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This is math 131BH — Honors Real Analysis II, and it is instructed by Professor
Visan. It’s the second class in the undergrad real analysis sequence at UCLA. We meet
weekly on MWF from 10:00 — 10:50 am for online lectures. Similar to 131AH, there
are two textbooks associated to the course, Principles of Mathematical Analysis by
Rudin and Metric Spaces by Copson. You can find the previous analysis lecture notes
along with the other course notes through my github. Please email me if you notice
any significant mathematical errors/typos that needs to be addressed. Thank you, and
I hope you find this helpful for your study!
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§1 ‘ Lec 1: Mar 29, 2021

§1.1 Compactness

[Definition 1.1 (Open Cover) — Let (X,d) be a metric space and let A C X. An\

open cover of A is a family {G;};.; of open sets in X such that
AclJa
el

The open cover is called finite if the cardinality of I is finite. If it’s not finite, the open
cover is called infinite. )

Definition 1.2 (Compactness & Precompactness) — Let (X, d) be a metric space and
let K C X.

1. We say that K is a compact set if every open cover {G;};.; of K admits a finite
subcover, that is,

dn >1and Jiq,...,4, € [ st. K C UGij
j=1

2. We say that a set A C X is precompact if A is compact.
. J

~

Lemma 1.3

Let (X,d) be a metric space and let ) # Y C X. We equip Y with the induced
metric d; : Y XY — R, di(y1,y2) = d(y1,y2). Let K CY C X. The followings are
equivalent:

1. K is compact in (X, d).

2. K is compact in (Y, dy).

J

Proof. 1) = 2) Assume K is compact in (X, d). Let {V;},.; be a family of open sets in
(Y, dl) S.t.

K c|Jvi
icl

For i € I fixed, V; is open in (Y,d;) = 3G; C X open in (X, d) s.t.

Vi=G;,nY
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Then

K CUier Vi CUies Gi
K compact in (X, d)

KCU. G
_U]_l j :>K§
KCY

} = dn>1and Fiy,...,0, € I s.t.

.
s

Gi, | nYy=J(G,nY)=JV,
j=1 j=1

So K is compact in (Y, dy).

2) = 1) Assume K is compact in (Y, d1). Let {G;};; be a family of open sets in (X, d)

s.t.

KC(Uje;Gi)NY =, (GiNnY
K C UiEI G, = (Uzel Z) Uzel( L )
open in Y -
KCY . .
K is compact in (Y, d;)
= In>1and 3iy,...,i, € Ist. K CUj_, (G, nY) CUj_, Gy O

Proposition 1.4

Let (X,d) be a metric space and let K C X be compact. Then K is closed and
bounded.

Proof. Let’s prove K is closed. We’ll show “K is open.
Case 1: °K = (). This is open.
Case 2: °K # (). Let 2 € °K
For y € K let r, = @. Note r, > 0 (since z € °K and y € K).

Note

KgUyeKBT‘y(y) n
open = dn>1and Jy;,...,yp, € K s.t. K C UBTj(yj)
j=1

K is compact
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where we use the shorthand r; = Ty,
Let r = mini<j<, 1; > 0.
By construction, B,(z) N By, (y;) =0 VY1 <j<n.

= B,(x) C°B;(y;) V1<j<n
n ¢ n

— B,(z) € By, () = | UBrw) | €K
j=1 j=1

e o
_, TEK — ‘K =°K
x € °K was arbitrary
Let’s show K is bounded. Note

KgUyeKBl(y) n
open = dn>1and dy1,...,yn € K s.t. K C U Bi(y;)

K compact J=1

For2<j<m,letr; = d(yh@/j) + 1.
Claim 1.1. Bi(y;) C B, (y1)

L

Indeed, if € Bi(y;) = d(x,y;) < 1. By the triangle inequality

d(y1, ) < d(y;,z) + d(y1,y;) <1+d(y1,y;) =r; = x € By;(y1)
So with 7 = maxa<j<y 15,

K C U Bi(y;) € Br(y1)

Proposition 1.5

Let (X, d) be a metric space and let F* C K C X such that F' is closed in X and K is
compact. Then F' is compact.
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Proof. Let {G;};c; be a family of open sets in X s.t.

FQUGi

el
Then
KCFUF ClUje;GiU  °F
~—
open in X -
K compact
= dn >1and Jiy,...,i, € [ s.t.
Kc/_,Gi U°F " "
= ]_1 ’Lj o ) )
g }:>F— UG”UCF ﬂFgUGlj
7=1 7j=1
So F' is compact. I
Corollary 1.6

Let (X, d) be a metric space and let F' C X be closed and let K C X be compact.
Then K N F' is compact.

Proof. K is compact. So

K closed K N F is closed
e
F' closed KNF C K compact

} = K N F is compact

§1.2 Sequential Compactness

Definition 1.7 (Sequential Compactness) — Let (X, d) be a metric space. A set K C X
is called sequentially compact if every sequence {z,},~,; C K admits a subsequence
that converges in K.
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§ 2 ‘ Lec 2: Mar 31, 2021

§2.1 Sequential Compactness (Cont’d)

\

Theorem 2.1 (Bolzano — Weierstrass)

Let (X, d) be a metric space and let K C X be infinite. The following are equivalent:

1. K is sequentially compact.

9 2. For every infinite A C K we have A’ N K # (). y

Proof. 1) = 2) Let A C K be infinite. As every infinite set has a countable subset
we can find a sequence {a},~; € A such that a,, # a, Vn # m. As K is sequentially
compact, 3{ay, },>, subsequence of {a,},~; s.t.

d
ay, — a€ K

n—oo

Claim 2.1. a € A’ < Vr >0 B.(a) N A\ {a} # 0.
Indeed, fix r > 0.

ag,, 4, ¢ = n, € Ns.t. d(a,ar,) <r Yn>n,
n—oo

As ap # apVn # m, Ing > ny s.t. ay, # a. Then ay, € By(a) N A\ {a}. We get
ac ANK.
2) = 1) Let {an},,~; € K. We distinguish two cases:
Case 1: The sequence {a,},~, contains a constant subsequence. That subsequence con-
verges to an element in K.
Case 2: {a,},~, does not contain a constant subsequence. Then A = {a, :n > 1} is
infinite and A C K. So A'NK # (0. Let a € A'N K. Then 3{ay, },~, subsequence of

d
{ant,>1 st ag, —a

Bi(a) N A\ {a} #0
Bmin{%,d(a,akl)}(a> nA \ {a} 7é 0

. ]432>l{71
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Theorem 2.2

Let (X,d) be a metric space and let K C X be compact. Then K is sequentially
compact.

Proof. If K is finite, then any sequence {:rn}n21 C K will have a constant subsequence.
Assume now K is infinite. We will use the Bolzano — Weierstrass theorem. It suffices
to prove that for any infinite A C K we have A’ N K # ().
Note A C K then A’ C K’

— ACK —= AnK=A4
K compact = K closed =— K'C K

We argue by contradiction. Assume A’ = (). Then for x € K we have x ¢ A’ — Jr, >0
st. Br (x)NA\{z} =0. So

K € Uqsek Br.(7)
open — dn>1and Jx1,...,x, € K s.t.
K compact

n
K C U By (xj) where 7 = 1y,
j=1

In particular,

A= (U§:1 B., (mj)) NA=U", [By,(z;) N A]

n
= A < U{w}
By construction, B, (z;) N A C {x;} infinite  j=1
—_———
finite
— Contradiction! So A" # (. O

Proposition 2.3

Let (X,d) be a metric space and let K C X be sequentially compact. Then K is
closed and bounded.

Proof. Let’s show K is closed «—= K = K.
We know K C K. We need to show K C K. Let 1 € K — El{a:,nb}n21 C K s.t.

K sequentially compact == 3{zy, },~, subsequence of {z,},; s.t.

Tk, i>y€K

n—oo
d d _

Ty — T = Xf, —> T — r=yc kK
n—oo n—o0

Limits of convergent sequences are unique

As z € K was arbitrary, we get K C K.

10
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Let’s show K is bounded. We argue by contradiction. Assume K is not bounded. Let
a1 € K.

K not bounded = K ¢ Bi(a1) = Jag € K s.t. d(aj,a2) >1
K not bounded = K & Bii(a,,0,)(a1) = Jaz € K s.t. d(ay,a3) > 1+ d(ay, az)

Proceeding inductively, we find a sequence {an},~; C K s.t. d(a1, ant1) > 1+ d(a1, an).

a2 Qy

a3
ay

By construction,
|d(a1, am) —d(ai,an)| > |n—m| VYn,m>1
By the triangle inequality,
d(an, am) > |d(a1,ayn) — d(ay,am)| > |n—m| VYn,m >1

This sequence cannot have a convergent (Cauchy) subsequence, thus contradiction the
hypothesis that K is sequentially compact. So K is bounded. O

Definition 2.4 (Totally Bounded) — Let (X, d) be a metric space. A set A C X is
totally bounded if for every € > 0, A can be covered by finitely many balls of radius e.

11
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Remark 2.5. 1. A totally bounded = A bounded.
Indeed, taking e =1, 3n > 1 and Jzq,...,z, € X s.t.

A - U Bl(l'j) - Br(xl)

where r = 1 + maxo< <y d(z1, Z;).

2. A bounded =~ A totally bounded.
Consider N equipped with the discrete metric

0,n=m
d(n,m):{l ntm

Then N = By(1), but N cannot be covered by finitely many balls of radius % since
Bi(n) = {n}.

3. On (R",dy), A bounded = A totally bounded. Indeed, A bounded = A C Br(0)
for some R > 0. Bg(0) can be covered by 10° (%)n many balls of radius €.

12
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§3 ‘ Lec 3: Apr 2, 2021

§3.1 Heine — Borel Theorem

/Theorem 3.1
Let (X, d) be a metric space and let K C X. The following are equivalent:

1. K is sequentially compact.

2. K is complete and totally bounded.

- J
Proof. 1) == 2) Let’s show K is complete. Let {z},~; be a Cauchy sequence with
r, € K VYn>1.

K sequentially compact = 3{zy, },; subsequence of {z,},~; s.t.

d
Tk, — Y€K d
n— 00 — Ty — Y E K
. n—o0
{zn},>; is Cauchy

As {xn},~; € K was arbitrary, we get that K is complete.
Let’s show K is totally bounded. Fix ¢ > 0 and a; € K.

e If K C B.(a1), then K is totally bounded.

o If K ¢ B.(a1), then Jas € K s.t. d(ai,as) > ¢

),
o If K C B.(a1) U B:(az), then K is totally bounded.
JUB

o If K¢ B.(ay -(az2), then Jas € K s.t. d(ay,a3) > ¢ and d(ag,a3) > e.

We distinguish two cases:

Case 1: The process terminates in finitely many steps = K is totally bounded.

Case 2: The process does not terminate in finitely many steps. Then we find {a,},~; € K

s.t. d(an,am) > € Vn # m. This sequence does not admit a convergent subsequence,

contradicting the fact that K is sequentially compact.

2) = 1) Let {an},>; € K. K totally bounded = 7 finite and {x§1)}jej C X s.t.
1

K C UJEJl Bl(

(1)

T\
fa} - J )} = dj1 € J1 s.t. Hn aneBl(:L‘g))H:No
Anp>1 =

Let {ag)} . be the corresponding subsequence.
n

K totally bounded = 475 finite and {:cg-z)}' 7 C X s.t.
J€I2

2
K € Ujeq, By(a;”)

(), K

Let {a%z)} . denote the corresponding subsequence.
n_
We proceed inductively. We find that Vk > 1

= djs € Jo s.t. Hn calV e B

13
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° {aﬁlkJrl)}nZl subsequence of {a,(zk)}

n>1

° {a,(lk)}n>1 C B: (x%?) for some xéf) c X.

k

We consider the subsequence {asln)}n>1 of {an}n21.

{aﬁ’}@l:(a@, alV, all, )
{a7(12)}n21:< a?), a§2), a:(f), >

) = @ e )

(k)

For n,m > k the a;”) , a%ﬂ ) belong to the subsequence {an } o1 In particular,
n_

n m n k m k
d(a™ al™) < d(al ),l’(k)) + d(al" ),:rg-k)) <

n m 7

Vn,m >k

> o

This shows {a%n)} is Cauchy and K is complete, so a,(ln) 4y ae K. As {an}, >, was
n>1 n—00 =

arbitrary, we get that K is sequentially compact. O

Lemma 3.2

Let (X,d) be a sequentially compact metric space. Let {G;};.; be an open cover of X.
Then there exists € > 0 such that every ball of radius ¢ is contained in at least one G;.

Proof. We argue by contradiction. Then

VYn>1 3da, € X s.t. Bi(ay,) is not contained in any G;

X is sequentially compact = 3 {ax, },~, subsequence of {a,},~ s.t.
d ‘
ak, — an:UGi = Jdip € [ s.t. a € Gy,
n—o0
il
Gi, open = Ir > 0s.t. By(a) C Gy,

ag,, 40 = Iny(r) € N s.t. d(ag,a,) < gVn > ny

n—oo

(1

Let no(r) s.t. ng > 2,

14
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Claim 3.1. Vn > n, = max{nj,ny} we have Bl% (ar,) € By(a) C G, thefore giving a

contradiction!

Fix z € Bl% (ak,). Then

1 r ror
< _ — — —_- =
d(a,z) < d(z,ay,) + d(ag,,a) < o + 5 < 5 + 5 ="

Theorem 3.3

A sequentially compact metric space (X, d) is compact.

Proof. Let {G;};c; be an open cover of X. Let ¢ be given by the previous lemma. X
sequentially compact = X totally bounded = In > 1 and

Jz1,..., 2, € X st X:U;LZIBE(xj)} . XZCJGi- -
Vi<j<n 3ijelst. Be(z;)C Gy =1 !
Collecting our results so far we obtain
/Theorem 3.4 (Heine — Borel) b
Let (X, d) be a metric space and let K C X. The following are equivalent:
1. K is compact,
2. K is sequentially compact,
3. K is complete and totally bounded,
L 4. Every infinite subset of K has an accumulation point in K. )

I Remark 3.5. In R", K is compact <= K is closed and bounded.

Definition 3.6 (Finite Intersection Property) — An infinite family {F;},.; of closed
sets is said to have the finite intersection property if V7 C I finite we have

() F#0

JjeT

15
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(Theorem 3.7 A

A metric space (X, d) is compact if and only if every infinite family {F;},.; of closed
sets with the finite intersection property satisfies

() Fi#0
el

- J

Proof. “ = 7 We argue by contradiction. Assume 3{F;}, ; closed sets with the finite
intersection property s.t. ﬂie Fi=0

X = C(miel Fl) =Uier °Fi
open ¢ = 3J C I finite s.t. X = | J °F
X compact jeJ

[

— (= U ‘Fy| = ﬂ F; — Contradiction!
jeTJ JjeT

“ <= 7 We argue by contradiction. Assume 3{G;},.; open cover of X that does not

admit a finite subcover.
So VJ C I finite X # ;7 Gj = 0 #Njecs “Gj. So {°Gi};c; is a family of closed
—~—

closed
sets with the finite intersection property. Then

(G #0 = |JGi#X

i€l iel

Contradiction! ]

16
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84 ‘ Lec 4: Apr 5, 2021

§4.1 Continuity

[Definition 4.1 (Continuous Function) — Let (X,dx) and (Y, dy) be two metric spaces.
We say that a function f: X — Y is continuous at a point zg € X if

Ve >0 3§ >0s.t. dx(z,zp) < 0 then dy (f(z), f(xo)) < e
We say f is continuous (on X) if f is continuous at every point in X.

X

Y

- J

Remark 4.2. f : X — Y is continuous at every isolated point in X. Indeed, if g € X is
isolated, then 30 > 0 s.t. B (z9) = {xo}. Then dx(z,z0) < = dy (f(z), f(z0)) =0

Proposition 4.3 A

Let (X,dx), (Y,dy) be two metric spaces and f : X — Y be a function. The following
are equivalent:

1. f is continuous at zg € X.

2. For any {zn},~; € X s.t. o, X, xo we have f(z,) Ay, f(zo).
= n—00 n—oo

- J

Proof. 1) = 2) Let {x,},5; C X s.t. zp X, xo.

n—oo

Let € > 0. f continuous at g = 36 > 0 s.t.

dx(z,m0) <6 = dy (f(z), f(w0)) <e¢

d
Tp — 19 = 3Ing € Ns.t. dx(zn,20) < IVn > ns

n—oo

= dx (f(2n), f(z0)) <€
for each n > ns.
2) = 1) We argue by contradiction. Assume

Jep > 0s.t. Vo >0 dxs € X s.t. dx(xs,20) < I but dy (f(xs), f(x0)) > €0

Letting § = 1 we find {zn},>1 © X st dx(zn,20) < L but dy (f(2n), f(w0)) > €0 —
Contradiction! ]
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(Theorem 4.4 A

Let (X,dx), (Y,dy) be two metric spaces and let f : X — Y be a function. The
following are equivalent:

1. f is continuous.
2. for any G open in Y, f~1(G) = {z € X : f(X) € G} is open in X.

3. for any F closed in Y, f~(F) is closed in X.

1
(
4. forany BCY, f~1(B) C f~4B).

5. for any A C X, f(A) C f(A).

Proof. We will show 1) = 2) = 3) = 4) = 5) = 1).
1) = 2) Let G CY be open.

| 0
Let 9 € f_l(G)

— é(i(;je:ii Y} — Je>0s.t. BY (f(z) C G
f is continuous
= 30> 0s.t. f(Bj (v0)) € BY (f(w0) € G
— B¥(20) C [G) = mo€ [1(Q)

So f~Y@) is open in X.
2) = 3) Let F CY beclosed = “F =Y \ Fis open in Y. By assumption,

f~Y(°F) is open in X

£ CF) = [ HE)] = X\ f1<F>} = S s closedin X
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FROYNF) =N FHE) =X\ fH(F)
3) = 4) Let BCY = B closed in Y. By assumption,

f~1(B) closed in X} . FIB) C F(B) = \(B)

f7HB) 2 f1(B)
4) = 5) Let A C X. Use the hypothesis with B = f(A). We have
ACTTU@) (7)) = J(A) < JA)

5) = 1) We argue by contradiction. Assume Jzg € X s.t. f is not continuous at x.

Then Jeg > 0 and Iz, % xo but dy (f(zn), f(x0)) > €o.

Let A= {z,:n>1}. Then zo € A but f(x) & {f(zn): n>1} = f(A). On the other
hand, we must have

ﬂmng?:ijwweﬂ)
o €A

Contradiction! O

Proposition 4.5

Let (X,dx),(Y,dy),(Z,dz) be metric spaces and assume f : X — Y is continuous at
xo € X and g : Y — Z is continuous at f(zg) € Y. Then go f: X — Z is continuous
at zg.

Proof. Fix e > 0.

g continuous at f(xg) = 30 > 0s.t. dy (y, f(z0)) <d = dz (9(y),9(f(z0))) <€
f continuous at g = In > 0 s.t. dx(z,x0) <n = dy (f(x), f(xg)) < ¢

| Q | @
7 ) €
So if dx (x,x0) < n then dz (g (f(x)),g(f(x0))) < e. O

Exercise 4.1. Let (X, d) be a metric space and let f,g: X — R be continuous at zy € X.
Then f + g, f - g are continuous at xg. If g(zg) # 0 then g : X — R is continuous at zg.

Exercise 4.2. Let (X,d) be a metric space and let fi,...,f, : X — R. Then f =
(f1,---, fn) : X — R™ is continuous at xy € X if and only if f1,..., f, are continuous at
Zo-

Hint: |fi(x) — fiwo)| < da (F(2), f(0)) = /)=y [f5(2) = f(a0)

19



Duc Vu (Spring 2021) 4 Lec 4: Apr 5, 2021

§4.2 Continuity and Compactness

Theorem 4.6

Let (X,dx),(Y,dy) be metric spaces and let f : X — Y be continuous. If K is
compact in X, then f(K) is compact in Y.

Proof. Method 1: Let {G},.; be a family of open sets in Y s.t.

fKcljo = Kgf‘1< Gi> =@

K compact = In >1 and Ji,...,i, € I s.t.

-

KclJrt@ey)=r"(Uc,| = rmclya,
=1 =1

1

j
Method 2: Let’s show f(K) is sequentially compact. Let {yn},~; C f(K).
yn € f(K) = Fan = f(yn) € K

As K is sequentially compact, 3{zy, },~, subsequence of {z,},~; s.t.

dx
T, — To € K d
n—00 = f(xn,) = f(xo) € f(K) O
N——r 00

f is continuous _
=Ykn

20
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§5 ‘ Lec 5: Apr 7, 2021

§5.1 Continuity and Compactness (Cont’d)

Corollary 5.1

Let (X,dx) be a compact metric space and let f : X — R"™ be continuous. Then f(X)
is closed and bounded.

Corollary 5.2

Let (X, dx) be a compact metric space and let f: X — R be continuous. Then there
exists x1,x9 € X s.t.

f(z1) =inf {f(z): x € X} and f(x2) =sup{f(z): z € X}

Proof. f(x) is closed and bounded.

Boundedness = inf f(x) and sup f(x) are well defined
Closedness = inf f(z), sup f(z) € f(x) = f(z) O

Proposition 5.3

Let (X,dx), (Y,dy) be metric spaces s.t. X is compact. Let f: X — Y be bijective
and continuous. Then f~!:Y — X is continuous.

Proof. If suffices to show that for every closed set F' C X, we have

P ={yey: iy e F)

is closed in Y.

But (=) (F) = f(F).

F' closed in X compact = Fcompact .
) ) = f(F) is compact and closed O
f:+ X — Y is continuous

21
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Definition 5.4 (Uniform Continuity) — Let (X,dx), (Y, dy) be metric spaces. We say
that a function f : X — Y is uniformly continuous if

Ve >0 35=46(e) s.t. dx(x,y) <d = dy (f(z), f(y) <e

Compare this with g : X — Y is continuous if

VeeX Ve>0 3d=0(g,2)st. dx(z,y) <d = dy (f(z), f(y)) <e

Remark 5.5. 1. Continuity is defined pointwise. Uniform continuity is a property of a
function on a set.

2. Uniform continuity = continuity.

3. There are continuous functions that are not uniformly continuous.

For example, consider
f:R=R, f(z)=2a>

Letxn:n—i—%,yn:n

1
fon =gl = 7 52

2
|ﬂ%ﬂ—ﬂ%N=<n+1>—ﬂf:2+;é>2

— B

0 )

Theorem 5.6

Let (X,dx),(Y,dy) be metric spaces with X compact. Let f: X — Y continuous.
Then f is uniformly continuous.

22
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Proof. We argue by contradiction. Assume f is not uniformly continuous =— Jeg > 0 s.t.
V6 > 03ws,y5 € X s.t. dx(xs,ys) < 6 but dy (f(2s), f(ys)) > €o.

Let 6 = L to get {Tnt,s1s {Untns1 © X st dx(Tn,yn) < Lbut dy (f(zn), f(yn)) > €0
X compact = I{wy,},>, subsequence of {z,},, s.t.

d
Tk, = zg € X
n—00

By the triangle inequality,

d

<ﬁ§%n:;0 n%’;o
_ f (@) 25 f(o)
f continuous — ”d_;"o
f k) = flxo)
But
g0 < dy (f(zn,), F(yk,)) < dy (f (@, ), f(@0)) +dv (f(@0), f(yk,)) —= O
—0 —0
Contradiction! O

§5.2 Continuity and Connectedness

Theorem 5.7

Let (X,dx), (Y, dy) be metric spaces s.t. X is connected. Let f : X — Y be continuous.
Then f(X) is connected.

Proof. Method 1: Abusing notation we write f : X — f(z). It suffices to show that if
) # B C f(x) is both open and closed in f(z) then B = f(x).
As f is continuous, f~1(B) # 0 is both open and closed in X. But X is connected
which implies f~}(B) = X and f(z) = B.
Method 2: Assume that f(z) is not connected. Then 3) # B; C Y, 30) # By C Y s.t.
f(z) € By U By and
BiNBy=0=BNBy

let
Ay = fYB) #0
Ay = fH(By) #10
Have
f(X) CBiUBy — X C f_l(Bl U Bg) = f_l(Bl) U f_l(BQ) =AU Ay
A NAy = f~H(B) N fH(By) C (BN (Br) = fH(BiN By)
= ) =
Similarly, Ao N A; =0 .
This contradicts that X is connected. O
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\
Corollary 5.8 (Darboux’s Property)

Let (X, dx) be a metric space and let f : X — R be continuous. If A C X is connected
then f(A) is an interval in R.

In particular, if X =R, and a,b € R s.t. a < b and yo lies between f(a) and f(b),
then 3z € (a,b) s.t. f(zo) = yo.

0] S—

Y

- J

I Remark 5.9. There are function that have the Darboux property, but are not continuous.

For example, consider

sin(%),:B;éO

where ¢ € [—1,1]
c, z=0

f:]0,00) = R, f(a:):{

1) AN RANAN .
Yo [l ] [ /-
el |1] VA
| \ . .
a=70 b

Notice f is continuous on (0,00) implies f has the Darboux property on (0, c0).
f has the Darboux property on [0, c0), but is not continuous at z = 0.
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§6.1 Continuity and Connectedness (Cont’d)

Proposition 6.1 b

Let (X,dx) and (Y, dy) be two connected metric spaces. Then (X x Y, d) where
d((z1, 1), (22, 42)) = Vdx (21, 22)2 + dy (y1,y2)?

is a connected metric space. )

Remark 6.2. One could replace the distance d by

di ((z1,91), (22, y2)) = dx (21, 22) + dy (Y1, Y2)
doo ((%1,91), (T2, y2)) = max {dx (z1,22),dy (y1,92)}

Proof. We will use the fact that a metric space is connected if and only if any two points
are contained in a connected subset of the metric space.

A B

So to show X x Y is connected if suffices to show that if (a,b),(c,d) € X x Y, then
there exists C' C X x Y connected s.t. (a,b), (c,d) € C.

QfF------9
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Let f: X — X xY where f(z) = (z,b)
Claim 6.1. f is continuous.

Take § = ¢ in the definition of continuity. As X is connected, f(X) = X x {b} is
connected.

Similarly, g : ¥ — X x Y, ¢g(y) = (¢,y) is continuous and since Y is connected,
g(Y) ={c} x Y is connected.

Finally, f(x) Ng(y) > (¢,b) and so f(x), g(y) are not separated. As the union of two
connected not separated sets is connected we get f(x) U g(y) is connected.

D,

Note (a,b), (c,d) € f(x)Ug(y). O

Definition 6.3 (Path) — Let (X, d) be a metric space. A path is a continuous function
v :10,1] — X. ~(0) is called the origin of the path and (1) is called the end of the
path.

As [0, 1] is compact and connected and -y is continuous, 7 ([0, 1]) is compact and
connected.

Given v : [0,1] — X a path, we define
v~ :[0,1] —» X, v~ (t) = v(1 —t) is a path
Given 71,72 : [0,1] — X paths s.t. y1(1) = v2(0).

71(1) = 72(0)

Y2(1)
71(0)

26
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We define

via

1 (2t ifo<t<i
Y1V e(t) = (22) 1 °
r2t-1) if5<t<1
Proposition 6.4 A
Let (X, d) be a metric space and let A C X. Then 1) <= 2) = 3) where
1. Ja € As.t. Vo € A3y, : [0,1] — A path s.t.
vz(0) = a and (1) =z
2. Vz,y € A3y, , ¢ [0,1] — A path s.t.
Yz,y(0) =z and v; (1) =y
\_ 3. A is connected. )
Proof. 1) = 2) Let =,y € A. By hypothesis, 3v,, 7, : [0,1] — A paths s.t.
Y2(0) =7(0) = a, Y(l)=2, y(1)=y
x
M
a
Y
V2
Then v, V 7y : [0,1] = A is the desired path.
2) = 1)Choose a € A arbitrary.
1) = 3) Given x € A, let A, =, ([0,1]) connected. Note
a € ﬂ A, = no two sets A;, A, are separated
€A

Then A = J,c4 Az is connected. O

Definition 6.5 (Path Connected) — 1If either 1) or 2) holds in the Proposition 6.4, we
say that A is path connected. Note A is path connected implies A is connected.

27



Duc Vu (Spring 2021) 6 Lec 6: Apr 9, 2021

Example 6.6
R? \ Q? is path connected.

A

/2

———----9

v

=

We will show that any (z,y) € R?\ Q? can be joined via path in R? \ Q? to
(Va.v3).
(z,y) ER*\Q? = z¢Qory¢Q

Say z ¢ Q. Then {z} x R C R?\ Q?. Note also that R x {v2} C R?\ Q?. Let
v: [0,1] = R2\ Q% v =1 V 72 where

71 :[0,1] = R2\ Q?, % (t) = (\/§+t(:1; — \@),\@) path
12 [0,1] = RE\ Q@ 72() = (2, V2 + 1y — v2)) path
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Example 6.7
A connected set which is not path connected. Let f :[0,00) — R s.t.

sin (1 T
f(:c)z{ &), =#0

where a € [—1,1] fixed.
Then I'y = {(z, f(x)) : € [0,00)} is connected, but not path connected.

2 f(@)

v

Let’s show I'y is connected. The function g : [0,00) — R?, g(z) = (=, f(x)) is
continuous on (0,00) = ¢ ((0,00)) is connected.

Also, g ({0}) = {(0,a)} is connected. We will show that (0,a) € g ((0,00)) and so
{(0,a)}, g((0,00)) are not separated. Then

I't =g([0,00)) =g ({0}) Ug((0,00)) is connected

To see (0,a) € g(0,00) we need to find x,, — 0 s.t.

()
s | — =a
Tn

1 where arcsina € [_7”, g]

Take Tn = arcsin a+2nm
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Example 6.8 (Cont’d from above)

Now let’s show I'; is not path connected. Assume towards a contradiction that there
exists v : [0,1] — I'y a path s.t.

0= 0.0, 2= (§.0)

Note IT; o : [0,1] — R is continuous
1
(L oy)(0)=0, (io7)(1)=—

Let b € [-1,1] \ {a}. By the Darboux property, 3t, € (0, %) s.t.

1
1

i T
———————— where arcsinb € [—f f}
arcsinb + 2nm

(I 07) (t) = L
As [0, 1] is compact, Jty, — teo € [0,1].
n—oo
v continuous = -y (t,,) — Y(too)
n o

7 () = (b b) =2, 0.0

n—00

= Y(too) = (0,0) ¢ T'¢
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§7.1 Continuity and Connectedness (Cont’d)

Example 7.1

Two connected sets A, B C [—1,1] x [-1,1] s.t. (=1,-1),(1,1) € A, (—-1,1),(1,-1) €
B, AnNB=0. Let f:[-1,1] — [-1,1],
=l <<
2 ST >
flx) = — 58im 0<ac§%
, g<z<l1
Let g: [-1,1] = [-1,1],
Lz —1<2<0
g(x) a:—%smg, 0<z<3
=48, %Sxﬁl

Let

(—

=="-
N
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Example 7.2 (Cont’d from above)
Let’s prove AN B = 0. If

1<2<0, fa)=gla) e
0<z<y, f@)=g) = z=0
%ngl, f(@) = g(z) = =0
Also
f(-)=-1 = (-1,-1)€ 4

Let’s show that A is connected. A similar argument can be used to prove that B is
connected.

We write A = A; U Ay where A = {(z, f(z)): —1 <2 <0} and
Ay = {(z, f(z)) : 0 <x < 1}. Note that h : [-1,1] — R? where h(z) = (z, f()) is
continuous on [—1,0] and (0, 1].

Since [—1,0] and (0, 1] are connected sets, we get that h([—1,0]) = A; and
h ((0,1]) = Ag are connected.

To show that A = A; U Ay is connected, it suffices to show that A; and Ay are not
separated. We will show (0, —%) € A; N As. Tt’s clear that £(0) = —% = (0, —%) €
Ajq. To show that (0, —%) € Ay we need to find a decreasing sequence x,, — 0 s.t.

T 1

1.
f(zn) :xn—§sman§>o 5

We take x,, s.t. sin% =1 < % =5 +2nr = T, = Zjﬁ — 0. Notice that
2 1 1
— _— — ——
fen) = 437~ 355 2

§7.2 Convergent Sequences of Functions

Definition 7.3 (Pointwise Convergence) — Let (X,dx), (Y, dy) be two metric spaces
and let f, : X — Y be a sequence of functions. We say that {f,},~,; converges
pointwise if for all z € X the sequence {f,(x)},~; converges in Y. The limit
lim,, 500 fn(2) = f(x) defines a function f: X — Y.

Remark 7.4. {f,},-, converges pointwise to f if

VeeX Ve>0 3dn(e,z) e Nst. dy (fu(z), f(2)) <e V¥n>n(ex)
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Note that for € > 0 fixed, n(e,-) : X — N can be bounded or unbounded. If it is bounded,
we get the following

(Definition 7.5 (Uniform Convergence) — Let (X,dx), (Y, dy) be metric spaces and
let fr, : X =Y be a sequence of functions. We say that {f},, converges uniformly
to a function f: X — Y if

Ve >0 3n. € Nsit. dy (f(z), fu(z)) <e VYn>nVreX

We denote f, — f.
n— o0

- J

Remark 7.6. Let (X,dx), (Y,dy) be metric spaces, B(X,Y) = {f: X = Y; f is bounded},
d: B(X,Y) x B(X,Y) — R via

d(f,g) = sup dy (f(z),g(x))

zeX

Exercise 7.1. Show that (B(X,Y),d) is a metric space.
Note that f, % f = My=d(fn.f) — 0.

n

“ <= "Ve>0dn.eNst. M, <eVn>n,

= d(fu, f) = Sg;dY (fulx), f(z)) <e ¥Yn>n.

= dy (fn(2), f(x))<e Vn>n. VxeX

13 :> 2
e
fn % J = ¥e>0 3n.€Nst dy (ful2),f(2)) <5 Yn>nVoeX
n o0

9
= supdy (fn(z), f(x)) < = <e Yn>n.

zeX 2
Remark 7.7. 1. Uniform convergence = pointwise convergence

2. Pointwise convergence =4 uniform convergence

fn : [Oa 1] — R, fn(‘r) ="

0, 0<z<1

1, ==

{fn}n>1 converges pointwise : nh_)rrolo fulx) = nh_)ngO " = {

Let

Note f, 7UL> f since
d(fn, f) = sup |fu(z) = f(z)| = sup |2"[=1 > 0

xz€([0,1] z€[0,1) n—00
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Theorem 7.8 (Weierstrass)

Let (X,dx), (Y,dy) be metric spaces and let f,, : X — Y be a sequence of functions
that converges uniformly to a function f : X — Y. If Vn > 1, f, is continuous at
xg € X then f is continuous at xg.

Corollary 7.9

A uniform limit of continuous functions is a continuous function.

Proof. (of theorem) Fix ¢ > 0.

fn igof — In. €Nst. dy (fu(2), f(z) <= Vn>nVoreX

n—

W ™

Fix ng > ne. fn, is continuous at zg
= 30 > 0s.t. if dx(zg,z) <0

then

y (fno (20), fro () <

W ™

Then for x € Bs(xo) we have

dy (f(x), f(w0)) < dy (f(2), fno(2)) + d (fno (), fro(20)) + d (fno (20), f(20))
e € €
S3t3T3Oe
By definition, f is continuous at xg. O
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§8.1 Convergent Sequences of Functions (Cont’d)

/Theorem 8.1 (Dini) R

Let (X,d) be a compact metric space and let f, : X — R be a sequence of continuous
functions that converges pointwise to a continuous function f: X — R. Assume that
{fn},;>1 is monotone in the sense that either {f,(z)},~, is increasing for all z € X or
{fn(2)},>; is decreasing for all € X. Then, N

fn ni)(} fie d(fn, f)=sup|fu(z)— f(z)] — O

zeX n—00

- J

Proof. Assume that {f,},>, is increasing. Then {f — f,},-, is decreasing and for all
x € X we have

lim [f(x) = fu(2)] = inf [f(z) = fu(2)] =0

n—o0 n—oo

Then Ve >0 3n(e,z) € Ns.it. Vn > n(e, z) we have
0< fx) = fulz) < f(@) = fro,(x) <e
As f = fo... is continuous at z, 36(c,z) > 0 s.t.
d(z,y) <bep = |[f(2) = faco(@)] = [F¥) = fa.®)]| <¢

By the triangle inequality, we get
0< f(¥) = freo ) < |[f(2) = froo@)] = [f(¥) = frc @)]] + f(2) = f . (2)

<et+e=2
whenever y € Bs, (). In particular,

0<f(y) = fu(y) < fy) = frea(y) <26 Vn2>mn.,, Vy € Bs, () (*)

Note
X = UIEX B5a,z (:U)

— JJ C N finite and 3{z;}._, € X
X compact } J < e an {%}JGJ

st. X =Ujcgs Bs,(z;) and where §; = (¢, z;).
Let n. = maxjey n(e,z;). Fixn >n. and v € X. Asw € X = ;7 Bs;(zj) = j€T
s.t. x € Bs, (). By (*), we have
0 < f(x) = falr) <2
As x € X was arbitrary we get

d(f, fn) <2 Vn > ne O

I Remark 8.2. The compactness of X is necessary in Dini’s theorem.
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Example 8.3
fn:(0,1) = R, f(z) = 2™ continuous

frs1(2) < falz) Yn>1 Vo€ (01)
fn(z) = 0 Vxe(0,1)

Let f:(0,1) = R, f(x) =0 Vz € (0,1). It’s continuous. But

d(fu f) = sup 2" =1 5 0 = fo > f

z€(0,1) n—00 n—00
Note that f, : [0,1] = R, f,(z) = 2™ continuous, {f,},~, is decreasing and converge

pointwise to f:[0,1] — R,

0, 0<z<l1 o .
f(z) = {1 - alc which is not continuous
) T =

This also shows that the continuity of the limit function is necessary in Dini’s theorem.

I Remark 8.4. Monotonicity is necessary in Dini’s theorem.

Example 8.5
fn :10,1] = R is continuous. {f,},~; converges pointwise to f : [0,1] = R, f(z) =
0Vz € [0, 1] figure here f is continuous. But

d(far f) = sup |fal@)| =1 = 0 => fo - f

z€[0,1] Nn—00 n—00

Note that {f,},; is not monotone!

§8.2 Space of Functions
Fix a,b € R, a < b. We define
C (la,b]) = {f : [a,b] — R; f is continuous}
We equip C ([a,b]) with the metric d : C ([a,b]) x C ([a,b]) — R, given by

d(f,9) = sup [f(z) - g(z)]
z€la,b]
Then (C ([a,b]),d) is a metric space.
Completeness: Let {fn},,~; € C ([a,b]) be Cauchy. So Ve > 0 In. € Ns.t. d(fy, fm) <€
Vn,m > ne B
= |fu(z) — fm(z)| <e VYn,m >n. Vzx € |a,b

36



Duc Vu (Spring 2021) 8 Lec 8: Apr 14, 2021

So {fu(®)},>; is Cauchy Vz € [a,b]. As R is complete,

Vr € [a,b]  fo(z) — f(x) €R

n—oo

This defines a function f : [a,b] — R. Recall that for all € > 0, there exists n. € N s.t.

|fn(z) — f(x)]| <e VYn>n. Vzé€la,b
= d(fn,f) <e Vn>ng

So fn _% f. By Weierstrass, f € C ([a,b]). Thus (C ([a,b]),d) is a complete metric space.
Compactness: Note that (C ([a, b]) ,d) is not bounded and so not compact.

Example 8.6
fn i la,b] = R, fr(z) =n for all z € [a,b].

Connectedness: (C ([a,b]),d) is path connected and so connected.
Let f,g € C ([a,b]). Define v : [0,1] — C ([a,b]) via y(t) = f+t(g— f). Note Vt € [0, 1],
~(t) € C([a,b]) and
10 =f ~1)=yg
To see that v is a path we compute
d(v(t),v(s)) = e, (5 2) = (s 2)]
z€|a,

= sup [t —s|[g(z) — f(2)]
z€[a,b]

=t —sld(g,f) — 0
~—— [t—s|—0
eRr

So « is a continuous function and so a path.
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§9.1 Arzela—Ascoli Theorem
For a,b € R with a < b, we define
C ([a,b]) ={f : [a,b] = R; f continuous}
We equip C ([a, b]) with the uniform metric
d(f,g) = sup [f(x) - g(z)|

z€la,b]

We showed that (C'([a,b]),d) is a complete, connected metric space, but it’s not com-
pact.

(Definition 9.1 (Equicontinuity) — We say that a set F C C ([a, b]) is equicontinuous
if

Ve >0 3d(e) >0st. |f(z)— fly)| <e Vz,y € la,b] with |z —y| < d(e)

and for all f € F.
- J

Note: For a fixed function f € F C C ([a,b]), we have that f is uniformly continuous (since
f is continuous on [a, b] compact) which means for all € > 0, there exists d(g, f) > 0 s.t.

[f(@) = fly)l <e Va,y € la,b] with |z —y[ <(e, f)

Note that for an equicontinuous family F, é. can be chosen uniformly for f € F.

Definition 9.2 (Uniformly Bounded) — We say that a set 7 C C ([a, b]) is uniformly
bounded if IM > 0 s.t. |f(x)] < M Vz € [a,b] Vf € F.

Note: For a fixed f € F C Cla,b] we have that f ([a,b]) is bounded (since f continuous
and [a, b] compact which implies f ([a,b]) is compact and so bounded). So IMy > 0 s.t.
|f(x)] < My Va € [a,b]. For a uniformly bounded family F, we can choose the bound M
uniformly for f € F.

4 )
Theorem 9.3 (Arzela-Ascoli)
Let F C C ([a,b]). The following are equivalent:
1. F is uniformly bounded and equicontinuous.
2. Every sequence in F admits a convergent subsequence. )

Caution: We cannot guarantee that the limit of the convergent subsequence belongs to F,
unless F is closed in C ([a,b]). If F is closed in C ([a,b]), then the theorem becomes

F is compact <= F is uniformly bounded and equicontinuous
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Proof. 2) = 1)
Claim 9.1. F is totally bounded.
Fix e > 0. Let f1 € F.

If 7 C B.(f1) then F is totally bounded
If 7 ¢ B.(f1) then 3fs € F s.t. d(f1, f2) > ¢
If 7 C B:(f1) U B:(f2) then F is totally bounded

d(f1, f3)
d (fa2, f3)

If the process terminates in finitely many steps, then F is totally bounded. Otherwise, we
find {fn},,>1 C F s.t. d(fn, fm) = €Vn # m. This sequence does not admit a convergent
subsequence, leading a contradiction.

Let’s show that F is uniformly bounded. As F is totally bounded, In > 1 and
3f1, .-, fan € F s.t.

It F g Bg(fl) U B&‘(f2) then dfs € F s.t. { i

U f] CB fl)

where r = 1 + maxao<j<n, d (f1, f;). In partlcular, for all f € F,
d(f, fr)<r
f1 is continuous on compact [a,b] = IMy, > 0 s.t.
[fi(@)| < My, Va € [a,b]
So for f e F
[f@) < [f(@) = fil@)] + (@) < d(f, fr) + Mg <r+ Mgy Vo€ [a,b]

So F is uniformly bounded.
Let’s show that F is equicontinuous. Let € > 0. As F is totally bounded, 3n > 1 and

3f1,. .. fu € F sit.
U Be(f;)

For each 1 < j <mn, f; is uniformly continuous on [a,b]. So 39;(¢) > 0 s.t.
5 :
5@~ )] < & Ve e ] with [z -y < 5,(6)
Let 6. = minj<j<y, dj(g) > 0.

Fix fe F = 31 <j<nst. fe€B:(fj). Then for 2,y € [a,b] with [z —y| < I we
have

[f(@) = F)] < |f(2) = f3 (@) + | f5(x) = F;)] + £ () = f()]
< 2d(f, f;) + | fi(2) = f;(y)]
< %6 + % =€
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This shows F is equicontinuous.
1) = 2) Let {fn},>; € F. As F is uniformly bounded,

dM >0st. [f(z)| <M Veelab VfeF

In particular, |f,(z)| < M Vz € [a,b] Vn > 1.
Let {rp},>; denote an enumeration of the rationals in [a, b]. As {fn(r1)},>; € R is bounded

by M, EI{ ,ﬁ”}ml subsequence of {f,}, 5, s.t. { T(Ll)(rl)}n>1 converges. {f,ﬁ”(rg)} -

> > n>1 "
R is bounded by M = 3 {fT(L2)} subsequence of {f,gl)} . S.t. {f7§2) (TQ)}

converges. "=
(k+1)

Proceeding inductively we find Vk > 1 { n } . is a subsequence of { fT(Lk)} . and
(k) } - -
{fn (rx) _, converges.

We consider { f,(ln)}

n>1 n>1

subsequence of {f,}, -
n>1 -

For n,m > k, fT(Ln), f&m) are elements in {fT(Lk)} " So {fT(Ln)} ., converges at ri.

Caution: The convergence is not uniform in k.
Fix ¢ > 0. As F is equicontinuous, 36 > 0 s.t.

@) = ) <5 Veyelade—yl <6V F

In particular,
€
[ful@) = fay)l <5 Vay €lab] o -yl <4, Vn=>1 (*)

Let ri,...,rxn € QN[a,b] st. a=r9g<r; <...<ry <ryt1 =band
|7jp1 — 15 <6 0<j<N
Note N ~ wf;b'. For each 1 < j < N, Inj(e) € N s.t.
£ ) = £ <5 Ynem =g (e)
Let n. = maxj<;j<n n;(e). Note

n

SO0~ £ )| <5 Yemzne VISG<N ()

Let x € [a,b] = 31 < j < N s.t. |[vr—rj| <d. Then

@) = £ @)| < | £0G@) = (50| + |15 () = £ )| + | 50 ) = 150 (@)

By(*)and(**)<2‘§+gze Vn, m > ne

So { f,(Ln)} is uniformly Cauchy and so uniformly convergent. O

n>1

I Remark 9.4. One can replace [a, b] by any other compact metric space (X, d).
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§
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10.1 Arzela-Ascoli Theorem (Cont’d)

Remark 10.1. The compactness of the set on which the functions are defined is necessary in
Arzela-Ascoli.

Example 10.2

F={fR=>R;|f(z)— fy)| < |z —y| Vz,y € R and sup,p |f(z)| < 1}. Note Fis
equicontinuous and uniformly bounded. Let f: R — R, f(z) = 7 J:IQ

Claim 10.1. f € F.

Indeed,
1
sup |f(z)| =sup —— =1
xG]R‘ (@) zeR 1 + 22
Moreover, for x,y € R
1 1 ‘xQ—y2‘
Cz—yl- |z +y|
(1+22)(1+y%)
|| ly|
< .
Skl gt
S~ N\
<1 <1
=3 >3
< |z —yl

So f e F.
For n > 1, let fp, : R =» R, fu(z) = f(x —n). Note f,, € F since sup,eg |fn(z)] =

1
SupxeR m =1.

|fn(2) = fny)| = |f(@ —n) = fly —n)| < |[(x —n) — (y — n)|
= |z —y|

Note that {fn}n21 converge pointwise to f: R — R, f(z) = 0 since lim,, o fn(z) =
limg, o m = 0. However, { fn}n21 does not admit a subsequence that converges

uniformly since Vn > 1

n—0o0

d(fn, f) =sup|fa(z)| =1 =~ 0
z€ER

I Remark 10.3. Uniform boundedness is necessary in Arzela-Ascoli.
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Example 10.4

F={f: [0,1] — R; fis continuous and sup |f(x)| < 1}.
——

z€[0,1]
compact

uniformly bounded

Claim 10.2. F is not equicontinuous.

Forn > 1,let f, :[0,1] = R, f,(z) = sin(nz). Note f,, € F. Let x, = 3Z, y,, = L.

2n
T

Then |z, —yn| = £ — 0 but

|fn(l'n) - fn(yn)| =2
So { fn}n21 is not equicontinuous = F is not equicontinuous.
Claim 10.3. {f,},~; does not admit a convergent subsequence.

Assume, towards a contradiction, that there exists a subsequence { fkn}n21 of
{fn}n>1 that converges uniformly to f : [0,1] — R. By Weierstrass,
fec(o,1])
e, (0)=0 VYn>1

o) — 0 — Ve >035>0s.t. |f(z)<eVO<z<§
fin©) — f0) [ = TO=

fr, — f = In. €Ns.t. d(fr,, f) <e Vn>n.. In particular, for 0 < z < § and

n—oo
n > ne we have

| fn ()] < [ (@) = F(@)] + | f(2)] < d(frps /) +6<2e

Choosing ¢ < % and N large so that N > M1 and 5 < 55:% we find

1= ‘ka <%>‘ <2 <1 Contradiction!

§10.2 The oscillation of a Real Function

(Definition 10.5 (Oscillation of a Function) — Let (X, d) be a metric space and let\
f: X — R be a function. For () # A C X, the oscillation of f on A is

w(f, A) = sup f(z) — inf f(z) = sup [f(x) = f(y)] =0

zEA €A z,yEA

Note that if A C B then
w(f,A4) <w(f, B)

For g € X, the oscillation of f at zg is given by

w(f, o) = gf)w(f, Bs(z0))
N J
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Proposition 10.6

Let (X, d) be a metric space and let f : X — R be a function. Then f is continuous
at a point xp € X if and only if w(f, z¢) = 0.

Proof. © = 7 Fix € > 0. As f is continuous at xz9, 36 > 0 s.t. |f(x) — f(xo)| < §
Vx € Bg(l‘o).

= |f(2) = )| < [f (@) = fxo)| + [f (o) — f(y)] < % Va,y € Bs(xo)

— w(f, Bs(wo) = sup [f(a) — f)] < 5 <=
z,y€Bs(z0)

= w(f,z0) <w(f,Bs(xo)) <e

As e > 0 was arbitrary, w(f, zo) = 0.
“ <= 7 Fix € > 0. Then w(f,z9) = 0 < ¢ implies 30 > 0 s.t. w(f, Bs(zo)) < ¢

= |f(x) = f(y)| <e  Va,y € Bs(wo)
= |f(x) — f(z0)| <e  Vz € Bs(xo)

So f is continuous at xg. O

Lemma 10.7
Let (X, d) be a metric space and let f: X — R be a function. Then for any o > 0,

{r e X:w(f,x) <a} isopenin X

Proof. Fix a > 0 and let A = {z € X : w(f,z)<a}. Fixzg € A = w(f,z) =
infs~ow (f, Bs(xo)) < a.

= 35 > 0s.t. w(f,Bs(xg)) <

Claim 10.4. Bj(z) C A (which implies 29 € A and so A = A).
Let € Bs(xg). Then r = § — d(z,z9) > 0 and B,(x) C Bs(xo)

= w(/f, Br(z)) < w (f, Bs(xo)) < @
= w(f,2) <w(f,B(r))<a = z€ A O

Remark 10.8. Let (X, d) be a metric space and let f: X — R be a function. Then

{z € X : fis continuous at z} = {z € X : w(f,z) =0}

= ﬂ{xeX:w(f,x)<%}

n>1

=En

By the lemma, G,, = dn Vn > 1. Also, Gn4+1 C G, ¥n > 1. This observation allows us to
prove that there are no functions f : R — R that are continuous at every rational point
and discontinuous at every irrational point.
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§11.1 Oscillation of a Function (Cont’d)

Recall from last lecture that there are no functions f : R — R that are continuous at every
rational point and discontinuous at every irrational point.

Proof. (Sketch) Assume, towards a contradiction, that f : R — R is such a function. Then

Q= {z eR: fis continuous at z} = ﬂ G, with G,, open in R
n>1

NoteVn>1, Q C G,

— R=QCG,CR

— G, =Rie. G, isdensein R

Let {¢n},>; be an enumeration of Q. For eachn > 1, let Hy, = R\{gn} = (—00, gn)U(gn, 00).

Note H,, is open and dense (H, = R) in R. Also
() H. =R\ Q
n>1

So
(NGnn () Hn=QNR\Q=10

n>1 n>1

This contradicts the following property of R:

Exercise 11.1. If {An}n21 is a countable collection of open and dense subsets of R, then

ﬂAn:R

Apply this exercise with {A, : n > 1} ={G,,: n > 1} U{H, : n > 1}. O

§11.2 Weierstrass Approximation Theorem

\
Theorem 11.1 (Weierstrass Approximation)

Fix a,b € R with a < b. Let f : [a,b] — R be a continuous function. Then, there
exists a sequence of polynomials {Pn}n21 with deg P, <n Vn > 1 s.t.

P, = f on [a,b]
n—oo

- J

Proof. First, we reduce to the case when [a,b] is [0,1]. Let ¢ : [0,1] — [a,b], ¢(t) =
a+t(b—a). Note ¢ is a continuous, bijective function with the inverse

Tr—a

b—a

continuous

¢~ a0 = [0,1], ¢7H(z) =
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As f:[a,b] — R is continuous, f o ¢ : [0,1] — R is continuous.
If {Pn}n21 is a sequence of polynomials with deg P, <n s.t.

P, = fog¢on [0,1]
n—oo

then P, o¢p~! - f on [a,b]. Indeed,

sup [(Puo¢™") (z) = f(z)| = —sup |Pu(t) = (fo o)1)
z€[a,b] r=0(t) te[0,1]
— 0

Therefore, we may assume f : [0, 1] — R is continuous. Define the Bernstein polynomials

via "
:E:f<z><ﬁ>#fl—xf*j deg P, <n
k=0

Note that if f is a constant, say f(z) = ¢ Va € [0, 1] then
—cZ() 1-z)"*=clx+1-—2)"=c VYze|0,1]Vn>1

We want to show P, — f on [0,1]. Fix z € [0, 1]. Consider

n—00

|f($)—Pn($)|=‘f(:c)§<Z> (1—z)" éf( ><) 21— )k

3 - (9] @0

To estimate the sum we use the following

e when

Sl

is close to x, we use the continuity of f.

SEES

e when £ is far from z, we use the fact that z % 2#(1 — 2)"* has a local maximum at

k

ZL':n.

J(z) = Imk_l(l — x)”_k —(n— k:)$k(1 — x)”_k_l
A1 =) k(L - 2) — (n - k)z}
xk 1(1 )nfkfl {k _ nx}

>0 ifx<k
=0 ifx:%
<0 ifr>*k
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f:10,1] = R is continuous = f is uniformly continuous. Fix € > 0. Then 3§ > 0 s.t.
|f(x) — f(y)| <e whenever z,y€[0,1], |z—y|l<d
f:[0,1] = R is continuous == f is bounded. Let M > 0 be s.t.
f@x)| <M Veelo1]

We estimate

0<k<n
o fes X
k ny k n—k
b Y - (5] () a-a
0<k<n
|z—£|>5 <2M
n (z—2)°
<e Z <)xk(1—x)” koM Z 5 <k>xk(1—x)”k
0<k<n 0<k<n
n n .
S€+T32 (n:v—k)2<k)xk(1—a:) K
k=0

k=0 k=0
=1
- n! k n—k S 2 n! k n—k
—Zn:ﬁ;k‘ A _k)'a: (1—-2x) +k§ k!(n—k)!:n (1—x)
Then
- n! - n!
k -z k=g 21— )k
— El(n —k)! — (k—1Dl(n—k)!

n—1

_ (n—1! n—1-1

P DY Ty ) A
=0 .

=(z+1—x)"1
=nx
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and
- ! - (n— 1
2" k(] _ _ k=101 n—k
kzzo AT Z:: e (1= @)
= (k — 1 1 -1
Z + n — ') l‘k_l(l 7$)n—k
= )
_ 2 (n—2)! k—2 n—k
—n(n—l)xz k—2!(n—k)!x (1—=x)
(n— 1 _ n—
+nﬂsz )!xk Ya — g)nk
= n(n —1)a? +nx
So
Z(na: —k)? (Z) (1 —2)" % =n%2? — 20222 + n(n — 1)a? + na
k=0
=nz(l — )
We get
M
7(2) ~ Pa(a)| < 2+ o -ma(1 — 2)
2M
<e+—5 sup z(l—z)
o~ zelo,1]
M
— <2
+ 25°n < 2
provided n > #28. So P, = fon [0,1]. O
n—oo
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§12.1 Weierstrass Approximation Theorem (Cont’d)

/Corollary 12.1 )
Let M > 0. Then there exists a sequence of polynomials {P,}, 5, s.t.
deg P, <n Yn>1
P,(0)=0 Vn >1
P, = |z| on [-M, M]
N . J

Proof. Let f:[—M,M] — R, f(z) = |z|. Then f is continuous and [—M, M| compact. By
Weierstrass Approximation, 3{Qn},; sequence of polynomials s.t.

Qn L> fOIl [7M5M]
n—oo

n—oo

Let P,(z) = Qn(x) — Qn(0). Then

Note @, ni)o f = Qu(0) — f(0)=0.

deg P, <n Vn >1
P,(0)=0 Vn > 1

For x € [-M, M],
— d(Py, f) < d(Qn, f) +Qn(0)] — 0 O

§12.2 Stone-Weierstrass Theorem

/Definition 12.2 (Algebra) — Let (X, d) be a metric space and let
AC{f:X — R(or C); f is a function}
We say that A is an algebra if
1. f+g€e A Vf, g€ A.
2. fge A Vf,ge A
3. \fed Vfe AVXeR(or C)

We say that the algebra A separates points if whenever z,y € X with z # y then

Af e Ast. f(z) £ 1().
We say that the algebra A vanishes at no point in X if Vo € X 3f € As.t. f(z) #0.
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Lemma 12.3

Let (X,d) be a compact metric space and let A C C(X) be an algebra. Then its
closure A with respect to the uniform topology is also an algebra.

Proof. Let f,g € A. Then

3fp € Ast. fn — fon X
n—oo

Jgn € Ast. gn — gon X
— 00

n

d(fn+gn, [ +9) < d(fn, ) +d(gn,9) — 0 _
fn+ gn € A (because A is an algebra)
Similarly, for A € R,
d(Afr; Af) < A (fns f) — 0 _
nree = AMeA
Afn € A (because A is an algebra)

Then
d (fugn, f9) = sup | fn(@)gn(z) — f(2)9(2)]

xTe

< sup [| fu(2) = F(@)] lgn(2)] + [f(2)]1gn(z) = g(2)]]

reX
< d(fn, f) sup |gn(z)| + d(gn, g) sup | f(z)]
zeX zeX

By Weierstrass,

fni>fonX} feC’(X)}
n—oo :>

fn € C(X) X compact — IM >0 s.t. sup |f(z)] <M

zeX
Similarly, g € C(X) == 3M> > 0 s.t. sup,cx |g(x)| < Mo
d(gn,0) < d(gn,g) +d(g,0) <1+ Mo Yn>m

Let M3 = max ¢ 1+ M, d(g1,0),...,d(gn,,0) p. So d(gn,0) < M3V¥n > 1. Thus
—— ——

<oo <oo
d(fngmfg)Sd(fnvf)'M?)"‘d(gmg)'Ml — 0 _
fngn € A (since A is an algebra)
~

/Lemma 12.4

Let (X, d) be a compact metric space and let A C C(X) be an algebra that separates
points and vanishes at no point in X. Then

Va,8 € R Vai,20 € X s.t. 1 # 29 EIfGAs.t.{
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Proof. Fix a, 8 € R. Fix 1,29 € X s.t. x1 # z2. We would like
u(x v(x
(o) = M) )

u(r1) v(wy)

for u,v € A s.t.
u(z1) #0 and wu(xz) =0
v(r1) =0 and wv(xg)#0

Then f € A (because A is an algebra) is the desired function.
As A separates points, 3g € A s.t. g(x1) # g(x2).
As A vanishes at no point in X,
Jhe Ast h(x1) #0
Jk € As.t. k(xa) #0

Then, we define

Theorem 12.5 (Stone-Weierstrass)

Let (X, d) be a compact metric space and let A C C(X) be an algebra that separates
points and vanishes no point in X. Then A is dense in C(X), ie.,, A = C(X) =
{f: X — R; f continuous}.

Proof. Want to show Vf € C(X) Ve >0 3Jg € As.t. d(f,g) <e.
Step 1: If f € A then |f| € A. Let f e A = 3f, € As.t.

In niéf on X
fn € C(X)

As X is compact, IM > 0 s.t. |f(z)] < M Vz € X. By the previous Corollary 12.1,
3{Pn},>1 sequence of polynomials with deg P, <n Vn > 1 s.t.

} = feC(X)

n—00 — Pn(f) nﬁo ’f’ on X

P, - |z|on [-M,M]
Po(0) = 0

If P,(x) = >}, cxa® then P, (f) = > 7_, cr.f* € A which implies |f| € A.
Step 2: If f,g € A then max {f, g}, min{f, g} € A.

f+g+‘f_g|ez

max{f,g} = — 5

Step 3: Vf € O(X), Vo € X, Ve >0, 3g € A s.t.
g(x)=f(z) and g(y)> f(y)—¢ VyeX

Continue in the next lecture. O
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§13 ‘ Lec 13: Apr 26, 2021

§13.1 Stone-Weierstrass Theorem (Cont’d)

We continue with the proof of Stone-Weierstrass from lecture 12. Recall that we are at
step 3 so far.

Proof. Step 3: For any f € C(X), z € X, ¢ > 0, there exists g € A s.t.

{g<x> = f()
gy) > fly)—e VyeX

g f
f—e€
/
_—
: X
x
For any y € X, there exists h, € A s.t.
hy(z) = f(z)
hy(y) = f(y)

As hy € A, hy is continuous. Thus, hy — f is continuous at y. So 36, > 0s.t. |hy(2)—f(2)| <
€, Vz € Bs,(y). In particular,

hy(z) > f(2) — ¢ Vz € Bs,(y)

Note that
X = UyGX B§y (y)

= dN >1and Jy1,...,yn € X
X compact

s.t. X = UM, Bs, (yn) where 8, = d,, .
Take g = max{hy,,...,hyy} (by step 2). By construction, g(x) = f(x). Also if y € X,
J1 <n < N st y€ Bs,(yn). So

9(y) > hy, (y) > f(y) —¢

Step 4: For all f € C(X) and e >0, 3g € As.t. d(f,g9) <e. Fix f € C(X),e>0
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9y f+e
f
f—e
NS
/ |
7
/
X

For x € X, let g, € A be the function given by step 3. In particular, g,(x) = f(z),

9:(y) > fly) —e  VyeX

As g, € A, the function g, — f is continuous at z. So 35, > 0 s.t. |g.(y) — f(¥)| < e,
Yy € Bs,(x). In particular,

9:(y) < f(y) +e  Vy € Bs,(x)

Note

} = 4N > 1 and dzq,...,zy € X s.t.
X compact

X =UN, Bs, () where 8, = 0z,,-
Take g = min{gz,,...,gzy } € A (by step 2).
Fory € X, 31 <n < N s.t. y € By, (z,,) and so

9(Y) < ge,(y) < fly) +¢
Moreover, as ¢z, (y) > f(y) — ¢, Vy € X, V1 <n < N, we have
9(y) > fly)—e  WyeX

This shows C(X)Qj:ZCC(X). O

§13.2 Differentiation

(Definition 13.1 (Limit) — Let (X,dx), (Y, dy) be metric spaces, let § # A C X, let\

f:A—=Y. Forxge A and yp € Y we write

if Ve > 0, 30 > 0 s.t. dy (f(x),y0) < € whenever 0 < dx (z,z¢) < 9.
Equivalently, limg_,,, f(x) = yp if

lim f(z,) = yo for every sequence {z,},~; € A\ {zo} s.t. z, X, xo

- J
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Note also that if 29 € A’ N A then f is continuous at zy <= limg_., f(z) = f(z0).

Exercise 13.1. Let (X, d) be a metric space, ) # AC X, f: A—Rand g: A — R be
functions. Assume that at a point a € A’ we have

lim f(z)=a and lim g(z)=7p

Then
1. limgyy (Af(2)) = A, AER
2. limg g, (f(2) +9(2) =a+p
3. limg g, (f(2)g(2)) = - B
f

4. If B # 0 then lim,_,,, flz) _ %

/Definition 13.2 (Differentiability) — Let I be an open interval and let f: I — R be a\
function. We say that f is differentiable at a € I if

o F@) = 1)

T—a T —a

exists and is finite

in which case we denote it f'(a).

J
Example 13.3
Fixn>1andlet f:R—= R, f(z) =2". Fora € Rand x # a
f@) = fla) _am—a”
rt—a = z—a
=z" 42" 24 .. . a7 — na" "t

So f is differentiable at a and f'(a) = na™!.
(Theorem 13.4 A

Let I be an open interval and let f : I — R be differentiable at a € I. Then f is

continuous at a.
\\ 4

Proof. For x € I\ {a}, we write

fa)=TDIO )t fa) - (@) 0
~—— ~— T
N T A
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21

(Theorem 13.5

Let I be an open interval and let f : I — R and g : I — R be two functions
differentiable at a € I. Then

1. VA € R, \f is differentiable at a and
(Af) (a) = Af'(a)
2. f + g is differentiable at a and
(f+9) (@) = f'(a) + ¢'(a)
3. f- g is differentiable at a and
(f-9) (@) = f'(a)g(a) + f(a)g'(a)

4. g is differentiable at a if g(a) # 0 and

~

2
g g 9*(a) y
Proof. For z # a
1. Consider
M@ =M@ f@=f@) e
r—a xr—a T—a
2. Consider
(1(a) + 9(0)) = (fla) + 9la)) _ S0) = F(a) , 9l&) =sla) _, i s o
r—a Tr—a rT—a z—a
3. Consider
T ) + gy - 222 s fag(o) + S(a)' @
e i@ f@) T e
4. Consider
f(z) _ f(a)
9@ ~ 9@ f(z)— fla) gla) —g(z) 1 1
T —a T —a g(x) +f(a) T —a g(z) g(a)
T o o
@) ga)
i g@)  Ew’
O
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§14 ‘ Lec 14: Apr 28, 2021

§14.1 Chain Rule

/Theorem 14.1 (Chain Rule) A

Let I and J be two open intervals and let f: I — R and g : J — R be two functions.
Assume that f is differentiable at a € I and that g is differentiable at f(a) € J. Then
g o f is well defined on a neighborhood of a, g o f is differentiable at a, and

9 (gof)(a) =g (f(a))- f(a) )

Proof. Consider:

fla) e J

J is open

} = Je>0st. (f(a)—¢,fla)+e)CJ

f is differentiable at a = f is continuous at a = 3 > 0s.t. f((a—d,a+d)NI)C
(f(a) —€,f(a)+¢€). As a €I and I is open, shrinking ¢ if necessary, me may assume that
(a—d,a+6) CI.

Then g o f is well-defined on (a — 6,a + §).

(a—68,a+38) L5 (fla)—e, fla) +¢) R
|
CrI cJ

Caution: The following argument does not work

9(f(x)) —g(fla)) _ g(f(x)) —g(f(a)) [f(x)—Ff(a)

e f@)—f@) _w—d
2000(F(a)) 4 ()

because f is continuous at a = f(z) =% f(a)

Instead, we argue as follows: Define h: J — R,

h@):{W, ity € 7\ (/@)
g (fa), ify=f(a)

As g is differentiable at f(a), h is continuous at f(a). Moreover, we can write

9(y) —g(f(a)) =nh(y) - (y = f(a)) VyeJ

For x € (a —d,a+6) = f(z) € J. So for x € (a —d,a+6) \ {a},
9] = g(f@) _ gt f(@) = f(a)
S0 lim, ., 2D — b (f(a) /(@) = g/ (f(@) - '), 0
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Lemma 14.2

Let f: (a,b) — R be a differentiable function. If f is increasing then f/(z) > 0Vx €
(a,b) or decreasing then f'(x) < 0Vx € (a,b).

Proof. Assume f is increasing (if f is decreasing, replace f by —f in what follows). Fix
x € (a,b) and let {z,},~, be an increasing from (a,b) with lim, . =, = .

Then f/(x) = limy— o0 w > 0 where f (z,) — f(z) <0 and z, —z < 0. O

T

Theorem 14.3

Let f : (a,b) — R be a function. Assume that zy € (a,b) is a point of local
maximum /minimum for f. Assume also that f is differentiable at zo. Then f’(x¢) = 0.

Proof. Assume that z is a point of local maximum for f (if z¢ is a point of local minimum,
replace f by —f in what follows).
Then 36 > 0 s.t. f(z) < f(zo) Vx € (zg— 0,20+ )N (a,b). For x,, € (xg — d,z0) N

(a,b) s.t. =, =2 o, we have

f(an) — f(x0) <0

Ty, — 20 <0

f'(zo) = lim >0
n—oo

On the other hand, for y, € (xg,z0+ ) N (a,b) s.t. y, —> xp, we have
n—oo

f(z9) = lim LWn) =S (@) <0

<0
n—00 Yn — g > 0

Thus, we get f'(zg) = 0. O

§14.2 Mean Value Theorem

Theorem 14.4 (Rolle)

Let f : [a,b] — R be a function which is continuous on the [a,b], differentiable on
(a,b), and s.t. f(a) = f(b). Then there exists (at least one) x € (a,b) s.t. f'(z) = 0.
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Proof. Consider:

f :[a,b] — R continuous
[a,b] compact = 3e0,0 € o,

S.t.
f(xo) = sup f(z) and f(yo)= inf}f(fv)

z€[a,b] z€[ab

So f(yo) < f(z) < flwo) Va € [ab].
Case 1: We have

{zo, 90} C {a, b}} = f(zo) = f(yo) = f constant = f'(z) = 0Vx € (a,b)

fla) = f(b)
Case 2: {zo,yo} € {a,b} = =z ¢ {a,b} or yo ¢ {a,b}. Say z¢ ¢ {a,b} = =z¢ € (a,b).
By Theorem 14.3, we get f'(zo) = 0. O

Theorem 14.5 (Mean Value)

Let f : [a,b] — R be continuous on [a, b] and differentiable on (a,b). Then there exists
(at least one) y € (a,b) s.t.

Remark 14.6. The Mean Value Theorem implies Rolle’s Theorem. We will see from the
proof that Rolle’s Theorem implies the Mean Value Theorem, so the two are equivalent.

Proof. We define [ : [a,b] — R where
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Note that [ is continuous on [a, b], differentiable on (a,b), and

I'(z) = w vz € (a,b)

Let g : [a,b] — R, g(z) = f(z) — l(z). Then g is continuous on [a, b], differentiable on (a, b),
and g(a) = 0 = g(b). Then Rolle’s implies that Jy € (a,b) s.t.

gy =0 = fy) -y =0 = f(y) =

Corollary 14.7
If f: (a,b) — R is differentiable and f’(z) = 0Vz € (a,b), then f is a constant.

Proof. Assume f is not a constant. Then Ja < £1 < 3 < b s.t.

f(z1) # f(22)
Then f is continuous on [z1, z3], differentiable on (z1,z2). By Mean Value, 3y € (z1, z2)

s.t.
f(z1) — f(x2)

L1 — T2

fy) = #0

Contradiction! ]

Corollary 14.8
If f,g: (a,b) = R are differentiable s.t. f'(z) = ¢'(z)Vz € (a,b), then ¢ € R s.t.

flx)=g(x)+c  Voe(ab)
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§15 ‘ Lec 15: Apr 30, 2021

§15.1 Mean Value Theorem (Cont’d)

Theorem 15.1

Let f :[a,b] = R, g : [a,b] = R be continuous on [a, b] and differentiable on (a,b).
Then there exists (at least one) ¢ € (a, b) s.t.

f'(e) [9(0) — g(a)] = ¢'(¢) [£(b) — f(a)]

Remark 15.2. Taking g(z) = « we recover the Mean Value theorem. In fact, the two results
are equivalent, as can be seen from the proof.

Proof. We define h : [a,b] — R

Note that h is continuous on [a, b] and differentiable on (a,b). Moreover,

(@) = £(0) [90) — 9(@)] ~ 9(@) F(8) — F(@)] = f(@)g(®) ~ 9(@) f() } e )
h(b) = f(b) [9(b) — g(a)] — g(b) [f(b) — fla)] = —F(b)g(a) + g(b) f(a)
By Rolle’s theorem, 3¢ € (a,b) s.t h'(c) = 0. O
/Corollary 15.3 A
Let f: (a,b) — R be differentiable.
1. If f'(z) > 0 Vz € (a,b) then f is strictly increasing.
2. If f'(z) > 0 Vx € (a,b) then f is increasing.
3. If f'(z) < 0 Vx € (a,b) then f is strictly decreasing.
4. If f'(z) <0 Vz € (a,b) then f is decreasing. y

Proof. We only present the details for (1).
Fix a < 1 < x93 < b. f is differentiable on (a,b) = f is continuous on [z}, z2] and
differentiable on (z1,x2). By the Mean Value theorem, Jc € (x1, z2) s.t.

f(x2) — f(z1)

T2 — I

0< fi(c) =

= f(z1) < f(x2)

As a < x1 < 9 < b were arbitrary, f is strictly increasing. O
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Example 15.4

The derivative of a differentiable function need not be continuous
z2sin %, x#0

f:R—>R, f(:z:):{o L

f is continuous on R\ {0}. To see that it’s continuous at 0,

|f(z) = f(0)] =

1
xzsinlngHO (*)
x z—0

f is differentiable on R \ {0}. To see that it’s differentiable at 0, we compute

W :xsiné Jj}o (as in (*))

x#0:
So f/(0) = 0. Thus,

, 2xsin%+x2cos%-;—§,x7ﬁ0 B 2wsin%—c08%, r#0
fix) = =
0, z=0 0, z=0

f" is continuous on R \ {0} (not continuous at 0). While lim,_, 2z sin 2 = 0, for each
A € [—1, 1], there exists z,,(\) — 0 s.t. cos %(A) = A. Nevertheless, the derivative of
n—oo w

a differentiable function has the Darboux property.

~

Theorem 15.5 (Intermediate Value for Derivatives)

Let f : (a,b) — R be differentiable. Then f’ has the Darboux property, that is, if
a <z < xg <band A lies between f/(z1) and f’(z2), then there exists ¢ € (x1, x2)
s.t.

") =\
N f() y

Proof. Let g : (a,b) — R, g(z) = f(x) —Az. g is differentiable on (a,b) = g is continuous
on (a,b). Fix a < 1 < xe < b and assume without loss of generality

() <A< fl(x2)

Then
g (x1)=fl(z1) = A <0
g'(x2) = f'(x2) =A >0
g is continuous on [x1, z9]

= dc € [z1,22] s.t. g(c) = inf g(z)

z€[z1,22]

If we can prove that ¢ € (x1,22) then ¢'(c) = 0. To see that ¢ # x; we argue as follows:

0> ¢'(z1) = lim g(x) = g(z1)

T—T1 Tr — I

— 361 >0
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s.t. if 0 < |z — x1| < 01 then
9(x) — g(x1)
r — I

<0
In particular, for x € (z1,21 + 61) we have

g9(x) — g(z1)
T —Oxl

<0 = g(x) <g(=)

— ¢ cannot attain its minimum at z;

Similarly,
0< gl(x2) — lim g(x) — g(x2>

T—T2 Tr — X2

= 63 >0

s.t. if 0 < |z — 2| < d2 then
9(x) — g(z2)
Tr — T2

>0

In particular, if x € (x9 — d2,x2) then

g9(x) — g(x2)
= = g(z) < g(z2)
Xr — I9
<0
—> ¢ cannot attain its minimum at zo O
§15.2 Derivative of Inverse Functions
\

KTheorem 15.6

Let I be an open interval and let f : I — R be continuous and injective. Then
f(I) = J is an interval and f : I — J is bijective. If f is differentiable at z¢ € I and
f'(w0) # 0 then f~1:J — I is differentiable at yo = f(xo) and

1 1

X ) 0 = 0y = 7T 1a0)) )

Proof. The proof uses the following two exercises:

Exercise 15.1. Let I be an interval and let f : I — R be continuous and injective. Then
f is strictly monotone.

Exercise 15.2. Let I be an interval and let f : I — R be strictly increasing and so that
f(I) is an interval. Then f is continuous.

Using exercise 1, we find that f is strictly monotone. Assume f is strictly increasing
— f~!is strictly increasing.
Using exercise 2 with g = f~! : J — I, we find that f~! is continuous.

Claim 15.1. J is an open interval.
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Assume, towards a contradiction, that inf J € J = f(I) = Ja € I s.t. f(a) =inf J.

ITopen — 36>0st. (a—0d,a+0)C1TI

f is strictly increasing

} == J:f(I)9f<a—g> < f(a) =inf J

Contradiction!
Similarly, one can show that sup J ¢ J

f'(wo) # 0 and f(z) # f(zo0) Vo # xo

. r—T 1
— lim 0

a—wo f(x) — f(x0) - f'(zo)

fis diff at g = f/(x0) = hmf(w)f(wo)}
—

T — X0 1
— Ve>0 F6>0st. 0<|x—xg <5=>‘ — <e

ol F@) = f@0)  Flao)

f~1 is continuous at yg = In > 0s.t. 0 < |y — yo| < n implies
0<|fMy)—f(wo)| <6
So for 0 < |y — yo| < n we get
M) =) 1|,
— /
Y — Yo f'(x0)
which implies
-1 -1
1y : (v) =/~ (o) 1
=1 = ]
(/) (wo) v Y=Y f'(zo)
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§16 ‘ Lec 16: May 3, 2021

§16.1 L’Hopital Rule

Definition 16.1 (Existence of Limit) — Let —oco <a <b < oo and let f : (a,b) — R\

be a function. For ¢ € (a,b) U {a} we write

lim f(z) =L € RU{xo0}

xz—ct

if for every sequence {z,},~; C (¢,b) s.t. limy,_,o0 2, = ¢ we have

lim f(z,)=1L

n—o0
For c € (a,b) U {b} we write

lim f(z) =M € RU{£o0}

T—>Cc™

if for every sequence {z,},,~; C (a,c) s.t. lim,_oc £, = ¢ we have

g f(on) = M

- J

Remark 16.2. In general, if ¢ € (a,b) we have

fe) # lim f(@) # lim f(@) # f(c)

flx)
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( )
Theorem 16.3 (L'Hopital)
Let —o0o < a < b<ooandlet f,g: (a,b) = R be differentiable. Assume that ¢’'(z) # 0
Vx € (a,b) and that
- fx)
Jim ooy =L ERU {+o0}
Assume also that either
lim f(z)= lim g(z) =0 (1)
z—at z—at
or
lim |g(z)| = o0 @
r—a
Then
fla) _
z—a™t g(:c)
- J

Remark 16.4. lim,_,,+ in the theorem can be replaced by lim,_,,- or by lim,_,. for some
c € (a,b).

Proof. We'll present the details for L € R. We’ll prove

Claim 16.1. Ve > 0 30;(¢) > 0 s.t.

@<L+5 Vx € (a,a+ 61)

g(x)
Claim 16.2. Ve > 0 3d2(e) > 0 s.t.

f(x)
L—E<m Vz € (a,a+ 62)
Then taking d(¢) = min {d1(¢), d2(e)} we get
J@) _ z € (a,a
o) L’<s V€ (a,a+0)

= lim, .+ Z8 = L.
Note: If L = —oco then it suffices to prove Claim 1 with L + ¢ replaced by M < 0.
If L = oo then it suffices to prove Claim 2 with L — ¢ replaced by M > 0.
By assumption, ¢'(z) # 0 Vx € (a,b). As g is differentiable on (a,b), ¢’ has the Darboux
property. So either ¢'(x) < 0 Vz € (a,b) or ¢'(xz) > 0 Vz € (a,b).
Assume ¢'(x) < 0 Vz € (a,b) = g strictly decreasing on (a,b). In case 1,

lim g(z) =0

z—a™t
As g is strictly decreasing, we get
g(z) <0 Vx € (a,b)
In case 2,

lim_lg(z)| = oo
r—at
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As g is strictly decreasing, we get

lim g(z) = o0
z—at
and so Jdc € (a,b) s.t. g(x) > 0 Vx € (a,c) (**). In particular, in both cases g(z) # 0
Vz € (a,c). We prove claim 1:
Fix ¢ > 0. As lim,_,,+ £ = L, 351 (¢) > 0 s.t.

g'(2)
f'(=) €
g’(a:)<L+2 Vz € (a,a+ 61)

Fix a < £ < y < min(a + 01, ¢). By (an equivalent formulation of) Mean Value theorem,
Jdz € (x,y) s.t.

f(z) = fly) _ f'(z) €
- L+c *
@ —a) gz~ F T2 "
In case 1, take the limit  — a™ in (*) to get
f(y) £ :
@§L+§<L+e Va < y < min(a + 41, ¢)
In case 2, we write
fl@) _ flx)—f

f(x) ey g9(x) —gly) | fly)

@ <) S
_ e (1_9W\ _ fly)
= (z+3) (1 g(a:)) @)
e fy)-(L+35)9ly)
et g(z)

For y fixed, lim,,_,,+ f(y)_(gL(;r)%)g(y) =0
- fw)—(L+5)9y)| e -
= Jd1(g) > 0 s.t. ‘ o) 2 < 5 Yz € (a,a+ 51>

In particular,

M<L—i—€ Va<x<min{a+51,a+51,c}

g9(z)

Exercise 16.1. Prove claim 2. ]
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§16.2 Taylor’s Theorem

/Definition 16.5 (Taylor Expansion) — Let I be an open interval and let f: I — R be\
differentiable of any order. For xg € I, the series

0 4(n) (5
Zf ( 0)(x_x0)n

n!

Bal@) = (@) = 3 1220 o )t
k=0 ’

- J
/Theorem 16.6 (Taylor) b
Let n > 1 and assume f : (a,b) — R is n times differentiable. Let zg € (a,b). Then

for any = € (a,b) \ {zo} there exists y between x and g s.t.
f)(y .
Rale) = T (o — o)
In particular,
n—1
7z ™y .
fa) =3 T @z 1 Doy
k=0
- J

Proof. Fix x € (a,b) \ {zo}. Define M € R to be the unique solution to the equation

=2 (g x —xo)"
fla) = 0 L0 gt goap B0
k=0

We want to show that there exists y between x and xg s.t.

M = f™(y)
Let g : (a,0) = R
-1
0 ag) (t — w0)"
918) = £(0) =3 T ) M T

Note g is n times differentiable. For 1 <1 <n —1,

n—1 (k) x — n—l
gO(t) = 1O - Y "ék 4 [;? (t =)™ =M “mf?).

g™ (1) = f" () - M

In particular, if 0 <1 <n—1,
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Also g(z) = 0 by contradiction.
g is continuous on [z, x|, differentiable on (x, zp) and

g(z) = g(x0) =0 = 1 € (T,20) 8.t. ¢'(1) =0
By Rolle’s theorem,

Jzg € (w1,20) st ¢ (z2) =

dz, € (xn—lax()) s.t. g(n)(xn) =0

Set y = x,,. O
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§17‘ Lec 17: May 5, 2021

§17.1 Taylor’s Theorem (Cont’d)

[Corollary 17.1 A

Fix a > 0 and let f: (—a,a) — R be a function differentiable of any order. Assume
that all derivatives of f are uniformly bounded on (—a,a), that is,

M > 0 s.t. ‘f(”)(x)‘SM Vz € (—a,a), Yn>1

Then .
f

x 5 0on (—a,a)
n—oo
k=0

- J

Proof. Fix z € (—a,a) \ {0}. By Taylor, there exists y between z and 0 s.t.

™)
R, (z) = R
e Ry () < M <M
n! n!
—  sup ]R()]<M—HO O
n! n—oco

z€(—a,a)

Example 17.2
f:R—=R, f(x) =cosx

—sinz, n=1+4k
— =2+ 4k

f@) = T = AT for k> 0
sinz, n=3+4k

cosr, n =4k

So |f(”)(:c)‘ <1VzxeRVn>0. We get

;o
flx)=u A}gnooz n (—a,a) for any a >0
Let n = 2I
-1, ifl odd
— OO =17 0 = (-
1, ifleven

—1)¢
Z f Z ((2”) L2

n>0 ! >0
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A similar argument gives

. (71)”562”—’—1
ST = E —
|
= (2n +1)!

Example 17.3
f R — R where

Note f is differentiable of any order on R. Clearly, this holds on R \ {0}. In fact,

for x € R\ {0},

() (3) -

To see that f is differentiable at 0 we compute

where

1
= t 1
lim M: lim % = lim — = lim ——5 =0
=0t T a0t g7z tooo el t—oo 2tet
Similarly,
t
im 29— g L g
z—0- T t——o0 et

Proceeding inductively, we can prove that f is differentiable of any order at 0 and
F™(0) =0

We consider

(n) 1) 32 e
lim / = lim n(z)e li n():O
=0+t T z—0+ T t—oo et
and -
n
lim 7'}0 () =
x—0— T
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Example 17.4 (Cont’d from above)
Thus,

0

™0 ,
T;J n! o

At leading order as © — 0,

ol

3n
f(n)(x) ~ oM. < 1 > 2 6_9%2 N2ne—z%+ lna%2

z2
The function g : (0,00) = R, g(t) = —t + 3 Int achieves its maximum at

3n 3n
"t)=0 14+ —=0 < t=—
g(t) = -1+ 5

So f(m (@) ~ e B  gnein(32) L on (3—”)37n — oo0.

2e n—00

KTheorem 17.5 A

Assume that f,, : [a,b] — R are continuous on [a, b] and differentiable on (a,b). Assume
also that

L. {fn},>1 converges uniformly on (a, b)
2. {fn},>1 converges at some zg in [a, b]

Then {fn},>; converges uniformly on [a,b] to some function f. Moreover, f is
differentiable on (a,b) and

fla) = lim fix) Ve (ab)

- J

Remark 17.6. We can restate the conclusion as follows:

Yy—T n—00 y—x y—x Yy—x n—00 y—x y—x

Proof. Let’s prove that {f,},~, converges uniformly on [a,b]. Fix € > 0.
{fh}n>1 converges uniformly on (a,b) which implies {£},},,>; is uniformly Cauchy on (a, b)
which also implies In(e) € N s.t.

’f,’z(x) - f;n(x)} <e VYn,m>mni(e) Vz € (a,b)

Also, we know that {fy(z0)},>; converges which means {f,(zo)} is Cauchy which implies
dna(e) € N s.t.
|[fn(@0) = fm(wo)| <& Vn,m > mns(e)

For x € [a,b] \ {0},
[fn(@) = fm ()] < |fu(0) = fm(zo)| + [[fn(2) = fin(2)] = [fn(x0) — fin(0)]]
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By the Mean Value theorem, there exists y between = and z¢ s.t.
| [fa(@) = fin(@)] = [fa(z0) = fin(z0)]| = | fo(y) = Frn®)] |z — zo| < e(b—a)
So for n,m > n(e) = max {ni(e),na2(e)} we get

|fn(@) = f(@)] < |fn(@0) = frm(0)[ +e(b—a) <e(1+b—a)
= SUPgela,b] |fn(z) = fi(z)] <e(1+b—a) VYn,m > n(e)

So {fn},>; are uniformly Cauchy on [a,b] and so converge to a function f = limy, 0 fa.
It remains to show that f is differentiable on (a,b) and

f'(x) = lim_ fi(x)

which we will prove in the next lecture. ]
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§18 ‘ Lec 18: May 7, 2021

§18.1 Taylor’s Theorem (Cont’d)

Proof. (Cont’d from lecture 17) Fix = € (a,b). We want to show that f is differentiable at

z and
f'(x) = lim_ [ (x)
We define
g:la, 0]\ {z} >R, gly) = f(y; - i(l‘)
gn a0\ {z} = R, gn(y) = fn(@/; : in(x)

Since f, — f we have
n—oo

lim g, (y) = g(v)

n—oo

Since f, is differentiable at x,
lim g,,(y) = fp(2)

Yy—x

Let L(z) = limy o0 f;, (7). We want to show that
Ve>0 39 >0s.t. |g(y) — L(z)| < e whenever 0 < |y — x| <0 y € [a,b]
Fix € > 0. By the triangle inequality,
l9(y) = L(2)| < lg(y) — gn )] + [gn(y) — fo(@)] + |Fi(@) = L(@)]

We have {f},},>, converges uniformly on (a,b) == {f}},>; is uniformly Cauchy on (a,b)
— dni(e) € N s.t.

‘f;b(z) — f,'n(z)‘ <e Vn,m > ni(e) Vz € (a,b) (1)
Letting m — oo we get
|fn(z) = L(z)| <€ Vn >ni(e) Vz € (a,b)

For y € [a,b] \ {z}, by the Mean Value theorem, we can find a point z between = and y so
that

| = fn(y) — fu(z) _ fm(y) — fm(2)
y—x Yy—x
an(y) — fm(y)] — [fn(‘r) — fm(x)”
|y — =

, NG
=[fi(2) = fu(2)| <& ¥n.m = mi(e)

|gn (y) —9m (y)

Letting m — oo we find
lgn(y) —9(y)| <e  Vn=m(e) Vy€la b\ {z} (3)
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Fix n > nj(e). As f, is differentiable at z we find § = d(¢,n) > 0 s.t.

n

lgn(y) — fr(@)] <e  YO<|y—z| < ye€lab] (4)

Thus for this n > ny(e) and 0 < |y — | < § we have

l9(y) = L(z)] < |g ( ) = )]+ [gn(y) = F ()| + [ fo(2) — L(z)|
by (2), (3), (4)

<
<3

Example 18.1
fn i R R, folz) = T5ra7> [fn is differentiable and

1 T - 2nx B 1 — na?

In(z) = 1+n2z2  (1+na?)? (14 na?)?

Now
fo = f=0
n—oo

1, z=0
@) = {0’ o

Note that f], do not converge uniformly since their limit is not continuous.

M: lim f’(O):l

lim lim "
n—o0 y—0 Yy — 0 n—o0
but "
lim lim 228 =0
y—0n—o00 y—0 y—0

§18.2 Darboux Integral

(Definition 18.2 (Partition) — Let f : [a,b] — R be a bounded function. If S C [a, b]
we denote

M(f;S)=sup f(z) and m(f;S) = inf f(z)

€S z€S

A partition of [a, ] is a finite ordered set P C [a,b]. We write

P:{a:t0<t1<...<tn:b}

for some n > 1.

~
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/Definition 18.3 (Darboux Sum) — The upper Darboux sum of f with respect to P is\

U(f; P) = M (f;[th-1,tr]) (tk — tr—1)
k=1

The lower Darboux sum of f with respect to P is

L(f; P) =Zm s [te—1,tk)) (e — te—1)
k=1

\ J
Note that

m (f;[a,b]) (b—a) < L(f; P) <U(f; P) < M (f;[a,b]) (b—a)
So

{L(f;P) : P partition of [a,b]} is bounded above
{U(f; P) : P partition of [a,b]} is bounded below

/Definition 18.4 (Darboux Integral) — The upper Darboux integral of f on [a, b] is A

U(f) =inf {U(f; P) : P partition of [a,b]}
The lower Darboux integral of f on [a,b] is
L(f) =sup{L(f; P) : P partition of [a,b]}

We say that f is Darboux integrable on [a, b] if U(f) = L(f). In this case we write

b
/ f(z)de = U(f) = L(f)
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Example 18.5
Let f:[0,M] = R, f(x) = 23. Then f is Darboux integrable.
Let P={0=1tp < ... <ty, =M} be a partition of [0, M] and

I
NE

U(f; P) M (f; [tk—1,tk]) (¢ — tk—1)
k=1
= £ (te — te—1)
k=1
Similarly,
L(f; P) = > m(f;[te—1,tk]) (tk — tk—1) Ztk 1 (B — th-1)
k=1

Taketk:%ogkgn. Then

U(f;P>=i<""M> MM e Mnln b o

4 4
—\n n nt = n 2 n—oo 4
_i M _ MU M a1y M
= no ont &Y a2 o 4

So, U(f) < MT4 nd L(f) > MT4 and we will show that L( ) < (4) which imply
U(f)=L(f) = MT So f is Darboux integrable and fo x)dx

Example 18.6

Given
1, z€[0,1]NnQ

0, z€[0,1]\Q

f is not Darboux integrable. For any partition P, U(f; P) = 1 and L(f; P) = 0 which
implies U(f) =1 and L(f) = 0.

f:[0,1] = R, f(:c):{
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§19 ‘ Lec 19: May 10, 2021

§19.1 Darboux Integral (Cont’d)
Recall: If f : [a,b] — R bounded
P={a=1ty<...<ty,=>b} partition of [a,d]

then
U(f; P) =Y M (f;[th-1,te)) (tk — th-1)
k=1
L(f;P) =Y m(fi[th-1, tr]) (tr — th-1)

e
Il

1

are the upper and lower Darboux sum associated with P, respectively f is Darboux
integrable if U(f) = L(f) where

U(f)=nfU(f:P) and L(f)=sup L(f: P)

Proposition 19.1
Let f : [a,b] — R be two bounded and let P and @ be partitions of [a,b] s.t. P C Q.
Then

L(f;p) < L(f;Q) <U(f;Q) <U(f; P)

Proof. We will prove the third inequality. The first inequality follows from a similar
argument. Arguing by induction, it suffices to prove the claim when the partition
contains exactly one extra point compared to the partition P. Let

P={a=ty<ti1 <...<t, =10}
Q={a=ty<...<ti1<s<ty<...<t,=0b}
for some 1 <[ < n.

-1

U(f:Q) =D M (f; [t tx]) (b — trm1) +M (3 [t 8]) (5 — tima)+M (f3 [, 1) (ti—5)

k=1

+ z": M (f;[th—1, tr]) (tr — th—1)

k=l+1
Clearly,
M (f;[ti—1,8]) < M (f; [ti-1, ta])
M (f;]s,t1]) < M (f;[ti1, t])
So .
U(f;Q) <> M (f;[th-1,ta]) (tr — tor) = U(f; P) O
k=1
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/Corollary 19.2 A

Let f : [a,b] — R be bounded and let P, Q be two partitions of [a,b]. Then

L(f; P) <U(f;Q)

Consequently,
9 L(f) <U(f) )
Proof. Consider the partition P U Q. We have

L(f;P)<L(f;PUQ)<U(f;PUQ) <U(f;Q)
— L(f) = St;pL(f;P) <U(f;Q)
= L(f) <t U(£;Q) =U(f) O

Theorem 19.3
Let f: [a,b] — R be bounded. Then f is Darboux integrable if and only if

Ve >0 3P partitions of [a,b] > U(f;P)—L(f;P)<c¢e

Proof. “ <= 7 Fix € > 0. Then there exists P partition of [a,b] s.t. U(f; P)—L(f;P) <e¢

= U(f) SU(f; P) < L(f; P) +e < L(f) +e¢

Uf) < L(f) +e U(f) < L(f) -
— e > 0 was arbitrary} — L(f) < U(f)} = U(f) = L(f)

— f is Darboux integrable

43

= ” Fix € > 0, f is Darboux integrable implies

U(f) = L(f)

Then

U(f) = inf U(f;P) = 3Py partition of [a,b] s.t. U(f: P1) <U(f) +%

L(f) = sup L(f; P) = 3P, partition of [a,8] st. L(f: P) > L({) _g
Consider the partition P; U Py. Then

L(f;P) < L(f;PAUR) <U(f;PAUR) <U(f; P)
50 € g
U(f§P1UP2)_L(f;P1UP2)<U(f)—l—§—(L(f)—i):5 ¥
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Definition 19.4 (Mesh) — Let P = {a =ty <t; <...<t, =b} be a partition of
[a,b]. The mesh of P is given by

mesh(P) = max (tgy — tg—1)

/Theorem 19.5
Let f : [a,b] — R be bounded. Then f is Darboux integrable if and only if

Ve >0 30 >0s.t. if P is a partition of [a,b] with mesh(P) < §

then

N U(f; P) - L(f;P) <e )

Proof. “ <= 7 By the previous theorem, it suffices to show that Vé > 0 3P partition of
[a, b] with mesh(P) < 4. For § >0,let P={a =1t <...<t, = b} where

tk:a+k:-g for 0§k§L2(b5_a)

|=n-1

and ¢, = b. Clearly,
)

mesh(P) = 5 < o
“ = 7 Fix € > 0. By the previous theorem, as f is Darboux integrable, there exists a
partition Py = {a =s9 < ... < Sy = b} of [a,}] s.t.
<
2
Let 0 < § < mesh(Fp) to be chosen later and let P = {a =ty < ... < t,, = b} be a partition
of [a,b] with mesh(P) < §

U(f; Po) — L(f; Po) <

U(f; P) = L(f; P) <U(f; P) = U(f; Po) + U(f; Po) — L(f; Po) + L(f; Fo) — L(f; P)
< S+ U(fiP) = U(fi Ry) + L(f: Ro) = L(f: P)
Consider the partition P U Py. Then
U(f;P)=U(f; Po) SU(f; P) = U(f; P U P)

As mesh(P) < § < mesh(F), there must be at most one point from Py in each [t;_1, tx].
Only subintervals [t;_1, t] with an s; € Py [tg_1, tx] contribute to U(f; P)—U (f; Py U P).
There are only m many such intervals. The contribution of one such interval to U (f; P) —
U(f;PhUP)is

M (f;[te—1,tk)) (tk — th—1) — M (f; [tk—1, 85]) (55 — th1) — M (f; [sj, tx]) (tk — s;)
As f is bounded, 3M > 0 s.t. |f(z)] < M Vz € [a,b]. Note

M (f;[te—1,te]) <M
M (f;[tk-1,55]) = —M; M (f;[sj te]) = —M
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So

M (f;[tr—1:te]) (b — th—1) — M (fs [tr—1, 85]) (85 — ti—1) — M (f; [s5. ta]) (8 — s5)
which is smaller than or equal to
M (b, — t51) — (= M) [(8; — to_1) + (t — ;)] = 2M (t4 — tg_1) < 2M - mesh(P)
Thus
U(f; P) = U(f; Po) <m-2M - mesh(P)

Similarly,
L(f;Py) — L(f; P) <m-2M - mesh(P)

which requires
€

SMm
Thus, § < min { 57—, mesh(Pp) }. O

4Mm - mesh(P) < g <= mesh(P) <
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§20 ‘ Lec 20: May 12, 2021

§20.1 Riemann Integral

[Definition 20.1 (Riemann Sum) — Let f : [a,b] — R be a function and let P :\

{a =ty <t1 <...<t,=>b} be a partition of [a,b]. A Riemann sum of f associated
to P is a sum of the form

n
S = Z fzr) (b — te-1) where zj € [tp—1,tk] V1I<k<n
k=1
- J

Note: If S is a Riemann sum associated with a partition P of [a,b] then

L(f;P) < S <U(f; P)

/Definition 20.2 (Riemann Integrable) — We say that f is Riemann integrable if 3r € R
s.t. Ve >0 30 > 0 s.t.
IS —7r| <€

for any Riemann sum S of f associated with a partition P with mesh(P) < §. Then r
is called the Riemann integral of f and we write

rzR/bf(x)d:B
- ‘ J

Lemma 20.3
If f:]a,b] — R is Riemann integrable, then f is bounded.

Proof. Let r = Rf;f(x) dx. Taking e =1 we find 6 > 0 s.t. |S —r| <1 for any Riemann
sum S of f associated to a partition P with mesh(P) < §.

Let P ={a=ty <t <...<t,=>b} with mesh(P) < d. Fix 1 <k <n. Fix z; €
[ti—1,t] for 1 <1< n,l+#k. For x € [ty_1,t;] we have

N Fan) (= tim) + f(@) (e~ thoa) =7 < 1

Ik
r=1=>" o, f@)(ti—ti—1) 1+r=3" 1 flz) (ti—ti—1)
lf:—tkﬂ < f(x) < l?kk_tkfl —
x € [tg—1,tx] is arbitrary
is bounded on [t;_1,t
/ ) [k 1 — [ is bounded on [a, b O
1 <k <n is arbitrary
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KTheorem 20.4 A
Let f : [a,b] — R. The following are equivalent
1. f is Riemann integrable.
2. f is bounded and Darboux integrable.
If either conditions holds, then the integrals agree. )

Proof. 2) = 1) Fix € > 0.
f is Darboux integrable =— 36 > 0 s.t. U(f; P) — L(f; P) < ¢ for any partition P
with mesh(P) < §. Let P be a partition of [a,b] with mesh(P < §). If S is a Riemann sum

of f associated to P, then
S <U(fiP) <L(f; P)+e < L(f) +e = [} fa) do +< g
. = |s— / f(x)dx
S>L(f;P)>U(f; P)—e>U(f) —e= [, f(x)de—e a
By definition, f is Riemann integrable and Rfab f(z)dx = fab f(z)dz.
1) = 2) By the previous lemma, f is bounded. Fix ¢ > 0. Let r = Rf; f(x)dz. Then
36 > 0 s.t.

<e€

9
S—rl<<
S—rl<:

for any Riemann sum of f associated with a partition of P with mesh(P) < ¢§. Fix
P={a=ty<t1 <....<t,=>} be a partition with (mesh(P) < 0. There exist zx,yr €
[tkg,l,tk] s.t.

Flon) > M (f: [tkastel) — 55—
Then
S1=Y fxx) (tk —ts1) > U(f; P) — ﬁz(tk — tg-1)
k=1 k=1
~U(fiP)—
S= 3 Fue) (0 = tu1) < LU P) + 55— Stk = tht)
k=1 k=1
= L(f; P) +%
However, |S1 —r| < § and [S2 — 7| < 5. So

UfsP)—5<Si<r+§ = U(f) SU(f;P)<r+e¢
r—5<S<L(fiP)+5 = r—e<L(f; P) < L(f)

r—e<L(f)<U(f)<r+e

b
. = f is Darboux integrable and / flx)de =7
€ > 0 arbitrary “

O]
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Theorem 20.5
Let f : [a,b] — R be monotonic. Then f is integrable.

Proof. Assume f is increasing. Then

fla) < f(x) < f(b) V€ la,b]
So f is bounded.
Let P={a=ty)<t1 <...<ty,=>b} with mesh(P) < ¢ for d to be chosen later. Then

NE

U(f; P)=L(f; P) =) [M(f;[te—1,tx]) — m (f; [te—1,t&])] (tx — tr—1)

b
Il
—_

I
NE

Lf(tr) — f(th—1)] (tr — th—1)

i
I

n

< mesh(P) Z [f(tk) — f(tk-1)]

k=1
<6-[f(b) = fla)]
Taking § < W we see that f is Darboux integrable. O

Theorem 20.6
Let f : [a,b] — R be continuous. Then f is integrable.

Proof. We have

f : [CL, b] — R continuous .
[a,b] compact — f is bounded

Fix e > 0. As f is continuous on [a, b] compact, f is uniformly continuous. So 3§ > 0 s.t.
|f(z) = fy)] < b—a
Let P={a=1ty < ... <t, =0b} with mesh(P) < J.

n

U(f;P) = L(fi P) = > [M (f; [te—1. tr]) = m (f3 [to1, ta])] (B — ti1)

k=1

Va,y € [a,b] with |z —y| < ¢

f continuous on [t;_1, tx] compact implies Iz, yi € [tx—1, tk] s-t.

flzr) = M (f;[te—1,tk])
flyr) = m (f; [te—1, k)

So
U(f;P) = L(f; P) = > [f(zx) — flyw)] (85 — ti1)
k=1
-
< (ty —th—1) =€
kz:l b g kT k-1
Then f is Darboux integrable. O
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(Theorem 20.7
Let f,g: [a,b] — R be Riemann integrable.

1. For any a € R, af is Riemann integrable and
b b

/ (af)(x)dx = a/ f(x)dx
a a

2. f + g is Riemann integrable and

/b<f+g><m>dx=/bf<x>dx+/bg<x>dm
g . . .

~

Proof. 1. If a =0 this is clear. Assume « > 0. For any S C [a, ]

M(af;S) = aM(f;S5)
m(af;S) = am(f;9S)

For by partition P of [a, ],
Ulaf; P) =aU(f; P) = Ulaf) =supU(af; P)
P
=sup [a- U(f; P)]
P

:as%pU(f;P)ZOZU(f)

Similarly,

— «af is Darboux integrable and ff(af)(x)da: = af: fx)de.
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§21 ‘ Lec 21: May 14, 2021

§21.1 Riemann Integral (Cont’d)

Recall from last lecture, we have the following theorem,

[Theorem 21.1 A
Let f,g : [a,b] = R be Riemann integrable.
1. For any a € R, af is Riemann integrable and
b b
[en@dr=a [ f@)do
2. f + g is Riemann integrable and
b b b
[¢+o@da= [ f@)do+ [ g@)ds
\ a a a /

Proof. 1. Last time we proved the result for & > 0. Assume a < 0. For S C [a, b], we
have
M(af;8) = am(f;S) and m(af;S) = aM(f;5)

If P is a partition of [a, b],
Ulaf;P)=aL(f;P) and L(af;P)=aU(f;P)
Thus,

Ulaf) =nfpU(af; P) =infpaL(f; P) = asupp L(f; P) = aL(f)
Liaf)=...=aU(f) —
f is Riemann integrable — f bounded and L(f) =U(f) = ff f(x)dx

= af is bounded and L(af) = U(af) = a/bf(a:) dx

b b
= «af is Riemann integrable and / (af)(x)dx = a/ f(x)dx
a a

2. As f, g are Riemann integrable, f 4 ¢ is bounded and f, g are Darboux integrable.
Fix € > 0. Then, f is Darboux integrable implies 3P; partition of [a, ] s.t.

U(f;P1) — L(f; 1) <

| ™

g is Darboux integrable implies 3P, partition of [a, b] s.t.

€
Ul(g; P2) — L(g; P2) < B
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Let P = P, UP,. Then, we have

U(f;P) = L(f:P) < 5 and Ulg:P) ~ L{g:P) < 5
For S C [a, b],
M(f +g;5) < M(f;5)+ M(g;5)
m(f+g;5) = m(f;S) +m(g; S)
So

U(f +g:P) SU(f; P) + Ulg; P)}
L(f +g;P) > L(f; P) + L(g; P)

= U(f+¢;P) - L(f+9;P)<U(f; P)— L(f; P) + U(g; P) — L(g; P) < ¢

f + g is Darboux integrable

F+gis bounded } = f + g is Riemann integrable
g is bounde

Moreover,

Ulf+9) <U(f+gP)<U(f; P)+Ul(g; P)
< L(f;P)+ L(g; P)+¢

b b
SL(f)—i—L(g)—i-E:/ f(a:)dx—i—/ g(z)dx + ¢

Similarly,

L(f+g) > L(f +g; P) > L(f; P) + L(g; P)
>U(f; P)+U(g; P) —¢

b b
> U(f)+U(g) - < = / f(@)dz + / g(x)dz —

Let ¢ — 0, we get

/ab<f+g><a:>d:c—/:f<x>dx+/:g<x>da: 0

Theorem 21.2
Let f,g: [a,b] — R be Riemann integrable. Assume f(x) < g(x) Va € [a,b]. Then

/abf(x)dx g/abg(x)d:c

Proof. By the previous theorem, h : [a,b] — R, h = g — f is Riemann integrable. Moreover,
since h > 0, we have

/b h(z)dx = L(h) = sup L(h; P) > 0
a P

which implies

o< [(hwyar= [ pwae= [ @ [ s =
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Theorem 21.3
Let f : [a,b] — R be Riemann integrable. Then |f| is Riemann integrable and

/ab f(z) da

Proof. Let f is Riemann integrable. Then, f is bounded and Darboux integrable. So |f| is
bounded. For S C [a,b] we have

M (|f[;8) =m(|fl;S) = sup|f(z)| — inf | f(y)]
€S yeS

< [ az

= sup |f(x)| +sup —|f(y)]
€S yes

= sup {[f()| = [f (W)}

z,yeS

< sup [f(z) = f(y)]
z,yeS

= sup {f(z) — f(y)}
z,yeS

= sup J(x) = inf f(y)

= M(f;5) —m(f;5)
So for any partition P of [a,b] we have
U(If; P) = L(If; P) <U(f; P) = L(f; P)
f Darboux integrable = Ve > 0 3P partition of [a, ] s.t.
U(f;P) = L(f;P) <e

= Ve > 03P partition of [a,b] s.t. U(|f|; P) — L(|f|; P) < ¢

|f| is Darboux integrable

1] is bounded } = |f| is Riemann integrable
is bounde

We have
—[f@)] < f(z) < |f(z)]  Vz€la,b]

By the previous theorem,

—/ab\f(x)]dx:/ab—]f(x)]dx</abf($)d$</ab|f(33)|d33

which implies
b b
/mez/mmm 0
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(Theorem 21.4 A

Let f : [a,b] — R be a function and let a < ¢ < b. Assume f is Riemann integrable on
[a,c] and on [c,b]. Then f is Riemann integrable on [a, b] and

/abf(x)dxz/acf(a;)dx—i—/cbf(x)dx

- J

Proof. f is Riemann integrable on [a, c| and on [c, b]

= f bounded on [a,c| and on [c,b]
—> f bounded on |a, ]

Fix € > 0. As f is Riemann integrable on [a, ¢], f is Darboux integrable on [a, c]

= 3P partition of [a,c] s.t. US(f; P1) — L5(f; P1) < %

Similarly, as f is Riemann integrable on [¢,b] = f Darboux integrable on [, b]

= 3JP, partition of [c,b] s.t. Uf(f;Pg) — LIC’(f;Pz) < g

Let P = P; U P, partition on [a, b] and
U(f; P) = Ug(f: Pr) + UZ(f3 o)
L(f; P) = Ly(f; 1) + Le(f; P2)
So

U(f;P) = L P) < 5

Therefore, as f is Darboux integrable and bounded on [a,b], f is Riemann integrable on
[a, b]. Moreover,

U(f) SU(f; P) =UL(f; Pr) + ULfy Po) < LE(f3 Pu) + LA(f o) + €

/f dx—i—/f Ydx + ¢
f>z/:f<x>dx+/:f<x>dx—s

/abf(:n)d:n:/acf(a:)dx+/cbf(:r)dx 0

~

Similarly,

Since € > 0 is arbitrary,

/Lemma 21.5

Let f,g : [a,b] — R be functions s.t. f is Riemann integrable and g(z) = f(z) except
at finitely many points in [a,b]. Then g is Riemann integrable and

[swa=[ @
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Proof. Arguing by induction, we may assume that there exists exactly one point xg € [a, b]
st. f(xg) # g(xg). Let B > 0 s.t. |f(z)] < B and [g(x)| < B Vz € [a,b]. Let
P={a=ty<...<ty,=>b}). We consider

U(f;P)—Ul(g; P)
L(f; P) — L(g; P)

tr—1 xo =t Trt1

The largest contribution occurs when xy = t for some 1 < k <n — 1.

| M (f3 [tr—1. te]) = M (g3 [ti—1, ta])| < [B — (=B)] (tx — ti—1)
< 2B mesh(P)
= |U(f;P)—U(g; P)| < 4B mesh(P)

Similarly,

Im (f; [tk—1,tk]) — m (g; [tk—1, tk])| < 2B mesh(P)
= |L(f;P)— L(g; P)| < 4B mesh(P)
Thus,
U(g; P) — L(g; P) <U(f; P) — L(f; P) + [U(f; P) — Ul(g; P)|

+|L(f; P) = L(g; P)|
<U(f;P)— L(f; P)+ 8B mesh(P)

f Darboux integrable = Ve > 0 36 > 0 s.t.

U(f; P)— L(f;P) < VP partition with mesh(P) < d

€
2
Choose ¢ even smaller if necessary so that

9 £
B e — Dy

Then U(g; P) — L(g; P) < € for all P partition with mesh(P) < 0.

g is Darboux integrable

bounded } = ¢ is Riemann integrable
g bounde

Exercise 21.1. Show f;g(:p) dx = f; f(z)dz. O
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§22 ‘ Lec 22: May 17, 2021

§22.1 Riemann Integral (Cont’d)

Definition 22.1 (Piecewise Monotone) — We say that a function f : [a,b] — R is
piecewise monotone if there exists a partition P = {a =tg < ... <t, = b} s.t. f is
monotone on (tx_1,tx) for each 1 < k < n.

Definition 22.2 (Piecewise Continuous) — We say that f : [a,b] — R is piecewise
continuous if there exists a partition P = {a =ty < ... < t, = b} s.t. f is uniformly
continuous on (tx_1,tx) for each 1 < k < n.

(Theorem 22.3 A
Let f: [a,b] — R be a function that satisfies
1. f is bounded and piecewise monotone.
or
2. f is piecewise continuous.
Then f is Riemann integrable. )

Proof. Let P ={a =1y < ... <ty = b} be a partition of [a,b] s.t. 1) f is monotone or 2)
f is uniformly continuous on (tx_1,t;) V1 < k < n.

If f is monotone on (tx_1,t), then f can be extended to a monotone function on f; on
[tk—1,tx]). For example, if f is increasing on (tx_1, ;) we define

infre, 00 f(E),  t=tr
fe() = < f(t), t€ (tp—1,tk)
SUD¢e (¢ 1 ) f(t), t=tg

As f is monotone on [tx_1,tk], fr is Riemann integrable on [tx_1,tx]. As f differs from fj
at most two points, f is Riemann integrable on [t;_1, ;] and

th th

ft)dt = fr(t) dt

te—1 te—1

If f is uniformly continuous on (tx_1,tx), then f admits a continuous extension fi to
[tk—1,tx]. Then fi is Riemann integrable on [t;_1,tx] and so f is Riemann integrable on

[tk—l’ tk] and
th th

FOydt= [ fu@de

te—1 te—1
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By the last theorem from last lecture, we conclude that f is Riemann integrable on [a, b]

and /b 2’"”: /tk
f(t)dt = f(t)dt O
a k=1"tk—1

Theorem 22.4 (Intermediate Value Property for Integrals)

Let f : [a,b] — R be a continuous function. Then there exists ¢ € [a, ] s.t.

b
= bia/ f(x)dx

Proof. f is continuous on [a,b] compact which implies there exist xo, yo € [a, b] s.t.

{f(ﬂﬁo) = infocpay f(2)
f(yO) = SUPgzela,b] f(ﬁ)

So
b b b
(b—a)f(w0) = / flavydo < [ fa)da < [ fn)do = (b= a)fa0)
— f(w0) < 525 J F(x) dz < f(yo) .
f is continuous = f has the Darboux property
= Jec between z( and yg s.t. f(c f flx O

§22.2 Fundamental Theorem of Calculus

Definition 22.5 (Riemann Integrable — “Extension”) — We say that a function f :
(a,b) — R is Riemann integrable on [a, b] if every extension of f to [a,b] is Riemann
integrable. In this case, fab f(t)dt does not depend on the values of the extension at a
and at b.

\
Theorem 22.6 (Fundamental Theorem of Calculus Part II)

Let f : [a,b] — R be continuous on [a,b] and differentiable on (a,b). If f’ is Riemann

integrable on [a, b] then
b
[ r@do=1®) - f(a)
- ‘ J

Proof. Fix e > 0. As f’ is Riemann integrable on [a,b], 3P = {a =ty < ... < t, = b} s.t.

U(f';P)— L(f;P) <e
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where f is continuous on [tx_1,t;] and differentiable on (tx_1,%x). So, by the Mean Value
theorem, Jzy € (tx—_1,tx) s.t.

S(tr) — f(te—1)

bty — tr—1

flxr) =

In particular,
P @)t —tea) = Y () = fts-1)] = F(b) = f(a)
k=1 k=1

is a Riemann sum of f’ associated to the partition P. Moreover,
L(f;P) < f(b) = fla) U(f'sP) < L(f'; P) +¢ .

L(f';P) < [P f'(x)dz <U(f; P) < L(f'; P) +¢
— | [ (@) e~ [F0) - f(@)]] < 2¢

€ > 0 was arbitrary

b
} — / f@)de = f0) — f(a) O

4 I
Theorem 22.7 (Integration by Parts)

Let f,g : [a,b] — R be continuous on [a, b] and differentiable on (a,b). If f' and ¢’ are
Riemann integrable on [a, b, then

b b
/ f(2)d (x) dx +/ f'(@)g(z) dz = f(b)g(b) — f(a)g(a)
- ‘ ‘ J
Proof. By Exc 1 from Hw 8, the product of two Riemann integrable functions is Riemann

integrable. In particular, f'g and fg’ are Riemann integrable. Let h : [a,b] — R, h(z) =
f(z)g(z). We have h is continuous on [a, b], differentiable on (a, ) and

W(x) = f'(2)g(x) + f(2)g'(x)

I’ is Riemann integrable on [a,b]. By Fundamental Theorem of Calculus Part 11,

b
/ h'(z) dz = h(b) — h(a)
b b
— / £ (@)g(z) d + / f(2)g () dz = F(B)g(b) — F(a)g(a) 0

Theorem 22.8 (Fundamental Theorem of Calculus Part I)
Let f : [a,b] — R be Riemann integrable. For x € [a, b], we define

Flz) = / " Fydt

Then F' is continuous on [a, b]. Moreover, if f is continuous at a point xg € (a, b), then
F' is differentiable at zg and

9 F'(x0) = f(z0) y
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Proof. For a <x <y <b,

F(y) - Fa) = | " bty di - / " ft) e

_/axf(t)dH/:f(t)dt—/:f(t)dt
:/:f(t)dt

f is Riemann integrable = f is bounded — M > 0 s.t.

|f(x)| <M Va € [a, b]

P) = Pl < [ 1#0)]de < My —al
This shows [’ is uniformly continuous on [a,b]. For each € > 0 if |y — x| < {7 then
[F(y) — F(x)] <e
Assume f is continuous at z¢ € (a,b). For x € [a,b] \ {zo},

POZH0)  pag) = — ["s0yat — stao)

T — X0 Tr — X0

—I_lx()/x:f(t)dt—x_lxo/x:f(xo)dt
S /w[f(t)—f(wo)] i

Tr — X

Fix ¢ > 0. As f is continuous at xg, 36 > 0 s.t.
|f(z) — f(zo)| <& Vie—zo| < € [a,b]

So for x € [a,b] with 0 < |z — o] < 4,

F(x) — F(xo) 1 *
_ < t) — dt
e < e [0 - s
1 xZ
< / edt =¢
|:'C - 1:0| x0
Since € > 0 is arbitrary, F' is differentiable at zo and F'(zo) = f(zo). O
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§23 ‘ Lec 23: May 19, 2021

§23.1 Change of Variables

/Theorem 23.1 (Change of Variables) b

Let J be an open interval in R and let u : J — R be differentiable with «’ continuous
on J. Let I be an open interval in R s.t. u(J) C I and let f: I — R be continuous.
Then fowu:J — R is continuous and for any a,b € J with a < b we have

b u(b)
/ f (@) v () de = / 1) dy
a u(a)
\_ J

Proof. As f owu and u are continuous on [a,b], the function z — (f o u)(z) - v/(z) is
continuous on [a, b] and so it’s Riemann integrable on [a, b].

Fix ¢ € I and consider F(z) = [” f(t)dt. By Fundamental Theorem of Calculus Part I,
F is differentiable on I (because f is continuous on I) and F'(z) = f(z) Va € I. Consider
x +— (Fowu)(x) is differentiable on J and

(Fou)(z) = f(u(z)) -u(z) Vexeld

By the Fundamental Theorem of Calculus Part II,

b
/ (Fou)(z)dr = (Fou)(b) — (Fou)(a)

which implies
b u(b) u(a) u(b)
— [ () da — Fly) dy — Fy)dy = Fy)d 0
/a (u(x)) - ' (x) da / () dy / (v) dy / oL

Exercise 23.1. Let I be an open interval in R and let f : I — R be injective and
differentiable with f’ continuous on I. Then J = f(I) is an open interval and f=1:.J — I
is differentiable.

Then for any a,b € I with a < b we have

b f(b)
/ f(x)de + / 7 (y) dy = bf(b) — af(a)
a f(a)

Proof. Consider:
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I'r={(z,f(z)):a<x<b} = {(f_l(y),y) : y between f(a) and f(b)}

We perform a change of variables:

f(b) b
—1 dy = —1
f, T wa= ]
where y = f(x) and dy = f'dx
b
/f dx—/ xf'(z) dx
. b
=uzf(x) b—/ f(z)dx
b~ af(a /f

/Theorem 23.2

integrable and

b b b
lim fn(x)d:c:/ nlLII;ofn(x) da::/ f(z)dx

n—oo a

.

Let f, : [a,b] — R be Riemann integrable s.t. f, _)L> f on [a,b]. Then f is Riemann

~

J

Proof. Forn > 1let d;, = supge(q ) | fn(z) — f(2)]. As f _)L> f on [a, b] we have d,, — 0.
In particular, f,(z) —d, < f(z) < fu(z) + d, for all x € [a,b] (and thus f is bounded).

For any partition P of [a,b], we have

U(fn,P) _dn(b_a) < U(f’P) < U(fn;P) +dn(b_a)
L(fu: P) — dnb— ) < L(J: P) < L{f: P) + do(b )
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So
U(f;P)_L(f;P) SU(fn§P)_L(fn§P)+2dn(b_a)
Fixe > 0. As d, ? 0, In. € N s.t.

Vn > ng

Then for each n > n. (fixed) there exists a partition P = P(e,n) of [a, b] s.t.

U(fu: P) = L(Jui P) < 5

For n > n. and P = P(e,n) as above we get
U(f; P) = L(f; P) <e

As e > 0 is arbitrary, this shows that f is Riemann integrable (since it’s Darboux integrable
and bounded). Moreover,

b
/ J(@)de < U P) < U(fui P) + du(b — a)

g g
< L(fn; )+2+4

/ fn(z d:p—i——

Similarly,
/ f@)de > DU P) > L{fw P) — dalb— a)
>U<fn;P>—§—§
/ Fule) o — %
Thus,
da;—/fn ) dx <— Vn > n.
,}5{; ateyan= [0 .

§23.2 Lebesgue Criterion

Definition 23.3 (Zero Outer Measure) — A set A C R is said to have zero outer measure
if for every € > 0 there exists a countable collection of open intervals {(an,by)}, > s.t.

{A € Unz1(an, bn)
Yons1(bn —an) <e

95



Duc Vu (Spring 2021) 23 Lec 23: May 19, 2021

Remark 23.4. 1. If A C R has zero outer measure and B C A, then B has zero outer
measure.

2. If {A,},5, is a sequence of zero outer measure sets, then (J,; 4, has zero outer
measure.

3. If A is a set that is at most countable, then A has zero outer measure.

Proof. 2. Fix e > 0. For each n > 1, let {(ag,?), bﬁ,’f))} . be open intervals s.t.
m_

A € Uy (a2 167
5o (0 - o) <

Then {(a%), bgg))} . is a countable collection of open intervals s.t.

Unzl An C Un,le (aS{), 5:?)
Tt Zmzr (B2 = o)) < Do 57 = ¢

O
4 )
Theorem 23.5 (Lebesgue Criterion)
Let f: [a,b] — R be bounded. Then f is Riemann integrable if and only if the set
Py ={x € [a,b] : f is not continuous at x}
has zero outer measure.
- J

Proof. We have
P ={x € a,b] : w(f,z)=0}

where
w(f,z)= gggw (f, Bs(z))
- ggg L:;}Ex) ) = yeilgaf(x) f(y)]
= (isr;g [M (f; Bs(z)) —m (f; Bs(x))]
Then

D¢ ={z € la,b] : w(f,x) >0}

- U {a:E [a,b] : w(f,x) = 711}

n>1

—~
=Fy
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Key Observation: If P = {a =1ty < ... <t, = b} then

NE

U(f; P)=L(f; P) =) [M(f;[ti—1,tx]) — m (f; [te—1, tr])] (tx — tre1)

e
I
—_

I
NE

w (f5 [te—1,tk]) (b — tr—1)

i
I

We will continue with this proof in the next lecture. ]
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§24 ‘ Lec 24: May 21, 2021

§24.1 Lebesgue Criterion (Cont’d)

Proof. (Cont’d) “ = ” Assume that f is Riemann integrable. We denote

D¢ ={z € la,b] : w(f,x) >0}

- U {xE [a,b] : w(f,x) = 711}

n>1

Forn > 1, let F}, = {a: € [a,b] : w(f,z) > %} To show that & has zero outer measure, it
suffices to prove that F;, has zero outer measure for all n > 1.
Fix N > 1 and ¢ > 0. As f is Riemann integrable, there exists a partition P =
{a=ty<...<t,=">}st.
€
U(f; P) = L(f; P) <

Let I={1<k<n: FynN(tk_1,tx) # 0}. Then

Fy €| (thr,tr) UP
kel

As P is finite, it has zero outer measure. Thus, it suffices to show that

Z (ty —tr—1) <c¢

kel
Then,
% >U(f; P) = L(f; P) = Y [M (f; [tho1:tr]) — m (f; [te—1, te))] (B — tho1)

k=1

> w (s [tk k) (b — te1)
kel

> % > (te = tr—1)

kel

which implies

“ <= 7 Assume that Z; has zero outer measure.
f bounded = IM >0st. |f(z)| <M Vz € [a,b]
Fix € > 0 and let o > 0 to be chosen later. Consider

Fo={x€la,b]: w(f,z)>a} C P

— F,, has zero outer measure
9y has zero outer measure

F, C UnZl(an’ bn)

— 3{(an7bn)}n21 s.t. {anl(bn - an) <e
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Let A= [a,b]\ Fy. For any x € A, w(f,z) < a = 3(cz,dy) neighborhood of z s.t.
w(f; [car do]) < v

So
[a,b] = Fo UAC Un21(ana bn) U Uzealca, d:v)}

[a,b] is compact
which implies there exists ng € N and J C A finite s.t.

no

[, 8] € | (ar: b1) U | (e, i)

k=1 zeJ
Let P be a partition of [a, b] formed by the points
no
({a, b} U | {a b} U {cgc,dm}) N [a, b]
k=1 xeJ
Say P={a=1ty<...<ty,=>}. For any 1 <1 < n, we have

[ti—1,t1] C [ag,b] for some 1 < k < ny

or
[ti—1,t] C [cg,dy] for some z € J
Let
L={1<I1<n: [ti-1,4] C|ag,b] for some 1 < k < ng}
IQ :{1,...,71}\[1
Note that
ng
Z(tl — tl—l) < (bk — ak) <e€
lel k=1
le 12’ w(fa [tl—l,tl]) <w (fa [C:Eadx]) <«
Then,

U(f;P) = L(f: P) = > [M (f;[tier. t1)) — m (f3 [ti—1, t])] (6 — ti1)

=1
= (M (f; -1, ) = m (f; i1, )] (6 — ti1)
=
+ Y w (st tl) (= ti)
lels

Notice that

DM (filtior,t]) = m (f; [, )] (0 — tia) S2M Y (t = tio1) < 2Me

lel lel
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So

Y w(filtit]) (h—tia) <@ (ti—ti)

lels lels

< OzZ(tl —ti-1)
=1
=a(b—a)

Choose o < 3=~ to get
U(f; P)— L(f; P) <2Me +¢

As ¢ is arbitrary, this shows that f is Darboux integrable, and thus Riemann integrable. [J

§24.2 Improper Riemann Integrals

Definition 24.1 (Locally Riemann Integrable) — Let —oo < a < b < co. We say that
f :]a,b) — R is locally Riemann integrable if f is integrable on [a, ] for any ¢ € (a, b).

\

Definition 24.2 (Improper Riemann Integral) — Let —co <a < b < oo and f : [a,b) —
R is locally Riemann integrable. In addition,

lim | f(z)dx exists in R
c—

a

We denote it f: f(z)dz and we call it the improper Riemann integral of f. In this
case we say that the improper Riemann integral of f converges. If

lim/ f(z)dr = £o00
c—=b Jq

then we write f; f(z)dx = oo and we say that the improper Riemann integral of f
diverges to £o0.

J

Remark 24.3. One can make a similar definition if —co < a <b < oo and f : (a,b] — R or if
—o<a<b<ocoand f:(ab) = R.

(Theorem 24.4 A

Let —0o < a < b < oo and let f : [a,b) — R be locally Riemann integrable and
bounded. Then the improper Riemann integral f: f(z)dz converges. Moreover, any
extension f : [a,b] — R of f to [a,b] is Riemann integrable and

/abf(x)dx:/abf(:c)dx
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Proof. Let f : [a,b] — R be an extension of f to [a,b]. As f is bounded, 3M > 0 s.t.
F@)|<M  vaela
For c € (a,b),
U = Us(H) + UMD = [ f@)do + VL) *)
L) = L) + LU = [ faydo+ 227

= UNf) = L(f) = U2(f) = L&)

UL(f) < M(b—c) — UMF) - L(f) < 2M(b— ¢)
- ———
LY(f)| < M(b—¢) =%

This shows that f is Riemann integrable. Moreover, by (*),

/f )do = lim f()

Thus, the improper Riemann integral of f converges and

/abf(x)dx:/abf(a;)dw O

101



Duc Vu (Spring 2021) 25 Lec 25: May 24, 2021

§25 ‘ Lec 25: May 24, 2021

§25.1 Improper Riemann Integrals (Cont’d)

Proposition 25.1

improper Riemann integrals of f and g converge. Then

1. For any o € R, the improper Riemann integral of a.f converges and
b b
[ap@ds=a [ fa)ds

2. The improper Riemann integral of f + g converges and

/b<f+g><w>dx=/bf<x>dx+/bg<x>dx
g . . .

Let —0o < a <b<ooand let f,g:[a,b) — R be locally Riemann integrable s.t. the

\

Proof. 1. Consider:

b c c
Raa/ f(a:)dac:aligll)/ f(x)da:zligll)a/ f(x)dx

(f is locally Riemann integrable) = lim [ («af)(x)dx

c=b Jq

So the improper Riemann integral of af converges and

b c b
[ @iz =tim [@n)@ar=a [ ra)ds

2. Consider:

C C

b b
R > / f(z)dx +/ g(x)dr =1lim | f(z)dz+ il_)rré g(z)dz

c—b J, a

= lim [/acf(:c)dx—k/:g(a:)dx}

=lim [ [f(z) +g(2)] dz

c—=b Jq

So the improper Riemann integral of f + g converges and

b

/ab(f-i-g)(x) dx:(l:gl})/ac(f-i-g)(x) dx = /abf(a:) dx-i-/a 9(z) d
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Remark 25.2. If f, g : [a,b] — R are Riemann integrable functions, then
e |f] is Riemann integrable.
e f-g is Riemann integrable.

However, if f, g : [a,b) are locally integrable functions s.t. the improper Riemann integrals of
f and g converge, then

e the improper Riemann integral of |f| need not converge.

e the improper Riemann integral of f - g need not converge.

Example 25.3
Let f,g:(0,1] = R, f(z) =g(x) = % The improper Riemann integral of f converges

/le(x)dwz/:\i%dx:%/a?

The improper Riemann integral of f - g does not converge

g

1
=2—-2/c—2
c—0

C

=
T=

E 1 1 =1l
/C f(z)g(z) dx /C sde=nz| ne — 00
More generally, we can take f,g: (0,1] — R
1 1 .
f(l"):*a, g($)=7 with 0<a,8<1 and a+p8>1
7 7

4 )
Lemma 25.4 (Cauchy Criterion)

Let —0o < a < b < oo. Let f:[a,b) — R be locally integrable. Then the improper
Riemann integral of f converges if and only if

Cc2
Ve >0 de: € (a,b) s.t. / flz)dr| <e Ve.<cp <ca<b
. " J

Proof. “ = 7 Assume that the improper Riemann integral of f converges. Let

a:/bf(x)dxeR

We have

c—b

azlim/acf(a:)dx

Then Ve > 0 3c. € (a,b) s.t.

oz—/acf(x)dx

e
<§ Vc€<c<b
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For ¢. < ¢ < ¢o < b we have

/:2 f(z)dx

/:2 f(:z:)alac—/ac1 f(z)dx

/:Qf(x)d:va a/:lf(x)dx
9
—=c

St
22

+

<
<

“ <= 7" Fix e > 0 and let c. € (a,b) s.t.

/:2 f(x)dx

Let {cn}n21 C (a,b) s.t. ¢, — b. Then dn. € Nsit. ¢. < ¢, <bforalln >n.. In

/acm f(x)dx — /acn f(x)dx /C:m f(z)dzx

Cn
= { / f(zx) dm} C R is Cauchy and so convergent
a n>1

<e€ Vee <cp<ca<b

particular,

= <e n, M > Mg

Let a = limy,_, faC" f(z)dz. To prove that the Riemann integral of f converges, we need
to show that v does not depend on {cp},5;. Let {dyn},~; C (a,b) s.t. limp oo dp = b

Consider
o
Ty = ¢k ifn =2k for k>1
dp, ifn=2k-1

Then x, — b. From the same argument used for the sequence {cy},,~;, we conclude that
n—oo -

{ff” f(z) d:v}n>1 is Cauchy and so convergent. So

Tan T2n—1
nh_}rgo ; f(z)dx = 7}1_)11{)10 ) f(z)dx
Cn, dn
a = lim f(z)dz = lim f(z)dx O
n—oo a n—oo a

/Theorem 25.5 (Abel Criterion) b

Let —oo < a<b<ooandlet f,g:[a,b) = R be locally integrable. Assume that g is
decreasing and lim,_,;, g(z) = 0. Assume also that there exists M > 0 s.t.

/acf(:r) dx

Then the improper Riemann integral of f - g converges.

<M Va<c<b
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Remark 25.6. Compare this with the series version

{an}n21 is decreasing with lim, ., a, = O}

== anb, converges
IM > 05t [Yr_ bl <M VYn>1 2 nbn &

n>1

Proof. We’ll use the Cauchy Criterion. Fix ¢ > 0.

hrr})g( z)=0 = dc. € (a,b) s.t. |g(x)] <e Ve.<z<b
T—r

Fix c¢. < ¢1 < cg < b and consider fccf f(z)g(z)dzx. Using exercise #6 in HWS8, we can find

xo € [c1, ] s.t.
/f d$—961/ f(z d:v+962/ f(z

—o(e) | [ @y~ [ s dm}
sten) | [ sty ae = [ o)

which implies

x)dx| + x)dx

|
|

As c. < ¢1,c9 < b are arbitrary and € > 0 is arbitrary, we conclude that the improper
Riemann integral of fg converges. O

/f x) dx

<gCl I:

x)dz| + x)dx

+ g(c2) [

< 4Me

105



Duc Vu (Spring 2021) 26 Lec 26: May 26, 2021

§26 ‘ Lec 26: May 26, 2021

§26.1 Improper Riemann Integrals (Cont’d)

Exercise 26.1. Show that the improper Riemann integral

> sinx
dx  converges
0 x

but the improper Riemann integral

r

Proof. To show that fooo Sigxdx converges, we have to prove that

sinx

dx  does not converge

T

M -

sin x

lim dxr exists in R
M—o00 0 X

Note that A

smx’ T O

T+ z 7
1, z=0

is continuous on on [0, 00) and so it is Riemann integrable on [0, M] for each M > 0. For

M > 1, we write
M 1 M
sinx sinx sin x
/ dzx :/ dﬂc—l—/ dr
0 z o < 1 €z
—_——

eRr

Note that f,g : [1,00) = R, f(z) = sinz and g(z) = 2 are continuous and so Riemann
integrable on [1, M] VM > 1. Also,

e ¢ is decreasing and lim,_,~ g(x) =0

M
/ sinx dx
1

e In addition,

=|cos1l —cos M| <2 VM > 1

So by the Abel Criterion, the improper Riemann integral floo Sinwﬂdw converges. Moreover,
 sinx M gin x Lgina M gin x
/ dx = lim dx = / dr + lim dx

1 00 %
sinx sin x
= dr + dzx
o < 1 T

Let’s show that the improper Riemann integral fooo ‘Sibrﬂdx diverges to co. We'll use that

1 T T
i > — k Zk -
]smx!_Q on [774—6, T+ 6]
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for all £ > 0. So

/OO | sin z| Q> Z/’”*E}f | sin z| i
0 Z N k4% €T

k>0

1 1 [( 57r) }
> = kr + — —(k -1-*)
— 51

1 1 27 1 1
2 (k+r 3 34kl

Proposition 26.1 )

Let —0o < a <b< oo andlet f:[a,b) = R be locally Riemann integrable s.t. the
improper Riemann integral of | f| converges. Then the improper Riemann integral of

f converges and
b b
/ f(@)de| < / ()] da
\_ ¢ ¢ Y,

Proof. As the improper Riemann integral of |f| converges, by the Cauchy Criterion we
have

c2
Ve >0 Elcae(a,b)s.t./ |f(z) de <e Ve <e1 <eca<b

C1

As f is locally integrable, f is integrable on [c;, ¢2] and

/C jz (@) dz

By the Cauchy Criterion, the improper Riemann integral of f converges. Moreover,

/abf(x)dx ii_r}rll)/acf(x)d:c /acf(a:)dm

C
(f is locally integrable) < lirrll)/ |f(x)| dz
c—

c2
g/ |f(z)| de < e Vee <cp <ep<b

C1

= lim
c—b

=/ab|;<x>| da =

Definition 26.2 (Absolute Convergence — Integral) — Let —oco < a < b < oo and
f :[a,b) — R be locally integrable. We say that the improper Riemann integral of f
converges absolutely if the improper Riemann integral of |f| converges.
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Remark 26.3. 1. If the improper Riemann integral of f converges absolutely, then it
converges.

2. The improper Riemann integral of f converges absolutely if and only if

lin})/ |f(z)|de e R <= 3M >0 s.t. / |f(z)] de <M Ve € la,b)
G—= a a

3. If f,g: [a,b) — R are locally integrable s.t. |f(z)| < |g(z)| Vx € [a,b) and the improper
Riemann integral of g converges absolutely, then the improper Riemann integral of f
converges absolutely.

4. If f,g : [a,b) — R are locally integrable and their improper Riemann integrals converge
absolutely, then the improper Riemann integral of f 4 g converges absolutely.

5. If f,g:[a,b) = R are locally integrable s.t. f is bounded and the improper Riemann
integral of g converges absolutely, then the improper Riemann integral of f - g converges

absolutely.
§26.2 Continuous 1-Periodic Functions
Definition 26.4 (Convolution) — Let f,g : R — C be continuous functions with

period 1, that is,
fle+1)=f(z) and g(z+1)=g(z) =z€R

Their convolution f * g : R — C is defined via

1
(f +9)(x) = / f@ele —y) dy
_ 0 Y,

Claim 1:

a+1
(f * 9)(x) = / fWy@—y)dy VacR, VreR

This is obviously true if a = k € Z. For y = k + z,
k+1 1
/k f(y)g(:z—y)dyz/o flk+2)g(x —z—k)dz

1
(&g periodic) = /0 (@)@ — =) dz = (£ * g)(x)
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Next, decomposing a = [a] + {a} we see that it suffices to prove the claim for a € (0, 1).
~

<

€01

a+1 1 1+a
/ FWa(x—y)dy = | Fy)gle —y)dy + / F@)g(x —y) dy
a 1

1

gl — ) dy + / " fe 4 Dgla — 2 1)dz

N

1
f@)glz—y dy+/f (2 - 2)
1

fly y)dy = (f * g)(z)

0
Claim 2: f * g is 1-periodic.
1 1
(f*g)(x+1) = / Fwgla+1—y)dy = / Fwgla —y)dy = (f * 9)(x)
0 0

Claim 3: f * g is continuous

|(f * g)(w1) — (f * g)(z2)| =

[9(z1 —y) — g(z2 —y)] dy

1
< /0 £ )] l9(z1 — ) — g2 — )| dy

g continuous on [0, 2] compact = ¢ is uniformly continuous on [0, 2], and since g is
1-periodic, we conclude that ¢ is uniformly continuous on R. So Ve > 0 34§ > 0 s.t.
l9(z) —g(y)l <e  Vi]z—yl <o
f is continuous on [0, 1] compact = M > 0 s.t.
fx)| <M Vzelo,1]
So )
(@) = (2 a)eo) < [ M-edy=Moc Vo =] <5

Claim 4: fxg=gx* f. For z =z — y,

(o= Nia) = | g — ) dy = / e ) d
/ gz — ) dy
/ e

= (f*g)(x)
Claim 5: For all « € C,
(af)xg=fx(ag)=a(f*g)
Claim 6: If f, g, h are continuous, 1-periodic functions,
{f*(g+h)=f*g+f*h
(fxg)xh=[fx(g=xh)

(Left as exercise! J
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§27.1 Continuous 1-Periodic Functions (Cont’d)

Definition 27.1 (Approximation to the Identity) — A sequence of continuous, 1-periodic
functions K,, : R — C is called an approximation to the identity if it satisfies the
following:

1. fo z)de =1VYn>1

2. IM > 0 s.t. fO|K z)| de < M ¥n > 1

3. V6 >0, [0 |K,(2)| da — 0.
. J

Remark 27.2. While 1) says that K, assigns mass 1 to each period, 3) says that this mass is
concentrating at the integers as n — oo.

(Theorem 27.3

Let f: R — C be a continuous, 1-periodic function and let {Kn}n21 be an approxima-
tion to the identity. Then
Kpxf — fonR

n—o0

.

Proof. Fix x € R.

(K, * f)(z /K (z —y dyf/K

/ Kaly) [f(e — ) — f(2)] d

— (Ko ) |</ Ka()| |f(@ — ) — f(2)] dy

f is continuous and 1-periodic = f is uniformly continuous.
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Let € > 0. Then 36 > 0 s.t. |f(z) — f(y)| < e for all |z —y| <o

) )
/ K| |f (2 — ) — f(2)] dy <& / Ko(y)] dy
0 0

TV
<e

1
Ss/ Ko(y)| dy < <M
0

1 1. [0
/ ()| 1f(x = y) = f(z)] dy "= / [Kn(1+2)[|f(x—2-1) = f(z)| dz
1 -5

-4

0
_ / B f (o~ 2) ~ f(@)] d=

<e

0
< 5/ | K (2)] dz < eM
-1

As [} 70 |Ku(y)|dy — 0, 3n. € Nsit.
n—oo

1-§ c
K,(y)| dy < ————
/5 )l dy < g3

So collecting our estimates, we get
|(Kp* f)(x) — f(z)] <2eM +¢ Ve € R, Vn > n,

As e > 0 is arbitrary, we get K, * f — . O
n—o0

§27.2 Fourier Series

Definition 27.4 (Orthonormal Family) — For n € Z, let e,(z) = €*™"% = cos(27nx) +\

isin(2mnz). Note e, : R — C is continuous, 1-periodic.
1
1, n=0
/ en(x)de = "
0 0, n#0

1 1 1, n=m
/0 en(z)em () dz =/0 en—m(x)dr = {O, ntm

= {en},,~; form an orthonormal family.

So
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J

\

Definition 27.5 (Trigonometric Polynomial) — A trigonometric polynomial takes the
form
Z cnen(T)
In|l<N
where ¢, € C for all [n| < N.
Definition 27.6 (Fourier Series) — Given a continuous, 1-periodic function f : R — C,
we define its n'® Fourier coefficient via
A 1 — 1 .
fo = [ faen@de = [ f@)e e do
0 0
The Fourier series of f is given by Y f(n)en(x).

Question 27.1. Can we recover f from its Fourier series?

If f € C?, then
> fn)en(x) = f(=)
n—o0
ne’
In 1966, Carleson proved that the Fourier series of an integrable function converges pointwise

to f outside a set of measure zero.
For N >0, let

1
SvH@) = 3 Fmeat@) = 3 /0 F@)en@) dy - en(a)

In|<N In|<N
1
= fen(z —y)d
MEN/O y y) dy
1
=/0 F D en | (@=y)dy

[n|<N

= |fx* Z en || (z)

In|<N

For N >0, let Dy = Z\NISN e, denote the Dirichlet Kernel. Note that

1 1
/ODN(x)da:: Z /0 en(z)dr =1 VN >0

In|<N

{Dn}y>o do not form an approximation to the identity since

1
/ |Dy(x)| de — o0
0 N—o0
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‘We have
Dy= ) en
[n|<N
N+1 N
(e —1)Dy = Z en — Z én =EeN11— €_N
n=—N+1 =—N
— Dy = NHLTEN (1)

€1 — 1
In addition,
e27ri(N+1)a: _ o—2miNz e (e27ri(N+%):r _ 6727T’L'(N+%)£E)
DN(m) = e2miz _ | = eTixT (em‘x _ e—m’x)
sin (27r (N + %) 33)

sin(mx)

Also,

/1 Dy(2)] de > /1 |sin (27 (N + 3) )| b
0 0

T
_ /2”<N+%> [sin(y)| dy
y:27r( +%)z 0 : 9 (]3+1) 27 (N+ %)
1 27T(N+l) :
_L e, o
T 0 Yy N—oo

The average of the Dirichlet kernels do form an approximation to the identity. For N > 1,

let Fy = M denote the Fejer Kernels. Note that

1
/FN( dx— /Dk NZl
0

We will show that Fy > 0 and so
o | |Fn(2)|de = [} Fy(z)dz =1VYN >1

¢ V5 >0, [{70|Fy(z)|dz — 0
N—oo

Consequently, we obtain the following

/Theorem 27.7 A

If f:R — C is a continuous, 1-periodic function, then

Fyxf % fonR
N—o0
if and only if
1 V-l
o(f) = N ;SN(f) Njof on R

- J

113



Duc Vu (Spring 2021) 27 Lec 27: May 28, 2021

Corollary 27.8
If f:R — C is a continuous, 1-periodic function, with f(n) =0Vn € Z, then f =0.

Corollary 27.9

Every continuous, 1-periodic function can be approximated uniformly by trigonometric
polynomials.
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§28.1 Fourier Series (Cont’d)
Recall that for n € Z we define the character e, : R — C

en (x) — 627rinx

For a continuous, 1-periodic function f : R — C, we define its n'" Fourier coefficient via

/f

and the partial Fourier series

[Sx(N(z) = fn)ea(x) YN =0

x)dr = / f(z)e 2mne dy Vn € Z

We observed Sy(f) = f * Dy where Dy denotes the Dirichlet kernel

Dy = Z en, VYN >0
|n|<N

Using
€EN+1 — €E-N
Dy = = (1

We obtained the explicit formula

sin (27r (N + %) :U)

Dn(w) = sin(7x)

and computed

/|DN |d:c—>oo

In particular, {Dy}y~; do not form an approximation to the identity. Instead, we define

the Fejer Kernel

D ...+ Dpn_
Fy = o+ N—I— N-1 YN > 1

N-1
o(f)=f+Fnv=— Zf * Dy, anm
n=0

So

Claim 28.1. {Fy}y; form an approximation to the identity and thus o(f) 5 f for

n—oo
any continuous, 1-periodic f : R — C.

Proof. First, we have
! ! ! 1, n=0
/ en(z)dx = / cos (2mnz) dx —l—i/ sin (27rni) de =<
0 0 0
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VN >1

we get
1 1
/DN(:r)d:E: Z / en(z)dr =1 VN >0
0 In<N 0
and so
1 1 N-1 =1
/0 FN(m)dx:an%/O Dy(z)dx =1

Net, we compute an explicit formula for Fly

NFN =Do+...+Dn_1

1) e] — —e_ —e_
(:)61 €0+€2 e 1+"'+6N €_N+1
61*1 61*1 61*1
(61+62+...+6N)—(eo—i-e_l—i-...—i-e_N_H)
N 61—1
:(61—1)(61+62+...+6N)—(61—1)(eo+e,1+...+e,N+1)
(e1 —1)2
Notice that
(eg—1)(e1+...4+exy)=ex+...+ent1—€1 —... —eN = enN41 — €]
(61—1)(eo+...+e_N+1):el+...+e_N+2—eo—...—e_N+1:el—e_NH

So

NFN(J}) =

en+1(z) + e—nt1(z) — 2e1(z)

(6271'2':(: _ 1)2

61(%) (627riNac 4 e—27riNa: o

2

e1 (SL‘) (eﬂ'ix _ e—ﬂ'ix)z

_ 2 (cos(2rNz) — 1)
[2i sin(7a))?
_ [sin(ﬁNx)] 2

sin(7x)

which implies

Fy(x)

- 1 [y’

Thus,

>0 VN >1

1 1
/ |FN(93)]d9::/ Fy(z)dr =1 VN >1
0 0

Lastly, we have to verify that V0 < § < 1

1-46
/ Fx(@)| dz —> 0
)

N—oo

Fix 6 > 0. Then

0<z<]l—-§) = m0<mr<m—md
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= dc¢s > 0 s.t.

|sin(mz)|* > ¢s Vo e [0,1 — 9]
So
1-0 1-6
1 sin(mNx)
F dr = — d
/5 [P ()] dx N/5 sin(mz) v
1 [0
< - 24
- N 5 Cs v
11-26
= — 0
N Cs N—o0

This proves that {Fx} N>1 form an approximation to the identity.

§28.2 Topology Addendum

Lemma 28.1

Let (X,d) be a metric space. A set A C X is dense in X if and only if ANW # () for

every non-empty open set W C X.

Proof. “ = ” Let A C X be such that A = X. Assume, towards a contradiction that

AW =W C X sit.

ANW =0 = W C°A

— W=WCA="(A)=°X

which is a contradiction as W # ().
_ ‘(4
A£X =

which implies
Jdxr €A and dr >0

<= 7 Assume, towards a contradiction, that

40

“(d) = A

=0

o}:>c/j\47é®

s.t. By(z) C°A

So By(xz) NA # () — contradiction! O
——
#() open

\

(Theorem 28.2

Let (X, d) be a complete metric space. Then X has the property of Baire, that is, for
every sequence {Ay}, -, of open dense sets we have
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Proof. Using the lemma, it suffices to show

(N AnnW#0  VI#W=WCX

n>1
Fix 0 £W =W C X.

EIFL‘ — AlﬂWaé(Z) — drieAAnNW = A0<r; <1s.t.
———
open

Krl(l'l) = {y cX: d(y,xl) < 1”1} cANW

__ 1
Ay =X — AQﬂBrl(wl)#Q) = dzo € Ao N By (1) = E|O<T2<§S.t.
—_———
open

Ky (22) € A1 N By, (21)

Proceeding inductively, we find a sequence {z},~; € X and {r,},~; s.t.

0<r, < % Vn >1
K, ($n+1) - An+1 N Brn (xn) - KTn (l'n) Vn >1

n+1

Note that {K,, (z,)},~; is a sequence of nested closed sets whose diameters decrease to
zero. As (X, d) is complete, we find

m K, (v,) = {z}

n>1

for some x € X. In addition,

{2} = () K, (zn) SANWN () AN By, (zn1) S | [)An | NW

n>1 n>2 n>1
which implies (ﬂn21 An) NW #0. O
/Lemma 28.3 b
Let (X, d) be a metric space. Then the following are equivalent:
1. For every {An},>; of open dense sets we have [,5; 4, = X.
2. For every {Fy}, of closed sets with empty interiors, we have
Ur =0
n>1
- J
Proof. Left as exercise. O
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§29.1 Topology Addendum (Cont’d)

Lemma 29.1

Let (X, d) be a metric space that has the Baire property. If ) = W = W C X, then
W has the Baire property.

Proof. Fix 0 # W =W C X. Let {Dp},,~; be open dense sets in W.

D,, open in W = 3G,, open in X s.t. D, = G, N W open in X as G,, and W are open.
D, densein W = D, NW =W = WCD, = WCD,,.

Define A, = D,, U“(W) open in X.

o

A, = Dy U(W) = Dy US(W) = DU (W) DWU(W) = X

Thus {A,},, are dense open sets in X and as X has the Baire property,

ﬂAn:X

n>1

Then,

which implies

W [ .U (W) | nw
~ [ Danw] [ (i) W]

WoW=W — (W) CW — C(W)ﬂWz(Z)

= mﬂ W =W ie. (,5 Dn is dense in W. O

Theorem 29.2

Let (X, d) be a metric space with the Baire property. Let f,, : X — R be continuous
function that converges pointwise to a function f: X — R. Then the set

C ={x € X: fiscontinuous at z} is dense in X

Proof. We can observe that it suffices to prove the theorem under the additional hypothesis

fu(z)| <1 VzeX VYn>1
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Indeed, if {f,},~; is as in the theorem, then we consider

_ Y
1 — |yl

So ¢o fr : X — (—1,1) is continuous and [p o f,(z)] < 1 for all n > 1 and = € X. Also,
fn — [ pointwise =— ¢ o f, — ¢ o f pointwise. If the theorem holds with the
n— oo n—oo

continuous, bijective, with the inverse ¢~ *(y)

¢:R—(-1,1), o(x)= T4z

additional uniform boundedness hypothesis, we get

{r € X : ¢o fis continuous at z} | . .
) . is dense in X
{z € X : fis continuous at z}

So without the loss of generality, we assume
|fn(z)] <1 Vn>1 VeelX (1)
Then,

C={x € X: fiscontinuous at =}
={reX: w(f,x)=0}

:ﬂ{xeX: w(f’x)<:b}:ﬂG"

n>1 n>1

=:G, open in X

As X has the Baire property, to prove C = X it suffices to show G,, = X Vn > 1. Fix
N > 1. We will show that Gy = {z € X : w(f,2) < %} is dense in X. By a lemma from
last lecture, it suffices to show

GNNW #0  YW£W=WCX
Fix 0 #W =W C X. Forn > 1 and z € X, we define

up(x) = inf fi,(x) and v,(z) = sup fm(z)
m2n m>n

Then {up(x)},~, is increasing and {v,(x)},~, is decreasing. As lim,, o fn(z) = f(x), we
have - -

Tim () = () = lim v,(x) )
Forn > 1, let
F, = {:1: € X vp(x) —up(z) < 4?\[}

= {x €X Zli%fm(x) - ;gﬁfz(w) < 4;\,}
1

= {fv €X sup [fm(z) = fi(x)] < 4]\,}

= ﬂ {xeX: fm(yc)—fl(a?)§4i

m,I>n
) - 1
= ﬂ (fm_fl) ! <|:_27 4N:|>
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fm — fi is continuous Vm, [l > n and [—2, ﬁ] is closed, so

(fm = f1) <[—2, 4;\&) is closed Vm,l>n

So F,, is closed in X for all n > 1. Also,
x=Ur 1w
n>1

So
W= (Unlen> mW:Unz1(FnﬁW) 3
W=W 0 = Jny € Nst. B, "W #£0)

W has the Baire property

Let g € FTTO\W and let 6 > 0 s.t. Bs(zg) C F,, NW. As f,, is continuous at xo,
shrinking ¢ if necessary, we may assume

ol Ba(a) < 7

We compute

w(f;x0) < w(f, Bs(wo)) = sup  f(x)— inf f(y)

x€Bs(x0) y€Bs(z0)
= sup  [f(z) = f(y)]
:L',yGB(g(.’Eo)
< sup [on (@) — un, (y)]
x,yEBg(mo)
= sup (g, (®) = Uny () 4 Uny (¥) = tn, (y) + tn, (2) — vy ()]
I,yEBg(xo)

1 1
(Bs(x0) € Fny) < —=+ =+ sup  [un, () — vn, (y)]
' 4N 4N x7yeB§(x0) ' '

< 1 +  sup  [fa,(x) — fn(y)]

B 2N J),yEBg(l‘o)

1. w(fny; Bs(20))

2N
< 1 n 1 < 1
— 2N 4N N

This proves g € G, "W = GNNW #0. As() #W = W C X was arbitrary, we
conclude G is dense in X. ]
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