
Math 55H - Honors Ordinary Differential Equation

Duc Vu
Taught by Pete Riley
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Update: July 11, 2020

This is the last math class in the math sequence at PCC. It is taken during Spring 2020 (Covid-19
period) and thus is online. We use the book Elementary Differential Equations and Boundary Value
Problems by Boyce and Diprima (11th edition). Even though this is an ODE class, we also got to touch
a bit upon PDE and Fourier Series (heat conduction problem). Please let me know if you find any
mistakes/typos in this notes and I will try to fix them as soon as I can.
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Duc Vu (Spring 2020) 1 Introduction

1 Introduction

1.1 Classification of ODE

1.1.1 Order

Example 1.1.1
y′′′ + 2ety′′ + yy′ = t4

Here we can observe that the highest order of the derivative is 3 which is also the order of the differential
equation.

Generalizing it to nth order ODE, we obtain:

F [t, u(t), u′(t), . . . , un(t)] = 0

yn = f(t, y, y′, y′′, . . . , yn−1)

⇒ Simply put, to solve an ODE means to get rid of the derivative. The solution interval of validity is
α < t < β.
∃ φ 3:

φ′, φ′′, . . . , φn exist.

and satisfy
φn(t) = f [t, φ(t), φ′(t), . . . , φn−1(t)] ∀ t ∈ (α, β)

1.1.2 Linear & Non-linear

General linear of order n:

a0(t)y
(n) + a1(t)y

(n−1) + . . .+ an(t)y = g(t)

Note: Dependent variables have to be linear

Example 1.1.2

t2y′′ − 3ty′ + 4y = 0: linear

y′′′ + 2ety′′ + yy′ = t4: nonlinear

y′′ − 3y′ + y2 = 0: nonlinear

y(3) + yy′ + sin y = x2: nonlinear

A notable example of nonlinear differential equation in physics is the differential equation of the
motion of a simple pendulum, which can be expressed as

d2θ

dt2
+
g

L
sin θ = 0

4
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For θ ≈ 0, the equation can be simplified to

d2θ

dt2
+
g

L
θ = 0 (linearization)

1.1.3 Autonomous & Non-autonomous

Example 1.1.3

y′ = −1− 2y: autonomous

y′ = t+ 2y: non-autonomous

From the example above, we can observe that autonomous equation does not depend on t (doesn’t
contain t) while non-autonomous equation does (contain t)

2 First Order Differential Equations

2.1 Linear Equations: Method of Integrating Factors

Template for 1st order linear ODE:

dy

dt
+ p(t)y = g(t)

p and g are continuous on interval α < t < β.

Example 2.1.1
y′ + 2y = te−2t, y(1) = 0 (1)

What would happen if we multiply Eq.(1) by e2t?

e2ty′ + 2e2ty = t(
e2ty

)′
= e2ty′ + 2e2ty∫ (

e2ty
)′
dt =

∫
tdt

ye2t =
1

2
t2 + C (1.1)

y =
1

2
t2e−2t + Ce−2t (1.2)

Now, consider the IC:

0 =
1

2
e−2 + Ce−2

c = −1

2

So,
y =

1

2
t2e−2t − 1

2
e−2t (1.3)

5
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In the example above, 1.1 is referred to as implicit general solution, 1.2 is called explicit general
solution and 1.3 is explicit particular solution
Generalize:

y′ + p(t)y = g(t) (2)

Integrating factor:

µ(t) = exp

∫
p(t)dt

Multiply Eq.(2) by µ(t) gives us:

µ(t)y′ + µ(t)p(t)y = µ(t)g(t)

We want the LHS to be result from the product rule which is µ(t)p(t)y = µ′(t)y. So,

µ′(t) = µ(t)p(t)

µ′(t)

µ(t)
= p(t)

d

dt
lnµ(t) = p(t)

lnµ(t) =

∫
p(t)dt+K

µ(t) = exp

∫
p(t)dt (choose k = 0)

Example 2.1.2
y′ + 3y = t+ e−2t

Let’s find the integrating factor

µ(t) = exp

∫
p(t)dt

= exp

∫
3dt

= e3t

Multiply by the integrating factor by both sides gives:

y′e3t + 3ye3t = te3t + et∫ (
ye3t

)′
dt =

∫ (
te3t + et

)
dt

ye3t =
1

3
te3t − 1

9
e3t + et + c

y =
1

3
t− 1

9
+ e−2t + ce−3t

As t→∞, y →∞ and y asymptotically approach the linear function y = 1
3 t−

1
9

6
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Example 2.1.3
y′ = t2y + (t− 1) (*)

Rearrange the equation so that it fits the template

y′ − t2y = t− 1

Here p(t) = −t2, g(t) = t− 1. Then,

µ(t) = exp

∫
−t2dt

= e−
1
3
t3

Multiply (*) by µ(t):

y′e−
1
3
t3 − t2e−

1
3
t3y = e−

1
3
t3(t− 1)∫ (

ye−
1
3
t3
)′
dt =

∫
e−

1
3
t3(t− 1)dt

e−
1
3
t3y =

∫
e−

1
3
t3(t− 1)dt

The integral above has non-elementary solution and thus requires numerical approx.

2.2 Separable Equations

dy

dx
= f(x, y) (3)

M(x, y) +N(x, y)
dy

dx
= 0 (4)

We can derive Eq.(4) from Eq.(3) by settingM(x, y) = −f(x, y) and N(x, y) = 1. However, if M is a
function of x only and N is a function of y only then Eq.(4) becomes

M(x) +N(y)
dy

dx
= 0

called separable. The differential form can be expressed as

M(x)dx+N(y)dy = 0

Example 2.2.1

y′ =
x2

y (1 + x3)

dy

dx
=

x2

y (1 + x3)∫
ydy =

∫
x2

1 + x3

1

2
y2 =

1

3
ln
∣∣1 + x3

∣∣+ c1

3y2 − 2 ln
∣∣1 + x3

∣∣ = c

where c = 6c1. We can see that the solution is implicit and general

7
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Example 2.2.2
y′ =

2x

1 + 2y
, y(2) = 0

Solve the IVP in explicit form (non-linear)∫
(1 + 2y)dy =

∫
2xdx

y + y2 = x2 + c

Using the IC, we obtain:

0 = 22 + c

c = −4

⇒ y + y2 = x2 − 4

Let’s manipulate this equation so that it’s in particular explicit form instead of particular implicit.

y2 + y +
1

4
= x2 − 4 +

1

4(
y +

1

2

)2

= x2 − 15

4

y +
1

2
= ±

√
x2 − 15

4

y = −1

2
±
√
x2 − 15

4

The IC would dictate the ± sign. Since y(2) = 0, then

y = −1

2
+

√
x2 − 15

4

Let us also try to determine the interval in which the solution is defined. We need x2− 15
4 ≥ 0⇒ x ≥

√
15
2

or x ≤ −
√
15

2 . Since y(2) = 0 is our IC, y >
√
15
2 is the interval we want to find

Example 2.2.3

y′ = 2x
√
y − 1 (non-linear)∫

dy√
y − 1

=

∫
2xdx

2
√
y − 1 = x2 + c√

y − 1 =
1

2

(
x2 + c

)
y(x) = 1 +

1

4

(
x2 + c

)2
→ Singular solution: y(x) ≡ 0.
Note: There is no singular solution in linear DE

8
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tα t0 β

Figure 1: Linear case

THEOREM

2.1
If the function p and g are continuous on an open interval I : α < t < β (Fig 1)
containing the point t = t0, then there exists a unique function y = φ(t) that satisfies
the differential equation

y′ + p(t)y = g(t)

for each t in I, and that also satisfies the initial condition

y(t0) = y0

where y0 is an arbitrary prescribed initial value

t

y

α t0 − h t0 t0 + h β

γ

δ

(t0, y0)

Figure 2: Nonlinear case

THEOREM

2.2
Let the functions f and ∂f

∂y be continuous in some rectangle α < t < β, γ < y < δ

containing the point (t0, y0) (shown in Fig 2). Then, in some interval t0 − h < t <

t0 + h contained in α < t < β, there is a unique solution y = φ(t) of the initial
value problem

y′ = f(t, y), y(t0) = y0

2.3 Exact Equation

(
2xy2 + 2y

)
+
(
2x2y + 2x

)
y′ = 0 (*)

9
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We can observe:

ψ(x, y) = x2y2 + 2xy

∂ψ

∂x
= 2xy2 + 2y

∂ψ

∂y
= 2x2y + 2x

So, we can rewrite (*) as

∂

∂x

(
x2y2 + 2xy

)
+

∂

∂y

(
x2y2 + 2xy

) dy
dx

= 0

But notice, if we assume y = y(x) recalling the chain rule of the LHS is d
dx

(
x2y2 + 2xy

)
= 0. This

means:
x2y2 + 2xy = C

is also a solution to (*). More generally given:

M(x, y) +N(x, y)y′ = 0 (**)

if we can identify a function ψ = ψ(x, y) such that

∂ψ

∂x
(x, y) =M(x, y)

∂ψ

∂y
(x, y) = N(x, y)

and such that ψ(x, y) = c defines y = φ(x) implicitly as a differential of x. Then (**) becomes
d
dxψ[x, φ(x)] = 0. Solution of (**) is given as:

ψ(x, y) = c

(**) is exact→My(x, y) = Nx(x, y). Proof in one direction from Clairaut’s Theorem:

∂ψ

∂x
=M(x, y) and

∂ψ

∂y
= N(x, y)

My(x, y) = ψxy and Nx(x, y) = ψyx

Note: Clairaut’s Theorem shows that ψxy = ψyx.

Example 2.3.1
dy

dx
= −ax− by

bx− cy
Rewrite it in differential form:

(bx− cy)dy = −(ax− by)dx

(ax− by)dx+ (bx− cy)dy = 0

My = −b , Nx = b

My 6= Nx

⇒ Not exact!

10
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Example 2.3.2 (y
x
+ 6x

)
dx+ (lnx− 2)dy = 0, x > 0

Here,
My = Nx =

1

x

which is exact. So,
∃ψ(x, y) 3:

ψx =M(x, y) =
y

x
+ 6x

ψy = N(x, y) = lnx− 2

Let’s integrate ψx with respect to x x to find ψ

ψ =

∫
y

x
+ 6xdx

ψ = y ln |x|+ 3x2 + h(y)

Then, in order to find h(y), we need to use ψy

ψy = lnx+ h′(y) = lnx− 2

h′(y) = −2

h(y) = −2y + c

Therefore,

ψ(x, y) = y lnx+ 3x2 − 2y + c (choose c = 0)

y lnx+ 3x2 − 2y = c

Example 2.3.3 (
ye2xy + x

)
dx+ bxe2xydy = 0 (*)

Find b so that (*) is exact.
Here,M(x, y) = ye2xy + x, and N(x, y) = bxe2xy. We needMy = Nx,

My = 2yxe2xy + e2xy

Nx = be2xy + 2bxye2xy

⇒ b = 1

Solve it using the similar method, we obtain:

e2xy + x2 = c

11
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Using Integrating Factor
M(x, y)dx+N(x, y)dy = 0

maybe exact, but what if it’s not exact? Then, we need to utilize integrating factor.

µ(x, y)M(x, y)dx+ µ(x, y)N(x, y)dy = 0

Maybe ∃µ(x) or µ(y):

Case 1 If My−Nx
N is a function of x only, then µ = µ(x) can be found by solving dµ

dx =
My−Nx

N · µ

Case 2 If Nx−My

M is a function of y only then µ = µ(y) and can be found by solving dµ
dy =

Nx−My

M · µ

Example 2.3.4
ydx+

(
2xy − e−2y

)
dy = 0

which is certainly not exact. Notice:

Nx −My

M
=

2y − 1

y

which is a function of y only. ∃µ = µ(y) 3 :

dµ

dy
=

2y − 1

y
· µ∫

dµ

µ
=

∫ (
2− 1

y

)
dy

ln |µ| = 2y − ln |y| (choose c = 0)

|µ| = e2y−ln |y|

µ =
e2y

y

Now, we can multiply the function by µ,

e2y

y
ydx+

(
e2y

y
2xy − e2y

y
e2y
)
dy = 0

which is exact!. Therefore, there must exist ψ(x, y) 3 :

ψx =M(x, y) = e2y

ψy = N(x, y) = 2xe2y − 1

y∫
ψxdx = xe2y + h(y)

ψy = 2xe2y + h′(y)

h(y) = − ln |y|

ψ(x, y) = 2xe2y − ln |y| = c

12
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2.4 Homogeneous Equation

dy

dx
= f(x, y)

is homogeneous if f does not depend on x and y separately but depends only on the ration y
x or xy .

=⇒ dy

dx
= F (

y

x
)

Example 2.4.1
dy

dx
=
x+ 3y

x− y
which is equal to

dy

dx
=

1 + 3y
x

1− y
x

⇒ homogeneous!

Example 2.4.2

dy

dx
=
y4 + 2xy3 − 3x2y2 − 2x3y

2x2y2 − 2x3y − 2x4

=
y4

x4
+ 2y3

x3
− 3y2

x2
− 2y

x
2y2

x2
− 2y

x − 2

= F (
y

x
)

Example 2.4.3

dy

dx
=
x2 + 3y2

2xy

=
1 + 3

( y
x

)2
2
( y
x

)
Substituting v = y

x →
dy
dx = x dvdx + v

v + x
dv

dx
=

1 + 3v2

2v

x
dv

dx
=

1 + 3v2 − 2v2

2v∫
dx

x
=

∫
2v

1 + v2
dv

ln
(
1 + v2

)
= ln |x|+ c1

ln

(
1 + v2

|x|

)
= c1

ln

(
x2 + y2

|x3|

)
= c1

x2 + y2

|x3|
= c2 where c2 = ec1

x2 + y2 = c2|x|3

x2 + y2 − cx3 = 0

13
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2.5 Bernoulli Equation

dy

dx
+ p(x)y = q(x)yn (*)

Assume p(x), q(x) are continuous on (a, b), n ∈ R
If n = 0 or n = 1, then reduce to linear.
Dividing (*) by y1−n :

y−n
dy

dx
+ p(x)y1−n = q(x)

Now, let v = y1−n. This implies that dvdx = (1− n)y−n dydx . (*) then becomes:

1

1− n
dv

dx
+ p(x)v = q(x)

Example 2.5.1
dr

dθ
=
r2 + 2rθ

θ2

Let’s manipulate this equation to fit the template

dr

dθ
− 2

θ
r =

1

θ2
r2

Dividing it by r2 :

r−2
dr

dθ

−2
θ
r−1 =

1

θ2

Substituting v = r1−2 = r−1 → dv
dθ = −r−2 drdθ

−dv
dθ
− 2

θ
v =

1

θ2

dv

dθ
+

2

θ
v = − 1

θ2

Using integrating factor:

r(θ) =
θ2

c− θ
Singular solution: r(θ) ≡ 0

2.6 Autonomous ODEs / Population Dynamics

Recall:
dy

dt
= f(y)

is autonomous.
Exponential Growth

14
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Rate of change is proportional to the current population.

dy

dt
= ry

r = rate of growth (r > 0)

r = rate of decay (r < 0)

Logistic growth
The growth rate is a function that depends on the current population

dy

dt
= h(y)y

We want: h(y) ≈ r > 0, where y is small.
→ h(y) decreases as y grow larger.
→ h(y) < 0 when sufficiently large.
Simplest model:

h(y) = r − ay

a, r ∈ R+

dy

dt
= (r − ay)y

Note: Ansatz is an educated guess
Logistic Equation:
r = intrinsic growth rate→ dy

dt = r
(
1− y

ky
)
. This yields 2 constant solutions. (k = r

a )

y = φ () = 0 and y = φ () = k

=⇒ Equilibrium solution

Case 1
y = k : sink (asymptotically stable)

Case 2
y = 0 : source (unstable solution)

3 Second Order Linear Equations

3.1 Homogeneous Equations with Constant Coefficients

General form:
d2y

dt2
= f

(
t, y,

dy

dt

)
(*)

→ linear if f is linear in y and y′. We have:

y′′ + p(t)y′ + q(t)y = g(t)

15
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Or
P (t)y′′ +Q(t)y′ +R(t)y = G(t)

If G(t) ≡ 0 (forcing term), then equation is homogeneous.
IVP:

IC: y(t0) = y0 and y′(t0) = y′0

Then,
ay′′ + by′ + cy = 0, a, b, c ∈ R, a 6= 0

Consider:

y′′ − y = 0

y′′ = y

⇒ y1 = et , y2 = e−t

Thus,
y = c1e

t + c2e
−t

which is called the principle of superposition.

ay′′ + by′ + cy = 0

y(t) = ert (**)

y′(t) = rert

y′′(t) = r2ert

Substitute into (**):

ar2ert + brert + cert = 0

ert
(
ar2 + br + c

)
= 0

ar2 + br + c = 0 (characteristics equation)

r =
−b±

√
b2 − 4ac

2a

Example 3.1.1

y′′ + 3y + 2y = 0

r2 + 3r − 2 = 0 (characteristics equation)

(r + 2)(r + 1) = 0

r1 = −2, r2 = −1

y(t) = c1e
−t + c2e

−2t

16
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Example 3.1.2

y′′ − 2y′ − 2y = 0

r2 − 2r − 2 = 0

(r − 1)2 = 3

r = 1±
√
3

y(t) = c1e
(1−
√
3)t + c2e

(1+
√
3)t

Example 3.1.3
y′′ + 8y′ − 9y = 0, y(1) = 1, y′(1) = 0

r2 + 8r + 9 = 0

r1 = −9, r2 = 1

y(t) = c1e
t + c2e

−9t

y(t) = k1e
t−1 + k2e

−9(t−1)

where c1 = k1e
−1, c2 = k2e

9. Using the first IC, we have

1 = k1e
t−1 + k2e

−9(t−1)

k1 + k2 = 1

For the 2nd IC,

0 = k1e
t−1 − 9k2e

−9(t−1)

0 = k1 − 9k2

k1 =
9

10
, k2 =

1

10

y(t) =
9

10
et−1 +

1

10
e−9(t−1)

So, overall we have different cases for r:

Case 1 (Distinct Root) Shown in Fig 3

t

y

r1 r2

Figure 3: b2 − 4ac > 0

17
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t

y

Figure 4: b2 − 4ac < 0

Case 2 (Complex Root) Shown in Fig 4

Case 3 (Repeated Root) Shown in Fig 5

t

y

r

Figure 5: b2 − 4ac = 0

3.2 Fundamental Solution of Linear Homogeneous Equation

Differential Operator:
L[φ] = φ′′ + pφ+ qφ

or

L = D2 + pD + q, D: derivative operator

y = φ(t), L[y] = y′′ + p(t)y′ + q(t)y = 0 (*)

Example 3.2.1
t(t− 4)y′′ + 3ty′ + 4y = 2, y(3) = 0

Find the largest interval where we are guaranteed unique solution.
Standard form:

y′′ +
3

t− 4
y′ +

4

t(t− 4)
y =

2

t(t− 4)

18
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Dom(p(t)) = {t|t 6= 4}

Dom(q(t)) = {t|t 6= 0, 4}

Dom(g(t)) = {t|t 6= 0, 4}

→ 0 < t < 4

t0 3 4

Figure 6: Interval of solution

Consider:
IC: y(t0) = y0, y′(t0) = y′0

c1y1(t0) + c2y2(t0) = y0

c1y
′
1(t0) + c2y

′
2(t0) = y′0

=⇒ c1 =
y0y
′
2(t0)− y′0y2(t0)

y1(t0)y′2(t0)− y′1(t0)y2(t0)

c1 =

∣∣∣∣∣y0 y2(t0)

y′0 y′2(t0)

∣∣∣∣∣∣∣∣∣∣y1(t0) y2(t0)

y′1(t0) y′2(t0)

∣∣∣∣∣

c2 =

∣∣∣∣∣y0 y1(t0)

y′0 y′1(t0)

∣∣∣∣∣∣∣∣∣∣y1(t0) y2(t0)

y′1(t0) y′2(t0)

∣∣∣∣∣
→Wronskian determinant:

W =

∣∣∣∣∣y1(t0) y2(t0)

y′1(t0) y′2(t0)

∣∣∣∣∣
or

W =W (y1, y2)(t0)

which leads to the following theorem
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THEOREM

3.1
Suppose that y1 and y2 are two solutions of Eq.(*),

L[y] = y′′ + p(t)y′ + q(t)y = 0,

and that the Wronskian
W = y1y

′
2 − y′1y2

is not the zero at the point t0 where the initial condition

y(t0) = y0, y′(t0) = y′0

are assigned. Then there is a choice of the constants c1, c2 for which y =

c1y1(t) + c2y2(t) satisfies the differential equation (*) and the initial condition
above.

THEOREM

3.2
Abel’s Theorem

If y1 and y2 are solutions of the differential equation

L[y] = y′′ + p(t)y′ + q(t)y = 0

where p and q are continuous on an open interval I, then the WronskianW (y1, y2)(t)

is given by

W (y1, y2)(t) = c exp

[
−
∫
p(t)dt

]
where c is a certain constant that depends on y1 and y2 but not on t. Further,
W (y1, y2)(t) either is zero for all t in I (if c = 0 ) or else is never zero in I (if c 6= 0 )

Proof.

y′′1 + p(t)y′1 + q(t)y1 = 0 (5)

y′′2 + p(t)y′2 + q(t)y = 0 (6)

Multiply Eq.(5) by −y2 and Eq.(6) by y1 and add them, we obtain:(
y1y
′′
2 − y′′1y2

)
+ p(t)

(
y1y
′
2 − y′1y2

)
= 0 (7)

LetW (t) = y1y
′
2 − y′1y2. Then,

W ′(t) = [y′1y
′
2 + y1y

′′
2 ]− [y′1y

′
2 + y′′1y2]

= y1y
′′
2 − y′′1y2
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Then, Eq.(7) becomes:

W ′ + p(t)W = 0

W ′

W
= −p(t)

lnW = −
∫
p(t)dt

W = ce−
∫
p(t)dt �

3.3 Complex Roots of the Characteristics Equation

Consider:
ay′′ + by′ + cy = 0

The characteristics equation is
ar2 + br + c = 0

If b2 − 4ac < 0, then

r1 = λ+ iµ

r2 = λ− iµ

So,

y1(t) = e(λ+iµ)t

y2(t) = e(λ−iµ)t

Euler’s Formula:

et =
∞∑
n=0

tn

n!
, −∞ < t <∞

eit =
∞∑
n=0

(it)n

n!

eit =

∞∑
n=0

(−1)nt2n

(2n)!
+ i

∞∑
n=1

(−1)n−1t2n−1

(2n− 1)!

eit = cos t+ i sin t

eiµt = cos(µt) + i sin(µt)

e(λ+iµ)t = eλt (cos(µt) + i sin(µt))

Real-valued solution:

y1(t) + y2(t) = eλt (cos(µt) + i sin(µt)) + eλt (cos(µt)− i sin(µt))

= 2eλt cos(µt)
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which is real. Also,
y1(t)− y2(t) = 2ieλt sin(µt)

is real and 2i is actually just a number and can be thought as an acceptable real solution. Overall, we have:

y(t) = c1e
λt cos(µt) + c2e

λt sin(µt) (*)

Example 3.3.1
3u′′ − u′ + 2u = 0, IC: u(0) = 2, u′(0) = 0

Characteristics Equation:

3r2 − r + 2 = 0

r =
1

6
±
√
23

6
i

λ =
1

6
, µ =

√
23

6
u(t) = c1e

t
6 cos

√
23

6
t+ c2e

t
6 sin

√
23

6
t

Using ICs, we obtain:

u(t) = 2e
t
6 cos

√
23

6
t− 2√

23
e
t
6 sin

√
23

6
t

As t→∞, u(t)→ ±∞

3.4 Repeated Roots

ay′′ + by′ + cy = 0

For repeated roots:

b2 − 4ac = 0

r1 = r2 =
−b
2a

y1(t) = e
−bt
2a

But how do we find the 2nd solution? → Method of d’Alembert (1717-1783). Our ansatz would be:

y(t) = v(t)y1(t)

Example 3.4.1
9y′′ + 6y′ + y = 0

9r2 + 6r + 1 = 0

r1 = r2 = −
1

3
→ ce

−t
3
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y(t) = v(t)y1(t)

= v(t)e
−t
3

y′(t) = v′e
−t
3 − 1

3
ve
−t
3

y′′(t) = v′′e
−t
3 − 2

3
v′e

−t
3 +

1

9
ve
−t
3

Substitute into the original DE, we have

9v′′e
−t
3 = 0

v′′ = 0

v′ = c

v = c1t+ c2

=⇒ y2(t) = te
−t
3

Generalize:
Assume: b2 − 4ac = 0. So,

y1(t) = e
−bt
2a

y = v(t)e
−bt
2a

y′ = v′e
−bt
2a − b

2a
ve
−bt
2a

y′′ = v′′e
−bt
2a − b

2a
v′e

−bt
2a +

b2

4a2
ve
−bt
2a

Substitute into ay′′ + by′ + cy = 0 {
a[y′′] + b[y′] + cv

}
e
−bt
2a = 0

av′′ + (−b+ b)v′ +

(
b2

4a
− b2

2a
+ c

)
v = 0

v′′ = 0

v′ = c1

v = c1t+ c2

Thus,
y(t) = c1te

−bt
2a + c2e

−bt
2a

and the Wronskian is

W =

∣∣∣∣∣ e
−bt
2a te

−bt
2a

−b
2a e

−bt
2a

(
1− −bt2a

)
e
−bt
2a

∣∣∣∣∣
= e

−bt
a 6= 0 ∀t
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Example 3.4.2
16y′′ + 24y′ + 9y = 0

Char. Equation:

16r2 + 24r + 9 = 0

r = −3

4

y(t) = c1te
−3t
4 + c2e

−3t
4

Note:
If

r1 = r2 = 0

Then,

y′′ = 0

y = c1t+ c2

3.5 Method of Underdetermined Coefficients

L[y] = y′′ + p(t)y′ + q(t)y = g(t) (*)

L[y] = y′′ + p(t)y′ + q(t)y = 0 (**)

THEOREM

3.3
If Y1 and Y2 are 2 solutions of (*), then their difference Y1 - Y2 is a solution of
corresponding homogeneous equation

L[Y1]− L[Y2] = 0

If y1 and y2 are a fundamental set of solution, then

Y1(t)− Y2(t) = c1y1(t) + c2y2(t)

where c1 and c2 are certain constants.

THEOREM

3.4
The general solution of the nonhomogeneous equation (*) can be written in the form

y = φ(t) = c1y1(t) + c2y2(t) + Y (t)

where y1 and y2 are a fundamental set of solutions of the corresponding homogeneous
equation (**) , c1 and c2 are arbitrary constants, and Y is some specific solution of
the nonhomogeneous equation (*)
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* g(t) is a polynomial, exponential, sin, cos, etc (not a ratio of some functions or tan)

Example 3.5.1
y′′ − 5y′ + 6y = −5e−t (7)

1. Solve the corresponding homogeneous equation

r2 − 5r + 6 = 0

r1 = 3, r2 = 2

yc(t) = c1e
3t + c2e

2t : complementary solution

2. Find a particular solution
Ansatz: Y (t) = Ae−t

Y ′(t) = −Ae−t

Y ′′(t) = Ae−t

Substitute into Eq.(7)

Ae−t + 5Ae−t + 6Ae−t = −5e−t

A = − 5

12

Y (t) = − 5

12
e−t

3. Put everything together
y(t) = c1e

3t + c2e
2t − 5

12
e−t

Example 3.5.2
y′′ + 2y′ + 5y = 3 sin(2t)

Char. Equation:

r2 + 2r + 5 = 0

r = −1± 2i

yc(t) = c1e
−t cos 2t+ c2e

−t sin 2t

Ansatz : Y (t) = A sin 2t+B cos 2t (note: Y (t) = A sin 2t doesn’t work)

Y ′(t) = 2A cos 2t− 2B sin 2t

Y ′′(t) = −4A sin 2t− 4B cos 2t

Substitute into the original equation, we get:

−4A sin 2t− 4B cos 2t+ 4A cos 2t− 4B sin 2t+ 5A sin 2t+ 5B cos 2t = 3 sin 2t

(A− 4B) sin 2t+ (4A+B) cos 2t = 3 sin 2t
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So, A− 4B = 3 =⇒ A = 3
17 , B = −12

17

4A+B = 0

y(t) = c1e
−t cos 2t+ c2e

−t sin 2t+
3

17
sin 2t− 12

17
cos 2t

Example 3.5.3
2y′′ + 3y′ + y = t2 + 3 sin t (*)

Solve char. equation

2r2 + 3r + 1 = 0

r1 = −
1

2
, r2 = −1

yc(t) = c1e
−t
2 + c2e

−t

Y (t) = Y1(t) + Y2(t)

g(t) = g1(t) + g2(t)

where g1(t) = t2 and g2(t) = 3 sin t. For g1(t) :

Yp1(t) = At2 +Bt+ C

Y ′p1(t) = 2At+B

Y ′′p1(t) = 2A

Sub into (*) but ignore 3 sin t

2(2A) + 3(2At+B) +At2 +Bt+ C = t2
A = 1

B = −6

C = 14

Yp1(t) = t2 − 6t+ 14

For p2(t) :

Yp2(t) = D sin t+ E cos t

Y ′p2(t) = D cos t− E sin t

Y ′′p2(t) = −D sin t− E cos t

Sub into (*) and ignore t2 D = − 3
10

E = − 9
10

y(t) = yc + Yp1 + Yp2

= c1e
− t

2 + c2e
−t + t2 − 6t+ 14− 3

10
sin t− 9

10
cos t
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Note: If Y (t) ansatz duplicates a term in yc then modify the ansatz by multiplying it by t. If doesn’t
work, then keep going with t2, t3, . . .

3.6 Variation of Parameters

y′′ + 4y = 3 csc 2t, 0 < t <
π

2

can’t use undetermined coefficients. For yc :

y′′ + 4y = 0

r2 + 4 = 0

r = ±2i

yc = c1 cos 2t+ c2 sin 2t

Basic idea here is to replace c1 and c2 with u1(t) and u2(t).

y = u1(t) cos 2t+ u2 sin 2t

2 unknowns but only 1 equation =⇒ underdetermined system. So Lagrange imposed another restriction

y′(t) = −2u1 sin 2t+ u′1 cos 2t+ 2u2 cos 2t+ u′2 sin 2t

We have
u′1(t) cos 2t+ u′2(t) sin 2t = 0 (**)

So,

y′ = −2u1 sin 2t+ 2u2 cos 2t

y′′ = −4u1 cos 2t− 2u′1 sin 2t− 4u2 sin 2t+ 2u′2 cos 2t

Sub into the original DE:
−2u′1 sin 2t+ 2u′2 cos 2t = 3 csc 2t (***)

Lagrange viewed (**) and (***) as a pair of linear algebraic equations for 2 unknowns

u′2 =
3

2
cot 2t

u′1 = −
3

2

u1(t) = −
3

2
t+ c1

u2(t) =
3

4
ln (sin 2t) + c2

y(t) =

(
−3

2
t+ c1

)
cos 2t+

(
3

4
ln(sin 2t) + c2

)
sin 2t

= c1 cos 2t+ c2 sin 2t−
3

2
t cos 2t+

3

4
sin 2t ln(sin 2t)
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y′′ + p(t)y′ + q(t)y = g(t)

where p, q, r are continuous. Assume:

yc(t) = c1y1(t) + c2y2(t)

Then, our ansatz is y(t) = u1(t)y1(t) + u2(t)y2(t) and

y′ = u′1y1 + u1y
′
1 + u′2y2 + u2y

′
2

u′1y1 + u′2y2 = 0

y′ = u1y
′
1 + u2y

′
2

y′′ = u′1y
′
1 + u1y

′′
1 + u′2y

′
2 + u2y

′′
2

After lots of algebra,

u1[y
′′
1 + py′1 + qy1] + u2[y

′′
2 + py′2 + qy2] + u′1y

′
1 + u′2y

′
2 = g(t)

Since the first two term equal to 0, u′1y′1 + u′2y
′
2 = g(t). We can deduce:

u′1(t) =
−y2(t)g(t)
W (y1, y2)(t)

u′2(t) =
y1(t)g(t)

W (y1, y2)(t)
=⇒

u1 = −
∫ y2g

W dt+ C1

u2 =
∫ y1g

W dt+ C2

So,
Y (t) = −y1

∫
y2g

W
dt+ y2

∫
y1g

W
dt

Example 3.6.1

y′′ − 2y′ + y =
et

1 + t2

Homogeneous Equation:

y′′ − 2y′ + y = 0

r2 − 2r + 1 = 0

r1 = r2 = 1

yc = c1te
t + c2e

t

where y1 = tet and y2 = et and g(t) = et

1+t2
. The Wronskian determinant can be computed:

W =

∣∣∣∣∣ tet et

et + tet et

∣∣∣∣∣ = −e2t

Y (t) = −tet
∫ et

(
et

1+t2

)
−e2t

dt+ et
∫ tet

(
et

1+t2

)
−e2t

dt

= tet arctan t− et
(
1

2
ln
(
1 + t2

))
Our final solution is

y(t) = c1te
t + c2e

t + tet arctan t− 1

2
et ln(1 + t2)
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4 Series Solutions of Second Order Linear Equations

4.1 Review of Power Series

Power series:
∞∑
n=0

an(x− x0)n

converges at a point x if

lim
m→∞

m∑
n=0

an(x− x0)n

exists for that x. It trivially converge for x = x0.

→
∞∑
n=0

an(x− x0)n

converges absolutely at point x if
∞∑
n=0

|an(x− x0)n| converges

∃ρ ∈ R (radius of convergence) such that
∑∞

n=0 an(x− x0)n converges absolutely for |x− x0| < ρ and
diverge for |x− x0| > ρ

ρ = 0 only at x0 if converges for all x and ρ =∞. If ρ > 0 then the interval |x− x0| < ρ is called an
interval of convergence.

Div DivConv

x0 − ρ x0 x0 + ρ

? ?

Figure 7: Interval of Convergence

Example 4.1.1
∞∑
n=1

(−1)nn2(x+ 2)n

3n

Ratio Test:
lim
n→∞

∣∣∣∣(n+ 1)2(x+ 2)n+13n

3n+1n2(x+ 2)n

∣∣∣∣ = 1

3
|x+ 2|

for the series to be absolutely convergent,

1

3
|x+ 2| < 1

−3 < x+ 2 < 3

−5 < x < 1

So, ρ = 3. For x = −5 :
∞∑
n=0

(−1)nn2(−3)n

3n
=

∞∑
n=1

n2
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which is divergent. For x = 1 :

∞∑
n=1

(−1)nn23n

3n
=
∞∑
n=1

(−1)nn2

which is also divergent. Therefore, interval of convergence is (−5, 1).

We can observe that
∞∑
n=0

an(x− x0)n

converges to f(x) and likewise
∞∑
n=0

bn(x− x0)n

converges to g(x) for |x− x0| < ρ. Then, g(x)± f(x) =
∑∞

n=0(an ± bn)(x− x0)n. Then,

f(x)g(x) =

∞∑
n=0

cn(x− x0)n

where cn =
∑n

k=1 akbn−k (Cauchy product)

f(x) =
∞∑
n=0

an(x− x0)n

f ′(x) =

∞∑
n=1

nan(x− x0)n−1

f ′′(x) =
∞∑
n=2

n(n− 1)an(x− x0)n−2

Taylor Series for function f about x− x0 is

f(x) =
∞∑
n=0

f (n)(x0)

n!
(x− x0)n, ρ > 0

f is analytic at x = x0

Example 4.1.2
f(x) = x

7
3

is not analytic at x0 = 0 since f ′′(0) d.n.e

f(x) = |x− 1|

is not analytic at x0 = 1 since f ′(x) d.n.e

Reindexing:
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Example 4.1.3

x

∞∑
n=2

n(n− 1)anx
n−2 +

∞∑
n=0

anx
n =

∞∑
n=2

n(n− 1)anx
n−1 +

∞∑
n=0

anx
n

=
∞∑
n=1

n(n+ 1)an+1x
n +

∞∑
n=0

anx
n

=
∞∑
n=0

n(n+ 1)an+1x
n +

∞∑
n=0

anxn

=

∞∑
n=0

[n(n+ 1)an+1 + an]x
n

4.2 Series Solutions Near An Ordinary Point (Part I)

P (x)y′′ +Q(x)y′ +R(x)y = 0

P, Q, R are polynomial with no common factors.

x0 where P (x0) 6= 0 is called an ordinary point
x0 where P (x0) = 0 is called a singular point

Consider:
y′′ + p(x)y′ + q(x)y = 0

Ansatz: y(x) =
∑∞

n=0 an(x− x0)n and assume series converges |x− x0| < ρ where ρ > 0. Let’s look
at:

y′′ + xy′ + 2y = 0, x0 = 0 (*)

P (x) = 1 ∀x, so x0 is ordinary point. Therefore, there exists ρ > 0 such that |x− 0| < ρ converges.
Assume:

y =
∞∑
n=0

anxn

y′ =
∞∑
n=1

nanx
n−1

y′′ =

∞∑
n=2

n(n− 1)anx
n−2
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Substitute into (*):
∞∑
n=2

n(n− 1)anx
n−2 + x

∞∑
n=1

nanx
n−1 + 2

∞∑
n=0

anxn = 0

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n +

∞∑
n=0

nanx
n +

∞∑
n=0

2anxn = 0

∞∑
n=0

[(n+ 2)(n+ 1)an+2 + (n+ 2)an]x
n = 0

(n+ 2)(n+ 1)an+2 + (n+ 2)an = 0

So, we obtain the following recurrence relation:

an+2 =
−an
n+ 1

, n = 0, 1, 2, . . .

Let a0 = 1, a1 = 0 to generate one solution y1(x). So a1 = a3 = a5 = . . . = 0.

For n = 0 : a2 = −a0 = −1
For n = 2 : a4 = (−1)(−1)

1·3 = 1
3

For n = 4 : a6 = −a4
4+1 = −1

1·3·5 = − 1
15

For n = 6 : a8 = − 96
6+1 = 1

1·3·5·7 = 1
105

Thus,
a2n =

(−1)n

1 · 3 · 5 . . . (2n− 1)

and

y1(x) = 1− x2

1
+

x4

1 · 3
− x6

1 · 3 · 5
+

x8

1 · 3 · 5 · 7
+ . . .

y1(x) = 1 +

∞∑
n=1

(−1)nx2n

(2n− 1)!!

For the second solution, let a0 = 0 and a1 = 1→ a0 = a2 = a4 = . . . = 0.

n = 1 : a3 = −a1
2 = −1

1·2

n = 3 : a5 = −a3
4 = 1

1·2·4

n = 5 : a7 = −a5
6 = −1

1·2·4·6

Thus,
a2n+1 =

(−1)n

2 · 4 · 6 . . . (2n)
and

y2(x) = x− x3

1 · 2
+

x5

1 · 2 · 4
− x7

1 · 2 · 4 · 6
+ . . .

= x+
∞∑
n=1

(−1)nx2n+1

(2n)!!

Example 4.2.1
xy′′ + y′ + xy = 0, x0 = 1 (*)
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x0 = 1 is an ordinary point. Assume:

y =
∞∑
n=0

an(x− 1)n

y′ =

∞∑
n=1

nan(x− 1)n−1

y′′ =
∞∑
n=2

n(n− 1)an(x− 1)n−2

Sub into (*)

x

∞∑
n=2

n(n− 1)an(x− 1)n−2 +

∞∑
n=1

nan(x− 1)n−1 + x

∞∑
n=0

an(x− 1)n = 0

Trick: x = 1 + (x− 1)

∞∑
n=2

n(n− 1)an(x− 1)n−2 +
∞∑
n=2

n(n− 1)an(x− 1)n−1 +
∞∑
n=1

nan(x− 1)n−1

+
∞∑
n=0

an(x− 1)n +
∞∑
n=0

an(x− 1)n+1 = 0

∞∑
n=0

(n+ 2)(n+ 1)an+2(x− 1)n +
∞∑
n=1

(n+ 1)nan+1(x− 1)n +
∞∑
n=0

(n+ 1)an+1(x− 1)n

+

∞∑
n=0

an(x− 1)n +

∞∑
n=1

an−1(x− 1)n = 0

We’ll handle n = 0 separately

∞∑
n=1

[(n+ 2)(n+ 1)an+2 + (n+ 1)nan+1 + (n+ 1)an+1 + an + an−1] (x− 1)n = 0

So,

an+2 =
−
[
(n+ 1)2an+1 + an + an−1

]
(n+ 1)(n+ 2)

for n ∈ Z+

depends on 3 prior terms (very difficult to solve). For n = 0,

(n+ 2)(n+ 1)an+2 + (n+ 1)an+1 + an = 0

2a2 + a1 + a0 = 0

a2 =
−(a1 + a0)

2

Take a0 = 1 and a1 = 0 to generate y1(x)

a2 = −1
2

a3 =
−(22a2+a1+a0)

2·3 = 1
6

a4 =
−(32a3+a2+a1

3·4 = − 1
12

a5 =
−(42a4+a3+a2)

4·5 = 1
12
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y1(x) = a0(x− 1)0 + a1(x− 1) + a2(x− 1)2 + a3(x− 1)3

= 1− 1

2
(x− 1)2 +

1

6
(x− 1)3 − 1

12
(x− 1)4 + . . .

To generate y2(x), let a0 = 0 and a1 = 1. Then,

a2 = −1
2

a3 =
1
6

a4 = −1
6

y2(x) = (x− 1)− 1

2
(x− 1)2 +

1

6
(x− 1)3 − 1

6
(x− 1)4 + . . .

4.3 Series Solutions Near An Ordinary Point (Part II)

P (x)y′′ +Q(x)y′ +R(x)y = 0 (*)

P, Q, R are polynomials. Assume there exists a solution y = φ(x)

y = φ(x) =
∞∑
n=0

an(x− x0)n (**)

converges when |x− x0| < ρ, ρ > 0. Take (**) differentiate m times and set x = x0 we get:

m!am = φ(m)(x0)

Recall that Taylor Series Expansion:

am =
f (m)(x0)

(m!)

and use this to compute an in (**). If y = φ(x) is a solution to (**) satisfies ICs:

y(x0) = y0

y′(x0) = y′0

Then a0 = y0 and a1 = y′0 since

a0 =
φ(x0)

0!
= y0

a1 =
φ′(x0)

1!
= y′0

Since φ is a solution to (*),

P (x)φ′′(x) +Q(x)φ′(x) +R(x)φ(x) = 0

φ′′(x) +
Q(x)

P (x)
φ′(x) +

R(x)

P (x)
φ(x) = 0

φ′′(x) + p(x)φ′(x) + q(x)φ(x) = 0

φ′′(x) = −p(x)φ′(x)− q(x)φ(x)
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Set x = x0

φ′′(x0) = −p(x0)φ′(x0) + q(x0)φ(x0)

Since φ′′(x0) = 2!an

a2 =
−p(x0)a1 − q(x0)a0

2!

a3 =
−2!p(x0)a2 − [p′(x0) + q(x0)]a1 − q′1(x0)φ(x0)

3!

=⇒ There exists many derivative of p and q evaluated at x0

p(x) =
∞∑
n=0

pn(x− x0)n

q(x) =

∞∑
n=0

qn(x− x0)n

If p and q are analytic at x0 then x0 is an ordinary point, otherwise it’s a singular point.

THEOREM

4.1
If x0 is an ordinary point of (*), then the general solution of (*) is

y =

∞∑
n=0

an(x− x0)n = a0y1(x) + a1y2(x)

where a0 and a1 are arbitrary and y1 and y2 are linearly independent.

Further: ρ for each of the series solution, y1 and y2 is at least as large as the minimum of ρ of the
series of p and q.
From Complex Analysis

ρp = dist {x0, the nearest zero of p}

Example 4.3.1
(1 + x3)y′′ + 4xy′ + y = 0, x0 = 0, x0 = 2

Here: P (x) = 1 + x3

P (x) = 0→ x = −1, 1
2 ,

1
2 ±

i
√
3

2

For x0 = 0 :

dist

{
0,

1

2
± i
√
3

2

}
= 1

dist {0,−1} = 1

=⇒ ρ = 1

For x0 = 2 :

dist {2,−1} = 3

dist

{
2,

1

2
± i
√
3

2

}
=
√
3
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=⇒ ρ =
√
3

Example 4.3.2
(cosx)y′′ + xy′ − 2y = 0, x0 = 0

x0 is an ordinary point. Know:

cosx =
∞∑
n=0

(−1)nx2n

(2n)!
∀x

Assume:

y =

∞∑
n=0

anx
n

y′ =
∞∑
n=1

nanx
n−1

y′′ =

∞∑
n=2

n(n− 1)anx
n−2

Substitute into (*)

∞∑
n=0

(−1)nx2n

(2n)!
·
∞∑
n=0

(n+ 2)(n+ 1)an+2x
n +

∞∑
n=1

anx
nn−

∞∑
n=0

2anx
n = 0

Let’s look at the product of the two series (first term)

x0:
(2a2 − 2a0)x

0

x1 :

n = 0 for the 1st factor and n = 1 for the second one

(6a3 − a1)x1

x2 :

n = 0 for the 1st factor and n = 2 for the second one

or n = 1 for the first factor and n = 0 for the second one

(12a4 − a2)x2

x3 :

n = 0, n = 3→ 20a5

n = 1, n = 1→ −3a3

(20a5 − 2a3)x
3
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x4 :

n = 0, n = 4→ 30a6

n = 2, n = 0→ 1

12
a2

n = 1, n = 2→ −4a4

(30a6 +
1

12
a2 − 4a4)x

4

x5 :

n = 2, n = 1→ 1

4
a3

n = 1, n = 3→ −7a5

n = 0, n = 5→ 42a7

(42a7 +
1

4
a3 − 7a5)x

5

Since the RHS is 0, all the coefficient must be 0.

2a2 − 2a0 = 0 =⇒ a2 = a0

6a3 − a1 = 0 =⇒ a3 =
1

6
a1

12a4 − a2 = 0 =⇒ a4 =
a0
12

20a5 − 2a3 = 0 =⇒ a5 = −
1

60
a1

30a6 +
1

12
a2 − 4a4 = 0 =⇒ a6 =

a0
120

42a7 +
1

4
a3 − 7a5 = 0 =⇒ a7 =

1

560
a1

For y1(x), let a0 = 1, a1 = 0

a2 = 1, a3 = a5 = a7 = . . . = 0

a4 =
1

12
, a6 =

1

120

y1(x) = 1 + x2 +
1

12
x4 +

1

120
x6 + . . .

For y2(x), let a0 = 0, a1 = 1

a2 = a4 = a6 = . . . = 0

a3 =
1

6
, a5 =

1

60
, a7 =

1

560

y2(x) = x+
1

6
x3 +

1

60
x5 +

1

560
x7 + . . .
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5 Laplace Transform

5.1 Definition of Laplace Transform

Operational Calculus:

F (s) =

∫ β

α
K(s, t)f(t)dt

Transform: f → F

K(s, t) = Kernel of the transformation

→ Laplace Transform:

L{f(t)} = F (s) =

∫ ∞
0

e−stf(t)dt

K(s, t) = e−st, s ∈ C

f(t), t ≥ 0

There is a diagram here that I still need to learn how to draw in tikz

THEOREM

5.1
Suppose:

1. f is piecewise continuous on 0 ≤ t ≤ A for all A ∈ R
2. |f(t)| ≤ keat where t ≥M ; a ∈ R;K,M ∈ R+ (exponential order)

Then, the Laplace Transform L{f(t) = F (s)} defined by
∫∞
0 e−stf(t)dt exists for

s ≥ a.

L is a linear operator (L−1 is a linear operator as well). Suppose that f1 and f2 whose Laplace
transform exist L{c1f1(t) + c2f2(t)} =

∫∞
0 e−st [c1f1(t) + c2f2(t)] dt which is equal to:

= c1

∫ ∞
0

e−stf1(t)dt+ c2

∫ ∞
−

e−stf2(t)dt

= c1L{f1(t)}+ c2L{f2(t)}

5.2 IVP

L{f ′} related to L{f} in a simple way.

THEOREM

5.2
Suppose f is a continuous and f ′ is piecewise continuous on 0 ≤ t ≤ A. Also
suppose ∃k, a,M ∈ R such that

|f(t)| ≤ Keat for t ≥M

Then, L{f ′(t)} exists for s > a and

L{f ′(t)} = sL{f(t)− f(0)}

L{f ′′(t)} = s2L{f(t)} − sf(0)− f ′(0)
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Corollary Suppose f, f ′, f ′′ . . . f (n−1) are continuous and f (n) is piecewise continuous on 0 ≤ t ≤ A.
Suppose ∃k, a,M ∈ R such that

|f(t)| ≤ keat,
∣∣f ′(t)∣∣ ≤ keat, . . .∣∣∣f (n−1)(t)∣∣∣ ≤ keat, t ≥M

Then, L{f (n)(t)} exists for s > a and we can generalize

L{f (n)(t)} = snL{f(t)} − sn−1f(0)− sn−2f ′(0) . . .− sf (n−2)(0)− f (n−1)(0)

L−1{y(s)} = φ(t) = y(t)

Note: we can use partial fraction to find L−1. If we know complex analysis:

y(t) =
1

2πi

∫ y−i∞

y+i∞
estY (s)ds, t > 0, y ∈ R

There exists a 1-1 correspondence between f and F .

Example 5.2.1
Find L−1{F (s)}, F (s) = 2

s2 + 3s− 4

F (s) =
2

(s+ 4)(s− 1)
=

A

s+ 4
+

B

s− 1

=
−2

5

s+ 4
+

2
5

s− 1

=
2

5

(
1

s− 1

)
− 2

5

(
1

s+ 4

)
Thus,

f(t) =
2

5
et − 2

5
e−4t

Example 5.2.2

Find L−1{F (s)}, F (s) = 82 − 4s+ 12

s(s2 + 4)

F (s) =
3

5
+

5s− 4

s2 + 4
=

3

s
+

5s

s2 + 4
− 4

s2 + 4

= 3

(
1

s

)
+ 5

(
s

s2 + 22

)
− 2

(
2

s2 + 22

)
f(t) = 3 + 5 cos 2t− 2 sin 2t

Example 5.2.3
y(4) − y = 0, y(0) = 1, y′(0) = 0, y′′(0) = 1, y′′′(0) = 0

Let L{y} = Y (s)

L{y(4)} = s4Y (s)− s3y(0)− s2y′(0)− sy′′(0)− y′′′(0)

= s4Y (s)− s3 − s− Y (s)
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Know: L{0} = 0

s4Y (s)− s3 − s− Y (s) = 0

(s4 − 1)Y (s) = s3 + s

Y (s) =
s3 + s

s4 − 1
=

s

s2 − 1

=⇒ y(t) = cosh t

Example 5.2.4
y′′ + 2y′ + y = 4e−t, y(0) = 2, y′(0) = −1

(s2 + 2s+ 1)Y (s)− 2s+ 1− 4 =
4

s+ 1

Y (s) =
4

(s2 + 1)3
+

2(s+ 1)

(s+ 1)2
+

1

(s+ 1)2

Y (s) = 2

(
2!

(s+ 1)3

)
+ 2

(
1

s+ 1

)
+

1

(s+ 1)2

y(t) = 2t2e−t + 2e−t + te−t

Example 5.2.5
Find L−1{ s− 1

s2 + 1
2s+ 3

}

F (s) =
1

2

s− 1

s2 + 1
2s+ 3

=
1

2

s− 1(
s+ 1

4

)2
+
(√

47
4

)2
=

1

2

[
s+ 1

4(
s+ 1

4

)2
+ 47

16

−
5
4(

s+ 1
4

)2
+ 47

16

]

f(t) =
1

2
e−

t
4 cos

(√
47t

4

)
− 5

2
√
47
e−

t
4 sin

(√
47t

4

)

5.3 Step Function

Unit step function ≡ Uc , c ∈ {R+ ∪ 0}

uc(t) =

0, t < c, c ≥ 0

1, t ≥ c
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t

y

1

Figure 8

t

y

1

c

Figure 9: y(t) = 1− uc(t)

Given function f , defined for t ≥ 0

y = g(t) =

0, t < c

f(t− c), t ≥ c

represents a translation of f a distance c in the positive direction.

t

y

f

Figure 10

Example 5.3.1
f(t) = u1(t) + 2u3(t)− 6u4(t)

f(t) =



0 + 2 · 0− 6 · 0 = 0, 0 ≤ t ≤ 1

1 + 2 · 0− 6 · 0 = 1, 1 ≤ t ≤ 3

1 + 2 · 1− 6 · 0 = 3, 3 ≤ t ≤ 4

1 + 2 · 1− 6 · 1 = −3, 4 ≤ t
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t

y

f

c

Figure 11

L{uc(t)} =
∫ ∞
0

e−stuc(t)dt

=

∫ c

0
e−st · 0dt+

∫ ∞
c

e−st · 1dt

=

∫ ∞
c

e−stdt

= lim
M→∞

∫ M

c
e−stdt

= lim
M→∞

−e−st

s

∣∣∣∣∣
M

c

= lim
M→∞

−e−sM + e−cs

s

= e
−cs
s

Look at the relationship between L{f(t)} and L{uc(t)f(t− c)}.

THEOREM

5.3
If F (s) = L{f(t)} exists for s > a ≥ 0 and if c ∈ R+ then

L{uc(t)f(t− c)} = e−csL{f(t)} = e−csF (s), s > a

Conversely, if f(t) = L−1{F (s)}, then

uc(t)f(t− c) = L−1{e−csF (s)}

THEOREM

5.4
If F (s) = L{f(t)} exists for s > a ≥ 0 and if c ∈ R, then

L{ectf(t)} = F (s− c), s > a+ c

Conversely, if f(t) = L−1{F (s)}, then

ectf(t) = L−1{F (s− c)}

Example 5.3.2

F (s) =
(s− 2)e−s

s2 − 4s+ 3
, Find L−1
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G(s) =
s− 2

s2 − 4s+ 3

=
s− 2

(s− 2)2 − 1

L−1[G(s)] = e2t cosh t

L−1[F (s)] = e2(t−1) cosh(t− 1)u1(t)

Example 5.3.3

F (s) =
e−3s

s2 + 9
, Find L−1

G(s) =
1

s2 + 9

=
1

s2 + 32

→L−1{G(s)} = sin 3t
3

L−1{F (t)} = sin 3(t− 3)

3
u3(t)

=
sin(3t− 9)

3
u3(t)

Rectangular Window Function:

∏
a,b

(t) =


0, t < a

1, a < t < b

0, t > b

t

y

1

a b

Figure 12: = ua(t− a)− ub(t− b)

Example 5.3.4

F (s) = e−s
3s2 − s+ 2

(s− 1)(s2 + 1)

Consider:

3s2 − s+ 2

(s− 1)(s2 + 1)
=

A

s− 1
+
Bx+ C

s2 + 1

=
2

s− 1
+

s

s2 + 1
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L−1{ 2e
−s

s− 1
}(t) + L−1{ e

−ss

s2 + 1
}(t)

=

[
2L−1{ 1

s− 1
}(t− 1) + L−1{ s

s2 + 1
}(t− 1)

]
u1(t)

=
[
2et−1 + cos(t− 1)

]
u1(t)

5.4 Discontinuous Forcing Functions

Example 5.4.1
y′′ + y = u3π(t), y(0) = 1, y′(0) = 0

L{y′′}+ L{y} = L{u3π(t)}(
s2Y (s)− sY (0)− y′(0) + Y (s)

)
=
e−3πs

s

(s2 + 1)Y (s) = s+
e−3πs

s

Y (s) =
s

s2 + 1
+

e−3πs

s(s2 + 1)

Y (s) =
s

s2 + 1
+ e−3πs

(
1

s
− s

s2 + 1

)
y(t) = cos t+ u3π(t) [1− cos(t− 3π)]

For 0 ≤ t < 3π :
y(t) = cos t

For t ≥ 3π :

y(t) = cos t+ 1− cos(t− 3π)

= 2 cos t+ 1

Let’s look deeper into the above example. For 0 ≤ t < 3π

y(t) = cos t

y′(t) = − sin t

y′′(t) = − cos t

For t ≥ 3π :

y(t) = 2 cos t+ 1

y′(t) = −2 sin t

y′′(t) = −2 cos t
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lim
t→3π−

cos t = cos 3π = −1

lim
t→3π+

(cos 2t+ 1) = 2(−1) + 1 = −1

For 1st derivative:

lim
t→3π−

− sin t = 0

lim
t→3π+

(−2 sin t) = 0

For 2nd derivative:

lim
t→3π−

− cos t = 1

lim
t→3π+

−2 cos t = 2

which shows the limit does not exist. So y′′ is discontinuous at t = 3π

Example 5.4.2
y′′ + 4y = sin t+ uπ(t) sin(t− π), y(0) = 0, y′(0) = 0

L{y′′}+ 4L{y} = L{sin t}+ L{uπ(t) sin(t− π)}

s2Y (s)− sy(0)− y′(0) + 4Y (s) =
1

s2 + 1
+ e−πs

1

s2 + 1

Y (s) =
(
1 + e−πs

) 1

(s2 + 1)(s2 + 4)

Y (s) =
(
1 + e−πs

)( 1
3

s2 + 1
−

1
3

s2 + 4

)

Y (s) =
(
1 + e−πs

) [1
3

(
1

s2 + 1

)
− 1

6

(
2

s2 + 22

)]
Let H(s) = 1

3

(
1

s2+1

)
− 1

6

(
2

s2+22

)
.

L−1{H(s)} = 1

3
sin t− 1

6
sin 2t

L{e−πsH(s)} = uπ(t)

[
1

3
sin(t− π)− 1

6
sin (2(t− π))

]
= −uπ(t)

[
1

3
sin t+

1

6
sin 2t

]

Putting Together

y(t) =
1

3
sin t− 1

6
sin 2t− uπ(t)

(
1

3
sin t+

1

6
sin 2t

)

6 PDE - Heat Equation - Fourier Series
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6.1 Intro to PDE - Heat Conduction in a Rod

Review: ut = ∂u
∂t , uxx = ∂2u

∂x2

u = f(t, x, y)

ut = uxx + uyy

which is known as the 2 dimensional heat equation. Order of PDE:

ut = uxx : 2nd order

ut = uuxxx + sinx : 3rdorder

Number of Variables:

ut = uxx : 2 vars

ux = urr +
1

r
ur +

1

r2
utt : 3 vars

2nd order linear PDE in 2 variables:

Auxx +Buxy + Cuyy +Dux + Euy + Fu = G

where A,B,. . . , G are constants or function of x and y.

Example 6.1.1 Nonlinear PDE:

uuxx + ut = 0

xux + yuy + u2 = 0

There are 3 basic types of linear equation:

1. Parabolic Equation: B2 − 4AC = 0 (heat equation, diffusion)
2. Hyperbolic Equation: B2 − 4AC > 0 (vibrating system, wave equation)
3. Elliptic Equation: B2 − 4AC < 0 (steady-state)

Heat Equation: 
PDE

BC

IC

Extend superposition to∞ (infinite linear combination)
From fig. 13, let’s assume heat constant in any given cross-section and no heat lost to the side.

α2uxx = ut, 0 < x < L, t > 0 (*)

α2 =
κ

ρ · s
where κ is thermal conductivity and ρ is the density of the object and s is the specific heat
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x

u(x, t) x = Lx = 0

Figure 13: A rod in Heat Conduction Problem

IC:
u(x, 0) = f(x), 0 ≤ x ≤ L

Assume T1 at x = 0, T2 at x = L and T1 = T2 = 0. The boundary condition (BC) is:

u(0, t) = 0, u(L, t) = 0, t > 0

Now, our ansatz is (based on separation of variables):

u(x, t) = X(x)T (t)

u(x, t) = XT

uxx = X ′′T , ut = XT ′

Sub into (*), we obtain:

α2X ′′T = XT ′

X ′′

X
=

1

α2

T ′

T
= −σ, σ > 0

Thus, we can observe that we can split a PDE into a system of ODEs:

X ′′ + σX = 0

T ′ + α2σT = 0

We also need to solve BC based from our ansatz

u(0, t) = X(0)T (t) = 0

X(0) = 0, T (t) = 0 ∀t

We must have X(0) = 0 by same arg X(L) = 0 (2 pts BVP). First, let σ = λ2 to avoid radical sign

X ′′ + σX = 0

X ′′ + λ2X = 0

X(x) = k1 cos(λx) + k2 sin(λx)

The 1st BC: X(0) = 0

X(0) = k1 cos 0 + k2 sin 0 → k1 = 0

X(x) = k2 sin(λx)
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The 2nd BC: X(L) = 0

k2 sin(λL) = 0

sin(λL) = 0

λ =
nπ

L
, n ∈ Z+

λ2 =
n2π2

L2

The value of σ that yield non-trivial solution are called eigenvalues of BVP (boundary value problem)

X(x) = sin
(nπx
L

)
are called eigenfunction. Substitute σ:

T ′ + α2σT = 0 yield:

T ′ +

(
n2π2α2

L2

)
T = 0

T (t) = e−
n2π2α2t

L2

un(x, t) = X(x)T (t)

un(x, t) = e−
n2π2α2t

L2 sin
(nπx
L

)
, n ∈ Z+

which is the fundamental solution of heat conduction. Extending this using principle of superposition to
∞ , we obtain:

u(x, t) =
∞∑
n=1

cnun(x, t)

Unless:
f(x) = b1 sin

(πx
L

)
+ b2 sin

(
2πx

L

)
+ . . .+ bm sin

(mπx
L

)
Example 6.1.2

PDE: α2uxx = ut, 0 < x < L, t > 0

IC: u(x, 0) = f(x), 0 ≤ x ≤ L

BC: u(0, t) = 0, u(L, t) = 0

Ansatz: u(x, t) = X(x)T (t) , t > 0. Then fundamental solution of heat conduction is

un(x, t) = e
−n2π2α2t

L2 sin
(nπx
L

)
, n ∈ Z+

We also have:

u(x, t) =
m∑
n=1

cnun(x, t)

where Fourier series would determined cn , the sine series, unless:

f(x) = b1 sin
(nπx
L

)
+ b2 sin

(
2πx

L

)
+ . . .+ bm sin

(mπx
L

)
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Example 6.1.3

PDE: 100uxx = ut, 0 < x < 1, t > 0

IC: u(x, 0) = sin(2πx)− sin(5πx), 0 ≤ x ≤ 1

BC: u(0, t) = 0, u(1, t) = 0, t > 0

Soln: un(x, t) = e−100n
2π2t sin(nπx)

IC: u(x, 0) = sin(2πx)− sin(5πx), 0 ≤ x ≤ 1

when t = 0.
un(x, 0) = sin(nπx) → need n = 2, n = 5

u(x, 0) = c2u2(x, t) + c5u5(x, t)

= c2 sin 2πx+ c5 sin 5πx

=⇒ c2 = 1, c5 = −1

So, our final solution is:

u(x, t) = e−400π
2t sin 2πx− e−2500π2t sin 5πx

6.2 Fourier Series

f(x) =
a0
2

+
∞∑
m=1

(
am cos

mπx

L
+ bm sin

mπx

L

)
(*)

Solve for am and bm cab be very complicated.

f(x) = cosπx+
1

2
cos 13πx+

1

4
cos 169πx+

1

8
cos 2197πx+ . . .

which is convergent and continuous ∀x but it’s never differentiable→ pathological function.
Periodicity of sin/cos function : f is periodic with T > 0

f(x+ T ) = f(x), ∀x ∈ dom(f)

sin
mπx

L
, cos

mπx

L
, T =

2L

m

Orthogonality of sin and cos function inner product (u, v) defined α ≤ x ≤ β

(u, v) =

∫ β

α
u(x)v(x)dx = 0

if u and v are orthogonal

∫ L
−L cos

mπx
L cos nπxL dx =

0, if m 6= n

L, if m = n
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∫ L
−L cos

nπx
L sin nπx

L dx = 0 ∀m,n

∫ L
−L sin

mπx
L sin nπx

L dx =

0, if m 6= n

L, if m = n

1. Multiply (*) by cos nπxL when n fixed (n > 0 )
2. Integrate with respect to x from -L to L.

∫ L

−L
f(x) cos

nπx

L
dx =

a0
2

∫ L

−L
cos

nπx

L
dx+

∞∑
m=1

am

∫ L

−L
cos

mπx

L
cos

nπx

L
dx+

∞∑
m=1

bm

∫ L

−L
sin

mπx

L
cos

nπx

L
dx

Euler - Fourier Formulas:

an =
1

L

∫ L

−L
f(x) cos

nπx

L
dx, n = 0, 1, 2, 3 . . .

bn =
1

L

∫ L

−L
f(x) sin

nπx

L
dx, n ∈ Z+

Example 6.2.1

f(x) =

x+ L, − L ≤ x ≤ 0

L, 0 < x ≤ L

Fourier Series:

f(x) =
3L

4
+
∞∑
n=1

2L cos
(
(2n−1)πx

L

)
(2n− 1)2π2

+
(−1)n−1 sin

(
nπx
L

)
nπ



6.3 The Fourier Convergence Theorem

THEOREM

6.1
Suppose that f and f ′ are piecewise continuous on the interval −L ≤ x < L.
Furthermore, suppose that f is defined outside the interval −L ≤ x < L so that it is
periodic with period 2L. Then f has a Fourier series

f(x) =
a0
2

+
∞∑
m=1

(
am cos

mπx

L
+ bm sin

mπx

L

)
whose coefficients are given as

am =
1

L

∫ L

−L
f(x) cos

mπx

L
dx, m = 0, 1, 2, . . .

bm =
1

L

∫ L

−L
f(x) sin

mπx

L
dx, m = 1, 2, . . .

The Fourier series converges to f(x) at all points where f is continuous and to
[f(x+) + f(x−)]/2 at all points where f is discontinuous.
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Note:
f(x+) = lim

x→x+0
f(x), f(x−) = lim

x→x−0
f(x)

As n increases, partial sum sn → f(x) as n → ∞ happens converges smoothly where f(x), but at
points of discontinuity, partial converges smoothly to the new value which tends to overshoot. (Gibbs
Phenomenon)

lim
n→∞

Sn =
f(x−0 ) + f(x+0 )

2

There exists a way to remove Gibbs phenomenon called Lanczos sigma factor

a0
2

+
m∑
n=0

sin
( nπ
2m

) [
an cos

nπx

2
+ bn sin

nπx

L

]

6.4 Even and Odd Functions

Recall:

Even: f(−x) = f(x)

Odd: f(−x) = −f(x)

Elementary Properties:

1. Sum(difference) and product (quotient) of 2 even functions are even.
2. Sum (difference) of 2 odd functions is odd. But the product (quotient) of 2 odd functions are even.
3. Sum (difference) of an odd function and an even function is neither. The product (quotient) of an

odd and even function is odd.
4. If f(x) is even, then

∫ L
−L f(x)dx = 2

∫ L
0 f(x)dx

5. If f(x) is odd, then
∫ L
−L f(x)dx = 0

Cosine Series:

f :

even

periodic (2L)

→ f(x) · cos
(
nπx
L

)
is even and f(x) · sin

(
nπx
L

)
is odd. Fourier coefficient of f:

am =
2

L

∫ L

0
f(x) cos

nπx

L
dx, n = 0, 1, 2, 3, . . .

bn = 0

f(x) =
a0
2

+

∞∑
n=1

an cos
nπx

L

Sine Series:

f :

odd

periodic (2L)
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f(x) · cos
(
nπx
L

)
is odd, and f(x) · sin

(
nπx
L

)
is even.

an = 0, n = 0, 1, 2 . . .

bn =
2

L

∫ L

0
f(x) sin

(nπx
L

)
dx, n ∈ Z+

f(x) =
∞∑
n=1

bn sin
nπx

L

Even and Odd Extensions:

For an even periodic extension, define g of period 2L such that

g(x) =

f(x), 0 ≤ x ≤ L

f(−x), − L < x < 0

→ Fourier cosine series
For an odd periodic extension, define h of periodic 2L such that

h(x) =


f(x), 0 < x < L

0, x = 0, L

−f(−x), − L < x < 0

→ Fourier sine series

Example 6.4.1
f(x) = L− x, 0 < x < L

Find the Fourier Sine series of period 2L. For a sine series:

an = 0, n = 0, 1, 2, . . .

bn =
2

L

∫ L

0
f(x) sin

nπx

L
dx

=
2

L

∫ L

0
(L− x) sin nπx

L
dx

=
2

L

[∫ L

0
L sin

nπx

L
dx−

∫ L

0
x sin

nπx

L
dx

]
...

=
−2L
nπ

(cosnπ − cos 0) +
2

nπ
(L cosnπ − 0) +

2

L

(
L

nπ

)2

sin
nπx

L

∣∣∣∣∣
L

0

=
2L

nπ

f(x) =
2L

π

∞∑
n=1

sin
(
nπx
L

)
n
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6.5 Example of Solving a Complete Heat Conduction in a rod Problem:

Let’s look at

PDE: uxx = ut, 0 < x < 1, t > 0

BC: u(0, t) = 0, u(1, t) = 0, t > 0

IC: u(x, 0) = 1, 0 < x < 1

Here α = 1 , L = 1

un(x, t) = e−n
2π2t sin(nπx)

Since IC: u(x, 0) = 1, 0 < x < 1

un(x, 0) = sin(nπx) = 1

u(x, 0) =
∞∑
n=1

cn sin(nπx) = 1

cn is coefficient of the Fourier sine series of f(x) = 1

cn = 2

∫ 1

0
f(x) sin(nπx)dx

= 2

∫ 1

0
sin(nπx)dx, n ∈ Z+

= − 2

nπ
(cosnπ − 1)

If n is even, cn = 0

If n is odd, cn = 4
nπ

Generally, c2n−1 = 4
(−1+2n)π, c2n=0 . Or

4

π

[
sinπx+

1

3
sin 3πx+

1

5
sin 5πx

]
= 1

u(x, t) =
4

π

[
e−π

2t sinπx+
1

3
e−(3π)

2t sin 3πx+
1

5
e−(5π)

2t sin 5πx+ . . .

]
u(x, t) =

∞∑
n=1

4

(2n− 1)π
e−(2π−1)

2π2t sin [(2n− 1)πx]

Now, we can solve for the PDE + BC + IC,

u(x, 0) =
∞∑
n=1

cn sin
(nπx
L

)
= f(x)

cn =
2

L

∫ L

0
f(x) sin

(nπx
L

dx
)

7 Boundary Value Problem

Regular Sturm - Louisville Problem:
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∃ an∞ numbers of R eigenvalues that can be arranged in increasing order λ1 < λ2 < . . . < λn

such that λn →∞ as n→∞
For each λ, there exists a unique eigenfunction
Eigenfunction corresponding to different eigenvalues are linearly independent.
The set of eigenfunctions correspond to the set of eigenvalues is orthogonal with respect to the
weight p(x) on the interval I , For us, p(x) = 1

8 System of First Order Linear Equations

n1

n2

Figure 14: A mechanical Spring with Multiple Nodes

t2u′′ + tu′ + (t2 − 0.25)u = 0

u′′ = −1

t
u′ −

(
1− 1

4t2

)
u

Set x1 = u and x2 = u′→ x′1 = x2

x′2 = u′′ = −1

t
u′ −

(
1− 1

4t2

)
u

x′1 = x2

x′2 = −
(
1− 1

4t2

)
x1 − 1

tx2

x′1 = −2x1 + x2, x′2 = x1 − 2x2

(x′1 + 2x1)
′ = x1 − 2(x′1 + 2x1)

x′′1 + 2x′1 = x1 − 2x′1 − 4x1

x′′1 + 4x′1 + 3x1 = 0

which can be solved from the characteristics equation.
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8.1 Homogeneous Linear Systems (Constant Coefficient)

~x
′
= ~A~x, A = n× n (*)

For n = 1: system reduces to dx
dt = ax, solution is x = ceat in section 3 that we saw. Notice that λ = 0

is the only equilibrium solution if a 6= 0

If a < 0 - asymptotically stable→ sink
a > 0 - asymptotically unstable→ source

For n = 2, this is important if it has visualization in the x1 and x2 plane called a phase plane. Evaluate ~A~x
at a large number of points and plot the resulting vector yields a direction field of tangent vector to the
solution of the system. To (*), ansatz solns will involve ert. Also, (*) are vector so we multiply ert by a
constant vector.

~x = ξert (**)

Sub into (*), we have:

rξert = ~Aξert

( ~A− r~Iξ = ~0 (***)

The problem of determining the eigenvalues and eigenvectors of ~A provided r - av eigenvalue and ξ = an

associated eigenvector.

Example 8.1.1

~x
′
=

(
1 1

4 −2

)
~x

Ansatz: ~x = ξert From (***),
( ~A− r~I)ξ = ~0(

1− r 1

4 −2− r

)(
ξ1

ξ2

)
=

(
0

0

)

det ( ~A− r~I) = 0, ∣∣∣∣∣1− r 1

4 −2− r

∣∣∣∣∣ = (1− r)(−2− r)− 4

So, r2 + r − 6 = 0→ r1 = 2 , r2 = −3 are eigenvalues

r1 = 2 (
−ξ1 + ξ2

4ξ1 − 4ξ2

)
=

(
0

0

)
ξ1 = ξ2

ξ(1) = (1, 1)T
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r2 = 3 (
4ξ1 + ξ2

4ξ1 + ξ2

)
=

(
0

0

)
ξ(2) = (1,−4)T

Therefore,

~x = c1

(
1

1

)
e2t + c2

(
1

−4

)
e−3t

Breaking apart the general soln:

~x (1) =

(
1

1

)
e2t, ~x (2) =

(
1

−4

)
e−3t

The Wronskian is:

W [~x (1), ~x (2)](t) =

∣∣∣∣∣e2t e−3t

e2t −4e−3t

∣∣∣∣∣
= −5e−t 6= 0 ∀t

So the solution forms a fundamental set of solution

For ~x (1)(t) : the scalar form
x1 = c1e

2t, x2 = c1e
2t

eliminate c1 , t→ x1 = x2. Solution lives on the straight line x2 = x1 in quadrant I for c1 > 0 and
QII for c1 < 0. In either case, solution depart from the origin as t increases.
For ~x (2)(t): scalar form

x1 = c2e
−3t, x2 = −4c2e−3t

x1 = −
1

4
x2 → soln in QIV for c2 > 0

and QII for c2 < 0

In both cases, it moves towards the origin. For large t, the term c1~x
(1)(t) is dominant and term

c2~x
(2)(t) become negligible.

Figure 15: The direction field
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Example 8.1.2

~x′ =

(
1 −2
3 −4

)
~x

Ansatz: ~x = ~ξert

( ~A− r~I)~ξ = ~0(
1− r −2
3 −4− r

)(
ξ1

ξ2

)
=

(
0

0

)
det
(
~A− r~I

)
= 0

−(1− r)(4 + r) + 6 = 0

r1 = −1, r2 = −2

If r1 = −1 : (
2ξ1 − 2ξ2

3ξ1 − 3ξ2

)
=

(
0

0

)
ξ1 = ξ2

ξ(1) = (1, 1)T

If r2 = −2 : (
3ξ1 − 2ξ2

3ξ1 − 2ξ2

)
=

(
0

0

)
3ξ1 = 2ξ2

~ξ (2) = (2, 3)T

General solution:

~x = c1

(
1

1

)
e−t + c2

(
2

3

)
e−2t

which has original stable node

Example 8.1.3

~x
′
=


1 1 2

1 2 1

2 1 1

 ~x

Ansatz: ~x = ~ξert 
1− r 1 2

1 2− r 1

2 1 1− r



ξ1

ξ2

ξ3

 =
(
0 0 0

)

r3 − 4r2 − r + 4 = 0

r1 = 4, r2 = 1, r3 = −1
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r1 = 4 
−3ξ1 + ξ2 + 2ξ3

ξ1 − 2ξ2 + ξ3

2ξ1 + ξ2 − 3ξ3

 =


0

0

0


~ξ (1) = (1, 1, 1)T

r2 = 1 
ξ2 + 2ξ3

ξ1 + ξ2 + ξ3

2ξ1 + ξ2

 =


0

0

0


~ξ (2) = (1,−2, 1)T

r3 = −1 
2ξ1 + ξ2 + 2ξ3

ξ1 + 3ξ2 + ξ3

2ξ1 + ξ2 + 2ξ3

 =


0

0

0


~ξ (3) = (1, 0,−1)T

General Soln:

~x = c1


1

1

1

 e4t + c2


1

−2
1

 et + c3


1

0

−1

 e−t

8.2 Complex Eigenvalues

~x
′
=

(
−1 −4
1 −1

)
~x

(
−1− r −4

1 −1− r

)(
ξ1

ξ2

)
=

(
0

0

)
r2 + 2r + 5 = 0

r = −1± 2i

r1 = −1 + 2i (
−2iξ1 − 4ξ2

ξ1 − 2iξ2

)
=

(
0

0

)
~ξ (1) = (2i, 1)T
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r2 = −1− 2i (
2iξ1 − 4ξ2

ξ1 + 2iξ2

)
=

(
0

0

)
~ξ (2) = (−2i, 1)T

~x = c1

(
2i

1

)
e(−1+2i)t + c2

(
−2i
1

)
e(−1−2i)t

Breaking apart the solution, we get:

~x (1)(t) =

(
2i

1

)
e−t(cos 2t+ i sin 2t)

=

(
−2e−t sin 2t
e−t cos 2t

)
+ i

(
2e−t cos 2t

e−t sin 2t

)

So,

~x = c1e
−t

(
−2 sin 2t
cos 2t

)
+ c2e

−t

(
2 cos 2t

sin 2t

)
Let’s then calculate the Wronskian

~u(t) = e−t

(
−2 sin 2t
cos 2t

)

~v(t) = e−t

(
2 cos 2t

sin 2t

)

W (~u,~v)(t) =

∣∣∣∣∣−2e−t sin 2t 2e−t cos 2t

e−t cos 2t e−t sin 2t

∣∣∣∣∣ = −2e−2t 6= 0

which forms the fundamental set of solutions (spiral point stable)

Example 8.2.1

~x
′
=

(
0 −5
1 α

)
~x

a) Determine the eigenvalue in term of α(
−r −5
1 α− r

)(
ξ1

ξ2

)
=

(
0

0

)
r2 − αr + 5 = 0

r1 =
α

2
+

1

2

√
α2 − 20, r2 =

α

2
− 1

2

√
α2 − 20

b) Find the critical value of α where the qualitative nature of the phase portrait changes.

The roots are complex when: |α| <
√
20
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α ∈ (−
√
20, 0)→ negative real part

α ∈ (0,
√
20)→ positive real part

α = 0→ pure imaginary eigenvalues (center)
α2 > 20→ roots are R and distinct

Finally, α =
√
20

9 Nonlinear Systems

Predator - Prey System:
x(t) = prey, y(t) = predator

x′(t) = x(2− 3x)− 4xy (1)

y′(t) = −y + 3xy (2)

Note: xy represents the rate at which predator eats prey and term like 2−3x tells us about the reproductive
rate. If y(0) = 0 (y′(t) = 0 )

x′(t) = 2x− 3x2 = 0 =⇒ x = 0, x =
2

3

So (0, 0), (23 , 0) are equilibrium points. If y 6= 0 , then (2) becomes:

−y + 3xy = 0

−1 + 3x = 0 =⇒ x =
1

3

Sub x = 1
3 into (1)

x(2− 3x)− 4xy = 0

y =
1

4

(13 ,
1
4) is the 3

rd equilibrium point

10 Schrodinger’s Equation

We had a talk/lecture about Schrodinger’s Equation from Dr. Callas (he is a project manager at
NASA’s Mars Exploration Rover Project and also a math professor at PCC) in June, and we got to learn
about the derivation of the equation and different aspects of it from a more scientific viewpoint like
physics/chemistry.
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