity if it
satisfies the following:

1. fo z)de =1VYn>1
2. 3M > 0 stt. fO|K 2)| do < M Yo > 1

3. V6 >0, [} 7° |Kn(z)| dz — 0.

n—oo

- J

Remark 55.2. While 1) says that K, assigns mass 1 to each period, 3) says that this
mass is concentrating at the integers as n — oo.

(Theorem 55.3 b

Let f : R — C be a continuous, l-periodic function and let {K,}, -, be an
approximation to the identity. Then

Kn*f_%fonR
o J

Proof. Fix x € R.
1
(K # f)(x /K :r—y)dy—f(fc)/o K, (y) dy
- / Ko@) [f(@ —y) — f()] dy

— (Ko # ) |</ Ko)| |f@ —y) — f(2)] dy

f is continuous and 1-periodic = f is uniformly continuous.
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Let € > 0. Then 36 > 0 s.t. |f(z) — f(y)| <eforall |x —y| <§

) )
/ Ko@) f (@ —y) — f(@)] dy < e / Ko(y)] dy
0 0

<e

1
< 6/ | Ky (y)| dy < eM
0

1 y—ie [O
/ Kn@)|[f(z—y) — f(2)]dy " = / [Kn(1+2)|[f(z—2—1) — f(2)] dz
1-§ 5

0
_ / B[S~ =)~ f@)] d=

<e

0
- 5/ Kn(2)] dz < eM
—1

As [} |Kn(y)|dy — 0, 3n. € Ns.t.
n—oo

1-6 c
[Kn()l dy < o
/5 2[flloe +1

So collecting our estimates, we get
|(Kp* f)(x) — f(x)] <2eM +¢ Ve € R, Vn > n.

As e > 0 is arbitrary, we get K, * f — . O
n—o0

§55.2 Fourier Series

. )
Definition 55.4 (Orthonormal Family) — For n € Z, let e,(x) = e*™n* =
cos(2mnz) + isin(2mnz). Note e, : R — C is continuous, 1-periodic.
! 1 =0
/ en(x)dr =<’ "
0 0, n#0
So
1 1
- 1 —
/ en(z)em(x)de = / en—m(z)dr =4 nem
0 0 0, n#m
= {en},>; form an orthonormal family.
- J
Definition 55.5 (Trigonometric Polynomial) — A trigonometric polynomial takes
the form
Z cnen(T)
In|<N
where ¢, € C for all |n| < N. y
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Definition 55.6 (Fourier Series) — Given a continuous, 1-periodic function f :
R — C, we define its n'™® Fourier coefficient via

~ 1 1 .
fn) = /0 f(@)en(@) do = /0 f(@)e2min do

The Fourier series of f is given by Y ., f(n)en(x).

Question 55.1. Can we recover f from its Fourier series?
If f € C?, then
> fmen(@) 5 f(a)

n—oo
neL

In 1966, Carleson proved that the Fourier series of an integrable function converges
pointwise to f outside a set of measure zero.

For N > 0, let
1 P
sv(@ = Y fne@= Y [ it e
In|<N nj<n 0
1
= fWen(z —y)d
EQN/O y y) dy
1
=/Of(y) S e | @-y)dy

In|<N
= | f* Z €n (z)
[n|<N
For N >0, let Dy = Z\nl <N €n denote the Dirichlet Kernel. Note that
1 1
/ Dy(z)dx = Z / en(z)dr =1 VN >0
0 0
In|]<N

{Dn}y>p do not form an approximation to the identity since

1
/ |Dy(x)| de — oo
0 N—oo

We have

N
(e1—1)Dy = Z en — Z €n = EN+1 — €E_N
n=—N

In addition,

Q2ri(N+l)z _ ~2niNz  €™" (e2m(N+%)w _ e—27ri(N+%)x>
Drle) = e2riz — 1 - emiz (emiz — e—miz)
sin (27 (N + 1) )
sin(mx)

216



Duc Vu (Winter-Spring 2021) 131BH Lectures

Also,

T™r

/1 D) d > /1 |sin (27 (N + %) )| i
0 0

y= 27T(N+%

m(N+2)  [sin(y)| dy
) /o |

T 277(134—%) 2m (N+ %)

1 27F(N+%) 1
Ly sinw)|
m™Jo y N—oo

The average of the Dirichlet kernels do form an approximation to the identity. For
N>1,let Fy = w denote the Fejer Kernels. Note that

1 1 N-1 .1
/0 Fy(x) dz = k;ZO/O Dyp(z)dz=1 N>1
We will show that Fy > 0 and so
o [l |Fn(z)|dz = [} Fy(z)de =1VYN >1
oV5>0f |FN )|de:>>OO

Consequently, we obtain the following

/Theorem 55.7 A

If f:R — C is a continuous, 1-periodic function, then

Fyxf — fonR
N—oo
if and only if
1 V-1
o) = L) % fon R

. J

Corollary 55.8

If f: R — C is a continuous, 1-periodic function, with f(n) = 0Vn € Z, then
f=o.

Corollary 55.9

Every continuous, 1-periodic function can be approximated uniformly by trigono-
metric polynomials.
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8§56 ‘ Lec 28: Jun 2, 2021

§56.1 Fourier Series (Cont’d)
Recall that for n € Z we define the character e, : R — C
:eZM'nx

en(x)

For a continuous, 1-periodic function f : R — C, we define its n*® Fourier coefficient via

1 1
f(n) = / f(z)en(x) dx = / f(z)e 2™ dg VneZ
0 0
and the partial Fourier series

[Sn ()] (=) = fn)en(x) YN =0

We observed Sy (f) = f * Dy where Dy denotes the Dirichlet kernel

Dy= )Y en VYN2>0
In|<N
Using
eN+1 — E—-N
Dy=—"—"—"———"— 1
N €1 — 1 ( )

We obtained the explicit formula
sin (27r (N + %) x)

Dn(w) = sin(7x)

and computed

1
/ |Dy(z)| de — oo
0 N—oo
In particular, {Dn}y~; do not form an approximation to the identity. Instead, we
define the Fejer Kernel
Do+...+Dn_1

Fy = N YN >1

SO 1N—1 1N—1
a(f)—f*FN—N;Of*Dn—N;OSn(f)

Claim 56.1. {Fy} s, form an approximation to the identity and thus o(f) s f for

n—oo
any continuous, 1-periodic f: R — C.

Proof. First, we have

1 ! 1 1, n=0
/ en(x)dr = / cos (2mnx) dx + Z/ sin (2mni) de =<
0 0 0 0, n#0

we get

1 1
/ODN(x)d:E: Z /0 en(z)dr =1 VN >0

In|<N
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and so

1 1 N-1
/OFN(a:)dx:NZ/ODn(x)da::l VN >1
n=0
Net, we compute an explicit formula for Fly

NEFy=Dg+...+Dn_1

1 — —e_ —e_
(:)61 60+62 e 1+".+6N €_N+1
€1 — 1 €1 — 1 €1 — 1
_(ertex+...+ey)—(eot+e1+...+e Ny1)
N €1 — 1
_ (61 —1)(61+€2+...+€N) — (61 —1)(€0+€_1+...+€_N+1)
(e1 — 1)
Notice that
(e —1)(e1+...+exy)=ex+...+ent1 —€1 —... —eNy =eny1 — €1
(61*1)(60+...+€,N+1) =e1+...tE€_Nj2—€ — ... E_N41 = €] —E€_N+1
So
NFy(z) = en+1(z) + ei,NH(x) — 2e1(x)
(627rzx _ 1)2
B el (LL') (627riNx 4 e—27riNx _ 2)
B 61(33‘) (emz _ e*ﬂix)Q
~ 2(cos(2rNwz) — 1)
(2 sin(m2)]?
_ [sin(rNx) 2
| sin(mx)
which implies
1 [sin(xNz)]?
F =—|——=| >0 VN > 1
n(@) N [ sin(7x) ] - -

Thus,

1 1
/\FN($)|da::/ Fy(@)dz=1 WN>1
0 0

Lastly, we have to verify that V0 < 6 < 1

1-6
/ Fy(@)| dz —> 0
)

N—oo

Fix 6 > 0. Then
0<z<]1-0 = md<mx<m—md

= dcs > 0 s.t.

So
2

lsin(7z) > > ¢5 Vo € [0,1— 0]
sin(mNz) dx

1-96 1 1-96
F -
/5 [Fiv(2)] de N/5 sin(mx)

1 (91
g/ —dx
N ) Cs

11-2

= — 0
N Ccs N—o00

This proves that {Fn},y~; form an approximation to the identity. O
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§56.2 Topology Addendum

Lemma 56.1

Let (X,d) be a metric space. A set A C X is dense in X if and only if ANW # ()
for every non-empty open set W C X.

Proof. * = ” Let A C X be such that A = X. Assume, towards a contradiction that
AW =W C X s.t.

ANW =0 = W C°A
— W=W CA="A) =X =0

which is a contradiction as W # ().
“ <= 7 Assume, towards a contradiction, that

‘() #10

Z#chi o
(A) = A

} — A +
which implies
dr € “A and Ir > 0 s.t. By(x) C°A
So B.(z) NA # () — contradiction! O

——
#() open

(Theorem 56.2 A

Let (X, d) be a complete metric space. Then X has the property of Baire, that is,
for every sequence {A,}, -, of open dense sets we have

X
- _ J

Proof. Using the lemma, it suffices to show

D)
s
I

(VAW #0  VOAW=WCX

n>1
Fix ) # W =W C X.

Al=2 —= AANW#) = Tz, € AANW = F0<r; <1s.t.
~—_——
open

Ke(z1)={ye X d(y,z1) <m} S AnW

—_ 1
Ay =X — AgﬂBrl(ml) 7&@ = dao EAQﬁBTl(xl) — < ryg < 5 s.t.
—_——
open

K,,(xz2) C A1 N By (x1)

Proceeding inductively, we find a sequence {z,},~; € X and {r,},~; s.t.

0<r, < % Vn >1
K, (xn—f—l) - An+1 N By, (ch) C K, (l'n) Vn >1

n+1
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Note that { K, (¥5)},,>; is a sequence of nested closed sets whose diameters decrease to
zero. As (X, d) is complete, we find

ﬂ K., (zn) = {7}

n>1

for some x € X. In addition,

{a} = () Ko (an) S AW () AuN By, () € | () A | 0 W

n>1 n>2 n>1
which implies (V51 4 ) N W # 0. 0
/Lemma 56.3 A
Let (X, d) be a metric space. Then the following are equivalent:
1. For every {Ap}, -, of open dense sets we have (5, A, = X.
2. For every {Fn}n21 of closed sets with empty interiors, we have
Um0
n>1
- J
Proof. Left as exercise. O
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§57‘ Lec 29: Jun 4, 2021

§57.1 Topology Addendum (Cont’d)

Lemma 57.1

Let (X, d) be a metric space that has the Baire property. If (§ # W = W C X, then
W has the Baire property.

Proof. Fix ) # W = W C X. Let {D,},~; be open dense sets in W.

D,, open in W = 3G,, open in X s.t. D, = G, N W open in X as G, and W are
opern.

D, densein W = D, NW =W = WCD, = WCD,,.

Define A, = D,, U°(W) open in X.

o

A, = Dp U (W) = Dy U'(W) = DU (W) DWUW) = X

Thus {A,},, are dense open sets in X and as X has the Baire property,

Then,

which implies

w=|Dp.u (W) nw
= [Nzt Danw] U [C(ﬁ) nw]

WoW=wW — (W) CW — C(W)OW:(Z)

= (Nys1 DnNW =W ie. 5 Dy is dense in W. O

Theorem 57.2

Let (X, d) be a metric space with the Baire property. Let f,, : X — R be continuous
function that converges pointwise to a function f : X — R. Then the set

C ={x € X : fiscontinuous at =} is dense in X

Proof. We can observe that it suffices to prove the theorem under the additional
hypothesis
lfa(z)] <1 VzeX Vn>1
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Indeed, if {fy},>; is as in the theorem, then we consider

__ Yy
L -yl

So ¢o fp,: X — (—1,1) is continuous and |¢ o f,(z)| <1 for alln > 1 and x € X. Also,
fn — [ pointwise = ¢o f, — ¢ o f pointwise. If the theorem holds with the
n—oo n oo

continuous, bijective, with the inverse qb_l(y)

¢p:R—(=1,1), o(x)

o e
N 1+ |z

additional uniform boundedness hypothesis, we get

{r € X : ¢o fis continuous at =}

is dense in X
{x € X : fis continuous at x} }
So without the loss of generality, we assume
|fu(z)] <1 Vn>1 VeeX (1)
Then,

C={zreX: fiscontinuous at x}
={reX: w(f,z)=0}
1
= ﬂ{xeX: w(f,x)<n}:ﬂGn

n>1 n>1
=:Gy, open in X

As X has the Baire property, to prove C = X it suffices to show G,, = X Vn > 1. Fix
N > 1. We will show that Gy = {z € X : w(f,z) < %} is dense in X. By a lemma
from last lecture, it suffices to show

GNNW #£0  VI4AW=WCX
Fix 0 #W =W C X. Forn > 1 and z € X, we define

un(a;) = inf fm(x) and Un(x) = Sup fm(x)
m>n m>n

Then {un(z)},, is increasing and {v,(z)},>, is decreasing. As lim, o0 fn(z) = f(2),
we have

T (@) = £(2) = lim_ eno) )
Forn > 1, le
F, = {:c € X o) — un(z) < 4;7}
—{rexs sw o) -t i) < 7}
- {x €X: s [fin(r) i) < ;V}
- m(l]{x €X: fule) = i) < g )
e (2]
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fm — fi is continuous Vm, [l > n and [—2, ﬁ] is closed, so

(fm— )" ([2, 4}\7]> is closed Vm,l >n

So F,, is closed in X for all n > 1. Also,

X=|JF, by (2)
n>1
So
W= (Unzl Fn) AW =Ups1(FnNW) )
W:W#@ — dng €Nst. F,, "W #0
W has the Baire property

Let xg € E:ﬂ\W and let § > 0 s.t. Bs(xg) C F,, NW. As f,, is continuous at zo,
shrinking § if necessary, we may assume

1
W(fnys Bs(zo)) < v
We compute

w(f;x0) <w(f, Bs(xo)) = sup  f(x) — inf f(y)

x€Bs(w0) y€Bs(xo)
= sup  [f(z) — f(y)]
l‘,yEBg(Io)
< sup [un, (%) — un, (y)]
:B,yEBg(:EQ)
= sup  [Uny () = Uny (7) + Uy () — Uny (Y) + uny (T) — vny (y)]
z,y€Bs(x0)

1 1

(B(S(x()) CF, ) <-——~+-—~+ sup [un (x) — Un (y)]
! 4N 4N 2,y€ B (x0) ! !

<ot mﬁy:gép(m) [fra (2) = frr (y)]

1
=N T W( fny3 Bs(o))
1 1 1

< - L= =
SoNTINS N

This proves zg € Gn "W => Gy NW £ 0. As @ # W =W C X was arbitrary, we
conclude G is dense in X. ]
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