Math 55H - Honors Ordinary Differential Equation

Duc Vu Taught by Pete Riley Pasadena City College Update: July 11, 2020

This is the last math class in the math sequence at PCC. It is taken during Spring 2020 (Covid-19 period) and thus is online. We use the book *Elementary Differential Equations and Boundary Value Problems* by *Boyce* and *Diprima* (11th edition). Even though this is an ODE class, we also got to touch a bit upon PDE and Fourier Series (heat conduction problem). Please let me know if you find any mistakes/typos in this notes and I will try to fix them as soon as I can.

Contents

1	Introduction		4
	1.1	Classification of ODE	4
		1.1.1 Order	4
		1.1.2 Linear & Non-linear	4
		1.1.3 Autonomous & Non-autonomous	5
2	Firs	t Order Differential Equations	5
	2.1	Linear Equations: Method of Integrating Factors	5
	2.2	Separable Equations	7
	2.3	Exact Equation	9
	2.4	Homogeneous Equation	13
	2.5	Bernoulli Equation	14
	2.6	Autonomous ODEs / Population Dynamics	14

	3.1	Homogeneous Equations with Constant Coefficients	15
	3.2	Fundamental Solution of Linear Homogeneous Equation	18
	3.3	Complex Roots of the Characteristics Equation	21
	3.4	Repeated Roots	22
	3.5	Method of Underdetermined Coefficients	24
	3.6	Variation of Parameters	27
4	Serie	es Solutions of Second Order Linear Equations	29
	4.1	Review of Power Series	29
	4.2	Series Solutions Near An Ordinary Point (Part I)	31
	4.3	Series Solutions Near An Ordinary Point (Part II)	34
5	Laplace Transform 3		38
	5.1	Definition of Laplace Transform	38
	5.2	IVP	38
	5.3	Step Function	40
	5.4	Discontinuous Forcing Functions	44
6	PDE	2 - Heat Equation - Fourier Series	45
	6.1	Intro to PDE - Heat Conduction in a Rod	46
	6.2	Fourier Series	49
	6.3	The Fourier Convergence Theorem	50
	6.4	Even and Odd Functions	51
	6.5	Example of Solving a Complete Heat Conduction in a rod Problem:	53
7	Bou	ndary Value Problem	53
8	Syst	em of First Order Linear Equations	54
	8.1	Homogeneous Linear Systems (Constant Coefficient)	55
	8.2	Complex Eigenvalues	58

9	Nonlinear Systems	60
10	Schrodinger's Equation	60

1 Introduction

1.1 Classification of ODE

1.1.1 Order

Example 1.1.1

$$y''' + 2e^t y'' + yy' = t^4$$

Here we can observe that the highest order of the derivative is 3 which is also the order of the differential equation.

Generalizing it to n^{th} order ODE, we obtain:

$$F[t, u(t), u'(t), \dots, u^{n}(t)] = 0$$
$$y^{n} = f(t, y, y', y'', \dots, y^{n-1})$$

⇒ Simply put, to solve an ODE means to get rid of the derivative. The solution interval of validity is $\alpha < t < \beta$.

 $\exists \ \phi \ni:$

$$\phi', \phi'', \ldots, \phi^n$$
 exist.

and satisfy

$$\phi^n(t) = f[t, \phi(t), \phi'(t), \dots, \phi^{n-1}(t)] \quad \forall \ t \in (\alpha, \beta)$$

1.1.2 Linear & Non-linear

General linear of order n:

$$a_0(t)y^{(n)} + a_1(t)y^{(n-1)} + \ldots + a_n(t)y = g(t)$$

Note: Dependent variables have to be linear

Example 1.1.2

$$t^{2}y'' - 3ty' + 4y = 0: linear$$
$$y''' + 2e^{t}y'' + yy' = t^{4}: nonlinear$$
$$y'' - 3y' + y^{2} = 0: nonlinear$$
$$y^{(3)} + yy' + \sin y = x^{2}: nonlinear$$

A notable example of nonlinear differential equation in physics is the differential equation of the motion of a simple pendulum, which can be expressed as

$$\frac{d^2\theta}{dt^2} + \frac{g}{L}\sin\theta = 0$$

For $\theta \approx 0$, the equation can be simplified to

$$\frac{d^2\theta}{dt^2} + \frac{g}{L}\theta = 0$$
 (linearization)

1.1.3 Autonomous & Non-autonomous

Example 1.1.3

$$y' = -1 - 2y$$
: autonomous
 $y' = t + 2y$: non-autonomous

From the example above, we can observe that autonomous equation does not depend on t (doesn't contain t) while non-autonomous equation does (contain t)

2 First Order Differential Equations

2.1 Linear Equations: Method of Integrating Factors

Template for 1st order linear ODE:

$$\frac{dy}{dt} + p(t)y = g(t)$$

p and g are continuous on interval $\alpha < t < \beta$.

Example 2.1.1

$$y' + 2y = te^{-2t}, \quad y(1) = 0$$
 (1)

What would happen if we multiply Eq.(1) by e^{2t} ?

$$e^{2t}y' + 2e^{2t}y = t$$

$$(e^{2t}y)' = e^{2t}y' + 2e^{2t}y$$

$$\int (e^{2t}y)' dt = \int t dt$$

$$ye^{2t} = \frac{1}{2}t^2 + C$$
(1.1)
$$u = \frac{1}{2}t^2e^{-2t} + Ce^{-2t}$$
(1.2)

$$y = \frac{1}{2}t^2e^{-2t} + Ce^{-2t} \tag{1.2}$$

Now, consider the IC:

$$0 = \frac{1}{2}e^{-2} + Ce^{-2}$$
$$c = -\frac{1}{2}$$

So,

$$y = \frac{1}{2}t^2e^{-2t} - \frac{1}{2}e^{-2t}$$
(1.3)

In the example above, 1.1 is referred to as *implicit general solution*, 1.2 is called *explicit general solution* and 1.3 is *explicit particular solution* Generalize:

$$y' + p(t)y = g(t) \tag{2}$$

Integrating factor:

$$\mu(t) = \exp \int p(t) dt$$

Multiply Eq.(2) by $\mu(t)$ gives us:

$$\mu(t)y' + \mu(t)p(t)y = \mu(t)g(t)$$

We want the LHS to be result from the product rule which is $\mu(t)p(t)y = \mu'(t)y$. So,

$$\mu'(t) = \mu(t)p(t)$$
$$\frac{\mu'(t)}{\mu(t)} = p(t)$$
$$\frac{d}{dt}\ln\mu(t) = p(t)$$
$$\ln\mu(t) = \int p(t)dt + K$$
$$\mu(t) = \exp \int p(t)dt \qquad \text{(choose } \mathbf{k} = \mathbf{0}\text{)}$$

Example 2.1.2

$$y' + 3y = t + e^{-2t}$$

Let's find the integrating factor

$$\mu(t) = \exp \int p(t)dt$$
$$= \exp \int 3dt$$
$$-e^{3t}$$

Multiply by the integrating factor by both sides gives:

$$y'e^{3t} + 3ye^{3t} = te^{3t} + e^{t}$$
$$\int (ye^{3t})' dt = \int (te^{3t} + e^{t}) dt$$
$$ye^{3t} = \frac{1}{3}te^{3t} - \frac{1}{9}e^{3t} + e^{t} + c$$
$$y = \frac{1}{3}t - \frac{1}{9} + e^{-2t} + ce^{-3t}$$

As $t \to \infty$, $y \to \infty$ and y asymptotically approach the linear function $y = \frac{1}{3}t - \frac{1}{9}$

Example 2.1.3

$$y' = t^2 y + (t - 1) \tag{(*)}$$

Rearrange the equation so that it fits the template

$$y' - t^2 y = t - 1$$

Here $p(t) = -t^2$, g(t) = t - 1. Then,

$$\mu(t) = \exp \int -t^2 dt$$
$$= e^{-\frac{1}{3}t^3}$$

Multiply (*) by $\mu(t)$:

$$y'e^{-\frac{1}{3}t^{3}} - t^{2}e^{-\frac{1}{3}t^{3}}y = e^{-\frac{1}{3}t^{3}}(t-1)$$
$$\int \left(ye^{-\frac{1}{3}t^{3}}\right)' dt = \int e^{-\frac{1}{3}t^{3}}(t-1)dt$$
$$e^{-\frac{1}{3}t^{3}}y = \int e^{-\frac{1}{3}t^{3}}(t-1)dt$$

The integral above has non-elementary solution and thus requires numerical approx.

2.2 Separable Equations

$$\frac{dy}{dx} = f(x, y) \tag{3}$$

$$M(x,y) + N(x,y)\frac{dy}{dx} = 0$$
(4)

We can derive Eq.(4) from Eq.(3) by setting M(x, y) = -f(x, y) and N(x, y) = 1. However, if M is a function of x only and N is a function of y only then Eq.(4) becomes

$$M(x) + N(y)\frac{dy}{dx} = 0$$

called separable. The differential form can be expressed as

$$M(x)dx + N(y)dy = 0$$

Example 2.2.1

$$y' = \frac{x^2}{y(1+x^3)}$$
$$\frac{dy}{dx} = \frac{x^2}{y(1+x^3)}$$
$$\int ydy = \int \frac{x^2}{1+x^3}$$
$$\frac{1}{2}y^2 = \frac{1}{3}\ln|1+x^3| + c_1$$
$$3y^2 - 2\ln|1+x^3| = c$$

where $c = 6c_1$. We can see that the solution is implicit and general

Example 2.2.2

$$y' = \frac{2x}{1+2y}$$
, $y(2) = 0$

Solve the IVP in explicit form (non-linear)

$$\int (1+2y)dy = \int 2xdx$$
$$y+y^2 = x^2 + c$$

Using the IC, we obtain:

$$0 = 2^{2} + c$$

$$c = -4$$

$$\Rightarrow y + y^{2} = x^{2} - 4$$

Let's manipulate this equation so that it's in particular explicit form instead of particular implicit.

$$y^{2} + y + \frac{1}{4} = x^{2} - 4 + \frac{1}{4}$$
$$\left(y + \frac{1}{2}\right)^{2} = x^{2} - \frac{15}{4}$$
$$y + \frac{1}{2} = \pm \sqrt{x^{2} - \frac{15}{4}}$$
$$y = -\frac{1}{2} \pm \sqrt{x^{2} - \frac{15}{4}}$$

The IC would dictate the \pm sign. Since y(2) = 0, then

$$y = -\frac{1}{2} + \sqrt{x^2 - \frac{15}{4}}$$

Let us also try to determine the interval in which the solution is defined. We need $x^2 - \frac{15}{4} \ge 0 \Rightarrow x \ge \frac{\sqrt{15}}{2}$ or $x \le \frac{-\sqrt{15}}{2}$. Since y(2) = 0 is our IC, $y > \frac{\sqrt{15}}{2}$ is the interval we want to find

Example 2.2.3

$$y' = 2x\sqrt{y-1} \qquad (non-linear)$$

$$\int \frac{dy}{\sqrt{y-1}} = \int 2xdx$$

$$2\sqrt{y-1} = x^2 + c$$

$$\sqrt{y-1} = \frac{1}{2}(x^2 + c)$$

$$y(x) = 1 + \frac{1}{4}(x^2 + c)^2$$

 \rightarrow Singular solution: $y(x) \equiv 0$.

Note: There is no singular solution in linear DE

Figure 1: Linear case

THEOREM
2.1If the function p and g are continuous on an open interval $I : \alpha < t < \beta$ (Fig 1)
containing the point $t = t_0$, then there exists a unique function $y = \phi(t)$ that satisfies
the differential equation
y' + p(t)y = g(t)
for each t in I, and that also satisfies the initial condition
 $y(t_0) = y_0$
where y_0 is an arbitrary prescribed initial value

Figure 2: Nonlinear case

THEOREM 2.2 Let the functions f and $\frac{\partial f}{\partial y}$ be continuous in some rectangle $\alpha < t < \beta, \gamma < y < \delta$ containing the point (t_0, y_0) (shown in Fig 2). Then, in some interval $t_0 - h < t < t_0 + h$ contained in $\alpha < t < \beta$, there is a unique solution $y = \phi(t)$ of the initial value problem $y' = f(t, y), \qquad y(t_0) = y_0$

2.3 Exact Equation

$$(2xy^2 + 2y) + (2x^2y + 2x)y' = 0 \tag{(*)}$$

We can observe:

$$\psi(x,y) = x^2 y^2 + 2xy$$
$$\frac{\partial \psi}{\partial x} = 2xy^2 + 2y$$
$$\frac{\partial \psi}{\partial y} = 2x^2 y + 2x$$

So, we can rewrite (*) as

$$\frac{\partial}{\partial x} \left(x^2 y^2 + 2xy \right) + \frac{\partial}{\partial y} \left(x^2 y^2 + 2xy \right) \frac{dy}{dx} = 0$$

But notice, if we assume y = y(x) recalling the chain rule of the LHS is $\frac{d}{dx} (x^2y^2 + 2xy) = 0$. This means:

$$x^2y^2 + 2xy = C$$

is also a solution to (*). More generally given:

$$M(x,y) + N(x,y)y' = 0$$
(**)

if we can identify a function $\psi = \psi(x, y)$ such that

$$\frac{\partial \psi}{\partial x}(x,y) = M(x,y)$$
$$\frac{\partial \psi}{\partial y}(x,y) = N(x,y)$$

and such that $\psi(x,y) = c$ defines $y = \phi(x)$ implicitly as a differential of x. Then (**) becomes $\frac{d}{dx}\psi[x,\phi(x)] = 0$. Solution of (**) is given as:

$$\psi(x,y) = c$$

(**) is exact $\rightarrow M_y(x,y) = N_x(x,y)$. Proof in one direction from Clairaut's Theorem:

$$rac{\partial \psi}{\partial x} = M(x, y)$$
 and $rac{\partial \psi}{\partial y} = N(x, y)$
 $M_y(x, y) = \psi_{xy}$ and $N_x(x, y) = \psi_{yx}$

Note: Clairaut's Theorem shows that $\psi_{xy} = \psi_{yx}$.

Example 2.3.1

$$\frac{dy}{dx} = -\frac{ax - by}{bx - cy}$$

Rewrite it in differential form:

$$(bx - cy)dy = -(ax - by)dx$$
$$(ax - by)dx + (bx - cy)dy = 0$$
$$M_y = -b \quad , \quad N_x = b$$
$$M_y \neq N_x$$

 \Rightarrow *Not exact!*

Example 2.3.2

$$\left(\frac{y}{x} + 6x\right)dx + (\ln x - 2)dy = 0, \quad x > 0$$

Here,

 $M_y = N_x = \frac{1}{x}$

which is exact. So,

$$\exists \psi(x,y) \ni:$$

$$\psi_x = M(x, y) = \frac{y}{x} + 6x$$
$$\psi_y = N(x, y) = \ln x - 2$$

Let's integrate ψ_x with respect to x x to find ψ

$$\psi = \int \frac{y}{x} + 6xdx$$
$$\psi = y\ln|x| + 3x^2 + h(y)$$

Then, in order to find h(y), we need to use ψ_y

$$\psi_y = \ln x + h'(y) = \ln x - 2$$
$$h'(y) = -2$$
$$h(y) = -2y + c$$

Therefore,

$$\psi(x,y) = y \ln x + 3x^2 - 2y + c \qquad (choose \ c = 0)$$
$$y \ln x + 3x^2 - 2y = c$$

Example 2.3.3

$$(ye^{2xy} + x) dx + bxe^{2xy} dy = 0$$
 (*)

Find b so that (*) *is exact.*

Here, $M(x,y) = ye^{2xy} + x$, and $N(x,y) = bxe^{2xy}$. We need $M_y = N_x$,

$$M_y = 2yxe^{2xy} + e^{2xy}$$
$$N_x = be^{2xy} + 2bxye^{2xy}$$

 $\Rightarrow b = 1$

Solve it using the similar method, we obtain:

$$e^{2xy} + x^2 = c$$

Using Integrating Factor

$$M(x,y)dx + N(x,y)dy = 0$$

maybe exact, but what if it's not exact? Then, we need to utilize integrating factor.

$$\mu(x,y)M(x,y)dx + \mu(x,y)N(x,y)dy = 0$$

Maybe $\exists \mu(x)$ or $\mu(y)$:

Case 1 If $\frac{M_y - N_x}{N}$ is a function of x only, then $\mu = \mu(x)$ can be found by solving $\frac{d\mu}{dx} = \frac{M_y - N_x}{N} \cdot \mu$ **Case 2** If $\frac{N_x - M_y}{M}$ is a function of y only then $\mu = \mu(y)$ and can be found by solving $\frac{d\mu}{dy} = \frac{N_x - M_y}{M} \cdot \mu$ **Example 2.3.4**

$$ydx + \left(2xy - e^{-2y}\right)dy = 0$$

which is certainly not exact. Notice:

$$\frac{N_x - M_y}{M} = \frac{2y - 1}{y}$$

which is a function of y only. $\exists \mu = \mu(y) \ni :$

$$\begin{aligned} \frac{d\mu}{dy} &= \frac{2y-1}{y} \cdot \mu \\ \int \frac{d\mu}{\mu} &= \int \left(2 - \frac{1}{y}\right) dy \\ \ln|\mu| &= 2y - \ln|y| \quad (choose \ c = 0) \\ |\mu| &= e^{2y - \ln|y|} \\ \mu &= \frac{e^{2y}}{y} \end{aligned}$$

Now, we can multiply the function by μ *,*

$$\frac{e^{2y}}{y}ydx + \left(\frac{e^{2y}}{y}2xy - \frac{e^{2y}}{y}e^{2y}\right)dy = 0$$

which is exact!. Therefore, there must exist $\psi(x, y) \ni$:

$$\psi_x = M(x, y) = e^{2y}$$

$$\psi_y = N(x, y) = 2xe^{2y} - \frac{1}{y}$$

$$\int \psi_x dx = xe^{2y} + h(y)$$

$$\psi_y = 2xe^{2y} + h'(y)$$

$$h(y) = -\ln|y|$$

$$\psi(x, y) = 2xe^{2y} - \ln|y| = c$$

2.4 Homogeneous Equation

$$\frac{dy}{dx} = f(x, y)$$

is homogeneous if f does not depend on x and y separately but depends only on the ration $\frac{y}{x}$ or $\frac{x}{y}$.

$$\implies \frac{dy}{dx} = F(\frac{y}{x})$$

 $\frac{dy}{dx} = \frac{x+3y}{x-y}$

Example 2.4.1

which is equal to

$$\frac{dy}{dx} = \frac{1 + \frac{3y}{x}}{1 - \frac{y}{x}}$$

 \Rightarrow homogeneous!

Example 2.4.2

$$\frac{dy}{dx} = \frac{y^4 + 2xy^3 - 3x^2y^2 - 2x^3y}{2x^2y^2 - 2x^3y - 2x^4}$$
$$= \frac{\frac{y^4}{x^4} + \frac{2y^3}{x^3} - \frac{3y^2}{x^2} - \frac{2y}{x}}{\frac{2y^2}{x^2} - \frac{2y}{x} - 2}$$
$$= F(\frac{y}{x})$$

Example 2.4.3

$$\frac{dy}{dx} = \frac{x^2 + 3y^2}{2xy}$$
$$= \frac{1 + 3\left(\frac{y}{x}\right)^2}{2\left(\frac{y}{x}\right)}$$

Substituting $v = \frac{y}{x} \rightarrow \frac{dy}{dx} = x\frac{dv}{dx} + v$

$$v + x\frac{dv}{dx} = \frac{1+3v^2}{2v}$$

$$x\frac{dv}{dx} = \frac{1+3v^2-2v^2}{2v}$$

$$\int \frac{dx}{x} = \int \frac{2v}{1+v^2} dv$$

$$\ln(1+v^2) = \ln|x| + c_1$$

$$\ln\left(\frac{1+v^2}{|x|}\right) = c_1$$

$$\ln\left(\frac{x^2+y^2}{|x^3|}\right) = c_1$$

$$\frac{x^2+y^2}{|x^3|} = c_2 \quad \text{where } c_2 = e^{c_1}$$

$$x^2+y^2 = c_2|x|^3$$

$$x^2+y^2 - cx^3 = 0$$

2.5 Bernoulli Equation

$$\frac{dy}{dx} + p(x)y = q(x)y^n \tag{(*)}$$

Assume p(x), q(x) are continuous on (a, b), $n \in \mathbb{R}$ If n = 0 or n = 1, then reduce to linear. Dividing (*) by y^{1-n} :

$$y^{-n}\frac{dy}{dx} + p(x)y^{1-n} = q(x)$$

Now, let $v = y^{1-n}$. This implies that $\frac{dv}{dx} = (1-n)y^{-n}\frac{dy}{dx}$. (*) then becomes:

$$\frac{1}{1-n}\frac{dv}{dx} + p(x)v = q(x)$$

Example 2.5.1

$$\frac{dr}{d\theta} = \frac{r^2 + 2r\theta}{\theta^2}$$

Let's manipulate this equation to fit the template

$$\frac{dr}{d\theta} - \frac{2}{\theta}r = \frac{1}{\theta^2}r^2$$

Dividing it by r^2 :

$$r^{-2}\frac{dr}{d\theta}\frac{-2}{\theta}r^{-1} = \frac{1}{\theta^2}$$

r

Substituting $v = r^{1-2} = r^{-1} \rightarrow \frac{dv}{d\theta} = -r^{-2}\frac{dr}{d\theta}$

$$-\frac{dv}{d\theta} - \frac{2}{\theta}v = \frac{1}{\theta^2}$$
$$\frac{dv}{d\theta} + \frac{2}{\theta}v = -\frac{1}{\theta^2}$$

Using integrating factor:

$$r(\theta) = \frac{\theta^2}{c - \theta}$$

Singular solution: $r(\theta) \equiv 0$

2.6 Autonomous ODEs / Population Dynamics

Recall:

$$\frac{dy}{dt} = f(y)$$

is autonomous.

Exponential Growth

Rate of change is proportional to the current population.

$$\frac{dy}{dt} = ry$$

r = rate of growth (r > 0)
r = rate of decay (r < 0)

Logistic growth

The growth rate is a function that depends on the current population

$$\frac{dy}{dt} = h(y)y$$

We want: $h(y) \approx r > 0$, where y is small.

 $\rightarrow h(y)$ decreases as y grow larger.

 $\rightarrow h(y) < 0$ when sufficiently large.

Simplest model:

$$h(y) = r - ay$$
$$a, r \in \mathbb{R}^+$$
$$\frac{dy}{dt} = (r - ay)y$$

Note: Ansatz is an educated guess

Logistic Equation:

r = intrinsic growth rate $\rightarrow \frac{dy}{dt} = r(1 - \frac{y}{k}y)$. This yields 2 constant solutions. $(k = \frac{r}{a})$

$$y = \phi() = 0$$
 and $y = \phi() = k$

 \implies Equilibrium solution

Case 1

y = k : sink (asymptotically stable)

Case 2

y = 0 : source (unstable solution)

3 Second Order Linear Equations

3.1 Homogeneous Equations with Constant Coefficients

General form:

$$\frac{d^2y}{dt^2} = f\left(t, y, \frac{dy}{dt}\right) \tag{*}$$

 \rightarrow linear if f is linear in y and y'. We have:

$$y'' + p(t)y' + q(t)y = g(t)$$

<u>Or</u>

$$P(t)y'' + Q(t)y' + R(t)y = G(t)$$

If $G(t) \equiv 0$ (forcing term), then equation is homogeneous. IVP:

IC:
$$y(t_0) = y_0$$
 and $y'(t_0) = y'_0$

Then,

$$ay'' + by' + cy = 0, \qquad a, b, c \in \mathbb{R}, \quad a \neq 0$$

Consider:

$$y'' - y = 0$$
$$y'' = y$$
$$\Rightarrow \qquad y_1 = e^t , \ y_2 = e^{-t}$$

Thus,

 $y = c_1 e^t + c_2 e^{-t}$

which is called the *principle of superposition*.

$$ay'' + by' + cy = 0$$

$$y(t) = e^{rt}$$

$$y'(t) = re^{rt}$$

$$u''(t) = r^2 e^{rt}$$

(**)

Substitute into (**):

$$ar^{2}e^{rt} + bre^{rt} + ce^{rt} = 0$$

$$e^{rt} (ar^{2} + br + c) = 0$$

$$ar^{2} + br + c = 0$$
(characteristics equation)
$$r = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

Example 3.1.1

$$y'' + 3y + 2y = 0$$

 $r^{2} + 3r - 2 = 0$ (characteristics equation)
 $(r + 2)(r + 1) = 0$
 $r_{1} = -2, r_{2} = -1$
 $y(t) = c_{1}e^{-t} + c_{2}e^{-2t}$

Example 3.1.2

$$y'' - 2y' - 2y = 0$$

$$r^{2} - 2r - 2 = 0$$

$$(r - 1)^{2} = 3$$

$$r = 1 \pm \sqrt{3}$$

$$u(t) = c_{1}e^{(1 - \sqrt{3})t} + c_{2}e^{(1 + \sqrt{3})t}$$

Example 3.1.3

$$y'' + 8y' - 9y = 0,$$
 $y(1) = 1, y'(1) = 0$

$$r^{2} + 8r + 9 = 0$$

$$r_{1} = -9, r_{2} = 1$$

$$y(t) = c_{1}e^{t} + c_{2}e^{-9t}$$

$$y(t) = k_{1}e^{t-1} + k_{2}e^{-9(t-1)}$$

where $c_1 = k_1 e^{-1}$, $c_2 = k_2 e^9$. Using the first IC, we have

$$1 = k_1 e^{t-1} + k_2 e^{-9(t-1)}$$
$$k_1 + k_2 = 1$$

For the 2nd IC,

$$0 = k_1 e^{t-1} - 9k_2 e^{-9(t-1)}$$
$$0 = k_1 - 9k_2$$
$$k_1 = \frac{9}{10}, \quad k_2 = \frac{1}{10}$$
$$y(t) = \frac{9}{10} e^{t-1} + \frac{1}{10} e^{-9(t-1)}$$

So, overall we have different cases for r:

Case 1 (Distinct Root) Shown in Fig 3

Figure 3: $b^2 - 4ac > 0$

Case 2 (Complex Root) Shown in Fig 4

Case 3 (Repeated Root) Shown in Fig 5

Figure 5: $b^2 - 4ac = 0$

3.2 Fundamental Solution of Linear Homogeneous Equation

Differential Operator:

$$L[\phi] = \phi'' + p\phi + q\phi$$

or

$$L = D^{2} + pD + q, \quad \text{D: derivative operator}$$
$$y = \phi(t), \ L[y] = y'' + p(t)y' + q(t)y = 0 \tag{(*)}$$

Example 3.2.1

$$t(t-4)y'' + 3ty' + 4y = 2, \quad y(3) = 0$$

Find the largest interval where we are guaranteed unique solution. Standard form:

$$y'' + \frac{3}{t-4}y' + \frac{4}{t(t-4)}y = \frac{2}{t(t-4)}$$

$$Dom(p(t)) = \{t | t \neq 4\}$$

 $Dom(q(t)) = \{t | t \neq 0, 4\}$
 $Dom(g(t)) = \{t | t \neq 0, 4\}$

 $\rightarrow 0 < t < 4$

Figure 6: Interval of solution

Consider:

IC: $y(t_0) = y_0, y'(t_0) = y'_0$

$$c_{1}y_{1}(t_{0}) + c_{2}y_{2}(t_{0}) = y_{0}$$

$$c_{1}y'_{1}(t_{0}) + c_{2}y'_{2}(t_{0}) = y'_{0}$$

$$\implies c_{1} = \frac{y_{0}y'_{2}(t_{0}) - y'_{0}y_{2}(t_{0})}{y_{1}(t_{0})y'_{2}(t_{0}) - y'_{1}(t_{0})y_{2}(t_{0})}$$

$$c_{1} = \frac{\begin{vmatrix} y_{0} & y_{2}(t_{0}) \\ y'_{0} & y'_{2}(t_{0}) \end{vmatrix}}{|y_{1}(t_{0}) & y_{2}(t_{0})|}$$

$$c_{2} = \frac{\begin{vmatrix} y_{0} & y_{1}(t_{0}) \\ y'_{0} & y'_{1}(t_{0}) \end{vmatrix}}{|y_{1}(t_{0}) & y_{2}(t_{0})|}$$

 \rightarrow Wronskian determinant:

 $W = \begin{vmatrix} y_1(t_0) & y_2(t_0) \\ y_1'(t_0) & y_2'(t_0) \end{vmatrix}$

or

$$W = W(y_1, y_2)(t_0)$$

which leads to the following theorem

THEOREM Suppose that y_1 and y_2 are two solutions of Eq.(*), 3.1 L[y] = y'' + p(t)y' + q(t)y = 0,and that the Wronskian $W = y_1 y_2' - y_1' y_2$ is not the zero at the point t_0 where the initial condition $y(t_0) = y_0, \ y'(t_0) = y'_0$ are assigned. Then there is a choice of the constants c_1 , c_2 for which y = $c_1y_1(t) + c_2y_2(t)$ satisfies the differential equation (*) and the initial condition above. THEOREM **Abel's Theorem** 3.2 If y_1 and y_2 are solutions of the differential equation L[y] = y'' + p(t)y' + q(t)y = 0where p and q are continuous on an open interval I, then the Wronskian $W(y_1, y_2)(t)$ is given by $W(y_1, y_2)(t) = c \exp\left[-\int p(t)dt\right]$ where c is a certain constant that depends on y_1 and y_2 but not on t. Further, $W(y_1, y_2)(t)$ either is zero for all t in I (if c = 0) or else is never zero in I (if $c \neq 0$)

Proof.

$$y_1'' + p(t)y_1' + q(t)y_1 = 0$$
(5)

$$y_2'' + p(t)y_2' + q(t)y = 0$$
(6)

Multiply Eq.(5) by $-y_2$ and Eq.(6) by y_1 and add them, we obtain:

$$\left(y_1 y_2'' - y_1'' y_2\right) + p(t) \left(y_1 y_2' - y_1' y_2\right) = 0 \tag{7}$$

Let $W(t) = y_1 y'_2 - y'_1 y_2$. Then,

$$W'(t) = [y'_1y'_2 + y_1y''_2] - [y'_1y'_2 + y''_1y_2]$$
$$= y_1y''_2 - y''_1y_2$$

Then, Eq.(7) becomes:

$$W' + p(t)W = 0$$
$$\frac{W'}{W} = -p(t)$$
$$\ln W = -\int p(t)dt$$
$$W = ce^{-\int p(t)dt}$$

3.3 Complex Roots of the Characteristics Equation

Consider:

$$ay'' + by' + cy = 0$$

The characteristics equation is

$$ar^2 + br + c = 0$$

If $b^2 - 4ac < 0$, then

$$r_1 = \lambda + i\mu$$
$$r_2 = \lambda - i\mu$$

So,

$$y_1(t) = e^{(\lambda + i\mu)t}$$
$$y_2(t) = e^{(\lambda - i\mu)t}$$

Euler's Formula:

$$e^{t} = \sum_{n=0}^{\infty} \frac{t^{n}}{n!}, \quad -\infty < t < \infty$$
$$e^{it} = \sum_{n=0}^{\infty} \frac{(it)^{n}}{n!}$$
$$e^{it} = \sum_{n=0}^{\infty} \frac{(-1)^{n} t^{2n}}{(2n)!} + i \sum_{n=1}^{\infty} \frac{(-1)^{n-1} t^{2n-1}}{(2n-1)!}$$
$$e^{it} = \cos t + i \sin t$$
$$e^{i\mu t} = \cos(\mu t) + i \sin(\mu t)$$
$$e^{(\lambda + i\mu)t} = e^{\lambda t} (\cos(\mu t) + i \sin(\mu t))$$

Real-valued solution:

$$y_1(t) + y_2(t) = e^{\lambda t} \left(\cos(\mu t) + i \sin(\mu t) \right) + e^{\lambda t} \left(\cos(\mu t) - i \sin(\mu t) \right)$$
$$= 2e^{\lambda t} \cos(\mu t)$$

which is real. Also,

$$y_1(t) - y_2(t) = 2ie^{\lambda t}\sin(\mu t)$$

is real and 2i is actually just a number and can be thought as an acceptable real solution. Overall, we have:

$$y(t) = c_1 e^{\lambda t} \cos(\mu t) + c_2 e^{\lambda t} \sin(\mu t) \tag{(*)}$$

Example 3.3.1

$$3u'' - u' + 2u = 0$$
, IC: $u(0) = 2$, $u'(0) = 0$

Characteristics Equation:

$$3r^{2} - r + 2 = 0$$

$$r = \frac{1}{6} \pm \frac{\sqrt{23}}{6}i$$

$$\lambda = \frac{1}{6}, \quad \mu = \frac{\sqrt{23}}{6}u(t) = c_{1}e^{\frac{t}{6}}\cos\frac{\sqrt{23}}{6}t + c_{2}e^{\frac{t}{6}}\sin\frac{\sqrt{23}}{6}t$$

Using ICs, we obtain:

$$u(t) = 2e^{\frac{t}{6}}\cos\frac{\sqrt{23}}{6}t - \frac{2}{\sqrt{23}}e^{\frac{t}{6}}\sin\frac{\sqrt{23}}{6}t$$

As $t \to \infty$, $u(t) \to \pm \infty$

3.4 Repeated Roots

$$ay'' + by' + cy = 0$$

For repeated roots:

$$b^{2} - 4ac = 0$$
$$r_{1} = r_{2} = \frac{-b}{2a}$$
$$y_{1}(t) = e^{\frac{-bt}{2a}}$$

But how do we find the 2^{nd} solution? \rightarrow *Method of d'Alembert (1717-1783)*. Our ansatz would be:

$$y(t) = v(t)y_1(t)$$

Example 3.4.1

$$9y'' + 6y' + y = 0$$

$$9r^2 + 6r + 1 = 0$$

$$r_1 = r_2 = -\frac{1}{3} \rightarrow ce^{\frac{-1}{3}}$$

$$y(t) = v(t)y_1(t)$$

= $v(t)e^{\frac{-t}{3}}$
 $y'(t) = v'e^{\frac{-t}{3}} - \frac{1}{3}ve^{\frac{-t}{3}}$
 $y''(t) = v''e^{\frac{-t}{3}} - \frac{2}{3}v'e^{\frac{-t}{3}} + \frac{1}{9}ve^{\frac{-t}{3}}$

Substitute into the original DE, we have

$$9v''e^{\frac{-t}{3}} = 0$$
$$v'' = 0$$
$$v' = c$$
$$v = c_1t + c_2$$

 $\implies y_2(t) = te^{\frac{-t}{3}}$

Generalize:

Assume: $b^2 - 4ac = 0$. So,

$$y_1(t) = e^{\frac{-ot}{2a}}$$
$$y = v(t)e^{\frac{-bt}{2a}}$$
$$y' = v'e^{\frac{-bt}{2a}} - \frac{b}{2a}ve^{\frac{-bt}{2a}}$$
$$y'' = v''e^{\frac{-bt}{2a}} - \frac{b}{2a}v'e^{\frac{-bt}{2a}} + \frac{b^2}{4a^2}ve^{\frac{-bt}{2a}}$$

Substitute into ay'' + by' + cy = 0

$$\left\{a[y''] + b[y'] + cv\right\} e^{\frac{-\alpha i}{2a}} = 0$$
$$av'' + (-b+b)v' + \left(\frac{b^2}{4a} - \frac{b^2}{2a} + c\right)v = 0$$
$$v'' = 0$$
$$v' = c_1$$
$$v = c_1t + c_2$$

Thus,

$$y(t) = c_1 t e^{\frac{-bt}{2a}} + c_2 e^{\frac{-bt}{2a}}$$

and the Wronskian is

$$W = \begin{vmatrix} e^{\frac{-bt}{2a}} & te^{\frac{-bt}{2a}} \\ \frac{-b}{2a}e^{\frac{-bt}{2a}} & \left(1 - \frac{-bt}{2a}\right)e^{\frac{-bt}{2a}} \end{vmatrix}$$
$$= e^{\frac{-bt}{a}} \neq 0 \quad \forall t$$

Example 3.4.2

$$16y'' + 24y' + 9y = 0$$

Char. Equation:

$$16r^{2} + 24r + 9 = 0$$
$$r = -\frac{3}{4}$$
$$y(t) = c_{1}te^{\frac{-3t}{4}} + c_{2}e^{\frac{-3t}{4}}$$

Note:

If

 $r_1 = r_2 = 0$

Then,

$$y'' = 0$$
$$y = c_1 t + c_2$$

3.5 Method of Underdetermined Coefficients

$$L[y] = y'' + p(t)y' + q(t)y = g(t)$$
(*)

$$L[y] = y'' + p(t)y' + q(t)y = 0$$
(**)

THEOREM 3.3	If Y_1 and Y_2 are 2 solutions of (*), then their difference $Y_1 - Y_2$ is a solution of corresponding homogeneous equation
	$L[Y_1] - L[Y_2] = 0$
	If y_1 and y_2 are a fundamental set of solution, then
	$Y_1(t) - Y_2(t) = c_1 y_1(t) + c_2 y_2(t)$
	where c_1 and c_2 are certain constants.
THEOREM	The general solution of the nonhomogeneous equation (*) can be written in the form
3.4	The general solution of the holmonogeneous equation () can be written in the form $y = \phi(t) = c_1 y_1(t) + c_2 y_2(t) + Y(t)$
	where y_1 and y_2 are a fundamental set of solutions of the corresponding homogeneous equation (**), c_1 and c_2 are arbitrary constants, and Y is some specific solution of the nonhomogeneous equation (*)

* g(t) is a polynomial, exponential, sin, cos, etc (not a ratio of some functions or tan)

Example 3.5.1

$$y'' - 5y' + 6y = -5e^{-t} \tag{7}$$

1. Solve the corresponding homogeneous equation

$$r^{2} - 5r + 6 = 0$$

$$r_{1} = 3, r_{2} = 2$$

$$y_{c}(t) = c_{1}e^{3t} + c_{2}e^{2t} : complementary solution$$

2. Find a particular solution Ansatz: $Y(t) = Ae^{-t}$

$$Y'(t) = -Ae^{-t}$$
$$Y''(t) = Ae^{-t}$$

$$Ae^{-t} + 5Ae^{-t} + 6Ae^{-t} = -5e^{-t}$$
$$A = -\frac{5}{12}$$
$$Y(t) = -\frac{5}{12}e^{-t}$$

3. Put everything together

$$y(t) = c_1 e^{3t} + c_2 e^{2t} - \frac{5}{12} e^{-t}$$

Example 3.5.2

$$y'' + 2y' + 5y = 3\sin(2t)$$

Char. Equation:

$$r^{2} + 2r + 5 = 0$$
$$r = -1 \pm 2i$$
$$y_{c}(t) = c_{1}e^{-t}\cos 2t + c_{2}e^{-t}\sin 2t$$

Ansatz: $Y(t) = A \sin 2t + B \cos 2t$ (note: $Y(t) = A \sin 2t$ doesn't work)

$$Y'(t) = 2A\cos 2t - 2B\sin 2t$$
$$Y''(t) = -4A\sin 2t - 4B\cos 2t$$

Substitute into the original equation, we get:

$$-4A\sin 2t - 4B\cos 2t + 4A\cos 2t - 4B\sin 2t + 5A\sin 2t + 5B\cos 2t = 3\sin 2t$$
$$(A - 4B)\sin 2t + (4A + B)\cos 2t = 3\sin 2t$$

So,

$$\begin{cases} A - 4B = 3 \implies A = \frac{3}{17}, \quad B = \frac{-12}{17} \\ 4A + B = 0 \end{cases}$$
$$y(t) = c_1 e^{-t} \cos 2t + c_2 e^{-t} \sin 2t + \frac{3}{17} \sin 2t - \frac{12}{17} \cos 2t \end{cases}$$

Example 3.5.3

$$2y'' + 3y' + y = t^2 + 3\sin t \tag{(*)}$$

Solve char. equation

$$2r^{2} + 3r + 1 = 0$$

$$r_{1} = -\frac{1}{2}, \quad r_{2} = -1$$

$$y_{c}(t) = c_{1}e^{\frac{-t}{2}} + c_{2}e^{-t}$$

$$Y(t) = Y_{1}(t) + Y_{2}(t)$$

$$g(t) = g_{1}(t) + g_{2}(t)$$

where $g_1(t) = t^2$ and $g_2(t) = 3 \sin t$. For $g_1(t)$:

$$Y_{p_1(t)} = At^2 + Bt + C$$
$$Y'_{p_1(t)} = 2At + B$$
$$Y''_{p_1(t)} = 2A$$

Sub into (*) but ignore $3 \sin t$

$$2(2A) + 3(2At + B) + At^{2} + Bt + C = t^{2}$$

$$\begin{cases}
A = 1 \\
B = -6 \\
C = 14 \end{cases}$$

$$Y_{p_{1}(t)} = t^{2} - 6t + 14$$

For $p_2(t)$:

$$Y_{p_2(t)} = D \sin t + E \cos t$$
$$Y'_{p_2(t)} = D \cos t - E \sin t$$
$$Y''_{p_2(t)} = -D \sin t - E \cos t$$

Sub into (*) and ignore t^2

$$\begin{cases} D = -\frac{3}{10} \\ E = -\frac{9}{10} \end{cases}$$

$$y(t) = y_c + Y_{p_1} + Y_{p_2}$$

= $c_1 e^{-\frac{t}{2}} + c_2 e^{-t} + t^2 - 6t + 14 - \frac{3}{10} \sin t - \frac{9}{10} \cos t$

<u>Note</u>: If Y(t) ansatz duplicates a term in y_c then modify the ansatz by multiplying it by t. If doesn't work, then keep going with t^2, t^3, \ldots

3.6 Variation of Parameters

 $y'' + 4y = 3\csc 2t, \quad 0 < t < \frac{\pi}{2}$

can't use undetermined coefficients. For y_c :

$$y'' + 4y = 0$$
$$r^{2} + 4 = 0$$
$$r = \pm 2i$$

$$y_c = c_1 \cos 2t + c_2 \sin 2t$$

Basic idea here is to replace c_1 and c_2 with $u_1(t)$ and $u_2(t)$.

$$y = u_1(t)\cos 2t + u_2\sin 2t$$

2 unknowns but only 1 equation \implies underdetermined system. So Lagrange imposed another restriction

$$y'(t) = -2u_1 \sin 2t + u'_1 \cos 2t + 2u_2 \cos 2t + u'_2 \sin 2t$$

We have

$$u_1'(t)\cos 2t + u_2'(t)\sin 2t = 0 \tag{(**)}$$

So,

$$y' = -2u_1 \sin 2t + 2u_2 \cos 2t$$
$$y'' = -4u_1 \cos 2t - 2u'_1 \sin 2t - 4u_2 \sin 2t + 2u'_2 \cos 2t$$

Sub into the original DE:

$$-2u_1'\sin 2t + 2u_2'\cos 2t = 3\csc 2t \tag{***}$$

Lagrange viewed (**) and (***) as a pair of linear algebraic equations for 2 unknowns

$$u_{2}' = \frac{3}{2} \cot 2t$$

$$u_{1}' = -\frac{3}{2}$$

$$u_{1}(t) = -\frac{3}{2}t + c_{1}$$

$$u_{2}(t) = \frac{3}{4}\ln(\sin 2t) + c_{2}$$

$$y(t) = \left(-\frac{3}{2}t + c_{1}\right)\cos 2t + \left(\frac{3}{4}\ln(\sin 2t) + c_{2}\right)\sin 2t$$

$$= c_{1}\cos 2t + c_{2}\sin 2t - \frac{3}{2}t\cos 2t + \frac{3}{4}\sin 2t\ln(\sin 2t)$$

$$y'' + p(t)y' + q(t)y = g(t)$$

where p, q, r are continuous. Assume:

$$y_c(t) = c_1 y_1(t) + c_2 y_2(t)$$

Then, our ansatz is $y(t) = u_1(t)y_1(t) + u_2(t)y_2(t)$ and

$$y' = u'_1 y_1 + u_1 y'_1 + u'_2 y_2 + u_2 y'_2$$
$$u'_1 y_1 + u'_2 y_2 = 0$$
$$y' = u_1 y'_1 + u_2 y'_2$$
$$y'' = u'_1 y'_1 + u_1 y''_1 + u'_2 y'_2 + u_2 y''_2$$

After lots of algebra,

$$u_1[y_1'' + py_1' + qy_1] + u_2[y_2'' + py_2' + qy_2] + u_1'y_1' + u_2'y_2' = g(t)$$

Since the first two term equal to 0, $u_1'y_1' + u_2'y_2' = g(t)$. We can deduce:

$$u_1'(t) = \frac{-y_2(t)g(t)}{W(y_1, y_2)(t)}$$
$$u_2'(t) = \frac{y_1(t)g(t)}{W(y_1, y_2)(t)} \implies \begin{cases} u_1 &= -\int \frac{y_2g}{W}dt + C_1\\ u_2 &= \int \frac{y_1g}{W}dt + C_2 \end{cases}$$

So,

$$Y(t) = -y_1 \int \frac{y_2 g}{W} dt + y_2 \int \frac{y_1 g}{W} dt$$

Example 3.6.1

$$y'' - 2y' + y = \frac{e^t}{1 + t^2}$$

Homogeneous Equation:

$$y'' - 2y' + y = 0$$
$$r^2 - 2r + 1 = 0$$
$$r_1 = r_2 = 1$$
$$y_c = c_1 t e^t + c_2 e^t$$

where $y_1 = te^t$ and $y_2 = e^t$ and $g(t) = \frac{e^t}{1+t^2}$. The Wronskian determinant can be computed:

$$W = \begin{vmatrix} te^t & e^t \\ e^t + te^t & e^t \end{vmatrix} = -e^{2t}$$

$$Y(t) = -te^t \int \frac{e^t \left(\frac{e^t}{1+t^2}\right)}{-e^{2t}} dt + e^t \int \frac{te^t \left(\frac{e^t}{1+t^2}\right)}{-e^{2t}} dt$$
$$= te^t \arctan t - e^t \left(\frac{1}{2}\ln\left(1+t^2\right)\right)$$

Our final solution is

$$y(t) = c_1 t e^t + c_2 e^t + t e^t \arctan t - \frac{1}{2} e^t \ln(1 + t^2)$$

4 Series Solutions of Second Order Linear Equations

4.1 Review of Power Series

Power series:

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n$$

converges at a point x if

$$\lim_{m \to \infty} \sum_{n=0}^m a_n (x - x_0)^n$$

exists for that x. It trivially converge for $x = x_0$.

$$\to \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

converges absolutely at point x if

$$\sum_{n=0}^{\infty} |a_n (x - x_0)^n| \quad converges$$

 $\exists \rho \in \mathbb{R}$ (radius of convergence) such that $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ converges absolutely for $|x - x_0| < \rho$ and diverge for $|x - x_0| > \rho$

 $\rho = 0$ only at x_0 if converges for all x and $\rho = \infty$. If $\rho > 0$ then the interval $|x - x_0| < \rho$ is called an interval of convergence.

$$\begin{array}{c|c} \overbrace{\text{Div}} & \downarrow & \overbrace{\text{Conv}} & \downarrow & \overbrace{\text{Div}} \\ \hline & & ? & \downarrow & ? \\ \hline & & & x_0 - \rho & x_0 & x_0 + \rho \end{array}$$

Figure 7: Interval of Convergence

Example 4.1.1

$$\sum_{n=1}^{\infty} \frac{(-1)^n n^2 (x+2)^n}{3^n}$$

Ratio Test:

$$\lim_{n \to \infty} \left| \frac{(n+1)^2 (x+2)^{n+1} 3^n}{3^{n+1} n^2 (x+2)^n} \right| = \frac{1}{3} |x+2|$$

for the series to be absolutely convergent,

$$\frac{1}{3}|x+2| < 1$$

-3 < x + 2 < 3
-5 < x < 1

So, $\rho = 3$. For x = -5:

$$\sum_{n=0}^{\infty} \frac{(-1)^n n^2 (-3)^n}{3^n} = \sum_{n=1}^{\infty} n^2$$

which is divergent. For x = 1:

$$\sum_{n=1}^{\infty} \frac{(-1)^n n^2 3^n}{3^n} = \sum_{n=1}^{\infty} (-1)^n n^2$$

which is also divergent. Therefore, interval of convergence is (-5, 1).

We can observe that

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n$$

converges to f(x) and likewise

$$\sum_{n=0}^{\infty} b_n (x - x_0)^n$$

converges to g(x) for $|x - x_0| < \rho$. Then, $g(x) \pm f(x) = \sum_{n=0}^{\infty} (a_n \pm b_n)(x - x_0)^n$. Then,

$$f(x)g(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^n$$

where $c_n = \sum_{k=1}^n a_k b_{n-k}$ (Cauchy product)

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$
$$f'(x) = \sum_{n=1}^{\infty} n a_n (x - x_0)^{n-1}$$
$$f''(x) = \sum_{n=2}^{\infty} n(n-1)a_n (x - x_0)^{n-2}$$

Taylor Series for function f about $x - x_0$ is

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n, \ \rho > 0$$

f is analytic at $x = x_0$

Example 4.1.2

$$f(x) = x^{\frac{7}{3}}$$

is not analytic at $x_0 = 0$ since f''(0) d.n.e

$$f(x) = |x - 1|$$

is not analytic at $x_0 = 1$ since f'(x) d.n.e

Reindexing:

Example 4.1.3

$$\begin{aligned} x \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} + \sum_{n=0}^{\infty} a_n x^n &= \sum_{n=2}^{\infty} n(n-1)a_n x^{n-1} + \sum_{n=0}^{\infty} a_n x^n \\ &= \sum_{n=1}^{\infty} n(n+1)a_{n+1} x^n + \sum_{n=0}^{\infty} a_n x^n \\ &= \sum_{n=0}^{\infty} n(n+1)a_{n+1} x^n + \sum_{n=0}^{\infty} a_n x_n \\ &= \sum_{n=0}^{\infty} \left[n(n+1)a_{n+1} + a_n \right] x^n \end{aligned}$$

4.2 Series Solutions Near An Ordinary Point (Part I)

$$P(x)y'' + Q(x)y' + R(x)y = 0$$

P, Q, R are polynomial with no common factors.

- x_0 where $P(x_0) \neq 0$ is called an ordinary point
- x_0 where $P(x_0) = 0$ is called a singular point

Consider:

$$y'' + p(x)y' + q(x)y = 0$$

Ansatz: $y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$ and assume series converges $|x - x_0| < \rho$ where $\rho > 0$. Let's look at:

$$y'' + xy' + 2y = 0, \quad x_0 = 0 \tag{(*)}$$

 $P(x) = 1 \quad \forall x$, so x_0 is ordinary point. Therefore, there exists $\rho > 0$ such that $|x - 0| < \rho$ converges. Assume:

$$y = \sum_{n=0}^{\infty} a_n x_n$$
$$y' = \sum_{n=1}^{\infty} n a_n x^{n-1}$$
$$y'' = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2}$$

Substitute into (*):

$$\sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} + x \sum_{n=1}^{\infty} na_n x^{n-1} + 2 \sum_{n=0}^{\infty} a_n x_n = 0$$
$$\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n + \sum_{n=0}^{\infty} na_n x^n + \sum_{n=0}^{\infty} 2a_n x_n = 0$$
$$\sum_{n=0}^{\infty} \left[(n+2)(n+1)a_{n+2} + (n+2)a_n \right] x^n = 0$$
$$(n+2)(n+1)a_{n+2} + (n+2)a_n = 0$$

So, we obtain the following *recurrence relation*:

$$a_{n+2} = \frac{-a_n}{n+1}, \quad n = 0, 1, 2, \dots$$

Let $a_0 = 1$, $a_1 = 0$ to generate one solution $y_1(x)$. So $a_1 = a_3 = a_5 = ... = 0$.

• For
$$n = 0$$
: $a_2 = -a_0 = -1$
• For $n = 2$: $a_4 = \frac{(-1)(-1)}{1 \cdot 3} = \frac{1}{3}$
• For $n = 4$: $a_6 = \frac{-a_4}{4+1} = \frac{-1}{1 \cdot 3 \cdot 5} = -\frac{1}{15}$
• For $n = 6$: $a_8 = -\frac{96}{6+1} = \frac{1}{1 \cdot 3 \cdot 5 \cdot 7} = \frac{1}{105}$

Thus,

$$a_{2n} = \frac{(-1)^n}{1 \cdot 3 \cdot 5 \dots (2n-1)}$$

and

$$y_1(x) = 1 - \frac{x^2}{1} + \frac{x^4}{1 \cdot 3} - \frac{x^6}{1 \cdot 3 \cdot 5} + \frac{x^8}{1 \cdot 3 \cdot 5 \cdot 7} + \dots$$
$$y_1(x) = 1 + \sum_{n=1}^{\infty} \frac{(-1)^n x^{2n}}{(2n-1)!!}$$

For the second solution, let $a_0 = 0$ and $a_1 = 1 \rightarrow a_0 = a_2 = a_4 = \ldots = 0$.

•
$$n = 1$$
: $a_3 = -\frac{a_1}{2} = \frac{-1}{1 \cdot 2}$
• $n = 3$: $a_5 = \frac{-a_3}{4} = \frac{1}{1 \cdot 2 \cdot 4}$
• $n = 5$: $a_7 = \frac{-a_5}{6} = \frac{-1}{1 \cdot 2 \cdot 4 \cdot 6}$

Thus,

$$a_{2n+1} = \frac{(-1)^n}{2 \cdot 4 \cdot 6 \dots (2n)}$$

and

$$y_2(x) = x - \frac{x^3}{1 \cdot 2} + \frac{x^5}{1 \cdot 2 \cdot 4} - \frac{x^7}{1 \cdot 2 \cdot 4 \cdot 6} + \dots$$
$$= x + \sum_{n=1}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n)!!}$$

Example 4.2.1

$$xy'' + y' + xy = 0, \ x_0 = 1 \tag{(*)}$$

 $x_0 = 1$ is an ordinary point. Assume:

$$y = \sum_{n=0}^{\infty} a_n (x-1)^n$$
$$y' = \sum_{n=1}^{\infty} n a_n (x-1)^{n-1}$$
$$y'' = \sum_{n=2}^{\infty} n(n-1) a_n (x-1)^{n-2}$$

Sub into (*)

$$x\sum_{n=2}^{\infty}n(n-1)a_n(x-1)^{n-2} + \sum_{n=1}^{\infty}na_n(x-1)^{n-1} + x\sum_{n=0}^{\infty}a_n(x-1)^n = 0$$

Trick: x = 1 + (x - 1)

$$\sum_{n=2}^{\infty} n(n-1)a_n(x-1)^{n-2} + \sum_{n=2}^{\infty} n(n-1)a_n(x-1)^{n-1} + \sum_{n=1}^{\infty} na_n(x-1)^{n-1} + \sum_{n=0}^{\infty} a_n(x-1)^n + \sum_{n=0}^{\infty} a_n(x-1)^{n+1} = 0$$

$$\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}(x-1)^n + \sum_{n=1}^{\infty} (n+1)na_{n+1}(x-1)^n + \sum_{n=0}^{\infty} (n+1)a_{n+1}(x-1)^n + \sum_{n=0}^{\infty} a_n(x-1)^n + \sum_{n=1}^{\infty} a_{n-1}(x-1)^n = 0$$

We'll handle n = 0 separately

$$\sum_{n=1}^{\infty} \left[(n+2)(n+1)a_{n+2} + (n+1)na_{n+1} + (n+1)a_{n+1} + a_n + a_{n-1} \right] (x-1)^n = 0$$

So,

$$a_{n+2} = \frac{-\left[(n+1)^2 a_{n+1} + a_n + a_{n-1}\right]}{(n+1)(n+2)} \quad \text{for } n \in \mathbb{Z}^+$$

depends on 3 prior terms (very difficult to solve). For n = 0,

$$(n+2)(n+1)a_{n+2} + (n+1)a_{n+1} + a_n = 0$$
$$2a_2 + a_1 + a_0 = 0$$
$$a_2 = \frac{-(a_1 + a_0)}{2}$$

Take $a_0 = 1$ and $a_1 = 0$ to generate $y_1(x)$

• $a_2 = -\frac{1}{2}$ • $a_3 = \frac{-(2^2a_2+a_1+a_0)}{2\cdot 3} = \frac{1}{6}$ • $a_4 = \frac{-(3^2a_3+a_2+a_1)}{3\cdot 4} = -\frac{1}{12}$ • $a_5 = \frac{-(4^2a_4+a_3+a_2)}{4\cdot 5} = \frac{1}{12}$

$$y_1(x) = a_0(x-1)^0 + a_1(x-1) + a_2(x-1)^2 + a_3(x-1)^3$$

= $1 - \frac{1}{2}(x-1)^2 + \frac{1}{6}(x-1)^3 - \frac{1}{12}(x-1)^4 + \dots$

To generate $y_2(x)$, let $a_0 = 0$ and $a_1 = 1$. Then,

•
$$a_2 = -\frac{1}{2}$$

• $a_3 = \frac{1}{6}$
• $a_4 = -\frac{1}{6}$
 $y_2(x) = (x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{6}(x-1)^3 - \frac{1}{6}(x-1)^4 + \dots$

4.3 Series Solutions Near An Ordinary Point (Part II)

$$P(x)y'' + Q(x)y' + R(x)y = 0$$
(*)

P, Q, R are polynomials. Assume there exists a solution $y = \phi(x)$

$$y = \phi(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$
(**)

converges when $|x - x_0| < \rho$, $\rho > 0$. Take (**) differentiate m times and set $x = x_0$ we get:

$$m!a_m = \phi^{(m)}(x_0)$$

Recall that Taylor Series Expansion:

$$a_m = \frac{f^{(m)}(x_0)}{(m!)}$$

and use this to compute a_n in (**). If $y = \phi(x)$ is a solution to (**) satisfies ICs:

$$y(x_0) = y_0$$
$$y'(x_0) = y'_0$$

Then $a_0 = y_0$ and $a_1 = y'_0$ since

$$a_0 = \frac{\phi(x_0)}{0!} = y_0$$
$$a_1 = \frac{\phi'(x_0)}{1!} = y'_0$$

Since ϕ is a solution to (*),

$$P(x)\phi''(x) + Q(x)\phi'(x) + R(x)\phi(x) = 0$$

$$\phi''(x) + \frac{Q(x)}{P(x)}\phi'(x) + \frac{R(x)}{P(x)}\phi(x) = 0$$

$$\phi''(x) + p(x)\phi'(x) + q(x)\phi(x) = 0$$

$$\phi''(x) = -p(x)\phi'(x) - q(x)\phi(x)$$

Set $x = x_0$

$$\phi''(x_0) = -p(x_0)\phi'(x_0) + q(x_0)\phi(x_0)$$

Since $\phi''(x_0) = 2!a_n$

$$a_{2} = \frac{-p(x_{0})a_{1} - q(x_{0})a_{0}}{2!}$$
$$a_{3} = \frac{-2!p(x_{0})a_{2} - [p'(x_{0}) + q(x_{0})]a_{1} - q'_{1}(x_{0})\phi(x_{0})}{3!}$$

 \implies There exists many derivative of p and q evaluated at x_0

$$p(x) = \sum_{n=0}^{\infty} p_n (x - x_0)^n$$
$$q(x) = \sum_{n=0}^{\infty} q_n (x - x_0)^n$$

If p and q are analytic at x_0 then x_0 is an ordinary point, otherwise it's a singular point.

THEOREM 4.1 If x_0 is an ordinary point of (*), then the general solution of (*) is $y = \sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 y_1(x) + a_1 y_2(x)$ where a_0 and a_1 are arbitrary and y_1 and y_2 are linearly independent.

<u>Further</u>: ρ for each of the series solution, y_1 and y_2 is at least as large as the minimum of ρ of the series of p and q.

From Complex Analysis

 $\rho_p = \text{dist} \{x_0, \text{ the nearest zero of } p\}$

Example 4.3.1

$$(1+x^3)y'' + 4xy' + y = 0, \quad x_0 = 0, \quad x_0 = 2$$

Here: $P(x) = 1 + x^3$ $P(x) = 0 \rightarrow x = -1, \frac{1}{2}, \frac{1}{2} \pm \frac{i\sqrt{3}}{2}$

• For $x_0 = 0$:

$$dist \quad \left\{ 0, \frac{1}{2} \pm \frac{i\sqrt{3}}{2} \right\} = 1$$
$$dist \quad \{0, -1\} = 1$$
$$\implies \rho = 1$$

• For $x_0 = 2$:

$$dist \quad \{2, -1\} = 3$$
$$dist \quad \left\{2, \frac{1}{2} \pm \frac{i\sqrt{3}}{2}\right\} = \sqrt{3}$$

 $\implies \rho = \sqrt{3}$

Example 4.3.2

$$(\cos x)y'' + xy' - 2y = 0, \quad x_0 = 0$$

 x_0 is an ordinary point. Know:

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} \quad \forall x$$

Assume:

$$y = \sum_{n=0}^{\infty} a_n x^n$$
$$y' = \sum_{n=1}^{\infty} n a_n x^{n-1}$$
$$y'' = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2}$$

Substitute into (*)

$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} \cdot \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n + \sum_{n=1}^{\infty} a_n x^n n - \sum_{n=0}^{\infty} 2a_n x^n = 0$$

Let's look at the product of the two series (first term)

• x⁰:

 $\bullet x^1$:

$$n = 0$$
 for the 1st factor and $n = 1$ for the second one
 $(6a_3 - a_1)x^1$

 $(2a_2 - 2a_0)x^0$

• x^2 :

$$n = 0$$
 for the 1st factor and $n = 2$ for the second one
or $n = 1$ for the first factor and $n = 0$ for the second one
 $(12a_4 - a_2)x^2$

• x^3 :

$$n = 0, \ n = 3 \rightarrow 20a_5$$

 $n = 1, \ n = 1 \rightarrow -3a_3$
 $(20a_5 - 2a_3)x^3$

• x^4 :

$$n = 0, \quad n = 4 \rightarrow 30a_6$$

 $n = 2, \quad n = 0 \rightarrow \frac{1}{12}a_2$
 $n = 1, \quad n = 2 \rightarrow -4a_4$
 $(30a_6 + \frac{1}{12}a_2 - 4a_4)x^4$

• x^5 :

$$n = 2, n = 1 \rightarrow \frac{1}{4}a_3$$

 $n = 1, n = 3 \rightarrow -7a_5$
 $n = 0, n = 5 \rightarrow 42a_7$
 $(42a_7 + \frac{1}{4}a_3 - 7a_5)x^5$

Since the RHS is 0, all the coefficient must be 0.

$$2a_{2} - 2a_{0} = 0 \implies a_{2} = a_{0}$$

$$6a_{3} - a_{1} = 0 \implies a_{3} = \frac{1}{6}a_{1}$$

$$12a_{4} - a_{2} = 0 \implies a_{4} = \frac{a_{0}}{12}$$

$$20a_{5} - 2a_{3} = 0 \implies a_{5} = -\frac{1}{60}a_{1}$$

$$30a_{6} + \frac{1}{12}a_{2} - 4a_{4} = 0 \implies a_{6} = \frac{a_{0}}{120}$$

$$42a_{7} + \frac{1}{4}a_{3} - 7a_{5} = 0 \implies a_{7} = \frac{1}{560}a_{1}$$

For $y_1(x)$, let $a_0 = 1$, $a_1 = 0$

$$a_2 = 1, \ a_3 = a_5 = a_7 = \dots = 0$$

 $a_4 = \frac{1}{12}, \ a_6 = \frac{1}{120}$
 $y_1(x) = 1 + x^2 + \frac{1}{12}x^4 + \frac{1}{120}x^6 + \dots$

For $y_2(x)$, let $a_0 = 0$, $a_1 = 1$

$$a_{2} = a_{4} = a_{6} = \dots = 0$$

$$a_{3} = \frac{1}{6}, \ a_{5} = \frac{1}{60}, \ a_{7} = \frac{1}{560}$$

$$y_{2}(x) = x + \frac{1}{6}x^{3} + \frac{1}{60}x^{5} + \frac{1}{560}x^{7} + \dots$$

5 Laplace Transform

5.1 Definition of Laplace Transform

Operational Calculus:

$$F(s) = \int_{\alpha}^{\beta} K(s,t) f(t) dt$$

Transform: $f \to F$

$$K(s,t) =$$
 Kernel of the transformation

 \rightarrow Laplace Transform:

$$\begin{aligned} \mathscr{L}\{f(t)\} &= F(s) = \int_0^\infty e^{-st} f(t) dt \\ K(s,t) &= e^{-st}, \ s \in \mathbb{C} \\ f(t), \ t \ge 0 \end{aligned}$$

There is a diagram here that I still need to learn how to draw in tikz

THEOREM	Suppose:
5.1	1. f is piecewise continuous on $0 \le t \le A$ for all $A \in \mathbb{R}$
	2. $ f(t) \le ke^{at}$ where $t \ge M$; $a \in \mathbb{R}$; $K, M \in \mathbb{R}^+$ (exponential order)
	Then, the Laplace Transform $\mathscr{L}\{f(t)=F(s)\}$ defined by $\int_0^\infty e^{-st}f(t)dt$ exists for
	$s \ge a$.

 \mathscr{L} is a linear operator (\mathscr{L}^{-1} is a linear operator as well). Suppose that f_1 and f_2 whose Laplace transform exist $\mathscr{L}\{c_1f_1(t) + c_2f_2(t)\} = \int_0^\infty e^{-st} \left[c_1f_1(t) + c_2f_2(t)\right] dt$ which is equal to:

$$= c_1 \int_0^\infty e^{-st} f_1(t) dt + c_2 \int_-^\infty e^{-st} f_2(t) dt$$
$$= c_1 \mathcal{L} \{ f_1(t) \} + c_2 \mathcal{L} \{ f_2(t) \}$$

5.2 IVP

 $\mathscr{L}\{f'\}$ related to $\mathscr{L}\{f\}$ in a simple way.

THEOREM 5.2	Suppose f is a continuous and f' is piecewise continuous on $0 \le t \le A$. Also suppose $\exists k, a, M \in \mathbb{R}$ such that
	$ f(t) \le Ke^{at}$ for $t \ge M$
	Then, $\mathscr{L}{f'(t)}$ exists for $s > a$ and
	$\mathcal{L}\lbrace f'(t)\rbrace = s\mathcal{L}\lbrace f(t) - f(0)\rbrace$ $\mathcal{L}\lbrace f''(t)\rbrace = s^2\mathcal{L}\lbrace f(t)\rbrace - sf(0) - f'(0)$

Corollary Suppose $f, f', f'' \dots f^{(n-1)}$ are continuous and $f^{(n)}$ is piecewise continuous on $0 \le t \le A$. Suppose $\exists k, a, M \in \mathbb{R}$ such that

$$|f(t)| \le ke^{at}, \quad |f'(t)| \le ke^{at}, \dots$$
$$|f^{(n-1)}(t)| \le ke^{at}, \quad t \ge M$$

Then, $\mathcal{L}{f^{(n)}(t)}$ exists for s > a and we can generalize

$$\mathcal{L}\{f^{(n)}(t)\} = s^n \mathcal{L}\{f(t)\} - s^{n-1} f(0) - s^{n-2} f'(0) \dots - s f^{(n-2)}(0) - f^{(n-1)}(0)$$
$$\mathcal{L}^{-1}\{y(s)\} = \phi(t) = y(t)$$

Note: we can use partial fraction to find \mathcal{L}^{-1} . If we know complex analysis:

$$y(t) = \frac{1}{2\pi i} \int_{y+i\infty}^{y-i\infty} e^{st} Y(s) ds, \ t > 0, \ y \in \mathbb{R}$$

There exists a 1-1 correspondence between f and F.

Example 5.2.1

Find
$$\mathscr{L}^{-1}{F(s)}$$
, $F(s) = \frac{2}{s^2 + 3s - 4}$
 $F(s) = \frac{2}{(s+4)(s-1)} = \frac{A}{s+4} + \frac{B}{s-1}$
 $= \frac{-\frac{2}{5}}{s+4} + \frac{\frac{2}{5}}{s-1}$
 $= \frac{2}{5}\left(\frac{1}{s-1}\right) - \frac{2}{5}\left(\frac{1}{s+4}\right)$

Thus,

$$f(t) = \frac{2}{5}e^t - \frac{2}{5}e^{-4t}$$

Example 5.2.2

Find
$$\mathscr{L}^{-1}{F(s)}$$
, $F(s) = \frac{8^2 - 4s + 12}{s(s^2 + 4)}$

$$F(s) = \frac{3}{5} + \frac{5s - 4}{s^2 + 4} = \frac{3}{s} + \frac{5s}{s^2 + 4} - \frac{4}{s^2 + 4}$$
$$= 3\left(\frac{1}{s}\right) + 5\left(\frac{s}{s^2 + 2^2}\right) - 2\left(\frac{2}{s^2 + 2^2}\right)$$
$$f(t) = 3 + 5\cos 2t - 2\sin 2t$$

Example 5.2.3

$$y^{(4)} - y = 0$$
, $y(0) = 1$, $y'(0) = 0$, $y''(0) = 1$, $y'''(0) = 0$

Let $\mathcal{L}\{y\} = Y(s)$

$$\mathcal{L}\{y^{(4)}\} = s^4 Y(s) - s^3 y(0) - s^2 y'(0) - s y''(0) - y'''(0)$$
$$= s^4 Y(s) - s^3 - s - Y(s)$$

Know: $\mathcal{L}{0} = 0$

$$s^{4}Y(s) - s^{3} - s - Y(s) = 0$$
$$(s^{4} - 1)Y(s) = s^{3} + s$$
$$Y(s) = \frac{s^{3} + s}{s^{4} - 1} = \frac{s}{s^{2} - 1}$$
$$\implies y(t) = \cosh t$$

Example 5.2.4

$$y'' + 2y' + y = 4e^{-t}, \quad y(0) = 2, \quad y'(0) = -1$$
$$(s^{2} + 2s + 1)Y(s) - 2s + 1 - 4 = \frac{4}{s+1}$$
$$Y(s) = \frac{4}{(s^{2} + 1)^{3}} + \frac{2(s+1)}{(s+1)^{2}} + \frac{1}{(s+1)^{2}}$$
$$Y(s) = 2\left(\frac{2!}{(s+1)^{3}}\right) + 2\left(\frac{1}{s+1}\right) + \frac{1}{(s+1)^{2}}$$
$$u(t) = 2t^{2}e^{-t} + 2e^{-t} + te^{-t}$$

Example 5.2.5

Find
$$\mathcal{L}^{-1}\left\{\frac{s-1}{s^2+\frac{1}{2}s+3}\right\}$$

$$F(s) = \frac{1}{2} \frac{s-1}{s^2 + \frac{1}{2}s + 3}$$

= $\frac{1}{2} \frac{s-1}{\left(s + \frac{1}{4}\right)^2 + \left(\frac{\sqrt{47}}{4}\right)^2}$
= $\frac{1}{2} \left[\frac{s + \frac{1}{4}}{\left(s + \frac{1}{4}\right)^2 + \frac{47}{16}} - \frac{\frac{5}{4}}{\left(s + \frac{1}{4}\right)^2 + \frac{47}{16}} \right]$
 $f(t) = \frac{1}{2} e^{-\frac{t}{4}} \cos\left(\frac{\sqrt{47}t}{4}\right) - \frac{5}{2\sqrt{47}} e^{-\frac{t}{4}} \sin\left(\frac{\sqrt{47}t}{4}\right)$

5.3 Step Function

Unit step function $\equiv U_c$, $c \in \{\mathbb{R}^+ \cup 0\}$

$$u_c(t) = \begin{cases} 0, \ t < c, \ c \ge 0\\ 1, \ t \ge c \end{cases}$$

Given function f , defined for $t\geq 0$

$$y = g(t) = \begin{cases} 0, \ t < c \\ f(t-c), \ t \ge c \end{cases}$$

represents a translation of f a distance c in the positive direction.

Example 5.3.1

$$f(t) = u_1(t) + 2u_3(t) - 6u_4(t)$$

$$f(t) = \begin{cases} 0 + 2 \cdot 0 - 6 \cdot 0 = 0, & 0 \le t \le 1 \\ 1 + 2 \cdot 0 - 6 \cdot 0 = 1, & 1 \le t \le 3 \\ 1 + 2 \cdot 1 - 6 \cdot 0 = 3, & 3 \le t \le 4 \\ 1 + 2 \cdot 1 - 6 \cdot 1 = -3, & 4 \le t \end{cases}$$

Figure 11

$$\begin{aligned} \mathscr{L}\{u_c(t)\} &= \int_0^\infty e^{-st} u_c(t) dt \\ &= \int_0^c e^{-st} \cdot 0 dt + \int_c^\infty e^{-st} \cdot 1 dt \\ &= \int_c^\infty e^{-st} dt \\ &= \lim_{M \to \infty} \int_c^M e^{-st} dt \\ &= \lim_{M \to \infty} \frac{-e^{-st}}{s} \Big|_c^M \\ &= \lim_{M \to \infty} \frac{-e^{-sM} + e^{-cs}}{s} \\ &= e^{\frac{-cs}{s}} \end{aligned}$$

Look at the relationship between $\mathscr{L}\{f(t)\}\$ and $\mathscr{L}\{u_c(t)f(t-c)\}.$

THEOREM
5.3If
$$F(s) = \mathcal{L}{f(t)}$$
 exists for $s > a \ge 0$ and if $c \in \mathbb{R}^+$ then $\mathcal{L}{u_c(t)f(t-c)} = e^{-cs}\mathcal{L}{f(t)} = e^{-cs}F(s), s > a$ Conversely, if $f(t) = \mathcal{L}^{-1}{F(s)}$, then
 $u_c(t)f(t-c) = \mathcal{L}^{-1}{e^{-cs}F(s)}$ **THEOREM**
5.4If $F(s) = \mathcal{L}{f(t)}$ exists for $s > a \ge 0$ and if $c \in \mathbb{R}$, then
 $\mathcal{L}{e^{ct}f(t)} = F(s-c), s > a + c$
Conversely, if $f(t) = \mathcal{L}^{-1}{F(s)}$, then
 $e^{ct}f(t) = \mathcal{L}^{-1}{F(s-c)}$

Example 5.3.2

$$F(s) = \frac{(s-2)e^{-s}}{s^2 - 4s + 3}$$
, Find \mathcal{L}^{-1}

$$G(s) = \frac{s-2}{s^2 - 4s + 3} = \frac{s-2}{(s-2)^2 - 1}$$

$$\mathcal{L}^{-1}[G(s)] = e^{2t} \cosh t$$
$$\mathcal{L}^{-1}[F(s)] = e^{2(t-1)} \cosh(t-1)u_1(t)$$

Example 5.3.3

$$F(s) = \frac{e^{-3s}}{s^2 + 9}, \text{ Find } \mathcal{L}^{-1}$$
$$G(s) = \frac{1}{s^2 + 9}$$
$$= \frac{1}{s^2 + 3^2}$$

 $\to \mathcal{L}^{-1}\{G(s)\} = \tfrac{\sin 3t}{3}$

$$\mathcal{L}^{-1}\{F(t)\} = \frac{\sin 3(t-3)}{3}u_3(t)$$
$$= \frac{\sin(3t-9)}{3}u_3(t)$$

Rectangular Window Function:

$$\prod_{a,b} (t) = \begin{cases} 0, \ t < a \\ 1, \ a < t < b \\ 0, \ t > b \end{cases}$$

Figure 12: $= u_a(t-a) - u_b(t-b)$

Example 5.3.4

$$F(s) = e^{-s} \frac{3s^2 - s + 2}{(s-1)(s^2 + 1)}$$

Consider:

$$\frac{3s^2 - s + 2}{(s - 1)(s^2 + 1)} = \frac{A}{s - 1} + \frac{Bx + C}{s^2 + 1}$$
$$= \frac{2}{s - 1} + \frac{s}{s^2 + 1}$$

$$\mathcal{L}^{-1}\left\{\frac{2e^{-s}}{s-1}\right\}(t) + \mathcal{L}^{-1}\left\{\frac{e^{-s}s}{s^2+1}\right\}(t)$$
$$= \left[2\mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\}(t-1) + \mathcal{L}^{-1}\left\{\frac{s}{s^2+1}\right\}(t-1)\right]u_1(t)$$
$$= \left[2e^{t-1} + \cos(t-1)\right]u_1(t)$$

5.4 Discontinuous Forcing Functions

Example 5.4.1

$$y'' + y = u_{3\pi}(t), y(0) = 1, y'(0) = 0$$

$$\mathcal{L}\{y''\} + \mathcal{L}\{y\} = \mathcal{L}\{u_{3\pi}(t)\}$$
$$(s^2Y(s) - sY(0) - y'(0) + Y(s)) = \frac{e^{-3\pi s}}{s}$$
$$(s^2 + 1)Y(s) = s + \frac{e^{-3\pi s}}{s}$$
$$Y(s) = \frac{s}{s^2 + 1} + \frac{e^{-3\pi s}}{s(s^2 + 1)}$$
$$Y(s) = \frac{s}{s^2 + 1} + e^{-3\pi s} \left(\frac{1}{s} - \frac{s}{s^2 + 1}\right)$$
$$y(t) = \cos t + u_{3\pi}(t) \left[1 - \cos(t - 3\pi)\right]$$

• For $0 \le t < 3\pi$:

$$y(t) = \cos t$$

• For $t \geq 3\pi$:

$$y(t) = \cos t + 1 - \cos(t - 3\pi)$$
$$= 2\cos t + 1$$

Let's look deeper into the above example. For $0 \leq t < 3\pi$

$$y(t) = \cos t$$
$$y'(t) = -\sin t$$
$$y''(t) = -\cos t$$

For $t\geq 3\pi$:

$$y(t) = 2\cos t + 1$$
$$y'(t) = -2\sin t$$
$$y''(t) = -2\cos t$$

$$\lim_{t \to 3\pi^{-}} \cos t = \cos 3\pi = -1$$
$$\lim_{t \to 3\pi^{+}} (\cos 2t + 1) = 2(-1) + 1 = -1$$

For 1st derivative:

$$\lim_{t \to 3\pi^-} -\sin t = 0$$
$$\lim_{t \to 3\pi^+} (-2\sin t) = 0$$

t

For 2nd derivative:

$$\lim_{t \to 3\pi^-} -\cos t = 1$$
$$\lim_{t \to 3\pi^+} -2\cos t = 2$$

which shows the limit does not exist. So y'' is discontinuous at $t = 3\pi$

Example 5.4.2

$$y'' + 4y = \sin t + u_{\pi}(t)\sin(t-\pi), \ y(0) = 0, \ y'(0) = 0$$

$$\mathcal{L}\{y''\} + 4\mathcal{L}\{y\} = \mathcal{L}\{\sin t\} + \mathcal{L}\{u_{\pi}(t)\sin(t-\pi)\}$$

$$s^{2}Y(s) - sy(0) - y'(0) + 4Y(s) = \frac{1}{s^{2}+1} + e^{-\pi s}\frac{1}{s^{2}+1}$$

$$Y(s) = \left(1 + e^{-\pi s}\right)\frac{1}{(s^{2}+1)(s^{2}+4)}$$

$$Y(s) = \left(1 + e^{-\pi s}\right)\left(\frac{\frac{1}{3}}{s^{2}+1} - \frac{\frac{1}{3}}{s^{2}+4}\right)$$

$$Y(s) = \left(1 + e^{-\pi s}\right)\left[\frac{1}{3}\left(\frac{1}{s^{2}+1}\right) - \frac{1}{6}\left(\frac{2}{s^{2}+2^{2}}\right)\right]$$

Let
$$H(s) = \frac{1}{3} \left(\frac{1}{s^2 + 1} \right) - \frac{1}{6} \left(\frac{2}{s^2 + 2^2} \right)$$
.
 $\mathscr{L}^{-1} \{ H(s) \} = \frac{1}{3} \sin t - \frac{1}{6} \sin 2t$
 $\mathscr{L} \{ e^{-\pi s} H(s) \} = u_{\pi}(t) \left[\frac{1}{3} \sin(t - \pi) - \frac{1}{6} \sin(2(t - \pi)) \right]$
 $= -u_{\pi}(t) \left[\frac{1}{3} \sin t + \frac{1}{6} \sin 2t \right]$

Putting Together

$$y(t) = \frac{1}{3}\sin t - \frac{1}{6}\sin 2t - u_{\pi}(t)\left(\frac{1}{3}\sin t + \frac{1}{6}\sin 2t\right)$$

6 PDE - Heat Equation - Fourier Series

6.1 Intro to PDE - Heat Conduction in a Rod

<u>Review:</u> $u_t = \frac{\partial u}{\partial t}$, $u_{xx} = \frac{\partial^2 u}{\partial x^2}$

$$u = f(t, x, y)$$
$$u_t = u_{xx} + u_{yy}$$

which is known as the 2 dimensional heat equation. Order of PDE:

$$u_t = u_{xx}$$
 : 2nd order
 $u_t = uu_{xxx} + \sin x$: 3rdorder

Number of Variables:

$$u_t = u_{xx}$$
 : 2 vars $u_x = u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{tt}$: 3 vars

2nd order linear PDE in 2 variables:

$$Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = G$$

where A,B,..., G are constants or function of x and y.

Example 6.1.1 Nonlinear PDE:

$$uu_{xx} + u_t = 0$$
$$xu_x + yu_y + u^2 = 0$$

There are 3 basic types of linear equation:

- 1. Parabolic Equation: $B^2 4AC = 0$ (heat equation, diffusion)
- 2. Hyperbolic Equation: $B^2 4AC > 0$ (vibrating system, wave equation)
- 3. Elliptic Equation: $B^2 4AC < 0$ (steady-state)

Heat Equation:

Extend superposition to ∞ (infinite linear combination)

From fig. 13, let's assume heat constant in any given cross-section and no heat lost to the side.

$$\alpha^2 u_{xx} = u_t, \quad 0 < x < L, \quad t > 0 \tag{*}$$
$$\alpha^2 = \frac{\kappa}{\rho \cdot s}$$

where κ is thermal conductivity and ρ is the density of the object and s is the specific heat

Figure 13: A rod in Heat Conduction Problem

<u>IC</u>:

$$u(x,0) = f(x), \ 0 \le x \le L$$

Assume T_1 at x = 0, T_2 at x = L and $T_1 = T_2 = 0$. The boundary condition (BC) is:

$$u(0,t) = 0, \ u(L,t) = 0, \ t > 0$$

Now, our ansatz is (based on separation of variables):

$$u(x,t) = X(x)T(t)$$
$$u(x,t) = XT$$
$$u_{xx} = X''T, \ u_t = XT'$$

Sub into (*), we obtain:

$$\alpha^2 X''T = XT'$$
$$\frac{X''}{X} = \frac{1}{\alpha^2} \frac{T'}{T} = -\sigma, \ \sigma > 0$$

Thus, we can observe that we can split a PDE into a system of ODEs:

$$X'' + \sigma X = 0$$
$$T' + \alpha^2 \sigma T = 0$$

We also need to solve BC based from our ansatz

$$u(0,t) = X(0)T(t) = 0$$

 $X(0) = 0, T(t) = 0 \quad \forall t$

We must have X(0) = 0 by same arg X(L) = 0 (2 pts BVP). First, let $\sigma = \lambda^2$ to avoid radical sign

$$X'' + \sigma X = 0$$
$$X'' + \lambda^2 X = 0$$
$$X(x) = k_1 \cos(\lambda x) + k_2 \sin(\lambda x)$$

The 1^{st} BC: X(0) = 0

$$X(0) = k_1 \cos 0 + k_2 \sin 0 \quad \rightarrow \quad k_1 = 0$$
$$X(x) = k_2 \sin(\lambda x)$$

The 2^{nd} BC: X(L) = 0

$$k_2 \sin(\lambda L) = 0$$

$$\sin(\lambda L) = 0$$

$$\lambda = \frac{n\pi}{L}, \ n \in \mathbb{Z}^+$$

$$\lambda^2 = \frac{n^2 \pi^2}{L^2}$$

The value of σ that yield non-trivial solution are called *eigenvalues* of BVP (boundary value problem)

$$X(x) = \sin\left(\frac{n\pi x}{L}\right)$$

are called *eigenfunction*. Substitute σ :

$$T' + \alpha^2 \sigma T = 0 \text{ yield:}$$
$$T' + \left(\frac{n^2 \pi^2 \alpha^2}{L^2}\right) T = 0$$
$$T(t) = e^{-\frac{n^2 \pi^2 \alpha^2 t}{L^2}}$$
$$u_n(x, t) = X(x)T(t)$$
$$u_n(x, t) = e^{-\frac{n^2 \pi^2 \alpha^2 t}{L^2}} \sin\left(\frac{n\pi x}{L}\right), \ n \in \mathbb{Z}^+$$

which is the fundamental solution of heat conduction. Extending this using principle of superposition to ∞ , we obtain:

$$u(x,t) = \sum_{n=1}^{\infty} c_n u_n(x,t)$$

Unless:

$$f(x) = b_1 \sin\left(\frac{\pi x}{L}\right) + b_2 \sin\left(\frac{2\pi x}{L}\right) + \ldots + b_m \sin\left(\frac{m\pi x}{L}\right)$$

Example 6.1.2

PDE:
$$\alpha^2 u_{xx} = u_t$$
, $0 < x < L$, $t > 0$
IC: $u(x,0) = f(x)$, $0 \le x \le L$
BC: $u(0,t) = 0$, $u(L,t) = 0$

Ansatz: u(x,t) = X(x)T(t), t > 0. Then fundamental solution of heat conduction is

$$u_n(x,t) = e^{\frac{-n^2 \pi^2 \alpha^2 t}{L^2}} \sin\left(\frac{n\pi x}{L}\right), \ n \in \mathbb{Z}^+$$

We also have:

$$u(x,t) = \sum_{n=1}^{m} c_n u_n(x,t)$$

where Fourier series would determined c_n , the sine series, unless:

$$f(x) = b_1 \sin\left(\frac{n\pi x}{L}\right) + b_2 \sin\left(\frac{2\pi x}{L}\right) + \ldots + b_m \sin\left(\frac{m\pi x}{L}\right)$$

Example 6.1.3

PDE:
$$100u_{xx} = u_t$$
, $0 < x < 1$, $t > 0$
IC: $u(x,0) = \sin(2\pi x) - \sin(5\pi x)$, $0 \le x \le 1$
BC: $u(0,t) = 0$, $u(1,t) = 0$, $t > 0$

Soln: $u_n(x,t) = e^{-100n^2\pi^2 t} \sin(n\pi x)$

IC:
$$u(x,0) = \sin(2\pi x) - \sin(5\pi x), \ 0 \le x \le 1$$

when t = 0.

$$u_n(x,0) = \sin(n\pi x) \rightarrow need n = 2, n = 5$$

$$u(x,0) = c_2 u_2(x,t) + c_5 u_5(x,t)$$
$$= c_2 \sin 2\pi x + c_5 \sin 5\pi x$$

$$\implies c_2 = 1, c_5 = -1$$

So, our final solution is:

$$u(x,t) = e^{-400\pi^2 t} \sin 2\pi x - e^{-2500\pi^2 t} \sin 5\pi x$$

6.2 Fourier Series

$$f(x) = \frac{a_0}{2} + \sum_{m=1}^{\infty} \left(a_m \cos \frac{m\pi x}{L} + b_m \sin \frac{m\pi x}{L} \right)$$
(*)

Solve for a_m and b_m cab be very complicated.

$$f(x) = \cos \pi x + \frac{1}{2}\cos 13\pi x + \frac{1}{4}\cos 169\pi x + \frac{1}{8}\cos 2197\pi x + \dots$$

which is convergent and continuous $\forall x$ but it's never differentiable \rightarrow pathological function. **Periodicity of sin/cos function** : f is periodic with T > 0

$$f(x+T) = f(x), \ \forall x \in \text{dom}(f)$$

 $\sin \frac{m\pi x}{L}, \cos \frac{m\pi x}{L}, T = \frac{2L}{m}$

Orthogonality of sin and cos function inner product (u,v) defined $\alpha \leq x \leq \beta$

$$(u,v) = \int_{\alpha}^{\beta} u(x)v(x)dx = 0$$

if u and v are orthogonal

•
$$\int_{-L}^{L} \cos \frac{m\pi x}{L} \cos \frac{n\pi x}{L} dx = \begin{cases} 0, & \text{if } m \neq n \\ L, & \text{if } m = n \end{cases}$$

•
$$\int_{-L}^{L} \cos \frac{n\pi x}{L} \sin \frac{n\pi x}{L} dx = 0 \ \forall m, n$$

•
$$\int_{-L}^{L} \sin \frac{m\pi x}{L} \sin \frac{n\pi x}{L} dx = \begin{cases} 0, & \text{if } m \neq n \\ L, & \text{if } m = n \end{cases}$$

1. Multiply (*) by $\cos \frac{n\pi x}{L}$ when n fixed (n > 0)

2. Integrate with respect to x from -L to L.

$$\int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx = \frac{a_0}{2} \int_{-L}^{L} \cos \frac{n\pi x}{L} dx + \sum_{m=1}^{\infty} a_m \int_{-L}^{L} \cos \frac{m\pi x}{L} \cos \frac{n\pi x}{L} dx + \sum_{m=1}^{\infty} b_m \int_{-L}^{L} \sin \frac{m\pi x}{L} \cos \frac{n\pi x}{L} dx$$

Euler - Fourier Formulas:

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx, \quad n = 0, 1, 2, 3 \dots$$
$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx, \quad n \in \mathbb{Z}^+$$

Example 6.2.1

$$f(x) = \begin{cases} x + L, & -L \le x \le 0\\ L, & 0 < x \le L \end{cases}$$

Fourier Series:

6.1

$$f(x) = \frac{3L}{4} + \sum_{n=1}^{\infty} \left[\frac{2L\cos\left(\frac{(2n-1)\pi x}{L}\right)}{(2n-1)^2 \pi^2} + \frac{(-1)^{n-1}\sin\left(\frac{n\pi x}{L}\right)}{n\pi} \right]$$

The Fourier Convergence Theorem 6.3

THEOREM Suppose that f and f' are piecewise continuous on the interval $-L \leq x < L$. Furthermore, suppose that f is defined outside the interval $-L \le x < L$ so that it is periodic with period 2L. Then f has a Fourier series

$$f(x) = \frac{a_0}{2} + \sum_{m=1}^{\infty} \left(a_m \cos \frac{m\pi x}{L} + b_m \sin \frac{m\pi x}{L} \right)$$

whose coefficients are given as

$$a_m = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{m\pi x}{L} dx, \quad m = 0, 1, 2, \dots$$
$$b_m = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{m\pi x}{L} dx, \quad m = 1, 2, \dots$$

The Fourier series converges to f(x) at all points where f is continuous and to [f(x+) + f(x-)]/2 at all points where f is discontinuous.

Note:

$$f(x+) = \lim_{x \to x_0^+} f(x), \ f(x-) = \lim_{x \to x_0^-} f(x)$$

As n increases, partial sum $s_n \to f(x)$ as $n \to \infty$ happens converges smoothly where f(x), but at points of discontinuity, partial converges smoothly to the new value which tends to overshoot. (Gibbs Phenomenon)

$$\lim_{n \to \infty} S_n = \frac{f(x_0^-) + f(x_0^+)}{2}$$

There exists a way to remove Gibbs phenomenon called Lanczos sigma factor

$$\frac{a_0}{2} + \sum_{n=0}^{m} \sin\left(\frac{n\pi}{2m}\right) \left[a_n \cos\frac{n\pi x}{2} + b_n \sin\frac{n\pi x}{L}\right]$$

6.4 Even and Odd Functions

Recall:

Even:
$$f(-x) = f(x)$$

Odd: $f(-x) = -f(x)$

Elementary Properties:

- 1. Sum(difference) and product (quotient) of 2 even functions are even.
- 2. Sum (difference) of 2 odd functions is odd. But the product (quotient) of 2 odd functions are even.
- 3. Sum (difference) of an odd function and an even function is neither. The product (quotient) of an odd and even function is odd.
- 4. If f(x) is even, then $\int_{-L}^{L} f(x) dx = 2 \int_{0}^{L} f(x) dx$ 5. If f(x) is odd, then $\int_{-L}^{L} f(x) dx = 0$

Cosine Series:

$$f: \begin{cases} \text{even} \\ \text{periodic (2L)} \end{cases}$$

 $\rightarrow f(x) \cdot \cos\left(\frac{n\pi x}{L}\right)$ is even and $f(x) \cdot \sin\left(\frac{n\pi x}{L}\right)$ is odd. Fourier coefficient of f:

$$a_{m} = \frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n\pi x}{L} dx, \quad n = 0, 1, 2, 3, \dots$$
$$b_{n} = 0$$
$$f(x) = \frac{a_{0}}{2} + \sum_{n=1}^{\infty} a_{n} \cos \frac{n\pi x}{L}$$

Sine Series:

$$f: \begin{cases} \text{odd} \\ \text{periodic} \quad (2L) \end{cases}$$

 $f(x)\cdot\cos\left(\frac{n\pi x}{L}\right)$ is odd, and $f(x)\cdot\sin\left(\frac{n\pi x}{L}\right)$ is even.

$$a_n = 0, \ n = 0, 1, 2...$$
$$b_n = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi x}{L}\right) dx, \ n \in \mathbb{Z}^+$$
$$f(x) = \sum_{n=1}^\infty b_n \sin\frac{n\pi x}{L}$$

Even and Odd Extensions:

• For an even periodic extension, define g of period 2L such that

$$g(x) = \begin{cases} f(x), & 0 \le x \le L \\ f(-x), & -L < x < 0 \end{cases}$$

 \rightarrow Fourier cosine series

• For an odd periodic extension, define h of periodic 2L such that

$$h(x) = \begin{cases} f(x), & 0 < x < L \\ 0, & x = 0, L \\ -f(-x), & -L < x < 0 \end{cases}$$

 \rightarrow Fourier sine series

Example 6.4.1

$$f(x) = L - x, \quad 0 < x < L$$

Find the Fourier Sine series of period 2L. For a sine series:

$$a_n = 0, n = 0, 1, 2, \dots$$

$$b_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx$$

$$= \frac{2}{L} \int_0^L (L-x) \sin \frac{n\pi x}{L} dx$$

$$= \frac{2}{L} \left[\int_0^L L \sin \frac{n\pi x}{L} dx - \int_0^L x \sin \frac{n\pi x}{L} dx \right]$$

$$\vdots$$

$$= \frac{-2L}{n\pi} (\cos n\pi - \cos 0) + \frac{2}{n\pi} (L \cos n\pi - 0) + \frac{2}{L} \left(\frac{L}{n\pi} \right)^2 \sin \frac{n\pi x}{L} \Big|_0^L$$

$$= \frac{2L}{n\pi}$$

$$f(x) = \frac{2L}{\pi} \sum_{n=1}^{\infty} \frac{\sin\left(\frac{n\pi x}{L}\right)}{n}$$

6.5 Example of Solving a Complete Heat Conduction in a rod Problem:

Let's look at

PDE:
$$u_{xx} = u_t$$
, $0 < x < 1$, $t > 0$
BC: $u(0,t) = 0$, $u(1,t) = 0$, $t > 0$
IC: $u(x,0) = 1$, $0 < x < 1$

Here $\alpha=1$, L=1

$$u_n(x,t) = e^{-n^2 \pi^2 t} \sin(n\pi x)$$

Since IC: u(x, 0) = 1, 0 < x < 1

$$u_n(x,0) = \sin(n\pi x) = 1$$
$$u(x,0) = \sum_{n=1}^{\infty} c_n \sin(n\pi x) = 1$$

 c_n is coefficient of the Fourier sine series of f(x) = 1

$$c_n = 2 \int_0^1 f(x) \sin(n\pi x) dx$$
$$= 2 \int_0^1 \sin(n\pi x) dx, \ n \in \mathbb{Z}^+$$
$$= -\frac{2}{n\pi} (\cos n\pi - 1)$$

- If n is even, $c_n = 0$
- If n is odd, $c_n = \frac{4}{n\pi}$

Generally, $c_{2n-1} = \frac{4}{(-1+2n)\pi, c_{2n}=0}$. Or

$$\frac{4}{\pi} \left[\sin \pi x + \frac{1}{3} \sin 3\pi x + \frac{1}{5} \sin 5\pi x \right] = 1$$
$$u(x,t) = \frac{4}{\pi} \left[e^{-\pi^2 t} \sin \pi x + \frac{1}{3} e^{-(3\pi)^2 t} \sin 3\pi x + \frac{1}{5} e^{-(5\pi)^2 t} \sin 5\pi x + \dots \right]$$
$$u(x,t) = \sum_{n=1}^{\infty} \frac{4}{(2n-1)\pi} e^{-(2\pi-1)^2 \pi^2 t} \sin \left[(2n-1)\pi x \right]$$

Now, we can solve for the PDE + BC + IC,

$$u(x,0) = \sum_{n=1}^{\infty} c_n \sin\left(\frac{n\pi x}{L}\right) = f(x)$$
$$c_n = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi x}{L}dx\right)$$

7 Boundary Value Problem

Regular Sturm - Louisville Problem:

- \exists an ∞ numbers of \mathbb{R} eigenvalues that can be arranged in increasing order $\lambda_1 < \lambda_2 < \ldots < \lambda_n$ such that $\lambda_n \to \infty$ as $n \to \infty$
- For each λ , there exists a unique eigenfunction
- Eigenfunction corresponding to different eigenvalues are linearly independent.
- The set of eigenfunctions correspond to the set of eigenvalues is orthogonal with respect to the weight p(x) on the interval I, For us, p(x) = 1

8 System of First Order Linear Equations

Figure 14: A mechanical Spring with Multiple Nodes

$$t^{2}u'' + tu' + (t^{2} - 0.25)u = 0$$
$$u'' = -\frac{1}{t}u' - \left(1 - \frac{1}{4t^{2}}\right)u$$

Set $x_1 = u$ and $x_2 = u' \rightarrow x'_1 = x_2$

$$x_{2}' = u'' = -\frac{1}{t}u' - \left(1 - \frac{1}{4t^{2}}\right)u$$

$$\begin{cases} x_{1}' = x_{2} \\ x_{2}' = -\left(1 - \frac{1}{4t^{2}}\right)x_{1} - \frac{1}{t}x_{2} \\ x_{1}' = -2x_{1} + x_{2}, \ x_{2}' = x_{1} - 2x_{2} \\ (x_{1}' + 2x_{1})' = x_{1} - 2(x_{1}' + 2x_{1}) \end{cases}$$

$$x_1'' + 2x_1' = x_1 - 2x_1' - 4x_1$$
$$x_1'' + 4x_1' + 3x_1 = 0$$

which can be solved from the characteristics equation.

8.1 Homogeneous Linear Systems (Constant Coefficient)

$$\vec{x}' = \vec{A}\vec{x}, \ A = n \times n \tag{(*)}$$

For n = 1: system reduces to $\frac{dx}{dt} = ax$, solution is $x = ce^{at}$ in section 3 that we saw. Notice that $\lambda = 0$ is the only equilibrium solution if $a \neq 0$

- If a < 0 asymptotically stable \rightarrow sink
- a > 0 asymptotically unstable \rightarrow source

For n = 2, this is important if it has visualization in the x_1 and x_2 plane called a phase plane. Evaluate $\vec{A}\vec{x}$ at a large number of points and plot the resulting vector yields a direction field of tangent vector to the solution of the system. To (*), ansatz solns will involve e^{rt} . Also, (*) are vector so we multiply e^{rt} by a constant vector.

$$\vec{x} = \xi e^{rt} \tag{(**)}$$

Sub into (*), we have:

$$r\xi e^{rt} = \bar{A}\xi e^{rt}$$
$$(\vec{A} - r\vec{I}\xi = \vec{0} \tag{***})$$

The problem of determining the eigenvalues and eigenvectors of \vec{A} provided r - av eigenvalue and $\xi = a_n$ associated eigenvector.

Example 8.1.1

$$\vec{x}' = \begin{pmatrix} 1 & 1 \\ 4 & -2 \end{pmatrix} \vec{x}$$

Ansatz: $\vec{x} = \xi e^{rt}$ From (***),

$$(\vec{A} - r\vec{I})\xi = \vec{0}$$
$$\begin{pmatrix} 1 - r & 1\\ 4 & -2 - r \end{pmatrix} \begin{pmatrix} \xi_1\\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$

 $\det\left(\vec{A} - r\vec{I}\right) = 0,$

$$\begin{vmatrix} 1-r & 1\\ 4 & -2-r \end{vmatrix} = (1-r)(-2-r) - 4$$

So, $r^2 + r - 6 = 0 \rightarrow r_1 = 2$, $r_2 = -3$ are eigenvalues

• $r_1 = 2$

$$\begin{pmatrix} -\xi_1 + \xi_2 \\ 4\xi_1 - 4\xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\xi_1 = \xi_2$$
$$\xi^{(1)} = (1, 1)^T$$

• $r_2 = 3$

$$\begin{pmatrix} 4\xi_1 + \xi_2 \\ 4\xi_1 + \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\xi^{(2)} = (1, -4)^T$$

Therefore,

$$\vec{x} = c_1 \begin{pmatrix} 1\\1 \end{pmatrix} e^{2t} + c_2 \begin{pmatrix} 1\\-4 \end{pmatrix} e^{-3t}$$

Breaking apart the general soln:

$$\vec{x}^{(1)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{2t}, \ \vec{x}^{(2)} = \begin{pmatrix} 1 \\ -4 \end{pmatrix} e^{-3t}$$

The Wronskian is:

$$W[\vec{x}^{(1)}, \vec{x}^{(2)}](t) = \begin{vmatrix} e^{2t} & e^{-3t} \\ e^{2t} & -4e^{-3t} \end{vmatrix}$$
$$= -5e^{-t} \neq 0 \quad \forall t$$

So the solution forms a fundamental set of solution

• For $\vec{x}^{(1)}(t)$: the scalar form

$$x_1 = c_1 e^{2t}, \ x_2 = c_1 e^{2t}$$

eliminate c_1 , $t \to x_1 = x_2$. Solution lives on the straight line $x_2 = x_1$ in quadrant I for $c_1 > 0$ and QII for $c_1 < 0$. In either case, solution depart from the origin as t increases.

• For $\vec{x}^{\,(2)}(t)$: scalar form

$$x_1 = c_2 e^{-3t}, \quad x_2 = -4c_2 e^{-3t}$$
$$x_1 = -\frac{1}{4}x_2 \quad \rightarrow \quad \text{soln in QIV for } c_2 > 0$$
and OII for $c_2 < 0$

In both cases, it moves towards the origin. For large t, the term $c_1 \vec{x}^{(1)}(t)$ is dominant and term $c_2 \vec{x}^{(2)}(t)$ become negligible.

Figure 15: The direction field

Example 8.1.2

$$\vec{x}' = \begin{pmatrix} 1 & -2 \\ 3 & -4 \end{pmatrix} \vec{x}$$

Ansatz: $\vec{x} = \vec{\xi} e^{rt}$

$$(\vec{A} - r\vec{I})\vec{\xi} = \vec{0}$$

$$\begin{pmatrix} 1 - r & -2 \\ 3 & -4 - r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$det \left(\vec{A} - r\vec{I}\right) = 0$$

$$-(1 - r)(4 + r) + 6 = 0$$

$$r_1 = -1, \ r_2 = -2$$

• If $r_1 = -1$:

$$\begin{pmatrix} 2\xi_1 - 2\xi_2\\ 3\xi_1 - 3\xi_2 \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$
$$\xi_1 = \xi_2$$
$$\xi^{(1)} = (1, 1)^T$$

• If $r_2 = -2$:

$$\begin{pmatrix} 3\xi_1 - 2\xi_2\\ 3\xi_1 - 2\xi_2 \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$
$$3\xi_1 = 2\xi_2$$
$$\vec{\xi}^{(2)} = (2,3)^T$$

$$\vec{x} = c_1 \begin{pmatrix} 1\\1 \end{pmatrix} e^{-t} + c_2 \begin{pmatrix} 2\\3 \end{pmatrix} e^{-2t}$$

which has original stable node

Example 8.1.3

$$\vec{x}' = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix} \vec{x}$$

Ansatz: $\vec{x} = \vec{\xi} e^{rt}$

$$\begin{pmatrix} 1-r & 1 & 2\\ 1 & 2-r & 1\\ 2 & 1 & 1-r \end{pmatrix} \begin{pmatrix} \xi_1\\ \xi_2\\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$$
$$r^3 - 4r^2 - r + 4 = 0$$
$$r_1 = 4, \ r_2 = 1, \ r_3 = -1$$

• $r_1 = 4$

$$\begin{pmatrix} -3\xi_1 + \xi_2 + 2\xi_3\\ \xi_1 - 2\xi_2 + \xi_3\\ 2\xi_1 + \xi_2 - 3\xi_3 \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ 0 \\ 0 \end{pmatrix}$$
$$\vec{\xi}^{(1)} = (1, 1, 1)^T$$

• $r_2 = 1$

$$\begin{pmatrix} \xi_2 + 2\xi_3\\ \xi_1 + \xi_2 + \xi_3\\ 2\xi_1 + \xi_2 \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ 0\\ 0 \end{pmatrix}$$
$$\vec{\xi}^{(2)} = (1, -2, 1)^T$$

• $r_3 = -1$

$$\begin{pmatrix} 2\xi_1 + \xi_2 + 2\xi_3\\ \xi_1 + 3\xi_2 + \xi_3\\ 2\xi_1 + \xi_2 + 2\xi_3 \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ 0\\ 0 \end{pmatrix}$$
$$\vec{\xi}^{(3)} = (1, 0, -1)^T$$

General Soln:

$$\vec{x} = c_1 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} e^{4t} + c_2 \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} e^t + c_3 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} e^{-t}$$

8.2 Complex Eigenvalues

$$\vec{x}' = \begin{pmatrix} -1 & -4\\ 1 & -1 \end{pmatrix} \vec{x}$$
$$\begin{pmatrix} -1 - r & -4\\ 1 & -1 - r \end{pmatrix} \begin{pmatrix} \xi_1\\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$
$$r^2 + 2r + 5 = 0$$
$$r = -1 \pm 2i$$

• $r_1 = -1 + 2i$

$$\begin{pmatrix} -2i\xi_1 - 4\xi_2\\ \xi_1 - 2i\xi_2 \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$
$$\vec{\xi}^{(1)} = (2i, 1)^T$$

• $r_2 = -1 - 2i$

$$\begin{pmatrix} 2i\xi_1 - 4\xi_2\\ \xi_1 + 2i\xi_2 \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$
$$\vec{\xi}^{(2)} = (-2i, 1)^T$$
$$\vec{x} = c_1 \begin{pmatrix} 2i\\ 1 \end{pmatrix} e^{(-1+2i)t} + c_2 \begin{pmatrix} -2i\\ 1 \end{pmatrix} e^{(-1-2i)t}$$

Breaking apart the solution, we get:

$$\vec{x}^{(1)}(t) = \begin{pmatrix} 2i\\1 \end{pmatrix} e^{-t} (\cos 2t + i \sin 2t)$$
$$= \begin{pmatrix} -2e^{-t} \sin 2t\\e^{-t} \cos 2t \end{pmatrix} + i \begin{pmatrix} 2e^{-t} \cos 2t\\e^{-t} \sin 2t \end{pmatrix}$$

So,

$$\vec{x} = c_1 e^{-t} \begin{pmatrix} -2\sin 2t\\ \cos 2t \end{pmatrix} + c_2 e^{-t} \begin{pmatrix} 2\cos 2t\\ \sin 2t \end{pmatrix}$$

Let's then calculate the Wronskian

$$\vec{u}(t) = e^{-t} \begin{pmatrix} -2\sin 2t\\\cos 2t \end{pmatrix}$$
$$\vec{v}(t) = e^{-t} \begin{pmatrix} 2\cos 2t\\\sin 2t \end{pmatrix}$$
$$W(\vec{u}, \vec{v})(t) = \begin{vmatrix} -2e^{-t}\sin 2t & 2e^{-t}\cos 2t\\e^{-t}\cos 2t & e^{-t}\sin 2t \end{vmatrix} = -2e^{-2t} \neq 0$$

which forms the fundamental set of solutions (spiral point stable)

Example 8.2.1

$$\vec{x}' = \begin{pmatrix} 0 & -5 \\ 1 & \alpha \end{pmatrix} \vec{x}$$

a) Determine the eigenvalue in term of α

$$\begin{pmatrix} -r & -5\\ 1 & \alpha - r \end{pmatrix} \begin{pmatrix} \xi_1\\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$
$$r^2 - \alpha r + 5 = 0$$
$$r_1 = \frac{\alpha}{2} + \frac{1}{2}\sqrt{\alpha^2 - 20}, \quad r_2 = \frac{\alpha}{2} - \frac{1}{2}\sqrt{\alpha^2 - 20}$$

b) Find the critical value of α where the qualitative nature of the phase portrait changes.

The roots are complex when: $|\alpha| < \sqrt{20}$

- $\alpha \in (-\sqrt{20}, 0) \rightarrow negative real part$
- $\alpha \in (0, \sqrt{20}) \rightarrow positive real part$
- $\alpha = 0 \rightarrow pure \ imaginary \ eigenvalues \ (center)$
- $\alpha^2 > 20 \rightarrow roots \ are \ \mathbb{R}$ and distinct

Finally, $\alpha = \sqrt{20}$

9 Nonlinear Systems

Predator - Prey System:

x(t) = prey, y(t) = predator

$$x'(t) = x(2 - 3x) - 4xy \tag{1}$$

$$y'(t) = -y + 3xy \tag{2}$$

Note: xy represents the rate at which predator eats prey and term like 2-3x tells us about the reproductive rate. If y(0) = 0 (y'(t) = 0)

$$x'(t) = 2x - 3x^2 = 0 \implies x = 0, \ x = \frac{2}{3}$$

So $(0,0), (\frac{2}{3},0)$ are equilibrium points. If $y \neq 0$, then (2) becomes:

$$-y + 3xy = 0$$
$$-1 + 3x = 0 \implies x = \frac{1}{3}$$

Sub $x = \frac{1}{3}$ into (1)

$$x(2-3x) - 4xy = 0$$
$$y = \frac{1}{4}$$

 $(\frac{1}{3},\frac{1}{4})$ is the 3^{rd} equilibrium point

10 Schrodinger's Equation

We had a talk/lecture about Schrodinger's Equation from Dr. Callas (he is a project manager at NASA's Mars Exploration Rover Project and also a math professor at PCC) in June, and we got to learn about the derivation of the equation and different aspects of it from a more scientific viewpoint like physics/chemistry.