Math 55H - Honors Ordinary Differential Equation

Duc Vu
Taught by Pete Riley
Pasadena City College
Update: July 11, 2020

This is the last math class in the math sequence at PCC. It is taken during Spring 2020 (Covid-19 period) and thus is online. We use the book Elementary Differential Equations and Boundary Value Problems by Boyce and Diprima ($11^{\text {th }}$ edition). Even though this is an ODE class, we also got to touch a bit upon PDE and Fourier Series (heat conduction problem). Please let me know if you find any mistakes/typos in this notes and I will try to fix them as soon as I can.

Contents

1 Introduction 4
1.1 Classification of ODE 4
1.1.1 Order 4
1.1.2 Linear \& Non-linear 4
1.1.3 Autonomous \& Non-autonomous 5
2 First Order Differential Equations 5
2.1 Linear Equations: Method of Integrating Factors 5
2.2 Separable Equations 7
2.3 Exact Equation 9
2.4 Homogeneous Equation 13
2.5 Bernoulli Equation 14
2.6 Autonomous ODEs / Population Dynamics 14
3 Second Order Linear Equations 15
3.1 Homogeneous Equations with Constant Coefficients 15
3.2 Fundamental Solution of Linear Homogeneous Equation 18
3.3 Complex Roots of the Characteristics Equation 21
3.4 Repeated Roots 22
3.5 Method of Underdetermined Coefficients 24
3.6 Variation of Parameters 27
4 Series Solutions of Second Order Linear Equations 29
4.1 Review of Power Series 29
4.2 Series Solutions Near An Ordinary Point (Part I) 31
4.3 Series Solutions Near An Ordinary Point (Part II) 34
5 Laplace Transform 38
5.1 Definition of Laplace Transform 38
5.2 IVP 38
5.3 Step Function 40
5.4 Discontinuous Forcing Functions 44
6 PDE - Heat Equation - Fourier Series 45
6.1 Intro to PDE - Heat Conduction in a Rod 46
6.2 Fourier Series 49
6.3 The Fourier Convergence Theorem 50
6.4 Even and Odd Functions 51
6.5 Example of Solving a Complete Heat Conduction in a rod Problem: 53
7 Boundary Value Problem 53
8 System of First Order Linear Equations 54
8.1 Homogeneous Linear Systems (Constant Coefficient) 55
8.2 Complex Eigenvalues 58

9 Nonlinear Systems 60

10 Schrodinger's Equation 60

1 Introduction

1.1 Classification of ODE

1.1.1 Order

Example 1.1.1

$$
y^{\prime \prime \prime}+2 e^{t} y^{\prime \prime}+y y^{\prime}=t^{4}
$$

Here we can observe that the highest order of the derivative is 3 which is also the order of the differential equation.

Generalizing it to $n^{\text {th }}$ order ODE, we obtain:

$$
\begin{gathered}
F\left[t, u(t), u^{\prime}(t), \ldots, u^{n}(t)\right]=0 \\
y^{n}=f\left(t, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{n-1}\right)
\end{gathered}
$$

\Rightarrow Simply put, to solve an ODE means to get rid of the derivative. The solution interval of validity is $\alpha<t<\beta$.
$\exists \phi \ni:$

$$
\phi^{\prime}, \phi^{\prime \prime}, \ldots, \phi^{n} \text { exist. }
$$

and satisfy

$$
\phi^{n}(t)=f\left[t, \phi(t), \phi^{\prime}(t), \ldots, \phi^{n-1}(t)\right] \quad \forall t \in(\alpha, \beta)
$$

1.1.2 Linear \& Non-linear

General linear of order n :

$$
a_{0}(t) y^{(n)}+a_{1}(t) y^{(n-1)}+\ldots+a_{n}(t) y=g(t)
$$

Note: Dependent variables have to be linear

Example 1.1.2

$$
\begin{gathered}
t^{2} y^{\prime \prime}-3 t y^{\prime}+4 y=0: \text { linear } \\
y^{\prime \prime \prime}+2 e^{t} y^{\prime \prime}+y y^{\prime}=t^{4}: \text { nonlinear } \\
y^{\prime \prime}-3 y^{\prime}+y^{2}=0: \text { nonlinear } \\
y^{(3)}+y y^{\prime}+\sin y=x^{2}: \text { nonlinear }
\end{gathered}
$$

A notable example of nonlinear differential equation in physics is the differential equation of the motion of a simple pendulum, which can be expressed as

$$
\frac{d^{2} \theta}{d t^{2}}+\frac{g}{L} \sin \theta=0
$$

For $\theta \approx 0$, the equation can be simplified to

$$
\frac{d^{2} \theta}{d t^{2}}+\frac{g}{L} \theta=0 \quad \text { (linearization) }
$$

1.1.3 Autonomous \& Non-autonomous

Example 1.1.3

$$
\begin{gathered}
y^{\prime}=-1-2 y: \text { autonomous } \\
y^{\prime}=t+2 y: \text { non-autonomous }
\end{gathered}
$$

From the example above, we can observe that autonomous equation does not depend on (doesn't contain t) while non-autonomous equation does (contain t)

2 First Order Differential Equations

2.1 Linear Equations: Method of Integrating Factors

Template for 1st order linear ODE:

$$
\frac{d y}{d t}+p(t) y=g(t)
$$

p and g are continuous on interval $\alpha<t<\beta$.
Example 2.1.1

$$
\begin{equation*}
y^{\prime}+2 y=t e^{-2 t}, \quad y(1)=0 \tag{1}
\end{equation*}
$$

What would happen if we multiply Eq.(1) by $e^{2 t}$?

$$
\begin{gather*}
e^{2 t} y^{\prime}+2 e^{2 t} y=t \\
\left(e^{2 t} y\right)^{\prime}=e^{2 t} y^{\prime}+2 e^{2 t} y \\
\int\left(e^{2 t} y\right)^{\prime} d t=\int t d t \\
y e^{2 t}=\frac{1}{2} t^{2}+C \tag{1.1}\\
y=\frac{1}{2} t^{2} e^{-2 t}+C e^{-2 t} \tag{1.2}
\end{gather*}
$$

Now, consider the IC:

$$
\begin{gathered}
0=\frac{1}{2} e^{-2}+C e^{-2} \\
c=-\frac{1}{2}
\end{gathered}
$$

So,

$$
\begin{equation*}
y=\frac{1}{2} t^{2} e^{-2 t}-\frac{1}{2} e^{-2 t} \tag{1.3}
\end{equation*}
$$

In the example above, 1.1 is referred to as implicit general solution, 1.2 is called explicit general solution and 1.3 is explicit particular solution

Generalize:

$$
\begin{equation*}
y^{\prime}+p(t) y=g(t) \tag{2}
\end{equation*}
$$

Integrating factor:

$$
\mu(t)=\exp \int p(t) d t
$$

Multiply Eq.(2) by $\mu(t)$ gives us:

$$
\mu(t) y^{\prime}+\mu(t) p(t) y=\mu(t) g(t)
$$

We want the LHS to be result from the product rule which is $\mu(t) p(t) y=\mu^{\prime}(t) y$. So,

$$
\begin{gathered}
\mu^{\prime}(t)=\mu(t) p(t) \\
\frac{\mu^{\prime}(t)}{\mu(t)}=p(t) \\
\frac{d}{d t} \ln \mu(t)=p(t) \\
\ln \mu(t)=\int p(t) d t+K \\
\mu(t)=\exp \int p(t) d t \quad(\text { choose } \mathrm{k}=0)
\end{gathered}
$$

Example 2.1.2

$$
y^{\prime}+3 y=t+e^{-2 t}
$$

Let's find the integrating factor

$$
\begin{aligned}
\mu(t) & =\exp \int p(t) d t \\
& =\exp \int 3 d t \\
& =e^{3 t}
\end{aligned}
$$

Multiply by the integrating factor by both sides gives:

$$
\begin{gathered}
y^{\prime} e^{3 t}+3 y e^{3 t}=t e^{3 t}+e^{t} \\
\int\left(y e^{3 t}\right)^{\prime} d t=\int\left(t e^{3 t}+e^{t}\right) d t \\
y e^{3 t}=\frac{1}{3} t e^{3 t}-\frac{1}{9} e^{3 t}+e^{t}+c \\
y=\frac{1}{3} t-\frac{1}{9}+e^{-2 t}+c e^{-3 t}
\end{gathered}
$$

As $t \rightarrow \infty, y \rightarrow \infty$ and y asymptotically approach the linear function $y=\frac{1}{3} t-\frac{1}{9}$

Example 2.1.3

$$
\begin{equation*}
y^{\prime}=t^{2} y+(t-1) \tag{*}
\end{equation*}
$$

Rearrange the equation so that it fits the template

$$
y^{\prime}-t^{2} y=t-1
$$

Here $p(t)=-t^{2}, g(t)=t-1$. Then,

$$
\begin{aligned}
\mu(t) & =\exp \int-t^{2} d t \\
& =e^{-\frac{1}{3} t^{3}}
\end{aligned}
$$

Multiply (*) by $\mu(t)$:

$$
\begin{gathered}
y^{\prime} e^{-\frac{1}{3} t^{3}}-t^{2} e^{-\frac{1}{3} t^{3}} y=e^{-\frac{1}{3} t^{3}}(t-1) \\
\int\left(y e^{-\frac{1}{3} t^{3}}\right)^{\prime} d t=\int e^{-\frac{1}{3} t^{3}}(t-1) d t \\
e^{-\frac{1}{3} t^{3}} y=\int e^{-\frac{1}{3} t^{3}}(t-1) d t
\end{gathered}
$$

The integral above has non-elementary solution and thus requires numerical approx.

2.2 Separable Equations

$$
\begin{gather*}
\frac{d y}{d x}=f(x, y) \tag{3}\\
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{4}
\end{gather*}
$$

We can derive Eq.(4) from Eq.(3) by setting $M(x, y)=-f(x, y)$ and $N(x, y)=1$. However, if M is a function of x only and N is a function of y only then Eq.(4) becomes

$$
M(x)+N(y) \frac{d y}{d x}=0
$$

called separable. The differential form can be expressed as

$$
M(x) d x+N(y) d y=0
$$

Example 2.2.1

$$
\begin{gathered}
y^{\prime}=\frac{x^{2}}{y\left(1+x^{3}\right)} \\
\frac{d y}{d x}=\frac{x^{2}}{y\left(1+x^{3}\right)} \\
\int y d y=\int \frac{x^{2}}{1+x^{3}} \\
\frac{1}{2} y^{2}=\frac{1}{3} \ln \left|1+x^{3}\right|+c_{1} \\
3 y^{2}-2 \ln \left|1+x^{3}\right|=c
\end{gathered}
$$

where $c=6 c_{1}$. We can see that the solution is implicit and general

Example 2.2.2

$$
y^{\prime}=\frac{2 x}{1+2 y}, \quad y(2)=0
$$

Solve the IVP in explicit form (non-linear)

$$
\begin{gathered}
\int(1+2 y) d y=\int 2 x d x \\
y+y^{2}=x^{2}+c
\end{gathered}
$$

Using the IC, we obtain:

$$
\begin{gathered}
0=2^{2}+c \\
c=-4 \\
\Rightarrow y+y^{2}=x^{2}-4
\end{gathered}
$$

Let's manipulate this equation so that it's in particular explicit form instead of particular implicit.

$$
\begin{gathered}
y^{2}+y+\frac{1}{4}=x^{2}-4+\frac{1}{4} \\
\left(y+\frac{1}{2}\right)^{2}=x^{2}-\frac{15}{4} \\
y+\frac{1}{2}= \pm \sqrt{x^{2}-\frac{15}{4}} \\
y=-\frac{1}{2} \pm \sqrt{x^{2}-\frac{15}{4}}
\end{gathered}
$$

The IC would dictate the \pm sign. Since $y(2)=0$, then

$$
y=-\frac{1}{2}+\sqrt{x^{2}-\frac{15}{4}}
$$

Let us also try to determine the interval in which the solution is defined. We need $x^{2}-\frac{15}{4} \geq 0 \Rightarrow x \geq \frac{\sqrt{15}}{2}$ or $x \leq \frac{-\sqrt{15}}{2}$. Since $y(2)=0$ is our IC, $y>\frac{\sqrt{15}}{2}$ is the interval we want to find

Example 2.2.3

$$
\begin{gathered}
y^{\prime}=2 x \sqrt{y-1} \\
\int \frac{d y}{\sqrt{y-1}}=\int 2 x d x \\
2 \sqrt{y-1}=x^{2}+c \\
\sqrt{y-1}=\frac{1}{2}\left(x^{2}+c\right) \\
y(x)=1+\frac{1}{4}\left(x^{2}+c\right)^{2}
\end{gathered}
$$

\rightarrow Singular solution: $y(x) \equiv 0$.
Note: There is no singular solution in linear $D E$

Figure 1: Linear case

THEOREM \quad If the function p and g are continuous on an open interval $I: \alpha<t<\beta$ (Fig 1) containing the point $t=t_{0}$, then there exists a unique function $y=\phi(t)$ that satisfies the differential equation

$$
y^{\prime}+p(t) y=g(t)
$$

for each t in I , and that also satisfies the initial condition

$$
y\left(t_{0}\right)=y_{0}
$$

where y_{0} is an arbitrary prescribed initial value

Figure 2: Nonlinear case

THEOREM
2.2

Let the functions f and $\frac{\partial f}{\partial y}$ be continuous in some rectangle $\alpha<t<\beta, \gamma<y<\delta$ containing the point $\left(t_{0}, y_{0}\right)$ (shown in Fig 2). Then, in some interval $t_{0}-h<t<$ $t_{0}+h$ contained in $\alpha<t<\beta$, there is a unique solution $y=\phi(t)$ of the initial value problem

$$
y^{\prime}=f(t, y), \quad y\left(t_{0}\right)=y_{0}
$$

2.3 Exact Equation

$$
\begin{equation*}
\left(2 x y^{2}+2 y\right)+\left(2 x^{2} y+2 x\right) y^{\prime}=0 \tag{*}
\end{equation*}
$$

We can observe:

$$
\begin{gathered}
\psi(x, y)=x^{2} y^{2}+2 x y \\
\frac{\partial \psi}{\partial x}=2 x y^{2}+2 y \\
\frac{\partial \psi}{\partial y}=2 x^{2} y+2 x
\end{gathered}
$$

So, we can rewrite $\left(^{*}\right)$ as

$$
\frac{\partial}{\partial x}\left(x^{2} y^{2}+2 x y\right)+\frac{\partial}{\partial y}\left(x^{2} y^{2}+2 x y\right) \frac{d y}{d x}=0
$$

But notice, if we assume $y=y(x)$ recalling the chain rule of the LHS is $\frac{d}{d x}\left(x^{2} y^{2}+2 x y\right)=0$. This means:

$$
x^{2} y^{2}+2 x y=C
$$

is also a solution to (*). More generally given:

$$
\begin{equation*}
M(x, y)+N(x, y) y^{\prime}=0 \tag{**}
\end{equation*}
$$

if we can identify a function $\psi=\psi(x, y)$ such that

$$
\begin{aligned}
\frac{\partial \psi}{\partial x}(x, y) & =M(x, y) \\
\frac{\partial \psi}{\partial y}(x, y) & =N(x, y)
\end{aligned}
$$

and such that $\psi(x, y)=c$ defines $y=\phi(x)$ implicitly as a differential of x . Then (**) becomes $\frac{d}{d x} \psi[x, \phi(x)]=0$. Solution of $\left({ }^{* *}\right)$ is given as:

$$
\psi(x, y)=c
$$

$\left({ }^{* *}\right)$ is exact $\rightarrow M_{y}(x, y)=N_{x}(x, y)$. Proof in one direction from Clairaut's Theorem:

$$
\begin{array}{ccc}
\frac{\partial \psi}{\partial x}=M(x, y) & \text { and } & \frac{\partial \psi}{\partial y}=N(x, y) \\
M_{y}(x, y)=\psi_{x y} & \text { and } & N_{x}(x, y)=\psi_{y x}
\end{array}
$$

Note: Clairaut's Theorem shows that $\psi_{x y}=\psi_{y x}$.
Example 2.3.1

$$
\frac{d y}{d x}=-\frac{a x-b y}{b x-c y}
$$

Rewrite it in differential form:

$$
\begin{gathered}
(b x-c y) d y=-(a x-b y) d x \\
(a x-b y) d x+(b x-c y) d y=0 \\
M_{y}=-b \quad, \quad N_{x}=b \\
M_{y} \neq N_{x}
\end{gathered}
$$

\Rightarrow Not exact!

Example 2.3.2

$$
\left(\frac{y}{x}+6 x\right) d x+(\ln x-2) d y=0, \quad x>0
$$

Here,

$$
M_{y}=N_{x}=\frac{1}{x}
$$

which is exact. So,

$$
\begin{gathered}
\exists \psi(x, y) \ni: \\
\psi_{x}=M(x, y)=\frac{y}{x}+6 x \\
\psi_{y}=N(x, y)=\ln x-2
\end{gathered}
$$

Let's integrate ψ_{x} with respect to $x x$ to find ψ

$$
\begin{aligned}
\psi & =\int \frac{y}{x}+6 x d x \\
\psi & =y \ln |x|+3 x^{2}+h(y)
\end{aligned}
$$

Then, in order to find $h(y)$, we need to use ψ_{y}

$$
\begin{gathered}
\psi_{y}=\ln x+h^{\prime}(y)=\ln x-2 \\
h^{\prime}(y)=-2 \\
h(y)=-2 y+c
\end{gathered}
$$

Therefore,

$$
\begin{gathered}
\psi(x, y)=y \ln x+3 x^{2}-2 y+c \quad(\text { choose } c=0) \\
y \ln x+3 x^{2}-2 y=c
\end{gathered}
$$

Example 2.3.3

$$
\begin{equation*}
\left(y e^{2 x y}+x\right) d x+b x e^{2 x y} d y=0 \tag{*}
\end{equation*}
$$

Find b so that (${ }^{*}$) is exact.
Here, $M(x, y)=y e^{2 x y}+x$, and $N(x, y)=b x e^{2 x y}$. We need $M_{y}=N_{x}$,

$$
\begin{aligned}
M_{y} & =2 y x e^{2 x y}+e^{2 x y} \\
N_{x} & =b e^{2 x y}+2 b x y e^{2 x y}
\end{aligned}
$$

$\Rightarrow b=1$
Solve it using the similar method, we obtain:

$$
e^{2 x y}+x^{2}=c
$$

Using Integrating Factor

$$
M(x, y) d x+N(x, y) d y=0
$$

maybe exact, but what if it's not exact? Then, we need to utilize integrating factor.

$$
\mu(x, y) M(x, y) d x+\mu(x, y) N(x, y) d y=0
$$

Maybe $\exists \mu(x)$ or $\mu(y)$:
Case 1 If $\frac{M_{y}-N_{x}}{N}$ is a function of x only, then $\mu=\mu(x)$ can be found by solving $\frac{d \mu}{d x}=\frac{M_{y}-N_{x}}{N} \cdot \mu$
Case 2 If $\frac{N_{x}-M_{y}}{M}$ is a function of y only then $\mu=\mu(y)$ and can be found by solving $\frac{d \mu}{d y}=\frac{N_{x}-M_{y}}{M} \cdot \mu$
Example 2.3.4

$$
y d x+\left(2 x y-e^{-2 y}\right) d y=0
$$

which is certainly not exact. Notice:

$$
\frac{N_{x}-M_{y}}{M}=\frac{2 y-1}{y}
$$

which is a function of y only. $\exists \mu=\mu(y) \ni$:

$$
\begin{aligned}
\frac{d \mu}{d y} & =\frac{2 y-1}{y} \cdot \mu \\
\int \frac{d \mu}{\mu} & =\int\left(2-\frac{1}{y}\right) d y \\
\ln |\mu| & =2 y-\ln |y| \quad(\text { choose } c=0) \\
|\mu| & =e^{2 y-\ln |y|} \\
\mu & =\frac{e^{2 y}}{y}
\end{aligned}
$$

Now, we can multiply the function by μ,

$$
\frac{e^{2 y}}{y} y d x+\left(\frac{e^{2 y}}{y} 2 x y-\frac{e^{2 y}}{y} e^{2 y}\right) d y=0
$$

which is exact!. Therefore, there must exist $\psi(x, y) \ni:$

$$
\begin{gathered}
\psi_{x}=M(x, y)=e^{2 y} \\
\psi_{y}=N(x, y)=2 x e^{2 y}-\frac{1}{y} \\
\int \psi_{x} d x=x e^{2 y}+h(y) \\
\psi_{y}=2 x e^{2 y}+h^{\prime}(y) \\
h(y)=-\ln |y| \\
\psi(x, y)=2 x e^{2 y}-\ln |y|=c
\end{gathered}
$$

2.4 Homogeneous Equation

$$
\frac{d y}{d x}=f(x, y)
$$

is homogeneous if f does not depend on x and y separately but depends only on the ration $\frac{y}{x}$ or $\frac{x}{y}$.

$$
\Longrightarrow \frac{d y}{d x}=F\left(\frac{y}{x}\right)
$$

Example 2.4.1

$$
\frac{d y}{d x}=\frac{x+3 y}{x-y}
$$

which is equal to

$$
\frac{d y}{d x}=\frac{1+\frac{3 y}{x}}{1-\frac{y}{x}}
$$

\Rightarrow homogeneous!
Example 2.4.2

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{y^{4}+2 x y^{3}-3 x^{2} y^{2}-2 x^{3} y}{2 x^{2} y^{2}-2 x^{3} y-2 x^{4}} \\
& =\frac{\frac{y^{4}}{x^{4}}+\frac{2 y^{3}}{x^{3}}-\frac{3 y^{2}}{x^{2}}-\frac{2 y}{x}}{\frac{2 y^{2}}{x^{2}}-\frac{2 y}{x}-2} \\
& =F\left(\frac{y}{x}\right)
\end{aligned}
$$

Example 2.4.3

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{x^{2}+3 y^{2}}{2 x y} \\
& =\frac{1+3\left(\frac{y}{x}\right)^{2}}{2\left(\frac{y}{x}\right)}
\end{aligned}
$$

Substituting $v=\frac{y}{x} \rightarrow \quad \frac{d y}{d x}=x \frac{d v}{d x}+v$

$$
\begin{gathered}
v+x \frac{d v}{d x}=\frac{1+3 v^{2}}{2 v} \\
x \frac{d v}{d x}=\frac{1+3 v^{2}-2 v^{2}}{2 v} \\
\int \frac{d x}{x}=\int \frac{2 v}{1+v^{2}} d v \\
\ln \left(1+v^{2}\right)=\ln |x|+c_{1} \\
\ln \left(\frac{1+v^{2}}{|x|}\right)=c_{1} \\
\ln \left(\frac{x^{2}+y^{2}}{\left|x^{3}\right|}\right)=c_{1} \\
\frac{x^{2}+y^{2}}{\left|x^{3}\right|}=c_{2} \quad \text { where } c_{2}=e^{c_{1}} \\
x^{2}+y^{2}=c_{2}|x|^{3} \\
x^{2}+y^{2}-c x^{3}=0
\end{gathered}
$$

2.5 Bernoulli Equation

$$
\begin{equation*}
\frac{d y}{d x}+p(x) y=q(x) y^{n} \tag{*}
\end{equation*}
$$

Assume $p(x), q(x)$ are continuous on $(a, b), n \in \mathbb{R}$
If $n=0$ or $n=1$, then reduce to linear.
Dividing (*) by y^{1-n} :

$$
y^{-n} \frac{d y}{d x}+p(x) y^{1-n}=q(x)
$$

Now, let $v=y^{1-n}$. This implies that $\frac{d v}{d x}=(1-n) y^{-n} \frac{d y}{d x} .\left(^{*}\right)$ then becomes:

$$
\frac{1}{1-n} \frac{d v}{d x}+p(x) v=q(x)
$$

Example 2.5.1

$$
\frac{d r}{d \theta}=\frac{r^{2}+2 r \theta}{\theta^{2}}
$$

Let's manipulate this equation to fit the template

$$
\frac{d r}{d \theta}-\frac{2}{\theta} r=\frac{1}{\theta^{2}} r^{2}
$$

Dividing it by r^{2} :

$$
r^{-2} \frac{d r}{d \theta} \frac{-2}{\theta} r^{-1}=\frac{1}{\theta^{2}}
$$

Substituting $v=r^{1-2}=r^{-1} \rightarrow \frac{d v}{d \theta}=-r^{-2} \frac{d r}{d \theta}$

$$
\begin{gathered}
-\frac{d v}{d \theta}-\frac{2}{\theta} v=\frac{1}{\theta^{2}} \\
\frac{d v}{d \theta}+\frac{2}{\theta} v=-\frac{1}{\theta^{2}}
\end{gathered}
$$

Using integrating factor:

$$
r(\theta)=\frac{\theta^{2}}{c-\theta}
$$

Singular solution: $r(\theta) \equiv 0$

2.6 Autonomous ODEs / Population Dynamics

Recall:

$$
\frac{d y}{d t}=f(y)
$$

is autonomous.

Exponential Growth

Rate of change is proportional to the current population.

$$
\begin{gathered}
\frac{d y}{d t}=r y \\
r=\text { rate of growth } \quad(r>0) \\
r=\text { rate of decay } \quad(r<0)
\end{gathered}
$$

Logistic growth

The growth rate is a function that depends on the current population

$$
\frac{d y}{d t}=h(y) y
$$

We want: $h(y) \approx r>0$, where y is small.
$\rightarrow h(y)$ decreases as y grow larger.
$\rightarrow h(y)<0$ when sufficiently large.
Simplest model:

$$
\begin{gathered}
h(y)=r-a y \\
a, r \in \mathbb{R}^{+} \\
\frac{d y}{d t}=(r-a y) y
\end{gathered}
$$

Note: Ansatz is an educated guess

Logistic Equation:

$\mathrm{r}=$ intrinsic growth rate $\rightarrow \frac{d y}{d t}=r\left(1-\frac{y}{k} y\right)$. This yields 2 constant solutions. $\left(k=\frac{r}{a}\right)$

$$
y=\phi()=0 \quad \text { and } \quad y=\phi()=k
$$

\Longrightarrow Equilibrium solution
Case 1

$$
y=k: \operatorname{sink}(\text { asymptotically stable })
$$

Case 2

$$
y=0: \text { source (unstable solution) }
$$

3 Second Order Linear Equations

3.1 Homogeneous Equations with Constant Coefficients

General form:

$$
\begin{equation*}
\frac{d^{2} y}{d t^{2}}=f\left(t, y, \frac{d y}{d t}\right) \tag{*}
\end{equation*}
$$

\rightarrow linear if f is linear in y and y^{\prime}. We have:

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

Or

$$
P(t) y^{\prime \prime}+Q(t) y^{\prime}+R(t) y=G(t)
$$

If $G(t) \equiv 0$ (forcing term), then equation is homogeneous.
IVP:

$$
\mathrm{IC}: y\left(t_{0}\right)=y_{0} \text { and } y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}
$$

Then,

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad a, b, c \in \mathbb{R}, \quad a \neq 0
$$

Consider:

$$
\begin{gathered}
y^{\prime \prime}-y=0 \\
y^{\prime \prime}=y \\
\Rightarrow \quad y_{1}=e^{t} \quad, \quad y_{2}=e^{-t}
\end{gathered}
$$

Thus,

$$
y=c_{1} e^{t}+c_{2} e^{-t}
$$

which is called the principle of superposition.

$$
\begin{gather*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \\
y(t)=e^{r t} \tag{**}\\
y^{\prime}(t)=r e^{r t} \\
y^{\prime \prime}(t)=r^{2} e^{r t}
\end{gather*}
$$

Substitute into (**):

$$
\begin{aligned}
& a r^{2} e^{r t}+b r e^{r t}+c e^{r t}=0 \\
& e^{r t}\left(a r^{2}+b r+c\right)=0 \\
& a r^{2}+b r+c=0 \quad \text { (characteristics equation) } \\
& r=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

Example 3.1.1

$$
\begin{gathered}
y^{\prime \prime}+3 y+2 y=0 \\
r^{2}+3 r-2=0 \quad \text { (characteristics equation) } \\
(r+2)(r+1)=0 \\
r_{1}=-2, \quad r_{2}=-1 \\
y(t)=c_{1} e^{-t}+c_{2} e^{-2 t}
\end{gathered}
$$

Example 3.1.2

$$
\begin{gathered}
y^{\prime \prime}-2 y^{\prime}-2 y=0 \\
r^{2}-2 r-2=0 \\
(r-1)^{2}=3 \\
r=1 \pm \sqrt{3} \\
y(t)=c_{1} e^{(1-\sqrt{3}) t}+c_{2} e^{(1+\sqrt{3}) t}
\end{gathered}
$$

Example 3.1.3

$$
\begin{gathered}
y^{\prime \prime}+8 y^{\prime}-9 y=0, \quad y(1)=1, \quad y^{\prime}(1)=0 \\
r^{2}+8 r+9=0 \\
r_{1}=-9, \quad r_{2}=1 \\
y(t)=c_{1} e^{t}+c_{2} e^{-9 t} \\
y(t)=k_{1} e^{t-1}+k_{2} e^{-9(t-1)}
\end{gathered}
$$

where $c_{1}=k_{1} e^{-1}, c_{2}=k_{2} e^{9}$. Using the first IC, we have

$$
\begin{gathered}
1=k_{1} e^{t-1}+k_{2} e^{-9(t-1)} \\
k_{1}+k_{2}=1
\end{gathered}
$$

For the 2nd IC,

$$
\begin{gathered}
0=k_{1} e^{t-1}-9 k_{2} e^{-9(t-1)} \\
0=k_{1}-9 k_{2} \\
k_{1}=\frac{9}{10}, \quad k_{2}=\frac{1}{10} \\
y(t)=\frac{9}{10} e^{t-1}+\frac{1}{10} e^{-9(t-1)}
\end{gathered}
$$

So, overall we have different cases for r :
Case 1 (Distinct Root) Shown in Fig 3

Figure 3: $b^{2}-4 a c>0$

Figure 4: $b^{2}-4 a c<0$

Case 2 (Complex Root) Shown in Fig 4

Case 3 (Repeated Root) Shown in Fig 5

Figure 5: $b^{2}-4 a c=0$

3.2 Fundamental Solution of Linear Homogeneous Equation

Differential Operator:

$$
L[\phi]=\phi^{\prime \prime}+p \phi+q \phi
$$

or

$$
\begin{align*}
& L=D^{2}+p D+q, \quad \text { D: derivative operator } \\
& y=\phi(t), \quad L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{*}
\end{align*}
$$

Example 3.2.1

$$
t(t-4) y^{\prime \prime}+3 t y^{\prime}+4 y=2, \quad y(3)=0
$$

Find the largest interval where we are guaranteed unique solution.
Standard form:

$$
y^{\prime \prime}+\frac{3}{t-4} y^{\prime}+\frac{4}{t(t-4)} y=\frac{2}{t(t-4)}
$$

$$
\begin{gathered}
\operatorname{Dom}(p(t))=\{t \mid t \neq 4\} \\
\operatorname{Dom}(q(t))=\{t \mid t \neq 0,4\} \\
\operatorname{Dom}(g(t))=\{t \mid t \neq 0,4\}
\end{gathered}
$$

$\rightarrow 0<t<4$

Figure 6: Interval of solution

Consider:

$$
\begin{gathered}
\text { IC: } y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{0}^{\prime} \\
c_{1} y_{1}\left(t_{0}\right)+c_{2} y_{2}\left(t_{0}\right)=y_{0} \\
c_{1} y_{1}^{\prime}\left(t_{0}\right)+c_{2} y_{2}^{\prime}\left(t_{0}\right)=y_{0}^{\prime} \\
\Longrightarrow c_{1}=\frac{y_{0} y_{2}^{\prime}\left(t_{0}\right)-y_{0}^{\prime} y_{2}\left(t_{0}\right)}{y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)-y_{1}^{\prime}\left(t_{0}\right) y_{2}\left(t_{0}\right)} \\
c_{1}=\frac{\left|\begin{array}{ll}
y_{0} & y_{2}\left(t_{0}\right) \\
y_{0}^{\prime} & y_{2}^{\prime}\left(t_{0}\right)
\end{array}\right|}{\left|\begin{array}{ll}
y_{1}\left(t_{0}\right) & y_{2}\left(t_{0}\right) \\
y_{1}^{\prime}\left(t_{0}\right) & y_{2}^{\prime}\left(t_{0}\right)
\end{array}\right|} \\
c_{2}=\frac{\left|\begin{array}{ll}
y_{0} & y_{1}\left(t_{0}\right) \\
y_{0}^{\prime} & y_{1}^{\prime}\left(t_{0}\right)
\end{array}\right|}{\left|\begin{array}{ll}
y_{1}\left(t_{0}\right) & y_{2}\left(t_{0}\right) \\
y_{1}^{\prime}\left(t_{0}\right) & y_{2}^{\prime}\left(t_{0}\right)
\end{array}\right|}
\end{gathered}
$$

\rightarrow Wronskian determinant:

$$
W=\left|\begin{array}{ll}
y_{1}\left(t_{0}\right) & y_{2}\left(t_{0}\right) \\
y_{1}^{\prime}\left(t_{0}\right) & y_{2}^{\prime}\left(t_{0}\right)
\end{array}\right|
$$

or

$$
W=W\left(y_{1}, y_{2}\right)\left(t_{0}\right)
$$

which leads to the following theorem

THEOREM

3.1

Suppose that y_{1} and y_{2} are two solutions of Eq.(*),

$$
L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

and that the Wronskian

$$
W=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}
$$

is not the zero at the point t_{0} where the initial condition

$$
y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}
$$

are assigned. Then there is a choice of the constants c_{1}, c_{2} for which $y=$ $c_{1} y_{1}(t)+c_{2} y_{2}(t)$ satisfies the differential equation $(*)$ and the initial condition above.

THEOREM Abel's Theorem

3.2

If y_{1} and y_{2} are solutions of the differential equation

$$
L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

where p and q are continuous on an open interval I , then the Wronskian $W\left(y_{1}, y_{2}\right)(t)$ is given by

$$
W\left(y_{1}, y_{2}\right)(t)=c \exp \left[-\int p(t) d t\right]
$$

where c is a certain constant that depends on y_{1} and y_{2} but not on t . Further, $W\left(y_{1}, y_{2}\right)(t)$ either is zero for all t in I (if $c=0$) or else is never zero in I (if $c \neq 0$)

Proof.

$$
\begin{gather*}
y_{1}^{\prime \prime}+p(t) y_{1}^{\prime}+q(t) y_{1}=0 \tag{5}\\
y_{2}^{\prime \prime}+p(t) y_{2}^{\prime}+q(t) y=0 \tag{6}
\end{gather*}
$$

Multiply Eq.(5) by $-y_{2}$ and Eq.(6) by y_{1} and add them, we obtain:

$$
\begin{equation*}
\left(y_{1} y_{2}^{\prime \prime}-y_{1}^{\prime \prime} y_{2}\right)+p(t)\left(y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}\right)=0 \tag{7}
\end{equation*}
$$

Let $W(t)=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}$. Then,

$$
\begin{aligned}
W^{\prime}(t) & =\left[y_{1}^{\prime} y_{2}^{\prime}+y_{1} y_{2}^{\prime \prime}\right]-\left[y_{1}^{\prime} y_{2}^{\prime}+y_{1}^{\prime \prime} y_{2}\right] \\
& =y_{1} y_{2}^{\prime \prime}-y_{1}^{\prime \prime} y_{2}
\end{aligned}
$$

Then, Eq.(7) becomes:

$$
\begin{gathered}
W^{\prime}+p(t) W=0 \\
\frac{W^{\prime}}{W}=-p(t) \\
\ln W=-\int p(t) d t \\
W=c e^{-\int p(t) d t}
\end{gathered}
$$

3.3 Complex Roots of the Characteristics Equation

Consider:

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

The characteristics equation is

$$
a r^{2}+b r+c=0
$$

If $b^{2}-4 a c<0$, then

$$
\begin{aligned}
& r_{1}=\lambda+i \mu \\
& r_{2}=\lambda-i \mu
\end{aligned}
$$

So,

$$
\begin{aligned}
& y_{1}(t)=e^{(\lambda+i \mu) t} \\
& y_{2}(t)=e^{(\lambda-i \mu) t}
\end{aligned}
$$

Euler's Formula:

$$
\begin{gathered}
e^{t}=\sum_{n=0}^{\infty} \frac{t^{n}}{n!}, \quad-\infty<t<\infty \\
e^{i t}=\sum_{n=0}^{\infty} \frac{(i t)^{n}}{n!} \\
e^{i t}=\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{2 n}}{(2 n)!}+i \sum_{n=1}^{\infty} \frac{(-1)^{n-1} t^{2 n-1}}{(2 n-1)!} \\
e^{i t}=\cos t+i \sin t \\
e^{i \mu t}=\cos (\mu t)+i \sin (\mu t) \\
e^{(\lambda+i \mu) t}=e^{\lambda t}(\cos (\mu t)+i \sin (\mu t))
\end{gathered}
$$

Real-valued solution:

$$
\begin{aligned}
y_{1}(t)+y_{2}(t) & =e^{\lambda t}(\cos (\mu t)+i \sin (\mu t))+e^{\lambda t}(\cos (\mu t)-i \sin (\mu t)) \\
& =2 e^{\lambda t} \cos (\mu t)
\end{aligned}
$$

which is real. Also,

$$
y_{1}(t)-y_{2}(t)=2 i e^{\lambda t} \sin (\mu t)
$$

is real and $2 i$ is actually just a number and can be thought as an acceptable real solution. Overall, we have:

$$
\begin{equation*}
y(t)=c_{1} e^{\lambda t} \cos (\mu t)+c_{2} e^{\lambda t} \sin (\mu t) \tag{*}
\end{equation*}
$$

Example 3.3.1

$$
3 u^{\prime \prime}-u^{\prime}+2 u=0, \quad I C: \quad u(0)=2, \quad u^{\prime}(0)=0
$$

Characteristics Equation:

$$
\begin{gathered}
3 r^{2}-r+2=0 \\
r=\frac{1}{6} \pm \frac{\sqrt{23}}{6} i \\
\lambda=\frac{1}{6}, \quad \mu=\frac{\sqrt{23}}{6} u(t)=c_{1} e^{\frac{t}{6}} \cos \frac{\sqrt{23}}{6} t+c_{2} e^{\frac{t}{6}} \sin \frac{\sqrt{23}}{6} t
\end{gathered}
$$

Using ICs, we obtain:

$$
u(t)=2 e^{\frac{t}{6}} \cos \frac{\sqrt{23}}{6} t-\frac{2}{\sqrt{23}} e^{\frac{t}{6}} \sin \frac{\sqrt{23}}{6} t
$$

As $t \rightarrow \infty, u(t) \rightarrow \pm \infty$

3.4 Repeated Roots

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

For repeated roots:

$$
\begin{gathered}
b^{2}-4 a c=0 \\
r_{1}=r_{2}=\frac{-b}{2 a} \\
y_{1}(t)=e^{\frac{-b t}{2 a}}
\end{gathered}
$$

But how do we find the $2^{\text {nd }}$ solution? \rightarrow Method of d'Alembert (1717-1783). Our ansatz would be:

$$
y(t)=v(t) y_{1}(t)
$$

Example 3.4.1

$$
\begin{gathered}
9 y^{\prime \prime}+6 y^{\prime}+y=0 \\
9 r^{2}+6 r+1=0 \\
r_{1}=r_{2}=-\frac{1}{3} \rightarrow c e^{\frac{-t}{3}}
\end{gathered}
$$

$$
\begin{aligned}
y(t) & =v(t) y_{1}(t) \\
& =v(t) e^{\frac{-t}{3}} \\
y^{\prime}(t) & =v^{\prime} e^{\frac{-t}{3}}-\frac{1}{3} v e^{\frac{-t}{3}} \\
y^{\prime \prime}(t) & =v^{\prime \prime} e^{\frac{-t}{3}}-\frac{2}{3} v^{\prime} e^{\frac{-t}{3}}+\frac{1}{9} v e^{\frac{-t}{3}}
\end{aligned}
$$

Substitute into the original DE, we have

$$
\begin{gathered}
9 v^{\prime \prime} e^{\frac{-t}{3}}=0 \\
v^{\prime \prime}=0 \\
v^{\prime}=c \\
v=c_{1} t+c_{2}
\end{gathered}
$$

$$
\Longrightarrow \quad y_{2}(t)=t e^{\frac{-t}{3}}
$$

Generalize:

Assume: $\quad b^{2}-4 a c=0$. So,

$$
\begin{gathered}
y_{1}(t)=e^{\frac{-b t}{2 a}} \\
y=v(t) e^{\frac{-b t}{2 a}} \\
y^{\prime}=v^{\prime} e^{\frac{-b t}{2 a}}-\frac{b}{2 a} v e^{\frac{-b t}{2 a}} \\
y^{\prime \prime}=v^{\prime \prime} e^{\frac{-b t}{2 a}}-\frac{b}{2 a} v^{\prime} e^{\frac{-b t}{2 a}}+\frac{b^{2}}{4 a^{2}} v e^{\frac{-b t}{2 a}}
\end{gathered}
$$

Substitute into $a y^{\prime \prime}+b y^{\prime}+c y=0$

$$
\begin{gathered}
\left\{a\left[y^{\prime \prime}\right]+b\left[y^{\prime}\right]+c v\right\} e^{\frac{-b t}{2 a}}=0 \\
a v^{\prime \prime}+(-b+b) v^{\prime}+\left(\frac{b^{2}}{4 a}-\frac{b^{2}}{2 a}+c\right) v=0 \\
v^{\prime \prime}=0 \\
v^{\prime}=c_{1} \\
v=c_{1} t+c_{2}
\end{gathered}
$$

Thus,

$$
y(t)=c_{1} t e^{\frac{-b t}{2 a}}+c_{2} e^{\frac{-b t}{2 a}}
$$

and the Wronskian is

$$
\begin{aligned}
W & =\left|\begin{array}{cc}
e^{\frac{-b t}{2 a}} & t e^{\frac{-b t}{2 a}} \\
\frac{-b}{2 a} e^{\frac{-b t}{2 a}} & \left(1-\frac{-b t}{2 a}\right) e^{\frac{-b t}{2 a}}
\end{array}\right| \\
& =e^{\frac{-b t}{a}} \neq 0 \quad \forall t
\end{aligned}
$$

Example 3.4.2

$$
16 y^{\prime \prime}+24 y^{\prime}+9 y=0
$$

Char. Equation:

$$
\begin{gathered}
16 r^{2}+24 r+9=0 \\
r=-\frac{3}{4} \\
y(t)=c_{1} t e^{\frac{-3 t}{4}}+c_{2} e^{\frac{-3 t}{4}}
\end{gathered}
$$

Note:

If

$$
r_{1}=r_{2}=0
$$

Then,

$$
\begin{gathered}
y^{\prime \prime}=0 \\
y=c_{1} t+c_{2}
\end{gathered}
$$

3.5 Method of Underdetermined Coefficients

$$
\begin{gather*}
L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t) \tag{*}\\
L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{**}
\end{gather*}
$$

THEOREM If Y_{1} and Y_{2} are 2 solutions of (*), then their difference $Y_{1}-Y_{2}$ is a solution of corresponding homogeneous equation

$$
L\left[Y_{1}\right]-L\left[Y_{2}\right]=0
$$

If y_{1} and y_{2} are a fundamental set of solution, then

$$
Y_{1}(t)-Y_{2}(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

where c_{1} and c_{2} are certain constants.

THEOREM The general solution of the nonhomogeneous equation $(*)$ can be written in the form

$$
y=\phi(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)+Y(t)
$$

where y_{1} and y_{2} are a fundamental set of solutions of the corresponding homogeneous equation $\left({ }^{* *}\right), c_{1}$ and c_{2} are arbitrary constants, and Y is some specific solution of the nonhomogeneous equation $(*)$

* $\mathrm{g}(\mathrm{t})$ is a polynomial, exponential, \sin , \cos, etc (not a ratio of some functions or tan)

Example 3.5.1

$$
\begin{equation*}
y^{\prime \prime}-5 y^{\prime}+6 y=-5 e^{-t} \tag{7}
\end{equation*}
$$

1. Solve the corresponding homogeneous equation

$$
\begin{aligned}
& r^{2}-5 r+6=0 \\
& r_{1}=3, \quad r_{2}=2 \\
& y_{c}(t)=c_{1} e^{3 t}+c_{2} e^{2 t}: \text { complementary solution }
\end{aligned}
$$

2. Find a particular solution

Ansatz: $Y(t)=A e^{-t}$

$$
\begin{aligned}
& Y^{\prime}(t)=-A e^{-t} \\
& Y^{\prime \prime}(t)=A e^{-t}
\end{aligned}
$$

Substitute into Eq.(7)

$$
\begin{aligned}
A e^{-t}+5 A e^{-t} & +6 A e^{-t}=-5 e^{-t} \\
A & =-\frac{5}{12} \\
Y(t) & =-\frac{5}{12} e^{-t}
\end{aligned}
$$

3. Put everything together

$$
y(t)=c_{1} e^{3 t}+c_{2} e^{2 t}-\frac{5}{12} e^{-t}
$$

Example 3.5.2

$$
y^{\prime \prime}+2 y^{\prime}+5 y=3 \sin (2 t)
$$

Char. Equation:

$$
\begin{gathered}
r^{2}+2 r+5=0 \\
r=-1 \pm 2 i \\
y_{c}(t)=c_{1} e^{-t} \cos 2 t+c_{2} e^{-t} \sin 2 t
\end{gathered}
$$

Ansatz: $Y(t)=A \sin 2 t+B \cos 2 t \quad$ (note: $Y(t)=A \sin 2 t \quad$ doesn't work)

$$
\begin{gathered}
Y^{\prime}(t)=2 A \cos 2 t-2 B \sin 2 t \\
Y^{\prime \prime}(t)=-4 A \sin 2 t-4 B \cos 2 t
\end{gathered}
$$

Substitute into the original equation, we get:

$$
\begin{gathered}
-4 A \sin 2 t-4 B \cos 2 t+4 A \cos 2 t-4 B \sin 2 t+5 A \sin 2 t+5 B \cos 2 t=3 \sin 2 t \\
(A-4 B) \sin 2 t+(4 A+B) \cos 2 t=3 \sin 2 t
\end{gathered}
$$

So,

$$
\begin{gathered}
\left\{\begin{array}{l}
A-4 B=3 \Longrightarrow A=\frac{3}{17}, \quad B=\frac{-12}{17} \\
4 A+B=0
\end{array}\right. \\
y(t)=c_{1} e^{-t} \cos 2 t+c_{2} e^{-t} \sin 2 t+\frac{3}{17} \sin 2 t-\frac{12}{17} \cos 2 t
\end{gathered}
$$

Example 3.5.3

$$
\begin{equation*}
2 y^{\prime \prime}+3 y^{\prime}+y=t^{2}+3 \sin t \tag{*}
\end{equation*}
$$

Solve char. equation

$$
\begin{gathered}
2 r^{2}+3 r+1=0 \\
r_{1}=-\frac{1}{2}, \quad r_{2}=-1 \\
y_{c}(t)=c_{1} e^{\frac{-t}{2}}+c_{2} e^{-t} \\
Y(t)=Y_{1}(t)+Y_{2}(t) \\
g(t)=g_{1}(t)+g_{2}(t)
\end{gathered}
$$

where $g_{1}(t)=t^{2}$ and $g_{2}(t)=3 \sin t$. For $g_{1}(t)$:

$$
\begin{gathered}
Y_{p_{1}(t)}=A t^{2}+B t+C \\
Y_{p_{1}(t)}^{\prime}=2 A t+B \\
Y_{p_{1}(t)}^{\prime \prime}=2 A
\end{gathered}
$$

Sub into (${ }^{*}$) but ignore $3 \sin t$

$$
\begin{gathered}
2(2 A)+3(2 A t+B)+A t^{2}+B t+C=t^{2} \\
\left\{\begin{array}{l}
A=1 \\
B=-6 \\
C=14
\end{array}\right. \\
Y_{p_{1}(t)}=t^{2}-6 t+14
\end{gathered}
$$

For $p_{2}(t)$:

$$
\begin{gathered}
Y_{p_{2}(t)}=D \sin t+E \cos t \\
Y_{p_{2}(t)}^{\prime}=D \cos t-E \sin t \\
Y_{p_{2}(t)}^{\prime \prime}=-D \sin t-E \cos t
\end{gathered}
$$

Sub into (*) and ignore t^{2}

$$
\left\{\begin{array}{l}
D=-\frac{3}{10} \\
E=-\frac{9}{10}
\end{array}\right.
$$

$$
\begin{aligned}
y(t) & =y_{c}+Y_{p_{1}}+Y_{p_{2}} \\
& =c_{1} e^{-\frac{t}{2}}+c_{2} e^{-t}+t^{2}-6 t+14-\frac{3}{10} \sin t-\frac{9}{10} \cos t
\end{aligned}
$$

Note: If $Y(t)$ ansatz duplicates a term in y_{c} then modify the ansatz by multiplying it by t . If doesn't work, then keep going with t^{2}, t^{3}, \ldots

3.6 Variation of Parameters

$$
y^{\prime \prime}+4 y=3 \csc 2 t, \quad 0<t<\frac{\pi}{2}
$$

can't use undetermined coefficients. For y_{c} :

$$
\begin{gathered}
y^{\prime \prime}+4 y=0 \\
r^{2}+4=0 \\
r= \pm 2 i \\
y_{c}=c_{1} \cos 2 t+c_{2} \sin 2 t
\end{gathered}
$$

Basic idea here is to replace c_{1} and c_{2} with $u_{1}(t)$ and $u_{2}(t)$.

$$
y=u_{1}(t) \cos 2 t+u_{2} \sin 2 t
$$

2 unknowns but only 1 equation \Longrightarrow underdetermined system. So Lagrange imposed another restriction

$$
y^{\prime}(t)=-2 u_{1} \sin 2 t+u_{1}^{\prime} \cos 2 t+2 u_{2} \cos 2 t+u_{2}^{\prime} \sin 2 t
$$

We have

$$
\begin{equation*}
u_{1}^{\prime}(t) \cos 2 t+u_{2}^{\prime}(t) \sin 2 t=0 \tag{**}
\end{equation*}
$$

So,

$$
\begin{gathered}
y^{\prime}=-2 u_{1} \sin 2 t+2 u_{2} \cos 2 t \\
y^{\prime \prime}=-4 u_{1} \cos 2 t-2 u_{1}^{\prime} \sin 2 t-4 u_{2} \sin 2 t+2 u_{2}^{\prime} \cos 2 t
\end{gathered}
$$

Sub into the original DE:

$$
\begin{equation*}
-2 u_{1}^{\prime} \sin 2 t+2 u_{2}^{\prime} \cos 2 t=3 \csc 2 t \tag{***}
\end{equation*}
$$

Lagrange viewed $\left({ }^{* *}\right)$ and $\left({ }^{* * *}\right)$ as a pair of linear algebraic equations for 2 unknowns

$$
\begin{gathered}
u_{2}^{\prime}=\frac{3}{2} \cot 2 t \\
u_{1}^{\prime}=-\frac{3}{2} \\
u_{1}(t)=-\frac{3}{2} t+c_{1} \\
u_{2}(t)=\frac{3}{4} \ln (\sin 2 t)+c_{2} \\
y(t)=\left(-\frac{3}{2} t+c_{1}\right) \cos 2 t+\left(\frac{3}{4} \ln (\sin 2 t)+c_{2}\right) \sin 2 t \\
=c_{1} \cos 2 t+c_{2} \sin 2 t-\frac{3}{2} t \cos 2 t+\frac{3}{4} \sin 2 t \ln (\sin 2 t)
\end{gathered}
$$

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

where p, q, r are continuous. Assume:

$$
y_{c}(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

Then, our ansatz is $y(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)$ and

$$
\begin{gathered}
y^{\prime}=u_{1}^{\prime} y_{1}+u_{1} y_{1}^{\prime}+u_{2}^{\prime} y_{2}+u_{2} y_{2}^{\prime} \\
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
y^{\prime}=u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime} \\
y^{\prime \prime}=u_{1}^{\prime} y_{1}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{2} y_{2}^{\prime \prime}
\end{gathered}
$$

After lots of algebra,

$$
u_{1}\left[y_{1}^{\prime \prime}+p y_{1}^{\prime}+q y_{1}\right]+u_{2}\left[y_{2}^{\prime \prime}+p y_{2}^{\prime}+q y_{2}\right]+u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=g(t)
$$

Since the first two term equal to $0, u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=g(t)$. We can deduce:

$$
\begin{aligned}
& u_{1}^{\prime}(t)=\frac{-y_{2}(t) g(t)}{W\left(y_{1}, y_{2}\right)(t)} \\
& u_{2}^{\prime}(t)=\frac{y_{1}(t) g(t)}{W\left(y_{1}, y_{2}\right)(t)} \Longrightarrow \begin{cases}u_{1} & =-\int \frac{y_{2} g}{W} d t+C_{1} \\
u_{2} & =\int \frac{y_{1} g}{W} d t+C_{2}\end{cases}
\end{aligned}
$$

So,

$$
Y(t)=-y_{1} \int \frac{y_{2} g}{W} d t+y_{2} \int \frac{y_{1} g}{W} d t
$$

Example 3.6.1

$$
y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{t}}{1+t^{2}}
$$

Homogeneous Equation:

$$
\begin{gathered}
y^{\prime \prime}-2 y^{\prime}+y=0 \\
r^{2}-2 r+1=0 \\
r_{1}=r_{2}=1 \\
y_{c}=c_{1} t e^{t}+c_{2} e^{t}
\end{gathered}
$$

where $y_{1}=t e^{t}$ and $y_{2}=e^{t}$ and $g(t)=\frac{e^{t}}{1+t^{2}}$. The Wronskian determinant can be computed:

$$
W=\left|\begin{array}{cc}
t e^{t} & e^{t} \\
e^{t}+t e^{t} & e^{t}
\end{array}\right|=-e^{2 t}
$$

$$
\begin{aligned}
Y(t) & =-t e^{t} \int \frac{e^{t}\left(\frac{e^{t}}{1+t^{2}}\right)}{-e^{2 t}} d t+e^{t} \int \frac{t e^{t}\left(\frac{e^{t}}{1+t^{2}}\right)}{-e^{2 t}} d t \\
& =t e^{t} \arctan t-e^{t}\left(\frac{1}{2} \ln \left(1+t^{2}\right)\right)
\end{aligned}
$$

Our final solution is

$$
y(t)=c_{1} t e^{t}+c_{2} e^{t}+t e^{t} \arctan t-\frac{1}{2} e^{t} \ln \left(1+t^{2}\right)
$$

4 Series Solutions of Second Order Linear Equations

4.1 Review of Power Series

Power series:

$$
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

converges at a point x if

$$
\lim _{m \rightarrow \infty} \sum_{n=0}^{m} a_{n}\left(x-x_{0}\right)^{n}
$$

exists for that x . It trivially converge for $x=x_{0}$.

$$
\rightarrow \sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

converges absolutely at point x if

$$
\sum_{n=0}^{\infty}\left|a_{n}\left(x-x_{0}\right)^{n}\right| \quad \text { converges }
$$

$\exists \rho \in \mathbb{R}$ (radius of convergence) such that $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ converges absolutely for $\left|x-x_{0}\right|<\rho$ and diverge for $\left|x-x_{0}\right|>\rho$
$\rho=0$ only at x_{0} if converges for all x and $\rho=\infty$. If $\rho>0$ then the interval $\left|x-x_{0}\right|<\rho$ is called an interval of convergence.

Figure 7: Interval of Convergence

Example 4.1.1

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2}(x+2)^{n}}{3^{n}}
$$

Ratio Test:

$$
\lim _{n \rightarrow \infty}\left|\frac{(n+1)^{2}(x+2)^{n+1} 3^{n}}{3^{n+1} n^{2}(x+2)^{n}}\right|=\frac{1}{3}|x+2|
$$

for the series to be absolutely convergent,

$$
\begin{gathered}
\frac{1}{3}|x+2|<1 \\
-3<x+2<3 \\
-5<x<1
\end{gathered}
$$

So, $\rho=3$. For $x=-5$:

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} n^{2}(-3)^{n}}{3^{n}}=\sum_{n=1}^{\infty} n^{2}
$$

which is divergent. For $x=1$:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2} 3^{n}}{3^{n}}=\sum_{n=1}^{\infty}(-1)^{n} n^{2}
$$

which is also divergent. Therefore, interval of convergence is $(-5,1)$.

We can observe that

$$
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

converges to $f(x)$ and likewise

$$
\sum_{n=0}^{\infty} b_{n}\left(x-x_{0}\right)^{n}
$$

converges to $g(x)$ for $\left|x-x_{0}\right|<\rho$. Then, $g(x) \pm f(x)=\sum_{n=0}^{\infty}\left(a_{n} \pm b_{n}\right)\left(x-x_{0}\right)^{n}$. Then,

$$
f(x) g(x)=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n}
$$

where $c_{n}=\sum_{k=1}^{n} a_{k} b_{n-k}$ (Cauchy product)

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n} \\
f^{\prime}(x) & =\sum_{n=1}^{\infty} n a_{n}\left(x-x_{0}\right)^{n-1} \\
f^{\prime \prime}(x) & =\sum_{n=2}^{\infty} n(n-1) a_{n}\left(x-x_{0}\right)^{n-2}
\end{aligned}
$$

Taylor Series for function f about $x-x_{0}$ is

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}, \quad \rho>0
$$

f is analytic at $x=x_{0}$
Example 4.1.2

$$
f(x)=x^{\frac{7}{3}}
$$

is not analytic at $x_{0}=0$ since $f^{\prime \prime}(0)$ d.n.e

$$
f(x)=|x-1|
$$

is not analytic at $x_{0}=1$ since $f^{\prime}(x)$ d.n.e

Reindexing:

Example 4.1.3

$$
\begin{aligned}
x \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=0}^{\infty} a_{n} x^{n} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-1}+\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =\sum_{n=1}^{\infty} n(n+1) a_{n+1} x^{n}+\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =\sum_{n=0}^{\infty} n(n+1) a_{n+1} x^{n}+\sum_{n=0}^{\infty} a_{n} x_{n} \\
& =\sum_{n=0}^{\infty}\left[n(n+1) a_{n+1}+a_{n}\right] x^{n}
\end{aligned}
$$

4.2 Series Solutions Near An Ordinary Point (Part I)

$$
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0
$$

$\mathrm{P}, \mathrm{Q}, \mathrm{R}$ are polynomial with no common factors.

- x_{0} where $P\left(x_{0}\right) \neq 0$ is called an ordinary point
- x_{0} where $P\left(x_{0}\right)=0$ is called a singular point

Consider:

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Ansatz: $y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ and assume series converges $\left|x-x_{0}\right|<\rho$ where $\rho>0$. Let's look at:

$$
\begin{equation*}
y^{\prime \prime}+x y^{\prime}+2 y=0, \quad x_{0}=0 \tag{*}
\end{equation*}
$$

$P(x)=1 \forall x$, so x_{0} is ordinary point. Therefore, there exists $\rho>0$ such that $|x-0|<\rho$ converges.
Assume:

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x_{n} \\
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substitute into (*):

$$
\begin{gathered}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+x \sum_{n=1}^{\infty} n a_{n} x^{n-1}+2 \sum_{n=0}^{\infty} a_{n} x_{n}=0 \\
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+\sum_{n=0}^{\infty} n a_{n} x^{n}+\sum_{n=0}^{\infty} 2 a_{n} x_{n}=0 \\
\sum_{n=0}^{\infty}\left[(n+2)(n+1) a_{n+2}+(n+2) a_{n}\right] x^{n}=0 \\
(n+2)(n+1) a_{n+2}+(n+2) a_{n}=0
\end{gathered}
$$

So, we obtain the following recurrence relation:

$$
a_{n+2}=\frac{-a_{n}}{n+1}, \quad n=0,1,2, \ldots
$$

Let $a_{0}=1, a_{1}=0$ to generate one solution $y_{1}(x)$. So $a_{1}=a_{3}=a_{5}=\ldots=0$.

- For $n=0: a_{2}=-a_{0}=-1$
- For $n=2: a_{4}=\frac{(-1)(-1)}{1 \cdot 3}=\frac{1}{3}$
- For $n=4: a_{6}=\frac{-a_{4}}{4+1}=\frac{-1}{1 \cdot 3 \cdot 5}=-\frac{1}{15}$
- For $n=6: a_{8}=-\frac{96}{6+1}=\frac{1}{1 \cdot 3 \cdot 5 \cdot 7}=\frac{1}{105}$

Thus,

$$
a_{2 n}=\frac{(-1)^{n}}{1 \cdot 3 \cdot 5 \ldots(2 n-1)}
$$

and

$$
\begin{aligned}
& y_{1}(x)=1-\frac{x^{2}}{1}+\frac{x^{4}}{1 \cdot 3}-\frac{x^{6}}{1 \cdot 3 \cdot 5}+\frac{x^{8}}{1 \cdot 3 \cdot 5 \cdot 7}+\ldots \\
& y_{1}(x)=1+\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n-1)!!}
\end{aligned}
$$

For the second solution, let $a_{0}=0$ and $a_{1}=1 \rightarrow a_{0}=a_{2}=a_{4}=\ldots=0$.

- $n=1: a_{3}=-\frac{a_{1}}{2}=\frac{-1}{1 \cdot 2}$
- $n=3: a_{5}=\frac{-a_{3}}{4}=\frac{1}{1 \cdot 2 \cdot 4}$
- $n=5: a_{7}=\frac{-a_{5}}{6}=\frac{-1}{1 \cdot 2 \cdot 4 \cdot 6}$

Thus,

$$
a_{2 n+1}=\frac{(-1)^{n}}{2 \cdot 4 \cdot 6 \ldots(2 n)}
$$

and

$$
\begin{aligned}
y_{2}(x) & =x-\frac{x^{3}}{1 \cdot 2}+\frac{x^{5}}{1 \cdot 2 \cdot 4}-\frac{x^{7}}{1 \cdot 2 \cdot 4 \cdot 6}+\ldots \\
& =x+\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n)!!}
\end{aligned}
$$

Example 4.2.1

$$
\begin{equation*}
x y^{\prime \prime}+y^{\prime}+x y=0, \quad x_{0}=1 \tag{*}
\end{equation*}
$$

$x_{0}=1$ is an ordinary point. Assume:

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n}(x-1)^{n} \\
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n}(x-1)^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n}(x-1)^{n-2}
\end{aligned}
$$

Sub into (*)

$$
x \sum_{n=2}^{\infty} n(n-1) a_{n}(x-1)^{n-2}+\sum_{n=1}^{\infty} n a_{n}(x-1)^{n-1}+x \sum_{n=0}^{\infty} a_{n}(x-1)^{n}=0
$$

Trick: $x=1+(x-1)$

$$
\begin{aligned}
& \begin{array}{l}
\sum_{n=2}^{\infty} n(n-1) a_{n}(x-1)^{n-2}+\sum_{n=2}^{\infty} n(n-1) a_{n}(x-1)^{n-1}
\end{array}+\sum_{n=1}^{\infty} n a_{n}(x-1)^{n-1} \\
& \\
& +\sum_{n=0}^{\infty} a_{n}(x-1)^{n}+\sum_{n=0}^{\infty} a_{n}(x-1)^{n+1}=0 \\
& \sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2}(x-1)^{n}+\sum_{n=1}^{\infty}(n+1) n a_{n+1}(x-1)^{n}+\sum_{n=0}^{\infty}(n+1) a_{n+1}(x-1)^{n} \\
& \\
& +\sum_{n=0}^{\infty} a_{n}(x-1)^{n}+\sum_{n=1}^{\infty} a_{n-1}(x-1)^{n}=0
\end{aligned}
$$

We'll handle $n=0$ separately

$$
\sum_{n=1}^{\infty}\left[(n+2)(n+1) a_{n+2}+(n+1) n a_{n+1}+(n+1) a_{n+1}+a_{n}+a_{n-1}\right](x-1)^{n}=0
$$

So,

$$
a_{n+2}=\frac{-\left[(n+1)^{2} a_{n+1}+a_{n}+a_{n-1}\right]}{(n+1)(n+2)} \quad \text { for } n \in \mathbb{Z}^{+}
$$

depends on 3 prior terms (very difficult to solve). For $n=0$,

$$
\begin{gathered}
(n+2)(n+1) a_{n+2}+(n+1) a_{n+1}+a_{n}=0 \\
2 a_{2}+a_{1}+a_{0}=0 \\
a_{2}=\frac{-\left(a_{1}+a_{0}\right)}{2}
\end{gathered}
$$

Take $a_{0}=1$ and $a_{1}=0$ to generate $y_{1}(x)$

- $a_{2}=-\frac{1}{2}$
- $a_{3}=\frac{-\left(2^{2} a_{2}+a_{1}+a_{0}\right)}{2 \cdot 3}=\frac{1}{6}$
- $a_{4}=\frac{-\left(3^{2} a_{3}+a_{2}+a_{1}\right.}{3 \cdot 4}=-\frac{1}{12}$
- $a_{5}=\frac{-\left(4^{2} a_{4}+a_{3}+a_{2}\right)}{4.5}=\frac{1}{12}$

$$
\begin{aligned}
y_{1}(x) & =a_{0}(x-1)^{0}+a_{1}(x-1)+a_{2}(x-1)^{2}+a_{3}(x-1)^{3} \\
& =1-\frac{1}{2}(x-1)^{2}+\frac{1}{6}(x-1)^{3}-\frac{1}{12}(x-1)^{4}+\ldots
\end{aligned}
$$

To generate $y_{2}(x)$, let $a_{0}=0$ and $a_{1}=1$. Then,

- $a_{2}=-\frac{1}{2}$
- $a_{3}=\frac{1}{6}$
- $a_{4}=-\frac{1}{6}$

$$
y_{2}(x)=(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{6}(x-1)^{3}-\frac{1}{6}(x-1)^{4}+\ldots
$$

4.3 Series Solutions Near An Ordinary Point (Part II)

$$
\begin{equation*}
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0 \tag{*}
\end{equation*}
$$

$\mathrm{P}, \mathrm{Q}, \mathrm{R}$ are polynomials. Assume there exists a solution $y=\phi(x)$

$$
\begin{equation*}
y=\phi(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n} \tag{**}
\end{equation*}
$$

converges when $\left|x-x_{0}\right|<\rho, \quad \rho>0$. Take $\left(^{* *}\right)$ differentiate m times and set $x=x_{0}$ we get:

$$
m!a_{m}=\phi^{(m)}\left(x_{0}\right)
$$

Recall that Taylor Series Expansion:

$$
a_{m}=\frac{f^{(m)}\left(x_{0}\right)}{(m!)}
$$

and use this to compute a_{n} in (${ }^{* *}$). If $y=\phi(x)$ is a solution to $\left(^{* *}\right)$ satisfies ICs:

$$
\begin{aligned}
y\left(x_{0}\right) & =y_{0} \\
y^{\prime}\left(x_{0}\right) & =y_{0}^{\prime}
\end{aligned}
$$

Then $a_{0}=y_{0}$ and $a_{1}=y_{0}^{\prime}$ since

$$
\begin{aligned}
& a_{0}=\frac{\phi\left(x_{0}\right)}{0!}=y_{0} \\
& a_{1}=\frac{\phi^{\prime}\left(x_{0}\right)}{1!}=y_{0}^{\prime}
\end{aligned}
$$

Since ϕ is a solution to (*),

$$
\begin{gathered}
P(x) \phi^{\prime \prime}(x)+Q(x) \phi^{\prime}(x)+R(x) \phi(x)=0 \\
\phi^{\prime \prime}(x)+\frac{Q(x)}{P(x)} \phi^{\prime}(x)+\frac{R(x)}{P(x)} \phi(x)=0 \\
\phi^{\prime \prime}(x)+p(x) \phi^{\prime}(x)+q(x) \phi(x)=0 \\
\phi^{\prime \prime}(x)=-p(x) \phi^{\prime}(x)-q(x) \phi(x)
\end{gathered}
$$

Set $x=x_{0}$

$$
\phi^{\prime \prime}\left(x_{0}\right)=-p\left(x_{0}\right) \phi^{\prime}\left(x_{0}\right)+q\left(x_{0}\right) \phi\left(x_{0}\right)
$$

Since $\phi^{\prime \prime}\left(x_{0}\right)=2!a_{n}$

$$
\begin{aligned}
& a_{2}=\frac{-p\left(x_{0}\right) a_{1}-q\left(x_{0}\right) a_{0}}{2!} \\
& a_{3}=\frac{-2!p\left(x_{0}\right) a_{2}-\left[p^{\prime}\left(x_{0}\right)+q\left(x_{0}\right)\right] a_{1}-q_{1}^{\prime}\left(x_{0}\right) \phi\left(x_{0}\right)}{3!}
\end{aligned}
$$

\Longrightarrow There exists many derivative of p and q evaluated at x_{0}

$$
\begin{aligned}
& p(x)=\sum_{n=0}^{\infty} p_{n}\left(x-x_{0}\right)^{n} \\
& q(x)=\sum_{n=0}^{\infty} q_{n}\left(x-x_{0}\right)^{n}
\end{aligned}
$$

If p and q are analytic at x_{0} then x_{0} is an ordinary point, otherwise it's a singular point.

THEOREM If x_{0} is an ordinary point of $(*)$, then the general solution of $(*)$ is

4.1

$$
y=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=a_{0} y_{1}(x)+a_{1} y_{2}(x)
$$

where a_{0} and a_{1} are arbitrary and y_{1} and y_{2} are linearly independent.

Further: ρ for each of the series solution, y_{1} and y_{2} is at least as large as the minimum of ρ of the series of p and q .

From Complex Analysis

$$
\rho_{p}=\operatorname{dist}\left\{x_{0}, \text { the nearest zero of } \mathrm{p}\right\}
$$

Example 4.3.1

$$
\left(1+x^{3}\right) y^{\prime \prime}+4 x y^{\prime}+y=0, \quad x_{0}=0, \quad x_{0}=2
$$

Here: $P(x)=1+x^{3}$
$P(x)=0 \rightarrow x=-1, \quad \frac{1}{2}, \quad \frac{1}{2} \pm \frac{i \sqrt{3}}{2}$

- For $x_{0}=0$:

$$
\begin{gathered}
\text { dist }\left\{0, \frac{1}{2} \pm \frac{i \sqrt{3}}{2}\right\}=1 \\
\text { dist } \quad\{0,-1\}=1 \\
\Longrightarrow \rho=1
\end{gathered}
$$

- For $x_{0}=2$:

$$
\begin{gathered}
\text { dist }\{2,-1\}=3 \\
\text { dist }\left\{2, \frac{1}{2} \pm \frac{i \sqrt{3}}{2}\right\}=\sqrt{3}
\end{gathered}
$$

$\Longrightarrow \rho=\sqrt{3}$
Example 4.3.2

$$
(\cos x) y^{\prime \prime}+x y^{\prime}-2 y=0, \quad x_{0}=0
$$

x_{0} is an ordinary point. Know:

$$
\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \forall x
$$

Assume:

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substitute into (${ }^{*}$)

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \cdot \sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+\sum_{n=1}^{\infty} a_{n} x^{n} n-\sum_{n=0}^{\infty} 2 a_{n} x^{n}=0
$$

Let's look at the product of the two series (first term)

- x^{0} :

$$
\left(2 a_{2}-2 a_{0}\right) x^{0}
$$

- x^{1} :

$$
\begin{aligned}
& n=0 \text { for the } 1 \text { st factor and } n=1 \text { for the second one } \\
& \qquad\left(6 a_{3}-a_{1}\right) x^{1}
\end{aligned}
$$

- x^{2} :

$$
\begin{gathered}
n=0 \text { for the } 1 \text { st factor and } n=2 \text { for the second one } \\
\text { or } n=1 \text { for the first factor and } n=0 \text { for the second one }
\end{gathered}
$$

$$
\left(12 a_{4}-a_{2}\right) x^{2}
$$

- x^{3} :

$$
\begin{gathered}
n=0, \quad n=3 \rightarrow \quad 20 a_{5} \\
n=1, \quad n=1 \rightarrow-3 a_{3} \\
\left(20 a_{5}-2 a_{3}\right) x^{3}
\end{gathered}
$$

- x^{4} :

$$
\begin{aligned}
& n=0, \quad n=4 \rightarrow 30 a_{6} \\
& n=2, \quad n=0 \rightarrow \quad \frac{1}{12} a_{2} \\
& n=1, \quad n=2 \rightarrow-4 a_{4} \\
& \left(30 a_{6}+\frac{1}{12} a_{2}-4 a_{4}\right) x^{4}
\end{aligned}
$$

- x^{5} :

$$
\begin{gathered}
n=2, \quad n=1 \rightarrow \quad \frac{1}{4} a_{3} \\
n=1, \quad n=3 \rightarrow \quad-7 a_{5} \\
n=0, \quad n=5 \rightarrow 42 a_{7} \\
\left(42 a_{7}+\frac{1}{4} a_{3}-7 a_{5}\right) x^{5}
\end{gathered}
$$

Since the RHS is 0, all the coefficient must be 0 .

$$
\begin{gathered}
2 a_{2}-2 a_{0}=0 \Longrightarrow a_{2}=a_{0} \\
6 a_{3}-a_{1}=0 \Longrightarrow a_{3}=\frac{1}{6} a_{1} \\
12 a_{4}-a_{2}=0 \Longrightarrow a_{4}=\frac{a_{0}}{12} \\
20 a_{5}-2 a_{3}=0 \Longrightarrow a_{5}=-\frac{1}{60} a_{1} \\
30 a_{6}+\frac{1}{12} a_{2}-4 a_{4}=0 \Longrightarrow a_{6}=\frac{a_{0}}{120} \\
42 a_{7}+\frac{1}{4} a_{3}-7 a_{5}=0 \Longrightarrow a_{7}=\frac{1}{560} a_{1}
\end{gathered}
$$

For $y_{1}(x)$, let $a_{0}=1, a_{1}=0$

$$
\begin{gathered}
a_{2}=1, \quad a_{3}=a_{5}=a_{7}=\ldots=0 \\
a_{4}=\frac{1}{12}, \quad a_{6}=\frac{1}{120} \\
y_{1}(x)=1+x^{2}+\frac{1}{12} x^{4}+\frac{1}{120} x^{6}+\ldots
\end{gathered}
$$

For $y_{2}(x)$, let $a_{0}=0, a_{1}=1$

$$
\begin{gathered}
a_{2}=a_{4}=a_{6}=\ldots=0 \\
a_{3}=\frac{1}{6}, \quad a_{5}=\frac{1}{60}, \quad a_{7}=\frac{1}{560} \\
y_{2}(x)=x+\frac{1}{6} x^{3}+\frac{1}{60} x^{5}+\frac{1}{560} x^{7}+\ldots
\end{gathered}
$$

5 Laplace Transform

5.1 Definition of Laplace Transform

Operational Calculus:

$$
F(s)=\int_{\alpha}^{\beta} K(s, t) f(t) d t
$$

Transform: $f \rightarrow F$

$$
K(s, t)=\text { Kernel of the transformation }
$$

\rightarrow Laplace Transform:

$$
\begin{gathered}
\mathscr{L}\{f(t)\}=F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t \\
K(s, t)=e^{-s t}, \quad s \in \mathbb{C} \\
f(t), t \geq 0
\end{gathered}
$$

There is a diagram here that I still need to learn how to draw in tikz

THEOREM
 Suppose:

5.1

1. f is piecewise continuous on $0 \leq t \leq A$ for all $A \in \mathbb{R}$
2. $|f(t)| \leq k e^{a t}$ where $t \geq M ; a \in \mathbb{R} ; K, M \in \mathbb{R}^{+}$(exponential order)

Then, the Laplace Transform $\mathscr{L}\{f(t)=F(s)\}$ defined by $\int_{0}^{\infty} e^{-s t} f(t) d t$ exists for $s \geq a$.
\mathscr{L} is a linear operator (\mathscr{L}^{-1} is a linear operator as well). Suppose that f_{1} and f_{2} whose Laplace transform exist $\mathscr{L}\left\{c_{1} f_{1}(t)+c_{2} f_{2}(t)\right\}=\int_{0}^{\infty} e^{-s t}\left[c_{1} f_{1}(t)+c_{2} f_{2}(t)\right] d t$ which is equal to:

$$
\begin{gathered}
=c_{1} \int_{0}^{\infty} e^{-s t} f_{1}(t) d t+c_{2} \int_{-}^{\infty} e^{-s t} f_{2}(t) d t \\
=c_{1} \mathscr{L}\left\{f_{1}(t)\right\}+c_{2} \mathscr{L}\left\{f_{2}(t)\right\}
\end{gathered}
$$

5.2 IVP

$\mathscr{L}\left\{f^{\prime}\right\}$ related to $\mathscr{L}\{f\}$ in a simple way.
THEOREM \quad Suppose f is a continuous and f^{\prime} is piecewise continuous on $0 \leq t \leq A$. Also
5.2 suppose $\exists k, a, M \in \mathbb{R}$ such that

$$
|f(t)| \leq K e^{a t} \text { for } t \geq M
$$

Then, $\mathscr{L}\left\{f^{\prime}(t)\right\}$ exists for $s>a$ and

$$
\begin{aligned}
\mathscr{L}\left\{f^{\prime}(t)\right\} & =s \mathscr{L}\{f(t)-f(0)\} \\
\mathscr{L}\left\{f^{\prime \prime}(t)\right\} & =s^{2} \mathscr{L}\{f(t)\}-s f(0)-f^{\prime}(0)
\end{aligned}
$$

Corollary Suppose $f, f^{\prime}, f^{\prime \prime} \ldots f^{(n-1)}$ are continuous and $f^{(n)}$ is piecewise continuous on $0 \leq t \leq A$. Suppose $\exists k, a, M \in \mathbb{R}$ such that

$$
\begin{gathered}
|f(t)| \leq k e^{a t}, \quad\left|f^{\prime}(t)\right| \leq k e^{a t}, \ldots \\
\left|f^{(n-1)}(t)\right| \leq k e^{a t}, \quad t \geq M
\end{gathered}
$$

Then, $\mathscr{L}\left\{f^{(n)}(t)\right\}$ exists for $s>a$ and we can generalize

$$
\begin{gathered}
\mathscr{L}\left\{f^{(n)}(t)\right\}=s^{n} \mathscr{L}\{f(t)\}-s^{n-1} f(0)-s^{n-2} f^{\prime}(0) \ldots-s f^{(n-2)}(0)-f^{(n-1)}(0) \\
\mathscr{L}^{-1}\{y(s)\}=\phi(t)=y(t)
\end{gathered}
$$

Note: we can use partial fraction to find \mathscr{L}^{-1}. If we know complex analysis:

$$
y(t)=\frac{1}{2 \pi i} \int_{y+i \infty}^{y-i \infty} e^{s t} Y(s) d s, \quad t>0, y \in \mathbb{R}
$$

There exists a 1-1 correspondence between f and F.
Example 5.2.1
Find $\mathscr{L}^{-1}\{F(s)\}, \quad F(s)=\frac{2}{s^{2}+3 s-4}$

$$
\begin{aligned}
F(s)=\frac{2}{(s+4)(s-1)} & =\frac{A}{s+4}+\frac{B}{s-1} \\
& =\frac{-\frac{2}{5}}{s+4}+\frac{\frac{2}{5}}{s-1} \\
& =\frac{2}{5}\left(\frac{1}{s-1}\right)-\frac{2}{5}\left(\frac{1}{s+4}\right)
\end{aligned}
$$

Thus,

$$
f(t)=\frac{2}{5} e^{t}-\frac{2}{5} e^{-4 t}
$$

Example 5.2.2
Find $\mathscr{L}^{-1}\{F(s)\}, \quad F(s)=\frac{8^{2}-4 s+12}{s\left(s^{2}+4\right)}$

$$
\begin{aligned}
F(s)=\frac{3}{5}+\frac{5 s-4}{s^{2}+4} & =\frac{3}{s}+\frac{5 s}{s^{2}+4}-\frac{4}{s^{2}+4} \\
& =3\left(\frac{1}{s}\right)+5\left(\frac{s}{s^{2}+2^{2}}\right)-2\left(\frac{2}{s^{2}+2^{2}}\right) \\
f(t) & =3+5 \cos 2 t-2 \sin 2 t
\end{aligned}
$$

Example 5.2.3

$$
y^{(4)}-y=0, \quad y(0)=1, \quad y^{\prime}(0)=0, \quad y^{\prime \prime}(0)=1, \quad y^{\prime \prime \prime}(0)=0
$$

Let $\mathscr{L}\{y\}=Y(s)$

$$
\begin{aligned}
\mathscr{L}\left\{y^{(4)}\right\} & =s^{4} Y(s)-s^{3} y(0)-s^{2} y^{\prime}(0)-s y^{\prime \prime}(0)-y^{\prime \prime \prime}(0) \\
& =s^{4} Y(s)-s^{3}-s-Y(s)
\end{aligned}
$$

Know: $\mathscr{L}\{0\}=0$

$$
\begin{gathered}
s^{4} Y(s)-s^{3}-s-Y(s)=0 \\
\left(s^{4}-1\right) Y(s)=s^{3}+s \\
Y(s)=\frac{s^{3}+s}{s^{4}-1}=\frac{s}{s^{2}-1} \\
\Longrightarrow y(t)=\cosh t
\end{gathered}
$$

Example 5.2.4

$$
\begin{gathered}
y^{\prime \prime}+2 y^{\prime}+y=4 e^{-t}, \quad y(0)=2, \quad y^{\prime}(0)=-1 \\
\left(s^{2}+2 s+1\right) Y(s)-2 s+1-4=\frac{4}{s+1} \\
Y(s)=\frac{4}{\left(s^{2}+1\right)^{3}}+\frac{2(s+1)}{(s+1)^{2}}+\frac{1}{(s+1)^{2}} \\
Y(s)=2\left(\frac{2!}{(s+1)^{3}}\right)+2\left(\frac{1}{s+1}\right)+\frac{1}{(s+1)^{2}} \\
y(t)=2 t^{2} e^{-t}+2 e^{-t}+t e^{-t}
\end{gathered}
$$

Example 5.2.5

$$
\text { Find } \mathscr{L}^{-1}\left\{\frac{s-1}{s^{2}+\frac{1}{2} s+3}\right\}
$$

$$
\begin{aligned}
F(s) & =\frac{1}{2} \frac{s-1}{s^{2}+\frac{1}{2} s+3} \\
& =\frac{1}{2} \frac{s-1}{\left(s+\frac{1}{4}\right)^{2}+\left(\frac{\sqrt{47}}{4}\right)^{2}} \\
& =\frac{1}{2}\left[\frac{s+\frac{1}{4}}{\left(s+\frac{1}{4}\right)^{2}+\frac{47}{16}}-\frac{\frac{5}{4}}{\left(s+\frac{1}{4}\right)^{2}+\frac{47}{16}}\right] \\
f(t) & =\frac{1}{2} e^{-\frac{t}{4}} \cos \left(\frac{\sqrt{47} t}{4}\right)-\frac{5}{2 \sqrt{47}} e^{-\frac{t}{4}} \sin \left(\frac{\sqrt{47} t}{4}\right)
\end{aligned}
$$

5.3 Step Function

Unit step function $\equiv U_{c}, c \in\left\{\mathbb{R}^{+} \cup 0\right\}$

$$
u_{c}(t)=\left\{\begin{array}{l}
0, \quad t<c, \quad c \geq 0 \\
1, \quad t \geq c
\end{array}\right.
$$

Figure 8

Figure 9: $y(t)=1-u_{c}(t)$

Given function f, defined for $t \geq 0$

$$
y=g(t)=\left\{\begin{array}{l}
0, \quad t<c \\
f(t-c), \quad t \geq c
\end{array}\right.
$$

represents a translation of f a distance c in the positive direction.

Figure 10

Example 5.3.1

$$
\begin{gathered}
f(t)=u_{1}(t)+2 u_{3}(t)-6 u_{4}(t) \\
f(t)=\left\{\begin{array}{l}
0+2 \cdot 0-6 \cdot 0=0, \quad 0 \leq t \leq 1 \\
1+2 \cdot 0-6 \cdot 0=1, \quad 1 \leq t \leq 3 \\
1+2 \cdot 1-6 \cdot 0=3, \quad 3 \leq t \leq 4 \\
1+2 \cdot 1-6 \cdot 1=-3, \quad 4 \leq t
\end{array}\right.
\end{gathered}
$$

Figure 11

$$
\begin{aligned}
\mathscr{L}\left\{u_{c}(t)\right\} & =\int_{0}^{\infty} e^{-s t} u_{c}(t) d t \\
& =\int_{0}^{c} e^{-s t} \cdot 0 d t+\int_{c}^{\infty} e^{-s t} \cdot 1 d t \\
& =\int_{c}^{\infty} e^{-s t} d t \\
& =\lim _{M \rightarrow \infty} \int_{c}^{M} e^{-s t} d t \\
& =\left.\lim _{M \rightarrow \infty} \frac{-e^{-s t}}{s}\right|_{c} ^{M} \\
& =\lim _{M \rightarrow \infty} \frac{-e^{-s M}+e^{-c s}}{s} \\
& =e^{\frac{-c s}{s}}
\end{aligned}
$$

Look at the relationship between $\mathscr{L}\{f(t)\}$ and $\mathscr{L}\left\{u_{c}(t) f(t-c)\right\}$.

THEOREM If $F(s)=\mathscr{L}\{f(t)\}$ exists for $s>a \geq 0$ and if $c \in \mathbb{R}^{+}$then
5.3

$$
\mathscr{L}\left\{u_{c}(t) f(t-c)\right\}=e^{-c s} \mathscr{L}\{f(t)\}=e^{-c s} F(s), s>a
$$

Conversely, if $f(t)=\mathscr{L}^{-1}\{F(s)\}$, then

$$
u_{c}(t) f(t-c)=\mathscr{L}^{-1}\left\{e^{-c s} F(s)\right\}
$$

THEOREM \quad If $F(s)=\mathscr{L}\{f(t)\}$ exists for $s>a \geq 0$ and if $c \in \mathbb{R}$, then
5.4

$$
\mathscr{L}\left\{e^{c t} f(t)\right\}=F(s-c), s>a+c
$$

Conversely, if $f(t)=\mathscr{L}^{-1}\{F(s)\}$, then

$$
e^{c t} f(t)=\mathscr{L}^{-1}\{F(s-c)\}
$$

Example 5.3.2

$$
F(s)=\frac{(s-2) e^{-s}}{s^{2}-4 s+3}, \quad \text { Find } \mathscr{L}^{-1}
$$

$$
\begin{gathered}
G(s)=\frac{s-2}{s^{2}-4 s+3} \\
=\frac{s-2}{(s-2)^{2}-1} \\
\mathscr{L}^{-1}[G(s)]=e^{2 t} \cosh t \\
\mathscr{L}^{-1}[F(s)]=e^{2(t-1)} \cosh (t-1) u_{1}(t)
\end{gathered}
$$

Example 5.3.3

$$
\begin{gathered}
F(s)=\frac{e^{-3 s}}{s^{2}+9}, \text { Find } \mathscr{L}^{-1} \\
G(s)=\frac{1}{s^{2}+9} \\
=\frac{1}{s^{2}+3^{2}}
\end{gathered}
$$

$\rightarrow \mathscr{L}^{-1}\{G(s)\}=\frac{\sin 3 t}{3}$

$$
\begin{aligned}
\mathscr{L}^{-1}\{F(t)\} & =\frac{\sin 3(t-3)}{3} u_{3}(t) \\
& =\frac{\sin (3 t-9)}{3} u_{3}(t)
\end{aligned}
$$

Rectangular Window Function:

$$
\prod_{a, b}(t)= \begin{cases}0, & t<a \\ 1, & a<t<b \\ 0, & t>b\end{cases}
$$

Figure 12: $=u_{a}(t-a)-u_{b}(t-b)$

Example 5.3.4

$$
F(s)=e^{-s} \frac{3 s^{2}-s+2}{(s-1)\left(s^{2}+1\right)}
$$

Consider:

$$
\begin{aligned}
\frac{3 s^{2}-s+2}{(s-1)\left(s^{2}+1\right)} & =\frac{A}{s-1}+\frac{B x+C}{s^{2}+1} \\
& =\frac{2}{s-1}+\frac{s}{s^{2}+1}
\end{aligned}
$$

$$
\begin{gathered}
\mathscr{L}^{-1}\left\{\frac{2 e^{-s}}{s-1}\right\}(t)+\mathscr{L}^{-1}\left\{\frac{e^{-s} s}{s^{2}+1}\right\}(t) \\
=\left[2 \mathscr{L}^{-1}\left\{\frac{1}{s-1}\right\}(t-1)+\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+1}\right\}(t-1)\right] u_{1}(t) \\
=\left[2 e^{t-1}+\cos (t-1)\right] u_{1}(t)
\end{gathered}
$$

5.4 Discontinuous Forcing Functions

Example 5.4.1

$$
\begin{gathered}
y^{\prime \prime}+y=u_{3 \pi}(t), \quad y(0)=1, \quad y^{\prime}(0)=0 \\
\mathscr{L}\left\{y^{\prime \prime}\right\}+\mathscr{L}\{y\}=\mathscr{L}\left\{u_{3 \pi}(t)\right\} \\
\left(s^{2} Y(s)-s Y(0)-y^{\prime}(0)+Y(s)\right)=\frac{e^{-3 \pi s}}{s} \\
\left(s^{2}+1\right) Y(s)=s+\frac{e^{-3 \pi s}}{s} \\
Y(s)=\frac{s}{s^{2}+1}+\frac{e^{-3 \pi s}}{s\left(s^{2}+1\right)} \\
Y(s)=\frac{s}{s^{2}+1}+e^{-3 \pi s}\left(\frac{1}{s}-\frac{s}{s^{2}+1}\right) \\
y(t)=\cos t+u_{3 \pi}(t)[1-\cos (t-3 \pi)]
\end{gathered}
$$

- For $0 \leq t<3 \pi$:

$$
y(t)=\cos t
$$

- For $t \geq 3 \pi$:

$$
\begin{aligned}
y(t) & =\cos t+1-\cos (t-3 \pi) \\
& =2 \cos t+1
\end{aligned}
$$

Let's look deeper into the above example. For $0 \leq t<3 \pi$

$$
\begin{aligned}
y(t) & =\cos t \\
y^{\prime}(t) & =-\sin t \\
y^{\prime \prime}(t) & =-\cos t
\end{aligned}
$$

For $t \geq 3 \pi$:

$$
\begin{aligned}
y(t) & =2 \cos t+1 \\
y^{\prime}(t) & =-2 \sin t \\
y^{\prime \prime}(t) & =-2 \cos t
\end{aligned}
$$

$$
\begin{gathered}
\lim _{t \rightarrow 3 \pi^{-}} \cos t=\cos 3 \pi=-1 \\
\lim _{t \rightarrow 3 \pi^{+}}(\cos 2 t+1)=2(-1)+1=-1
\end{gathered}
$$

For $1^{\text {st }}$ derivative:

$$
\begin{gathered}
\lim _{t \rightarrow 3 \pi^{-}}-\sin t=0 \\
\lim _{t \rightarrow 3 \pi^{+}}(-2 \sin t)=0
\end{gathered}
$$

For $2^{\text {nd }}$ derivative:

$$
\begin{gathered}
\lim _{t \rightarrow 3 \pi^{-}}-\cos t=1 \\
\lim _{t \rightarrow 3 \pi^{+}}-2 \cos t=2
\end{gathered}
$$

which shows the limit does not exist. So $y^{\prime \prime}$ is discontinuous at $t=3 \pi$

Example 5.4.2

$$
\begin{gathered}
y^{\prime \prime}+4 y=\sin t+u_{\pi}(t) \sin (t-\pi), \quad y(0)=0, \quad y^{\prime}(0)=0 \\
\mathscr{L}\left\{y^{\prime \prime}\right\}+4 \mathscr{L}\{y\}=\mathscr{L}\{\sin t\}+\mathscr{L}\left\{u_{\pi}(t) \sin (t-\pi)\right\} \\
s^{2} Y(s)-s y(0)-y^{\prime}(0)+4 Y(s)=\frac{1}{s^{2}+1}+e^{-\pi s} \frac{1}{s^{2}+1} \\
Y(s)=\left(1+e^{-\pi s}\right) \frac{1}{\left(s^{2}+1\right)\left(s^{2}+4\right)} \\
Y(s)=\left(1+e^{-\pi s}\right)\left(\frac{\frac{1}{3}}{s^{2}+1}-\frac{\frac{1}{3}}{s^{2}+4}\right) \\
Y(s)=\left(1+e^{-\pi s}\right)\left[\frac{1}{3}\left(\frac{1}{s^{2}+1}\right)-\frac{1}{6}\left(\frac{2}{s^{2}+2^{2}}\right)\right]
\end{gathered}
$$

Let $H(s)=\frac{1}{3}\left(\frac{1}{s^{2}+1}\right)-\frac{1}{6}\left(\frac{2}{s^{2}+2^{2}}\right)$.

$$
\begin{aligned}
\mathscr{L}^{-1}\{H(s)\} & =\frac{1}{3} \sin t-\frac{1}{6} \sin 2 t \\
\mathscr{L}\left\{e^{-\pi s} H(s)\right\} & =u_{\pi}(t)\left[\frac{1}{3} \sin (t-\pi)-\frac{1}{6} \sin (2(t-\pi))\right] \\
& =-u_{\pi}(t)\left[\frac{1}{3} \sin t+\frac{1}{6} \sin 2 t\right]
\end{aligned}
$$

Putting Together

$$
y(t)=\frac{1}{3} \sin t-\frac{1}{6} \sin 2 t-u_{\pi}(t)\left(\frac{1}{3} \sin t+\frac{1}{6} \sin 2 t\right)
$$

6 PDE - Heat Equation - Fourier Series

6.1 Intro to PDE - Heat Conduction in a Rod

Review: $u_{t}=\frac{\partial u}{\partial t}, u_{x x}=\frac{\partial^{2} u}{\partial x^{2}}$

$$
\begin{aligned}
u & =f(t, x, y) \\
u_{t} & =u_{x x}+u_{y y}
\end{aligned}
$$

which is known as the 2 dimensional heat equation. Order of PDE:

$$
\begin{aligned}
& u_{t}=u_{x x}: 2^{\text {nd }} \text { order } \\
& u_{t}=u u_{x x x}+\sin x: 3^{\text {rd }} \text { order }
\end{aligned}
$$

Number of Variables:

$$
\begin{aligned}
& u_{t}=u_{x x}: 2 \text { vars } \\
& u_{x}=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{t t}: 3 \text { vars }
\end{aligned}
$$

$2^{\text {nd }}$ order linear PDE in 2 variables:

$$
A u_{x x}+B u_{x y}+C u_{y y}+D u_{x}+E u_{y}+F u=G
$$

where $\mathrm{A}, \mathrm{B}, \ldots, \mathrm{G}$ are constants or function of x and y .
Example 6.1.1 Nonlinear PDE:

$$
\begin{gathered}
u u_{x x}+u_{t}=0 \\
x u_{x}+y u_{y}+u^{2}=0
\end{gathered}
$$

There are 3 basic types of linear equation:

1. Parabolic Equation: $B^{2}-4 A C=0$ (heat equation, diffusion)
2. Hyperbolic Equation: $B^{2}-4 A C>0$ (vibrating system, wave equation)
3. Elliptic Equation: $B^{2}-4 A C<0$ (steady-state)

Heat Equation:

$$
\left\{\begin{array}{l}
\mathrm{PDE} \\
\mathrm{BC} \\
\mathrm{IC}
\end{array}\right.
$$

Extend superposition to ∞ (infinite linear combination)
From fig. 13, let's assume heat constant in any given cross-section and no heat lost to the side.

$$
\begin{align*}
\alpha^{2} u_{x x} & =u_{t}, \quad 0<x<L, t>0 \tag{*}\\
\alpha^{2} & =\frac{\kappa}{\rho \cdot s}
\end{align*}
$$

where κ is thermal conductivity and ρ is the density of the object and s is the specific heat

Figure 13: A rod in Heat Conduction Problem

IC:

$$
u(x, 0)=f(x), \quad 0 \leq x \leq L
$$

Assume T_{1} at $x=0, T_{2}$ at $x=L$ and $T_{1}=T_{2}=0$. The boundary condition (BC) is:

$$
u(0, t)=0, u(L, t)=0, \quad t>0
$$

Now, our ansatz is (based on separation of variables):

$$
\begin{gathered}
u(x, t)=X(x) T(t) \\
u(x, t)=X T \\
u_{x x}=X^{\prime \prime} T, \quad u_{t}=X T^{\prime}
\end{gathered}
$$

Sub into (*), we obtain:

$$
\begin{aligned}
\alpha^{2} X^{\prime \prime} T & =X T^{\prime} \\
\frac{X^{\prime \prime}}{X}=\frac{1}{\alpha^{2}} \frac{T^{\prime}}{T} & =-\sigma, \quad \sigma>0
\end{aligned}
$$

Thus, we can observe that we can split a PDE into a system of ODEs:

$$
\begin{gathered}
X^{\prime \prime}+\sigma X=0 \\
T^{\prime}+\alpha^{2} \sigma T=0
\end{gathered}
$$

We also need to solve BC based from our ansatz

$$
\begin{aligned}
& u(0, t)=X(0) T(t)=0 \\
& X(0)=0, \quad T(t)=0 \quad \forall t
\end{aligned}
$$

We must have $X(0)=0$ by same $\arg X(L)=0\left(2\right.$ pts BVP). First, let $\sigma=\lambda^{2}$ to avoid radical sign

$$
\begin{gathered}
X^{\prime \prime}+\sigma X=0 \\
X^{\prime \prime}+\lambda^{2} X=0 \\
X(x)=k_{1} \cos (\lambda x)+k_{2} \sin (\lambda x)
\end{gathered}
$$

The $1^{\text {st }} \mathrm{BC}: ~ X(0)=0$

$$
\begin{aligned}
& X(0)=k_{1} \cos 0+k_{2} \sin 0 \quad \rightarrow \quad k_{1}=0 \\
& X(x)=k_{2} \sin (\lambda x)
\end{aligned}
$$

The $2^{\text {nd }} \mathrm{BC}: ~ X(L)=0$

$$
\begin{gathered}
k_{2} \sin (\lambda L)=0 \\
\sin (\lambda L)=0 \\
\lambda=\frac{n \pi}{L}, \quad n \in \mathbb{Z}^{+} \\
\lambda^{2}=\frac{n^{2} \pi^{2}}{L^{2}}
\end{gathered}
$$

The value of σ that yield non-trivial solution are called eigenvalues of BVP (boundary value problem)

$$
X(x)=\sin \left(\frac{n \pi x}{L}\right)
$$

are called eigenfunction. Substitute σ :

$$
\begin{gathered}
T^{\prime}+\alpha^{2} \sigma T=0 \text { yield: } \\
T^{\prime}+\left(\frac{n^{2} \pi^{2} \alpha^{2}}{L^{2}}\right) T=0 \\
T(t)=e^{-\frac{n^{2} \pi^{2} \alpha^{2} t}{L^{2}}} \\
u_{n}(x, t)=X(x) T(t) \\
u_{n}(x, t)=e^{-\frac{n^{2} \pi^{2} \alpha^{2} t}{L^{2}}} \sin \left(\frac{n \pi x}{L}\right), n \in \mathbb{Z}^{+}
\end{gathered}
$$

which is the fundamental solution of heat conduction. Extending this using principle of superposition to ∞, we obtain:

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} u_{n}(x, t)
$$

Unless:

$$
f(x)=b_{1} \sin \left(\frac{\pi x}{L}\right)+b_{2} \sin \left(\frac{2 \pi x}{L}\right)+\ldots+b_{m} \sin \left(\frac{m \pi x}{L}\right)
$$

Example 6.1.2

$$
\begin{gathered}
\text { PDE: } \quad \alpha^{2} u_{x x}=u_{t}, \quad 0<x<L, \quad t>0 \\
I C: \quad u(x, 0)=f(x), \quad 0 \leq x \leq L \\
B C: u(0, t)=0, \quad u(L, t)=0
\end{gathered}
$$

Ansatz: $u(x, t)=X(x) T(t), t>0$. Then fundamental solution of heat conduction is

$$
u_{n}(x, t)=e^{\frac{-n^{2} \pi^{2} \alpha^{2} t}{L^{2}}} \sin \left(\frac{n \pi x}{L}\right), \quad n \in \mathbb{Z}^{+}
$$

We also have:

$$
u(x, t)=\sum_{n=1}^{m} c_{n} u_{n}(x, t)
$$

where Fourier series would determined c_{n}, the sine series, unless:

$$
f(x)=b_{1} \sin \left(\frac{n \pi x}{L}\right)+b_{2} \sin \left(\frac{2 \pi x}{L}\right)+\ldots+b_{m} \sin \left(\frac{m \pi x}{L}\right)
$$

Example 6.1.3

$$
\begin{gathered}
P D E: \quad 100 u_{x x}=u_{t}, \quad 0<x<1, \quad t>0 \\
I C: \quad u(x, 0)=\sin (2 \pi x)-\sin (5 \pi x), \quad 0 \leq x \leq 1 \\
B C: \quad u(0, t)=0, \quad u(1, t)=0, \quad t>0
\end{gathered}
$$

Soln: $u_{n}(x, t)=e^{-100 n^{2} \pi^{2} t} \sin (n \pi x)$

$$
I C: u(x, 0)=\sin (2 \pi x)-\sin (5 \pi x), \quad 0 \leq x \leq 1
$$

when $t=0$.

$$
\left.\left.\begin{array}{l}
u_{n}(x, 0)=\sin (n \pi x)
\end{array}\right) \quad \begin{array}{rl}
n e e d \\
n(x, 0) & =c_{2} u_{2}(x, t)+c_{5} u_{5}(x, t) \\
& =c_{2} \sin 2 \pi x+c_{5} \sin 5 \pi x
\end{array}\right\}
$$

So, our final solution is:

$$
u(x, t)=e^{-400 \pi^{2} t} \sin 2 \pi x-e^{-2500 \pi^{2} t} \sin 5 \pi x
$$

6.2 Fourier Series

$$
\begin{equation*}
f(x)=\frac{a_{0}}{2}+\sum_{m=1}^{\infty}\left(a_{m} \cos \frac{m \pi x}{L}+b_{m} \sin \frac{m \pi x}{L}\right) \tag{*}
\end{equation*}
$$

Solve for a_{m} and b_{m} cab be very complicated.

$$
f(x)=\cos \pi x+\frac{1}{2} \cos 13 \pi x+\frac{1}{4} \cos 169 \pi x+\frac{1}{8} \cos 2197 \pi x+\ldots
$$

which is convergent and continuous $\forall x$ but it's never differentiable \rightarrow pathological function.
$\underline{\text { Periodicity of } \sin / \mathbf{c o s} \text { function }: ~} f$ is periodic with $T>0$

$$
\begin{gathered}
f(x+T)=f(x), \forall x \in \operatorname{dom}(\mathrm{f}) \\
\sin \frac{m \pi x}{L}, \cos \frac{m \pi x}{L}, T=\frac{2 L}{m}
\end{gathered}
$$

Orthogonality of sin and cos function inner product (u, v) defined $\alpha \leq x \leq \beta$

$$
(u, v)=\int_{\alpha}^{\beta} u(x) v(x) d x=0
$$

if u and v are orthogonal

- $\int_{-L}^{L} \cos \frac{m \pi x}{L} \cos \frac{n \pi x}{L} d x=\left\{\begin{array}{l}0, \text { if } m \neq n \\ L, \text { if } m=n\end{array}\right.$
- $\int_{-L}^{L} \cos \frac{n \pi x}{L} \sin \frac{n \pi x}{L} d x=0 \forall m, n$
- $\int_{-L}^{L} \sin \frac{m \pi x}{L} \sin \frac{n \pi x}{L} d x= \begin{cases}0, & \text { if } m \neq n \\ L, & \text { if } m=n\end{cases}$

1. Multiply (*) by $\cos \frac{n \pi x}{L}$ when n fixed $(n>0)$
2. Integrate with respect to x from -L to L .

$$
\begin{aligned}
& \int_{-L}^{L} f(x) \cos \frac{n \pi x}{L} d x=\frac{a_{0}}{2} \int_{-L}^{L} \cos \frac{n \pi x}{L} d x+\sum_{m=1}^{\infty} a_{m} \int_{-L}^{L} \cos \frac{m \pi x}{L} \cos \frac{n \pi x}{L} d x+ \\
& \sum_{m=1}^{\infty} b_{m} \int_{-L}^{L} \sin \frac{m \pi x}{L} \cos \frac{n \pi x}{L} d x
\end{aligned}
$$

Euler - Fourier Formulas:

$$
\begin{aligned}
a_{n} & =\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n \pi x}{L} d x, \quad n=0,1,2,3 \ldots \\
b_{n} & =\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n \pi x}{L} d x, \quad n \in \mathbb{Z}^{+}
\end{aligned}
$$

Example 6.2.1

$$
f(x)=\left\{\begin{array}{l}
x+L, \quad-L \leq x \leq 0 \\
L, \quad 0<x \leq L
\end{array}\right.
$$

Fourier Series:

$$
f(x)=\frac{3 L}{4}+\sum_{n=1}^{\infty}\left[\frac{2 L \cos \left(\frac{(2 n-1) \pi x}{L}\right)}{(2 n-1)^{2} \pi^{2}}+\frac{(-1)^{n-1} \sin \left(\frac{n \pi x}{L}\right)}{n \pi}\right]
$$

6.3 The Fourier Convergence Theorem

THEOREM

Suppose that f and f^{\prime} are piecewise continuous on the interval $-L \leq x<L$. Furthermore, suppose that f is defined outside the interval $-L \leq x<L$ so that it is periodic with period 2L. Then f has a Fourier series

$$
f(x)=\frac{a_{0}}{2}+\sum_{m=1}^{\infty}\left(a_{m} \cos \frac{m \pi x}{L}+b_{m} \sin \frac{m \pi x}{L}\right)
$$

whose coefficients are given as

$$
\begin{aligned}
a_{m} & =\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{m \pi x}{L} d x, m=0,1,2, \ldots \\
b_{m} & =\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{m \pi x}{L} d x, \quad m=1,2, \ldots
\end{aligned}
$$

The Fourier series converges to $f(x)$ at all points where f is continuous and to $[f(x+)+f(x-)] / 2$ at all points where f is discontinuous.

Note:

$$
f(x+)=\lim _{x \rightarrow x_{0}^{+}} f(x), f(x-)=\lim _{x \rightarrow x_{0}^{-}} f(x)
$$

As n increases, partial sum $s_{n} \rightarrow f(x)$ as $n \rightarrow \infty$ happens converges smoothly where $f(x)$, but at points of discontinuity, partial converges smoothly to the new value which tends to overshoot. (Gibbs Phenomenon)

$$
\lim _{n \rightarrow \infty} S_{n}=\frac{f\left(x_{0}^{-}\right)+f\left(x_{0}^{+}\right)}{2}
$$

There exists a way to remove Gibbs phenomenon called Lanczos sigma factor

$$
\frac{a_{0}}{2}+\sum_{n=0}^{m} \sin \left(\frac{n \pi}{2 m}\right)\left[a_{n} \cos \frac{n \pi x}{2}+b_{n} \sin \frac{n \pi x}{L}\right]
$$

6.4 Even and Odd Functions

Recall:

Even: $\quad f(-x)=f(x)$
Odd: $f(-x)=-f(x)$

Elementary Properties:

1. Sum(difference) and product (quotient) of 2 even functions are even.
2. Sum (difference) of 2 odd functions is odd. But the product (quotient) of 2 odd functions are even.
3. Sum (difference) of an odd function and an even function is neither. The product (quotient) of an odd and even function is odd.
4. If $f(x)$ is even, then $\int_{-L}^{L} f(x) d x=2 \int_{0}^{L} f(x) d x$
5. If $f(x)$ is odd, then $\int_{-L}^{L} f(x) d x=0$

Cosine Series:

$$
f:\left\{\begin{array}{l}
\text { even } \\
\text { periodic (2L) }
\end{array}\right.
$$

$\rightarrow f(x) \cdot \cos \left(\frac{n \pi x}{L}\right)$ is even and $f(x) \cdot \sin \left(\frac{n \pi x}{L}\right)$ is odd. Fourier coefficient of f :

$$
\begin{gathered}
a_{m}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x, n=0,1,2,3, \ldots \\
b_{n}=0 \\
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}
\end{gathered}
$$

Sine Series:

$$
f:\left\{\begin{array}{l}
\text { odd } \\
\text { periodic (2L) }
\end{array}\right.
$$

$f(x) \cdot \cos \left(\frac{n \pi x}{L}\right)$ is odd, and $f(x) \cdot \sin \left(\frac{n \pi x}{L}\right)$ is even.

$$
\begin{gathered}
a_{n}=0, n=0,1,2 \ldots \\
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, \quad n \in \mathbb{Z}^{+} \\
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L}
\end{gathered}
$$

Even and Odd Extensions:

- For an even periodic extension, define g of period 2L such that

$$
g(x)=\left\{\begin{array}{l}
f(x), \quad 0 \leq x \leq L \\
f(-x), \quad-L<x<0
\end{array}\right.
$$

\rightarrow Fourier cosine series

- For an odd periodic extension, define h of periodic 2 L such that

$$
h(x)=\left\{\begin{array}{l}
f(x), \quad 0<x<L \\
0, \quad x=0, L \\
-f(-x), \quad-L<x<0
\end{array}\right.
$$

\rightarrow Fourier sine series
Example 6.4.1

$$
f(x)=L-x, \quad 0<x<L
$$

Find the Fourier Sine series of period $2 L$. For a sine series:

$$
\begin{aligned}
& a_{n}=0, n=0,1,2, \ldots \\
& b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x \\
&=\frac{2}{L} \int_{0}^{L}(L-x) \sin \frac{n \pi x}{L} d x \\
&=\frac{2}{L}\left[\int_{0}^{L} L \sin \frac{n \pi x}{L} d x-\int_{0}^{L} x \sin \frac{n \pi x}{L} d x\right] \\
& \vdots \\
&=\frac{-2 L}{n \pi}(\cos n \pi-\cos 0)+\frac{2}{n \pi}(L \cos n \pi-0)+\left.\frac{2}{L}\left(\frac{L}{n \pi}\right)^{2} \sin \frac{n \pi x}{L}\right|_{0} ^{L} \\
&=\frac{2 L}{n \pi} \\
& f(x)=\frac{2 L}{\pi} \sum_{n=1}^{\infty} \frac{\sin \left(\frac{n \pi x}{L}\right)}{n}
\end{aligned}
$$

6.5 Example of Solving a Complete Heat Conduction in a rod Problem:

Let's look at

$$
\text { PDE: } u_{x x}=u_{t}, \quad 0<x<1, \quad t>0
$$

$\mathrm{BC}: u(0, t)=0, u(1, t)=0, \quad t>0$
IC: $u(x, 0)=1,0<x<1$
Here $\alpha=1, L=1$

$$
u_{n}(x, t)=e^{-n^{2} \pi^{2} t} \sin (n \pi x)
$$

Since IC: $u(x, 0)=1, \quad 0<x<1$

$$
\begin{gathered}
u_{n}(x, 0)=\sin (n \pi x)=1 \\
u(x, 0)=\sum_{n=1}^{\infty} c_{n} \sin (n \pi x)=1
\end{gathered}
$$

c_{n} is coefficient of the Fourier sine series of $f(x)=1$

$$
\begin{aligned}
c_{n} & =2 \int_{0}^{1} f(x) \sin (n \pi x) d x \\
& =2 \int_{0}^{1} \sin (n \pi x) d x, \quad n \in \mathbb{Z}^{+} \\
& =-\frac{2}{n \pi}(\cos n \pi-1)
\end{aligned}
$$

- If n is even, $c_{n}=0$
- If n is odd, $c_{n}=\frac{4}{n \pi}$

Generally, $c_{2 n-1}=\frac{4}{(-1+2 n) \pi, \quad c_{2 n}=0}$. Or

$$
\begin{gathered}
\frac{4}{\pi}\left[\sin \pi x+\frac{1}{3} \sin 3 \pi x+\frac{1}{5} \sin 5 \pi x\right]=1 \\
u(x, t)=\frac{4}{\pi}\left[e^{-\pi^{2} t} \sin \pi x+\frac{1}{3} e^{-(3 \pi)^{2} t} \sin 3 \pi x+\frac{1}{5} e^{-(5 \pi)^{2} t} \sin 5 \pi x+\ldots\right] \\
u(x, t)=\sum_{n=1}^{\infty} \frac{4}{(2 n-1) \pi} e^{-(2 \pi-1)^{2} \pi^{2} t} \sin [(2 n-1) \pi x]
\end{gathered}
$$

Now, we can solve for the $\mathrm{PDE}+\mathrm{BC}+\mathrm{IC}$,

$$
\begin{gathered}
u(x, 0)=\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n \pi x}{L}\right)=f(x) \\
c_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L} d x\right)
\end{gathered}
$$

7 Boundary Value Problem

Regular Sturm - Louisville Problem:

- \exists an ∞ numbers of \mathbb{R} eigenvalues that can be arranged in increasing order $\lambda_{1}<\lambda_{2}<\ldots<\lambda_{n}$ such that $\lambda_{n} \rightarrow \infty$ as $n \rightarrow \infty$
- For each λ, there exists a unique eigenfunction
- Eigenfunction corresponding to different eigenvalues are linearly independent.
- The set of eigenfunctions correspond to the set of eigenvalues is orthogonal with respect to the weight $p(x)$ on the interval I, For us, $p(x)=1$

8 System of First Order Linear Equations

Figure 14: A mechanical Spring with Multiple Nodes

$$
\begin{gathered}
t^{2} u^{\prime \prime}+t u^{\prime}+\left(t^{2}-0.25\right) u=0 \\
u^{\prime \prime}=-\frac{1}{t} u^{\prime}-\left(1-\frac{1}{4 t^{2}}\right) u
\end{gathered}
$$

Set $x_{1}=u$ and $x_{2}=u^{\prime} \rightarrow x_{1}^{\prime}=x_{2}$

$$
\begin{gathered}
x_{2}^{\prime}=u^{\prime \prime}=-\frac{1}{t} u^{\prime}-\left(1-\frac{1}{4 t^{2}}\right) u \\
\left\{\begin{array}{l}
x_{1}^{\prime}=x_{2} \\
x_{2}^{\prime}=-\left(1-\frac{1}{4 t^{2}}\right) x_{1}-\frac{1}{t} x_{2}
\end{array}\right. \\
x_{1}^{\prime}=-2 x_{1}+x_{2}, \quad x_{2}^{\prime}=x_{1}-2 x_{2} \\
\left(x_{1}^{\prime}+2 x_{1}\right)^{\prime}=x_{1}-2\left(x_{1}^{\prime}+2 x_{1}\right) \\
x_{1}^{\prime \prime}+2 x_{1}^{\prime}=x_{1}-2 x_{1}^{\prime}-4 x_{1} \\
x_{1}^{\prime \prime}+4 x_{1}^{\prime}+3 x_{1}=0
\end{gathered}
$$

which can be solved from the characteristics equation.

8.1 Homogeneous Linear Systems (Constant Coefficient)

$$
\begin{equation*}
\vec{x}^{\prime}=\vec{A} \vec{x}, \quad A=n \times n \tag{*}
\end{equation*}
$$

For $n=1$: system reduces to $\frac{d x}{d t}=a x$, solution is $x=c e^{a t}$ in section 3 that we saw. Notice that $\lambda=0$ is the only equilibrium solution if $a \neq 0$

- If $a<0$ - asymptotically stable \rightarrow sink
- $a>0$ - asymptotically unstable \rightarrow source

For $\mathrm{n}=2$, this is important if it has visualization in the x_{1} and x_{2} plane called a phase plane. Evaluate $\vec{A} \vec{x}$ at a large number of points and plot the resulting vector yields a direction field of tangent vector to the solution of the system. To $\left(^{*}\right)$, ansatz solns will involve $e^{r t}$. Also, (*) are vector so we multiply $e^{r t}$ by a constant vector.

$$
\begin{equation*}
\vec{x}=\xi e^{r t} \tag{**}
\end{equation*}
$$

Sub into (*), we have:

$$
\begin{align*}
& r \xi e^{r t}=\vec{A} \xi e^{r t} \\
& (\vec{A}-r \vec{I} \xi=\overrightarrow{0} \tag{***}
\end{align*}
$$

The problem of determining the eigenvalues and eigenvectors of \vec{A} provided $\mathrm{r}-$ av eigenvalue and $\xi=a_{n}$ associated eigenvector.

Example 8.1.1

$$
\vec{x}^{\prime}=\left(\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right) \vec{x}
$$

Ansatz: $\vec{x}=\xi e^{r t} \operatorname{From}(* * *)$,

$$
\begin{gathered}
(\vec{A}-r \vec{I}) \xi=\overrightarrow{0} \\
\left(\begin{array}{cc}
1-r & 1 \\
4 & -2-r
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0}
\end{gathered}
$$

$\operatorname{det}(\vec{A}-r \vec{I})=0$,

$$
\left|\begin{array}{cc}
1-r & 1 \\
4 & -2-r
\end{array}\right|=(1-r)(-2-r)-4
$$

So, $r^{2}+r-6=0 \rightarrow r_{1}=2, r_{2}=-3$ are eigenvalues

- $r_{1}=2$

$$
\begin{gathered}
\binom{-\xi_{1}+\xi_{2}}{4 \xi_{1}-4 \xi_{2}}=\binom{0}{0} \\
\xi_{1}=\xi_{2} \\
\xi^{(1)}=(1,1)^{T}
\end{gathered}
$$

- $r_{2}=3$

$$
\begin{gathered}
\binom{4 \xi_{1}+\xi_{2}}{4 \xi_{1}+\xi_{2}}=\binom{0}{0} \\
\xi^{(2)}=(1,-4)^{T}
\end{gathered}
$$

Therefore,

$$
\vec{x}=c_{1}\binom{1}{1} e^{2 t}+c_{2}\binom{1}{-4} e^{-3 t}
$$

Breaking apart the general soln:

$$
\vec{x}^{(1)}=\binom{1}{1} e^{2 t}, \quad \vec{x}^{(2)}=\binom{1}{-4} e^{-3 t}
$$

The Wronskian is:

$$
\begin{aligned}
W\left[\vec{x}^{(1)}, \vec{x}^{(2)}\right](t) & =\left|\begin{array}{cc}
e^{2 t} & e^{-3 t} \\
e^{2 t} & -4 e^{-3 t}
\end{array}\right| \\
& =-5 e^{-t} \neq 0 \quad \forall t
\end{aligned}
$$

So the solution forms a fundamental set of solution

- For $\vec{x}^{(1)}(t)$: the scalar form

$$
x_{1}=c_{1} e^{2 t}, \quad x_{2}=c_{1} e^{2 t}
$$

eliminate $c_{1}, \mathrm{t} \rightarrow x_{1}=x_{2}$. Solution lives on the straight line $x_{2}=x_{1}$ in quadrant I for $c_{1}>0$ and QII for $c_{1}<0$. In either case, solution depart from the origin as t increases.

- For $\vec{x}^{(2)}(t)$: scalar form

$$
\begin{gathered}
x_{1}=c_{2} e^{-3 t}, \quad x_{2}=-4 c_{2} e^{-3 t} \\
x_{1}=-\frac{1}{4} x_{2} \rightarrow \text { soln in QIV for } c_{2}>0 \\
\text { and QII for } c_{2}<0
\end{gathered}
$$

In both cases, it moves towards the origin. For large t , the term $c_{1} \vec{x}^{(1)}(t)$ is dominant and term $c_{2} \vec{x}^{(2)}(t)$ become negligible.

Figure 15: The direction field

Example 8.1.2

$$
\vec{x}^{\prime}=\left(\begin{array}{ll}
1 & -2 \\
3 & -4
\end{array}\right) \vec{x}
$$

Ansatz: $\vec{x}=\vec{\xi} e^{r t}$

$$
\begin{gathered}
(\vec{A}-r \vec{I}) \vec{\xi}=\overrightarrow{0} \\
\left(\begin{array}{cc}
1-r & -2 \\
3 & -4-r
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0} \\
\operatorname{det}(\vec{A}-r \vec{I})=0 \\
-(1-r)(4+r)+6=0 \\
r_{1}=-1, \quad r_{2}=-2
\end{gathered}
$$

- If $r_{1}=-1$:

$$
\begin{gathered}
\binom{2 \xi_{1}-2 \xi_{2}}{3 \xi_{1}-3 \xi_{2}}=\binom{0}{0} \\
\xi_{1}=\xi_{2} \\
\xi^{(1)}=(1,1)^{T}
\end{gathered}
$$

- If $r_{2}=-2$:

$$
\begin{gathered}
\binom{3 \xi_{1}-2 \xi_{2}}{3 \xi_{1}-2 \xi_{2}}=\binom{0}{0} \\
3 \xi_{1}=2 \xi_{2} \\
\vec{\xi}^{(2)}=(2,3)^{T}
\end{gathered}
$$

General solution:

$$
\vec{x}=c_{1}\binom{1}{1} e^{-t}+c_{2}\binom{2}{3} e^{-2 t}
$$

which has original stable node
Example 8.1.3

$$
\vec{x}^{\prime}=\left(\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 1 \\
2 & 1 & 1
\end{array}\right) \vec{x}
$$

Ansatz: $\vec{x}=\vec{\xi} e^{r t}$

$$
\begin{gathered}
\left(\begin{array}{ccc}
1-r & 1 & 2 \\
1 & 2-r & 1 \\
2 & 1 & 1-r
\end{array}\right)\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3}
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0
\end{array}\right) \\
r^{3}-4 r^{2}-r+4=0 \\
\\
r_{1}=4, \quad r_{2}=1, \quad r_{3}=-1
\end{gathered}
$$

- $r_{1}=4$

$$
\begin{gathered}
\left(\begin{array}{c}
-3 \xi_{1}+\xi_{2}+2 \xi_{3} \\
\xi_{1}-2 \xi_{2}+\xi_{3} \\
2 \xi_{1}+\xi_{2}-3 \xi_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
\vec{\xi}^{(1)}=(1,1,1)^{T}
\end{gathered}
$$

- $r_{2}=1$

$$
\begin{gathered}
\left(\begin{array}{c}
\xi_{2}+2 \xi_{3} \\
\xi_{1}+\xi_{2}+\xi_{3} \\
2 \xi_{1}+\xi_{2}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
\vec{\xi}^{(2)}=(1,-2,1)^{T}
\end{gathered}
$$

- $r_{3}=-1$

$$
\begin{gathered}
\left(\begin{array}{c}
2 \xi_{1}+\xi_{2}+2 \xi_{3} \\
\xi_{1}+3 \xi_{2}+\xi_{3} \\
2 \xi_{1}+\xi_{2}+2 \xi_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
\vec{\xi}^{(3)}=(1,0,-1)^{T}
\end{gathered}
$$

General Soln:

$$
\vec{x}=c_{1}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) e^{4 t}+c_{2}\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right) e^{t}+c_{3}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right) e^{-t}
$$

8.2 Complex Eigenvalues

$$
\begin{gathered}
\vec{x}^{\prime}=\left(\begin{array}{cc}
-1 & -4 \\
1 & -1
\end{array}\right) \vec{x} \\
\left(\begin{array}{cc}
-1-r & -4 \\
1 & -1-r
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0} \\
r^{2}+2 r+5=0 \\
r=-1 \pm 2 i
\end{gathered}
$$

- $r_{1}=-1+2 i$

$$
\begin{gathered}
\binom{-2 i \xi_{1}-4 \xi_{2}}{\xi_{1}-2 i \xi_{2}}=\binom{0}{0} \\
\vec{\xi}^{(1)}=(2 i, 1)^{T}
\end{gathered}
$$

- $r_{2}=-1-2 i$

$$
\begin{gathered}
\binom{2 i \xi_{1}-4 \xi_{2}}{\xi_{1}+2 i \xi_{2}}=\binom{0}{0} \\
\vec{\xi}^{(2)}=(-2 i, 1)^{T} \\
\vec{x}=c_{1}\binom{2 i}{1} e^{(-1+2 i) t}+c_{2}\binom{-2 i}{1} e^{(-1-2 i) t}
\end{gathered}
$$

Breaking apart the solution, we get:

$$
\begin{aligned}
\vec{x}^{(1)}(t) & =\binom{2 i}{1} e^{-t}(\cos 2 t+i \sin 2 t) \\
& =\binom{-2 e^{-t} \sin 2 t}{e^{-t} \cos 2 t}+i\binom{2 e^{-t} \cos 2 t}{e^{-t} \sin 2 t}
\end{aligned}
$$

So,

$$
\vec{x}=c_{1} e^{-t}\binom{-2 \sin 2 t}{\cos 2 t}+c_{2} e^{-t}\binom{2 \cos 2 t}{\sin 2 t}
$$

Let's then calculate the Wronskian

$$
\begin{gathered}
\vec{u}(t)=e^{-t}\binom{-2 \sin 2 t}{\cos 2 t} \\
\vec{v}(t)=e^{-t}\binom{2 \cos 2 t}{\sin 2 t} \\
W(\vec{u}, \vec{v})(t)=\left|\begin{array}{cc}
-2 e^{-t} \sin 2 t & 2 e^{-t} \cos 2 t \\
e^{-t} \cos 2 t & e^{-t} \sin 2 t
\end{array}\right|=-2 e^{-2 t} \neq 0
\end{gathered}
$$

which forms the fundamental set of solutions (spiral point stable)
Example 8.2.1

$$
\vec{x}^{\prime}=\left(\begin{array}{cc}
0 & -5 \\
1 & \alpha
\end{array}\right) \vec{x}
$$

a) Determine the eigenvalue in term of α

$$
\begin{gathered}
\left(\begin{array}{cc}
-r & -5 \\
1 & \alpha-r
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0} \\
r^{2}-\alpha r+5=0 \\
r_{1}=\frac{\alpha}{2}+\frac{1}{2} \sqrt{\alpha^{2}-20}, \quad r_{2}=\frac{\alpha}{2}-\frac{1}{2} \sqrt{\alpha^{2}-20}
\end{gathered}
$$

b) Find the critical value of α where the qualitative nature of the phase portrait changes.

The roots are complex when: $|\alpha|<\sqrt{20}$

- $\alpha \in(-\sqrt{20}, 0) \rightarrow$ negative real part
- $\alpha \in(0, \sqrt{20}) \rightarrow$ positive real part
- $\alpha=0 \rightarrow$ pure imaginary eigenvalues (center)
- $\alpha^{2}>20 \rightarrow$ roots are \mathbb{R} and distinct

Finally, $\alpha=\sqrt{20}$

9 Nonlinear Systems

Predator - Prey System:

$$
\begin{gather*}
x(t)=\text { prey, } \quad y(t)=\text { predator } \\
x^{\prime}(t)=x(2-3 x)-4 x y \tag{1}\\
y^{\prime}(t)=-y+3 x y \tag{2}
\end{gather*}
$$

Note: $x y$ represents the rate at which predator eats prey and term like $2-3 x$ tells us about the reproductive rate. If $y(0)=0\left(y^{\prime}(t)=0\right)$

$$
x^{\prime}(t)=2 x-3 x^{2}=0 \Longrightarrow \quad x=0, \quad x=\frac{2}{3}
$$

So $(0,0),\left(\frac{2}{3}, 0\right)$ are equilibrium points. If $y \neq 0$, then (2) becomes:

$$
\begin{gathered}
-y+3 x y=0 \\
-1+3 x=0 \Longrightarrow \quad x=\frac{1}{3}
\end{gathered}
$$

Sub $x=\frac{1}{3}$ into (1)

$$
\begin{gathered}
x(2-3 x)-4 x y=0 \\
y=\frac{1}{4}
\end{gathered}
$$

$\left(\frac{1}{3}, \frac{1}{4}\right)$ is the $3^{\text {rd }}$ equilibrium point

10 Schrodinger's Equation

We had a talk/lecture about Schrodinger's Equation from Dr. Callas (he is a project manager at NASA's Mars Exploration Rover Project and also a math professor at PCC) in June, and we got to learn about the derivation of the equation and different aspects of it from a more scientific viewpoint like physics/chemistry.

