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§1 Lec 1: Mar 29, 2021

§1.1 Compactness

Definition 1.1 (Open Cover) — Let (X, d) be a metric space and let A ⊆ X. An
open cover of A is a family {Gi}i∈I of open sets in X such that

A ⊆
⋃
i∈I

Gi

The open cover is called finite if the cardinality of I is finite. If it’s not finite, the open
cover is called infinite.

Definition 1.2 (Compactness & Precompactness) — Let (X, d) be a metric space and
let K ⊆ X.

1. We say that K is a compact set if every open cover {Gi}i∈I of K admits a finite
subcover, that is,

∃n ≥ 1 and ∃i1, . . . , in ∈ I s.t. K ⊆
⋃
j=1

Gij

2. We say that a set A ⊆ X is precompact if A is compact.

Lemma 1.3

Let (X, d) be a metric space and let ∅ 6= Y ⊆ X. We equip Y with the induced
metric d1 : Y × Y → R, d1(y1, y2) = d(y1, y2). Let K ⊆ Y ⊆ X. The followings are
equivalent:

1. K is compact in (X, d).

2. K is compact in (Y, d1).

Proof. 1) =⇒ 2) Assume K is compact in (X, d). Let {Vi}i∈I be a family of open sets in
(Y, d1) s.t.

K ⊆
⋃
i∈I

Vi

For i ∈ I fixed, Vi is open in (Y, d1) =⇒ ∃Gi ⊆ X open in (X, d) s.t.

Vi = Gi ∩ Y
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Then

K ⊆
⋃
i∈I Vi ⊆

⋃
i∈I Gi

K compact in (X, d)

}
=⇒ ∃n ≥ 1 and ∃i1, . . . , in ∈ I s.t.

K ⊆
⋃n
j=1Gij

K ⊆ Y

}
=⇒ K ⊆

 n⋃
j=1

Gij

 ∩ Y =
n⋃
j=1

(
Gij ∩ Y

)
=

n⋃
j=1

Vij

So K is compact in (Y, d1).
2) =⇒ 1) Assume K is compact in (Y, d1). Let {Gi}i∈I be a family of open sets in (X, d)
s.t.

K ⊆
⋃
i∈I Gi

K ⊆ Y

}
=⇒

K ⊆
(⋃

i∈I Gi
)
∩ Y =

⋃
i∈I (Gi ∩ Y )︸ ︷︷ ︸

open in Y

K is compact in (Y, d1)

 =⇒

=⇒ ∃n ≥ 1 and ∃i1, . . . , in ∈ I s.t. K ⊆
⋃n
j=1

(
Gij ∩ Y

)
⊆
⋃n
j=1Gij .

Proposition 1.4

Let (X, d) be a metric space and let K ⊆ X be compact. Then K is closed and
bounded.

Proof. Let’s prove K is closed. We’ll show cK is open.
Case 1: cK = ∅. This is open.
Case 2: cK 6= ∅. Let x ∈ cK

For y ∈ K let ry = d(x,y)
2 . Note ry > 0 (since x ∈ cK and y ∈ K).

X

Y

K

Note

K ⊆
⋃
y∈K Bry(y)︸ ︷︷ ︸

open

K is compact

 =⇒ ∃n ≥ 1 and ∃y1, . . . , yn ∈ K s.t. K ⊆
n⋃
j=1

Brj (yj)

6
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where we use the shorthand rj = ryj .
Let r = min1≤j≤n rj > 0.
By construction, Br(x) ∩Brj (yj) = ∅ ∀1 ≤ j ≤ n.

=⇒ Br(x) ⊆ cBrj (yj) ∀1 ≤ j ≤ n

=⇒ Br(x) ⊆
n⋂
j=1

cBrj (yj) =

c n⋃
j=1

Brj (yj)

 ⊆ cK

=⇒ x ∈ ˚̂cK

x ∈ cK was arbitrary

}
=⇒ cK =

˚̂cK

Let’s show K is bounded. Note

K ⊆
⋃
y∈K B1(y)︸ ︷︷ ︸

open

K compact

 =⇒ ∃n ≥ 1 and ∃y1, . . . , yn ∈ K s.t. K ⊆
n⋃
j=1

B1(yj)

For 2 ≤ j ≤ n, let rj = d(y1, yj) + 1.

Claim 1.1. B1(yj) ⊆ Brj (y1)

y1

x

yj

Indeed, if x ∈ B1(yj) =⇒ d(x, yj) < 1. By the triangle inequality

d(y1, x) ≤ d(yj , x) + d(y1, yj) < 1 + d(y1, yj) = rj =⇒ x ∈ Brj (y1)

So with r = max2≤j≤n rj ,

K ⊆
n⋃
j=1

B1(yj) ⊆ Br(y1)

Proposition 1.5

Let (X, d) be a metric space and let F ⊆ K ⊆ X such that F is closed in X and K is
compact. Then F is compact.
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Proof. Let {Gi}i∈I be a family of open sets in X s.t.

F ⊆
⋃
i∈I

Gi

Then
K ⊆ F ∪ cF ⊆

⋃
i∈I Gi ∪

cF︸︷︷︸
open in X

K compact

 =⇒

=⇒ ∃n ≥ 1 and ∃i1, . . . , in ∈ I s.t.

K ⊆
⋃n
j=1Gij ∪

cF

F ⊆ K

}
=⇒ F =

 n⋃
j=1

Gij ∪ cF

 ∩ F ⊆ n⋃
j=1

Gij

So F is compact.

Corollary 1.6

Let (X, d) be a metric space and let F ⊆ X be closed and let K ⊆ X be compact.
Then K ∩ F is compact.

Proof. K is compact. So

K closed

F closed

}
=⇒

K ∩ F is closed

K ∩ F ⊆ K compact

}
=⇒ K ∩ F is compact

§1.2 Sequential Compactness

Definition 1.7 (Sequential Compactness) — Let (X, d) be a metric space. A set K ⊆ X
is called sequentially compact if every sequence {xn}n≥1 ⊆ K admits a subsequence
that converges in K.
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§2 Lec 2: Mar 31, 2021

§2.1 Sequential Compactness (Cont’d)

Theorem 2.1 (Bolzano – Weierstrass)

Let (X, d) be a metric space and let K ⊆ X be infinite. The following are equivalent:

1. K is sequentially compact.

2. For every infinite A ⊆ K we have A′ ∩K 6= ∅.

Proof. 1) =⇒ 2) Let A ⊆ K be infinite. As every infinite set has a countable subset
we can find a sequence {an}n≥1 ⊆ A such that an 6= am ∀n 6= m. As K is sequentially
compact, ∃ {akn}n≥1 subsequence of {an}n≥1 s.t.

akn
d−→

n→∞
a ∈ K

Claim 2.1. a ∈ A′ ⇐⇒ ∀r > 0 Br(a) ∩A \ {a} 6= ∅.

Indeed, fix r > 0.

akn
d−→

n→∞
a =⇒ ∃nr ∈ N s.t. d(a, akn) < r ∀n ≥ nr

As an 6= am ∀n 6= m, ∃n0 ≥ nr s.t. akn0 6= a. Then akn0 ∈ Br(a) ∩ A \ {a}. We get
a ∈ A′ ∩K.
2) =⇒ 1) Let {an}n≥1 ⊆ K. We distinguish two cases:
Case 1: The sequence {an}n≥1 contains a constant subsequence. That subsequence con-
verges to an element in K.
Case 2: {an}n≥1 does not contain a constant subsequence. Then A = {an : n ≥ 1} is
infinite and A ⊆ K. So A′ ∩K 6= ∅. Let a ∈ A′ ∩K. Then ∃ {akn}n≥1 subsequence of

{an}n≥1 s.t. akn
d−→

n→∞
a.

1

1
2

aak2

ak1

B1(a) ∩ A \ {a} 6= ∅

Bmin{1
2 , d(a,ak1)}(a) ∩ A \ {a} 6= ∅

k2 > k1

9
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Theorem 2.2

Let (X, d) be a metric space and let K ⊆ X be compact. Then K is sequentially
compact.

Proof. If K is finite, then any sequence {xn}n≥1 ⊆ K will have a constant subsequence.
Assume now K is infinite. We will use the Bolzano – Weierstrass theorem. It suffices

to prove that for any infinite A ⊆ K we have A′ ∩K 6= ∅.

Note A ⊆ K then A′ ⊆ K ′

K compact =⇒ K closed =⇒ K ′ ⊆ K

}
=⇒ A′ ⊆ K =⇒ A′ ∩K = A′

We argue by contradiction. Assume A′ = ∅. Then for x ∈ K we have x /∈ A′ =⇒ ∃rx > 0
s.t. Brx(x) ∩A \ {x} = ∅. So

K ⊆
⋃
x∈K Brx(x)︸ ︷︷ ︸

open

K compact

 =⇒ ∃n ≥ 1 and ∃x1, . . . , xn ∈ K s.t.

K ⊆
n⋃
j=1

Brj (xj) where rj = rxj

In particular,

A =
(⋃n

j=1Brj (xj)
)
∩A =

⋃n
j=1

[
Brj (xj) ∩A

]
By construction, Brj (xj) ∩A ⊆ {xj}

 =⇒ A︸︷︷︸
infinite

⊆
n⋃
j=1

{xj}︸ ︷︷ ︸
finite

– Contradiction! So A′ 6= ∅.

Proposition 2.3

Let (X, d) be a metric space and let K ⊆ X be sequentially compact. Then K is
closed and bounded.

Proof. Let’s show K is closed ⇐⇒ K = K.
We know K ⊆ K. We need to show K ⊆ K. Let x ∈ K =⇒ ∃{xn}n≥1 ⊆ K s.t.

xn
d−→

n→∞
x.

K sequentially compact =⇒ ∃{xkn}n≥1 subsequence of {xn}n≥1 s.t.

xkn
d−→

n→∞
y ∈ K

xn
d−→

n→∞
x =⇒ xkn

d−→
n→∞

x

Limits of convergent sequences are unique

 =⇒ x = y ∈ K

As x ∈ K was arbitrary, we get K ⊆ K.

10
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Let’s show K is bounded. We argue by contradiction. Assume K is not bounded. Let
a1 ∈ K.

K not bounded =⇒ K * B1(a1) =⇒ ∃a2 ∈ K s.t. d(a1, a2) ≥ 1

K not bounded =⇒ K * B1+d(a1,a2)(a1) =⇒ ∃a3 ∈ K s.t. d(a1, a3) ≥ 1 + d(a1, a2)

Proceeding inductively, we find a sequence {an}n≥1 ⊆ K s.t. d(a1, an+1) ≥ 1 + d(a1, an).

a1

a3

a4a2

By construction,

|d(a1, am)− d(a1, an)| ≥ |n−m| ∀n,m ≥ 1

By the triangle inequality,

d(an, am) ≥ |d(a1, an)− d(a1, am)| ≥ |n−m| ∀n,m ≥ 1

This sequence cannot have a convergent (Cauchy) subsequence, thus contradiction the
hypothesis that K is sequentially compact. So K is bounded.

Definition 2.4 (Totally Bounded) — Let (X, d) be a metric space. A set A ⊆ X is
totally bounded if for every ε > 0, A can be covered by finitely many balls of radius ε.

11
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Remark 2.5. 1. A totally bounded =⇒ A bounded.

Indeed, taking ε = 1, ∃n ≥ 1 and ∃x1, . . . , xn ∈ X s.t.

A ⊆
n⋃
j=1

B1(xj) ⊆ Br(x1)

where r = 1 + max2≤j≤n d(x1, xj).

2. A bounded 6=⇒ A totally bounded.

Consider N equipped with the discrete metric

d(n,m) =

{
0, n = m

1, n 6= m

Then N = B2(1), but N cannot be covered by finitely many balls of radius 1
2 since

B 1
2
(n) = {n}.

3. On (Rn, d2), A bounded =⇒ A totally bounded. Indeed, A bounded =⇒ A ⊆ BR(0)
for some R > 0. BR(0) can be covered by 106

(
R
ε

)n
many balls of radius ε.

A

O

12
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§3 Lec 3: Apr 2, 2021

§3.1 Heine – Borel Theorem

Theorem 3.1

Let (X, d) be a metric space and let K ⊆ X. The following are equivalent:

1. K is sequentially compact.

2. K is complete and totally bounded.

Proof. 1) =⇒ 2) Let’s show K is complete. Let {xn}n≥1 be a Cauchy sequence with
xn ∈ K ∀n ≥ 1.
K sequentially compact =⇒ ∃{xkn}n≥1 subsequence of {xn}n≥1 s.t.

xkn
d−→

n→∞
y ∈ K

{xn}n≥1 is Cauchy

 =⇒ xn
d−→

n→∞
y ∈ K

As {xn}n≥1 ⊆ K was arbitrary, we get that K is complete.
Let’s show K is totally bounded. Fix ε > 0 and a1 ∈ K.

• If K ⊆ Bε(a1), then K is totally bounded.

• If K * Bε(a1), then ∃a2 ∈ K s.t. d(a1, a2) ≥ ε

• If K ⊆ Bε(a1) ∪Bε(a2), then K is totally bounded.

• If K * Bε(a1) ∪Bε(a2), then ∃a3 ∈ K s.t. d(a1, a3) ≥ ε and d(a2, a3) ≥ ε.

We distinguish two cases:
Case 1: The process terminates in finitely many steps =⇒ K is totally bounded.
Case 2: The process does not terminate in finitely many steps. Then we find {an}n≥1 ⊆ K
s.t. d(an, am) ≥ ε ∀n 6= m. This sequence does not admit a convergent subsequence,
contradicting the fact that K is sequentially compact.

2) =⇒ 1) Let {an}n≥1 ⊆ K. K totally bounded =⇒ J1 finite and
{
x

(1)
j

}
j∈J1

⊆ X s.t.

K ⊆
⋃
j∈J1 B1(x

(1)
j )

{an}n≥1 ⊆ K

}
=⇒ ∃j1 ∈ J1 s.t.

∣∣∣{n : an ∈ B1(x
(1)
j1

)
}∣∣∣ = ℵ0

Let
{
a

(1)
n

}
n≥1

be the corresponding subsequence.

K totally bounded =⇒ ∃J2 finite and
{
x

(2)
j

}
j∈J2

⊆ X s.t.

K ⊆
⋃
j∈J2 B 1

2
(x

(2)
j ){

a
(1)
n

}
n≥1
⊆ K

 =⇒ ∃j2 ∈ J2 s.t.
∣∣∣{n : a(1)

n ∈ B 1
2
(x

(2)
j2

)
}∣∣∣ = ℵ0

Let
{
a

(2)
n

}
n≥1

denote the corresponding subsequence.

We proceed inductively. We find that ∀k ≥ 1

13
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•
{
a

(k+1)
n

}
n≥1

subsequence of
{
a

(k)
n

}
n≥1

•
{
a

(k)
n

}
n≥1
⊆ B 1

k

(
x

(k)
jk

)
for some x

(k)
jk
∈ X.

We consider the subsequence
{
a

(n)
n

}
n≥1

of {an}n≥1.{
a(1)
n

}
n≥1

=
(
a

(1)
1 , a

(1)
2 , a

(1)
3 , . . .

)
{
a(2)
n

}
n≥1

=
(

a
(2)
1 , a

(2)
2 , a

(2)
3 , . . .

)
{
a(3)
n

}
n≥1

=
(

a
(3)
1 , a

(3)
2 , a

(3)
3 , . . .

)
For n,m ≥ k the a

(n)
n , a

(m)
m belong to the subsequence

{
a

(k)
n

}
n≥1

. In particular,

d(a(n)
n , a(m)

m ) ≤ d(a(n)
n , x

(k)
jk

) + d(a(m)
m , x

(k)
jk

) <
2

k
∀n,m ≥ k

This shows
{
a

(n)
n

}
n≥1

is Cauchy and K is complete, so a
(n)
n

d−→
n→∞

a ∈ K. As {an}n≥1 was

arbitrary, we get that K is sequentially compact.

Lemma 3.2

Let (X, d) be a sequentially compact metric space. Let {Gi}i∈I be an open cover of X.
Then there exists ε > 0 such that every ball of radius ε is contained in at least one Gi.

Proof. We argue by contradiction. Then

∀n ≥ 1 ∃an ∈ X s.t. B 1
n

(an) is not contained in any Gi

X is sequentially compact =⇒ ∃{akn}n≥1 subsequence of {an}n≥1 s.t.

akn
d−→

n→∞
a ∈ X =

⋃
i∈I

Gi =⇒ ∃i0 ∈ I s.t. a ∈ Gi0

Gi0 open =⇒ ∃r > 0 s.t. Br(a) ⊆ Gi0
akn

d−→
n→∞

a =⇒ ∃n1(r) ∈ N s.t. d(a1, akn) <
r

2
∀n ≥ n1

akn

a

Let n2(r) s.t. n2 >
2
r .

14
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Claim 3.1. ∀n ≥ nr = max {n1, n2} we have B 1
kn

(akn) ⊆ Br(a) ⊆ Gi0 thefore giving a

contradiction!

Fix x ∈ B 1
kn

(akn). Then

d(a, x) ≤ d(x, akn) + d(akn , a) <
1

kn
+
r

2
<
r

2
+
r

2
= r

Theorem 3.3

A sequentially compact metric space (X, d) is compact.

Proof. Let {Gi}i∈I be an open cover of X. Let ε be given by the previous lemma. X
sequentially compact =⇒ X totally bounded =⇒ ∃n ≥ 1 and

∃x1, . . . , xn ∈ X s.t. X =
⋃n
j=1Bε(xj)

∀1 ≤ j ≤ n ∃ij ∈ I s.t. Bε(xj) ⊆ Gij

}
=⇒ X =

n⋃
j=1

Gij

Collecting our results so far we obtain

Theorem 3.4 (Heine – Borel)

Let (X, d) be a metric space and let K ⊆ X. The following are equivalent:

1. K is compact,

2. K is sequentially compact,

3. K is complete and totally bounded,

4. Every infinite subset of K has an accumulation point in K.

Remark 3.5. In Rn, K is compact ⇐⇒ K is closed and bounded.

Definition 3.6 (Finite Intersection Property) — An infinite family {Fi}i∈I of closed
sets is said to have the finite intersection property if ∀J ⊆ I finite we have⋂

j∈J
Fj 6= ∅

15
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Theorem 3.7

A metric space (X, d) is compact if and only if every infinite family {Fi}i∈I of closed
sets with the finite intersection property satisfies⋂

i∈I
Fi 6= ∅

Proof. “ =⇒ ” We argue by contradiction. Assume ∃ {Fi}i∈I closed sets with the finite
intersection property s.t.

⋂
i∈I Fi = ∅

X =
c(⋂

i∈I Fi
)

=
⋃
i∈I

cFi︸︷︷︸
open

X compact

 =⇒ ∃J ⊆ I finite s.t. X =
⋃
j∈J

cFj

=⇒ ∅ =

c⋃
j∈J

cFj

 =
⋂
j∈J

Fj – Contradiction!

“ ⇐= ” We argue by contradiction. Assume ∃ {Gi}i∈I open cover of X that does not
admit a finite subcover.

So ∀J ⊆ I finite X 6=
⋃
j∈J Gj =⇒ ∅ 6=

⋂
j∈J

cGj︸︷︷︸
closed

. So {cGi}i∈I is a family of closed

sets with the finite intersection property. Then⋂
i∈I

cGi 6= ∅ =⇒
⋃
i∈I

Gi 6= X

Contradiction!

16
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§4 Lec 4: Apr 5, 2021

§4.1 Continuity

Definition 4.1 (Continuous Function) — Let (X, dX) and (Y, dY ) be two metric spaces.
We say that a function f : X → Y is continuous at a point x0 ∈ X if

∀ε > 0 ∃δ > 0 s.t. dX(x, x0) < δ then dY (f(x), f(x0)) < ε

We say f is continuous (on X) if f is continuous at every point in X.

x0
f (x0)

f

X
Y

Remark 4.2. f : X → Y is continuous at every isolated point in X. Indeed, if x0 ∈ X is
isolated, then ∃δ > 0 s.t. BXδ (x0) = {x0}. Then dX(x, x0) < δ =⇒ dY (f(x), f(x0)) = 0

Proposition 4.3

Let (X, dX), (Y, dY ) be two metric spaces and f : X → Y be a function. The following
are equivalent:

1. f is continuous at x0 ∈ X.

2. For any {xn}n≥1 ⊆ X s.t. xn
dX−→
n→∞

x0 we have f(xn)
dY−→

n→∞
f(x0).

Proof. 1) =⇒ 2) Let {xn}n≥1 ⊆ X s.t. xn
dX−→
n→∞

x0.

Let ε > 0. f continuous at x0 =⇒ ∃δ > 0 s.t.

dX(x, x0) < δ =⇒ dY (f(x), f(x0)) < ε

xn
dX−→
n→∞

x0 =⇒ ∃nδ ∈ N s.t. dX(xn, x0) < δ ∀n ≥ nδ

 =⇒ dX (f(xn), f(x0)) < ε

for each n ≥ nδ.
2) =⇒ 1) We argue by contradiction. Assume

∃ε0 > 0 s.t. ∀δ > 0 ∃xδ ∈ X s.t. dX(xδ, x0) < δ but dY (f(xδ), f(x0)) ≥ ε0

Letting δ = 1
n we find {xn}n≥1 ⊆ X s.t. dX(xn, x0) < 1

n but dY (f(xn), f(x0)) ≥ ε0 –
Contradiction!
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Theorem 4.4

Let (X, dX), (Y, dY ) be two metric spaces and let f : X → Y be a function. The
following are equivalent:

1. f is continuous.

2. for any G open in Y , f−1(G) = {x ∈ X : f(X) ∈ G} is open in X.

3. for any F closed in Y , f−1(F ) is closed in X.

4. for any B ⊆ Y , f−1(B) ⊆ f−1(B).

5. for any A ⊆ X, f(A) ⊆ f(A).

Proof. We will show 1) =⇒ 2) =⇒ 3) =⇒ 4) =⇒ 5) =⇒ 1).
1) =⇒ 2) Let G ⊆ Y be open.

f

x0
f (x0)

Let x0 ∈ f−1(G)

=⇒
f(x0) ∈ G
G open in Y

}
=⇒ ∃ε > 0 s.t. BY

ε (f(x0)) ⊆ G

f is continuous

=⇒ ∃δ > 0 s.t. f
(
BX
δ (x0)

)
⊆ BY

ε (f(x0)) ⊆ G

=⇒ BX
δ (x0) ⊆ f−1(G) =⇒ x0 ∈

˚̂
f−1(G)

So f−1(G) is open in X.
2) =⇒ 3) Let F ⊆ Y be closed =⇒ cF = Y \ F is open in Y . By assumption,

f−1 (cF ) is open in X

f−1 (cF ) =
c[
f−1(F )

]
= X \ f−1(F )

}
=⇒ f−1(F ) is closed in X

f

18
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f−1 (Y \ F ) = f−1(Y ) \ f−1(F ) = X \ f−1(F )

3) =⇒ 4) Let B ⊆ Y =⇒ B closed in Y . By assumption,

f−1(B) closed in X

f−1(B) ⊇ f−1(B)

}
=⇒ f−1(B) ⊆ f−1(B) = f−1(B)

4) =⇒ 5) Let A ⊆ X. Use the hypothesis with B = f(A). We have

A ⊆ f−1 (f(A)) ⊆ f−1
(
f(A)

)
=⇒ f(A) ⊆ f(A)

5) =⇒ 1) We argue by contradiction. Assume ∃x0 ∈ X s.t. f is not continuous at x0.

Then ∃ε0 > 0 and ∃xn
dX−→
n→∞

x0 but dY (f(xn), f(x0)) ≥ ε0.

Let A = {xn : n ≥ 1}. Then x0 ∈ A but f(x0) /∈ {f(xn) : n ≥ 1} = f(A). On the other
hand, we must have

f(A) ⊆ f(A)

x0 ∈ A

}
=⇒ f(x0) ∈ f(A)

Contradiction!

Proposition 4.5

Let (X, dX), (Y, dY ), (Z, dZ) be metric spaces and assume f : X → Y is continuous at
x0 ∈ X and g : Y → Z is continuous at f(x0) ∈ Y . Then g ◦ f : X → Z is continuous
at x0.

Proof. Fix ε > 0.

g continuous at f(x0) =⇒ ∃δ > 0 s.t. dY (y, f(x0)) < δ =⇒ dZ (g(y), g (f(x0))) < ε

f continuous at x0 =⇒ ∃η > 0 s.t. dX(x, x0) < η =⇒ dY (f(x), f(x0)) < δ

f
g

x
f(x0)

(g ◦ f)(x0)

η
δ ε

So if dX(x, x0) < η then dZ (g (f(x)) , g (f(x0))) < ε.

Exercise 4.1. Let (X, d) be a metric space and let f, g : X → R be continuous at x0 ∈ X.
Then f ± g, f · g are continuous at x0. If g(x0) 6= 0 then f

g : X → R is continuous at x0.

Exercise 4.2. Let (X, d) be a metric space and let f1, . . . , fn : X → R. Then f =
(f1, . . . , fn) : X → Rn is continuous at x0 ∈ X if and only if f1, . . . , fn are continuous at
x0.

Hint: |fi(x)− fi(x0)| ≤ d2 (f(x), f(x0)) =
√∑n

j=1 |fj(x)− fj(x0)|2.
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§4.2 Continuity and Compactness

Theorem 4.6

Let (X, dX), (Y, dY ) be metric spaces and let f : X → Y be continuous. If K is
compact in X, then f(K) is compact in Y .

Proof. Method 1: Let {Gi}i∈I be a family of open sets in Y s.t.

f(K) ⊆
⋃
i∈I

Gi =⇒ K ⊆ f−1

(⋃
i∈I

Gi

)
=
⋃
i∈I

f−1(Gi)︸ ︷︷ ︸
open in X

K compact =⇒ ∃n ≥ 1 and ∃i, . . . , in ∈ I s.t.

K ⊆
n⋃
j=1

f−1
(
Gij
)

= f−1

 n⋃
j=1

Gij

 =⇒ f(K) ⊆
n⋃
j=1

Gij

Method 2: Let’s show f(K) is sequentially compact. Let {yn}n≥1 ⊆ f(K).

yn ∈ f(K) =⇒ ∃xn = f−1(yn) ∈ K

As K is sequentially compact, ∃ {xkn}n≥1 subsequence of {xn}n≥1 s.t.

xkn
dX−→
n→∞

x0 ∈ K

f is continuous

 =⇒ f (xkn)︸ ︷︷ ︸
=ykn

dY−→
n→∞

f(x0) ∈ f(K)
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§5 Lec 5: Apr 7, 2021

§5.1 Continuity and Compactness (Cont’d)

Corollary 5.1

Let (X, dX) be a compact metric space and let f : X → Rn be continuous. Then f(X)
is closed and bounded.

Corollary 5.2

Let (X, dX) be a compact metric space and let f : X → R be continuous. Then there
exists x1, x2 ∈ X s.t.

f(x1) = inf {f(x) : x ∈ X} and f(x2) = sup {f(x) : x ∈ X}

Proof. f(x) is closed and bounded.

Boundedness =⇒ inf f(x) and sup f(x) are well defined

Closedness =⇒ inf f(x), sup f(x) ∈ f(x) = f(x)

Proposition 5.3

Let (X, dX), (Y, dY ) be metric spaces s.t. X is compact. Let f : X → Y be bijective
and continuous. Then f−1 : Y → X is continuous.

Proof. If suffices to show that for every closed set F ⊆ X, we have(
f−1

)−1
(F ) =

{
y ∈ Y : f−1(y) ∈ F

}
is closed in Y .

(f−1)−1(F )

F

f

Y
X

f−1

But
(
f−1

)−1
(F ) = f(F ).

F closed in X compact =⇒ F compact

f : X → Y is continuous

}
=⇒ f(F ) is compact and closed
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Definition 5.4 (Uniform Continuity) — Let (X, dX), (Y, dY ) be metric spaces. We say
that a function f : X → Y is uniformly continuous if

∀ε > 0 ∃δ = δ(ε) s.t. dX(x, y) < δ =⇒ dY (f(x), f(y)) < ε

Compare this with g : X → Y is continuous if

∀x ∈ X ∀ε > 0 ∃δ = δ(ε, x) s.t. dX(x, y) < δ =⇒ dY (f(x), f(y)) < ε

Remark 5.5. 1. Continuity is defined pointwise. Uniform continuity is a property of a
function on a set.

2. Uniform continuity =⇒ continuity.

3. There are continuous functions that are not uniformly continuous.

For example, consider
f : R→ R, f(x) = x2

Let xn = n+ 1
n , yn = n

|xn − yn| =
1

n
−→
n→∞

0

|f(xn)− f(yn)| =
(
n+

1

n

)2

− n2 = 2 +
1

n2
> 2

x

f (x)

ε

ε

δ δ

Theorem 5.6

Let (X, dX), (Y, dY ) be metric spaces with X compact. Let f : X → Y continuous.
Then f is uniformly continuous.
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Proof. We argue by contradiction. Assume f is not uniformly continuous =⇒ ∃ε0 > 0 s.t.
∀δ > 0∃xδ, yδ ∈ X s.t. dX(xδ, yδ) < δ but dY (f(xδ), f(yδ)) ≥ ε0.

Let δ = 1
n to get {xn}n≥1 , {yn}n≥1 ⊆ X s.t. dX(xn, yn) < 1

n but dY (f(xn), f(yn)) ≥ ε0

X compact =⇒ ∃{xkn}n≥1 subsequence of {xn}n≥1 s.t.

xkn
dX−→
n→∞

x0 ∈ X

By the triangle inequality,

d (ykn , x0) ≤ d (xkn , ykn)︸ ︷︷ ︸
< 1
kn
≤ 1
n
−→
n→∞

0

+ d (xkn , x0)︸ ︷︷ ︸
−→
n→∞

0

−→
n→∞

0 =⇒ ykn
dX−→
n→∞

x0

f continuous =⇒

f (xkn)
dY−→

n→∞
f(x0)

f (ykn)
dY−→

n→∞
f(x0)

But
ε0 ≤ dY (f(xkn), f(ykn)) ≤ dY (f(xkn), f(x0))︸ ︷︷ ︸

→0

+ dY (f(x0), f(ykn))︸ ︷︷ ︸
→0

−→
n→∞

0

Contradiction!

§5.2 Continuity and Connectedness

Theorem 5.7

Let (X, dX), (Y, dY ) be metric spaces s.t. X is connected. Let f : X → Y be continuous.
Then f(X) is connected.

Proof. Method 1: Abusing notation we write f : X → f(x). It suffices to show that if
∅ 6= B ⊆ f(x) is both open and closed in f(x) then B = f(x).

As f is continuous, f−1(B) 6= ∅ is both open and closed in X. But X is connected
which implies f−1(B) = X and f(x) = B.
Method 2: Assume that f(x) is not connected. Then ∃∅ 6= B1 ⊆ Y , ∃∅ 6= B2 ⊆ Y s.t.
f(x) ⊆ B1 ∪B2 and

B1 ∩B2 = ∅ = B1 ∩B2

let

A1 = f−1(B1) 6= ∅
A2 = f−1(B2) 6= ∅

Have

f(X) ⊆ B1 ∪B2 =⇒ X ⊆ f−1(B1 ∪B2) = f−1(B1) ∪ f−1(B2) = A1 ∪A2

A1 ∩A2 = f−1(B1) ∩ f−1(B2) ⊆ f−1(B1) ∩ f−1(B2) = f−1(B1 ∩B2)

= f−1(∅) = ∅

Similarly, A2 ∩A1 = ∅ . exercise

This contradicts that X is connected.
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Corollary 5.8 (Darboux’s Property)

Let (X, dX) be a metric space and let f : X → R be continuous. If A ⊆ X is connected
then f(A) is an interval in R.

In particular, if X = R, and a, b ∈ R s.t. a < b and y0 lies between f(a) and f(b),
then ∃x0 ∈ (a, b) s.t. f(x0) = y0.

f (x)

x

b
x0a

f (b)

y0

f (a)

Remark 5.9. There are function that have the Darboux property, but are not continuous.

For example, consider

f : [0,∞)→ R, f(x) =

{
sin
(

1
x

)
, x 6= 0

c, x = 0
where c ∈ [−1, 1]

f (b)

y0

C

a = 0 b

Notice f is continuous on (0,∞) implies f has the Darboux property on (0,∞).
f has the Darboux property on [0,∞), but is not continuous at x = 0.
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§6 Lec 6: Apr 9, 2021

§6.1 Continuity and Connectedness (Cont’d)

Proposition 6.1

Let (X, dX) and (Y, dY ) be two connected metric spaces. Then (X × Y, d) where

d ((x1, y1), (x2, y2)) =
√
dX(x1, x2)2 + dY (y1, y2)2

is a connected metric space.

Remark 6.2. One could replace the distance d by

d1 ((x1, y1), (x2, y2)) = dX(x1, x2) + dY (y1, y2)

d∞ ((x1, y1), (x2, y2)) = max {dX(x1, x2), dY (y1, y2)}

Proof. We will use the fact that a metric space is connected if and only if any two points
are contained in a connected subset of the metric space.

c

A B

X
a b

So to show X × Y is connected if suffices to show that if (a, b), (c, d) ∈ X × Y , then
there exists C ⊆ X × Y connected s.t. (a, b), (c, d) ∈ C.

X

Y

ca

b

d
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Let f : X → X × Y where f(x) = (x, b)

Claim 6.1. f is continuous.

Take δ = ε in the definition of continuity. As X is connected, f(X) = X × {b} is
connected.

Similarly, g : Y → X × Y , g(y) = (c, y) is continuous and since Y is connected,
g(Y ) = {c} × Y is connected.

Finally, f(x) ∩ g(y) 3 (c, b) and so f(x), g(y) are not separated. As the union of two
connected not separated sets is connected we get f(x) ∪ g(y) is connected.

D1

D2

B

A

Note (a, b), (c, d) ∈ f(x) ∪ g(y).

Definition 6.3 (Path) — Let (X, d) be a metric space. A path is a continuous function
γ : [0, 1]→ X. γ(0) is called the origin of the path and γ(1) is called the end of the
path.

As [0, 1] is compact and connected and γ is continuous, γ ([0, 1]) is compact and
connected.

Given γ : [0, 1]→ X a path, we define

γ− : [0, 1]→ X, γ−(t) = γ(1− t) is a path

Given γ1, γ2 : [0, 1]→ X paths s.t. γ1(1) = γ2(0).

γ1(0)
γ2(1)

γ1(1) = γ2(0)
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We define
γ1 ∨ γ2 : [0, 1]→ X

via

γ1 ∨ γ2(t) =

{
γ1(2t) if 0 ≤ t ≤ 1

2

γ2(2t− 1) if 1
2 ≤ t ≤ 1

Proposition 6.4

Let (X, d) be a metric space and let A ⊆ X. Then 1) ⇐⇒ 2) =⇒ 3) where

1. ∃a ∈ A s.t. ∀x ∈ A∃γx : [0, 1]→ A path s.t.

γx(0) = a and γx(1) = x

2. ∀x, y ∈ A∃γx,y : [0, 1]→ A path s.t.

γx,y(0) = x and γx,y(1) = y

3. A is connected.

Proof. 1) =⇒ 2) Let x, y ∈ A. By hypothesis, ∃γx, γy : [0, 1]→ A paths s.t.

γx(0) = γy(0) = a, γx(1) = x, γy(1) = y

a

x

y
γ2

γ1

Then γ−x ∨ γy : [0, 1]→ A is the desired path.
2) =⇒ 1)Choose a ∈ A arbitrary.
1) =⇒ 3) Given x ∈ A, let Ax = γx ([0, 1]) connected. Note

a ∈
⋂
x∈A

Ax =⇒ no two sets Ax, Ay are separated

Then A =
⋃
x∈AAx is connected.

Definition 6.5 (Path Connected) — If either 1) or 2) holds in the Proposition 6.4, we
say that A is path connected. Note A is path connected implies A is connected.
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Example 6.6

R2 \Q2 is path connected.

√
2

√
2

y

x

(x, y)

We will show that any (x, y) ∈ R2 \ Q2 can be joined via path in R2 \ Q2 to(√
2,
√

2
)
.

(x, y) ∈ R2 \Q2 =⇒ x /∈ Q or y /∈ Q

Say x /∈ Q. Then {x} × R ⊆ R2 \ Q2. Note also that R ×
{√

2
}
⊆ R2 \ Q2. Let

γ : [0, 1]→ R2 \Q2, γ = γ1 ∨ γ2 where

γ1 : [0, 1]→ R2 \Q2, γ1(t) =
(√

2 + t(x−
√

2),
√

2
)

path

γ2 : [0, 1]→ R2 \Q2, γ2(t) =
(
x,
√

2 + t(y −
√

2)
)

path
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Example 6.7

A connected set which is not path connected. Let f : [0,∞)→ R s.t.

f(x) =

{
sin
(

1
x

)
, x 6= 0

a, x = 0

where a ∈ [−1, 1] fixed.
Then Γf = {(x, f(x)) : x ∈ [0,∞)} is connected, but not path connected.

1
π

x

f (x)

a

Let’s show Γf is connected. The function g : [0,∞) → R2, g(x) = (x, f(x)) is
continuous on (0,∞) =⇒ g ((0,∞)) is connected.

Also, g ({0}) = {(0, a)} is connected. We will show that (0, a) ∈ g ((0,∞)) and so
{(0, a)} , g ((0,∞)) are not separated. Then

Γf = g ([0,∞)) = g ({0}) ∪ g ((0,∞)) is connected

To see (0, a) ∈ g(0,∞) we need to find xn → 0 s.t.

sin

(
1

xn

)
= a

Take xn = 1
arcsin a+2nπ where arcsin a ∈

[−π
2 ,

π
2

]
.
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Example 6.8 (Cont’d from above)

Now let’s show Γf is not path connected. Assume towards a contradiction that there
exists γ : [0, 1]→ Γf a path s.t.

γ(0) = (0, a), γ(1) =

(
1

Π
, 0

)
Note Π1 ◦ γ : [0, 1]→ R is continuous

(Π1 ◦ γ) (0) = 0, (Π1 ◦ γ) (1) =
1

π

Let b ∈ [−1, 1] \ {a}. By the Darboux property, ∃tn ∈
(
0, 1

π

)
s.t.

(Π1 ◦ γ) (tn) =
1

arcsin b+ 2nπ
where arcsin b ∈

[
−π

2
,
π

2

]
As [0, 1] is compact, ∃tkn −→n→∞ t∞ ∈ [0, 1].

γ continuous =⇒ γ (tkn) −→
n→∞

γ(t∞)

γ (tkn) =
(

1
arcsin b+2knπ

, b
)
−→
n→∞

(0, b)

 =⇒ γ(t∞) = (0, b) /∈ Γf
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§7.1 Continuity and Connectedness (Cont’d)

Example 7.1

Two connected sets A,B ⊆ [−1, 1]× [−1, 1] s.t. (−1,−1), (1, 1) ∈ A, (−1, 1), (1,−1) ∈
B, A ∩B = ∅. Let f : [−1, 1]→ [−1, 1],

f(x) =


x−1

2 , −1 ≤ x ≤ 0

x− 1
2 sin π

x , 0 < x ≤ 1
2

x, 1
2 ≤ x ≤ 1

Let g : [−1, 1]→ [−1, 1],

g(x) =


1−x

2 , −1 ≤ x ≤ 0

−x− 1
2 sin π

x , 0 < x ≤ 1
2

−x, 1
2 ≤ x ≤ 1

Let

A = Γf = {(x1f(x)) : x ∈ [−1, 1]}
B = Γg = {(x1g(x)) : x ∈ [−1, 1]}

f

g

−1 1

1

−1

−1
2

1
2

x
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Example 7.2 (Cont’d from above)

Let’s prove A ∩B = ∅. If

−1 ≤ x ≤ 0, f(x) = g(x) ⇐⇒ x− 1

2
=

1− x
2

⇐⇒ x = 1

0 < x ≤ 1

2
, f(x) = g(x) ⇐⇒ x = 0

1

2
≤ x ≤ 1, f(x) = g(x) ⇐⇒ x = 0

Also

f(−1) = −1 =⇒ (−1,−1) ∈ A
f(1) = 1 =⇒ (1, 1) ∈ A

g(−1) = 1 =⇒ (−1, 1) ∈ B
g(1) = −1 =⇒ (1,−1) ∈ B

Let’s show that A is connected. A similar argument can be used to prove that B is
connected.

We write A = A1 ∪A2 where A1 = {(x, f(x)) : −1 ≤ x ≤ 0} and
A2 = {(x, f(x)) : 0 < x ≤ 1}. Note that h : [−1, 1] → R2 where h(x) = (x, f(x)) is
continuous on [−1, 0] and (0, 1].

Since [−1, 0] and (0, 1] are connected sets, we get that h ([−1, 0]) = A1 and
h ((0, 1]) = A2 are connected.

To show that A = A1 ∪A2 is connected, it suffices to show that A1 and A2 are not
separated. We will show

(
0,−1

2

)
∈ A1 ∩A2. It’s clear that f(0) = −1

2 =⇒
(
0,−1

2

)
∈

A1. To show that
(
0,−1

2

)
∈ A2 we need to find a decreasing sequence xn → 0 s.t.

f(xn) = xn −
1

2
sin

π

xn
−→
n→∞

−1

2

We take xn s.t. sin π
xn

= 1 ⇐⇒ π
xn

= π
2 + 2nπ ⇐⇒ xn = 2

4n+1 → 0. Notice that

f(xn) =
2

4n+ 1
− 1

2
−→
n→∞

−1

2

§7.2 Convergent Sequences of Functions

Definition 7.3 (Pointwise Convergence) — Let (X, dX), (Y, dY ) be two metric spaces
and let fn : X → Y be a sequence of functions. We say that {fn}n≥1 converges
pointwise if for all x ∈ X the sequence {fn(x)}n≥1 converges in Y . The limit
limn→∞ fn(x) = f(x) defines a function f : X → Y .

Remark 7.4. {fn}n≥1 converges pointwise to f if

∀x ∈ X ∀ε > 0 ∃n(ε, x) ∈ N s.t. dY (fn(x), f(x)) < ε ∀n ≥ n(ε, x)
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Note that for ε > 0 fixed, n(ε, ·) : X → N can be bounded or unbounded. If it is bounded,
we get the following

Definition 7.5 (Uniform Convergence) — Let (X, dX), (Y, dY ) be metric spaces and
let fn : X → Y be a sequence of functions. We say that {fn}n≥1 converges uniformly
to a function f : X → Y if

∀ε > 0 ∃nε ∈ N s.t. dY (f(x), fn(x)) < ε ∀n ≥ nε ∀x ∈ X

We denote fn
u−→

n→∞
f .

Remark 7.6. Let (X, dX), (Y, dY ) be metric spaces, B(X,Y ) = {f : X → Y ; f is bounded},
d : B(X,Y )×B(X,Y )→ R via

d(f, g) = sup
x∈X

dY (f(x), g(x))

Exercise 7.1. Show that (B(X,Y ), d) is a metric space.

Note that fn
u−→

n→∞
f ⇐⇒ Mn = d (fn, f) −→

n→∞
0.

“ ⇐= ” ∀ε > 0 ∃nε ∈ N s.t. Mn < ε ∀n ≥ nε

=⇒ d(fn, f) = sup
x∈X

dY (fn(x), f(x)) < ε ∀n ≥ nε

=⇒ dY (fn(x), f(x)) < ε ∀n ≥ nε ∀x ∈ X

“ =⇒ ”

fn
u−→

n→∞
f =⇒ ∀ε > 0 ∃nε ∈ N s.t. dY (fn(x), f(x)) <

ε

2
∀n ≥ nε ∀x ∈ X

=⇒ sup
x∈X

dY (fn(x), f(x))︸ ︷︷ ︸
d(fn,f)=Mn

≤ ε

2
< ε ∀n ≥ nε

Remark 7.7. 1. Uniform convergence =⇒ pointwise convergence

2. Pointwise convergence 6=⇒ uniform convergence

fn : [0, 1]→ R, fn(x) = xn

{fn}n≥1 converges pointwise : lim
n→∞

fn(x) = lim
n→∞

xn =

{
0, 0 ≤ x < 1

1, x = 1

Let

f(x) =

{
0, 0 ≤ x < 1

1, x = 1

Note fn
u
6−→

n→∞
f since

d(fn, f) = sup
x∈[0,1]

|fn(x)− f(x)| = sup
x∈[0,1)

|xn| = 1 6−→
n→∞

0
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Theorem 7.8 (Weierstrass)

Let (X, dX), (Y, dY ) be metric spaces and let fn : X → Y be a sequence of functions
that converges uniformly to a function f : X → Y . If ∀n ≥ 1, fn is continuous at
x0 ∈ X then f is continuous at x0.

Corollary 7.9

A uniform limit of continuous functions is a continuous function.

Proof. (of theorem) Fix ε > 0.

fn
u−→

n→∞
f =⇒ ∃nε ∈ N s.t. dY (fn(x), f(x)) <

ε

3
∀n ≥ nε ∀x ∈ X

Fix n0 ≥ nε. fn0 is continuous at x0

=⇒ ∃δ > 0 s.t. if dX(x0, x) < δ

then
dY (fn0(x0), fn0(x)) <

ε

3

x0x
f (x0)

fn(x0)

fn(x)

f (x)

fn0

Then for x ∈ Bδ(x0) we have

dY (f(x), f(x0)) ≤ dY (f(x), fn0(x)) + d (fn0(x), fn0(x0)) + d (fn0(x0), f(x0))

<
ε

3
+
ε

3
+
ε

3
= ε

By definition, f is continuous at x0.
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§8 Lec 8: Apr 14, 2021

§8.1 Convergent Sequences of Functions (Cont’d)

Theorem 8.1 (Dini)

Let (X, d) be a compact metric space and let fn : X → R be a sequence of continuous
functions that converges pointwise to a continuous function f : X → R. Assume that
{fn}n≥1 is monotone in the sense that either {fn(x)}n≥1 is increasing for all x ∈ X or
{fn(x)}n≥1 is decreasing for all x ∈ X. Then,

fn
u−→

n→∞
f i.e. d (fn, f) = sup

x∈X
|fn(x)− f(x)| −→

n→∞
0

Proof. Assume that {fn}n≥1 is increasing. Then {f − fn}n≥1 is decreasing and for all
x ∈ X we have

lim
n→∞

[f(x)− fn(x)] = inf
n→∞

[f(x)− fn(x)] = 0

Then ∀ε > 0 ∃n(ε, x) ∈ N s.t. ∀n ≥ n(ε, x) we have

0 ≤ f(x)− fn(x) ≤ f(x)− fnε,x(x) < ε

As f − fnε,x is continuous at x, ∃δ(ε, x) > 0 s.t.

d(x, y) < δε,x =⇒
∣∣[f(x)− fnε,x(x)

]
−
[
f(y)− fnε,x(y)

]∣∣ < ε

By the triangle inequality, we get

0 ≤ f(y)− fnε,x(y) ≤
∣∣[f(x)− fnε,x(x)

]
−
[
f(y)− fnε,x(y)

]∣∣+ f(x)− fnε,x(x)

< ε+ ε = 2ε

whenever y ∈ Bδε,x(x). In particular,

0 ≤ f(y)− fn(y) ≤ f(y)− fnε,x(y) < 2ε ∀n ≥ nε,x, ∀y ∈ Bδε,x(x) (*)

Note
X =

⋃
x∈X Bδε,x(x)

X compact

}
=⇒ ∃J ⊆ N finite and ∃ {xj}j∈J ∈ X

s.t. X =
⋃
j∈J Bδj (xj) and where δj = δ(ε, xj).

Let nε = maxj∈J n(ε, xj). Fix n ≥ nε and x ∈ X. As x ∈ X =
⋃
j∈J Bδj (xj) =⇒ j ∈ J

s.t. x ∈ Bδj (xj). By (*), we have

0 ≤ f(x)− fn(x) < 2ε

As x ∈ X was arbitrary we get

d (f, fn) ≤ 2ε ∀n ≥ nε

Remark 8.2. The compactness of X is necessary in Dini’s theorem.

35



Duc Vu (Spring 2021) 8 Lec 8: Apr 14, 2021

Example 8.3

fn : (0, 1)→ R, fn(x) = xn continuous

fn+1(x) ≤ fn(x) ∀n ≥ 1 ∀x ∈ (0, 1)

fn(x) −→
n→∞

0 ∀x ∈ (0, 1)

Let f : (0, 1)→ R, f(x) = 0 ∀x ∈ (0, 1). It’s continuous. But

d(fn, f) = sup
x∈(0,1)

|xn| = 1 6−→
n→∞

0 =⇒ fn
u
6−→

n→∞
f

Note that fn : [0, 1]→ R, fn(x) = xn continuous, {fn}n≥1 is decreasing and converge
pointwise to f : [0, 1]→ R,

f(x) =

{
0, 0 ≤ x < 1

1, x = 1
which is not continuous

This also shows that the continuity of the limit function is necessary in Dini’s theorem.

Remark 8.4. Monotonicity is necessary in Dini’s theorem.

Example 8.5

fn : [0, 1] → R is continuous. {fn}n≥1 converges pointwise to f : [0, 1] → R, f(x) =
0 ∀x ∈ [0, 1] figure here f is continuous. But

d (fn, f) = sup
x∈[0,1]

|fn(x)| = 1 6−→
n→∞

0 =⇒ fn
u
6−→

n→∞
f

Note that {fn}n≥1 is not monotone!

§8.2 Space of Functions

Fix a, b ∈ R, a < b. We define

C ([a, b]) = {f : [a, b]→ R; f is continuous}

We equip C ([a, b]) with the metric d : C ([a, b])× C ([a, b])→ R, given by

d(f, g) = sup
x∈[a,b]

|f(x)− g(x)|

Then (C ([a, b]) , d) is a metric space.
Completeness: Let {fn}n≥1 ⊆ C ([a, b]) be Cauchy. So ∀ε > 0 ∃nε ∈ N s.t. d (fn, fm) < ε
∀n,m ≥ nε

=⇒ |fn(x)− fm(x)| < ε ∀n,m ≥ nε ∀x ∈ [a, b]
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So {fn(x)}n≥1 is Cauchy ∀x ∈ [a, b]. As R is complete,

∀x ∈ [a, b] fn(x) −→
n→∞

f(x) ∈ R

This defines a function f : [a, b]→ R. Recall that for all ε > 0, there exists nε ∈ N s.t.

|fn(x)− f(x)| ≤ ε ∀n ≥ nε ∀x ∈ [a, b]

=⇒ d (fn, f) ≤ ε ∀n ≥ nε

So fn
u−→

n→∞
f . By Weierstrass, f ∈ C ([a, b]). Thus (C ([a, b]) , d) is a complete metric space.

Compactness: Note that (C ([a, b]) , d) is not bounded and so not compact.

Example 8.6

fn : [a, b]→ R, fn(x) = n for all x ∈ [a, b].

Connectedness: (C ([a, b]) , d) is path connected and so connected.
Let f, g ∈ C ([a, b]). Define γ : [0, 1]→ C ([a, b]) via γ(t) = f + t(g−f). Note ∀t ∈ [0, 1],

γ(t) ∈ C ([a, b]) and
γ(0) = f, γ(1) = g

To see that γ is a path we compute

d (γ(t), γ(s)) = sup
x∈[a,b]

|γ(t;x)− γ(s;x)|

= sup
x∈[a,b]

|t− s| |g(x)− f(x)|

= |t− s| d(g, f)︸ ︷︷ ︸
∈R

−→
|t−s|→0

0

So γ is a continuous function and so a path.
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§9.1 Arzela–Ascol i Theorem

For a, b ∈ R with a < b, we define

C ([a, b]) = {f : [a, b]→ R; f continuous}

We equip C ([a, b]) with the uniform metric

d(f, g) = sup
x∈[a,b]

|f(x)− g(x)|

We showed that (C ([a, b]) , d) is a complete, connected metric space, but it’s not com-
pact.

Definition 9.1 (Equicontinuity) — We say that a set F ⊆ C ([a, b]) is equicontinuous
if

∀ε > 0 ∃δ(ε) > 0 s.t. |f(x)− f(y)| < ε ∀x, y ∈ [a, b] with |x− y| < δ(ε)

and for all f ∈ F .

Note: For a fixed function f ∈ F ⊆ C ([a, b]), we have that f is uniformly continuous (since
f is continuous on [a, b] compact) which means for all ε > 0, there exists δ(ε, f) > 0 s.t.

|f(x)− f(y)| < ε ∀x, y ∈ [a, b] with |x− y| < δ(ε, f)

Note that for an equicontinuous family F , δε can be chosen uniformly for f ∈ F .

Definition 9.2 (Uniformly Bounded) — We say that a set F ⊆ C ([a, b]) is uniformly
bounded if ∃M > 0 s.t. |f(x)| ≤M ∀x ∈ [a, b] ∀f ∈ F .

Note: For a fixed f ∈ F ⊆ C[a, b] we have that f ([a, b]) is bounded (since f continuous
and [a, b] compact which implies f ([a, b]) is compact and so bounded). So ∃Mf > 0 s.t.
|f(x)| ≤Mf ∀x ∈ [a, b]. For a uniformly bounded family F , we can choose the bound M
uniformly for f ∈ F .

Theorem 9.3 (Arzela-Ascoli)

Let F ⊆ C ([a, b]). The following are equivalent:

1. F is uniformly bounded and equicontinuous.

2. Every sequence in F admits a convergent subsequence.

Caution: We cannot guarantee that the limit of the convergent subsequence belongs to F ,
unless F is closed in C ([a, b]). If F is closed in C ([a, b]), then the theorem becomes

F is compact ⇐⇒ F is uniformly bounded and equicontinuous
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Proof. 2) =⇒ 1)

Claim 9.1. F is totally bounded.

Fix ε > 0. Let f1 ∈ F .

If F ⊆ Bε(f1) then F is totally bounded

If F * Bε(f1) then ∃f2 ∈ F s.t. d (f1, f2) ≥ ε
If F ⊆ Bε(f1) ∪Bε(f2) then F is totally bounded

If F * Bε(f1) ∪Bε(f2) then ∃f3 ∈ F s.t.

{
d (f1, f3) ≥ ε
d (f2, f3) ≥ ε

If the process terminates in finitely many steps, then F is totally bounded. Otherwise, we
find {fn}n≥1 ⊆ F s.t. d (fn, fm) ≥ ε∀n 6= m. This sequence does not admit a convergent
subsequence, leading a contradiction.

Let’s show that F is uniformly bounded. As F is totally bounded, ∃n ≥ 1 and
∃f1, . . . , fn ∈ F s.t.

F ⊆
n⋃
j=1

B1(fj) ⊆ Br(f1)

where r = 1 + max2≤j≤n d (f1, fj). In particular, for all f ∈ F ,

d (f, f1) < r

f1 is continuous on compact [a, b] =⇒ ∃Mf1 > 0 s.t.

|f1(x)| ≤Mf1 ∀x ∈ [a, b]

So for f ∈ F

|f(x)| ≤ |f(x)− f1(x)|+ |f1(x)| ≤ d(f, f1) +Mf1 < r +Mf1 ∀x ∈ [a, b]

So F is uniformly bounded.
Let’s show that F is equicontinuous. Let ε > 0. As F is totally bounded, ∃n ≥ 1 and
∃f1, . . . , fn ∈ F s.t.

F ⊆
n⋃
j=1

B ε
3
(fj)

For each 1 ≤ j ≤ n, fj is uniformly continuous on [a, b]. So ∃δj(ε) > 0 s.t.

|fj(x)− fj(y)| < ε

3
∀x, y ∈ [a, b] with |x− y| < δj(ε)

Let δε = min1≤j≤n δj(ε) > 0.
Fix f ∈ F =⇒ ∃1 ≤ j ≤ n s.t. f ∈ B ε

3
(fj). Then for x, y ∈ [a, b] with |x− y| < δε we

have

|f(x)− f(y)| ≤ |f(x)− fj(x)|+ |fj(x)− fj(y)|+ |fj(y)− f(y)|
≤ 2d(f, fj) + |fj(x)− fj(y)|

≤ 2ε

3
+
ε

3
= ε
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This shows F is equicontinuous.
1) =⇒ 2) Let {fn}n≥1 ⊆ F . As F is uniformly bounded,

∃M > 0 s.t. |f(x)| ≤M ∀x ∈ [a, b] ∀f ∈ F

In particular, |fn(x)| ≤M ∀x ∈ [a, b] ∀n ≥ 1.
Let {rn}n≥1 denote an enumeration of the rationals in [a, b]. As {fn(r1)}n≥1 ⊆ R is bounded

by M , ∃
{
f

(1)
n

}
n≥1

subsequence of {fn}n≥1 s.t.
{
f

(1)
n (r1)

}
n≥1

converges.
{
f

(1)
n (r2)

}
n≥1
⊆

R is bounded by M =⇒ ∃
{
f

(2)
n

}
n≥1

subsequence of
{
f

(1)
n

}
n≥1

s.t.
{
f

(2)
n (r2)

}
n≥1

converges.

Proceeding inductively we find ∀k ≥ 1
{
f

(k+1)
n

}
n≥1

is a subsequence of
{
f

(k)
n

}
n≥1

and{
f

(k)
n (rk)

}
n≥1

converges.

We consider
{
f

(n)
n

}
n≥1

subsequence of {fn}n≥1.

For n,m ≥ k, f
(n)
n , f

(m)
m are elements in

{
f

(k)
n

}
n≥1

. So
{
f

(n)
n

}
n≥1

converges at rk.

Caution: The convergence is not uniform in k.
Fix ε > 0. As F is equicontinuous, ∃δ > 0 s.t.

|f(x)− f(y)| < ε

3
∀x, y ∈ [a, b] |x− y| < δ, ∀f ∈ F

In particular,

|fn(x)− fn(y)| < ε

3
∀x, y ∈ [a, b] |x− y| < δ, ∀n ≥ 1 (*)

Let r1, . . . , rN ∈ Q ∩ [a, b] s.t. a = r0 < r1 < . . . < rN < rN+1 = b and

|rj+1 − rj | < δ 0 ≤ j ≤ N

Note N ∼ |a−b|δ . For each 1 ≤ j ≤ N , ∃nj(ε) ∈ N s.t.∣∣∣f (n)
n (rj)− f (m)

m (rj)
∣∣∣ < ε

3
∀n,m ≥ nj(ε)

Let nε = max1≤j≤N nj(ε). Note∣∣∣f (n)
n (rj)− f (m)

m (rj)
∣∣∣ < ε

3
∀n,m ≥ nε ∀1 ≤ j ≤ N (**)

Let x ∈ [a, b] =⇒ ∃1 ≤ j ≤ N s.t. |x− rj | < δ. Then∣∣∣f (n)
n (x)− f (m)

m (x)
∣∣∣ ≤ ∣∣∣f (n)

n (x)− f (n)
n (rj)

∣∣∣+
∣∣∣f (n)
n (rj)− f (m)

m (rj)
∣∣∣+
∣∣∣f (m)
m (rj)− f (m)

m (x)
∣∣∣

By (*) and (**) < 2 · ε
3

+
ε

3
= ε ∀n,m ≥ nε

So
{
f

(n)
n

}
n≥1

is uniformly Cauchy and so uniformly convergent.

Remark 9.4. One can replace [a, b] by any other compact metric space (X, d).
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§10.1 Arzela-Ascol i Theorem (Cont’d)

Remark 10.1. The compactness of the set on which the functions are defined is necessary in
Arzela-Ascoli.

Example 10.2

F = {f : R→ R; |f(x)− f(y)| ≤ |x− y| ∀x, y ∈ R and supx∈R |f(x)| ≤ 1}. Note F is
equicontinuous and uniformly bounded. Let f : R→ R, f(x) = 1

1+x2

Claim 10.1. f ∈ F .

Indeed,

sup
x∈R
|f(x)| = sup

x∈R

1

1 + x2
= 1

Moreover, for x, y ∈ R

|f(x)− f(y)| =
∣∣∣∣ 1

1 + x2
− 1

1 + y2

∣∣∣∣ =

∣∣x2 − y2
∣∣

(1 + x2)(1 + y2)

= |x− y| · |x+ y|
(1 + x2)(1 + y2)

≤ |x− y| ( |x|
1 + x2︸ ︷︷ ︸
≤ 1

2

+
|y|

1 + y2︸ ︷︷ ︸
≤ 1

2

)

≤ |x− y|

So f ∈ F .
For n ≥ 1, let fn : R → R, fn(x) = f(x − n). Note fn ∈ F since supx∈R |fn(x)| =
supx∈R

1
1+(x−n)2

= 1.

|fn(x)− fn(y)| = |f(x− n)− f(y − n)| ≤ |(x− n)− (y − n)|
= |x− y|

Note that {fn}n≥1 converge pointwise to f : R→ R, f(x) = 0 since limn→∞ fn(x) =

limn→∞
1

1+(x−n)2
= 0. However, {fn}n≥1 does not admit a subsequence that converges

uniformly since ∀n ≥ 1

d(fn, f) = sup
x∈R
|fn(x)| = 1

n→∞
6−→ 0

Remark 10.3. Uniform boundedness is necessary in Arzela-Ascoli.
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Example 10.4

F = {f : [0, 1]︸︷︷︸
compact

→ R; f is continuous and sup
x∈[0,1]

|f(x)| ≤ 1︸ ︷︷ ︸
uniformly bounded

}.

Claim 10.2. F is not equicontinuous.

For n ≥ 1, let fn : [0, 1]→ R, fn(x) = sin(nx). Note fn ∈ F . Let xn = 3π
2n , yn = π

2n .
Then |xn − yn| = π

n −→n→∞ 0 but

|fn(xn)− fn(yn)| = 2

So {fn}n≥1 is not equicontinuous =⇒ F is not equicontinuous.

Claim 10.3. {fn}n≥1 does not admit a convergent subsequence.

Assume, towards a contradiction, that there exists a subsequence {fkn}n≥1 of
{fn}n≥1 that converges uniformly to f : [0, 1]→ R. By Weierstrass,

f ∈ C ([0, 1])

fkn(0) = 0 ∀n ≥ 1

fkn(0) −→
n→∞

f(0)

}
=⇒ f(0) = 0

 =⇒ ∀ε > 0∃δ > 0 s.t. |f(x)| < ε∀0 < x < δ

fkn
u−→

n→∞
f =⇒ ∃nε ∈ N s.t. d (fkn , f) < ε ∀n ≥ nε. In particular, for 0 < x < δ and

n ≥ nε we have

|fkn(x)| ≤ |fkn(x)− f(x)|+ |f(x)| < d (fkn , f) + ε < 2ε

Choosing ε ≤ 1
2 and N large so that N ≥ nε= 1

2
and π

2N < δε= 1
2

we find

1 =
∣∣∣fkN ( π

2N

)∣∣∣ < 2ε ≤ 1 Contradiction!

§10.2 The osci l lation of a Real Function

Definition 10.5 (Oscillation of a Function) — Let (X, d) be a metric space and let
f : X → R be a function. For ∅ 6= A ⊆ X, the oscillation of f on A is

ω(f,A) = sup
x∈A

f(x)− inf
x∈A

f(x) = sup
x,y∈A

[f(x)− f(y)] ≥ 0

Note that if A ⊆ B then
ω(f,A) ≤ ω(f,B)

For x0 ∈ X, the oscillation of f at x0 is given by

ω(f, x0) = inf
δ>0

ω(f,Bδ(x0))
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Proposition 10.6

Let (X, d) be a metric space and let f : X → R be a function. Then f is continuous
at a point x0 ∈ X if and only if ω(f, x0) = 0.

Proof. “ =⇒ ” Fix ε > 0. As f is continuous at x0, ∃δ > 0 s.t. |f(x)− f(x0)| < ε
4

∀x ∈ Bδ(x0).

=⇒ |f(x)− f(y)| ≤ |f(x)− f(x0)|+ |f(x0)− f(y)| < ε

2
∀x, y ∈ Bδ(x0)

=⇒ ω(f,Bδ(x0)) = sup
x,y∈Bδ(x0)

[f(x)− f(y)] ≤ ε

2
< ε

=⇒ ω(f, x0) ≤ ω(f,Bδ(x0)) < ε

As ε > 0 was arbitrary, ω(f, x0) = 0.
“ ⇐= ” Fix ε > 0. Then ω(f, x0) = 0 < ε implies ∃δ > 0 s.t. ω(f,Bδ(x0)) < ε

=⇒ |f(x)− f(y)| < ε ∀x, y ∈ Bδ(x0)

=⇒ |f(x)− f(x0)| < ε ∀x ∈ Bδ(x0)

So f is continuous at x0.

Lemma 10.7

Let (X, d) be a metric space and let f : X → R be a function. Then for any α > 0,

{x ∈ X : ω(f, x) < α} is open in X

Proof. Fix α > 0 and let A = {x ∈ X : ω(f, x) < α}. Fix x0 ∈ A =⇒ ω(f, x0) =
infδ>0 ω (f,Bδ(x0)) < α.

=⇒ ∃δ > 0 s.t. ω (f,Bδ(x0)) < α

Claim 10.4. Bδ(x0) ⊆ A (which implies x0 ∈ Å and so A = Å).

Let x ∈ Bδ(x0). Then r = δ − d(x, x0) > 0 and Br(x) ⊆ Bδ(x0)

=⇒ ω(f,Br(x)) ≤ ω (f,Bδ(x0)) < α

=⇒ ω(f, x) ≤ ω (f,Br(x)) < α =⇒ x ∈ A

Remark 10.8. Let (X, d) be a metric space and let f : X → R be a function. Then

{x ∈ X : f is continuous at x} = {x ∈ X : ω(f, x) = 0}

=
⋂
n≥1

{
x ∈ X : ω(f, x) <

1

n

}
︸ ︷︷ ︸

=Gn

By the lemma, Gn = G̊n ∀n ≥ 1. Also, Gn+1 ⊆ Gn ∀n ≥ 1. This observation allows us to
prove that there are no functions f : R → R that are continuous at every rational point
and discontinuous at every irrational point.
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§11.1 Oscil lation of a Function (Cont’d)

Recall from last lecture that there are no functions f : R→ R that are continuous at every
rational point and discontinuous at every irrational point.

Proof. (Sketch) Assume, towards a contradiction, that f : R→ R is such a function. Then

Q = {x ∈ R : f is continuous at x} =
⋂
n≥1

Gn with Gn open in R

Note ∀n ≥ 1, Q ⊆ Gn

=⇒ R = Q ⊆ Gn ⊆ R
=⇒ Gn = R i.e. Gn is dense in R

Let {qn}n≥1 be an enumeration of Q. For each n ≥ 1, let Hn = R\{qn} = (−∞, qn)∪(qn,∞).

Note Hn is open and dense (Hn = R) in R. Also⋂
n≥1

Hn = R \Q

So ⋂
n≥1

Gn ∩
⋂
n≥1

Hn = Q ∩ R \Q = ∅

This contradicts the following property of R:

Exercise 11.1. If {An}n≥1 is a countable collection of open and dense subsets of R, then

⋂
n≥1

An = R

Apply this exercise with {An : n ≥ 1} = {Gn : n ≥ 1} ∪ {Hn : n ≥ 1}.

§11.2 Weierstrass Approximation Theorem

Theorem 11.1 (Weierstrass Approximation)

Fix a, b ∈ R with a < b. Let f : [a, b] → R be a continuous function. Then, there
exists a sequence of polynomials {Pn}n≥1 with degPn ≤ n ∀n ≥ 1 s.t.

Pn
u−→

n→∞
f on [a, b]

Proof. First, we reduce to the case when [a, b] is [0, 1]. Let φ : [0, 1] → [a, b], φ(t) =
a+ t(b− a). Note φ is a continuous, bijective function with the inverse

φ−1 : [a, b]→ [0, 1] , φ−1(x) =
x− a
b− a

continuous
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As f : [a, b]→ R is continuous, f ◦ φ : [0, 1]→ R is continuous.
If {Pn}n≥1 is a sequence of polynomials with degPn ≤ n s.t.

Pn
u−→

n→∞
f ◦ φ on [0, 1]

then Pn ◦ φ−1 u−→
n→∞

f on [a, b]. Indeed,

sup
x∈[a,b]

∣∣(Pn ◦ φ−1
)

(x)− f(x)
∣∣ =
x=φ(t)

sup
t∈[0,1]

|Pn(t)− (f ◦ φ)(t)|︸ ︷︷ ︸
−→
n→∞

0

Therefore, we may assume f : [0, 1]→ R is continuous. Define the Bernstein polynomials
via

Pn(x) =
n∑
k=0

f

(
k

n

)(
n

k

)
xk (1− x)n−k degPn ≤ n

Note that if f is a constant, say f(x) = c ∀x ∈ [0, 1] then

Pn(x) = c

n∑
k=0

(
n

k

)
xk(1− x)n−k = c (x+ 1− x)n = c ∀x ∈ [0, 1] ∀n ≥ 1

We want to show Pn
u−→

n→∞
f on [0, 1]. Fix x ∈ [0, 1]. Consider

|f(x)− Pn(x)| =

∣∣∣∣∣f(x)

n∑
k=0

(
n

k

)
xk(1− x)n−k −

n∑
k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k

∣∣∣∣∣
=

∣∣∣∣∣
n∑
k=0

[
f(x)− f

(
k

n

)](
n

k

)
xk(1− x)n−k

∣∣∣∣∣
≤

n∑
k=0

∣∣∣∣f(x)− f
(
k

n

)∣∣∣∣ (nk
)
xk (1− x)n−k

To estimate the sum we use the following

• when k
n is close to x, we use the continuity of f .

• when k
n is far from x, we use the fact that x

g7→ xk(1− x)n−k has a local maximum at

x = k
n .

g′(x) = kxk−1(1− x)n−k − (n− k)xk(1− x)n−k−1

= xk−1(1− x)n−k−1 {k(1− x)− (n− k)x}
= xk−1(1− x)n−k−1 {k − nx}

=


> 0 if x < k

n

= 0 if x = k
n

< 0 if x > k
n
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f : [0, 1]→ R is continuous =⇒ f is uniformly continuous. Fix ε > 0. Then ∃δ > 0 s.t.

|f(x)− f(y)| < ε whenever x, y ∈ [0, 1] , |x− y| < δ

f : [0, 1]→ R is continuous =⇒ f is bounded. Let M > 0 be s.t.

|f(x)| ≤M ∀x ∈ [0, 1]

We estimate

|f(x)− Pn(x)| ≤
∑

0≤k≤n
|x− kn |<δ

∣∣∣∣f(x)− f
(
k

n

)∣∣∣∣︸ ︷︷ ︸
<ε

(
n

k

)
xk (1− x)n−k

+
∑

0≤k≤n
|x− kn |≥δ

∣∣∣∣f(x)− f
(
k

n

)∣∣∣∣︸ ︷︷ ︸
≤2M

(
n

k

)
xk (1− x)n−k

≤ ε
∑

0≤k≤n

(
n

k

)
xk(1− x)n−k + 2M

∑
0≤k≤n

(
x− k

n

)2
δ2

(
n

k

)
xk(1− x)n−k

≤ ε+
2M

n2δ2

n∑
k=0

(nx− k)2

(
n

k

)
xk(1− x)n−k

Observe that

n∑
k=0

(nx− k)2

(
n

k

)
xk(1− x)n−k = n2x2

n∑
k=0

(
n

k

)
xk(1− x)n−k︸ ︷︷ ︸

=1

− 2nx

n∑
k=0

k · n!

k!(n− k)!
xk(1− x)n−k +

n∑
k=0

k2 n!

k!(n− k)!
xk(1− x)n−k

Then

n∑
k=0

k · n!

k!(n− k)!
xk(1− x)n−k = x

n∑
k=1

n!

(k − 1)!(n− k)!
xk−1(1− x)n−k

= nx
n−1∑
l=0

(n− 1)!

l!(n− 1− l)!
xl(1− x)n−1−l

︸ ︷︷ ︸
=(x+1−x)n−1

= nx
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and

n∑
k=0

k2 n!

k!(n− k)!
xk(1− x)n−k = nx

n∑
k=1

k(n− 1)!

(k − 1)!(n− k)!
xk−1(1− x)n−k

= nx
n∑
k=1

(k − 1 + 1)(n− 1)!

(k − 1)!(n− k)!
xk−1(1− x)n−k

= n(n− 1)x2
n∑
k=2

(n− 2)!

(k − 2)!(n− k)!
xk−2(1− x)n−k

+ nx
n∑
k=1

(n− 1)!

(k − 1)!(n− k)!
xk−1(1− x)n−k

= n(n− 1)x2 + nx

So

n∑
k=0

(nx− k)2

(
n

k

)
xk(1− x)n−k = n2x2 − 2n2x2 + n(n− 1)x2 + nx

= nx(1− x)

We get

|f(x)− Pn(x)| ≤ ε+
2M

n2δ2
· nx(1− x)

≤ ε+
2M

nδ2
sup
x∈[0,1]

x(1− x)

≤ ε+
M

2δ2n
< 2ε

provided n > M
2δ2ε

. So Pn
u−→

n→∞
f on [0, 1].
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§12.1 Weierstrass Approximation Theorem (Cont’d)

Corollary 12.1

Let M > 0. Then there exists a sequence of polynomials {Pn}n≥1 s.t.
degPn ≤ n ∀n ≥ 1

Pn(0) = 0 ∀n ≥ 1

Pn
u−→

n→∞
|x| on [−M,M ]

Proof. Let f : [−M,M ]→ R, f(x) = |x|. Then f is continuous and [−M,M ] compact. By
Weierstrass Approximation, ∃ {Qn}n≥1 sequence of polynomials s.t.{

degQn ≤ n ∀n ≥ 1

Qn
u−→

n→∞
f on [−M,M ]

Note Qn
u−→

n→∞
f =⇒ Qn(0) −→

n→∞
f(0) = 0.

Let Pn(x) = Qn(x)−Qn(0). Then{
degPn ≤ n ∀n ≥ 1

Pn(0) = 0 ∀n ≥ 1

For x ∈ [−M,M ],

|Pn(x)− f(x)| ≤ |Qn(x)− f(x)|+ |Qn(0)| ≤ d(Qn, f) + |Qn(0)|
=⇒ d(Pn, f) ≤ d(Qn, f) + |Qn(0)| −→

n→∞
0

§12.2 Stone-Weierstrass Theorem

Definition 12.2 (Algebra) — Let (X, d) be a metric space and let

A ⊆ {f : X → R(or C); f is a function}

We say that A is an algebra if

1. f + g ∈ A ∀f, g ∈ A.

2. fg ∈ A ∀f, g ∈ A

3. λf ∈ A ∀f ∈ A ∀λ ∈ R(or C)

We say that the algebra A separates points if whenever x, y ∈ X with x 6= y then
∃f ∈ A s.t. f(x) 6= f(y).
We say that the algebra A vanishes at no point in X if ∀x ∈ X ∃f ∈ A s.t. f(x) 6= 0.
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Lemma 12.3

Let (X, d) be a compact metric space and let A ⊆ C(X) be an algebra. Then its
closure A with respect to the uniform topology is also an algebra.

Proof. Let f, g ∈ A. Then ∃fn ∈ A s.t. fn
u−→

n→∞
f on X

∃gn ∈ A s.t. gn
u−→

n→∞
g on X

d (fn + gn, f + g) ≤ d(fn, f) + d(gn, g) −→
n→∞

0

fn + gn ∈ A (because A is an algebra)

}
=⇒ f + g ∈ A

Similarly, for λ ∈ R,

d (λfn, λf) ≤ |λ|d (fn, f) −→
n→∞

0

λfn ∈ A (because A is an algebra)

}
=⇒ λf ∈ A

Then

d (fngn, fg) = sup
x∈X
|fn(x)gn(x)− f(x)g(x)|

≤ sup
x∈X

[|fn(x)− f(x)| |gn(x)|+ |f(x)| |gn(x)− g(x)|]

≤ d(fn, f) sup
x∈X
|gn(x)|+ d(gn, g) sup

x∈X
|f(x)|

By Weierstrass,

fn
u−→

n→∞
f on X

fn ∈ C(X)

}
=⇒

f ∈ C(X)

X compact

}
=⇒ ∃M > 0 s.t. sup

x∈X
|f(x)| ≤M

Similarly, g ∈ C(X) =⇒ ∃M2 > 0 s.t. supx∈X |g(x)| ≤M2

d(gn, 0) ≤ d(gn, g) + d(g, 0) ≤ 1 +M2 ∀n ≥ n1

Let M3 = max

1 +M2, d(g1, 0)︸ ︷︷ ︸
<∞

, . . . , d(gn1 , 0)︸ ︷︷ ︸
<∞

. So d(gn, 0) ≤M3 ∀n ≥ 1. Thus

d (fngn, fg) ≤ d(fn, f) ·M3 + d(gn, g) ·M1 −→
n→∞

0

fngn ∈ A (since A is an algebra)

}
=⇒ f · g ∈ A

Lemma 12.4

Let (X, d) be a compact metric space and let A ⊆ C(X) be an algebra that separates
points and vanishes at no point in X. Then

∀α, β ∈ R ∀x1, x2 ∈ X s.t. x1 6= x2 ∃f ∈ A s.t.

{
f(x1) = α

f(x2) = β

49



Duc Vu (Spring 2021) 12 Lec 12: Apr 23, 2021

Proof. Fix α, β ∈ R. Fix x1, x2 ∈ X s.t. x1 6= x2. We would like

f(x) = α · u(x)

u(x1)
+ β · v(x)

v(x1)

for u, v ∈ A s.t.

u(x1) 6= 0 and u(x2) = 0

v(x1) = 0 and v(x2) 6= 0

Then f ∈ A (because A is an algebra) is the desired function.
As A separates points, ∃g ∈ A s.t. g(x1) 6= g(x2).
As A vanishes at no point in X,{

∃h ∈ A s.t h(x1) 6= 0

∃k ∈ A s.t. k(x2) 6= 0

Then, we define

u(x) = [g(x)− g(x2)] · h(x) ∈ A
v(x) = [g(x)− g(x1)] · k(x) ∈ A

Theorem 12.5 (Stone-Weierstrass)

Let (X, d) be a compact metric space and let A ⊆ C(X) be an algebra that separates
points and vanishes no point in X. Then A is dense in C(X), i.e., A = C(X) =
{f : X → R; f continuous}.

Proof. Want to show ∀f ∈ C(X) ∀ε > 0 ∃g ∈ A s.t. d(f, g) < ε.
Step 1: If f ∈ A then |f | ∈ A. Let f ∈ A =⇒ ∃fn ∈ A s.t.

fn
u−→

n→∞
f on X

fn ∈ C(X)

}
=⇒ f ∈ C(X)

As X is compact, ∃M > 0 s.t. |f(x)| ≤ M ∀x ∈ X. By the previous Corollary 12.1,
∃ {Pn}n≥1 sequence of polynomials with degPn ≤ n ∀n ≥ 1 s.t.{

Pn
u−→

n→∞
|x|on [−M,M ]

Pn(0) = 0
=⇒ Pn(f)

u−→
n→∞

|f | on X

If Pn(x) =
∑n

k=1 ckx
k then Pn(f) =

∑n
k=1 ckf

k ∈ A which implies |f | ∈ A.
Step 2: If f, g ∈ A then max {f, g}, min {f, g} ∈ A.

max {f, g} =
f + g

2
+
|f − g|

2
∈ A

min {f, g} =
f + g

2
− |f − g|

2
∈ A

Step 3: ∀f ∈ C(X), ∀x ∈ X, ∀ε > 0, ∃g ∈ A s.t.

g(x) = f(x) and g(y) > f(y)− ε ∀y ∈ X

Continue in the next lecture.
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§13 Lec 13: Apr 26, 2021

§13.1 Stone-Weierstrass Theorem (Cont’d)

We continue with the proof of Stone-Weierstrass from lecture 12. Recall that we are at
step 3 so far.

Proof. Step 3: For any f ∈ C(X), x ∈ X, ε > 0, there exists g ∈ A s.t.{
g(x) = f(x)

g(y) > f(y)− ε ∀y ∈ X

g

f − ε

f

x
X

For any y ∈ X, there exists hy ∈ A s.t.

hy(x) = f(x)

hy(y) = f(y)

As hy ∈ A, hy is continuous. Thus, hy−f is continuous at y. So ∃δy > 0 s.t. |hy(z)−f(z)| <
ε, ∀z ∈ Bδy(y). In particular,

hy(z) > f(z)− ε ∀z ∈ Bδy(y)

Note that
X =

⋃
y∈X Bδy(y)

X compact

}
=⇒ ∃N ≥ 1 and ∃y1, . . . , yN ∈ X

s.t. X =
⋃N
n=1Bδn(yn) where δn = δyn .

Take g = max {hy1 , . . . , hyN } (by step 2). By construction, g(x) = f(x). Also if y ∈ X,
∃1 ≤ n ≤ N s.t. y ∈ Bδn(yn). So

g(y) ≥ hyn(y) > f(y)− ε

Step 4: For all f ∈ C(X) and ε > 0, ∃g ∈ A s.t. d(f, g) < ε. Fix f ∈ C(X), ε > 0
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gx

gy f + ε

f − ε

f

X

For x ∈ X, let gx ∈ A be the function given by step 3. In particular, gx(x) = f(x),

gx(y) > f(y)− ε ∀y ∈ X

As gx ∈ A, the function gx − f is continuous at x. So ∃δx > 0 s.t. |gx(y)− f(y)| < ε,
∀y ∈ Bδx(x). In particular,

gx(y) < f(y) + ε ∀y ∈ Bδx(x)

Note
X =

⋃
x∈X Bδx(x)

X compact

}
=⇒ ∃N ≥ 1 and ∃x1, . . . , xN ∈ X s.t.

X =
⋃N
n=1Bδn(xn) where δn = δxn .

Take g = min {gx1 , . . . , gxN } ∈ A (by step 2).
For y ∈ X, ∃1 ≤ n ≤ N s.t. y ∈ Bδn(xn) and so

g(y) ≤ gxn(y) < f(y) + ε

Moreover, as gxn(y) > f(y)− ε, ∀y ∈ X, ∀1 ≤ n ≤ N , we have

g(y) > f(y)− ε ∀y ∈ X

This shows C(X) ⊆ A = A ⊆ C(X).

§13.2 Differentiation

Definition 13.1 (Limit) — Let (X, dX), (Y, dY ) be metric spaces, let ∅ 6= A ⊆ X, let
f : A→ Y . For x0 ∈ A′ and y0 ∈ Y we write

f −→
x→x0

y0 or lim
x→x0

f(x) = y0

if ∀ε > 0, ∃δ > 0 s.t. dY (f(x), y0) < ε whenever 0 < dX (x, x0) < δ.
Equivalently, limx→x0 f(x) = y0 if

lim
n→∞

f(xn) = y0 for every sequence {xn}n≥1 ⊆ A \ {x0} s.t. xn
dX−→
n→∞

x0
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Note also that if x0 ∈ A′ ∩A then f is continuous at x0 ⇐⇒ limx→x0 f(x) = f(x0).

Exercise 13.1. Let (X, d) be a metric space, ∅ 6= A ⊆ X, f : A → R and g : A → R be
functions. Assume that at a point a ∈ A′ we have

lim
x→x0

f(x) = α and lim
x→x0

g(x) = β

Then

1. limx→x0 (λf(x)) = λα, λ ∈ R

2. limx→x0 (f(x) + g(x)) = α+ β

3. limx→x0 (f(x)g(x)) = α · β

4. If β 6= 0 then limx→x0
f(x)
g(x) = α

β

Definition 13.2 (Differentiability) — Let I be an open interval and let f : I → R be a
function. We say that f is differentiable at a ∈ I if

lim
x→a

f(x)− f(a)

x− a
exists and is finite

in which case we denote it f ′(a).

Example 13.3

Fix n ≥ 1 and let f : R→ R, f(x) = xn. For a ∈ R and x 6= a

f(x)− f(a)

x− a
=
xn − an

x− a
= xn−1 + xn−2a+ . . .+ an−1 −→

x→a
nan−1

So f is differentiable at a and f ′(a) = nan−1.

Theorem 13.4

Let I be an open interval and let f : I → R be differentiable at a ∈ I. Then f is
continuous at a.

Proof. For x ∈ I \ {a}, we write

f(x) =
f(x)− f(a)

x− a︸ ︷︷ ︸
−→
x→a

f ′(a)

· (x− a)︸ ︷︷ ︸
−→
x→a

0

+ f(a)︸︷︷︸
−→
x→a

f(a)

−→
x→a

f(a)
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Theorem 13.5

Let I be an open interval and let f : I → R and g : I → R be two functions
differentiable at a ∈ I. Then

1. ∀λ ∈ R, λf is differentiable at a and

(λf)′ (a) = λf ′(a)

2. f + g is differentiable at a and

(f + g)′ (a) = f ′(a) + g′(a)

3. f · g is differentiable at a and

(f · g)′ (a) = f ′(a)g(a) + f(a)g′(a)

4. f
g is differentiable at a if g(a) 6= 0 and(

f

g

)′
(a) =

f ′(a)g(a)− f(a)g′(a)

g2(a)

Proof. For x 6= a

1. Consider
λf(x)− λf(a)

x− a
= λ · f(x)− f(a)

x− a
−→
x→a

λf ′(a)

2. Consider

(f(x) + g(x))− (f(a) + g(a))

x− a
=
f(x)− f(a)

x− a
+
g(x)− g(a)

x− a
−→
x→a

f ′(a) + g′(a)

3. Consider

f(x)− f(a)

x− a︸ ︷︷ ︸
−→
x→a

f ′(a)

· g(x)︸︷︷︸
−→
x→a

g(a)

+ f(a)︸︷︷︸
−→
x→a

f(a)

· g(x)− g(a)

x− a︸ ︷︷ ︸
−→
x→a

g′(a)

−→
x→a

f ′(a)g(a) + f(a)g′(a)

4. Consider

f(x)
g(x) −

f(a)
g(a)

x− a
f(x)− f(a)

x− a︸ ︷︷ ︸
−→
x→a

f ′(a)

· 1

g(x)︸ ︷︷ ︸
−→
x→a

1
g(a)

+f(a) · g(a)− g(x)

x− a︸ ︷︷ ︸
−→
x→a
−g′(a)

· 1

g(x)︸ ︷︷ ︸
−→
x→a

1
g(a)

· 1

g(a)

−→
x→a

f ′(a)

g(a)
− g′(a)

g2(a)
f(a)
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§14.1 Chain Rule

Theorem 14.1 (Chain Rule)

Let I and J be two open intervals and let f : I → R and g : J → R be two functions.
Assume that f is differentiable at a ∈ I and that g is differentiable at f(a) ∈ J . Then
g ◦ f is well defined on a neighborhood of a, g ◦ f is differentiable at a, and

(g ◦ f)′ (a) = g′ (f(a)) · f ′(a)

Proof. Consider:

f(a) ∈ J
J is open

}
=⇒ ∃ε > 0 s.t. (f(a)− ε, f(a) + ε) ⊆ J

f is differentiable at a =⇒ f is continuous at a =⇒ ∃δ > 0 s.t. f ((a− δ, a+ δ) ∩ I) ⊆
(f(a)− ε, f(a) + ε). As a ∈ I and I is open, shrinking δ if necessary, me may assume that
(a− δ, a+ δ) ⊆ I.

Then g ◦ f is well-defined on (a− δ, a+ δ).

(a− δ, a+ δ)︸ ︷︷ ︸
⊆I

f−→ (f(a)− ε, f(a) + ε)︸ ︷︷ ︸
⊆J

g−→ R

Caution: The following argument does not work

g (f(x))− g (f(a))

x− a
=
g (f(x))− g (f(a))

f(x)− f(a)︸ ︷︷ ︸
x→a−→g′(f(a))

· f(x)− f(a)

x− a︸ ︷︷ ︸
x→a−→f ′(a)

because f is continuous at a =⇒ f(x)
x→a−→ f(a)

Instead, we argue as follows: Define h : J → R,

h(y) =

{
g(y)−g(f(a))
y−f(a) , if y ∈ J \ {f(a)}

g′ (f(a)) , if y = f(a)

As g is differentiable at f(a), h is continuous at f(a). Moreover, we can write

g(y)− g (f(a)) = h(y) · (y − f(a)) ∀y ∈ J

For x ∈ (a− δ, a+ δ) =⇒ f(x) ∈ J . So for x ∈ (a− δ, a+ δ) \ {a},

g (f(x))− g (f(a))

x− a
= h (f(x))︸ ︷︷ ︸

x→a−→h(f(a))

· f(x)− f(a)

x− a︸ ︷︷ ︸
x→a−→f ′(a)

So limx→a
g(f(x))−g(f(a))

x−a = h (f(a)) f ′(a) = g′ (f(a)) · f ′(a).
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Lemma 14.2

Let f : (a, b)→ R be a differentiable function. If f is increasing then f ′(x) ≥ 0∀x ∈
(a, b) or decreasing then f ′(x) ≤ 0∀x ∈ (a, b).

Proof. Assume f is increasing (if f is decreasing, replace f by −f in what follows). Fix
x ∈ (a, b) and let {xn}n≥1 be an increasing from (a, b) with limn→∞ xn = x.

Then f ′(x) = limn→∞
f(xn)−f(x)

xn−x ≥ 0 where f (xn)− f(x) ≤ 0 and xn − x < 0.

Theorem 14.3

Let f : (a, b) → R be a function. Assume that x0 ∈ (a, b) is a point of local
maximum/minimum for f . Assume also that f is differentiable at x0. Then f ′(x0) = 0.

Proof. Assume that x0 is a point of local maximum for f (if x0 is a point of local minimum,
replace f by −f in what follows).

Then ∃δ > 0 s.t. f(x) ≤ f(x0) ∀x ∈ (x0 − δ, x0 + δ) ∩ (a, b). For xn ∈ (x0 − δ, x0) ∩
(a, b) s.t. xn −→

n→∞
x0, we have

f ′(x0) = lim
n→∞

f(xn)− f(x0) ≤ 0

xn − x0 < 0
≥ 0

On the other hand, for yn ∈ (x0, x0 + δ) ∩ (a, b) s.t. yn −→
n→∞

x0, we have

f ′(x0) = lim
n→∞

f(yn)− f(x0) ≤ 0

yn − x0 > 0
≤ 0

Thus, we get f ′(x0) = 0.

§14.2 Mean Value Theorem

Theorem 14.4 (Rolle)

Let f : [a, b] → R be a function which is continuous on the [a, b], differentiable on
(a, b), and s.t. f(a) = f(b). Then there exists (at least one) x ∈ (a, b) s.t. f ′(x) = 0.

f (a) = f (b)

a b
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Proof. Consider:

f : [a, b]→ R continuous

[a, b] compact

}
=⇒ ∃x0, y0 ∈ [a, b]

s.t.
f(x0) = sup

x∈[a,b]
f(x) and f(y0) = inf

x∈[a,b]
f(x)

So f(y0) ≤ f(x) ≤ f(x0) ∀x ∈ [a, b].
Case 1: We have

{x0, y0} ⊆ {a, b}
f(a) = f(b)

}
=⇒ f(x0) = f(y0) =⇒ f constant =⇒ f ′(x) = 0 ∀x ∈ (a, b)

Case 2: {x0, y0} * {a, b} =⇒ x0 /∈ {a, b} or y0 /∈ {a, b}. Say x0 /∈ {a, b} =⇒ x0 ∈ (a, b).
By Theorem 14.3, we get f ′(x0) = 0.

Theorem 14.5 (Mean Value)

Let f : [a, b]→ R be continuous on [a, b] and differentiable on (a, b). Then there exists
(at least one) y ∈ (a, b) s.t.

f ′(y) =
f(b)− f(a)

b− a

Remark 14.6. The Mean Value Theorem implies Rolle’s Theorem. We will see from the
proof that Rolle’s Theorem implies the Mean Value Theorem, so the two are equivalent.

f (a)

f (b)

a b

Proof. We define l : [a, b]→ R where

l(x) =
f(b)− f(a)

b− a
(x− a) + f(a)
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Note that l is continuous on [a, b], differentiable on (a, b), and

l′(x) =
f(b)− f(a)

b− a
∀x ∈ (a, b)

Let g : [a, b]→ R, g(x) = f(x)− l(x). Then g is continuous on [a, b], differentiable on (a, b),
and g(a) = 0 = g(b). Then Rolle’s implies that ∃y ∈ (a, b) s.t.

g′(y) = 0 =⇒ f ′(y)− l′(y) = 0 =⇒ f ′(y) =
f(b)− f(a)

b− a

Corollary 14.7

If f : (a, b)→ R is differentiable and f ′(x) = 0∀x ∈ (a, b), then f is a constant.

Proof. Assume f is not a constant. Then ∃a < x1 < x2 < b s.t.

f(x1) 6= f(x2)

Then f is continuous on [x1, x2], differentiable on (x1, x2). By Mean Value, ∃y ∈ (x1, x2)
s.t.

f ′(y) =
f(x1)− f(x2)

x1 − x2
6= 0

Contradiction!

Corollary 14.8

If f, g : (a, b)→ R are differentiable s.t. f ′(x) = g′(x)∀x ∈ (a, b), then ∃c ∈ R s.t.

f(x) = g(x) + c ∀x ∈ (a, b)
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§15.1 Mean Value Theorem (Cont’d)

Theorem 15.1

Let f : [a, b] → R, g : [a, b] → R be continuous on [a, b] and differentiable on (a, b).
Then there exists (at least one) c ∈ (a, b) s.t.

f ′(c) [g(b)− g(a)] = g′(c) [f(b)− f(a)]

Remark 15.2. Taking g(x) = x we recover the Mean Value theorem. In fact, the two results
are equivalent, as can be seen from the proof.

Proof. We define h : [a, b]→ R

h(x) = f(x) [g(b)− g(a)]− g(x) [f(b)− f(a)]

Note that h is continuous on [a, b] and differentiable on (a, b). Moreover,

h(a) = f(a) [g(b)− g(a)]− g(a) [f(b)− f(a)] = f(a)g(b)− g(a)f(b)

h(b) = f(b) [g(b)− g(a)]− g(b) [f(b)− f(a)] = −f(b)g(a) + g(b)f(a)

}
=⇒ h(a) = h(b)

By Rolle’s theorem, ∃c ∈ (a, b) s.t h′(c) = 0.

Corollary 15.3

Let f : (a, b)→ R be differentiable.

1. If f ′(x) > 0 ∀x ∈ (a, b) then f is strictly increasing.

2. If f ′(x) ≥ 0 ∀x ∈ (a, b) then f is increasing.

3. If f ′(x) < 0 ∀x ∈ (a, b) then f is strictly decreasing.

4. If f ′(x) ≤ 0 ∀x ∈ (a, b) then f is decreasing.

Proof. We only present the details for (1).
Fix a < x1 < x2 < b. f is differentiable on (a, b) =⇒ f is continuous on [x1, x2] and
differentiable on (x1, x2). By the Mean Value theorem, ∃c ∈ (x1, x2) s.t.

0 < f ′(c) =
f(x2)− f(x1)

x2 − x1
=⇒ f(x1) < f(x2)

As a < x1 < x2 < b were arbitrary, f is strictly increasing.
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Example 15.4

The derivative of a differentiable function need not be continuous

f : R→ R, f(x) =

{
x2 sin 1

x , x 6= 0

0, x = 0

f is continuous on R \ {0}. To see that it’s continuous at 0,

|f(x)− f(0)| =
∣∣∣∣x2 sin

1

x

∣∣∣∣ ≤ x2 −→
x→0

0 (*)

f is differentiable on R \ {0}. To see that it’s differentiable at 0, we compute

x 6= 0 :
f(x)− f(0)

x− 0
= x sin

1

x
−→
x→0

0 (as in (*))

So f ′(0) = 0. Thus,

f ′(x) =

{
2x sin 1

x + x2 cos 1
x ·
−1
x2
, x 6= 0

0, x = 0
=

{
2x sin 1

x − cos 1
x , x 6= 0

0, x = 0

f ′ is continuous on R \ {0} (not continuous at 0). While limx→0 2x sin 1
x = 0, for each

λ ∈ [−1, 1], there exists xn(λ) −→
n→∞

0 s.t. cos 1
xn(λ) = λ. Nevertheless, the derivative of

a differentiable function has the Darboux property.

Theorem 15.5 (Intermediate Value for Derivatives)

Let f : (a, b) → R be differentiable. Then f ′ has the Darboux property, that is, if
a < x1 < x2 < b and λ lies between f ′(x1) and f ′(x2), then there exists c ∈ (x1, x2)
s.t.

f ′(c) = λ

Proof. Let g : (a, b)→ R, g(x) = f(x)−λx. g is differentiable on (a, b) =⇒ g is continuous
on (a, b). Fix a < x1 < x2 < b and assume without loss of generality

f ′(x1) < λ < f ′(x2)

Then

g′(x1) = f ′(x1)− λ < 0

g′(x2) = f ′(x2)− λ > 0

g is continuous on [x1, x2]

=⇒ ∃c ∈ [x1, x2] s.t. g(c) = inf
x∈[x1,x2]

g(x)

If we can prove that c ∈ (x1, x2) then g′(c) = 0. To see that c 6= x1 we argue as follows:

0 > g′(x1) = lim
x→x1

g(x)− g(x1)

x− x1
=⇒ ∃δ1 > 0
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s.t. if 0 < |x− x1| < δ1 then
g(x)− g(x1)

x− x1
< 0

In particular, for x ∈ (x1, x1 + δ1) we have

g(x)− g(x1)

x− x1︸ ︷︷ ︸
>0

< 0 =⇒ g(x) < g(x1)

=⇒ g cannot attain its minimum at x1

Similarly,

0 < g′(x2) = lim
x→x2

g(x)− g(x2)

x− x2
=⇒ ∃δ2 > 0

s.t. if 0 < |x− x2| < δ2 then
g(x)− g(x2)

x− x2
> 0

In particular, if x ∈ (x2 − δ2, x2) then

g(x)− g(x2)

x− x2︸ ︷︷ ︸
<0

=⇒ g(x) < g(x2)

=⇒ g cannot attain its minimum at x2

§15.2 Derivative of Inverse Functions

Theorem 15.6

Let I be an open interval and let f : I → R be continuous and injective. Then
f(I) = J is an interval and f : I → J is bijective. If f is differentiable at x0 ∈ I and
f ′(x0) 6= 0 then f−1 : J → I is differentiable at y0 = f(x0) and(

f−1
)′

(y0) =
1

f ′(x0)
=

1

f ′ (f−1(y0))

Proof. The proof uses the following two exercises:

Exercise 15.1. Let I be an interval and let f : I → R be continuous and injective. Then
f is strictly monotone.

Exercise 15.2. Let I be an interval and let f : I → R be strictly increasing and so that
f(I) is an interval. Then f is continuous.

Using exercise 1, we find that f is strictly monotone. Assume f is strictly increasing
=⇒ f−1 is strictly increasing.
Using exercise 2 with g = f−1 : J → I, we find that f−1 is continuous.

Claim 15.1. J is an open interval.
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Assume, towards a contradiction, that inf J ∈ J = f(I) =⇒ ∃a ∈ I s.t. f(a) = inf J .

I open =⇒ ∃δ > 0 s.t. (a− δ, a+ δ) ⊆ I
f is strictly increasing

}
=⇒ J = f(I) 3 f

(
a− δ

2

)
< f(a) = inf J

Contradiction!
Similarly, one can show that sup J /∈ J

f is diff at x0 =⇒ f ′(x0) = lim f(x)−f(x0)
x−x0

f ′(x0) 6= 0 and f(x) 6= f(x0) ∀x 6= x0

}
=⇒

=⇒ lim
x→x0

x− x0

f(x)− f(x0)
=

1

f ′(x0)

=⇒ ∀ε > 0 ∃δ > 0 s.t. 0 < |x− x0| < δ =⇒
∣∣∣∣ x− x0

f(x)− f(x0)
− 1

f ′(x0)

∣∣∣∣ < ε

f−1 is continuous at y0 =⇒ ∃η > 0 s.t. 0 < |y − y0| < η implies

0 <
∣∣f−1(y)− f−1(y0)

∣∣ < δ

So for 0 < |y − y0| < η we get∣∣∣∣f−1(y)− f−1(y0)

y − y0
− 1

f ′(x0)

∣∣∣∣ < ε

which implies (
f−1

)′
(y0) = lim

y→y0

f−1(y)− f−1(y0)

y − y0
=

1

f ′(x0)
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§16 Lec 16: May 3, 2021

§16.1 L’Hopital Rule

Definition 16.1 (Existence of Limit) — Let −∞ ≤ a < b ≤ ∞ and let f : (a, b)→ R
be a function. For c ∈ (a, b) ∪ {a} we write

lim
x→c+

f(x) = L ∈ R ∪ {±∞}

if for every sequence {xn}n≥1 ⊆ (c, b) s.t. limn→∞ xn = c we have

lim
n→∞

f(xn) = L

For c ∈ (a, b) ∪ {b} we write

lim
x→c−

f(x) = M ∈ R ∪ {±∞}

if for every sequence {xn}n≥1 ⊆ (a, c) s.t. limn→∞ xn = c we have

lim
n→∞

f(xn) = M

Remark 16.2. In general, if c ∈ (a, b) we have

f(c) 6= lim
x→c−

f(x) 6= lim
x→c+

f(x) 6= f(c)

−e−x

ex

f (x)

x
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Theorem 16.3 (L’Hopital)

Let −∞ ≤ a < b ≤ ∞ and let f, g : (a, b)→ R be differentiable. Assume that g′(x) 6= 0
∀x ∈ (a, b) and that

lim
x→a+

f ′(x)

g′(x)
= L ∈ R ∪ {±∞}

Assume also that either
lim
x→a+

f(x) = lim
x→a+

g(x) = 0 (1)

or
lim
x→a+

|g(x)| =∞ (2)

Then

lim
x→a+

f(x)

g(x)
= L

Remark 16.4. limx→a+ in the theorem can be replaced by limx→b− or by limx→c for some
c ∈ (a, b).

Proof. We’ll present the details for L ∈ R. We’ll prove

Claim 16.1. ∀ε > 0 ∃δ1(ε) > 0 s.t.

f(x)

g(x)
< L+ ε ∀x ∈ (a, a+ δ1)

Claim 16.2. ∀ε > 0 ∃δ2(ε) > 0 s.t.

L− ε < f(x)

g(x)
∀x ∈ (a, a+ δ2)

Then taking δ(ε) = min {δ1(ε), δ2(ε)} we get∣∣∣∣f(x)

g(x)
− L

∣∣∣∣ < ε ∀x ∈ (a, a+ δ)

=⇒ limx→a+
f(x)
g(x) = L.

Note: If L = −∞ then it suffices to prove Claim 1 with L+ ε replaced by M < 0.
If L =∞ then it suffices to prove Claim 2 with L− ε replaced by M > 0.
By assumption, g′(x) 6= 0 ∀x ∈ (a, b). As g is differentiable on (a, b), g′ has the Darboux
property. So either g′(x) < 0 ∀x ∈ (a, b) or g′(x) > 0 ∀x ∈ (a, b).
Assume g′(x) < 0 ∀x ∈ (a, b) =⇒ g strictly decreasing on (a, b). In case 1,

lim
x→a+

g(x) = 0

As g is strictly decreasing, we get

g(x) < 0 ∀x ∈ (a, b)

In case 2,
lim
x→a+

|g(x)| =∞
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As g is strictly decreasing, we get

lim
x→a+

g(x) =∞

and so ∃c ∈ (a, b) s.t. g(x) > 0 ∀x ∈ (a, c) (**). In particular, in both cases g(x) 6= 0
∀x ∈ (a, c). We prove claim 1:

Fix ε > 0. As limx→a+
f ′(x)
g′(x) = L, ∃δ1(ε) > 0 s.t.

f ′(x)

g′(x)
< L+

ε

2
∀x ∈ (a, a+ δ1)

Fix a < x < y < min(a+ δ1, c). By (an equivalent formulation of) Mean Value theorem,
∃z ∈ (x, y) s.t.

f(x)− f(y)

g(x)− g(y)
=
f ′(z)

g′(z)
< L+

ε

2
(*)

In case 1, take the limit x→ a+ in (*) to get

f(y)

g(y)
≤ L+

ε

2
< L+ ε ∀a < y < min(a+ δ1, c)

In case 2, we write
f(x)

g(x)
=
f(x)− f(y)

g(x)− g(y)
· g(x)− g(y)

g(x)
+
f(y)

g(x)

By (**) we have g(x) > g(y) > 0 =⇒ g(x)−g(y)
g(x) > 0. So

f(x)

g(x)
<
(
L+

ε

2

) g(x)− g(y)

g(x)
+
f(y)

g(x)

=
(
L+

ε

2

)(
1− g(y)

g(x)

)
+
f(y)

g(x)

= L+
ε

2
+
f(y)−

(
L+ ε

2

)
g(y)

g(x)

For y fixed, limx→a+
f(y)−(L+ ε

2)g(y)

g(x) = 0

=⇒ ∃δ̃1(ε) > 0 s.t.

∣∣∣∣∣f(y)−
(
L+ ε

2

)
g(y)

g(x)

∣∣∣∣∣ < ε

2
∀x ∈

(
a, a+ δ̃1

)
In particular,

f(x)

g(x)
< L+ ε ∀a < x < min

{
a+ δ1, a+ δ̃1, c

}

Exercise 16.1. Prove claim 2.
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§16.2 Taylor’s Theorem

Definition 16.5 (Taylor Expansion) — Let I be an open interval and let f : I → R be
differentiable of any order. For x0 ∈ I, the series

∞∑
n=0

f (n)(x0)

n!
(x− x0)n

is called the Taylor expansion of f about x0. For n ≥ 1, we define the remainder

Rn(x) = f(x)−
n−1∑
k=0

f (k)(x0)

k!
(x− x0)k

Theorem 16.6 (Taylor)

Let n ≥ 1 and assume f : (a, b)→ R is n times differentiable. Let x0 ∈ (a, b). Then
for any x ∈ (a, b) \ {x0} there exists y between x and x0 s.t.

Rn(x) =
f (n)(y)

n!
(x− x0)n

In particular,

f(x) =
n−1∑
k=0

f (k)(x0)

k!
(x− x0)k +

f (n)(y)

n!
(x− x0)n

Proof. Fix x ∈ (a, b) \ {x0}. Define M ∈ R to be the unique solution to the equation

f(x) =

n−1∑
k=0

f (k)(x0)

k!
(x− x0)k +M · (x− x0)n

n!

We want to show that there exists y between x and x0 s.t.

M = f (n)(y)

Let g : (a, b)→ R

g(t) = f(t)−
n−1∑
k=0

f (k)(x0)

k!
(t− x0)k −M · (t− x0)n

n!

Note g is n times differentiable. For 1 ≤ l ≤ n− 1,

g(l)(t) = f (l)(t)−
n−1∑
k≥l

f (k)(x0)

(k − l)!
(t− x0)k−l −M (t− x0)n−l

(n− l)!

g(n)(t) = f (n)(t)−M

In particular, if 0 ≤ l ≤ n− 1,

g(l)(x0) = f (l)(x0)− f (l)(x0) = 0

66



Duc Vu (Spring 2021) 16 Lec 16: May 3, 2021

Also g(x) = 0 by contradiction.
g is continuous on [x, x0], differentiable on (x, x0) and

g(x) = g(x0) = 0 =⇒ ∃x1 ∈ (x, x0) s.t. g′(x1) = 0

By Rolle’s theorem,

∃x2 ∈ (x1, x0) s.t. g′′(x2) = 0

...

∃xn ∈ (xn−1, x0) s.t. g(n)(xn) = 0

Set y = xn.
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§17 Lec 17: May 5, 2021

§17.1 Taylor’s Theorem (Cont’d)

Corollary 17.1

Fix a > 0 and let f : (−a, a)→ R be a function differentiable of any order. Assume
that all derivatives of f are uniformly bounded on (−a, a), that is,

∃M > 0 s.t.
∣∣∣f (n)(x)

∣∣∣ ≤M ∀x ∈ (−a, a), ∀n ≥ 1

Then

Rn(x) = f(x)−
n−1∑
k=0

f (k)(0)

k!
xk

u−→
n→∞

0 on (−a, a)

Proof. Fix x ∈ (−a, a) \ {0}. By Taylor, there exists y between x and 0 s.t.

Rn(x) =
f (n)(y)

n!
xn

=⇒ |Rn(x)| ≤M |x|
n

n!
≤Man

n!

=⇒ sup
x∈(−a,a)

|Rn(x)| ≤M · a
n

n!
−→
n→∞

0

Example 17.2

f : R→ R, f(x) = cosx

f (n)(x) =


− sinx, n = 1 + 4k

− cosx, n = 2 + 4k

sinx, n = 3 + 4k

cosx, n = 4k

for k ≥ 0

So
∣∣f (n)(x)

∣∣ ≤ 1 ∀x ∈ R ∀n ≥ 0. We get

f(x) = u− lim
N→∞

N∑
n=0

f (n)(0)

n!
xn on (−a, a) for any a > 0

Let n = 2l

=⇒ f (n)(0) =

{
−1, if l odd

1, if l even
= (−1)l

=⇒ f(X) =
∑
n≥0

f (n)(0)

n!
xn =

∑
l≥0

(−1)l

(2l)!
x2l
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A similar argument gives

sinx =
∑
n≥0

(−1)nx2n+1

(2n+ 1)!

Example 17.3

f : R→ R where

f(x) =

{
e−

1
x2 , x 6= 0

0, x = 0

f

x

1

Note f is differentiable of any order on R. Clearly, this holds on R \ {0}. In fact,
for x ∈ R \ {0},

f (n)(x) = Pn

(
1

x

)
e−

1
x2

where

Pn

(
1

x

)
=

(
2

x3

)n
+ . . .

To see that f is differentiable at 0 we compute

lim
x→0+

f(x)

x
= lim

x→0+

1
x

e
1
x2

= lim
t→∞

t

et2
= lim

t→∞

1

2tet2
= 0

Similarly,

lim
x→0−

f(x)

x
= lim

t→−∞

t

et2
= 0

Proceeding inductively, we can prove that f is differentiable of any order at 0 and

f (n)(0) = 0

We consider

lim
x→0+

f (n)(x)

x
= lim

x→0+

Pn
(

1
x

)
e−

1
x2

x
lim
t→∞

tPn(t)

et2
= 0

and

lim
x→0−

f (n)(x)

x
= 0
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Example 17.4 (Cont’d from above)

Thus, ∑
n≥0

f (n)(0)

n!
xn ≡ 0

At leading order as x→ 0,

f (n)(x) ∼ 2n ·
(

1

x2

) 3n
2

e−
1
x2 ∼ 2ne−

1
x2

+ 3n
2

ln 1
x2

The function g : (0,∞)→ R, g(t) = −t+ 3n
2 ln t achieves its maximum at

g′(t) = 0 ⇐⇒ −1 +
3n

2t
= 0 ⇐⇒ t =

3n

2

So f (n)
(√

2
3n

)
∼ 2ne−

3n
2

+ 3n
2

ln 3n
2 ∼ 2ne

3n
2

ln( 3n
2e ) ∼ 2n

(
3n
2e

) 3n
2 −→
n→∞

∞.

Theorem 17.5

Assume that fn : [a, b]→ R are continuous on [a, b] and differentiable on (a, b). Assume
also that

1. {f ′n}n≥1 converges uniformly on (a, b)

2. {fn}n≥1 converges at some x0 in [a, b]

Then {fn}n≥1 converges uniformly on [a, b] to some function f . Moreover, f is
differentiable on (a, b) and

f ′(x) = lim
n→∞

f ′n(x) ∀x ∈ (a, b)

Remark 17.6. We can restate the conclusion as follows:

lim
y→x

lim
n→∞

fn(y)− fn(x)

y − x
= lim
y→x

f(y)− f(x)

y − x
= f ′(x) = lim

n→∞
lim
y→x

fn(y)− fn(x)

y − x

Proof. Let’s prove that {fn}n≥1 converges uniformly on [a, b]. Fix ε > 0.
{f ′n}n≥1 converges uniformly on (a, b) which implies {f ′n}n≥1 is uniformly Cauchy on (a, b)
which also implies ∃n1(ε) ∈ N s.t.∣∣f ′n(x)− f ′m(x)

∣∣ < ε ∀n,m ≥ n1(ε) ∀x ∈ (a, b)

Also, we know that {fn(x0)}n≥1 converges which means {fn(x0)} is Cauchy which implies
∃n2(ε) ∈ N s.t.

|fn(x0)− fm(x0)| < ε ∀n,m ≥ n2(ε)

For x ∈ [a, b] \ {x0},

|fn(x)− fm(x)| ≤ |fn(x0)− fm(x0)|+ |[fn(x)− fm(x)]− [fn(x0)− fm(x0)]|
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By the Mean Value theorem, there exists y between x and x0 s.t.

| [fn(x)− fm(x)]− [fn(x0)− fm(x0)] | =
∣∣f ′n(y)− f ′m(y)

∣∣ |x− x0| < ε(b− a)

So for n,m ≥ n(ε) = max {n1(ε), n2(ε)} we get

|fn(x)− fm(x)| ≤ |fn(x0)− fm(x0)|+ ε(b− a) ≤ ε(1 + b− a)

=⇒ supx∈[a,b] |fn(x)− fm(x)| ≤ ε(1 + b− a) ∀n,m ≥ n(ε)

So {fn}n≥1 are uniformly Cauchy on [a, b] and so converge to a function f = limn→∞ fn.
It remains to show that f is differentiable on (a, b) and

f ′(x) = lim
n→∞

f ′n(x)

which we will prove in the next lecture.
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§18 Lec 18: May 7, 2021

§18.1 Taylor’s Theorem (Cont’d)

Proof. (Cont’d from lecture 17) Fix x ∈ (a, b). We want to show that f is differentiable at
x and

f ′(x) = lim
n→∞

f ′n(x)

We define

g : [a, b] \ {x} → R, g(y) =
f(y)− f(x)

y − x

gn : [a, b] \ {x} → R, gn(y) =
fn(y)− fn(x)

y − x

Since fn
u−→

n→∞
f we have

lim
n→∞

gn(y) = g(y)

Since fn is differentiable at x,
lim
y→x

gn(y) = f ′n(x)

Let L(x) = limn→∞ f
′
n(x). We want to show that

∀ε > 0 ∃δ > 0 s.t. |g(y)− L(x)| < ε whenever 0 < |y − x| < δ y ∈ [a, b]

Fix ε > 0. By the triangle inequality,

|g(y)− L(x)| ≤ |g(y)− gn(y)|+
∣∣gn(y)− f ′n(x)

∣∣+
∣∣f ′n(x)− L(x)

∣∣
We have {f ′n}n≥1 converges uniformly on (a, b) =⇒ {f ′n}n≥1 is uniformly Cauchy on (a, b)
=⇒ ∃n1(ε) ∈ N s.t.∣∣f ′n(z)− f ′m(z)

∣∣ < ε ∀n,m ≥ n1(ε) ∀z ∈ (a, b) (1)

Letting m→∞ we get∣∣f ′n(z)− L(z)
∣∣ ≤ ε ∀n ≥ n1(ε) ∀z ∈ (a, b)

For y ∈ [a, b] \ {x}, by the Mean Value theorem, we can find a point z between x and y so
that

|gn(y)− gm(y)| =
∣∣∣∣fn(y)− fn(x)

y − x
− fm(y)− fm(x)

y − x

∣∣∣∣
=
|[fn(y)− fm(y)]− [fn(x)− fm(x)]|

|y − x|

=
∣∣f ′n(z)− f ′m(z)

∣∣ (1)
< ε ∀n,m ≥ n1(ε)

Letting m→∞ we find

|gn(y)− g(y)| ≤ ε ∀n ≥ n1(ε) ∀y ∈ [a, b] \ {x} (3)
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Fix n ≥ n1(ε). As fn is differentiable at x we find δ = δ(ε, n) > 0 s.t.∣∣gn(y)− f ′n(x)
∣∣ < ε ∀0 < |y − x| < δ y ∈ [a, b] (4)

Thus for this n ≥ n1(ε) and 0 < |y − x| < δ we have

|g(y)− L(x)| ≤ |g(y)− gn(y)|+
∣∣gn(y)− f ′n(x)

∣∣+
∣∣f ′n(x)− L(x)

∣∣
by (2), (3), (4) ≤ 3ε

Example 18.1

fn : R→ R, fn(x) = x
1+nx2

, fn is differentiable and

f ′n(x) =
1

1 + nx2
− x · 2nx

(1 + nx2)2
=

1− nx2

(1 + nx2)2

Now

fn
u−→

n→∞
f ≡ 0

f ′n(x) −→
n→∞

{
1, x = 0

0, x 6= 0

Note that f ′n do not converge uniformly since their limit is not continuous.

lim
n→∞

lim
y→0

fn(y)− fn(0)

y − 0
= lim

n→∞
f ′n (0) = 1

but

lim
y→0

lim
n→∞

fn(y)− fn(0)

y − 0
= lim

y→0
0 = 0

§18.2 Darboux Integral

Definition 18.2 (Partition) — Let f : [a, b]→ R be a bounded function. If S ⊆ [a, b]
we denote

M(f ;S) = sup
x∈S

f(x) and m(f ;S) = inf
x∈S

f(x)

A partition of [a, b] is a finite ordered set P ⊆ [a, b]. We write

P = {a = t0 < t1 < . . . < tn = b}

for some n ≥ 1.
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Definition 18.3 (Darboux Sum) — The upper Darboux sum of f with respect to P is

U(f ;P ) =
n∑
k=1

M (f ; [tk−1, tk]) (tk − tk−1)

a b

The lower Darboux sum of f with respect to P is

L(f ;P ) =
n∑
k=1

m (f ; [tk−1, tk]) (tk − tk−1)

Note that

m (f ; [a, b]) (b− a) ≤ L(f ;P ) ≤ U(f ;P ) ≤M (f ; [a, b]) (b− a)

So

{L(f ;P ) : P partition of [a, b]} is bounded above

{U(f ;P ) : P partition of [a, b]} is bounded below

Definition 18.4 (Darboux Integral) — The upper Darboux integral of f on [a, b] is

U(f) = inf {U(f ;P ) : P partition of [a, b]}

The lower Darboux integral of f on [a, b] is

L(f) = sup {L(f ;P ) : P partition of [a, b]}

We say that f is Darboux integrable on [a, b] if U(f) = L(f). In this case we write∫ b

a
f(x) dx = U(f) = L(f)
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Example 18.5

Let f : [0,M ]→ R, f(x) = x3. Then f is Darboux integrable.
Let P = {0 = t0 < . . . < tn = M} be a partition of [0,M ] and

U(f ;P ) =

n∑
k=1

M (f ; [tk−1, tk]) (tk − tk−1)

=

n∑
k=1

t3k (tk − tk−1)

Similarly,

L(f ;P ) =

n∑
k=1

m (f ; [tk−1, tk]) (tk − tk−1) =

n∑
k=1

t3k−1 (tk − tk−1)

Take tk = kM
n 0 ≤ k ≤ n. Then

U(f ;P ) =

n∑
k=1

(
kM

n

)3

· M
n

=
M4

n4

n∑
k=1

k3 =
M4

n4

[
n(n+ 1)2

2

]
−→
n→∞

M4

4

L(f ;P ) =
n∑
k=1

(
(k − 1)M

n

)3

· M
n

=
M4

n4

n−1∑
k=0

k3 =
M4

n4

[
n(n− 1)2

2

]
−→
n→∞

M4

4

So, U(f) ≤ M4

4 and L(f) ≥ M4

4 and we will show that L(f) ≤ U(f) which imply

U(f) = L(f) = M4

4 . So f is Darboux integrable and
∫M

0 f(x) dx = M4

4 .

Example 18.6

Given

f : [0, 1]→ R, f(x) =

{
1, x ∈ [0, 1] ∩Q
0, x ∈ [0, 1] \Q

f is not Darboux integrable. For any partition P , U(f ;P ) = 1 and L(f ;P ) = 0 which
implies U(f) = 1 and L(f) = 0.
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§19 Lec 19: May 10, 2021

§19.1 Darboux Integral (Cont’d)

Recall: If f : [a, b]→ R bounded

P = {a = t0 < . . . < tn = b} partition of [a, b]

then

U(f ;P ) =

n∑
k=1

M (f ; [tk−1, tk]) (tk − tk−1)

L(f ;P ) =

n∑
k=1

m (f ; [tk−1, tk]) (tk − tk−1)

are the upper and lower Darboux sum associated with P , respectively f is Darboux
integrable if U(f) = L(f) where

U(f) = inf
P
U(f ;P ) and L(f) = sup

P
L(f ;P )

Proposition 19.1

Let f : [a, b]→ R be two bounded and let P and Q be partitions of [a, b] s.t. P ⊆ Q.
Then

L(f ; p) ≤ L(f ;Q) ≤ U(f ;Q) ≤ U(f ;P )

Proof. We will prove the third inequality. The first inequality follows from a similar
argument. Arguing by induction, it suffices to prove the claim when the partition Q
contains exactly one extra point compared to the partition P . Let

P = {a = t0 < t1 < . . . < tn = b}
Q = {a = t0 < . . . < tl−1 < s < tl < . . . < tn = b}

for some 1 ≤ l ≤ n.

U(f ;Q) =
l−1∑
k=1

M (f ; [tk−1, tk]) (tk − tk−1)+M (f ; [tl−1, s]) (s− tl−1)+M (f ; [s, tl]) (tl−s)

+

n∑
k=l+1

M (f ; [tk−1, tk]) (tk − tk−1)

Clearly,

M (f ; [tl−1, s]) ≤M (f ; [tl−1, tl])

M (f ; [s, tl]) ≤M (f ; [tl−1, tl])

So

U(f ;Q) ≤
n∑
k=1

M (f ; [tk−1, tk]) (tk − tk−1) = U(f ;P )
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Corollary 19.2

Let f : [a, b]→ R be bounded and let P,Q be two partitions of [a, b]. Then

L(f ;P ) ≤ U(f ;Q)

Consequently,
L(f) ≤ U(f)

Proof. Consider the partition P ∪Q. We have

L(f ;P ) ≤ L (f ;P ∪Q) ≤ U (f ;P ∪Q) ≤ U(f ;Q)

=⇒ L(f) = sup
P
L(f ;P ) ≤ U(f ;Q)

=⇒ L(f) ≤ inf
Q
U(f ;Q) = U(f)

Theorem 19.3

Let f : [a, b]→ R be bounded. Then f is Darboux integrable if and only if

∀ε > 0 ∃P partitions of [a, b] 3 U(f ;P )− L(f ;P ) < ε

Proof. “ ⇐= ” Fix ε > 0. Then there exists P partition of [a, b] s.t. U(f ;P )−L(f ;P ) < ε

=⇒ U(f) ≤ U(f ;P ) < L(f ;P ) + ε ≤ L(f) + ε

=⇒
U(f) < L(f) + ε

ε > 0 was arbitrary

}
=⇒

U(f) ≤ L(f)

L(f) ≤ U(f)

}
=⇒ U(f) = L(f)

=⇒ f is Darboux integrable

“ =⇒ ” Fix ε > 0, f is Darboux integrable implies

U(f) = L(f)

Then

U(f) = inf
P
U(f ;P ) =⇒ ∃P1 partition of [a, b] s.t. U(f ;P1) < U(f) +

ε

2

L(f) = sup
P
L(f ;P ) =⇒ ∃P2 partition of [a, b] s.t. L(f ;P2) > L(f)− ε

2

Consider the partition P1 ∪ P2. Then

L(f ;P2) ≤ L (f ;P1 ∪ P2) ≤ U (f ;P1 ∪ P2) ≤ U(f ;P1)

So
U (f ;P1 ∪ P2)− L (f ;P1 ∪ P2) < U(f) +

ε

2
−
(
L(f)− ε

2

)
= ε
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Definition 19.4 (Mesh) — Let P = {a = t0 < t1 < . . . < tn = b} be a partition of
[a, b]. The mesh of P is given by

mesh(P ) = max
1≤k≤n

(tk − tk−1)

Theorem 19.5

Let f : [a, b]→ R be bounded. Then f is Darboux integrable if and only if

∀ε > 0 ∃δ > 0 s.t. if P is a partition of [a, b] with mesh(P ) < δ

then
U(f ;P )− L(f ;P ) < ε

Proof. “ ⇐= ” By the previous theorem, it suffices to show that ∀δ > 0 ∃P partition of
[a, b] with mesh(P ) < δ. For δ > 0, let P = {a = t0 < . . . < tn = b} where

tk = a+ k · δ
2

for 0 ≤ k ≤ b2(b− a)

δ
c = n− 1

and tn = b. Clearly,

mesh(P ) =
δ

2
< δ

“ =⇒ ” Fix ε > 0. By the previous theorem, as f is Darboux integrable, there exists a
partition P0 = {a = s0 < . . . < sm = b} of [a, b] s.t.

U(f ;P0)− L(f ;P0) <
ε

2

Let 0 < δ < mesh(P0) to be chosen later and let P = {a = t0 < . . . < tn = b} be a partition
of [a, b] with mesh(P ) < δ

U(f ;P )− L(f ;P ) ≤ U(f ;P )− U(f ;P0) + U(f ;P0)− L(f ;P0) + L(f ;P0)− L(f ;P )

≤ ε

2
+ U(f ;P )− U(f ;P0) + L(f ;P0)− L(f ;P )

Consider the partition P ∪ P0. Then

U(f ;P )− U(f ;P0) ≤ U(f ;P )− U(f ;P ∪ P0)

As mesh(P ) < δ < mesh(P0), there must be at most one point from P0 in each [tk−1, tk].
Only subintervals [tk−1, tk] with an sj ∈ P0∩ [tk−1, tk] contribute to U(f ;P )−U (f ;P0 ∪ P ).
There are only m many such intervals. The contribution of one such interval to U (f ;P )−
U (f ;P0 ∪ P ) is

M (f ; [tk−1, tk]) (tk − tk−1)−M (f ; [tk−1, sj ]) (sj − tk−1)−M (f ; [sj , tk]) (tk − sj)

As f is bounded, ∃M > 0 s.t. |f(x)| ≤M ∀x ∈ [a, b]. Note

M (f ; [tk−1, tk]) ≤M
M (f ; [tk−1, sj ]) ≥ −M ; M (f ; [sj , tk]) ≥ −M
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So

M (f ; [tk−1, tk]) (tk − tk−1)−M (f ; [tk−1, sj ]) (sj − tk−1)−M (f ; [sj , tk]) (tk − sj)

which is smaller than or equal to

M (tk − tk−1)− (−M) [(sj − tk−1) + (tk − sj)] = 2M (tk − tk−1) < 2M ·mesh(P )

Thus
U(f ;P )− U(f ;P0) < m · 2M ·mesh(P )

Similarly,
L(f ;P0)− L(f ;P ) < m · 2M ·mesh(P )

which requires

4Mm ·mesh(P ) <
ε

2
⇐⇒ mesh(P ) <

ε

8Mm

Thus, δ < min
{

ε
8Mm ,mesh(P0)

}
.
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§20 Lec 20: May 12, 2021

§20.1 Riemann Integral

Definition 20.1 (Riemann Sum) — Let f : [a, b] → R be a function and let P =
{a = t0 < t1 < . . . < tn = b} be a partition of [a, b]. A Riemann sum of f associated
to P is a sum of the form

S =
n∑
k=1

f(xk) (tk − tk−1) where xk ∈ [tk−1, tk] ∀1 ≤ k ≤ n

Note: If S is a Riemann sum associated with a partition P of [a, b] then

L(f ;P ) ≤ S ≤ U(f ;P )

Definition 20.2 (Riemann Integrable) — We say that f is Riemann integrable if ∃r ∈ R
s.t. ∀ε > 0 ∃δ > 0 s.t.

|S − r| < ε

for any Riemann sum S of f associated with a partition P with mesh(P ) < δ. Then r
is called the Riemann integral of f and we write

r = R
∫ b

a
f(x) dx

Lemma 20.3

If f : [a, b]→ R is Riemann integrable, then f is bounded.

Proof. Let r = R
∫ b
a f(x) dx. Taking ε = 1 we find δ > 0 s.t. |S − r| < 1 for any Riemann

sum S of f associated to a partition P with mesh(P ) < δ.
Let P = {a = t0 < t1 < . . . < tn = b} with mesh(P ) < δ. Fix 1 ≤ k ≤ n. Fix xl ∈

[tl−1, tl] for 1 ≤ l ≤ n, l 6= k. For x ∈ [tk−1, tk] we have∣∣∣∣∣∣
∑
l 6=k

f(xl) (tl − tl−1) + f(x) (tk − tk−1)− r

∣∣∣∣∣∣ < 1

r−1−
∑
l 6=k f(xl)(tl−tl−1)

tk−tk−1
< f(x) <

1+r−
∑
l6=k f(xl)(tl−tl−1)

tk−tk−1

x ∈ [tk−1, tk] is arbitrary

 =⇒

=⇒
f is bounded on [tk−1, tk]

1 ≤ k ≤ n is arbitrary

}
=⇒ f is bounded on [a, b]
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Theorem 20.4

Let f : [a, b]→ R. The following are equivalent

1. f is Riemann integrable.

2. f is bounded and Darboux integrable.

If either conditions holds, then the integrals agree.

Proof. 2) =⇒ 1) Fix ε > 0.
f is Darboux integrable =⇒ ∃δ > 0 s.t. U(f ;P ) − L(f ;P ) < ε for any partition P

with mesh(P ) < δ. Let P be a partition of [a, b] with mesh(P < δ). If S is a Riemann sum
of f associated to P , then

S ≤ U(f ;P ) < L(f ;P ) + ε ≤ L(f) + ε =
∫ b
a f(x) dx+ ε

S ≥ L(f ;P ) > U(f ;P )− ε ≥ U(f)− ε =
∫ b
a f(x) dx− ε

}
=⇒

∣∣∣∣s− ∫ b

a
f(x)dx

∣∣∣∣ < ε

By definition, f is Riemann integrable and R
∫ b
a f(x)dx =

∫ b
a f(x)dx.

1) =⇒ 2) By the previous lemma, f is bounded. Fix ε > 0. Let r = R
∫ b
a f(x)dx. Then

∃δ > 0 s.t.
|S − r| < ε

2

for any Riemann sum of f associated with a partition of P with mesh(P ) < δ. Fix
P = {a = t0 < t1 < . . . . < tn = b} be a partition with (mesh(P ) < δ. There exist xk, yk ∈
[tk−1, tk] s.t.

f(xk) > M (f ; [tk−1, tk])−
ε

2(b− a)

f(yk) < m (f ; [tk−1, tk]) +
ε

2(b− a)

Then

S1 =
n∑
k=1

f(xk) (tk − tk−1) > U(f ;P )− ε

2(b− a)

n∑
k=1

(tk − tk−1)

= U(f ;P )− ε

2

S2 =

n∑
k=1

f(yk) (tk − tk−1) < L(f ;P ) +
ε

2(b− a)

n∑
k=1

(tk − tk−1)

= L(f ;P ) +
ε

2

However, |S1 − r| < ε
2 and |S2 − r| < ε

2 . So

U(f ;P )− ε
2 < S1 < r + ε

2 =⇒ U(f) ≤ U(f ;P ) < r + ε

r − ε
2 < S2 < L(f ;P ) + ε

2 =⇒ r − ε < L(f ;P ) ≤ L(f)

}
=⇒

=⇒
r − ε < L(f) ≤ U(f) < r + ε

ε > 0 arbitrary

}
=⇒ f is Darboux integrable and

∫ b

a
f(x) dx = r
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Theorem 20.5

Let f : [a, b]→ R be monotonic. Then f is integrable.

Proof. Assume f is increasing. Then

f(a) ≤ f(x) ≤ f(b) ∀x ∈ [a, b]

So f is bounded.
Let P = {a = t0 < t1 < . . . < tn = b} with mesh(P ) < δ for δ to be chosen later. Then

U(f ;P )− L(f ;P ) =

n∑
k=1

[M (f ; [tk−1, tk])−m (f ; [tk−1, tk])] (tk − tk−1)

=

n∑
k=1

[f(tk)− f(tk−1)] (tk − tk−1)

≤ mesh(P )

n∑
k=1

[f(tk)− f(tk−1)]

< δ · [f(b)− f(a)]

Taking δ < ε
f(b)−f(a)+1 we see that f is Darboux integrable.

Theorem 20.6

Let f : [a, b]→ R be continuous. Then f is integrable.

Proof. We have

f : [a, b]→ R continuous

[a, b] compact

}
=⇒ f is bounded

Fix ε > 0. As f is continuous on [a, b] compact, f is uniformly continuous. So ∃δ > 0 s.t.

|f(x)− f(y)| < ε

b− a
∀x, y ∈ [a, b] with |x− y| < δ

Let P = {a = t0 < . . . < tn = b} with mesh(P ) < δ.

U(f ;P )− L(f ;P ) =
n∑
k=1

[M (f ; [tk−1, tk])−m (f ; [tk−1, tk])] (tk − tk−1)

f continuous on [tk−1, tk] compact implies ∃xk, yk ∈ [tk−1, tk] s.t.

f(xk) = M (f ; [tk−1, tk])

f(yk) = m (f ; [tk−1, tk])

So

U(f ;P )− L(f ;P ) =
n∑
k=1

[f(xk)− f(yk)] (tk − tk−1)

<
n∑
k=1

ε

b− a
(tk − tk−1) = ε

Then f is Darboux integrable.
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Theorem 20.7

Let f, g : [a, b]→ R be Riemann integrable.

1. For any α ∈ R, αf is Riemann integrable and∫ b

a
(αf)(x) dx = α

∫ b

a
f(x) dx

2. f + g is Riemann integrable and∫ b

a
(f + g)(x) dx =

∫ b

a
f(x) dx+

∫ b

a
g(x) dx

Proof. 1. If α = 0 this is clear. Assume α > 0. For any S ⊆ [a, b]

M(αf ;S) = αM(f ;S)

m(αf ;S) = αm(f ;S)

For by partition P of [a, b],

U(αf ;P ) = αU(f ;P ) =⇒ U(αf) = sup
P
U(αf ;P )

= sup
P

[α · U(f ;P )]

= α sup
P
U(f ;P ) = αU(f)

Similarly,

L(αf) = αL(f)

L(f) = U(f)

=⇒ αf is Darboux integrable and
∫ b
a (αf)(x)dx = α

∫ b
a f(x)dx.

83



Duc Vu (Spring 2021) 21 Lec 21: May 14, 2021

§21 Lec 21: May 14, 2021

§21.1 Riemann Integral (Cont’d)

Recall from last lecture, we have the following theorem,

Theorem 21.1

Let f, g : [a, b]→ R be Riemann integrable.

1. For any α ∈ R, αf is Riemann integrable and∫ b

a
(αf)(x) dx = α

∫ b

a
f(x) dx

2. f + g is Riemann integrable and∫ b

a
(f + g)(x) dx =

∫ b

a
f(x) dx+

∫ b

a
g(x) dx

Proof. 1. Last time we proved the result for α ≥ 0. Assume α < 0. For S ⊆ [a, b], we
have

M(αf ;S) = αm(f ;S) and m(αf ;S) = αM(f ;S)

If P is a partition of [a, b],

U(αf ;P ) = αL(f ;P ) and L(αf ;P ) = αU(f ;P )

Thus,

U(αf) = infP U(αf ;P ) = infP αL(f ;P ) = α supP L(f ;P ) = αL(f)

L(αf) = . . . = αU(f)

f is Riemann integrable =⇒ f bounded and L(f) = U(f) =
∫ b
a f(x) dx

 =⇒

=⇒ αf is bounded and L(αf) = U(αf) = α

∫ b

a
f(x) dx

=⇒ αf is Riemann integrable and

∫ b

a
(αf)(x) dx = α

∫ b

a
f(x) dx

2. As f, g are Riemann integrable, f + g is bounded and f, g are Darboux integrable.

Fix ε > 0. Then, f is Darboux integrable implies ∃P1 partition of [a, b] s.t.

U(f ;P1)− L(f ;P1) <
ε

2

g is Darboux integrable implies ∃P2 partition of [a, b] s.t.

U(g;P2)− L(g;P2) <
ε

2
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Let P = P1 ∪ P2. Then, we have

U(f ;P )− L(f ;P ) <
ε

2
and U(g;P )− L(g;P ) <

ε

2

For S ⊆ [a, b],

M(f + g;S) ≤M(f ;S) +M(g;S)

m(f + g;S) ≥ m(f ;S) +m(g;S)

So

U(f + g;P ) ≤ U(f ;P ) + U(g;P )

L(f + g;P ) ≥ L(f ;P ) + L(g;P )

}
=⇒

=⇒ U(f + g;P )− L(f + g;P ) ≤ U(f ;P )− L(f ;P ) + U(g;P )− L(g;P ) < ε

=⇒
f + g is Darboux integrable

f + g is bounded

}
=⇒ f + g is Riemann integrable

Moreover,

U(f + g) ≤ U(f + g;P ) ≤ U(f ;P ) + U(g;P )

< L(f ;P ) + L(g;P ) + ε

≤ L(f) + L(g) + ε =

∫ b

a
f(x)dx+

∫ b

a
g(x)dx+ ε

Similarly,

L(f + g) ≥ L(f + g;P ) ≥ L(f ;P ) + L(g;P )

> U(f ;P ) + U(g;P )− ε

≥ U(f) + U(g)− ε =

∫ b

a
f(x)dx+

∫ b

a
g(x)dx− ε

Let ε→ 0, we get ∫ b

a
(f + g)(x) dx =

∫ b

a
f(x) dx+

∫ b

a
g(x) dx

Theorem 21.2

Let f, g : [a, b]→ R be Riemann integrable. Assume f(x) ≤ g(x) ∀x ∈ [a, b]. Then∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx

Proof. By the previous theorem, h : [a, b]→ R, h = g− f is Riemann integrable. Moreover,
since h ≥ 0, we have ∫ b

a
h(x) dx = L(h) = sup

P
L(h;P ) ≥ 0

which implies

0 ≤
∫ b

a
h(x) dx =

∫ b

a
(g − f)(x) dx =

∫ b

a
g(x) dx−

∫ b

a
f(x) dx
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Theorem 21.3

Let f : [a, b]→ R be Riemann integrable. Then |f | is Riemann integrable and∣∣∣∣∫ b

a
f(x) dx

∣∣∣∣ ≤ ∫ b

a
|f(x)| dx

Proof. Let f is Riemann integrable. Then, f is bounded and Darboux integrable. So |f | is
bounded. For S ⊆ [a, b] we have

M (|f |;S)−m (|f |;S) = sup
x∈S
|f(x)| − inf

y∈S
|f(y)|

= sup
x∈S
|f(x)|+ sup

y∈S
−|f(y)|

= sup
x,y∈S

{|f(x)| − |f(y)|}

≤ sup
x,y∈S

|f(x)− f(y)|

= sup
x,y∈S

{f(x)− f(y)}

= sup
x∈S

f(x)− inf
y∈S

f(y)

= M(f ;S)−m(f ;S)

So for any partition P of [a, b] we have

U(|f |;P )− L(|f |;P ) ≤ U(f ;P )− L(f ;P )

f Darboux integrable =⇒ ∀ε > 0 ∃P partition of [a, b] s.t.

U(f ;P )− L(f ;P ) < ε

=⇒ ∀ε > 0 ∃P partition of [a, b] s.t. U(|f |;P )− L(|f |;P ) < ε

=⇒
|f | is Darboux integrable

|f | is bounded

}
=⇒ |f | is Riemann integrable

We have
−|f(x)| ≤ f(x) ≤ |f(x)| ∀x ∈ [a, b]

By the previous theorem,

−
∫ b

a
|f(x)| dx =

∫ b

a
−|f(x)| dx ≤

∫ b

a
f(x) dx ≤

∫ b

a
|f(x)| dx

which implies ∣∣∣∣∫ b

a
f(x) dx

∣∣∣∣ ≤ ∫ b

a
|f(x)| dx
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Theorem 21.4

Let f : [a, b]→ R be a function and let a < c < b. Assume f is Riemann integrable on
[a, c] and on [c, b]. Then f is Riemann integrable on [a, b] and∫ b

a
f(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx

Proof. f is Riemann integrable on [a, c] and on [c, b]

=⇒ f bounded on [a, c] and on [c, b]

=⇒ f bounded on [a, b]

Fix ε > 0. As f is Riemann integrable on [a, c], f is Darboux integrable on [a, c]

=⇒ ∃P1 partition of [a, c] s.t. U ca(f ;P1)− Lca(f ;P1) <
ε

2

Similarly, as f is Riemann integrable on [c, b] =⇒ f Darboux integrable on [c, b]

=⇒ ∃P2 partition of [c, b] s.t. U bc (f ;P2)− Lbc(f ;P2) <
ε

2

Let P = P1 ∪ P2 partition on [a, b] and

U(f ;P ) = U ca(f ;P1) + U bc (f ;P2)

L(f ;P ) = Lca(f ;P1) + Lbc(f ;P2)

So
U(f ;P )− L(f ;P ) <

ε

2

Therefore, as f is Darboux integrable and bounded on [a, b], f is Riemann integrable on
[a, b]. Moreover,

U(f) ≤ U(f ;P ) = U ca(f ;P1) + U bc (f ;P2) < Lca(f ;P1) + Lbc(f ;P2) + ε

≤
∫ c

a
f(x) dx+

∫ b

c
f(x) dx+ ε

Similarly,

L(f) ≥
∫ c

a
f(x) dx+

∫ b

c
f(x) dx− ε

Since ε > 0 is arbitrary, ∫ b

a
f(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx

Lemma 21.5

Let f, g : [a, b]→ R be functions s.t. f is Riemann integrable and g(x) = f(x) except
at finitely many points in [a, b]. Then g is Riemann integrable and∫ b

a
g(x) dx =

∫ b

a
f(x) dx
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Proof. Arguing by induction, we may assume that there exists exactly one point x0 ∈ [a, b]
s.t. f(x0) 6= g(x0). Let B > 0 s.t. |f(x)| ≤ B and |g(x)| ≤ B ∀x ∈ [a, b]. Let
P = {a = t0 < . . . < tn = b}. We consider

U(f ;P )− U(g;P )

L(f ;P )− L(g;P )

tk−1 x0 = tk tk+1

The largest contribution occurs when x0 = tk for some 1 ≤ k ≤ n− 1.

|M (f ; [tk−1, tk])−M (g; [tk−1, tk])| ≤ [B − (−B)] (tk − tk−1)

≤ 2B mesh(P )

=⇒ |U(f ;P )− U(g;P )| ≤ 4B mesh(P )

Similarly,

|m (f ; [tk−1, tk])−m (g; [tk−1, tk])| ≤ 2B mesh(P )

=⇒ |L(f ;P )− L(g;P )| ≤ 4B mesh(P )

Thus,

U(g;P )− L(g;P ) ≤ U(f ;P )− L(f ;P ) + |U(f ;P )− U(g;P )|
+ |L(f ;P )− L(g;P )|
≤ U(f ;P )− L(f ;P ) + 8B mesh(P )

f Darboux integrable =⇒ ∀ε > 0 ∃δ > 0 s.t.

U(f ;P )− L(f ;P ) <
ε

2
∀P partition with mesh(P ) < δ

Choose δ even smaller if necessary so that

8Bδ <
ε

2
⇐⇒ δ <

ε

16B

Then U(g;P )− L(g;P ) < ε for all P partition with mesh(P ) < δ.

g is Darboux integrable

g bounded

}
=⇒ g is Riemann integrable

Exercise 21.1. Show
∫ b
a g(x) dx =

∫ b
a f(x) dx.
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§22 Lec 22: May 17, 2021

§22.1 Riemann Integral (Cont’d)

Definition 22.1 (Piecewise Monotone) — We say that a function f : [a, b] → R is
piecewise monotone if there exists a partition P = {a = t0 < . . . < tn = b} s.t. f is
monotone on (tk−1, tk) for each 1 ≤ k ≤ n.

Definition 22.2 (Piecewise Continuous) — We say that f : [a, b] → R is piecewise
continuous if there exists a partition P = {a = t0 < . . . < tn = b} s.t. f is uniformly
continuous on (tk−1, tk) for each 1 ≤ k ≤ n.

Theorem 22.3

Let f : [a, b]→ R be a function that satisfies

1. f is bounded and piecewise monotone.

or

2. f is piecewise continuous.

Then f is Riemann integrable.

Proof. Let P = {a = t0 < . . . < tn = b} be a partition of [a, b] s.t. 1) f is monotone or 2)
f is uniformly continuous on (tk−1, tk) ∀1 ≤ k ≤ n.

If f is monotone on (tk−1, tk), then f can be extended to a monotone function on fk on
[tk−1, tk]. For example, if f is increasing on (tk−1, tk) we define

fk(t) =


inft∈(tk−1,tk) f(t), t = tk−1

f(t), t ∈ (tk−1, tk)

supt∈(tk−1,tk) f(t), t = tk

As fk is monotone on [tk−1, tk], fk is Riemann integrable on [tk−1, tk]. As f differs from fk
at most two points, f is Riemann integrable on [tk−1, tk] and∫ tk

tk−1

f(t) dt =

∫ tk

tk−1

fk(t) dt

If f is uniformly continuous on (tk−1, tk), then f admits a continuous extension fk to
[tk−1, tk]. Then fk is Riemann integrable on [tk−1, tk] and so f is Riemann integrable on
[tk−1, tk] and ∫ tk

tk−1

f(t) dt =

∫ tk

tk−1

fk(t) dt
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By the last theorem from last lecture, we conclude that f is Riemann integrable on [a, b]
and ∫ b

a
f(t) dt =

n∑
k=1

∫ tk

tk−1

f(t) dt

Theorem 22.4 (Intermediate Value Property for Integrals)

Let f : [a, b]→ R be a continuous function. Then there exists c ∈ [a, b] s.t.

f(c) =
1

b− a

∫ b

a
f(x) dx

Proof. f is continuous on [a, b] compact which implies there exist x0, y0 ∈ [a, b] s.t.{
f(x0) = infx∈[a,b] f(x)

f(y0) = supx∈[a,b] f(x)

So

(b− a)f(x0) =

∫ b

a
f(x0) dx ≤

∫ b

a
f(x) dx ≤

∫ b

a
f(y0) dx = (b− a)f(y0)

=⇒ f(x0) ≤ 1
b−a

∫ b
a f(x) dx ≤ f(y0)

f is continuous =⇒ f has the Darboux property

}
=⇒

=⇒ ∃c between x0 and y0 s.t. f(c) = 1
b−a

∫ b
a f(x)dx.

§22.2 Fundamental Theorem of Calculus

Definition 22.5 (Riemann Integrable – “Extension”) — We say that a function f :
(a, b)→ R is Riemann integrable on [a, b] if every extension of f to [a, b] is Riemann

integrable. In this case,
∫ b
a f(t)dt does not depend on the values of the extension at a

and at b.

Theorem 22.6 (Fundamental Theorem of Calculus Part II)

Let f : [a, b]→ R be continuous on [a, b] and differentiable on (a, b). If f ′ is Riemann
integrable on [a, b] then ∫ b

a
f ′(x) dx = f(b)− f(a)

Proof. Fix ε > 0. As f ′ is Riemann integrable on [a, b], ∃P = {a = t0 < . . . < tn = b} s.t.

U(f ′;P )− L(f ′;P ) < ε
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where f is continuous on [tk−1, tk] and differentiable on (tk−1, tk). So, by the Mean Value
theorem, ∃xk ∈ (tk−1, tk) s.t.

f ′(xk) =
f(tk)− f(tk−1)

tk − tk−1

In particular,

n∑
k=1

f ′(xk)(tk − tk−1) =
n∑
k=1

[f(tk)− f(tk−1)] = f(b)− f(a)

is a Riemann sum of f ′ associated to the partition P . Moreover,

L(f ′;P ) ≤ f(b)− f(a) ≤ U(f ′;P ) < L(f ′;P ) + ε

L(f ′;P ) ≤
∫ b
a f
′(x) dx ≤ U(f ′;P ) < L(f ′;P ) + ε

}
=⇒

=⇒
∣∣∣∫ ba f ′(x) dx− [f(b)− f(a)]

∣∣∣ < 2ε

ε > 0 was arbitrary

 =⇒
∫ b

a
f ′(x) dx = f(b)− f(a)

Theorem 22.7 (Integration by Parts)

Let f, g : [a, b]→ R be continuous on [a, b] and differentiable on (a, b). If f ′ and g′ are
Riemann integrable on [a, b], then∫ b

a
f(x)g′(x) dx+

∫ b

a
f ′(x)g(x) dx = f(b)g(b)− f(a)g(a)

Proof. By Exc 1 from Hw 8, the product of two Riemann integrable functions is Riemann
integrable. In particular, f ′g and fg′ are Riemann integrable. Let h : [a, b]→ R, h(x) =
f(x)g(x). We have h is continuous on [a, b], differentiable on (a, b) and

h′(x) = f ′(x)g(x) + f(x)g′(x)

h′ is Riemann integrable on [a, b]. By Fundamental Theorem of Calculus Part II,∫ b

a
h′(x) dx = h(b)− h(a)

=⇒
∫ b

a
f ′(x)g(x) dx+

∫ b

a
f(x)g′(x) dx = f(b)g(b)− f(a)g(a)

Theorem 22.8 (Fundamental Theorem of Calculus Part I)

Let f : [a, b]→ R be Riemann integrable. For x ∈ [a, b], we define

F (x) =

∫ x

a
f(t) dt

Then F is continuous on [a, b]. Moreover, if f is continuous at a point x0 ∈ (a, b), then
F is differentiable at x0 and

F ′(x0) = f(x0)
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Proof. For a ≤ x < y ≤ b,

F (y)− F (x) =

∫ y

a
f(t) dt−

∫ x

a
f(t) dt

=

∫ x

a
f(t) dt+

∫ y

x
f(t) dt−

∫ x

a
f(t) dt

=

∫ y

x
f(t) dt

f is Riemann integrable =⇒ f is bounded =⇒ ∃M > 0 s.t.

|f(x)| ≤M ∀x ∈ [a, b]

So

|F (y)− F (x)| ≤
∫ y

x
|f(t)| dt ≤M |y − x|

This shows F is uniformly continuous on [a, b]. For each ε > 0 if |y − x| < ε
M then

|F (y)− F (x)| < ε

Assume f is continuous at x0 ∈ (a, b). For x ∈ [a, b] \ {x0},

F (x)− F (x0)

x− x0
− f(x0) =

1

x− x0

∫ x

x0

f(t) dt− f(x0)

=
1

x− x0

∫ x

x0

f(t) dt− 1

x− x0

∫ x

x0

f(x0) dt

=
1

x− x0

∫ x

x0

[f(t)− f(x0)] dt

Fix ε > 0. As f is continuous at x0, ∃δ > 0 s.t.

|f(x)− f(x0)| < ε ∀ |x− x0| < δ x ∈ [a, b]

So for x ∈ [a, b] with 0 < |x− x0| < δ,∣∣∣∣F (x)− F (x0)

x− x0
− f(x0)

∣∣∣∣ ≤ 1

|x− x0|

∫ x

x0

|f(t)− f(x0)| dt

<
1

|x− x0|

∫ x

x0

ε dt = ε

Since ε > 0 is arbitrary, F is differentiable at x0 and F ′(x0) = f(x0).
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§23 Lec 23: May 19, 2021

§23.1 Change of Variables

Theorem 23.1 (Change of Variables)

Let J be an open interval in R and let u : J → R be differentiable with u′ continuous
on J . Let I be an open interval in R s.t. u(J) ⊆ I and let f : I → R be continuous.
Then f ◦ u : J → R is continuous and for any a, b ∈ J with a < b we have∫ b

a
f (u(x)) · u′(x) dx =

∫ u(b)

u(a)
f(y) dy

Proof. As f ◦ u and u′ are continuous on [a, b], the function x 7→ (f ◦ u)(x) · u′(x) is
continuous on [a, b] and so it’s Riemann integrable on [a, b].

Fix c ∈ I and consider F (x) =
∫ x
c f(t)dt. By Fundamental Theorem of Calculus Part I,

F is differentiable on I (because f is continuous on I) and F ′(x) = f(x) ∀x ∈ I. Consider
x 7→ (F ◦ u)(x) is differentiable on J and

(F ◦ u)′(x) = f (u(x)) · u′(x) ∀x ∈ J

By the Fundamental Theorem of Calculus Part II,∫ b

a
(F ◦ u)′(x) dx = (F ◦ u)(b)− (F ◦ u)(a)

which implies

=⇒
∫ b

a
f (u(x)) · u′(x) dx =

∫ u(b)

c
f(y) dy −

∫ u(a)

c
f(y) dy =

∫ u(b)

u(a)
f(y) dy

Exercise 23.1. Let I be an open interval in R and let f : I → R be injective and
differentiable with f ′ continuous on I. Then J = f(I) is an open interval and f−1 : J → I
is differentiable.

Then for any a, b ∈ I with a < b we have∫ b

a
f(x) dx+

∫ f(b)

f(a)
f−1(y) dy = bf(b)− af(a)

Proof. Consider:
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f(b)

f(a)

a b

Γf

∫ b
a f(x) dx

∫ f(b)
f(a) f

−1(y) dy

Γf = {(x, f(x)) : a ≤ x ≤ b} =
{(
f−1(y), y

)
: y between f(a) and f(b)

}
We perform a change of variables:∫ f(b)

f(a)
f−1(y) dy =

∫ b

a
f−1 (f(x)) f ′(x) dx

where y = f(x) and dy = f ′dx∫ b

a
f−1 (f(x)) f ′(x) dx =

∫ b

a
xf ′(x) dx

= xf(x)
∣∣∣x=b

x=a
−
∫ b

a
f(x) dx

= bf(b)− af(a)−
∫ b

a
f(x) dx

Theorem 23.2

Let fn : [a, b]→ R be Riemann integrable s.t. fn
u−→

n→∞
f on [a, b]. Then f is Riemann

integrable and

lim
n→∞

∫ b

a
fn(x) dx =

∫ b

a
lim
n→∞

fn(x) dx =

∫ b

a
f(x) dx

Proof. For n ≥ 1 let dn = supx∈[a,b] |fn(x)− f(x)|. As fn
u−→

n→∞
f on [a, b] we have dn −→

n→∞
0.

In particular, fn(x) − dn ≤ f(x) ≤ fn(x) + dn for all x ∈ [a, b] (and thus f is bounded).
For any partition P of [a, b], we have{

U(fn;P )− dn(b− a) ≤ U(f ;P ) ≤ U(fn;P ) + dn(b− a)

L(fn;P )− dn(b− a) ≤ L(f ;P ) ≤ L(fn;P ) + dn(b− a)
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So
U(f ;P )− L(f ;P ) ≤ U(fn;P )− L(fn;P ) + 2dn(b− a)

Fix ε > 0. As dn −→
n→∞

0, ∃nε ∈ N s.t.

dn <
ε

4(b− a)
∀n ≥ nε

Then for each n ≥ nε (fixed) there exists a partition P = P (ε, n) of [a, b] s.t.

U(fn;P )− L(fn;P ) <
ε

2

For n ≥ nε and P = P (ε, n) as above we get

U(f ;P )− L(f ;P ) < ε

As ε > 0 is arbitrary, this shows that f is Riemann integrable (since it’s Darboux integrable
and bounded). Moreover,∫ b

a
f(x) dx ≤ U(f ;P ) ≤ U(fn;P ) + dn(b− a)

< L(fn;P ) +
ε

2
+
ε

4

≤
∫ b

a
fn(x) dx+

3ε

4

Similarly, ∫ b

a
f(x) dx ≥ L(f ;P ) ≥ L(fn;P )− dn(b− a)

> U(fn;P )− ε

2
− ε

4

≥
∫ b

a
fn(x) dx− 3ε

4

Thus,

=⇒
∣∣∣∣∫ b

a
f(x) dx−

∫ b

a
fn(x) dx

∣∣∣∣ < 3ε

4
∀n ≥ nε

lim
n→∞

∫ b

a
fn(x) dx =

∫ b

a
f(x) dx

§23.2 Lebesgue Criterion

Definition 23.3 (Zero Outer Measure) — A set A ⊆ R is said to have zero outer measure
if for every ε > 0 there exists a countable collection of open intervals {(an, bn)}n≥1 s.t.{

A ⊆
⋃
n≥1(an, bn)∑

n≥1(bn − an) < ε
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Remark 23.4. 1. If A ⊆ R has zero outer measure and B ⊆ A, then B has zero outer
measure.

2. If {An}n≥1 is a sequence of zero outer measure sets, then
⋃
n≥1An has zero outer

measure.

3. If A is a set that is at most countable, then A has zero outer measure.

Proof. 2. Fix ε > 0. For each n ≥ 1, let
{(
a

(n)
m , b

(n)
m

)}
m≥1

be open intervals s.t.

An ⊆
⋃
m≥1

(
a

(n)
m , b

(n)
m

)
∑

n≥1

(
b
(n)
m − a(n)

m

)
< ε

2n

Then
{(
a

(n)
m , b

(n)
m

)}
m,n≥1

is a countable collection of open intervals s.t.


⋃
n≥1An ⊆

⋃
n,m≥1

(
a

(n)
m , b

(n)
m

)
∑

n≥1

∑
m≥1

(
b
(n)
m − a(n)

m

)
<
∑

n≥1
ε

2n = ε

Theorem 23.5 (Lebesgue Criterion)

Let f : [a, b]→ R be bounded. Then f is Riemann integrable if and only if the set

Df = {x ∈ [a, b] : f is not continuous at x}

has zero outer measure.

Proof. We have
Df = {x ∈ [a, b] : ω(f, x) = 0}

where

ω(f, x) = inf
δ>0

ω (f,Bδ(x))

= inf
δ>0

[
sup

y∈Bδ(x)
f(y)− inf

y∈Bδ(x)
f(y)

]
= inf

δ>0
[M (f ;Bδ(x))−m (f ;Bδ(x))]

Then

Df = {x ∈ [a, b] : ω(f, x) > 0}

=
⋃
n≥1

{
x ∈ [a, b] : ω(f, x) ≥ 1

n

}
︸ ︷︷ ︸

:=Fn
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Key Observation: If P = {a = t0 < . . . < tn = b} then

U(f ;P )− L(f ;P ) =
n∑
k=1

[M (f ; [tk−1, tk])−m (f ; [tk−1, tk])] (tk − tk−1)

=
n∑
k=1

ω (f ; [tk−1, tk]) (tk − tk−1)

We will continue with this proof in the next lecture.
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§24 Lec 24: May 21, 2021

§24.1 Lebesgue Criterion (Cont’d)

Proof. (Cont’d) “ =⇒ ” Assume that f is Riemann integrable. We denote

Df = {x ∈ [a, b] : ω(f, x) > 0}

=
⋃
n≥1

{
x ∈ [a, b] : ω(f, x) ≥ 1

n

}

For n ≥ 1, let Fn =
{
x ∈ [a, b] : ω(f, x) ≥ 1

n

}
. To show that Df has zero outer measure, it

suffices to prove that Fn has zero outer measure for all n ≥ 1.
Fix N ≥ 1 and ε > 0. As f is Riemann integrable, there exists a partition P =

{a = t0 < . . . < tn = b} s.t.

U(f ;P )− L(f ;P ) <
ε

N

Let I = {1 ≤ k ≤ n : FN ∩ (tk−1, tk) 6= ∅}. Then

FN ⊆
⋃
k∈I

(tk−1, tk) ∪ P

As P is finite, it has zero outer measure. Thus, it suffices to show that∑
k∈I

(tk − tk−1) < ε

Then,

ε

N
> U(f ;P )− L(f ;P ) =

n∑
k=1

[M (f ; [tk−1, tk])−m (f ; [tk−1, tk])] (tk − tk−1)

≥
∑
k∈I

ω (f ; [tk−1, tk]) (tk − tk−1)

≥ 1

N

∑
k∈I

(tk − tk−1)

which implies ∑
k∈I

(tk − tk−1) < ε

“ ⇐= ” Assume that Df has zero outer measure.

f bounded =⇒ ∃M > 0 s.t. |f(x)| ≤M ∀x ∈ [a, b]

Fix ε > 0 and let α > 0 to be chosen later. Consider

Fα = {x ∈ [a, b] : ω(f, x) ≥ α} ⊆ Df

Df has zero outer measure

}
=⇒ Fα has zero outer measure

=⇒ ∃{(an, bn)}n≥1 s.t.

{
Fα ⊆

⋃
n≥1(an, bn)∑

n≥1(bn − an) < ε
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Let A = [a, b] \ Fα. For any x ∈ A, ω(f, x) < α =⇒ ∃(cx, dx) neighborhood of x s.t.

ω(f ; [cx, dx]) < α

So
[a, b] = Fα ∪A ⊆

⋃
n≥1(an, bn) ∪

⋃
x∈A(cx, dx)

[a, b] is compact

}
which implies there exists n0 ∈ N and J ⊆ A finite s.t.

[a, b] ⊆
n0⋃
k=1

(ak, bk) ∪
⋃
x∈J

(cx, dx)

Let P be a partition of [a, b] formed by the points(
{a, b} ∪

n0⋃
k=1

{ax, bx} ∪
⋃
x∈J
{cx, dx}

)
∩ [a, b]

Say P = {a = t0 < . . . < tn = b}. For any 1 ≤ l ≤ n, we have

[tl−1, tl] ⊆ [ak, bk] for some 1 ≤ k ≤ n0

or
[tl−1, tl] ⊆ [cx, dx] for some x ∈ J

Let

I1 = {1 ≤ l ≤ n : [tl−1, tl] ⊆ [ak, bk] for some 1 ≤ k ≤ n0}
I2 = {1, . . . , n} \ I1

Note that ∑
l∈I1

(tl − tl−1) ≤
n0∑
k=1

(bk − ak) < ε

l ∈ I2, ω(f ; [tl−1, tl]) ≤ ω (f ; [cx, dx]) < α

Then,

U(f ;P )− L(f ;P ) =
n∑
l=1

[M (f ; [tl−1, tl])−m (f ; [tl−1, tl])] (tl − tl−1)

=
∑
l∈I1

[M (f ; [tl−1, tl])−m (f ; [tl−1, tl])] (tl − tl−1)

+
∑
l∈I2

ω (f ; [tl−1, tl]) (tl − tl−1)

Notice that∑
l∈I1

[M (f ; [tl−1, tl])−m (f ; [tl−1, tl])] (tl − tl−1) ≤ 2M
∑
l∈I1

(tl − tl−1) < 2Mε
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So ∑
l∈I2

ω (f ; [tl−1, tl]) (tl − tl−1) < α
∑
l∈I2

(tl − tl−1)

≤ α
n∑
l=1

(tl − tl−1)

= α(b− a)

Choose α < ε
b−a to get

U(f ;P )− L(f ;P ) < 2Mε+ ε

As ε is arbitrary, this shows that f is Darboux integrable, and thus Riemann integrable.

§24.2 Improper Riemann Integrals

Definition 24.1 (Locally Riemann Integrable) — Let −∞ < a < b ≤ ∞. We say that
f : [a, b)→ R is locally Riemann integrable if f is integrable on [a, c] for any c ∈ (a, b).

Definition 24.2 (Improper Riemann Integral) — Let −∞ < a < b ≤ ∞ and f : [a, b)→
R is locally Riemann integrable. In addition,

lim
c→b

∫ c

a
f(x) dx exists in R

We denote it
∫ b
a f(x)dx and we call it the improper Riemann integral of f . In this

case we say that the improper Riemann integral of f converges. If

lim
c→b

∫ c

a
f(x) dx = ±∞

then we write
∫ b
a f(x)dx = ±∞ and we say that the improper Riemann integral of f

diverges to ±∞.

Remark 24.3. One can make a similar definition if −∞ ≤ a < b <∞ and f : (a, b]→ R or if
−∞ ≤ a < b ≤ ∞ and f : (a, b)→ R.

Theorem 24.4

Let −∞ < a < b < ∞ and let f : [a, b) → R be locally Riemann integrable and

bounded. Then the improper Riemann integral
∫ b
a f(x)dx converges. Moreover, any

extension f̃ : [a, b]→ R of f to [a, b] is Riemann integrable and∫ b

a
f̃(x) dx =

∫ b

a
f(x) dx
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Proof. Let f̃ : [a, b]→ R be an extension of f to [a, b]. As f is bounded, ∃M > 0 s.t.∣∣∣f̃(x)
∣∣∣ ≤M ∀x ∈ [a, b]

For c ∈ (a, b),

U ba(f̃) = U ca(f̃) + U bc (f̃) =

∫ c

a
f(x) dx+ U bc (f̃) (*)

Lba(f̃) = Lca(f̃) + Lbc(f̃) =

∫ c

a
f(x) dx+ Lbc(f̃)

=⇒ U ba(f̃)− Lba(f̃) = U bc (f̃)− Lbc(f̃)

U bc (f̃) ≤M(b− c)∣∣∣Lbc(f̃)
∣∣∣ ≤M(b− c)

 =⇒ U ba(f̃)− Lba(f̃) ≤ 2M(b− c)︸ ︷︷ ︸
c→b−→0

This shows that f̃ is Riemann integrable. Moreover, by (*),∫ b

a
f̃(x) dx = lim

c→b

∫ c

a
f(x) dx

Thus, the improper Riemann integral of f converges and∫ b

a
f(x) dx =

∫ b

a
f̃(x) dx
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§25 Lec 25: May 24, 2021

§25.1 Improper Riemann Integrals (Cont’d)

Proposition 25.1

Let −∞ < a < b ≤ ∞ and let f, g : [a, b)→ R be locally Riemann integrable s.t. the
improper Riemann integrals of f and g converge. Then

1. For any α ∈ R, the improper Riemann integral of αf converges and∫ b

a
(αf)(x) dx = α

∫ b

a
f(x) dx

2. The improper Riemann integral of f + g converges and∫ b

a
(f + g)(x) dx =

∫ b

a
f(x) dx+

∫ b

a
g(x) dx

Proof. 1. Consider:

R 3 α
∫ b

a
f(x) dx = α lim

c→b

∫ c

a
f(x) dx = lim

c→b
α

∫ c

a
f(x) dx

(f is locally Riemann integrable) = lim
c→b

∫ c

a
(αf)(x) dx

So the improper Riemann integral of αf converges and∫ b

a
(αf)(x) dx = lim

c→b

∫ c

a
(αf)(x) dx = α

∫ b

a
f(x) dx

2. Consider:

R 3
∫ b

a
f(x) dx+

∫ b

a
g(x) dx = lim

c→b

∫ c

a
f(x) dx+ lim

c→b

∫ c

a
g(x) dx

= lim
c→b

[∫ c

a
f(x) dx+

∫ c

a
g(x) dx

]
= lim

c→b

∫ c

a
[f(x) + g(x)] dx

So the improper Riemann integral of f + g converges and∫ b

a
(f + g)(x) dx = lim

c→b

∫ c

a
(f + g)(x) dx =

∫ b

a
f(x) dx+

∫ b

a
g(x) dx
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Remark 25.2. If f, g : [a, b]→ R are Riemann integrable functions, then

• |f | is Riemann integrable.

• f · g is Riemann integrable.

However, if f, g : [a, b) are locally integrable functions s.t. the improper Riemann integrals of
f and g converge, then

• the improper Riemann integral of |f | need not converge.

• the improper Riemann integral of f · g need not converge.

Example 25.3

Let f, g : (0, 1]→ R, f(x) = g(x) = 1√
x

. The improper Riemann integral of f converges∫ 1

c
f(x) dx =

∫ 1

c

1√
x
dx = 2

√
x
∣∣∣x=1

x=c
= 2− 2

√
c −→
c→0

2

The improper Riemann integral of f · g does not converge∫ 1

c
f(x)g(x) dx =

∫ 1

c

1

x
dx = lnx

∣∣∣x=1

x=c
= − ln c −→

c→0
∞

More generally, we can take f, g : (0, 1]→ R

f(x) =
1

xα
, g(x) =

1

xβ
with 0 < α, β < 1 and α+ β ≥ 1

Lemma 25.4 (Cauchy Criterion)

Let −∞ < a < b ≤ ∞. Let f : [a, b) → R be locally integrable. Then the improper
Riemann integral of f converges if and only if

∀ε > 0 ∃cε ∈ (a, b) s.t.

∣∣∣∣∫ c2

c1

f(x) dx

∣∣∣∣ < ε ∀cε < c1 < c2 < b

Proof. “ =⇒ ” Assume that the improper Riemann integral of f converges. Let

α =

∫ b

a
f(x) dx ∈ R

We have

α = lim
c→b

∫ c

a
f(x) dx

Then ∀ε > 0 ∃cε ∈ (a, b) s.t.∣∣∣∣α− ∫ c

a
f(x) dx

∣∣∣∣ < ε

2
∀cε < c < b
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For cε < c1 < c2 < b we have∣∣∣∣∫ c2

c1

f(x) dx

∣∣∣∣ =

∣∣∣∣∫ c2

a
f(x) dx−

∫ c1

a
f(x) dx

∣∣∣∣
≤
∣∣∣∣∫ c2

a
f(x) dx− α

∣∣∣∣+

∣∣∣∣α− ∫ c1

a
f(x) dx

∣∣∣∣
<
ε

2
+
ε

2
= ε

“ ⇐= ” Fix ε > 0 and let cε ∈ (a, b) s.t.∣∣∣∣∫ c2

c1

f(x) dx

∣∣∣∣ < ε ∀cε < c1 < c2 < b

Let {cn}n≥1 ⊆ (a, b) s.t. cn −→
n→∞

b. Then ∃nε ∈ N s.t. cε < cn < b for all n ≥ nε. In

particular, ∣∣∣∣∫ cm

a
f(x) dx−

∫ cn

a
f(x) dx

∣∣∣∣ =

∣∣∣∣∫ cm

cn

f(x) dx

∣∣∣∣ < ε n,m ≥ nε

=⇒
{∫ cn

a
f(x) dx

}
n≥1

⊆ R is Cauchy and so convergent

Let α = limn→∞
∫ cn
a f(x) dx. To prove that the Riemann integral of f converges, we need

to show that α does not depend on {cn}n≥1. Let {dn}n≥1 ⊆ (a, b) s.t. limn→∞ dn = b.
Consider

xn =

{
ck if n = 2k

dk if n = 2k − 1
for k ≥ 1

Then xn −→
n→∞

b. From the same argument used for the sequence {cn}n≥1, we conclude that{∫ xn
a f(x) dx

}
n≥1

is Cauchy and so convergent. So

lim
n→∞

∫ x2n

a
f(x) dx = lim

n→∞

∫ x2n−1

a
f(x) dx

α = lim
n→∞

∫ cn

a
f(x) dx = lim

n→∞

∫ dn

a
f(x) dx

Theorem 25.5 (Abel Criterion)

Let −∞ < a < b ≤ ∞ and let f, g : [a, b)→ R be locally integrable. Assume that g is
decreasing and limx→b g(x) = 0. Assume also that there exists M > 0 s.t.∣∣∣∣∫ c

a
f(x) dx

∣∣∣∣ ≤M ∀a < c < b

Then the improper Riemann integral of f · g converges.
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Remark 25.6. Compare this with the series version

{an}n≥1 is decreasing with limn→∞ an = 0

∃M > 0 s.t. |
∑n
k=1 bk| ≤M ∀n ≥ 1

}
=⇒

∑
n≥1

anbn converges

Proof. We’ll use the Cauchy Criterion. Fix ε > 0.

lim
x→b

g(x) = 0 =⇒ ∃cε ∈ (a, b) s.t. |g(x)| < ε ∀cε < x < b

Fix cε < c1 < c2 < b and consider
∫ c2
c1
f(x)g(x)dx. Using exercise #6 in HW8, we can find

x0 ∈ [c1, c2] s.t. ∫ c2

c1

f(x)g(x) dx = g(c1)

∫ x0

c1

f(x) dx+ g(c2)

∫ c2

x0

f(x) dx

= g(c1)

[∫ x0

a
f(x) dx−

∫ c1

a
f(x) dx

]
+ g(c2)

[∫ c2

a
f(x) dx−

∫ x0

a
f(x) dx

]
which implies ∣∣∣∣∫ c2

c1

f(x)g(x) dx

∣∣∣∣ ≤ g(c1)

[∣∣∣∣∫ x0

a
f(x) dx

∣∣∣∣+

∣∣∣∣∫ c1

a
f(x) dx

∣∣∣∣]
+ g(c2)

[∣∣∣∣∫ c2

a
f(x) dx

∣∣∣∣+

∣∣∣∣∫ x0

a
f(x) dx

∣∣∣∣]
< 4Mε

As cε < c1, c2 < b are arbitrary and ε > 0 is arbitrary, we conclude that the improper
Riemann integral of fg converges.
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§26 Lec 26: May 26, 2021

§26.1 Improper Riemann Integrals (Cont’d)

Exercise 26.1. Show that the improper Riemann integral∫ ∞
0

sinx

x
dx converges

but the improper Riemann integral∫ ∞
0

∣∣∣∣sinxx
∣∣∣∣ dx does not converge

Proof. To show that
∫∞

0
sinx
x dx converges, we have to prove that

lim
M→∞

∫ M

0

sinx

x
dx exists in R

Note that

x 7→

{
sinx
x , x 6= 0

1, x = 0

is continuous on on [0,∞) and so it is Riemann integrable on [0,M ] for each M > 0. For
M > 1, we write ∫ M

0

sinx

x
dx =

∫ 1

0

sinx

x
dx︸ ︷︷ ︸

∈R

+

∫ M

1

sinx

x
dx

Note that f, g : [1,∞) → R, f(x) = sinx and g(x) = 1
x are continuous and so Riemann

integrable on [1,M ] ∀M > 1. Also,

• g is decreasing and limx→∞ g(x) = 0

• In addition, ∣∣∣∣∫ M

1
sinx dx

∣∣∣∣ = |cos 1− cosM | ≤ 2 ∀M > 1

So by the Abel Criterion, the improper Riemann integral
∫∞

1
sin(x)
x dx converges. Moreover,∫ ∞

0

sinx

x
dx = lim

M→∞

∫ M

0

sinx

x
dx =

∫ 1

0

sinx

x
dx+ lim

M→∞

∫ M

1

sinx

x
dx

=

∫ 1

0

sinx

x
dx+

∫ ∞
1

sinx

x
dx

Let’s show that the improper Riemann integral
∫∞

0
| sinx|
x dx diverges to ∞. We’ll use that

|sinx| ≥ 1

2
on

[
kπ +

π

6
, kπ +

5π

6

]
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for all k ≥ 0. So∫ ∞
0

| sinx|
x

dx ≥
∑
k≥0

∫ kπ+ 5π
6

kπ+π
6

| sinx|
x

dx

≥
∑
k≥0

1

2
· 1

kπ + 5π
6

·
[(
kπ +

5π

6

)
−
(
kπ +

π

6

)]
≥
∑
k≥0

1

2
· 1

(k + 1)π
· 2π

3
=

1

3

∑
k≥0

1

k + 1
=∞

Proposition 26.1

Let −∞ < a < b ≤ ∞ and let f : [a, b) → R be locally Riemann integrable s.t. the
improper Riemann integral of |f | converges. Then the improper Riemann integral of
f converges and ∣∣∣∣∫ b

a
f(x) dx

∣∣∣∣ ≤ ∫ b

a
|f(x)| dx

Proof. As the improper Riemann integral of |f | converges, by the Cauchy Criterion we
have

∀ε > 0 ∃cε ∈ (a, b) s.t.

∫ c2

c1

|f(x)| dx < ε ∀cε < c1 < c2 < b

As f is locally integrable, f is integrable on [c1, c2] and∣∣∣∣∫ c2

c1

f(x) dx

∣∣∣∣ ≤ ∫ c2

c1

|f(x)| dx < ε ∀cε < c1 < c2 < b

By the Cauchy Criterion, the improper Riemann integral of f converges. Moreover,∣∣∣∣∫ b

a
f(x) dx

∣∣∣∣ =

∣∣∣∣limc→b
∫ c

a
f(x) dx

∣∣∣∣ = lim
c→b

∣∣∣∣∫ c

a
f(x) dx

∣∣∣∣
(f is locally integrable) ≤ lim

c→b

∫ c

a
|f(x)| dx

=

∫ b

a
|f(x)| dx

Definition 26.2 (Absolute Convergence – Integral) — Let −∞ < a < b ≤ ∞ and
f : [a, b)→ R be locally integrable. We say that the improper Riemann integral of f
converges absolutely if the improper Riemann integral of |f | converges.
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Remark 26.3. 1. If the improper Riemann integral of f converges absolutely, then it
converges.

2. The improper Riemann integral of f converges absolutely if and only if

lim
c→b

∫ c

a

|f(x)| dx ∈ R ⇐⇒ ∃M > 0 s.t.

∫ c

a

|f(x)| dx ≤M ∀c ∈ [a, b)

3. If f, g : [a, b)→ R are locally integrable s.t. |f(x)| ≤ |g(x)| ∀x ∈ [a, b) and the improper
Riemann integral of g converges absolutely, then the improper Riemann integral of f
converges absolutely.

4. If f, g : [a, b)→ R are locally integrable and their improper Riemann integrals converge
absolutely, then the improper Riemann integral of f + g converges absolutely.

5. If f, g : [a, b)→ R are locally integrable s.t. f is bounded and the improper Riemann
integral of g converges absolutely, then the improper Riemann integral of f · g converges
absolutely.

§26.2 Continuous 1-Periodic Functions

Definition 26.4 (Convolution) — Let f, g : R → C be continuous functions with
period 1, that is,

f(x+ 1) = f(x) and g(x+ 1) = g(x) x ∈ R

Their convolution f ∗ g : R→ C is defined via

(f ∗ g)(x) =

∫ 1

0
f(y)g(x− y) dy

Claim 1:

(f ∗ g)(x) =

∫ a+1

a
f(y)g(x− y) dy ∀a ∈ R, ∀x ∈ R

This is obviously true if a = k ∈ Z. For y = k + z,∫ k+1

k
f(y)g(x− y) dy =

∫ 1

0
f(k + z)g(x− z − k) dz

(f&g periodic) =

∫ 1

0
f(z)g(x− z) dz = (f ∗ g)(x)
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Next, decomposing a = [a]︸︷︷︸
∈Z

+ {a}︸︷︷︸
∈[0,1)

we see that it suffices to prove the claim for a ∈ (0, 1).

∫ a+1

a
f(y)g(x− y) dy =

∫ 1

a
f(y)g(x− y) dy +

∫ 1+a

1
f(y)g(x− y) dy

=

∫ 1

a
f(y)g(x− y) dy +

∫ a

0
f(z + 1)g(x− z − 1) dz

=

∫ 1

a
f(y)g(x− y) dy +

∫ a

0
f(z)g(x− z) dz

=

∫ 1

0
f(y)g(x− y) dy = (f ∗ g)(x)

Claim 2: f ∗ g is 1-periodic.

(f ∗ g)(x+ 1) =

∫ 1

0
f(y)g(x+ 1− y) dy =

∫ 1

0
f(y)g(x− y) dy = (f ∗ g)(x)

Claim 3: f ∗ g is continuous

|(f ∗ g)(x1)− (f ∗ g)(x2)| =
∣∣∣∣∫ 1

0
f(y) [g(x1 − y)− g(x2 − y)] dy

∣∣∣∣
≤
∫ 1

0
|f(y)| |g(x1 − y)− g(x2 − y)| dy

g continuous on [0, 2] compact =⇒ g is uniformly continuous on [0, 2], and since g is
1-periodic, we conclude that g is uniformly continuous on R. So ∀ε > 0 ∃δ > 0 s.t.

|g(x)− g(y)| < ε ∀ |x− y| < δ

f is continuous on [0, 1] compact =⇒ M > 0 s.t.

|f(x)| ≤M ∀x ∈ [0, 1]

So

|(f ∗ g)(x1)− (f ∗ g)(x2)| ≤
∫ 1

0
M · ε dy = M · ε ∀ |x1 − x2| < δ

Claim 4: f ∗ g = g ∗ f . For z = x− y,

(g ∗ f)(x) =

∫ 1

0
g(y)f(x− y) dy = −

∫ x−1

x
g(x− z)f(z) dz

=

∫ x

x−1
f(y)g(x− y) dy

=

∫ 1

0
f(y)g(x− y) dy

= (f ∗ g)(x)

Claim 5: For all α ∈ C,
(αf) ∗ g = f ∗ (αg) = α(f ∗ g)

Claim 6: If f, g, h are continuous, 1-periodic functions,{
f ∗ (g + h) = f ∗ g + f ∗ h
(f ∗ g) ∗ h = f ∗ (g ∗ h)

Left as exercise!
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§27 Lec 27: May 28, 2021

§27.1 Continuous 1-Periodic Functions (Cont’d)

Definition 27.1 (Approximation to the Identity) — A sequence of continuous, 1-periodic
functions Kn : R → C is called an approximation to the identity if it satisfies the
following:

1.
∫ 1

0 Kn(x) dx = 1 ∀n ≥ 1

2. ∃M > 0 s.t.
∫ 1

0 |Kn(x)| dx ≤M ∀n ≥ 1

3. ∀δ > 0,
∫ 1−δ
δ |Kn(x)| dx −→

n→∞
0.

Remark 27.2. While 1) says that Kn assigns mass 1 to each period, 3) says that this mass is
concentrating at the integers as n→∞.

0 1−1

Theorem 27.3

Let f : R→ C be a continuous, 1-periodic function and let {Kn}n≥1 be an approxima-
tion to the identity. Then

Kn ∗ f
u−→

n→∞
f on R

Proof. Fix x ∈ R.

(Kn ∗ f)(x)− f(x) =

∫ 1

0
Kn(y)f(x− y) dy − f(x)

∫ 1

0
Kn(y) dy

=

∫ 1

0
Kn(y) [f(x− y)− f(x)] dy

=⇒ |(Kn ∗ f)(x)− f(x)| ≤
∫ 1

0
|Kn(y)| |f(x− y)− f(x)| dy

f is continuous and 1-periodic =⇒ f is uniformly continuous.
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Let ε > 0. Then ∃δ > 0 s.t. |f(x)− f(y)| < ε for all |x− y| < δ∫ δ

0
|Kn(y)| |f(x− y)− f(x)|︸ ︷︷ ︸

<ε

dy < ε

∫ δ

0
|Kn(y)| dy

≤ ε
∫ 1

0
|Kn(y)| dy ≤ εM∫ 1

1−δ
|Kn(y)| |f(x− y)− f(x)| dy y=1+z

=

∫ 0

−δ
|Kn(1 + z)| |f(x− z − 1)− f(x)| dz

=

∫ 0

−δ
|Kn(z)| |f(x− z)− f(x)|︸ ︷︷ ︸

<ε

dz

< ε

∫ 0

−1
|Kn(z)| dz ≤ εM∫ 1−δ

δ
|Kn(y)| |f(x− y)− f(x)| dy ≤

∫ 1−δ

δ
|Kn(y)| [|f(x− y)|+ |f(x)|] dy

≤ 2 sup
x∈[0,1]

|f(x)|
∫ 1−δ

δ
|Kn(y)| dy

As
∫ 1−δ
δ |Kn(y)| dy −→

n→∞
0, ∃nε ∈ N s.t.

∫ 1−δ

δ
|Kn(y)| dy < ε

2‖f‖∞ + 1

So collecting our estimates, we get

|(Kn ∗ f)(x)− f(x)| ≤ 2εM + ε ∀x ∈ R, ∀n ≥ nε

As ε > 0 is arbitrary, we get Kn ∗ f
u−→

n→∞
f .

§27.2 Fourier Series

Definition 27.4 (Orthonormal Family) — For n ∈ Z, let en(x) = e2πinx = cos(2πnx) +
i sin(2πnx). Note en : R→ C is continuous, 1-periodic.∫ 1

0
en(x) dx =

{
1, n = 0

0, n 6= 0

So ∫ 1

0
en(x)em(x) dx =

∫ 1

0
en−m(x) dx =

{
1, n = m

0, n 6= m

=⇒ {en}n≥1 form an orthonormal family.
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Definition 27.5 (Trigonometric Polynomial) — A trigonometric polynomial takes the
form ∑

|n|≤N

cnen(x)

where cn ∈ C for all |n| ≤ N .

Definition 27.6 (Fourier Series) — Given a continuous, 1-periodic function f : R→ C,
we define its nth Fourier coefficient via

f̂(n) =

∫ 1

0
f(x)en(x) dx =

∫ 1

0
f(x)e−2πinx dx

The Fourier series of f is given by
∑

n∈Z f̂(n)en(x).

Question 27.1. Can we recover f from its Fourier series?

If f ∈ C2, then ∑
n∈Z

f̂(n)en(x)
u−→

n→∞
f(x)

In 1966, Carleson proved that the Fourier series of an integrable function converges pointwise
to f outside a set of measure zero.
For N ≥ 0, let

SN (f)(x) =
∑
|n|≤N

f̂(n)en(x) =
∑
|n|≤N

∫ 1

0
f(y)en(y) dy · en(x)

=
∑
|n|≤N

∫ 1

0
f(y)en(x− y) dy

=

∫ 1

0
f(y)

 ∑
|n|≤N

en

 (x− y) dy

=

f ∗
 ∑
|n|≤N

en

 (x)

For N ≥ 0, let DN =
∑
|n|≤N en denote the Dirichlet Kernel. Note that∫ 1

0
DN (x) dx =

∑
|n|≤N

∫ 1

0
en(x) dx = 1 ∀N ≥ 0

{DN}N≥0 do not form an approximation to the identity since∫ 1

0
|DN (x)| dx −→

N→∞
∞
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We have

DN =
∑
|n|≤N

en

(e1 − 1)DN =
N+1∑

n=−N+1

en −
N∑

n=−N
en = eN+1 − e−N

=⇒ DN =
eN+1 − e−N

e1 − 1
(1)

In addition,

DN (x) =
e2πi(N+1)x − e−2πiNx

e2πix − 1
=
eπix

(
e2πi(N+ 1

2)x − e−2πi(N+ 1
2)x
)

eπix (eπix − e−πix)

=
sin
(
2π
(
N + 1

2

)
x
)

sin(πx)

Also, ∫ 1

0
|DN (x)| dx ≥

∫ 1

0

∣∣sin (2π (N + 1
2

)
x
)∣∣

πx
dx

=
y=2π(N+ 1

2)x

∫ 2π(N+ 1
2)

0

| sin(y)|
π · y

2π(N+ 1
2)
· dy

2π
(
N + 1

2

)
=

1

π

∫ 2π(N+ 1
2)

0

| sin(y)|
y

dy −→
N→∞

∞

The average of the Dirichlet kernels do form an approximation to the identity. For N ≥ 1,

let FN =
D0+...+DN1

N denote the Fejer Kernels. Note that∫ 1

0
FN (x) dx =

1

N

N−1∑
k=0

∫ 1

0
Dk(x) dx = 1 N ≥ 1

We will show that FN ≥ 0 and so

•
∫ 1

0 |FN (x)| dx =
∫ 1

0 FN (x)dx = 1 ∀N ≥ 1

• ∀δ > 0,
∫ 1−δ
δ |FN (x)| dx −→

N→∞
0

Consequently, we obtain the following

Theorem 27.7

If f : R→ C is a continuous, 1-periodic function, then

FN ∗ f
u−→

N→∞
f on R

if and only if

σ(f) =
1

N

N−1∑
k=0

SN (f)
u−→

N→∞
f on R
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Corollary 27.8

If f : R→ C is a continuous, 1-periodic function, with f̂(n) = 0 ∀n ∈ Z, then f ≡ 0.

Corollary 27.9

Every continuous, 1-periodic function can be approximated uniformly by trigonometric
polynomials.
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§28 Lec 28: Jun 2, 2021

§28.1 Fourier Series (Cont’d)

Recall that for n ∈ Z we define the character en : R→ C

en(x) = e2πinx

For a continuous, 1-periodic function f : R→ C, we define its nth Fourier coefficient via

f̂(n) =

∫ 1

0
f(x)en(x) dx =

∫ 1

0
f(x)e−2πinx dx ∀n ∈ Z

and the partial Fourier series

[SN (f)] (x) =
∑
|n|≤N

f̂(n)en(x) ∀N ≥ 0

We observed SN (f) = f ∗DN where DN denotes the Dirichlet kernel

DN =
∑
|n|≤N

en ∀N ≥ 0

Using

DN =
eN+1 − e−N

e1 − 1
(1)

We obtained the explicit formula

DN (x) =
sin
(
2π
(
N + 1

2

)
x
)

sin(πx)

and computed ∫ 1

0
|DN (x)| dx −→

N→∞
∞

In particular, {DN}N≥1 do not form an approximation to the identity. Instead, we define
the Fejer Kernel

FN =
D0 + . . .+DN−1

N
∀N ≥ 1

So

σ(f) = f ∗ FN =
1

N

N−1∑
n=0

f ∗Dn =
1

N

N−1∑
n=0

Sn(f)

Claim 28.1. {FN}N≥1 form an approximation to the identity and thus σ(f)
u−→

n→∞
f for

any continuous, 1-periodic f : R→ C.

Proof. First, we have∫ 1

0
en(x) dx =

∫ 1

0
cos (2πnx) dx+ i

∫ 1

0
sin (2πni) dx =

{
1, n = 0

0, n 6= 0
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we get ∫ 1

0
DN (x) dx =

∑
|n|≤N

∫ 1

0
en(x) dx = 1 ∀N ≥ 0

and so ∫ 1

0
FN (x) dx =

1

N

N−1∑
n=0

∫ 1

0
Dn(x) dx = 1 ∀N ≥ 1

Net, we compute an explicit formula for FN

NFN = D0 + . . .+DN−1

(1)
=
e1 − e0

e1 − 1
+
e2 − e−1

e1 − 1
+ . . .+

eN − e−N+1

e1 − 1

=
(e1 + e2 + . . .+ eN )− (e0 + e−1 + . . .+ e−N+1)

e1 − 1

=
(e1 − 1) (e1 + e2 + . . .+ eN )− (e1 − 1) (e0 + e−1 + . . .+ e−N+1)

(e1 − 1)2

Notice that

(e1 − 1) (e1 + . . .+ eN ) = e2 + . . .+ eN+1 − e1 − . . .− eN = eN+1 − e1

(e1 − 1) (e0 + . . .+ e−N+1) = e1 + . . .+ e−N+2 − e0 − . . .− e−N+1 = e1 − e−N+1

So

NFN (x) =
eN+1(x) + e−N+1(x)− 2e1(x)

(e2πix − 1)2

=
e1(x)

(
e2πiNx + e−2πiNx − 2

)
e1(x) (eπix − e−πix)2

=
2 (cos(2πNx)− 1)

[2i sin(πx)]2

=

[
sin(πNx)

sin(πx)

]2

which implies

FN (x) =
1

N

[
sin(πNx)

sin(πx)

]2

≥ 0 ∀N ≥ 1

Thus, ∫ 1

0
|FN (x)| dx =

∫ 1

0
FN (x) dx = 1 ∀N ≥ 1

Lastly, we have to verify that ∀0 < δ < 1∫ 1−δ

δ
|FN (x)| dx −→

N→∞
0

Fix δ > 0. Then
δ ≤ x ≤ 1− δ =⇒ πδ ≤ πx ≤ π − πδ
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=⇒ ∃cδ > 0 s.t.
|sin(πx)|2 ≥ cδ ∀x ∈ [δ, 1− δ]

So ∫ 1−δ

δ
|FN (x)| dx =

1

N

∫ 1−δ

δ

∣∣∣∣sin(πNx)

sin(πx)

∣∣∣∣2 dx
≤ 1

N

∫ 1−δ

δ

1

cδ
dx

=
1

N

1− 2δ

cδ
−→
N→∞

0

This proves that {FN}N≥1 form an approximation to the identity.

§28.2 Topology Addendum

Lemma 28.1

Let (X, d) be a metric space. A set A ⊆ X is dense in X if and only if A ∩W 6= ∅ for
every non-empty open set W ⊆ X.

Proof. “ =⇒ ” Let A ⊆ X be such that A = X. Assume, towards a contradiction that
∃∅ 6= W = W̊ ⊆ X s.t.

A ∩W = ∅ =⇒ W ⊆ cA

=⇒ W = W̊ ⊆ ˚̂cA =
c
(A) = cX = ∅

which is a contradiction as W 6= ∅.
“ ⇐= ” Assume, towards a contradiction, that

A 6= X =⇒
c
(A) 6= ∅
c
(A) =

˚̂cA

}
=⇒ ˚̂cA 6= ∅

which implies
∃x ∈ cA and ∃r > 0 s.t. Br(x) ⊆ cA

So Br(x)︸ ︷︷ ︸
6=∅ open

∩A 6= ∅ – contradiction!

Theorem 28.2

Let (X, d) be a complete metric space. Then X has the property of Baire, that is, for
every sequence {An}n≥1 of open dense sets we have

⋂
n≥1

An = X
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Proof. Using the lemma, it suffices to show⋂
n≥1

An ∩W 6= ∅ ∀∅ 6= W = W̊ ⊆ X

Fix ∅ 6= W = W̊ ⊆ X.

A1 = x =⇒ A1 ∩W 6= ∅ =⇒ ∃x1 ∈ A1 ∩W︸ ︷︷ ︸
open

=⇒ ∃0 < r1 < 1 s.t.

Kr1(x1) = {y ∈ X : d(y, x1) ≤ r1} ⊆ A1 ∩W

A2 = X =⇒ A2 ∩Br1(x1) 6= ∅ =⇒ ∃x2 ∈ A2 ∩Br1(x1)︸ ︷︷ ︸
open

=⇒ ∃0 < r2 <
1

2
s.t.

Kr2(x2) ⊆ A1 ∩Br1(x1)

Proceeding inductively, we find a sequence {xn}n≥1 ⊆ X and {rn}n≥1 s.t.{
0 < rn <

1
n ∀n ≥ 1

Krn+1(xn+1) ⊆ An+1 ∩Brn(xn) ⊆ Krn(xn) ∀n ≥ 1

Note that {Krn(xn)}n≥1 is a sequence of nested closed sets whose diameters decrease to
zero. As (X, d) is complete, we find⋂

n≥1

Krn(xn) = {x}

for some x ∈ X. In addition,

{x} =
⋂
n≥1

Krn(xn) ⊆ A1 ∩W ∩
⋂
n≥2

An ∩Brn−1(xn−1) ⊆

⋂
n≥1

An

 ∩W
which implies

(⋂
n≥1An

)
∩W 6= ∅.

Lemma 28.3

Let (X, d) be a metric space. Then the following are equivalent:

1. For every {An}n≥1 of open dense sets we have
⋂
n≥1An = X.

2. For every {Fn}n≥1 of closed sets with empty interiors, we have

˚̂⋃
n≥1

Fn = ∅

Proof. Left as exercise.
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§29 Lec 29: Jun 4, 2021

§29.1 Topology Addendum (Cont’d)

Lemma 29.1

Let (X, d) be a metric space that has the Baire property. If ∅ 6= W = W̊ ⊆ X, then
W has the Baire property.

Proof. Fix ∅ 6= W = W̊ ⊆ X. Let {Dn}n≥1 be open dense sets in W .
Dn open in W =⇒ ∃Gn open in X s.t. Dn = Gn ∩W open in X as Gn and W are open.
Dn dense in W =⇒ Dn ∩W = W =⇒ W ⊆ Dn =⇒ W ⊆ Dn.
Define An = Dn ∪

c
(W ) open in X.

An = Dn ∪
c
(W ) = Dn ∪

c
(W ) = Dn ∪

c
(W̊ ) ⊇W ∪ c

(W ) = X

Thus {An}n are dense open sets in X and as X has the Baire property,

⋂
n≥1

An = X

Then,

X =
⋂
n≥1

An =
⋂
n≥1

[
Dn ∪

c
(W )

]
=

⋂
n≥1

Dn

 ∪ c
(W ) =

⋂
n≥1

Dn ∪
c(
W̊
)

which implies

W =

⋂
n≥1

Dn ∪
c(
W̊
) ∩W

=
[⋂

n≥1Dn ∩W
]
∪
[c(

W̊
)
∩W

]
W̊ ⊇ W̊ = W =⇒

c(
W̊
)
⊆ cW =⇒

c(
W̊
)
∩W = ∅


=⇒

⋂
n≥1Dn ∩W = W i.e.

⋂
n≥1Dn is dense in W .

Theorem 29.2

Let (X, d) be a metric space with the Baire property. Let fn : X → R be continuous
function that converges pointwise to a function f : X → R. Then the set

C = {x ∈ X : f is continuous at x} is dense in X

Proof. We can observe that it suffices to prove the theorem under the additional hypothesis

|fn(x)| ≤ 1 ∀x ∈ X ∀n ≥ 1
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Indeed, if {fn}n≥1 is as in the theorem, then we consider

φ : R→ (−1, 1), φ(x) =
x

1 + |x|
continuous, bijective, with the inverse φ−1(y) =

y

1− |y|

So φ ◦ fn : X → (−1, 1) is continuous and |φ ◦ fn(x)| ≤ 1 for all n ≥ 1 and x ∈ X. Also,
fn −→

n→∞
f pointwise =⇒ φ ◦ fn −→

n→∞
φ ◦ f pointwise. If the theorem holds with the

additional uniform boundedness hypothesis, we get

{x ∈ X : φ ◦ f is continuous at x}
{x ∈ X : f is continuous at x}

}
is dense in X

So without the loss of generality, we assume

|fn(x)| ≤ 1 ∀n ≥ 1 ∀x ∈ X (1)

Then,

C = {x ∈ X : f is continuous at x}
= {x ∈ X : ω(f, x) = 0}

=
⋂
n≥1

{
x ∈ X : ω(f, x) <

1

n

}
︸ ︷︷ ︸

=:Gn open in X

=
⋂
n≥1

Gn

As X has the Baire property, to prove C = X it suffices to show Gn = X ∀n ≥ 1. Fix
N ≥ 1. We will show that GN =

{
x ∈ X : ω(f, x) < 1

N

}
is dense in X. By a lemma from

last lecture, it suffices to show

GN ∩W 6= ∅ ∀∅ 6= W = W̊ ⊆ X

Fix ∅ 6= W = W̊ ⊆ X. For n ≥ 1 and x ∈ X, we define

un(x) = inf
m≥n

fm(x) and vn(x) = sup
m≥n

fm(x)

Then {un(x)}n≥1 is increasing and {vn(x)}n≥1 is decreasing. As limn→∞ fn(x) = f(x), we
have

lim
n→∞

un(x) = f(x) = lim
n→∞

vn(x) (2)

For n ≥ 1, let

Fn =

{
x ∈ X : vn(x)− un(x) ≤ 1

4N

}
=

{
x ∈ X : sup

m≥n
fm(x)− inf

l≥n
fl(x) <

1

4N

}
=

{
x ∈ X : sup

m,l≥n
[fm(x)− fl(x)] ≤ 1

4N

}

=
⋂

m,l≥n

{
x ∈ X : fm(x)− fl(x) ≤ 1

4N

}
(1)
=

⋂
m,l≥n

(fm − fl)−1

([
−2,

1

4N

])
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fm − fl is continuous ∀m, l ≥ n and
[
−2, 1

4N

]
is closed, so

(fm − fl)−1

([
−2,

1

4N

])
is closed ∀m, l ≥ n

So Fn is closed in X for all n ≥ 1. Also,

X =
⋃
n≥1

Fn by (2)

So
W =

(⋃
n≥1 Fn

)
∩W =

⋃
n≥1(Fn ∩W )

W = W̊ 6= ∅
W has the Baire property

 =⇒ ∃n1 ∈ N s.t.
˚̂

Fn1 ∩W 6= ∅

Let x0 ∈
˚̂

Fn1 ∩W and let δ > 0 s.t. Bδ(x0) ⊆ Fn1 ∩ W . As fn1 is continuous at x0,
shrinking δ if necessary, we may assume

ω(fn1 , Bδ(x0)) <
1

4N

We compute

ω(f, x0) ≤ ω(f,Bδ(x0)) = sup
x∈Bδ(x0)

f(x)− inf
y∈Bδ(x0)

f(y)

= sup
x,y∈Bδ(x0)

[f(x)− f(y)]

≤ sup
x,y∈Bδ(x0)

[vn1(x)− un1(y)]

= sup
x,y∈Bδ(x0)

[vn1(x)− un1(x) + vn1(y)− un1(y) + un1(x)− vn1(y)]

(Bδ(x0) ⊆ Fn1) ≤ 1

4N
+

1

4N
+ sup
x,y∈Bδ(x0)

[un1(x)− vn1(y)]

≤ 1

2N
+ sup
x,y∈Bδ(x0)

[fn1(x)− fn1(y)]

=
1

2N
+ ω(fn1 ;Bδ(x0))

≤ 1

2N
+

1

4N
<

1

N

This proves x0 ∈ Gn ∩W =⇒ GN ∩W 6= ∅. As ∅ 6= W = W̊ ⊆ X was arbitrary, we
conclude GN is dense in X.
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