Math 115AH - Honors Linear Algebra University of California, Los Angeles

Duc Vu

Fall 2020

Abstract

This is math 115AH - Honors Linear Algebra, a traditional first upper-division course that UCLA math students usually take. It's taught by Professor Elman, and our TA is Harris Khan. We meet weekly on MWF at 2:00pm - 2:50pm for lectures, and our discussion is on TR at $2: 00 \mathrm{pm}-2: 50 \mathrm{pm}$. With regard to book, we use Linear Algebra $2^{\text {nd }}$ by Hoffman and Kunze for the class. Note that some of the theorems' name are not necessarily the official name of the theorem; it's just a way to assign meaning to a theorem (easier for reference) instead of a tedious section number. Other course notes can be found through my github site. Please contact me at ducvu2718@ucla.edu if you find any concerning mathematical errors/typos.

Contents

1 Lec 1: Oct 2, 2020 6
1.1 Field 6
2 Lec 2: Oct 5, 2020 8
2.1 Field(Cont'd) 8
2.2 Vector Space 10
3 Lec 3: Oct 7, 2020 12
3.1 Vector Space(Cont'd) 12
3.2 Subspace 15
4 Lec 4: Oct 9, 2020 16
4.1 Span \& Subspace 16
4.2 Linear Independence 19
5 Lec 5: Oct 12, 2020 20
5.1 Linear Independence(Cont'd) 20
6 Lec 6: Oct 14, 2020 24
6.1 Bases 24
7 Lec 7: Oct 16, 2020 27
7.1 Replacement Theorem 27
7.2 Main Theorem 28
7.3 A Glance at Dimension 29
8 Lec 8: Oct 19, 2020 30
8.1 Extension and Counting Theorem 30
8.2 Linear Transformation 33
9 Lec 9: Oct 21, 2020 34
9.1 Kernel, Image, and Dimension Theorem 34
9.2 Algebra of Linear Transformation 36
9.3 Linear Transformation Theorems 37
10 Lec 10: Oct 23, 2020 39
10.1 Monomorphism, Epimorphism, and Isomorphism 39
10.2 Existence of Linear Transformation 41
11 Lec 11: Oct 26, 2020 43
11.1 Lec 10 (Cont'd) 43
11.2 Matrices and Linear Transformations 45
12 Lec 12: Oct 28, 2020 46
12.1 Lec 11 (Cont'd) 46
13 Lec 13: Oct 30, 2020 52
13.1 Some Examples of Change of Basis 52
13.2 Orthonormal Basis 54
13.3 Similarity 55
14 Lec 14: Nov 2, 2020 56
14.1 Lec 13 (Cont'd) 56
14.2 Eigenvalues and Eigenvectors 56
15 Lec 15: Nov 4, 2020 61
15.1 Lec 14 (Cont'd) 61
15.2 Inner Product Space 64
16 Lec 16: Nov 6, 2020 64
16.1 Lec 15 (Cont'd) 64
17 Lec 17: Nov 9, 2020 68
17.1 Lec 16 (Cont'd) 68
17.2 Orthogonal Bases 69
18 Veterans Day: Nov 11, 2020 72
19 Lec 18: Nov 16, 2020 72
19.1 Lec 17 (Cont'd) 72
19.2 Examples - Computation 74
20 Lec 19: Nov 18, 2020 76
20.1 Lec 18(Cont'd) 76
20.2 Orthogonal Polynomials 77
20.3 Orthogonal Complement 78
21 Lec 20: Nov 20, 2020 80
21.1 Lec 19 (Cont'd) 81
21.2 Examples of Best Approximation 83
21.3 Hermitian Operators 85
22 Lec 21: Nov 23, 2020 87
22.1 Lec 20 (Cont'd) 87
23 Lec 22: Nov 25, 2020 90
23.1 Lec 21 (Cont'd) 90
24 Lec 23: Nov 30, 2020 94
24.1 Lec 22 (Cont'd) 94
25 Lec 24: Dec 2, 2020 97
25.1 Normal Operators 97
26 Lec 25: Nov 4, 2020 100
26.1 Lec 24(Cont'd) 100
27 Lec 26: Dec 7, 2020 103
27.1 Lec 25 (Cont'd) 103
28 Lec 27: Dec 9, 2020 106
28.1 Lec 26 (Cont'd) 106
28.2 Singular Value Theorem 108
29 Lec 28: Dec 11, 2020 110
29.1 Lec 27 (Cont'd) 110
29.2 Application of SVD 112
29.3 Smith Normal Form 114
29.4 Some definitions 116
30 Extra Lec: Nov 2/9, 2020 118
30.1 Dual Bases - Dual Spaces 118
30.2 The Transpose 122
List of Theorems
3.4 Subspace 15
5.6 Toss In 23
6.4 Coordinate 25
6.5 Toss Out 25
7.1 Replacement 27
7.2 Main 28
8.1 Extension 31
8.4 Counting 31
9.4 Dimension 35
10.3 Monomorphism 39
10.5 Isomorphism 40
10.7 Existence of Linear Transformation (UPVS) 42
11.2 Classification of Finite Dimensional Vector Space 43
12.3 Matrix Theory 49
12.8 Change of Basis 51
13.4 Similar Matrices 56
14.10Cayley - Hamilton 60
19.3 Gram-Schmidt 73
19.4 Orthogonal 74
20.5 Orthogonal Decomposition 80
21.1 Pythagorean 81
21.4 Approximation 82
22.3 Fundatemental Theorem of Algebra 89
23.5 Spectral - First Version 91
23.7 Spectral Theorem for Hermitian Operator (refined) 92
25.7 Schur 98
26.3 Spectral Theorem for Normal Operator 101
27.1 Spectral Theorem for Normal Operator - Full Version 105
28.2 Singular Value 108
29.5 Polar Decomposition 112
List of Definitions
1.2 Field 7
2.1 Vector Space 11
3.3 Subspace 15
4.1 Linear Combination 16
4.2 Span 17
4.4 Subspace \& Span 18
5.1 Linear Independence \& Dependence 20
6.1 Basis 24
6.3 Ordered Basis 24
8.6 Linear Transformation 33
9.1 Kernel(Nullspace) 34
9.2 Range(Image) 35
9.7 Linear Operator 37
9.9 Properties/Consequences of Linear Transformation 38
10.2 Linear Map 39
11.5 Matrix Representation 46
12.5 Change of Basis Matrix 50
13.1 Orthonormal Basis 54
13.2 Similar Matrices 55
14.1 Eigenvalues, Eigenvectors \& Eigenspace 57
14.5 Characteristics Polynomial 59
14.8 Characteristics Polynomial 60
15.7 Inner Product Space 64
17.4 Orthonormal/Orthogonal 69
20.2 Distance from a Vector to a Set 79
20.3 Orthogonal Complement 79
21.5 Error 83
21.8 Hermitian/Self-Adjoint 85
23.1 T-invariant 90
25.5 Triangularizability 98
25.10Normal Operator 100
29.1 Singular Value Decomposition 111
29.8 Equivalent Matrix 115
29.11Companion Matrix 116
29.12Invariant Factors 116
29.13Rational Canonical Form 117
29.14Jordan Block/Size - Jordan Canonical Form 117
30.1 Linear Functionals 119
30.3 Transpose 123
30.5 Annihilator 124

§1 Lee 1: Oct 2, 2020

Remark 1.1. To know a definition, theorem, lemma, proposition, corollary, etc., you must

1. Know its precise statement and what it means without any mistake
2. Know explicit example of the statement and specific examples that do not satisfy it
3. Know consequences of the statement
4. Know how to compute using the statement
5. At least have an idea why you need the hypotheses - e.g., know counter-examples,...
6. Know the proof of the statement
7. Know the important (key) steps of in the proof, separate from the formal part of the proof - ie., the main ideas) of the proof

THIS IS NOT EASY AND TAKES TIME - EVEN WHEN YOU THINK THAT YOU HAVE MASTERED THINGS.

§1.1 Field

What are the properties of the REAL NUMBERS?

$$
\mathbb{R}:=\{x \mid x \text { is a real no. }\}
$$

- at least algebraically?

There are two FUNCTIONS (or MAPS)
$\bullet+: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ called ADDITION write $a+b:=+(a, b)$
$\bullet \cdot: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ called MULTIPLICATION write $a \cdot b:=\cdot(a, b)$
that satisfy certain rule eeg., associativity, commutativity,...

Definition 1.2 (Field) - A set F is called a FIELD if there are two functions

- Addition: $+: F \times F \rightarrow F$, write $a+b:=+(a, b)$
- Multiplication: • $F \times F \rightarrow F$, write $a \cdot b:=\cdot(a, b)$
satisfying the following AXIOMS(A: addition, M: multiplication, D: distributive)
$\mathrm{A} 1(a+b)+c=a+(b+c)$
Associativity
A2 \exists an element $0 \in F \ni a+0=a=0+a$ Existence of a Zero

A3 $\forall x \in F \exists y \in F \ni x+y=0=y+x \quad$ Existence of an Additive Inverse
$\mathrm{A} 4 a+b=b+a$
Commutativity
M1 $(a \cdot b) \cdot c=a \cdot(b \cdot c)$
M2 (A2) holds and \exists an element $\in F$ with $1 \neq 0 \ni a \cdot 1=a=1 \cdot a \quad$ Existence of a One

M3 (M2) holds and $\forall 0 \neq x \in F \quad \exists y \in F \ni x y=1=y x \quad$ Existence of a Multiplicative Inverse

M4 $x \cdot y=y \cdot x$
D1 $a \cdot(b+c)=a \cdot b+a \cdot c$
Distributive Law
$\mathrm{D} 2(a+b) \cdot c=a \cdot c+b \cdot c$

Comments: Let F be a field, $a, b \in F$. Then the following are true

1. $F \neq \emptyset$ (F at least has 2 elements)
2. 0 and 1 are unique
3. If $a+b=0$, then b is unique write b as $-a$:
if $a+b=a+c$, then

$$
\begin{aligned}
b & =b+0 \\
& =b+(a+c) \\
& =(b+a)+c \\
& =(a+b)+c \\
& =0+c \\
& =c
\end{aligned}
$$

4. if $a+b=a+c$, then $b=c$
5. if $a \neq 0$ and $a b=1=b a$, then b is unique write a^{-1} for b.
6. $0 \cdot a=0 \forall a \in F$

$$
0 \cdot a+0 \cdot a=(0+0) \cdot a=0 \cdot a=0 \cdot a+0
$$

so $0 \cdot a=0$ by 3 .
7. if $a \cdot b=0$, then $a=0$ or $b=0$. If $a \neq 0$, then $0=a^{-1}(a b)=\left(a^{-1} a\right) b=1 b=b$
8. if $a \cdot b=a \cdot c, a \neq 0$, then $b=c$
9. $(-a)(-b)=a b$
10. $-(-a)=a$
11. if $a \neq 0$, then $a^{-1} \neq 0$ and $\left(a^{-1}\right)^{-1}=a$

Example 1.3

$$
\begin{gathered}
\mathbb{Q}:=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}, b \neq 0\right\} \\
\mathbb{R}:=\text { set of real no. } \\
\mathbb{C}:=\{a+b i \mid a, b \in \mathbb{R}\} \text { with } \\
(a+b \sqrt{-1}+(c+d \sqrt{-1})=(a+c)+(b+d) \sqrt{-1} \\
(a+b \sqrt{-1}) \cdot(c+d \sqrt{-1})=(a c-b d)+(a d+b c) \sqrt{-1}
\end{gathered}
$$

$\forall a, b, c, d \in \mathbb{R}$
Under usual + , of C

$$
\mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}
$$

are all field and we say \mathbb{Q} is a subfield of $\mathbb{R}, \mathbb{Q}, \mathbb{R}$ subfield of \mathbb{C}, i.e., they have the same $+, \cdot, 0,1$.
\mathbb{Z} is not a field as $\nexists n \in \mathbb{Z} \ni 2 n=1$, so \mathbb{Z} do not satisfy (M3).

Note:To show something is FALSE, we need only one COUNTER-EXAMPLE. To show something is TRUE, one needs to show true for all elements - not just example.

§2 Lec 2: Oct 5, 2020

§2.1 Field(Cont'd)

Note: \mathbb{Z} does satisfy the weaker properly if $a, b \in \mathbb{Z}$ then
(M3') if $a b=0$ in \mathbb{Z}, then $a=0$ or $b=0$ and all other axioms except M3 hold

1. Let $F=\{0,1\}, \quad 0 \neq 1$. Define,$+ \cdot$ by following table Then F is a field.

Table 1: ADDITION

+	0	1
0	0	1
1	1	0

Table 2: MULTIPLICATION

\cdot	0	1
0	0	0
1	0	1

2. \exists fields with n elements for

$$
n=2,3,4,5,7,8,9,11,13,16,17,19, \ldots
$$

[conjecture?]
3. Let F be a field

$$
F[t]:=\{\text { (formal polynomial in one variable }\}
$$

with t , given by

$$
\begin{gathered}
\left(a_{0}+a_{1} t+a_{2} t^{2}+\ldots\right)+\left(b_{0}+b_{1} t+b_{2} t^{2}+\ldots\right):=\left(a_{0}+a_{1}\right)+\left(a_{1}+b_{1}\right) t+\left(a_{2}+b_{2}\right) t^{2}+\ldots \\
\left(a_{0}+a_{1} t+a_{2} t^{2}+\ldots\right) \cdot\left(b_{0}+b_{1} t+b_{2} t^{2}+\ldots\right):=a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) t+\ldots
\end{gathered}
$$

Note: $f, g \in F[t]$ are EQUAL iff they have the same COEFFICIENTS(coeffs) for each t^{i} (if t^{i} does not occur we assume its coeff is 0 .) $F[t]$ is not a field but satisfy all axioms except (M3) but it does satisfy (M3') (compare \mathbb{Z}). Let

$$
F(t):=\left\{\left.\frac{f}{g} \right\rvert\, f, g \in F[t], g \neq 0\right\} \quad \text { with }
$$

- $\frac{f}{g}=\frac{h}{k}$ if $f k=g h$
- $\frac{f}{g}+\frac{h}{k}:=\frac{f k+g h}{g k} \quad \forall f, g, h, k \in F[t]$
- $\frac{f}{g} \cdot \frac{h}{k}:=\frac{f h}{g k} \quad g \neq 0, \quad k \neq 0$
is a field, the FIELD of RATIONAL POLYS over F.
Note: the 0 in $F[t]$ is $\frac{0}{f}, \quad f \neq 0$, and 1 in $F[t]$ is $\frac{f}{f}, f \neq 0$.

4. let F be a field.

$$
M_{n} F:=\{A \mid A \text { an } n \times n \text { matrix entries in } F\}
$$

usual + , of matrices, i.e. for $A, B \in M_{n} F$, let

$$
A_{i j}:=i j^{\text {th }} \text { entry of } \mathrm{A}, \text { etc }
$$

Then

$$
\begin{aligned}
(A+B)_{i j} & :=A_{i j}+B_{i j} \\
(A B)_{i j}:=C_{i j} & :=\sum_{k=1}^{n} A_{i k} B_{k j} \quad \forall i, j
\end{aligned}
$$

Note: $A=B$ iff $A_{i j}=B_{i j} \forall i, j$.
If $n=1$, then
F and $M_{1} F$ and the "same" so $M_{1} F$ is a field. If $n>1$ then $M_{n} F$ is not a field nor does it satisfy (M3), (M4), (M3'). It does satisfy other axioms with

$$
I=I_{n}:=\left(\begin{array}{ccc}
1 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 1
\end{array}\right), \quad 0=0_{n}:=\left(\begin{array}{ccc}
0 & \ldots & 0 \\
\vdots & & \vdots \\
0 & \ldots & 0
\end{array}\right)
$$

§2.2 Vector Space

$\mathbb{R}^{2}:=\{(x, y) \mid x, y \in \mathbb{R}\}=\mathbb{R} \times \mathbb{R}$ Vector in \mathbb{R}^{2} are added as above and if $v \in \mathbb{R}^{2}$ is a vector,

Figure 1: Geometry in \mathbb{R}^{2}
αv makes sense $\forall \alpha \in F$ by $\alpha(x, y)=(\alpha x, \alpha y)$ called SCALAR MULTIPLICATION. For + , scalar mult and $(0,0)$ is the ZERO VECTOR satisfying various axioms. e.g., assoc, comm, "distributive law...". To abstractify this

Definition 2.1 (Vector Space) - V is a vector space over F, via,$+ \cdot$ or $(V,+, \cdot)$ is a vector space over F where

$$
\begin{aligned}
&+: V \times V \rightarrow V \quad \quad: F \times V \rightarrow V \\
& \text { Addition } \quad \text { Scalar Multiplication } \\
& \text { write }: v+w:=+(v, w) \quad \text { write: } \alpha \cdot v:=\cdot(\alpha, v) \quad \text { or } \quad \alpha v
\end{aligned}
$$

if the following axioms are satisfied

$$
\forall v, v_{1}, v_{2}, v_{3} \in V, \quad \forall \alpha, \beta \in F
$$

1. $v_{1}+\left(v_{2}+v_{3}\right)=\left(v_{1}+v_{2}\right)+v_{3}$
2. \exists an element $0 \in V \ni \quad v+0=v=0+v$
3. (2) holds and the element $(-1) v$ in V satisfies

$$
v+(-1) v=0=(-1) v+v
$$

or (2) holds and $\forall v \in V \exists w \in V \ni v+w=0=w+v$
4. $v_{1}+v_{2}=v_{2}+v_{1}$
5. $1 \cdot v=v$
6. $(\alpha \cdot \beta) \cdot v=\alpha(\beta \cdot v)$
7. $(\alpha+\beta) v=\alpha v+\beta v$
8. $\alpha\left(v_{1}+v_{2}\right)=\alpha v_{1}+\alpha v_{2}$

Elements of V are called vector, elements of F scalars .

Comments: V : a vector space over F

1. The zero of F is unique and is a scalar. The zero of V is unique and is a vector. They are different (unless $V=F$) even if we write 0 for both - should write $0_{F}, 0_{V}$ for the zero of F, V respectively.
2. if $v, w \in V, \alpha \in F$ then
$\alpha v+w \quad$ makes sense
$v \alpha, v w \quad$ do not make sense
3. We usually write
vector using Roman letter
scalar using Greek letter
exception things like $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, x_{i} \in \mathbb{R} \forall i$
4. $+: V \times V \rightarrow V$ says

$$
\text { if } v, w \in V \text {, then } v+w \in V
$$

write $v, w \in V \underbrace{\rightarrow}_{\text {implies }} v+w \in V$. We say V is CLOSED under +
5. • : $F \times V \rightarrow V$ says $\alpha \in F, v \in V \rightarrow \alpha v \in V$. We say V is CLOSED under SCALAR MULTIPLICATION.

Example 2.2

F a field, e.g., \mathbb{R} or \mathbb{C}

1. F is a vector space over F with + ,. of a field, i.e., the field operation are the vector space operation with $0_{F}=0_{V}$.
2. $F^{n}:=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \mid \alpha_{i} \in F \forall i$ is a vector space over F under COMPONENTWISE OPERATION and

$$
0_{F^{n}}:=(0, \ldots, 0)
$$

Even have

$$
F_{\text {finite }}^{\infty}=\left\{\left(\alpha_{1}, \ldots, \alpha_{n}, \ldots\right\} \mid \alpha_{i} \in F \forall i \text { with only FINITELY MANY } \alpha_{i} \neq 0\right.
$$

3. Let $\alpha<\beta$ in \mathbb{R}

$$
I=[\alpha, \beta], \quad(\alpha, \beta), \quad[\alpha, \beta), \quad(\alpha, \beta]
$$

including $(\alpha=-\infty, \beta=\infty)$. Let fxn $I:=\{f: I \rightarrow \mathbb{R} \mid f$ a fxn $\}$ called the SET of REAL VALUE FXNS on I.

Define,$+ \cdot$ as follows: $\forall f, g \in \operatorname{Fxn} I$,

$$
\begin{aligned}
& f+g \quad \text { by }(f+g)(x):=f(x)+g(x) \\
& \alpha f \quad \text { by }(\alpha f)(x):=\alpha f(x) \quad \forall \alpha \in \mathbb{R}
\end{aligned}
$$

and 0 by $0(\alpha)=0 \forall \alpha \in F$. Then Fxn I is a vector space over \mathbb{R}.

§3 Lec 3: Oct 7, 2020

§3.1 Vector Space(Cont'd)

Example 3.1

F is a field, e.g. \mathbb{R} or \mathbb{C}

1. F is a vector space over F with,$+ \cdot$ of a field, i.e. the field operation are the vector space operation with $0_{F}=0_{V}$.
2. $F^{n}:=\left\{\left(\alpha_{1}, \ldots, \alpha_{n}\right) \mid \alpha_{i} \in F \forall i\right\}$ is a vector space over F under COMPONENTWISE OPERATIONS

$$
\begin{gathered}
\left(\alpha_{1}, \ldots, \alpha_{n}\right)+\left(\beta_{1}, \ldots, \beta_{n}\right):=\left(\alpha_{1}+\beta_{1}, \ldots, \alpha_{n}+\beta_{n}\right) \\
\beta\left(\alpha_{1}, \ldots, \alpha_{n}\right):=\left(\beta \alpha_{1}, \ldots, \beta \alpha_{n}\right)
\end{gathered}
$$

with $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n} \in F$ and $0_{F^{n}}:=(0, \ldots, 0)$.
Even have:

$$
F^{\infty}=F_{\text {this }}^{\infty}:\left\{\left(\alpha_{1}, \ldots, \alpha_{n}, \ldots\right) \mid \alpha_{i} \in F \forall i \text { with only FINITELY MANY } \alpha_{i} \neq 0\right\}
$$

3. Let $\alpha<\beta$ in \mathbb{R}

$$
I=[\alpha, \beta], \quad(\alpha, \beta), \quad[\alpha, \beta), \quad(\alpha, \beta]
$$

(including $\alpha=-\infty, \beta=\infty$. Let function $I:=\{f: I \rightarrow \mathbb{R} \mid f$ a function $\}$
Define,$+ \cdot$ as follows: $\forall f, g \in$ Fxn I,

$$
\begin{aligned}
& f+g \quad \text { by } \quad(f+g)(x):=f(x)+g(x) \\
& \alpha f \quad \text { by } \quad(\alpha f)(x):=\alpha f(x) \quad \forall \alpha \in \mathbb{R}
\end{aligned}
$$

and 0 by $0(\alpha)=0 \forall \alpha \in F$. Then $F x n I$ is a vector space over \mathbb{R}.
Using this, we get subsets which are also vector space over \mathbb{R} with same $+, \cdot, 0$.

- $C(I):=\{f \in \operatorname{fxn} I \mid f$ continuous on $I\}$
- Diff $(I):=\{f \in \operatorname{fxn} I \mid f$ differentiable on $I\}$
- $C^{n}(I):=\left\{f \in \operatorname{fxn} I \mid f(n)\right.$ the $n^{\text {th }}$ derivative of f and f exists on I and is cont on I$\}$
- $C^{\infty}(I):=\{f \in \operatorname{fxn} I \mid f(n)$ exists $\forall n \geq 0$ on I and is cont $\}$
- $C^{\omega}(I):=\{f \in$ fxn $I \mid \mathrm{f}$ converges to its Taylor Series $\}$
(in a neighborhood of every $x \in I$ - be careful at boundary points)
- Int $(I):=\{f \in$ fxn $I \mid f$ is integrable on $I\}$

4. $F[t]$ the set of polys, coeffs in F old,$+ \cdot$ with scalar mult

$$
\alpha\left(\alpha_{0}+\alpha_{1} t+\ldots+\alpha_{n} t^{n}\right):=\alpha \alpha_{0}+\alpha \alpha_{1} t+\ldots+\alpha \alpha_{n} t^{n}
$$

5. $\underbrace{F[t]_{n}}_{\text {truncating } F[t]}:=\{0 \in F[t]\} \cup\{f \in F[t] \mid \operatorname{deg} f \leq n\}$ (not closed under • of polys) where $\operatorname{deg} f=$ the highest power of t occurring non-trivially in f if $f \neq 0$ is a vector space over F with + , scalar mult, 0 .

Example 3.2 1. $F^{m \times n}:=$ set of $m \times n$ matrices entries in F where $A \in F^{m \times n}, \quad A_{i j}=$ $i j^{\text {th }}$ entry of A

$$
\begin{gathered}
(A+B)_{i j}:=A_{i j}+B_{i j} \in F \quad \forall A, B \in F^{m \times n} \\
(\alpha A)_{i j}:=\alpha A_{i j} \in F \quad \forall \alpha \in F \\
0=\left(\begin{array}{ccc}
0 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 0
\end{array}\right) \text { (m rows and n columns) }
\end{gathered}
$$

COMPONENTWISE OPERATION! Then $F^{m \times n}$ is a vector space over F, e.g.
$M_{n} F$ is a vector space over F.

Example to GENERALIZE

Let V be a vector space over $F, \emptyset \neq S$ a set. Set $W:=\{f: S \rightarrow V \mid f$ a map $\}$. Define + , • on W by

$$
\begin{gathered}
f+g \quad(f+g)(s):=f(s)+g(s) \in V \\
\quad \alpha f \quad(\alpha f)(s):=\alpha(f(s)) \in V \\
0_{W} \quad 0(s)=0_{V} \quad \text { ZERO FUNCTION }
\end{gathered}
$$

$\forall f, g \in W ; \alpha \in F ; s \in S$. Then W is a vector space over F. (of componentwise operation)
2. Let $F \subset K$ be a fields under + , on K. Same 0,1, i.e. F is a SUBFIELD of k e.g. $\mathbb{R} \subset \mathbb{C}$. Then K is a vector space over F by RESTRICTION of SCALARS. i.e., $+=+$ on K. With scalar mult, $F \times K \rightarrow K$ by

$$
\underbrace{\alpha v}_{\text {in } \mathrm{K} \text { as a vector space over } F}=\underbrace{\alpha v}_{\text {in } \mathrm{K} \text { as a field }} \forall \alpha \in F \quad \forall v \in V
$$

e.g. \mathbb{R} is a vector space over \mathbb{Q} by $\frac{m}{n} r=\frac{m r}{n}, \quad m, n \in \mathbb{Z}, n \neq 0, r \in \mathbb{R}$. More generally, let V be a vector space over $K, F \subset K$ subfield, then it is a vector space over F by RESTRICTION of SCALARS.

$$
\left.\cdot\right|_{F \times V}: F \times V \rightarrow V
$$

e.g., K^{n} is a vector space over F (e.g. \mathbb{C}^{n} is a vector space over \mathbb{R}).

Properties of Vector Space: Let V be a vector space over F. Then $\forall \alpha, \beta \in F, \quad \forall v, w \in V$, we have

1. The zero vector is unique write 0 or 0_{V}.
2. $(-1) v$ is the unique vector $w \ni w+v=0=v+w$ write $-v$.
3. $0 \cdot v=0$
4. $\alpha \cdot 0=0$
5. $(-\alpha) v=-(\alpha v)=\alpha(-v)$
6. if $\alpha v=0$, then either $\alpha=0$ or $v=0$
7. if $\alpha v=\alpha w, \alpha \neq 0$, then $v=w$
8. if $\alpha v=\beta v, v \neq 0$, then $\alpha=\beta$
9. $-(v+w)=(-v)+(-w)=-v-w$
10. can ignore parentheses in +

§3.2 Subspace

Definition 3.3 (Subspace) - Let V be a vector space over $F, W \subset V$ a subset. We say W is a subspace of V if W is a vector space over F with the operation + , on V, i.e., $(V,+, \cdot)$ is a vector space over F, via $+: V \times V \rightarrow V$ and $\cdot: F \times V \rightarrow V$ then W is a vector space over F via

- $+=+/ W \times W: W \rightarrow W$: restrict the domain to $W \times W$
- $\cdot=\left.\right|_{F \times W}: F \times W \rightarrow W$: restrict the domain to $F \times W$
i.e. W is closed under + , from $V, \forall_{w_{2}}^{w_{1}} \in W \quad \forall \alpha \in F, \quad w_{1}+w_{2} \in W$ and $\alpha w_{1} \in W$ and $0_{W}=0_{V}$.

Theorem 3.4 (Subspace)

Let V be a vector space over $F, \emptyset \neq W \subset V$ a subset. Then the following are equivalent:

1. W is a subspace for V
2. W is closed under + and scalar mult from V
3. $\forall w_{1}, w_{2} \in W, \forall \alpha \in F, \alpha w_{1}+w_{2} \in W$

Proof. Some of the implication are essentially ??

1) $\rightarrow 2$) : by def. W is a subspace of V under,+ on V (and satisfies the axioms of a vector space over F) as $0_{V}=0_{W}$.
2) $\rightarrow 1$) claim: $0_{V} \in W$ and $0_{W}=0_{V}:$ As $\emptyset \neq W \exists w \in W$

By 2$)(-1) w \in W$, hence $0_{V}=w+(-w) \in W$. Since $0_{V}+w^{\prime}=w^{\prime}=w^{\prime}+0_{V}$ in $V \forall w^{\prime} \in W$, the claim follows. The other axioms hold for elements of V hence for $W \subset V$.
2) $\rightarrow 3$) : let $\alpha \in F, w_{1}, w_{2} \in W$. As 2) holds, $\alpha w_{1} \in W$ hence also $\alpha w_{1}+w_{2} \in W$
$3) \rightarrow 2$) Let $\alpha \in F, w_{1}, w_{2} \in W$. As above and 3)

$$
0_{V}=w_{1}+\left(-w_{1}\right) \in W \quad \text { and } 0_{V}=0_{W}
$$

Therefore,

$$
w_{1}+w_{2}=1 \cdot w_{1}+w_{2} \in W \quad \text { and } \alpha w_{1}+\alpha w_{1}+0_{V} \in W
$$

by 3$)$.
Note: Usually 3) is the easiest condition to check. WARNING: must subsets of a vector space over F are NOT subspace.

Example 3.5

V a vector space over F.

1. $0:=\left\{0_{V}\right\}$ and V are subspace of V
2. Let $I \subset \mathbb{R}$ be an interval (not a point) then

$$
\begin{aligned}
C^{\omega}(I) & <C^{\infty}(I)<\ldots<C^{n}(I)<\ldots<C^{\prime}(I) \\
& <\text { Diff } \mathrm{I}<C(I)<\text { Int } \mathrm{I}<\text { Fxn I }
\end{aligned}
$$

are subspaces of the vector space containing then... where we write

$$
A<B \quad \text { if } \quad A \subset B \quad \text { and } A \neq B
$$

3. Let F be afield, e.g \mathbb{R}. Then $F=F[t]_{0}<F[t]_{1}<\ldots<F\left[t_{n}\right]<\ldots<F[t]$ are vector space over F each a subspace of the vector space over F containing it.
4. If $W_{1} \subset W_{2} \subset V, W_{1}, W_{2}$ subspace of V,then $W_{1} \subset W_{2}$ is a subspaces.
5. If $W_{1} \subset W_{2}$ is a subspace and $W_{2} \subset V$ is a subspace, then $W_{1} \subset V$ is a subspace.
6. Let $W:=\left\{\left(0, \alpha_{1}, \ldots, \alpha_{n} \mid \alpha_{i} \in F, \quad 2 \leq i \leq n\right\} \subset F^{n}\right.$ is a subspace, but $\left\{\left(1, \alpha_{2}, \ldots, \alpha_{n} \mid \alpha_{i} \in F, \quad 2 \leq i \leq n\right\}\right.$ is not. Why?
7. Every line or plane through the origin in \mathbb{R}^{3} is a subspace.

$\S 4 \mid$ Lec 4: Oct 9, 2020

§4.1 Span \& Subspace

Definition 4.1 (Linear Combination) - Let V be a vector space over $F, v_{1}, \ldots, v_{n} \in V$ we say $v \in V$ is a LINEAR COMBINATION of v_{1}, \ldots, v_{n} if $\exists \alpha_{1}, \ldots, \alpha_{n} \in F \ni v=$ $\alpha v_{1}+\ldots+\alpha_{n} v_{n}$.

Let

$$
\operatorname{Span}\left(v_{1}, \ldots, v_{n}\right):=\left\{\text { all linear combos of } v_{1}, \ldots, v_{n}\right\}
$$

Let $v_{1}, \ldots, v_{n} \in V$. Then

$$
\operatorname{Span}\left(v_{1}, \ldots, v_{n}\right)=\left\{\sum_{i=1}^{n} \alpha_{i} v_{i} \mid \alpha_{1}, \ldots, \alpha_{n} \in F\right\}
$$

is a subspace of V (by the Subspace Theorem) called the SPAN of v_{1}, \ldots, v_{n}. It is the (unique) smallest subsapce of V containing v_{1}, \ldots, v_{n}.
i.e., if $W \subset V$ is a subspace and $v_{1}, \ldots, v_{n} \in W$ then $\operatorname{Span}\left(v_{1}, \ldots, v_{n}\right) \subset W$. We also let Span $\emptyset:=\left\{0_{V}\right\}=0$, the smallest vector space containing no vectors.
$\operatorname{Span}(V)$ is a line

Question: If we view \mathbb{C} as a vector space over \mathbb{R}, then \mathbb{R} is a subspace of \mathbb{C}, but if we view $\overline{\mathbb{C}}$ is a vector space over \mathbb{C}, then \mathbb{R} is not a subspace of \mathbb{C} (why? What's going on?) - not closed under operation(s).

Definition 4.2 (Span) - Let V be a vector space over $F, \emptyset \neq S \subset V$ a subset. Then, Span $\mathrm{S}:=$ the set of all FINITE linear combos of vectors in S. i.e., if $V \in \operatorname{Span} \mathrm{~S}$, then

$$
\exists v_{1}, \ldots, v_{n} \in S, \quad \alpha_{1}, \ldots, \alpha_{n} \in F \ni v=\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}
$$

Span $S \subset V$ is a subspace. What is Span V?

Example 4.3 1. Let $V=\mathbb{R}^{3}$.

$$
\operatorname{Span}(i+j, i-j, k)=\operatorname{Span} V=\operatorname{Span}(i, j, i+j, k)=\operatorname{Span}(i+j, i-j, k+i)
$$

2. Define

$$
\operatorname{Symm}_{n} F:=\left\{A \in M_{n} F \mid A=A^{\top}\right\}
$$

Recall: A^{\top} is the transpose of A, i.e.,

$$
\left(A^{\top}\right)_{i j}:=A_{j i} \quad \forall i, j
$$

is a subspace of $M_{n} F$
3.

$$
V=\left\{\left.\left(\begin{array}{cc}
a & c+d i \\
c-d i & b
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}\right\} \subset M_{2} C
$$

is NOT a subspace as a vector space over \mathbb{C}, eg,

$$
i\left(\begin{array}{cc}
a & c+d i \\
c-d i & b
\end{array}\right)=\left(\begin{array}{cc}
a i & -d+c i \\
d+c i & b i
\end{array}\right)
$$

does not lie in V if either $a \neq 0$ or $b \neq 0$ (cannot be imaginary). Also V is not a subspace of $M_{2} \mathbb{R}$ as a vector space over \mathbb{R} as $V \not \subset M_{2} \mathbb{R} . V \subset M_{2} \mathbb{C}$ is a subspace as a vector space over \mathbb{R}.
4. (Important computational example) Fix $A \in F^{m \times n}$. Let

$$
\operatorname{ker} A:=\left\{x \in F^{n \times 1} \left\lvert\, A x=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right)\right. \text { in } F^{m \times 1}\right\}
$$

called the KERNEL or NULL SPACE of A. Ker $A \subset F^{n \times 1}$ is a subspace and it is the SOLUTION SPACE of the system of m linear equations in n unknowns. which we can compute by Gaussian elimination.
5. Let $W_{i} \subset V_{i}, i \in \underbrace{I}_{\text {indexing set }}$ be subspaces. Then $\bigcap_{I} W=\bigcap_{i \in I} W_{i}:=\left\{x \in V \mid x \in W_{i} \forall i \in I\right\}$ is a subspaces of V (why?)
6. In general, if $W_{1}, W_{2} \subset V$ are subspaces, $W_{1} \cup W_{2}$ is NOT a subspace. e.g., $\operatorname{Span}(\mathrm{i}) \cup \operatorname{Span}(\mathrm{j})=\{(x, 0) \mid x \in \mathbb{R}\} \cup\{(0, y) \mid y \in \mathbb{R}\}$ is not a subspace

$$
(x, y)=(x, 0)+(0, y) \notin \quad \operatorname{Span}(\mathrm{i}) \cup \operatorname{Span}(\mathrm{j})
$$

if $x \neq 0$ and $y \neq 0$

Definition 4.4 (Subspace \& Span) - Let $W_{1}, W_{2} \subset V$ be subspaces. Define

$$
\begin{aligned}
W_{1}+W_{2} & :=\left\{w_{1}+w_{2} \mid w_{1} \in W_{1}, w_{2} \in W_{2}\right\} \\
& =\operatorname{Span}\left(W_{1} \cup W_{2}\right)
\end{aligned}
$$

So $w_{1}+w_{2} \subset V$ is a subspace and the smallest subsapce of V containing W_{1} and W_{2}.

More generally, if $W_{i} \in V$ is a subspace $\forall i \in I$ let

$$
\sum_{I} W_{i}=\sum_{i \in I} W_{i}:=+W_{i}:=\operatorname{Span}\left(\bigcup_{I} W_{i}\right)
$$

the smallest subspace of V containing $W_{i} \forall i \in I$. What do elements in $\sum_{I} W_{i}$ look like?
Determine the span of vector v_{1}, \ldots, v_{n} in \mathbb{R}^{n}
Suppose $v_{i}=\left(a_{i_{1}}, \ldots, a_{n i}, i=1, \ldots, n\right.$. To determine when $w \in \mathbb{R}^{n} \operatorname{lies} \operatorname{in} \operatorname{Span}\left(u_{1}, \ldots, u_{n}\right.$) i.e., if $w=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{R}^{n}$ when does

$$
w=\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}, \quad \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}
$$

What v_{i} is an $n \times 1$ column matrix $\left(\begin{array}{c}\alpha_{1 i} \\ \vdots \\ a_{n i}\end{array}\right)$

$$
A=\left(a_{i j}\right), \quad B=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)
$$

view w as $\left(\begin{array}{c}b_{1} \\ \vdots \\ b_{n}\end{array}\right)$. To solve

$$
A x=B, \quad X=\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right)
$$

is equivalent to finding all the $n \times 1$ matrices B (actually B^{\top}) s.t.

$$
A x=B
$$

when the columns of A are the $v_{i}\left(v_{i}^{\top}\right)$.
Note: If $m=n$ an A is invertible then all B work.

§4.2 Linear Independence

We know that \mathbb{R}^{n} is an n-dimensional vector space over \mathbb{R}. Since we need n coordinates (axes) to describe all vector in \mathbb{R}^{n} but no fewer will do.
We want something like the following:
Let V be a vector space over F with $V \neq \emptyset$. Can we find distinct vectors $v_{1} \ldots, v_{n} \in V$, some n with following properties

1. $V=\operatorname{Span}\left(v_{1}, \ldots, v_{n}\right)$
2. No v_{i} is a linear combos of $v_{1}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{n}$ (i.e. we need them all) Then we want to call V an n-DIMENSIONAL VECTOR SPACE OVER F.

Lemma 4.5

Let V be a vector space over $F, n>1$. Suppose v_{1}, \ldots, v_{n} are distinct. Then (2) is equivalent to

$$
\text { If } \alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}=\beta_{1} v_{1}+\ldots+\beta_{n} v_{n}, \quad \alpha_{i}, \beta_{i} \in F \forall i, j
$$

i.e. the "coordinates" are unique.

Proof. $(->)$ If not, relabelling the $v_{i}^{\prime} s$, we may assume that $\alpha_{1} \neq \beta_{2}$ in(*), then

$$
\left(\alpha_{1}-\beta_{1}\right) v_{1}=\sum_{i=2}^{n}\left(\beta_{i}-\alpha_{i}\right) v_{i}
$$

As $\alpha_{1}-\beta_{1} \neq 0$ in F, a field, $\left(\alpha_{1}-\beta_{1}\right)^{-1}$ exists, so

$$
v_{1}=\sum_{i=2}^{n}\left(\alpha_{1}-\beta_{1}\right)^{-1}\left(\beta_{i}-\alpha_{i}\right) v_{i} \in \operatorname{Span}\left(v_{1}, \ldots, v_{n}\right)
$$

a contradiction.
$(<-)$ Relabelling, we may assume that

$$
v_{1}=\alpha_{2} v_{2}+\ldots+\alpha_{n} v_{n}, \quad \text { some } \alpha_{i} \in F
$$

Then,

$$
1 \cdot v_{1}+0 v_{2}+\ldots+0 v_{n}=v_{1}=0 \cdot v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{n} v_{n}
$$

so $1=0$, a contradiction.

Remark 4.6. The case $n=1$ is special because there are two possibilities
Case 1: $v \neq 0$: then $\alpha v=\beta v \rightarrow \alpha=\beta$
Case 2: $v=0$: then $\alpha v=\beta v \forall \alpha, \beta \in F$
So the only time the above lemma is false is when $n=1$ and $v=0$. We do not want to say this, so we use another definition.

$\S 5$ Lec 5: Oct 12, 2020

§5.1 Linear Independence(Cont'd)

Definition 5.1 (Linear Independence \& Dependence) - Let V be a vector space over F, v_{1}, \ldots, v_{n} in V all distinct. We say $\left\{v_{1}, \ldots, v_{n}\right\}$ is LINEARLY DEPENDENT if $\exists \alpha_{1}, \ldots, \alpha_{n} \in F$ not all zero \ni

$$
\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}=0
$$

and $\left\{v_{1}, \ldots, v_{n}\right\}$ is LINEARLY INDEPENDENT if it is NOT linearly dependent, i.e., if for any eqn

$$
0=\alpha v_{1}+\ldots+\alpha_{n} v_{n}, \quad \alpha_{1}, \ldots, \alpha_{n} \in F
$$

then $\alpha_{i}=0 \forall i$, i.e., the only linear comb of v_{1}, \ldots, v_{n} - the zero vector is the TRIVIAL linear combo (we shall also say that distinct v_{1}, \ldots, v_{n} are linearly independent if $\left\{v_{1}, \ldots, v_{n}\right\}$ is. More generally, a set $\emptyset \neq S \subset V$ is called LINEARLY DEPENDENT if for some FINITE subset (of distinct elements of S) of S is linearly dependent and it is called LINEARLY INDEPENDENT if every FINITE subset of S (of distinct elements) is linearly independent.
We say $v_{i}, i \in F$, all distinct are LINEARLY INDEPENDENT if $\left\{v_{i}\right\}_{i \in I}$ is linearly independent and $v_{i} \neq v_{j} \forall i, j \in I, i \neq j$.

Remark 5.2. Let V be a vector space over $F, \emptyset \neq S \subset V$ a subset

1. If $0 \in S$, then S is linearly dependent as $l \cdot 0=0$
2. distinct: v_{1}, \ldots, v_{n} in V are linearly independent iff

- no $v_{i}=0$
- $\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}=\beta_{1} v_{1}+\ldots+\beta_{n} v_{n}, \quad \alpha_{i}, \beta_{i} \in F$ implies $\alpha_{i}=\beta_{i} \forall i$
$\underline{\text { Note: }} v, v$ are linearly dependent if we allow repetitions - and $\{v, v\}=\{v\}$.
For homework, make sure to show this:
Suppose v_{1}, \ldots, v_{n} are distinct, $n>2$, no $v_{i}=0$. Suppose no v_{i} is a scalar multiple of another $v_{j}, j \neq i$. It does not follow that v_{1}, \ldots, v_{n} are linearly independent (in general).

Example 5.3 (counter-example)

$$
(1,0),(0,1),(1,1) \text { in } \quad V=\mathbb{R}^{2}
$$

$(1,0),(0,1)$ are linearly indep. but not $(1,0),(0,1)$, and $(1,1)$.

Remark 5.4. Let $\emptyset \neq T \subset S$ be a subset. If T is linearly dependent, so is S. Then the contraposition is also true: if S is linearly indep., so is T.

More remarks:

1. Let $0 \neq v \in V$. Then $\{v\}$ is linearly independent and

$$
F v:=\operatorname{Span}(v)
$$

is called a LINE in V:

$$
\alpha v=0 \rightarrow \alpha=0
$$

2. $u, v, w \in V \backslash\{0\}$ and $v \notin \operatorname{Span}(w)$ (equivalently, $w \notin \operatorname{Span}(v)$, then $\{v, w\}$ is linearly indep. and $\operatorname{span}(v, w)$ is called a PLANE in V.
3. $(1,1),(-2,-2)$ are linearly dep. in \mathbb{R}^{2}.
4. $(1,1),(2,-2)$ are linearly indep. in \mathbb{R}^{2} (show coefficients are equal to each other and to 0).
5. More generally,

$$
v_{i}=\left(a_{i_{1}}, \ldots, a_{i_{n}}\right) \text { in } \mathbb{R}^{n}, \quad i=1, \ldots, m \text { (distinct) }
$$

Then

$$
\exists \alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R} \text { not all } 0 \ni \alpha_{1} v_{1}+\ldots+\alpha_{m} v_{m}=0
$$

iff v_{1}, \ldots, v_{m} are linearly dep - iff $\exists \alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}$ not all 0 s.t.

$$
\alpha_{1}\left(a_{11}, \ldots, a_{1 m}\right)+\ldots+\alpha_{m}\left(a_{m 1}, \ldots, a_{m n}\right)=0
$$

iff the matrix

$$
A=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 m} \\
\vdots & & \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right)
$$

with rows v_{i} row reduced to echelon form with a zero row. Also,

$$
B=A^{\top}=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{m 1} \\
\vdots & & \\
a_{1 m} & & a_{m n}
\end{array}\right)
$$

i.e., write the vectors v_{i} as columns then

$$
\underbrace{B}_{n \times m} \underbrace{X}_{m \times 1}=0
$$

has a NON-TRIVIAL solution, i.e.,

$$
\operatorname{ker} B \neq 0
$$

where

$$
\operatorname{ker} B:=\left\{X \in F^{m \times 1} \mid B X=0\right\}
$$

the kernel of B.
6. Let $f_{1}, \ldots, f_{n} \in C^{n-1}(I), \quad I=(\alpha, \beta), \alpha<\beta$ in \mathbb{R} and

$$
\alpha_{1} f_{1}+\ldots+\alpha_{n} f_{n}=\underbrace{0}_{\text {the zero func }}
$$

i.e., $\left(\alpha_{1} f_{1}+\ldots+\alpha_{n} f_{n}\right)(x)=0 \quad \forall x \in(\alpha, \beta)$. Taking the derivatives $(n-1)$ times and put them in matrix form, we have

$$
\left(\begin{array}{ccc}
f_{1} & \ldots & f_{n} \\
f_{1}^{\prime} & \cdots & f_{n}^{\prime} \\
\vdots & \ldots & \vdots \\
f_{1}^{n-1} & \ldots & f_{n}^{n-1}
\end{array}\right)\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\vdots \\
\alpha_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
\vdots \\
0
\end{array}\right)
$$

In particular, the Wronskian of f_{1}, \ldots, f_{n} is not the zero func, i.e., $\exists x \in(\alpha, \beta) \ni$ $W\left(f_{1}, \ldots, f_{n}\right)(x) \neq 0$. This means that the matrix above is invertible for some $x \in(\alpha, \beta)$. Then, $\alpha_{1}=0, \ldots, \alpha_{n}=0$ by Cramer's rule - only the trivial soln.
Conclusion: $W\left(f_{1}, \ldots, f_{n}\right) \neq 0 \rightarrow\left\{f_{1}, \ldots, f_{n}\right\}$ is linearly indep.
WARNING: the converse is false.

Example 5.5 (of the conclusion)

Let $\alpha<\beta$ in \mathbb{R}.

1. $\sin x, \cos x$ are linearly indep. on (α, β).
2. We need some (sub) defns for this example.

For $x \in \mathbb{R}$, define the map

$$
e_{x}: \mathbb{R}[t] \rightarrow \mathbb{R} \text { by }
$$

$g=\sum a_{i} t^{i} \mapsto g(x):=\sum a_{i} x^{i}$ called EVALUATION at x.

We call a map $f: \mathbb{R} \rightarrow \mathbb{R}$ (or some $f: I \rightarrow \mathbb{R}(I \subset \mathbb{R})$) a POLYNOMIAL FUNCTION if

$$
\exists P_{f}=\sum_{i=1}^{n} a_{i} t^{i} \in \mathbb{R}[t]
$$

and

$$
f(x)=e_{x} P_{f}=P_{f}(x)=\sum_{i=1}^{n} a_{i} x^{i} \quad \forall x \in \mathbb{R}
$$

i.e., the function arising from a (formal) polynomial by evaluation at each x . We let

$$
\mathbb{R}[x]:=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f \text { a poly fcn }\}
$$

Note:Polynomial fcns are defined on all of $\mathbb{R} . \mathbb{R}[x]$ is a vector space over \mathbb{R}.
Warning: if we replace \mathbb{R} by $F, F[t]$ may be "very different" from $F[x]$, e.g., let $F=\{0,1\}$. Then

$$
t, t^{2} \in F[t], \quad t \neq t^{2} \quad \text { but } P_{t}=P_{t^{2}}
$$

Now we can give our example using Wronskians

$$
\left\{1, x, \ldots, x^{n}\right\}
$$

is linearly indep. on (α, β) assuming $\alpha<\beta$.
HOMEWORK: Let $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$ be distinct, then

$$
e^{\alpha_{1} t}, \ldots, e^{\alpha_{n} t}
$$

are linearly indep. on (α, β). THINK OVER IT!

Theorem 5.6 (Toss In)

Let V be a vector space over $F, \emptyset \neq S \subset V$ a linearly indep. subset. Suppose that $v \in V \backslash$ Span S. Then $S \cup\{v\}$ is linearly indep.

Proof. Suppose this is false which is $S \cup\{v\}$ is linearly dep. Then $\exists v_{1}, \ldots, v_{n} \in S$ and $\alpha, \alpha_{1}, \ldots, \alpha_{n} \in F$ some n not all zero s.t.

$$
\alpha v+\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}=0
$$

Case 1: $\alpha=0$
Then $\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}=0$ not all $\alpha_{1}, \ldots, \alpha_{n}$ zero so $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly dep., a contradiction.
Case 2: $\alpha \neq 0$
Then α^{-1} exists.

$$
v=-\alpha^{-1} \alpha_{1} v_{1}-\ldots-\alpha^{-1} \alpha_{n} v_{n}
$$

is a linear combo of v_{1}, \ldots, v_{n}, i.e., $v \in \operatorname{Span}\left(v_{1}, \ldots, v_{n}\right)$ - a contradiction. Therefore, $S \cup\{v\}$ is linearly indep.

Corollary 5.7

Let V be a vector space over F and $v_{1}, \ldots, v_{n} \in V$ linearly indep. if

$$
\operatorname{Span}\left(v_{1}, \ldots, v_{n}\right)<V
$$

then $\exists v_{n+1} \in V \ni v_{1}, \ldots, v_{n}, v_{n+1}$ are linearly indep. and

$$
\operatorname{Span}\left(v_{1}, \ldots, v_{n}\right)<\operatorname{Span}\left(v_{1}, \ldots, v_{n+1}\right) \subset V
$$

Question 5.1. Why can't we get a linearly indep. set spanning any vector space over F using this theorem?

Ans: Certainly we may not get a finite set. We shall only be interested in the case, much of the time, when such a finite linearly indep. set spans our vector space over F.

Example 5.8

$(1,3,1) \in \mathbb{R}^{3}$ is linearly indep. but $\operatorname{Span}(1,3,1)<\mathbb{R}^{3}$.
$(1,1,0) \notin \operatorname{Span}(1,3,1)$ so $(1,3,1),(1,1,0)$ are linearly indep. Similarly for $(0,0,1)$.
$\mathbb{R}^{3}=\operatorname{Span}((1,3,1),(1,1,0),(0,0,1))$

$\S 6 \mid$ Lec 6: Oct 14, 2020

$\S 6.1 \quad$ Bases

Definition 6.1 (Basis) - Let $\emptyset \neq V$ be a vector space over F. A BASIS B for V is a linearly indep. set in V and spans V. i.e.,

1. $V=\operatorname{Span} B$.
2. B is linearly indep.

We say V is a FINITE DIMENSIONAL VECTOR SPACE OVER F if there exists B for V with finitely many elements, i.e., $|B|<\infty$.

Notation: If $V=0$, we say V is a finite dimensional vector sapce over F of DIMENSION ZERO.
Goal: To show if V is finite dimensional vector space over F with bases B and b then $|B|=|b|<\infty$. This common integer is called the DIMENSION of V.

Example 6.2

Let V be a vector space over $F, S \subset V$ a linearly indep. set. Then S is a basis for Span S.
Warning: S is not a subspace just a subset.

Definition 6.3 (Ordered Basis) - If V is a finite dimensional vector space over F with a basis $B=\left\{v_{1}, \ldots, v_{n}\right\}$ we called it an ORDERED BASIS if the given order of v_{1}, \ldots, v_{n} is to be used, i.e., the $i^{\text {th }}$ vector in B is the $i^{\text {th }}$ in the written list, e.g., $\left\{v_{1}, v_{2}, v_{4}, v_{3}, \ldots\right\}$ then v_{4} is the $3^{\text {rd }}$ element in the ordered list if we want B to be ordered in this way.

Theorem 6.4 (Coordinate)

Let V be a finite dimensional vector space over F with basis $B=\left\{v_{1}, \ldots, v_{n}\right\}$ and $v \in V$. Then $\exists!\alpha_{1}, \ldots, \alpha_{n} \in F \ni v=\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}$. We call $\alpha_{1}, \ldots, \alpha_{n}$ the COORDINATE of v relative to the basis B and call α_{i} the $i^{\text {th }}$ coordinate relative to B.

Proof. Existence: By defn, $V=\operatorname{Span} B$, so if $v \in V$

$$
\exists \alpha_{1}, \ldots, \alpha_{n} \in F \ni v=\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}
$$

Uniqueness: Let $v \in V$ and suppose that $\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}=\beta_{1} v_{1}+\ldots+\beta_{n} v_{n}$, for some $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n} \in F$. Then

$$
\left(\alpha_{1}-\beta_{1}\right) v_{1}+\ldots+\left(\alpha_{n}-\beta_{n}\right) v_{n}=0
$$

Since B is linearly indep,

$$
\alpha_{i}=\beta_{i}=0 \quad \text { for } i=1, \ldots, n
$$

Question 6.1. Does the above theorem hold if the basis B is not necessarily finite? If so prove it!

Exercise 6.1. Let V be a vector space over $F, v_{1}, \ldots, v_{n} \in V$ then

$$
\operatorname{Span}\left(v_{1}, \ldots, v_{n}\right)=\operatorname{Span}\left(v_{2}, \ldots, v_{n}\right) \quad \Longleftrightarrow \quad v_{1} \in \operatorname{Span}\left(v_{2}, \ldots, v_{n}\right)
$$

Make sure to PROVE THIS

Note:For induction, you CAN'T assume n in the induction hypothesis is special in any way except it is greater than 1 . Also, you can start induction at $n=0$,i.e., show $P(0)$ true (or at any $n \in \mathbb{Z}$).

Theorem 6.5 (Toss Out)

Let V be a vector space over F. If V can be spanned by finitely many vector then V is a finite dimensional vector space over F. More precisely, if

$$
V=\operatorname{Span}\left(v_{1}, \ldots, v_{n}\right)
$$

then a subset of $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V.

Proof. If $V=0$, there is nothing to prove. So we may assume that $V \neq 0$. Suppose that $V=\operatorname{Span}\left(v_{1}, \ldots, v_{n}\right)$. We can use induction on n and show a subset of $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis.

- $n=1: V=\operatorname{Span}\left(v_{1}\right) \neq 0$ as $V \neq 0$, so $v_{1} \neq 0$. Hence $\left\{v_{1}\right\}$ is linearly indep and it is the basis.
- Assume $V=\operatorname{Span}\left(w_{1}, \ldots, w_{n}\right)$ - the induction hypothesis - to be true. Then a subset of w_{1}, \ldots, w_{n} is a basis for V. Now suppose that $v=\operatorname{Span}\left(v_{1}, \ldots, v_{n+1}\right)$. To show a subset of $\left\{v_{1}, \ldots, v_{n+1}\right\}$ is a basis for V, we need to show if $\left\{v_{1}, \ldots, v_{n+1}\right\}$ is linearly indep., then it is a basis for V and it spans V and we are done. So let us assume that $\left\{v_{1}, \ldots, v_{n+1}\right\}$ is linearly dep. Hence,

$$
\begin{gathered}
\exists \alpha_{1}, \ldots, \alpha_{n+1} \in F \text { not all zero } \ni \\
\alpha_{1} v_{1}+\ldots+\alpha_{n+1} v_{n+1}=0
\end{gathered}
$$

Assume $\alpha_{n+1} \neq 0$, then

$$
v_{n+1}=-\alpha_{n+1}^{-1} \alpha_{1} v_{1}-\ldots-\alpha_{n+1}^{-1} \alpha_{n} v_{n}
$$

lies in $\operatorname{Span}\left(v_{1}, \ldots, v_{n}\right)$. By the Exercise above,

$$
V=\operatorname{Span}\left(v_{1}, \ldots, v_{n+1}\right)=\operatorname{Span}\left(v_{1}, \ldots, v_{n}\right)
$$

By the induction hypo, a subset of $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V.

Example 6.6 1. Let $e_{i}=\{(0, \ldots, 0,1,0, \ldots)\} \in F^{n}$

$$
s=s_{n}:=\left\{e_{1}, \ldots, e_{n}\right\} \subset F^{n}
$$

If $v \in F^{n}$, then

$$
v=\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\alpha_{1} e_{1}+\ldots+\alpha_{n} e_{n}
$$

since $\alpha_{i} \in F$, so $F^{n}=\operatorname{Span} s$. If $0=\alpha_{1} e_{1}+\ldots+\alpha_{n} e_{n}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)=(0, \ldots, 0)$, then $\alpha_{i}=0 \forall i$. So s is linearly indep. Hence s is a basis for F^{n} called the standard basis. More generally, let
$e_{i j} \in F^{m \times n}$ be the $m \times n$ matrix with all entries 0 except in the ith place.
Then $s_{m n}:=\left\{e_{i j} \mid 1 \leq i \leq m, 1 \leq j \leq n\right\}$ is a basis for $F^{m \times n}$ called the STANDARD BASIS for $F^{m \times n}$ - same proof - everything is done componentwise.
2. $V=F[t]:=\{$ polys in t , coeffs in F.$\}(F=\mathbb{R})$. Let $f \in V$. Then, there exists $n \geq 0$ in \mathbb{Z} and $\alpha_{0}, \ldots, \alpha_{n}$ in F s.t.

$$
f=\alpha_{0}+\alpha_{1} t+\ldots+\alpha_{n} t^{n}
$$

So $B=\left\{t^{n} \mid n \geq 0\right\}=\left\{1, t, t^{2}, \ldots\right\}$ spans V and by defn if

$$
\alpha_{0}+\alpha_{1} t+\ldots+\alpha_{n} t^{n}=\underbrace{0}_{\text {zero poly }}
$$

then $\alpha_{i}=0$ for all i so B is linearly indep. Hence B is a basis for $F[t] . B$ is not a finite set. We shall see that $F[t]$ is not a finite dimensional vector space over F.

How?
3. $F[t]_{n}:=\{f \in F[t] \mid f=0$ or $\operatorname{deg} f \leq n\} \subset F[t]$ is spanned by $\left\{1, t, t^{2}, \ldots, t^{n}\right\}$. It is a subset of linearly indep. set. $\left\{1, t, t^{2}, \ldots\right\}=\left\{t^{n} \mid n \geq 0\right\}$ so also linearly indep. and therefore a basis.
4. $\{1, \sqrt{-1}\}$ is a basis for \mathbb{C} as a vector space over $\mathbb{R} .\{1\}$ is a basis for C as a vector space over \mathbb{C} (indeed, if F is a field, F is a vector space over F and if $0 \neq \alpha \in F$, then α^{-1} exists and $x=x \alpha^{-1} \alpha \in \operatorname{Span} F$ so $\{\alpha\}$ is a basis. e.g., $\{\pi\}$ is a basis for \mathbb{R} as a vector space over $\mathbb{R})$.
5. $\left\{e^{-x}, e^{3 x}\right\}$ is a basis for

$$
V:=\left\{f \in \mathbb{C}^{2}(-\infty, \infty) \mid f^{\prime \prime}-2 f^{\prime}-3 f=0\right\}
$$

a vector space over \mathbb{R}.
6. Given $v_{1}, \ldots, v_{n} \in F^{n}$, you know how to find $W=\operatorname{Span}\left(v_{1}, \ldots, v_{n}\right)$. Note:If $m>n$ then rows reducing A^{\top} must lead to a zero row so v_{1}, \ldots, v_{m} cannot be linearly indep. If $m=n$ we can see if

$$
\operatorname{det} A^{\top}=0 \quad(\text { or } \operatorname{det} \mathrm{A}=0)
$$

then linearly dep. And if

$$
\operatorname{det} A^{\top} \neq 0 \quad(\text { or } \operatorname{det} \mathrm{A} \neq 0)
$$

then linearly indep.

§7| Lec 7: Oct 16, 2020

§7.1 Replacement Theorem

Theorem 7.1 (Replacement)

Let V be a vector space over $F,\left\{v_{1}, \ldots, v_{n}\right\}$ a basis for V. Suppose that $v \in V$ satisfies

$$
v=\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}, \quad \alpha_{1}, \ldots, \alpha_{n} \in F, \alpha_{i} \neq 0
$$

Then

$$
\left\{v_{1}, \ldots, v_{i-1}, v, v_{i+1}, \ldots, v_{n}\right\}
$$

is also a basis for V.

Proof. Changing notation, we may assume $\alpha_{1} \neq 0$. To show $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for V, we have to show $\left\{v, v_{2}, \ldots, v_{n}\right\}$ spans V. Since

$$
v=\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}, \quad \alpha_{1} \neq 0
$$

α_{1}^{-1} exists, so

$$
v_{1}=\alpha_{1}^{-1} v-\alpha_{1}^{-1} \alpha_{2} v_{2}-\ldots-\alpha_{1}^{-1} \alpha_{n} v_{n}
$$

lies in $\operatorname{Span}\left(v, v_{2}, \ldots, v_{n}\right)$. By Exercise \ldots,

$$
V=\operatorname{Span}\left(v, v_{1}, \ldots, v_{n}\right)=\operatorname{Span}\left(v, v_{2}, \ldots, v_{n}\right)
$$

So $\left\{v, v_{2}, \ldots, v_{n}\right\}$ spans V. Thus, $\left\{v, v_{2}, \ldots, v_{n}\right\}$ is linearly indep.
Suppose $\exists \beta_{1}, \beta_{2}, \ldots, \beta_{n} \in F$ not all $0 \ni$

$$
\beta v+\beta_{2} v_{2}+\ldots+\beta_{n} v_{n}=0
$$

Case 1: $\beta=0$
Then $\beta_{2} v_{2}+\ldots+\beta_{n} v_{n}=0$ not all $\beta_{i}=0$. So $\left\{v_{2}, \ldots, v_{n}\right\}$ is linearly dep., a contradiction.
Case 2: $\beta \neq 0$, so β^{-1} exists.
Then using $\left(^{*}\right)$, we see

$$
v=0 \cdot v_{1}-\beta^{-1} \beta_{2} v_{2}-\ldots-\beta^{-1} \beta_{n} v_{n}=\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}
$$

As $\left\{v_{2}, \ldots, v_{n}\right\}$ is a basis, by the Coordinate Theorem, we have

$$
\alpha_{1}=0 \quad \text { and } \alpha_{1}=\beta^{-1} \beta_{i}
$$

a contradiction.
Question 7.1. In the Replacement Theorem, do we need the basis to be finite?
Ans: I think it can be infinite ...

§7.2 Main Theorem

Theorem 7.2 (Main)

Suppose V is a vector space over F with $V=\operatorname{Span}\left(v_{1}, \ldots, v_{n}\right)$. Then any linearly indep. subset of V has at most n elements.

Proof. We know that a subset of $B=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V by Toss Out Theorem. So we may assume B is a basis for V. It suffices to show any linearly indep. set in V has at most $|B|=n$ elements where B is a basis. Let $\left\{w_{1}, \ldots, w_{m}\right\} \subset V$ be linearly indep. where no $w_{i}=0$. To show $m \leq n$, the idea is to use Toss In and Toss out in conjunction with the Replacement Theorem.

Claim 7.1. After changing notation, if necessary, for each $k \leq n$

$$
\left\{w_{1}, \ldots, w_{k}, v_{k+1}, \ldots, v_{n}\right\}
$$

is a basis for V.
Suppose we have shown the above claim for $k=n$. Apply the claim to $k=n$ if $m>k$, then $\left\{w_{1}, \ldots, w_{n+1}\right\}$ is linearly dep., a contradiction as $\left\{w_{1}, \ldots, w_{n}\right\}$ is a basis. Thus, we prove the claim for $m \leq n$ as needed. We prove it by induction on k. BY the argument above, we may assume $k \leq n$.

- $k=1:$ As $w_{1} \in \operatorname{Span} B=\operatorname{Span}\left(v_{1}, \ldots, v_{n}\right)$ and $w_{1} \neq 0, \exists \alpha_{1}, \ldots, \alpha_{n} \in F$ not all 0 \ni

$$
w_{1}=\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}
$$

Changing notation, we may assume $\alpha_{1} \neq 0$. By the Replacement Theorem,

$$
\left\{w_{1}, v_{2}, \ldots, v_{n}\right\} \text { is a basis for } V
$$

- Assume the claim hold for $k(k<n)$.
- We must show the claim holds for $k+1$,

$$
\left\{w_{1}, \ldots, w_{k}, v_{k+1}, \ldots, v_{n}\right\} \text { is a basis for } V
$$

We can write

$$
0 \neq w_{k+1}=\beta_{1} w_{1}+\ldots+\beta_{k} w_{k}+\alpha_{k+1} v_{k+1}+\ldots+\alpha_{n} v_{n}
$$

for some (new) $\beta_{1}, \ldots, \beta_{k}, \alpha_{k+1}, \ldots, \alpha_{n} \in F$ not all 0
Case 1: $\alpha_{k+1}=\alpha_{k+2}=\ldots=\alpha_{n}=0$
Then $w_{k+1} \in \operatorname{Span}\left(w_{1}, \ldots, w_{k}\right)$, hence $\left\{w_{1}, \ldots, w_{k+1}\right\}$ is linearly dep., a contradiction.
Case 2: $\exists i \ni \alpha_{i} \neq 0$:
Changing notation, we may assume $\alpha_{k+1} \neq 0$. By the Replacement Theorem

$$
\left\{w_{1}, \ldots, w_{k+1}, v_{k+2}, \ldots, v_{n}\right\}
$$

is a basis for V. This completes the induction step thus prove the claim and establish the theorem.

§7.3 A Glance at Dimension

Corollary 7.3

Let V be a finite dimensional vector space over F, B_{1}, B_{2} two bases for V. Then $\left|B_{1}\right|=\left|B_{2}\right|<\infty$. We call $\left|B_{1}\right|$ the dimension of V, write $\operatorname{dim} V=\operatorname{dim}_{F} V=\left|B_{1}\right|$ (dropping F if F is clear).

Proof. By defn of finite dimensional vector space over F, \exists a basis b for V with $|b|<\infty$. By the Main Theorem, $|B| \leq|b|$, if B is a basis for V, so B is finite. Again by the Main Theorem, $|b| \leq|B|$ if B is a basis for V, so $|b|=|B|$ for any basis B of V.

The corollary above says $\operatorname{dim} V$ is well-defined for all finite dimensional vector space over F, i.e., "dim" : \{finite dimensional vector space over $\left.F \rightarrow \mathbb{Z}^{+} \cup\{0\}\right\}$ is a function.
Warning: F makes a difference.

Example 7.4

$$
\begin{array}{ll}
\operatorname{dim}_{\mathbb{C}} \mathbb{C}=1 & \text { basis }\{1\} \\
\operatorname{dim}_{\mathbb{R}} \mathbb{C}=2 & \text { basis }\{1, \sqrt{-1}\} \\
\operatorname{dim}_{\mathbb{Q}} \mathbb{C}=? &
\end{array}
$$

Corollary 7.5

$\operatorname{dim}_{F} F^{n}=n$.

Corollary 7.6

$\operatorname{dim}_{F} F^{m \times n}=m n$.

Corollary 7.7

$\operatorname{dim}_{F} F[t]_{n}=1+n$.

Note: If V is a finite dimensional vector space over F with bases B, then the Replacement Theorem allows us to find many other bases.

Corollary 7.8

Let V be a finite dimensional vector space over $F, n=\operatorname{dim} V, \emptyset \neq S \subset V$ a subset. Then

- If $|S|>n$, then S is linearly dep.
- If $|S|<n$, then Span $S<V$.

Proof. - First bullet point: The Main Theorem says:
A maximal linearly indep. set in V is a basis and can have at most n elements by Toss In Theorem.

- Second bullet point: By Toss Out Theorem, we can assume that S is linearly indep., so it cannot be a basis by Corollary ?.

Question 7.2. What is $\operatorname{dim}_{\mathbb{R}} M_{n}(\mathbb{C})$?

§8.1 Extension and Counting Theorem

Theorem 8.1 (Extension)
Let V be a finite dimensional vector space over $F, W \subset V$ a subspace. Then every linearly independent subset S in W is finite and part of a basis for W which is a finite dimensional vector space over F.

Proof. Any linearly indep. set in W is linearly indep. subset S in V so $|S| \leq \operatorname{dim} V<\infty$ by the Main Theorem. In particular,

$$
\operatorname{dim} \operatorname{Span} S \leq \operatorname{dim} V
$$

if $W=\operatorname{Span} S$, we are done.
If not, $\exists w_{1} \in W \backslash$ Span S, and hence $S_{1}=S \cup\left\{w_{1}\right\}$ is linearly indep. by Toss In Theorem and

$$
\left|S_{1}\right|=\left|S \cup\left\{w_{1}\right\}\right|=|S|+1 \leq \operatorname{dim} V
$$

if Span $S_{1}<W$, then $\exists w_{2} \in W \backslash \operatorname{Span} S_{1}$, so $S_{2}=S \cup\left\{w_{1}, w_{2}\right\} \subset W$ is linearly indep., hence

$$
\left|S_{2}\right|=|S|+2 \leq \operatorname{dim} V
$$

Continuing in this manner, we must stop when $n \leq \operatorname{dim} V-\operatorname{dim} \operatorname{Span} S$ as $\operatorname{dim} V<\infty$. So S is a part of a basis for W and W is a finite dimensional vector space over F. \qquad

Think about the proof for this

Corollary 8.2

Let V be a finite dimensional vector space over F. Then any linearly indep. set in V can be EXTENDED to a basis for V, i.e., is part of a basis for V. We often call this special case the Extension Theorem.

Corollary 8.3

Let V be a finite dimensional vector space over $F, W \subset V$ a subspace. Then W is a finite dimensional vector space over F and $\operatorname{dim} W \leq \operatorname{dim} V$ with equality iff $W=V$.

Proof. Left as exercise.

Theorem 8.4 (Counting)

Let V be a finite dimensional vector space over $F, W_{1}, W_{2} \subset V$ subspaces. Suppose that both W_{1} and W_{2} are finite dimensional vector space over F. Then

1. $W_{1} \cap W_{2}$ is a finite dimensional vector space over F.
2. $W_{1}+W_{2}$ is a finite dimensional vector space over F.
3. $\operatorname{dim} W_{1}+\operatorname{dim} W_{2}=\operatorname{dim}\left(W_{1}+W_{2}\right)+\operatorname{dim}\left(W_{1} \cap W_{2}\right)$.

Proof. 1. $W_{1} \cap W_{2} \subset W_{i}, i=1,2$, so it is a finite dimensional vector space over F by corollary 8.2.
2. Let B_{i} be a basis for $W_{i}, i=1,2, \ldots$ Then $W_{1}+W_{2}=\operatorname{Span}\left(B_{1} \cup B_{2}\right)$ and

$$
\left|B_{1} \cup B_{2}\right| \leq\left|B_{1}\right|+\left|B_{2}\right|<\infty
$$

So $W_{1}+W_{2}$ is a finite dimensional vector space over F by Toss Out.
3. Let $B=\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis for $W_{1} \cap W_{2}$. Extend B to a basis

$$
\begin{aligned}
& b_{1}=\left\{v_{1}, \ldots, v_{n}, y_{1}, \ldots, y_{r}\right\} \text { for } W_{1} \\
& b_{2}=\left\{v_{1}, \ldots, v_{n}, z_{1}, \ldots, z_{s}\right\} \text { for } W_{2}
\end{aligned}
$$

using the Extension Theorem.
Claim 8.1. $b_{1} \cup b_{2}=\left\{v_{1}, \ldots, v_{n}, y_{1}, \ldots, y_{r}, z_{1}, \ldots, z_{s}\right\}$ is a basis for $W_{1}+W_{2}$ and has $n+r+s$ elements. So if we show the claim, the result will follow.

Certainly,

$$
\operatorname{Span}\left(b_{1} \cup b_{2}\right)=\operatorname{Span} b_{1}+\operatorname{Span} b_{2}=W_{1}+W_{2}
$$

So we need only to show $b_{1} \cup b_{2}$ is linearly indep. Suppose this is false. Then

$$
\begin{equation*}
0=\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}+\beta_{1} y_{1}+\ldots+\beta_{r} y_{r}+\gamma_{1} z_{1}+\ldots+\gamma_{s} z_{s} \tag{*}
\end{equation*}
$$

for some $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n}, \gamma_{1}, \ldots, \gamma_{s}$ in F not all zero.
Case 1: All the $\gamma_{i}=0$. Since b_{1} is linearly indep., this is a contradiction.
Case 2: Some $\gamma_{i} \neq 0$.
Changing notation, we may assume $\gamma_{1} \neq 0$. Since b_{2} is a basis, $\left(^{*}\right)$ leads to an equation

$$
0 \neq z=\gamma_{1} z_{1}+\ldots+\gamma_{s} z_{s}=-\alpha_{1} v_{1}-\ldots-\alpha_{n} v_{n}-\beta_{1} y_{1}-\ldots-\beta_{r} y_{r}
$$

Therefore, $0 \neq z$ lies in Span $b_{2} \cap \operatorname{Span} b_{1}=W_{2} \cap W_{1}$. So we can write $z i \in W_{1} \cap W_{2}$ using basis B as

$$
0 \neq z=\delta_{1} v_{1}+\ldots+\delta_{n} v_{n} \quad \text { some } \delta_{1}, \ldots, \delta_{n} \in F
$$

Thus $W_{2}=\operatorname{Span} b_{2}$, we have

$$
\delta_{1} v_{1}+\ldots+\delta_{n} v_{n}-0 z_{1}+\ldots+0 z_{s}=z=0 v_{1}+\ldots+0 v_{n}+\gamma_{1} z_{1}+\ldots+\gamma_{s} z_{s}
$$

By the Coordinate Theorem, $\gamma_{1}=0$, a contradiction.

Corollary 8.5

Let V be a vector space over $F, W_{1}, W_{2} \subset V$ finite dimensional subspaces of V. Then

$$
\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}
$$

iff

$$
W_{1} \cap W_{2}=\emptyset
$$

In this case, we write $W_{1}+W_{2}=W_{1} \oplus W_{2}$ called the DIRECT SUM.

§8.2 Linear Transformation

In mathematics, whenever you have a collection of objects, one studies maps between them that preserves any special properties of the objects in the collection and tries to see what information can be gained from such maps.

Definition 8.6 (Linear Transformation) - Let V, W be a vector space over F. A map $T: V \rightarrow W$ is called a Linear Transformation, write $T: V \rightarrow W$ is linear if $\forall v_{1}, v_{2} \in V, \forall \alpha \in F$

- $T\left(v_{1}+v_{2}\right)=T\left(v_{1}\right)+T\left(v_{2}\right)$.
- $T\left(\alpha v_{1}\right)=\alpha T\left(v_{1}\right)$.
- $T\left(0_{V}\right)=0_{W}$.

Notation: We write $T v$ for $T(v)$.
Remark 8.7. Let V, W be a vector space over $F, T: V \rightarrow W$ a map.

1. If T satisfies 1) and 2), then it satisfies 3):

$$
0_{W}+T\left(0_{V}\right)=T\left(0_{V}\right)=T\left(0_{V}+0_{V}\right)=T\left(0_{V}\right)+T\left(0_{V}\right)
$$

so $0_{W}=T\left(0_{V}\right)$.
2. T is linear iff $T\left(\alpha v_{1}+v_{2}\right)=\alpha T v_{1}+T v_{2} \quad \forall v_{1}, v_{2} \in V, \forall \alpha \in F$.
3. If T is linear, $\alpha_{1}, \ldots, \alpha_{n} \in F, v_{1}, \ldots, v_{n} \in V$, then

$$
T\left(\sum_{i=1}^{n} \alpha_{i} v_{i}\right)=\sum_{i=1}^{n} \alpha_{i} T v_{i}
$$

We leave a proof of 2) and 3) as exercises.

Example 8.8

Let V, W be a vector space over F. The followings are linear transformations

1. $0_{V, W}: V \rightarrow W$ by $v \mapsto 0_{W}$.
2. $V=W, 1_{V}: V \rightarrow V$ by $v \mapsto v$.

A linear transformation $T: V \rightarrow V$ is called a Linear Operator.
3. If $\emptyset \neq Z \subset W$ is a subset, then we have a map

$$
\text { inc : } Z \rightarrow W
$$

given by $z \mapsto z$ called the Inclusion Map. Then, Z is a subspace of V iff inc: $Z \hookrightarrow W$ is linear.

This is the Subspace Theorem.
4. $T: F^{n} \rightarrow F^{n-1}$ by $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \mapsto(\alpha_{1}, \ldots, \overbrace{i}^{\text {omit }}, \ldots, \alpha_{n}$ for a fixed i.
5. $T: F^{n} \rightarrow F$ by $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \mapsto \alpha_{i}$ for a fixed i.
6. $T: \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n}$ by $\left(\alpha_{1}, \ldots, \alpha_{n-1} \mapsto\left(\alpha_{1}, \ldots, \alpha_{i-1}, 0, \alpha_{i}, \ldots, \alpha_{n}\right)\right.$ for fixed i.
7. $T: \mathbb{R} \rightarrow \mathbb{R}^{n}$ by $\alpha \mapsto(0,0, \ldots, \alpha, 0, \ldots, 0)$ for fixed i.
8. If $\alpha<\beta$ in $\mathbb{R}, D: C^{\prime}(\alpha, \beta) \rightarrow C(\alpha, \beta)$ by $f \mapsto f^{\prime}$.
9. If $\alpha<\beta$ in \mathbb{R}, Int: $C(\alpha, \beta) \rightarrow C^{\prime}(\alpha, \beta)$ by $f \mapsto \int f$ where $\int f$ is the antiderivative - constant of integration 0 .
10. Fix $\alpha \in F$, then $\lambda \alpha: V \rightarrow V$ by $v \mapsto \alpha v$. Left translation by α.
11. Let $A \in F^{m \times n}$. Define

$$
\begin{aligned}
T: F^{n \times 1} \rightarrow F^{m \times 1} \quad \text { by } T \cdot X=A \cdot X \\
\text { i.e. }\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right) \mapsto A\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right)
\end{aligned}
$$

Matrices can be viewed as linear transformation. We should see the converse is true IF V is a finite dimensional vector space over F. It is not true in general.

§9 Lec 9: Oct 21, 2020

§9.1 Kernel, Image, and Dimension Theorem

Definition 9.1 (Kernel(Nullspace)) — Let V, W be a vector space over $F, T: V \rightarrow W$ linear set

$$
N(T)=\operatorname{ker} T:=\left\{v \in V \mid T v=0_{W}\right\}
$$

called the nullspace or kernel of T.

Definition 9.2 (Range(Image)) - Let V, W be a vector space over $F, T: V \rightarrow W$ linear set

$$
\begin{aligned}
\operatorname{im} T=T(V) & :=\{w \in W \mid \exists v \in V \ni T v=w\} \\
& =\{T v \mid v \in V\}
\end{aligned}
$$

called the range or image of T.

Proposition 9.3

Let $T: V \rightarrow W$ be linear. Then

1. $\operatorname{ker} T \subset V$ is a subspace.
2. $i m T \subset W$ is a subspace.

Proof. Left as exercise.

Theorem 9.4 (Dimension)
Let $T: V \rightarrow W$ be linear with V is a finite dimensional vector space over F. Then

1. im T and $\operatorname{ker} T$ are finite dimensional vector space over F.
2. $\operatorname{dim} V=\operatorname{dim} \operatorname{ker} T+\operatorname{dim} i m T$.

Note: $\operatorname{dim} \operatorname{ker} T$ is also called the NULLITY of T and $\operatorname{dim} \operatorname{imT}$ is also called the RANK of T.

Proof. Let $n=\operatorname{dim} V$.
$\operatorname{ker} T \subset V$ is a subspace, V is a finite dimensional vector space over F so $\operatorname{ker} T$ is a finite dimensional vector space over F and $\operatorname{dim} \operatorname{ker} T \leq \operatorname{dim} V=n$. Say $m=\operatorname{dim} \operatorname{ker} T$.
Let $\mathscr{B}_{0}=\left\{v_{1}, \ldots, v_{m}\right\}$ be a basis for ker T. By the Extension Theorem $\exists \mathscr{B}=\left\{v_{1}, \ldots, v_{m}, \ldots, v_{n}\right\}$ a basis for V.

Claim 9.1. $T v_{m+1}, \ldots, T v_{n}$ are linearly indep. (in particular, distinct) and

$$
\mathscr{C}=\left\{T v_{m+1}, \ldots, T v_{n}\right\}
$$

is a basis for $i m T$.
If we prove the claim above, then $i m T$ is a finite dimensional vector space over F of dimension $n-m$ and we are done.
Step 1: \mathscr{C} spans $i m T$:
Let $w \in i m T$. By definition, $\exists v \in V \ni T v=w$. As \mathscr{B} is a basis for $V \exists \alpha_{1}, \ldots, \alpha_{n} \in F \ni$

$$
v=\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}
$$

Hence

$$
\begin{aligned}
w & =T(v)=T\left(\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}\right)=\alpha_{1} T v_{1}+\ldots+\alpha_{n} T v_{n} \\
& =\alpha_{1} 0_{W}+\ldots+\alpha_{m} 0_{W}+\alpha_{m+1} T v_{m+1}+\ldots+\alpha_{n} T v_{n}
\end{aligned}
$$

lies w $\operatorname{Span}(\mathscr{C})\left(\right.$ as $\left.v_{1}, \ldots, v_{m} \in \operatorname{ker} T\right)$. \qquad
Case 2: \mathscr{C} is linearly indep.
Suppose $\alpha_{m+1}, \ldots, \alpha_{n} \in F$ and

$$
\alpha_{m+1} T v_{m+1}+\ldots+\alpha_{n} T v_{n}=0_{W}
$$

Then

$$
0_{W}=T\left(\alpha_{m+1} v_{m+1}+\ldots+\alpha_{n} v_{n}\right.
$$

So $\alpha_{m+1} v_{m+1}+\ldots+\alpha_{n} v_{n} \in \operatorname{ker} T$. By defn, \mathscr{B}_{0} is a basis for $\operatorname{ker} T$. So $\exists \beta_{1}, \ldots, \beta_{m} \in F \ni$

$$
\alpha_{m+1} v_{m+1}+\ldots+\alpha_{n} v_{n}=\beta_{1} v_{1}+\ldots+\beta_{m} v_{n}
$$

Hence

$$
0=-\beta_{1} v_{1}-\ldots-\beta_{m} v_{m}+\alpha_{m+1} v_{m+1}+\ldots+\alpha_{n} v_{n}
$$

As \mathscr{B} is a basis for V, it is linearly indep, so $\beta_{1}=0, \ldots, \beta_{m}=0, \alpha_{m+1}=0, \ldots, \alpha_{n}=0$ (Coordinate Theorem) and the claim follows.

Note: Let V be a finite dimensional vector space over $F, W \subset V$ a subspace, V / W the quotient space, then $-: V \rightarrow V / W, v \mapsto \bar{v}=v+W$ and $\operatorname{dim} V / W=\operatorname{dim} V-\operatorname{dim} W$.

§9.2 Algebra of Linear Transformation

We want to study the set of all linear transformation from a vector space over $F V$ to a vector space over $F W$. Let V, W be a vector space over F. Set

$$
L(V, W):=\{T: V \rightarrow W \mid T \text { is linear }\}
$$

Check: if $T, S \in L(V, W), \alpha \in F$, then $\alpha T+S \in L(V, W)$. Since we know $\mathscr{F}(V, W)=$ $\{f: V \rightarrow W \mid f$ a map $\}$ is a vector space over F, by the Subspace Theorem, $L(V, W) \subset$ $\mathscr{F}(V, W)$ is a subspace.

Proposition 9.5

Let V, W be a vector space over F, then $L(V, W) \subset \mathscr{F}(V, W)$ is a subspace.

Now we know if we have maps

$$
f: X \rightarrow Y \quad \text { and } \quad g: y \rightarrow Z,
$$

we have the COMPOSITE MAP

$$
g \circ f: X \rightarrow Z \quad \text { by }(g \circ f)(x)=g(f(x)) \forall x \in X
$$

where o is called the COMPOSITION (and often omitted when clear). Then we have

Proposition 9.6

Let V, W, X, U be vector space over $F, T, T^{\prime}: V \rightarrow W, \quad S, S^{\prime}: W \rightarrow X, \quad R: X \rightarrow U$ all be linear. Then,

1. $S \circ T: V \rightarrow W$ is linear.(the composition of linear transformations is linear).
2. $R \circ(S \circ T)=(R \circ S) \circ T$ and linear.
3. $S \circ\left(T+T^{\prime}\right)=S \circ T+S \circ T^{\prime}$ and linear.
4. $\left(S+S^{\prime}\right) \circ T=S \circ T+S^{\prime} \circ T$ and linear.

Proof.

$$
\begin{aligned}
(S \circ T)\left(\alpha v_{1}+v_{2}\right) & =S\left(T\left(\alpha v_{1}+v_{2}\right)\right)=S\left(\alpha T v_{1}+T v_{2}\right) \\
& =\alpha S \circ T\left(v_{1}\right)+S \circ T\left(v_{2}\right)
\end{aligned}
$$

$\forall v_{1}, v_{2} \in V, \alpha \in F$.
The rest are left as exercises.

Definition 9.7 (Linear Operator) - Let V be a vector space over $F, T: V \rightarrow V$ linear, so a linear operator is defined as

$$
\begin{aligned}
& T^{n}:=\underbrace{T \circ \ldots \circ T}_{n} \text { if } n \in \mathbb{Z}^{+} \\
& T^{0}=1_{V}
\end{aligned}
$$

Proposition 9.8

Let V be a vector space over F. Then $L(V, V)$ under + and \circ of functions $V \rightarrow V$ satisfies all the axioms of a field except possibly (M3) and (M4) with

$$
\begin{aligned}
\text { one } & =1_{V}: V \rightarrow V \quad \text { by } v \mapsto v \\
\text { zero } & =0_{V}: v \rightarrow v \quad \text { by } v \mapsto 0
\end{aligned}
$$

We say $L(V, V)$ is a (non-commutative) ring of $M_{n} F$.

§9.3 Linear Transformation Theorems

Definition 9.9 (Properties/Consequences of Linear Transformation) - Let $T: V \rightarrow W$ be linear. We say that T is

1. a MONOMORPHISM (write mono or monic) or NONSINGULAR if T is $1-1$. (i.e., injective).
2. an EPIMORPHISM (write epi or epic) if T is onto (i.e., surjective).
3. an ISOMORPHISM (write iso) or INVERTIBLE if T is bijective and $T^{-1}: W \rightarrow$ V is linear. We say V, W vector spaces over F are ISOMORPHIC (write $V \cong W$ if \exists an isomorphism $S: V \rightarrow W$, we also write an isomorphism $S: V \rightarrow W$ as $S: V \xrightarrow{\sim} W$

Remark 9.10. $V \cong W$ vector space over F means that we cannot take V and W apart algebraically.

Example 9.11

$F^{n+1} \cong F[t]_{n}$ as $F^{n+1} \rightarrow F[t]_{n}$ by $\left(\alpha_{0}, \ldots, \alpha_{n}\right) \mapsto \alpha_{0}+\alpha_{1} t_{1}+\ldots+\alpha_{n} t^{n}$ is an isomorphism with inverse $F[t]_{n} \rightarrow F^{n+1}$ by $\alpha_{0}+\alpha_{1} t+\ldots+\alpha_{n} t^{n} \mapsto\left(\alpha_{0}, \ldots, \alpha_{n}\right)$

$$
\begin{aligned}
T^{-1}\left(\alpha w_{1}+w_{2}\right) & =T^{-1}\left(\alpha T v_{1}+T v_{2}\right)=T^{-1}\left(T\left(\alpha v_{1}+v_{2}\right)\right) \\
& =T^{-1} T\left(\alpha v_{1}+v_{2}\right) \\
& =\alpha v_{1}+v_{2} \\
& =\alpha T^{-1} w_{1}+T^{-1} w_{2}
\end{aligned}
$$

Corollary 9.12

Let $T: V \rightarrow W$ be a monomorphism. Then $V \cong i m T$ via T.

Remark 9.13. If V, W, X are vector space over F, then

1. $V \cong V$
2. $V \cong W \rightarrow W \cong V$
3. $V \cong W$ and $W \cong X$ then $V \cong X$

In algebra, isomorphisms are usually easier to check than are one might assume, because the following result is often true.

Proposition 9.14

Let $T: V \rightarrow W$ be linear. Then T is an isomorphism iff T is bijective.

Proof. (\rightarrow) immediate.
(\leftarrow) Let $T^{-1}: W \rightarrow V$ be the set inverse of $T: V \rightarrow W$, so

$$
T \circ T^{-1}=1_{W} \quad \text { and } T^{-1} \circ T=1_{V}
$$

In particular, if $v \in V$ and $w \in W$,

$$
w=T v \quad \text { iff } \quad T^{-1} w=v
$$

Let $w_{1}, w_{2} \in W, \alpha \in F$. To show

$$
T^{-1}\left(\alpha w_{1}+w_{2}\right)=\alpha T^{-1} w_{1}+T^{-1} w_{2}
$$

T is onto so

$$
\exists v_{i} \in V \ni T v_{i}=w_{i}, i=1, \ldots
$$

Hence, we have

$$
\begin{aligned}
T^{-1}\left(\alpha w_{1}+w_{2}\right) & =T^{-1}\left(\alpha T v_{1}+T v_{2}\right)=T^{-1}\left(T\left(\alpha v_{1}+v_{2}\right)\right) \\
& =T^{-1} T\left(\alpha v_{1}+v_{2}\right)=\alpha v_{1}+v_{2} \\
& =\alpha T^{-1} w_{1}+T^{-1} w_{2}
\end{aligned}
$$

$\S 10 \mid$ Lec 10: Oct 23, 2020

§10.1 Monomorphism, Epimorphism, and Isomorphism

Corollary 10.1

Let $T: V \rightarrow W$ be a monomorphism. Then $V \cong \operatorname{im~} T$ via T.

Definition 10.2 (Linear Map) - Let $T: V \rightarrow W$ be linear. We say T takes linearly independent sets to linearly independent sets if $v_{i}, i \in I$ are linearly independent in V (in particular, distinct). Then, $T v_{i}, i \in I$ are linearly indep. in W. $\left(T v_{i} \neq T v_{j}\right.$ if $i \neq j$ in I)

Theorem 10.3 (Monomorphism)

Let $T: V \rightarrow W$ be linear. Then the followings are true

1. T is $1-1$, so it's monomorphism.
2. T takes linearly indep. sets in V to linearly indep. sets in W.
3. $\operatorname{ker} T=0:=\left\{0_{V}\right\}$.
4. $\operatorname{dim} \operatorname{ker} T=0$.

Proof. - 3) iff 4) is the defn of the 0 -space.

- 1) $\rightarrow 2$) It suffices to show that T takes finite linearly indep. sets in V to linearly indep. sets in W.
Suppose that $v_{1}, \ldots, v_{n} \in V$ are linearly indep. and $\alpha_{1}, \ldots, \alpha_{n} \in F$ satisfy

$$
0_{W}=\alpha_{1} T v_{1}+\ldots+\alpha_{n} T v_{n}
$$

Then

$$
T\left(0_{V}\right)=0_{W}=T\left(\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}\right)
$$

As T is $1-1$

$$
0_{V}=\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}
$$

Since v_{1}, \ldots, v_{n} are linearly indep. $\alpha_{i}=0, i=1, \ldots, n$ as needed.

- 2) \rightarrow 3) Let $v \in \operatorname{ker} T$. Then $T v=0_{W}$. If $v \neq 0$, then $\{v\}$ is linearly indep. By 2) $T v \neq 0_{W}$ as then $\{T v\}$ is linearly indep. So $v \neq 0$.
- 3) \rightarrow 1) If $T v_{1}=T v_{2}, v_{1}, v_{2} \in V$, then

$$
0_{W}=T v_{1}-T v_{2}=T\left(v_{1}-v_{2}\right)
$$

So $v_{1}-v_{2}=0_{V}$ by 3), i.e., $v_{1}=v_{2}$

Remark 10.4. The Monomorphism Theorem says ker T measures the deviation of T from being $1-1$.

Note: In the Monomorphism Theorem, we do not assume that V or W is a finite dimensional vector space over F.

Theorem 10.5 (Isomorphism)

Suppose $T: V \rightarrow W$ is linear with $\operatorname{dim} V=\operatorname{dim} W<\infty$,i.e., V, W are finite dimensional vector space over F of the same dimension. Then the followings are true

1. T is an isomorphism.
2. T is a monomorphism.
3. T is an epimorphism.
4. If $\mathscr{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V, then $\left\{T v_{1}, \ldots, T v_{n}\right\}$ is a basis for W (so $T v_{1}, \ldots, T v_{n}$ are distinct), i.e., T takes basis of V to basis of W.
5. There exists a basis \mathscr{B} of V that maps to a basis of W.

Remark 10.6. 1. The condition that $\operatorname{dim} V=\operatorname{dim} W<\infty$ is crucial
Come up with a counter example
2. Let $V \cong W$ with V, W be finite dimensional vector space over F. So $\operatorname{dim} V=\operatorname{dim} W$. Let $S: V \rightarrow W$ be linear. Then S may or may not be an isomorphism, e.g., if S is the zero map then it is not an isomorphism unless $V=0$. The theorem only says that \exists an isomorphism and any such satisfies the theorem.
3. Let $f: A \rightarrow B$ be a map of finite sets with $|A|=|B|$. Then f is a bijection iff f is an injection iff f is a surjection.

Proof. (of Theorem)

- 1) $\rightarrow 2$) follows by defn.
- 2) \rightarrow 3) By the Dimension Theorem

$$
\operatorname{dim} W=\operatorname{dim} V=\operatorname{dim} \operatorname{ker} T+\operatorname{dim} \operatorname{im} T
$$

Thus, T is onto iff $\operatorname{im} T=W$ iff $\operatorname{dim} W=\operatorname{dim} \operatorname{im} T$ (by the Corollary to the Existence Theorem) iff dim ker $T=0$ iff T is $1-1$.

- 3$) \rightarrow 1$) as 3$) \rightarrow 2)$ and 1$)=2)+3$) by the Proposition \qquad ?
- 2) $\rightarrow 4)$ Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis for V. By the Monomorphism Theorem, $T v_{1}, \ldots, T v_{n}$ are linearly indep. in W, so

$$
n \leq \operatorname{dim} W=\operatorname{dim} V=n
$$

Hence $\left\{T v_{1}, \ldots, T v_{n}\right\}$ also spans as $\operatorname{dim} W=\operatorname{dim} V$.

- 4) $\rightarrow 5) \rightarrow 3$) are clear.

§10.2 Existence of Linear Transformation

The next result is really the defining property of finite dimensional vector space and linear transformation.

Theorem 10.7 (Existence of Linear Transformation (UPVS))

- (Universal Property of Vector Space) Let V be a finite dimensional vector space over $F, \mathscr{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ a basis for V and W an arbitrary vector space over F. Let $w_{1}, \ldots, w_{n} \in W$, not necessarily distinct. Then

$$
\exists!T: V \rightarrow W \text { linear } \ni T v_{i}=w_{i} \forall i
$$

We can write this in an other way as follows:
Let $B \hookrightarrow V$ be a basis for V, V a finite dimensional vector space over F and W a vector space over F. Given a diagram,

then $\exists!T: V \rightarrow W$ linear \ni

commutes, i.e., $T \circ$ inc $=f$.

Proof. Define $T: V \rightarrow W$ as follows: let $V \in V$. The $\exists!\alpha_{1}, \ldots, \alpha_{n} \in F \ni v=\alpha_{1} v_{1}+\ldots+$ $\alpha_{n} v_{n}$ by the Coordinate Theorem. Define

$$
T v=T\left(\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}\right):=\alpha_{1} w_{1}+\ldots+\alpha_{n} w_{n}
$$

Since the α_{i} ARE UNIQUE, this defines a map - we say $T: V \rightarrow W$ is WELL - DEFINED. Certainly, $T v_{i}=w_{i}, i=1, \ldots, n$. To show T is linear, let $v=\sum_{i=1}^{n} \alpha_{i} v_{i}, v^{\prime}=\sum_{i=1}^{n} \beta_{i} v_{i}$, $\alpha, \alpha_{i}, \beta_{j} \in F \forall i, j$. Then

$$
\begin{aligned}
T\left(\alpha v+v^{\prime}\right) & =T\left(\alpha \sum_{i=1}^{n} \alpha_{i} v_{i}+\sum_{i=1}^{n} \beta_{i} v_{i}\right) \\
& =T\left(\sum_{i=1}^{n}\left(\alpha \alpha_{i}+\beta_{i}\right) v_{i}\right)=\sum_{i=1}^{n}\left(\alpha \alpha_{i}+\beta_{i}\right) w_{i} \\
& =\alpha \sum_{i=1}^{n} \alpha_{i} w_{i}+\sum_{i=1}^{n} \beta_{i} w_{i}=\alpha T v+T v^{\prime}
\end{aligned}
$$

as needed. This shows existence.
Uniqueness: Let $T: V \rightarrow W$ by $\left(^{*}\right)$ and $S: V \rightarrow W$ linear s.t. $S v_{i}=w_{i} \forall i$. To show $S=T$, let $v=\sum_{i=1}^{n} \alpha_{i} v_{i}, \alpha_{i} \in F$ unique, $i=1, \ldots, n$. Then $T v=\sum_{i=1}^{n} \alpha_{i} T v_{i}=\sum_{i=1}^{n} \alpha_{i} w_{i}$ which is equivalent to

$$
=\sum_{i=1}^{n} \alpha_{i} S v_{i}=S\left(\sum_{i=1}^{n} \alpha_{i} v_{i}\right)=S v
$$

So S is T and we have proven uniqueness.

Remark 10.8. The theorem says a linear transformation from a finite dimensional vector space over F is completely determined by what it does to a fixed basis. i.e., as there are no non - trivial RELATIONS on linear combos of elements in \mathscr{B}, the only relation in in T will arise from the kernel of T.

§11 Lee 11: Oct 26, 2020

§11.1 Lect 10 (Cont'd)

Remark 11.1. 1. In the above, given $f v_{i}=w_{i} \forall i$, we say that $T: V \rightarrow W$ by $\sum \alpha_{i} v_{i} \mapsto$ $\alpha_{i} w_{i}$ EXTENDS f linearly.
2. Let V be any vector space over F (not necessarily finite dimensional). Suppose V has a basis \mathscr{B}, then every $v \in V$ is a finite linear combo elements in \mathscr{B}. Using the same proof of UPVS, shows
if W is a vector space over F, then given a diagram

of set and set maps. $\exists!T: V \rightarrow W$ linear s.t.

commutes. I.E., if $\mathscr{B}=\left\{v_{i}\right\}_{I}$ is a basis for $V, w_{i} \in W, i \in I$ (not necessarily distinct), $f: V \rightarrow W$ by $v_{i} \mapsto w_{i} \forall i \in I$. Then $\exists!T: V \rightarrow W$ linear s.t. $T v_{i}=w_{i} \forall i \in I$. So any linear transformation from a vector space over $F V$ having a basis is completely determined by what it does to that basis.
3. Axiom: Every vector space over F has a basis. This is equivalent to the Axiom of Choice.

Theorem 11.2 (Classification of Finite Dimensional Vector Space)

Let V, W be finite dimensional vector space over F. Then

$$
V \cong W \Longleftrightarrow \operatorname{dim} V=\operatorname{dim} W
$$

Proof. (\rightarrow) Let $T: V \rightarrow W$ be an isomorphism, $\mathscr{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ a basis for V (so $\operatorname{dim} V=n)$. By the Monomorphism Theorem,

$$
\mathscr{C}=\left\{T v_{1}, \ldots, T v_{n}\right\}
$$

is linearly index. in W. Since $|\mathscr{C}|=n$ and $\operatorname{span}(\mathscr{C})=w($ as T is onto $), \mathscr{C}$ is a basis for W and $\operatorname{dim} W=\operatorname{dim} V$.
(\leftarrow) Suppose $n=\operatorname{dim} V=\operatorname{dim} W$. Let $\mathscr{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis for $V, \mathscr{C}=\left\{w_{1}, \ldots, w_{n}\right\}$ a basis for W. By the UPVS, $\exists!T: V \rightarrow W$ linear $v_{i} \mapsto w_{i} \forall i$, i.e., T takes the basis \mathscr{B} of V to the basis \mathscr{C} of W. By the Isomorphism Theorem, T is an isomorphism.

Example 11.3 1. $F^{n \times m} \cong F^{m \times n} \cong F^{m n}$
2. $M_{n} F \cong F^{n^{2}}$
3. $F[t]_{n} \cong F^{n+1}$

Let $T: V \rightarrow W$ be linear with V, W arbitrary. Since T only tells us about im T, we replace the target W by im $T=T(V)$, i.e., view $T: V \rightarrow W$ surjective linear. Let \mathscr{B}_{0} be a basis for ker $T \subset V$ subspace. Then Extension. Theorem holds even when V is not finite dimensional. Extend \mathscr{B}_{0} to a basis $\mathscr{B}=\mathscr{B}_{0} \cup \mathscr{C}$ so $\mathscr{C} \cap \mathscr{B}_{0}=\emptyset$ and $V=$ span \mathscr{B}. By the argument proving the Dimension Theorem,

$$
T(\mathscr{C})=\{T(y) \mid y \in \mathscr{C}\}
$$

is linearly indep. and since T is onto $T(\mathscr{C})$ is a basis for W. The new relation in $W=\operatorname{im} T$ comes from

$$
T x=0, x \in \mathscr{B}_{0}
$$

In the extra section (3), we showed

$$
V / \operatorname{ker} T=\{\bar{v} \mid v \in V\}
$$

where

$$
\bar{v}=v+\operatorname{ker} T=\{v+z \mid z \in \operatorname{ker} T\}
$$

is a vector space over F. In fact, $\{\bar{y} \mid y \in \mathscr{C}\}$ is a basis for $V / \operatorname{ker} T$. By the UPVS, \exists ! linear transformation

$$
\bar{T}: V / \operatorname{ker} T \rightarrow W
$$

given by $\overline{0}=\bar{x} \mapsto 0, x \in \mathscr{B}_{0}, \bar{y} \mapsto T y, y \in \mathscr{C} . \bar{T}$ is clearly onto and \bar{T} is $1-1$,

$$
\bar{T}(\bar{v})=T(v) \quad \forall v \in V
$$

So

$$
\bar{T}: V / \operatorname{ker} T \rightarrow W=\operatorname{im} T
$$

is an isomorphism.
As $-: V \rightarrow V / \operatorname{ker} T$ by $v \mapsto \bar{v}$ is a surjective linear transformation, by definition,

$$
\overline{\alpha v+v^{\prime}}=\alpha \bar{v}+\overline{v^{\prime}}
$$

Note: $\operatorname{ker}-=\operatorname{ker} T$.
We have a commutative diagram

with - an epimorphism
\bar{T} an isomorphism
Notiece if $W \neq \operatorname{im} T, \bar{T}$ is only a monomorphism.
We shall show that all of this is true without using bases (or the Extension Theorem in the Extra Lecture). In particular,

$$
V / \operatorname{ker} T \cong \operatorname{im} T
$$

§11.2 Matrices and Linear Transformations

Goal: Let V, W be finite dimensional vector spaces over F. Reduce the study of linear transformations $T: V \rightarrow W$ to matrix theory, hence often to computation (Deabstractify).

Remark 11.4. In this section, all bases are ORDERED.
Set up and Notation: Let V, W be finite dimensional vector space over $F . \mathscr{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ an ordered basis for V, so $\operatorname{dim} V=n$. $\mathscr{C}=\left\{w_{1}, \ldots, w_{m}\right\}$ an ordered basis for W, so $\operatorname{dim} W=m$.
Step 1: If $v \in V$, write

$$
v=\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}
$$

i.e., $\alpha_{1}, \ldots, \alpha_{n}$ are the unique coordinate of v relative to \mathscr{B}. Then let

$$
[v]_{\mathscr{B}}:=\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right) \in F^{n \times 1}
$$

the coordinate matrix of v relative to the ordered basis \mathscr{B}. E.g.,

$$
\left[v_{i}\right]_{\mathscr{B}}=\left(\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
1
\end{array}\right) i^{\mathrm{th}}
$$

and set

$$
v_{\mathscr{B}}:=\left\{[v]_{\mathscr{B}} \mid v \in V\right\}=F^{n \times 1}
$$

Then

$$
v \rightarrow v_{\mathscr{B}} \quad \text { by } v \mapsto[v]_{\mathscr{B}} \quad \text { isomorphism }
$$

as

$$
v_{i} \mapsto e_{i}:=\left(\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right) i^{\text {th }}, f_{n, 1}=\left\{e_{1}, \ldots, e_{n}\right\}
$$

the standard basis for $F^{n \times 1}$.
Step 2: Let $T: V \rightarrow W$ be linear, then

$$
T v_{i} \in W=\operatorname{Span} \mathscr{C}=\operatorname{Span}\left(w_{1}, \ldots, w_{m}\right)
$$

as \mathscr{C} is a basis for W. Therefore,

$$
\begin{gathered}
\exists!\alpha_{i j} \in F, 1 \leq i \leq m, 1 \leq j \leq n \ni \\
T v_{j}=\sum_{i=1}^{m} \alpha_{i j} w_{i}, \quad j=1, \ldots, n
\end{gathered}
$$

Let $A=\left(\alpha_{i j} \in F^{m \times n}\right)$, i.e., $A_{i j}=\alpha_{i j} \forall i, j$. Then the $j^{\text {th }}$ COLUMN of A is

$$
\left(\begin{array}{c}
\alpha_{1 j} \\
\vdots \\
\alpha_{m j}
\end{array}\right)=\left[T v_{j}\right]_{\mathscr{C}} \in W_{\mathscr{C}}=F^{m \times 1}
$$

Step 3: Let

$$
A: V_{\mathscr{B}} \rightarrow W_{\mathscr{C}} \text { by } A\left([v]_{\mathscr{B}}\right)=A \cdot[v]_{\mathscr{B}}
$$

This is a linear transformation.

$$
A: F^{n \times 1} \rightarrow F^{m \times 1}
$$

Since

$$
A\left(\left[v_{j}\right]_{\mathscr{B}}\right)=\left[T v_{j}\right]_{\mathscr{B}}, j=1, \ldots, n
$$

A is the unique linear transformation s.t.

$$
A\left[v_{j}\right]_{\mathscr{B}}=\left[T v_{j}\right]_{\mathscr{E}}
$$

So by UPVS,

$$
\begin{equation*}
A[v]_{\mathscr{B}}=[T v]_{\mathscr{C}} \quad \forall v \in V \tag{*}
\end{equation*}
$$

Definition 11.5 (Matrix Representation) - The unique matrix $A \in F^{m \times n}$ in $\left(^{*}\right)$ is called the matrix representation of T relative to the ordered bases, \mathscr{B}, \mathscr{C}. We denote A by $[T]_{\mathscr{B}, \mathscr{C}}$.

Notation: if $V=W, \mathscr{B}=\mathscr{C}$, we usually write $[T]_{\mathscr{B}}$ for $[T]_{\mathscr{B}, \mathscr{B}}$.
§12| Lec 12: Oct 28, 2020

§12.1 Lec 11 (Cont'd)

Summary: Let $T: V \rightarrow W$ be linear with V, W finite dimensional vector space over F

$$
\begin{aligned}
\mathscr{B} & =\left\{v_{1}, \ldots, v_{n}\right\} \text { an ordered basis for } V, \operatorname{dim} V=n \\
\mathscr{C} & =\left\{w_{1}, \ldots, w_{n}\right\} \text { an ordered basis for } W, \operatorname{dim} W=m
\end{aligned}
$$

Then $\exists!A=[T]_{\mathscr{B}, \mathscr{C}} \in F^{m \times n}$ satisfying

$$
A[v]_{\mathscr{B}}=[T]_{\mathscr{B}, \mathscr{C}}[v]_{\mathscr{B}}=[T v]_{\mathscr{B}} \forall v \in V
$$

Moreover, if

$$
T v_{j}=\sum_{i=1}^{m} \alpha_{i j} w_{i}, \quad j=1, \ldots, n
$$

then the $j^{\text {th }}$ column of $A=[T]_{\mathscr{B}, \mathscr{C}}$ is precisely

$$
\left[T v_{j}\right]_{\mathscr{C}}=\left(\begin{array}{c}
\alpha_{1 j} \\
\vdots \\
\alpha_{m j}
\end{array}\right) \in F^{m \times 1}
$$

i.e.,

$$
[T]_{\mathscr{B}, \mathscr{C}}=(\underbrace{\left[T v_{1}\right]_{\mathscr{C}} \ldots\left[T v_{n}\right]_{\mathscr{C}}}_{\text {columns }})
$$

Warning: If $\mathscr{B}^{\prime}, \mathscr{C}^{\prime}$ are two other ordered bases for V, W respectively (even the same vectors in \mathscr{B}, \mathscr{C} written in a different order), then in general

$$
[T]_{\mathscr{B}, \mathscr{C}} \neq[T]_{\mathscr{B}^{\prime}, \mathscr{C}^{\prime}}
$$

Example 12.1 1. Let $\mathscr{B}=\left\{v_{1}, \ldots, v_{n}\right\}, \mathscr{C}=\left\{w_{1}, \ldots, w_{n}\right\}$ be two ordered bases for V. Let

$$
T: V \rightarrow V \text { linear by } v_{i} \mapsto w_{i}, i=1, \ldots, n
$$

Then $[T]_{\mathscr{B}, \mathscr{C}}=I$, the identity matrix. Moreover, if

$$
T v_{j}=w_{j}=\sum_{i=1}^{n} \alpha_{i j} v_{i}
$$

then

$$
[T]_{\mathscr{B}}=[T]_{\mathscr{B}, \mathscr{B}}=\left(\alpha_{i j}\right)=\left(\begin{array}{ccc}
\alpha_{11} & \ldots & \alpha_{1 n} \\
\vdots & & \vdots \\
\alpha_{n 1} & & \alpha_{n n}
\end{array}\right)
$$

2. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $(\alpha, \beta) \mapsto(\beta, \alpha), \mathscr{S}=\mathscr{S}_{2}=\left\{e_{1}, e_{2}\right\}$, the standard ordered basis for \mathbb{R}^{2}. Then

$$
[T]_{\mathscr{S}}=\left(\left[T e_{1}\right]_{\mathscr{S}},\left[T e_{2}\right]_{\mathscr{S}}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

and if \mathscr{B} is the ordered bases $\mathscr{B}=\left\{e_{2}, e_{1}\right\}$ then

$$
[T]_{\mathscr{S}, \mathscr{B}}=\left(\left[T e_{1}\right]_{\mathscr{B}},\left[T e_{2}\right]_{\mathscr{B}}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

3. Let $\mathscr{B}=\left\{1, x, x^{2}, x^{3}\right\}$ be a basis for $\mathbb{R}[x]_{3}$, the polynomial functions of degree ≤ 3 (and 0), and

$$
D: \mathbb{R}[x]_{3} \rightarrow \mathbb{R}[x]_{3} \text { differentiation }
$$

Find $[D]_{\mathscr{B}}$

$$
\begin{gathered}
D \cdot 1=0 \text { so }[D \cdot 1]_{\mathscr{B}}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) \\
D x=1 \text { so }[D x]_{\mathscr{B}}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \\
D x^{2}=2 x \text { so }\left[D x^{2}\right]_{\mathscr{B}}=\left(\begin{array}{l}
0 \\
2 \\
0 \\
0
\end{array}\right) \\
D x^{3}=3 x^{2} \text { so }\left[D x^{3}\right]_{\mathscr{B}}=\left(\begin{array}{l}
0 \\
0 \\
3 \\
0
\end{array}\right)
\end{gathered}
$$

Hence,

$$
[D]_{\mathscr{B}}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Some more examples

Example 12.2 1. Let $T_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be counterclockwise rotation by an $\angle \theta$

$$
\begin{aligned}
& T_{\theta} e_{1}=\cos \theta e_{1}+\sin \theta e_{2} \\
& T_{\theta} e_{2}=(-\sin \theta) e_{1}+\cos \theta e_{2}
\end{aligned}
$$

So

$$
\left[T_{\theta}\right]_{\mathscr{S}}=\left(\left[T_{\theta} e_{1}\right]_{\mathscr{L}}\left[T_{\theta} e_{2}\right]_{\mathscr{S}}\right)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

2. Let $\mathscr{B}=\left\{v_{1}, v_{2}\right\}$ be an ordered basis for V and $\mathscr{C}=\left\{w_{1}, w_{2}, w_{3}\right\}$ an ordered basis for W. Suppose

$$
T: V \rightarrow W \text { by }\left\{\begin{array}{l}
T v_{1}=3 w_{1}+w_{3} \\
T v_{2}=w_{1}+6 w_{2}+w_{3}
\end{array}\right.
$$

then $[T]_{\mathscr{B}, \mathscr{C}}=\left(\begin{array}{ll}3 & 1 \\ 0 & 6 \\ 1 & 1\end{array}\right)$
3. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the reflection about the e_{1}, e_{2} plane. What is $[T]_{\mathscr{S}}$?

$$
\begin{aligned}
e_{1} & \mapsto e_{1} \\
e_{2} & \mapsto e_{2} \\
e_{3} & \mapsto-e_{3}
\end{aligned}
$$

$$
\text { So }[T]_{\mathscr{S}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Theorem 12.3 (Matrix Theory)

(MTT) Let V, W be finite dimensional vector space $F, \operatorname{dim} V=n, \operatorname{dim} W=m$, and \mathscr{B}, \mathscr{C} ordered bases for V, W. Then the map

$$
\phi: L(V, W) \rightarrow F^{m \times n} \text { by } T \mapsto[T]_{\mathscr{B}, \mathscr{C}}
$$

is an isomorphism. In particular

$$
\operatorname{dim} L(V, W)=m n
$$

Proof. Left as exercise (Homework).
Using the fact that $W \rightarrow W_{\mathscr{C}}$ is an isomorphism if $w \mapsto[w]_{\mathscr{C}}$ show that

1. ϕ is linear
2. ϕ is onto
3. ϕ is $1-1$
4. $\operatorname{dim} L(V, W)=m n$

Theorem 12.4

Let V, W, U be finite dimensional vector space over F with ordered bases $\mathscr{B}, \mathscr{C}, \mathscr{D}$ respectively, $T: V \rightarrow W, S: W \rightarrow U$ linear. Then

$$
[S \circ T]_{\mathscr{B}, \mathscr{D}}=[S]_{\mathscr{C}, \mathscr{D}} \cdot[T]_{\mathscr{B}, \mathscr{C}}
$$

Proof.

$$
\begin{aligned}
{[S]_{\mathscr{C}, \mathscr{D}}[T]_{\mathscr{B}, \mathscr{C}}[v]_{\mathscr{B}} } & =[S]_{\mathscr{C}, \mathscr{D}}[T v]_{\mathscr{C}} \\
& =[S(T v)]_{\mathscr{D}} \\
& =[(S \circ T)(v)]_{\mathscr{D}} \\
& =[S \circ T]_{\mathscr{B}, \mathscr{D}}[v]_{\mathscr{B}}
\end{aligned}
$$

Exercise: Let V, W be finite dimensional vector space over F with $\operatorname{dim} V=\operatorname{dim} W, \mathscr{B}, \mathscr{C}$ ordered bases of V, W respectively, $T: V \rightarrow W$ linear. Then, T is an isomorphism iff $[T]_{\mathscr{B}, \mathscr{C}}$ is invertible.
Let V be a finite dimensional vector space over $F, \operatorname{dim} V=n, \mathscr{B}$ an ordered basis for V. Then

$$
\phi: L(V, V) \rightarrow M_{n} F \text { by } T \mapsto[T]_{\mathscr{B}}
$$

satisfies all of the following: $\forall T, S \in L(V, V)$
(i) $\phi(T+S)=\phi(T)+\phi(S)$
(ii) $\phi(T \circ S)=\phi(T) \phi(S)$
(iii) $\phi\left(0_{V}\right)=0_{F^{n \times 1}}$
(iv) $\phi\left(1_{V}\right)=1_{F^{n \times 1}}$

By the exercise, ϕ is bijection linear transformation. Both $L(V, V)$ and $M_{n} F$ satisfy all the axioms of a field except (M3) and (M4). We call them (NON COMMUTATIVE) rings and since ϕ preserves all the structure i) - iv) as does its inverse(?), we say ϕ is an ISOMORPHISM of rings

Definition 12.5 (Change of Basis Matrix) - Let V be a finite dimensional vector space over F with ordered bases \mathscr{B}, \mathscr{C}. Then the invertible matrix $\left[1_{V}\right]_{\mathscr{B}, \mathscr{C}}$ is called a CHANGE OF BASIS MATRIX.

Example 12.6 1. $\mathscr{S}=\left\{e_{1}, e_{2}\right\}, \mathscr{B}=\{(1,1),(2,1)\}, \mathscr{C}=\{(3,4),(6,1)\}$ ordered bases for \mathbb{R}^{2}.

$$
\begin{array}{lll}
{\left[1_{\mathbb{R}^{2}}\right]_{\mathscr{B}, \mathscr{S}}=\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right),} & {\left[1_{\mathbb{R}^{2}}\right]_{\mathscr{S}}} & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
{\left[1_{\mathbb{R}^{2}}\right]_{\mathscr{C}, \mathscr{S}}=\left(\begin{array}{ll}
3 & 6 \\
4 & 1
\end{array}\right),} & {\left[1_{\mathbb{R}^{2}}\right]_{\mathscr{B}}} & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{array}
$$

2. \mathscr{B} an ordered basis for V, a finite dimensional vector space over $F, \operatorname{dim} V=n$, then $\left[1_{V}\right]_{\mathscr{B}}=I \in M_{n} F$
3. V a finite dimensional vector space over $F, \mathscr{B}, \mathscr{C}$ ordered bases for V, then $\left[1_{V}\right]_{\mathscr{B}, \mathscr{C}}$ is invertible and

$$
\begin{aligned}
{\left[1_{V}\right]_{\mathscr{B}, \mathscr{C}}^{-1} } & =\left[1_{V}\right]_{\mathscr{C}, \mathscr{B}} \\
{\left[1_{V}\right]_{\mathscr{B}, \mathscr{C}}\left[1_{V}\right]_{\mathscr{C}, \mathscr{B}} } & =\left[1_{V}\right]_{\mathscr{C}} \\
& =I \\
& =\left[1_{V}\right]_{\mathscr{C}, \mathscr{B}}\left[1_{V}\right]_{\mathscr{B}, \mathscr{C}}
\end{aligned}
$$

4. Apply 3) to 1)

$$
\begin{aligned}
{\left[1_{V}\right]_{\mathscr{S}, \mathscr{C}} } & =\left[1_{V}\right]_{\mathscr{C}, \mathscr{S}}^{-1}=\left(\begin{array}{ll}
3 & 6 \\
4 & 1
\end{array}\right)^{-1}=-\frac{1}{21}\left(\begin{array}{cc}
1 & -6 \\
-4 & 3
\end{array}\right) \\
{\left[1_{V}\right]_{\mathscr{B}, \mathscr{C}} } & =\left[1_{V}\right]_{\mathscr{L}, \mathscr{C}}[1]_{\mathscr{B}, \mathscr{S}} \\
& =-\frac{1}{21}\left(\begin{array}{cc}
1 & -6 \\
-4 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right) \\
& =-\frac{1}{21}\left(\begin{array}{ll}
-5 & -4 \\
-1 & -5
\end{array}\right)
\end{aligned}
$$

Some more examples
Example 12.7 1. Any invertible matrix $A \in M_{n} F$ is a change of basis matrix for some ordered bases \mathscr{B}, \mathscr{C} for F^{n} : if $A=\left(\alpha_{i j}\right)$ is invertible, define

$$
v_{j}=\sum_{i=1}^{n} \alpha_{i j} e_{i}, \quad \mathscr{B}=\left\{v_{1}, \ldots, v_{n}\right\}
$$

Then $A=[A]_{\mathscr{B}, \mathscr{S}}$ since A is invertible, so \mathscr{B} is linearly indep., hence a basis by counting and $A=\left[\mathscr{F}_{v}\right]_{\mathscr{B}, \mathscr{S}}$.
2. The $j^{\text {th }}$ column of $\left[1_{v}\right]_{\mathscr{B}, \mathscr{C}}, V$ a finite dimensional vector space over F is the $j^{\text {th }}$ vector of \mathscr{B} expressed as a linear combo of vectors in \mathscr{C}.
3. Generalizing (1), (3) from above example, we get the following crucial computational device: if $V=F^{n}, \mathscr{B}, \mathscr{C}$ ordered bases for V, then

$$
\left[1_{v}\right]_{\mathscr{B}, \mathscr{C}}=\left[1_{v}\right]_{\mathscr{S}, \mathscr{C}}\left[1_{v}\right]_{\mathscr{B}, \mathscr{S}}=\left[1_{v}\right]_{\mathscr{C}, \mathscr{S}}^{-1}\left[1_{v}\right]_{\mathscr{B}, \mathscr{S}}
$$

if we only have $V \cong F^{n}$, then we have to use an isomorphism $V \rightarrow F^{n}$ - how?
Since $\left[1_{v}\right]_{\mathscr{B}, \mathscr{S}}$ and $\left[1_{v}\right]_{\mathscr{C}, \mathscr{S}}$ are usually (often?) easy to write down, this is quite useful. What if $V=F^{m \times n}$?

Theorem 12.8 (Change of Basis)

Let V, W be finite dimensional vector space over F with ordered bases $\mathscr{B}, \mathscr{B}^{\prime}$ for V and $\mathscr{C}, \mathscr{C}^{\prime}$ for W. Let $T: V \rightarrow W$ be linear. Then

$$
\begin{aligned}
{[T]_{\mathscr{B}, \mathscr{C}} } & =\left[1_{W}\right]_{\mathscr{C}^{\prime}, \mathscr{C}}[T]_{\mathscr{B}^{\prime}, \mathscr{C}^{\prime}}\left[1_{V}\right]_{\mathscr{B}, \mathscr{B}^{\prime}} \\
& \left.=\left[1_{W}\right]_{\mathscr{C}^{-}, \mathscr{C}^{\prime}}[T]_{\mathscr{B}^{\prime}, \mathscr{C}^{\prime}}\left[1_{V}\right]\right]_{\mathscr{B}, \mathscr{B}^{\prime}} \\
& =\left[1_{W}\right]_{\mathscr{C}^{\prime}, \mathscr{C}}[T]_{\mathscr{B}^{\prime}, \mathscr{C}^{\prime}}\left[1_{V}\right]_{\mathscr{B}^{\prime}, \mathscr{B}}^{-1}
\end{aligned}
$$

Proof. We have

$$
\left[1_{W}\right]_{\mathscr{C}, \mathscr{C}^{\prime}}^{-1}=\left[1_{W}\right]_{\mathscr{C}^{\prime}, \mathscr{C}} \text { and }\left[1_{V}\right]_{\mathscr{B}, \mathscr{B}^{\prime}}=\left[1_{V}\right]_{\mathscr{B}^{\prime}, \mathscr{B}}^{-1}
$$

Since

$$
\begin{aligned}
& {\left[1_{W}\right]_{\mathscr{C}^{\prime}, \mathscr{C}}[T]_{\mathscr{B}}, \mathscr{C}^{\prime} } \\
& {\left[1_{V}\right]_{\mathscr{B}, \mathscr{B}^{\prime}} }=\left[1_{W} \circ T\right]_{\mathscr{B ^ { \prime } , \mathscr { C }}}\left[1_{V}\right]_{\mathscr{B}, \mathscr{B}^{\prime}} \\
&=\left[1_{W} \circ T \circ 1_{V}\right]_{\mathscr{B}, \mathscr{C}} \\
&=[T]_{\mathscr{B}, \mathscr{C}}
\end{aligned}
$$

the result follows.
To use (and remember) this, do it as follows - to let the notation help you:

COMMUTES, i.e., can compose along any allowable arrows in the correct direction if we arrive at the same place in different way starting at the same place we get the same answer. Warning: You can only reverse direction if the arrow is an isomorphism and then you can take the inverse. To remember the theorem, we write

and fill in arrows you can find in the diagram before.

$\S 13$ Lec 13: Oct 30, 2020

§13.1 Some Examples of Change of Basis

If V, W are finite dimensional vector space over F with ordered bases \mathscr{B}, \mathscr{C} respectively and if $T: V \rightarrow W$ is linear

$$
[T v]_{\mathscr{C}}=[T]_{\mathscr{B}, \mathscr{C}}[v]_{\mathscr{B}} \forall v \in V
$$

Note: There is nothing about the bases in which v was written.

1. $V=\mathbb{R}^{2}, \mathscr{S}=\left\{e_{1}, e_{2}\right\}, \mathscr{B}=\left\{v_{1}=(1,1), v_{2}=(2,1)\right\}$ ordered bases. Find $[T]_{\mathscr{S}}$ in the following (equivalently, $[T]_{\mathscr{S}}\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]_{\mathscr{S}} \leftrightarrow T(\alpha, \beta)$)
(i) $T(1,1)=(2,1)$ and $T(2,1)=(1,1)$

$$
\left.\left.\left[1_{V}\right]_{B, S}\right|_{V_{S}} ^{V_{B}} \xrightarrow{[T]_{S}}\right|_{V_{S}} ^{\left[1_{V}\right]_{B, S}}=\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)
$$

So

$$
\begin{aligned}
{[T]_{\mathscr{S}} } & =\left[1_{V}\right]_{\mathscr{B}, \mathscr{S}}[T]_{\mathscr{B}}\left[1_{V}\right]_{\mathscr{B}, \mathscr{S}}^{-1} \\
& =\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)^{-1} \\
& =\left(\begin{array}{cc}
-1 & 3 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

So $T(\alpha, \beta)=(-\alpha+3 \beta, \beta)$
(ii) $T(1,1)=6(1,1)+(2,1)$ and $T(2,1)=-2(1,1)+(2,1)$

$$
\left.\left.\left[1_{V}\right]_{B, S}\right|_{V_{S}} ^{V_{B}} \xrightarrow{[T]_{S}}\right|_{V_{S}} \|_{\left.1_{V}\right]_{B, S}}=\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)
$$

So

$$
[T]_{\mathscr{S}}=\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
6 & -2 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)^{-1}=\left(\begin{array}{ll}
-8 & 16 \\
-8 & 15
\end{array}\right)
$$

(iii) $T(1,1)=(3,1)$ and $T(2,1)=(5,1)$

$$
[T]_{\mathscr{B}, \mathscr{S}}=\left([T(1,1)]_{\mathscr{S}}[T(2,1)]_{\mathscr{L}}\right)=\left([(3,1)][(5,1)]_{\mathscr{L}}\right)
$$

So $[T]_{\mathscr{S}}=[T]_{\mathscr{B}, \mathscr{S}}\left[1_{V}\right]_{\mathscr{B}, \mathscr{S}}^{-1}$ which is equal to $\left(\begin{array}{ll}3 & 5 \\ 1 & 1\end{array}\right)\left(\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right)^{-1}$
2. Let T be a rotation about the axis $(1,1,1) \in V=\mathbb{R}^{3}$ of an $\angle \theta$ in the counter-clockwise direction with $(1,1,1)$ up. We will use stuff from 33A - dot product. Normalize $(1,1,1)$ to

$$
v_{1}=\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)=\frac{(1,1,1)}{\|(1,1,1)\|}
$$

a unit vector in the DIRECTION of v_{1}. Find a vector \perp to v_{1}, say

$$
v_{2}^{\prime}=(0,1,-1)
$$

and normalize it to

$$
v_{2}=\left(0, \frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)
$$

Let $v_{3}=v_{1} \times v_{2}$ the cross product of v_{1}, v_{2}. It is orthogonal to v_{1} and v_{2} and by the right hand rule in the correct orientation

$$
v_{3}=\left(\begin{array}{ccc}
i & j & k \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right)=\left(-\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)
$$

a unit vector (or use Gram - Schmidt and check you have $v_{3}=v_{1} \times v_{2}$ and not $-\left(v_{1} \times v_{2}\right)$

§13.2 Orthonormal Basis

Definition 13.1 (Orthonormal Basis) - Let $\mathscr{B}=\left\{v_{1}, v_{2}, v_{3}\right\}$ an ordered bases of vectors of length 1 and each \perp to the others, called an ORTHONORMAL BASIS.

$$
\begin{aligned}
& T v_{1}=v_{1} \\
& T v_{2}=\cos \theta v_{2}+\sin \theta v_{3} \\
& T v_{3}=-\sin \theta v_{2}+\cos \theta v_{3} \\
& {[T]_{\mathscr{B}} }=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right) \\
& {\left[1_{V}\right]_{\mathscr{B}, \mathscr{S}} }=\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}}
\end{array}\right) \\
& V_{B} \xrightarrow{[T]_{B}} V_{B} \\
& {\left[T 1_{V}\right]_{B, S} }\left.\right|_{\mathscr{S}}=\left[1_{V}\right]_{\mathscr{B}, \mathscr{S}}[T]_{\mathscr{B}}\left[1_{V}\right]_{\mathscr{B}, \mathscr{S}}^{-1}=\left[1_{V}\right]_{\mathscr{B}, \mathscr{S}}[T]_{\mathscr{B}}\left[1_{V}\right]_{\mathscr{S}, \mathscr{B}}
\end{aligned}
$$

Since both \mathscr{S} and \mathscr{B} are orthonormal bases and $F=\mathbb{R}$, it turns out that

$$
\left[1_{V}\right]_{\mathscr{B}, \mathscr{S}}^{-1}=\left[1_{V}\right]_{\mathscr{B}, \mathscr{S}}^{\top}
$$

This is, however, not true in general.
3. $V=\mathbb{R}^{3}, T: V \rightarrow V$ as in 2) and $S: V \rightarrow V$ a reflection about the plane $\perp(1,2,3)$. Find $[S]_{\mathscr{S}}$ and $[S \circ T]_{\mathscr{S}}$.

Find an orthonormal basis with $(1,2,3)$ direction of the first vector

$$
(1,2,3),(0,3,-2),(-13,2,3)
$$

then normalize as follows:

$$
\begin{aligned}
& w_{1}=\left(\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right) \\
& w_{2}=\left(0, \frac{3}{\sqrt{13}},-\frac{2}{\sqrt{13}}\right) \\
& w_{3}=\left(\frac{-13}{\sqrt{182}}, \frac{2}{\sqrt{182}}, \frac{3}{\sqrt{182}}\right)
\end{aligned}
$$

So $\mathscr{C}=\left\{w_{1}, w_{2}, w_{3}\right\}$ is an orthonormal basis and

$$
[S]_{\mathscr{C}}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$$
\left[1_{V}\right]_{\mathscr{C}, \mathscr{S}}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{14}} & 0 & \frac{13}{\sqrt{182}} \\
\frac{2}{\sqrt{14}} & \frac{3}{\sqrt{13}} & \frac{2}{\sqrt{182}} \\
\frac{3}{\sqrt{14}} & -\frac{2}{\sqrt{13}} & \frac{3}{\sqrt{182}}
\end{array}\right)
$$

$$
[S]_{\mathscr{S}}=\left[1_{V}\right]_{\mathscr{C}, \mathscr{S}}[S]_{\mathscr{C}}\left[1_{V}\right]_{\mathscr{C}, \mathscr{S}}^{-1}
$$

$$
\left.[S \circ T]_{\mathscr{S}}=\left[1_{V}\right]\right]_{\mathscr{C}, \mathscr{S}}[S]_{\mathscr{C}}\left[1_{V}\right]_{\mathscr{B}, \mathscr{S}}[T]_{\mathscr{B}}\left[1_{V}\right]_{\mathscr{B}, \mathscr{S}}^{-1}
$$

The only reason to normalize \mathscr{C} to an orthonormal basis is

$$
\left.\left.\left[1_{V}\right]\right)\right) \mathscr{C}, \mathscr{S}^{-1}=\left[1_{V}\right]_{\mathscr{C}, \mathscr{S}}^{\top}
$$

§13.3 Similarity

Definition 13.2 (Similar Matrices) - Let $A, B \in M_{n} F$. We say A is SIMILAR to B write $A \sim B$ if $\exists C \in M_{n} F$ invertible \ni

$$
A=C^{-1} B C
$$

Remark 13.3. $A, B \in M_{n} F:$

1. $A \sim B \rightarrow B \sim A$:

$$
A=C^{-1} B C, C \text { invertible } \rightarrow B=\left(C^{-1}\right)^{-1} A C^{-1} \text { as } C C^{-1}=I=C^{-1} C
$$

2. If $A \sim B$, then $\operatorname{det} A=\operatorname{det} B$. If $A=C^{-1} B C$, invertible, then

$$
\begin{aligned}
\operatorname{det} A & =\operatorname{det}\left(C^{-1} B C\right)=\operatorname{det}\left(C^{-1}\right) \operatorname{det} B \operatorname{det} C \\
& =(\operatorname{det} C)^{-1} \operatorname{det} B \operatorname{det} C=\operatorname{det} B
\end{aligned}
$$

3. \sim is an equivalence relation.

Theorem 13.4 (Similar Matrices)
Let $A, B \in M_{n} F$. Then $A \sim B$ iff $\exists V$ a vector space over $F, \operatorname{dim} V=n, T: V \rightarrow V$ linear and ordered bases \mathscr{B}, \mathscr{C} for V s.t

$$
A=[T]_{\mathscr{B}} \quad \text { and } \quad B=[T]_{\mathscr{C}}
$$

i.e., $A \sim B$ iff they represent the same linear transformation relative to (possibly) different ordered bases.

§14 Lec 14: Nov 2, 2020

§14.1 Lec 13 (Cont'd)

Proof. (Of Similar Matrices Theorem) (\leftarrow) If $A=[T]_{\mathscr{B}}, B=[T]_{\mathscr{C}}$, then $C=\left[1_{V}\right]_{\mathscr{B}, \mathscr{C}} \in$ $M_{n} F$ is invertible with $A=C^{-1} B C$ by the Change of Basis Theorem.
(\rightarrow) Suppose $C \in M_{n} F$ is invertible, $A=C^{-1} B C$. Define $V=F^{n}, T: V \rightarrow V$ by

$$
T_{i j}=\sum_{i=1}^{n} A_{i j} e_{i}
$$

with $\mathscr{S}=\left\{e_{1}, \ldots, e_{n}\right\}$ the standard basis

$$
[T]_{\mathscr{S}}=A=C^{-1} B C
$$

Let $w_{j}:=\sum_{i=1}^{n}\left(C^{-1}\right)_{i j} e_{i}$, i.e., $\left(C^{-1}\right)_{i j}$ is the $i j^{\text {th }}$ entry of C^{-1}. As C is invertible, C^{-1} exists and is invertible. Then

$$
\mathscr{B}=\left\{w_{1}, \ldots, w_{n}\right\}
$$

is a basis for V and $\left[1_{V}\right]_{\mathscr{B}, \mathscr{S}}=C^{-1}$ figure here so $A=C^{-1}[T]_{\mathscr{B}} C$ and $B=[T]_{\mathscr{B}}$ works.

§14.2 Eigenvalues and Eigenvectors

Definition 14.1 (Eigenvalues, Eigenvectors \& Eigenspace) - Let $0 \neq V$ be a vector space over $F, T: V \rightarrow V$ a linear operator and $\lambda \in F$. Set

$$
S_{\lambda}:=T-\lambda 1_{V}: V \rightarrow V
$$

a linear operator, so

$$
S_{\lambda}(v)=T v-\lambda v \forall v \in V
$$

We say λ is an EIGENVALUE of T if S_{λ} is not $1-1$, i.e., $\operatorname{ker} S_{\lambda} \neq 0$. Let

$$
\begin{aligned}
E_{T}(\lambda):=\operatorname{ker} S_{\lambda} & =\{v \in V \mid T v-\lambda v=0\} \\
& =\{v \in V \mid T v=\lambda v\}
\end{aligned}
$$

if $E_{T}(\lambda) \neq 0$, we call $E_{T}(\lambda)$ an EIGENSPACE of V relative T, λ and any $v \in E_{T}(\lambda)$ an EIGENVECTOR of T relative to λ. So if $T: V \rightarrow V$ is linear, $\lambda \in F$ is an eigenvalue of T iff

$$
\exists 0 \neq v \in V \ni T v=\lambda v
$$

Remark 14.2. Let $0 \neq V$ be a vector space over F and $T: V \rightarrow V$ linear

1. Eigenvalues occur as measured quantities in science and engineering, e.g., resonance, quantum number - measurable values.
2. If $\lambda \in F$ is an eigenvalue of T, then

$$
0 \neq E_{T}(\lambda) \subset V \text { is a subspace }
$$

3. If $\lambda \in F$ an eigenvalue, any $v \in E_{T}(\lambda)$ is an eigenvector. In particular, any basis for $E_{T}(\lambda)$ consists of eigenvectors of T relative to λ. Hence

$$
\left.T\right|_{E_{T}(\lambda)}=\lambda 1_{E_{T}(\lambda)}
$$

(the notation above means we restrict the domain to $E_{T}(\lambda)$. In particular, if $V=E_{T}(\lambda)$, then $T=\lambda 1_{V}$.
4. If $T=0$, then $V=E_{T}(\lambda)$ with eigenvalue $\lambda=0(\lambda=1)$.

Example $14.3 \quad 5$. Let $V=\mathbb{R}^{3}, T: V \rightarrow V$ a counterclockwise rotation by an $\angle \theta, 0<\theta<2 \pi$ around the axis determined by $0 \neq v \in V$. Then

$$
T(\alpha v)=\alpha T v=\alpha v \forall \alpha \in F
$$

So $\operatorname{Span}(v) \subset E_{T}(1)$. Note if $0 \neq v$ is an eigenvector with eigenvalue μ of linear $S: V \rightarrow V$, then

$$
S v \in \operatorname{Span}(v)=F v \text { so } \operatorname{Span}(v) \subset E_{S}(\mu)
$$

Do there exist other eigenvalues of T ? Ever? So the only other possibilities would
be

$$
\theta=\pi, \lambda=-1
$$

In that case

$$
E_{T}(-1)=\operatorname{Span}\left(w_{1}, w_{2}\right)
$$

where w_{1}, w_{2} are linearly indep. with $w_{i} \perp v, i=1,2$. (of course, if one allows $\theta=0, T=1_{V}$.)
6. Let $0 \neq v \in V$. Suppose that

$$
\mu v=T v=\lambda v, \quad \lambda, \mu \in F
$$

Then $\mu=\lambda$ so $0 \neq v \in V$ is an eigenvector of at most one eigenvalue of $T-$ usually none. In particular,

$$
E_{T}(\lambda) \cap E_{T}(\mu)=0 \text { if } \lambda \neq \mu
$$

and we write

$$
E_{T}(\lambda) \oplus E_{T}(\mu)=E_{T}(\lambda)+E_{T}(\mu)
$$

and call it the DIRECT SUM of the subspace $E_{T}(\lambda)$ and $E_{T}(\mu)$.

```
What do you think is }\mp@subsup{W}{1}{}\bigoplus\mp@subsup{W}{2}{}\bigoplus\mp@subsup{W}{3}{}\mathrm{ ?
```

7. Suppose $\operatorname{dim} V=n, \mathscr{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ is an ordered basis for V. Suppose that that

$$
T v_{i}=\alpha_{i} v_{i}, \quad i=0, \ldots, n
$$

$\lambda_{1}, \ldots, \lambda_{n} \in F$ not necessarily distinct. Then

$$
[T]_{\mathscr{B}}=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{n}
\end{array}\right)
$$

is a DIAGONAL MATRIX, i.e., all non-diagonal entries 0 . We say T is DIAGONALIZABLE if \exists an ordered bases \mathscr{C} for $V \ni[T]_{\mathscr{C}}$ is diagonal.
8. Suppose $\operatorname{dim} V=n(<\infty)$ and T is diagonalizable, i.e., \exists an ordered basis $\mathscr{C}=\left\{w_{1}, \ldots, w_{n}\right\}$ for V s.t.

$$
[T]_{\mathscr{C}}=\left(\begin{array}{ccc}
\mu_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \mu_{n}
\end{array}\right)
$$

Then $T w_{i}=\mu_{i} w_{i}, i=1, \ldots, n$ and \mathscr{C} is an ordered basis for V consisting of eigengenvalues for T.

Conclusion: Let V be a finite dimensional vector space over $F, T: V \rightarrow V$ linear. Then T is diagonalizable iff \exists a basis for V consisting of eigenvectors of T.
Note: If T is diagonalizable, $T: V \rightarrow V$ linear, V a finite dimensional vector space over F, ordered basis \mathscr{B} for V. Then $\exists C \in M_{n} F$, invertible, $n=\operatorname{dim} V \ni C^{-1}[T]_{\mathscr{B}} C$ is diagonal by the Change of Basis Theorem.

Example 14.4 9. Let V be a finite dimensional vector space over $F, n=\operatorname{dim} V, \mathscr{B}$ an ordered basis for $V, S: V \rightarrow V$ linear. Then by the Isomorphism Theorem, S is 1-1 iff S is onto. Apply this to

$$
S_{\lambda}=T-\lambda 1_{V}: V \rightarrow V
$$

to conclude:
λ is an eigenvalue of T iff $S_{\lambda}=T-\lambda 1_{V}$ is singular (i.e., S_{λ} is not 1-1)
iff

$$
\left[S_{\lambda}\right]_{\mathscr{B}}=\left[T-\lambda 1_{V}\right]_{\mathscr{B}} \text { is not invertible }
$$

iff

$$
\operatorname{det}\left[T-\lambda 1_{V}\right]_{\mathscr{B}}=0 \text { (by properties of det) }
$$

iff

$$
\operatorname{det}\left([T]_{\mathscr{B}}-\lambda\left[1_{V}\right]_{\mathscr{B}}\right)=0
$$

iff

$$
\operatorname{det}\left([T]_{\mathscr{B}}-\lambda I\right)=0
$$

iff

$$
\operatorname{det}\left(\lambda I-[T]_{\mathscr{B}}\right)=0
$$

Summary: Let V be a finite dimensional vector space over $F, \operatorname{dim} V=n, T: V \rightarrow V$ linear, \mathscr{B} an ordered basis for $V, \lambda \in F$. Then, λ is an eigenvalue of T iff $\operatorname{det}\left(\lambda I-[T]_{\mathscr{B}}\right)=$ 0.

Definition 14.5 (Characteristics Polynomial) - Let $A \in M_{n} F$. Define

$$
f_{A}:=\operatorname{det}(t I-A) \in F[t]
$$

called the Characteristics Polynomial of A.

The properties of the determinant on $F[t]$ is the same as on F except that $A \in M_{n} F[t]$ is invertible iff $\operatorname{det} A \in F \backslash\{0\}$ and we assume these properties.

Proposition 14.6

If $A, B \in M_{n} F$ are similar, then $f_{A}=f_{B}$

Proof. If $A=C^{-1} B C, C \in M_{n} F$ in

$$
\begin{aligned}
f_{A} & =\operatorname{det}\left(C^{-1}(t I-B) C\right)=\operatorname{det} C^{-1} \operatorname{det}(t I-B) \operatorname{det} C \\
& =\operatorname{det}(t I-B)=f_{B}
\end{aligned}
$$

Warning: Let $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$. Then, A and B are not similar, but $f_{A}=f_{B}$, i.e., the converse is false.

Corollary 14.7

Let V be a finite dimensional vector space over $F, T: V \rightarrow V$ linear, \mathscr{B}, \mathscr{C} ordered bases for V. Then

$$
f_{[T]_{\mathscr{B}}}=f_{[T]_{\mathscr{G}}}
$$

Proof. Change of Basis Theorem.

Definition 14.8 (Characteristics Polynomial) - Let V be a finite dimensional vector space over $F, T: V \rightarrow V$ linear, \mathscr{B} ordered basis for V. We call $f[t]_{\mathscr{B}}$ the characteristics polynomial of T. By the corollary, it is independent of \mathscr{B}, so we denote it by $f_{T}\left(=f_{[T]_{\mathscr{B}}}\right)$ and write $f_{T}=\operatorname{det}\left(t 1_{V}-T\right):=\operatorname{det}\left(t I-[T]_{\mathscr{B}}\right)$

Theorem 14.9

Let V be a finite dimensional vector space over $F, T: V \rightarrow V$ linear. Then, the eigenvalues of T are precisely, the roots of f_{T}, i.e., those $\alpha \in F \ni f_{T}(\alpha)=0$.

Proof. $\operatorname{det} \lambda \in F, \mathscr{B}$ an ordered basis for V. Set $A=[T]_{\mathscr{B}}$, so $f_{T}=\operatorname{det}(t I-A)$. Then λ is a root of f_{T} iff evaluating f_{T} at λ, i.e., $f_{T}(\lambda)$, we have

$$
f_{T}(\lambda)=\left.\operatorname{det}(t I-A)\right|_{t=\lambda}=0 \Longleftrightarrow \lambda \text { is an eigenvalue of } T
$$

i.e., expanding the polynomial $\operatorname{det}(t I-A)$ and plugging λ for t gives 0 .

We cannot use the following theorem if we fully prove it.

Theorem 14.10 (Cayley - Hamilton)
Let $A \in M_{n} F$. Then

$$
f_{A}(A)=0
$$

plugging A into the expansion of the determinant f_{A}, you get 0 .

Remark 14.11. By HW, we have $\left\{I, A, A^{2}, \ldots, A^{n^{2}}\right\} \subset M_{n} F$ is linearly dep., i.e., $\left\{I, A, \ldots, A^{N}\right\}$ is linearly dep. for some $N>0$. This means $\exists 0 \neq g \in F[t]$ with $\operatorname{deg} g \leq N$ and $g(A)=0$ why?

So Cayley - Hamilton's Theorem says $\left\{I, A, \ldots, A^{n}\right\}$ in $M_{n} F$ is always linearly dep. in $M_{n} F$ with $f_{A}(A)$ giving a dependence relation.
Note: If you know Cramer's Rule in determinant theory, one can prove Cayley - Hamilton follows from it. In fact, it is essentially Cramer's Rule.

Remark 14.12. Let V be a finite dimensional vector space over $F, T: V \rightarrow V$ linear. You will show in your Take home Exam. There exists a polynomial $q \in F[t]$ satisfying

1. $q \neq 0$
2. $q(A)=0$
3. $\operatorname{deg} q$ is the minimal degree for a poly $g \neq 0$ in $F[t]$ to satisfy $g(A)=0$
4. q is MONIC, i.e., leading coeff is 1 .

Moreover, q is unique and called the MINIMAL POLYNOMIAL of A and denoted q_{T}. Using it we shows a stronger form of the Cayley - Hamilton Theorem.

$\S 15$ Lec 15: Nov 4, 2020

§15.1 Lec 14 (Cont'd)

Cayley - Hamilton (Stronger Form): Let V be a finite dimensional vector space over F, $T: V \rightarrow V$ linear, then

$$
q_{T} \mid f_{T} \text { in } F[t]
$$

(where $q_{T}=q[T]_{\mathscr{B}}, \mathscr{B}$ an ordered basis and q_{T} is indep. of \mathscr{B}). Why does this show the other form?
Computation: Let V be a finite dimensional vector space over $F, T: V \rightarrow V$ linear. To find eigenvalues and eigenvectors of T, you must solve

$$
T v=\alpha v
$$

By Matrix Theory Theorem, this is equivalent to

$$
\begin{equation*}
[T]_{\mathscr{B}}[v]_{\mathscr{B}}=\lambda[v]_{\mathscr{B}} \tag{*}
\end{equation*}
$$

\mathscr{B} an ordered basis for V. To find eigenvalues, we find the roots of f_{T}. To find the eigenvectors, we solve $(*)$.

Theorem 15.1

Let $T: V \rightarrow V$ be linear and $\lambda_{1}, \ldots, \lambda_{n}$ in F distinct eigenvalues of $T, 0 \neq v_{i} \in$ $E_{T}\left(\lambda_{i}\right), i=1, \ldots, n$. Then $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly indep.

Proof. We induct on n.

- $n=1: v_{1} \neq 0$ so $\{v\}$ is linearly indep.
- $n>1$ - Induction Hypothesis (IH) : If $\lambda_{1}, \ldots, \lambda_{n-1}$ are distinct eigenvalues of $T, 0 \neq v_{i} \in E_{T}\left(\lambda_{i}\right), i=1, \ldots, n-1$ then $\left\{v_{1}, \ldots, v_{n-1}\right\}$ is linearly indep. Suppose that

$$
\begin{equation*}
0=\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}, \alpha_{1}, \ldots, \alpha_{n} \in F \tag{*}
\end{equation*}
$$

Apply the linear operator $S_{\lambda_{n}}=T-\lambda_{n} 1_{V}$ to $(*)$. As

$$
S_{\lambda_{n}}\left(v_{i}\right)=T v_{i}-\lambda_{n} v_{i}=\lambda_{i} v_{i}-\lambda_{n} v_{i}=\left(\lambda_{i}-\lambda_{n}\right) v_{i}
$$

We get

$$
\begin{aligned}
S_{\lambda_{n}}\left(\alpha_{1} v_{1}+\ldots+\lambda_{n} v_{n}\right) & =\alpha_{1} S_{\lambda_{v_{n}}} v_{1}+\ldots+\alpha_{n} S_{\lambda_{v_{n}}} v_{n} \\
0 & =\alpha_{1}\left(\alpha_{1}-\alpha_{n}\right) v_{1}+\ldots+\alpha_{n-1}\left(\lambda_{n-1}-\lambda_{n}\right) v_{n-1}
\end{aligned}
$$

By the IH, $\alpha_{i}\left(\lambda_{i}-\lambda_{n}\right)=0, i=1, \ldots, n-1$
As $\lambda_{i}-\lambda_{n} \neq 0, i=1, \ldots, n-1, \alpha_{i}=0, i=1, \ldots, n-1$. So $0=\alpha_{n} v_{n}$. As $v_{n} \neq 0$, $\alpha_{n}=0$ also.

Proof. (Alternative) Take T of $\left({ }^{*}\right)$ to get an eqn 1). Multiply (${ }^{*}$) by λ_{n} to get an eqn 2). Subtract eqn 2) from eqn 1). The proof that if $\alpha_{1}, \ldots, \alpha_{n}$ are distinct then $e^{\lambda_{1} x}, \ldots, e^{\lambda_{n} x}$ are linearly indep.

Corollary 15.2

Let V be a finite dimensional vector space over $F, \operatorname{dim} V=n$ if $T: V \rightarrow V$ linear has n distinct eigenvalues, then T is diagonalizable. The converse is false, e.g., $T=1_{V}$.

Corollary 15.3

If V is a finite dimensional space over $F, \operatorname{dim} V=n, T: V \rightarrow V$ linear, then T has at most n distinct eigenvalues. This also follows as any $0 \neq f \in F[t]$ has at most $\operatorname{deg} f$ roots.

Corollary 15.4

Let V be a vector space over $F, T: V \rightarrow V$ linear, $\lambda_{1}, \ldots, \lambda_{n}$ distinct eigenvalues of T. Set

$$
w=E_{T}\left(\lambda_{1}\right)+\ldots+E_{T}\left(\lambda_{n}\right)
$$

if $v_{i} \in E_{T}\left(\lambda_{i}\right), i=1, \ldots, n$ satisfy

$$
v_{1}+\ldots+v_{n}=0
$$

then $v_{i}=0, i=1, \ldots n$. We write this as

$$
W=E_{T}\left(\lambda_{1}\right) \oplus \ldots \oplus E_{T}\left(\lambda_{n}\right)
$$

Exercise 15.1. Let V be a vector space over $F, W_{1}, \ldots, W_{n} \subset V$ subspaces. Let $W=$ $W_{1}+\ldots+W_{n}$. Then the followings are equivalent

1. If $w_{i} \in W_{i}, i=1, \ldots, n$ satisfy $w_{1}+\ldots+w_{n}=0$ then $w_{i}=0 \forall i$. We say W_{i} are indep.
2. If $v \in W \exists!w_{i} \in W_{i} \ni v=w_{1}+\ldots+w_{n}$
3. $W_{i} \cap \sum_{j \neq i, j=1}^{n} W_{j}=0 \forall i=1, \ldots, n$
4. If \mathscr{B}_{i} is a basis for $W_{i}, i=1, \ldots, n$ then $\mathscr{B}=\mathscr{B}_{1} \cup \ldots \cup \mathscr{B}_{n}$ is a basis for W. If these hold for W, we say W is an (internal) direct sum of the W_{i} and write

$$
W=W_{1} \oplus \ldots \oplus W_{n}
$$

Remark 15.5. This generalizes to $W=\oplus W_{i}$, general I - How. What is the proof?

Exercise 15.2. Let V be a vector space over $F, W_{1}, \ldots, W_{n} \subset V$ subspaces $\ni V=$ $W_{1}+\ldots+W_{n}$. Let

$$
W=W_{1} \times \ldots \times W_{n}=\left\{\left(W_{1}, \ldots, W_{n}\right) \mid w_{i} \subset W_{i} \forall i\right\}
$$

a vector space over F via component wise operations. Show

$$
v=W_{1} \oplus \ldots \oplus W_{n} \Longleftrightarrow T: W_{1} \times \ldots \times W_{n} \rightarrow V
$$

by $\left(w_{1}, \ldots, w_{n}\right) \mapsto w_{1}+\ldots w_{n}$ is an isomorphism. We call W the external direct sum of the W_{i}.

Consequences: Let V be a finite dimensional vector space over $F, \lambda_{1}, \ldots, \lambda_{n}$ distinct
 if

$$
V=E_{T}\left(\lambda_{1}\right)+\ldots+E_{T}\left(\lambda_{n}\right)
$$

then

$$
V=E_{T}\left(\lambda_{1}\right) \oplus \ldots \oplus E_{T}\left(\lambda_{n}\right)
$$

and $\mathscr{B}=\mathscr{B}_{1} \cup \ldots \cup \mathscr{B}_{n}$ is an ordered basis for V and

$$
[T]_{\mathscr{B}}=\left(\begin{array}{ccc}
{\left[\lambda_{1} 1_{E_{T}\left(\lambda_{1}\right)}\right]_{\mathscr{B}_{1}}} & & \\
& \ddots & \\
& & {\left[\lambda_{n} 1_{E_{T}\left(\lambda_{n}\right)}\right]_{\mathscr{B}_{n}}}
\end{array}\right)
$$

(Block form) is a diagonal matrix. In particular,

$$
f_{T}=\operatorname{det}\left(T 1_{V}-T\right)=\left(t-\lambda_{1}\right)^{r_{1}} \ldots\left(t-\lambda_{n}\right)^{r_{n}}
$$

By determinant theory,

$$
\operatorname{det}\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right)=\operatorname{det} A \operatorname{det} B
$$

A, B square matrices and T is diagonalizable.
Remark 15.6. $T: V \rightarrow V$ linear may or may not have eigenvalues

1. $V=\mathbb{R}^{2}, f_{T}=t^{2}+1$, then T has not eigenvalues.
2. If V is a finite dimensional vector space over \mathbb{C}, then T has an eigenvalue as f_{T} has a root by the FUNDAMENTAL THEOREM OF ALGEBRA (which we shall always assume to be true).

§15.2 Inner Product Space

We know that the dot product of vectors in \mathbb{R}^{3} allows us to define \perp, \angle, distance, etc. We want to generalize this to "inner product spaces". When we talk about inner product spaces, we shall always assume that OUR FIELD F LIES in $\mathbb{C}($ e.g., $\mathbb{Q}, \mathbb{R}, \mathbb{C})$ as a subfield. Let $-: \mathbb{C} \rightarrow \mathbb{C}$ by $\alpha+\beta \sqrt{-1} \mapsto \alpha-\beta \sqrt{-1} \forall \alpha, \beta \in \mathbb{R}$ denoted complex conjugation.
Note: Let $a=\alpha+\beta \sqrt{-1}$ in $\mathbb{C}, \alpha, \beta \in \mathbb{R}$. Then

1. $a=\bar{a}$ iff $a \in \mathbb{R}$
2. $\overline{\bar{a}}$
3. $|a|^{2}:=a \bar{a} \geq 0$ in \mathbb{R} as $a \bar{a}=\alpha^{2}+\beta^{2}$ and $=0$ iff $\mathrm{a}=0$.

As we shall assume $F \subset \mathbb{C}$, we define:

$$
\bar{F}:=\{\bar{z} \in \mathbb{C} \mid z \in F\}
$$

and we shall also assume that

$$
F=\bar{F}
$$

This is true if $F \subset \mathbb{R}$ or $F=\mathbb{C}$, but does not always hold UNLESS we only consider those F that do which we will.

Definition 15.7 (Inner Product Space) - Let $F \subset \mathbb{C}$ be a subfield satisfying $F=\bar{F}, V$ a vector space over F. We call V an inner product space over F, write V is an ips / F , under the map

$$
\langle,\rangle:=\langle,\rangle_{V}: V \times V \rightarrow F
$$

Write: $\langle v, w\rangle$ for $\langle\rangle,(v, w)$ if \langle,$\rangle satisfies \forall v_{1}, v_{2}, v_{3}, v \in V, \forall \alpha \in F$

1. $\left\langle v_{1}+v_{2}, v_{3}\right\rangle=\left\langle v_{1}, v_{3}\right\rangle+\left\langle v_{2}, v_{3}\right\rangle$
2. $\left\langle v_{1}, v_{2}\right\rangle=\left\langle v_{2}, v_{1}\right\rangle$
3. $\left\langle\alpha v_{1}, v_{2}\right\rangle=\alpha\left\langle v_{1}, v_{2}\right\rangle=\left\langle v_{1}, \bar{\alpha} v_{2}\right\rangle$
4. $\langle v, v\rangle \in \mathbb{R}$ and $\langle v, v\rangle \geq 0$ with $\langle v, v\rangle=0$ iff $v=0$.

If V is an inner product space over F (under \langle,$\rangle , the LENGTH (or NORM or MAGNITUDE)$ of $v \in V$ is given by

$$
\|v\|:=\sqrt{\langle v, v\rangle} \geq 0 \in \mathbb{R}
$$

Note: If $F<\mathbb{C},\|v\|^{2} \in F$, but it is possible that $\|v\| \notin F$, e.g., if $V=\mathbb{Q}^{2}$ a vector space over \mathbb{Q} and an inner product space over \mathbb{Q} under the dot product $\|(1,1)\|=\sqrt{2} \notin \mathbb{Q}$. This is a reason to work only with $F=\mathbb{R}$ or \mathbb{C}.

§ $16 \mid$ Lec 16: Nov 6, 2020

§16.1 Lec 15 (Cont'd)

Properties: Let V be an inner product space over $F, \alpha \in F, v_{1}, v_{2}, v_{3} \in V$.

1. $\langle 0, v\rangle=0=\langle w, 0\rangle, \forall v, w \in V$.
2. $\quad\left\langle\alpha v_{1}+v_{2}, v_{3}\right\rangle=\alpha\left\langle v_{1}, v_{3}\right\rangle+\left\langle v_{2}, v_{3}\right\rangle$

- $\left\langle v_{1}, \alpha v_{2}+v_{3}\right\rangle=\bar{\alpha}\left\langle v_{1}, v_{2}\right\rangle+\left\langle v_{1}, v_{3}\right\rangle$

3. If $F \subset \mathbb{R}$ define the ANGLE $\theta, 0 \leq \theta \leq 2 \pi$ between $v_{1} \neq 0$ and $v_{2} \neq 0$ in V by

$$
\cos \theta:=\frac{\left\langle v_{1}, v_{2}\right\rangle}{\left\|v_{1}\right\|\left\|v_{2}\right\|}
$$

and if $F \not \subset \mathbb{R}$ define θ by

$$
\cos \theta:=\frac{\left|\left\langle v_{1}, v_{2}\right\rangle\right|}{\left\|v_{1}\right\|\left\|v_{2}\right\|}
$$

Note: This does not make sense yet, and will not until we show

$$
\frac{\left|\left\langle v_{1}, v_{2}\right\rangle\right|}{\left\|v_{1}\right\|\left\|v_{2}\right\|} \leq 1 \quad \text { for } v_{1} \neq 0, v_{2} \neq 0
$$

4. (very useful prop) Let $v \in V$. If $\langle v, w\rangle=0, \forall w \in V$ (or $\langle w, v\rangle=0 \forall w \in W$), then $v=0$.
5. Let $0 \neq x \in V$. Then

$$
\langle, x\rangle: V \rightarrow F \text { by } v \mapsto\langle v, x\rangle
$$

is a linear transformation, i.e., linear functional, i.e., $\langle, x\rangle \in V^{*}$. However,

$$
\langle x,\rangle: V \rightarrow F \text { by } v \mapsto\langle x, v\rangle
$$

is linear iff $F \subset \mathbb{R}$. In general, we say that $\langle x$,$\rangle is SESQUILINEAR as \forall \alpha \in$ $F, \forall v_{1}, v_{2} \in V$

$$
\left\langle x, \alpha v_{1}+v_{2}\right\rangle=\bar{\alpha}\left\langle x, v_{1}\right\rangle+\left\langle x, v_{2}\right\rangle
$$

Of course if $x=0,\langle 0\rangle,\langle, 0\rangle \in V^{*}$.

Example 16.1

Let $F \subset \mathbb{C}, F=\bar{F}=\{\bar{\alpha} \mid \alpha \in F\}$. The following V vector space over F are inner product space over F under the given \langle,$\rangle :$

1. $V=F^{n}$ and $\langle\rangle=,\underbrace{.}_{\text {dot product }}$, i.e., if

$$
v=\left(\alpha_{1}, \ldots, \alpha_{n}\right), w=\left(\beta_{1}, \ldots, \beta_{n}\right), \alpha_{i}, \beta_{i} \in F, \forall i, j
$$

Then,

$$
\langle v, w\rangle=\sum_{i=1}^{n} \alpha_{i} \overline{\beta_{i}}
$$

Note: If $F \subset \mathbb{R}$, then

$$
\langle v, w\rangle=\sum_{i=1}^{n} \alpha_{i} \beta_{i}
$$

2. Let $I=[\alpha, \beta], \alpha<\beta$ in $\mathbb{R}, V=C(I)$ with $C(I)=\{f: I \rightarrow \mathbb{R} \mid f$ cont $\}$ then

$$
\langle f, g\rangle:=\int_{\alpha}^{\beta} f g
$$

Think about what if $C_{\mathbb{C}}:=\{f: I \rightarrow \mathbb{C} \mid f$ cont $\}$.
3. In 2$)$, let $h \in C(I)$ satisfy $h(x)>0 \forall x \in I$. Then

$$
\langle f, g\rangle_{h}:=\int_{\alpha}^{\beta} h f g
$$

the WEIGHTED INNER PRODUCT SPACE via h.
4. Let $A \in M_{n} F$. Define the adjoint of A to be A^{*} where

$$
\left(A^{*}\right)_{i j}:=\bar{A}_{j i}, \quad \forall i, j
$$

the conjugate transpose of A., i.e., $A^{*}=\bar{A}^{\top}$. So if $F \subset \mathbb{R}, A^{*}=A^{\top}$.

Remark 16.2. If $A=F^{m \times n}$, then A^{*} defined by $\left(A^{*}\right)_{i j}=\bar{A}_{j i}$ still makes sense and is called the ADJOINT of A. What can you say about $A A^{*}$ and $A^{*} A$?

Let $V=M_{n} F$ under

$$
\langle A, B\rangle:=\operatorname{tr}\left(A B^{*}\right)
$$

where $\operatorname{tr} C=\sum_{i=1}^{n} C_{i i}$. So if $F \subset \mathbb{R},\langle A, B\rangle=\operatorname{tr}\left(A B^{\top}\right)$. \qquad tr $=$ trace

Example 16.3 5. Let $F=\mathbb{R}$

$$
l_{2}:=\left\{\left(a_{0}, a_{1}, \ldots, a_{n}, \ldots\right) \mid a_{i} \in \mathbb{R} \forall i-\text { infinite seq with } \sum a_{i}^{2}<\infty\right\}
$$

a vector space over F by component wise operation (a subspace of $\mathbb{R}_{\mathrm{inf}}^{\infty}$ - see below) and an inner product space over \mathbb{R} via

$$
\langle v, w\rangle:=\sum_{i=0}^{\infty} a_{i} b_{i} \in \mathbb{R}
$$

if $v=\left(a_{0}, a_{1}, \ldots\right), w=\left(b_{0}, b_{1}, \ldots\right)$

$$
\begin{aligned}
0 \leq\left(a_{i} \pm b_{i}\right)^{2} & =a_{i}^{2} \pm 2 a_{i} b_{i}+b_{i}^{2}, \forall i \text { so } \\
\mp 2 \sum_{i=0}^{\infty} a_{i} b_{i} & \leq \sum_{i=0}^{\infty} a_{i}^{2}+\sum_{i=0}^{\infty} b_{i}^{2}<\infty
\end{aligned}
$$

Theorem 16.4

Let V be an inner product space over F. Then $\forall v_{1}, v_{2} \in V, \forall \alpha \in F$, we have

1. $\left\|v_{1}\right\| \in \mathbb{R}$ with $\left\|v_{1}\right\| \geq 0$ and $\left\|v_{1}\right\|=0$ iff $v_{1}=0$.
2. $\left\|\alpha v_{1}\right\|=|\alpha|\left\|v_{1}\right\|$.
3. Cauchy - Schwarz Inequality

$$
\left|\left\langle v_{1}, v_{2}\right\rangle\right| \leq\left\|v_{1}\right\|\left\|v_{2}\right\|
$$

4. Minkowski Inequality(special case)

$$
\left\|v_{1}+v_{2}\right\| \leq\left\|v_{1}\right\|+\left\|v_{2}\right\|
$$

Proof. 1) and 2) are left as exercise.
3) If $v_{1}=0$ or $v_{2}=0$, the result is immediate, so we may assume that $v_{1} \neq 0, v_{2} \neq 0$. We use the following important trick. Take the orthogonal projection. Let

$$
v=v_{2}-\underbrace{\frac{\left\langle v_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}}_{\text {orthogonal projection on } v_{1}}
$$

Claim 16.1. $\left\langle v, \alpha v_{1}\right\rangle=0 \forall \alpha \in F$ (i.e., $v \perp \alpha v_{1}$)

$$
\begin{aligned}
\left\langle v, \alpha v_{1}\right\rangle & =\left\langle v_{2}-\frac{\left\langle v_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}, \alpha v_{1}\right\rangle \\
& =\left\langle v_{2}, \alpha v_{1}\right\rangle+\left\langle-\frac{\left\langle v_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}, \alpha v_{1}\right\rangle \\
& =\bar{\alpha}\left\langle v_{2}, v_{1}\right\rangle-\frac{\left\langle v_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}}\left\langle v_{1}, \alpha v_{1}\right\rangle \\
& =\bar{\alpha}\left\langle v_{2}, v_{1}\right\rangle-\frac{\left\langle v_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} \bar{\alpha}\left\|v_{1}\right\|^{2}=0
\end{aligned}
$$

establishing the claim. Therefore, we have

$$
\begin{aligned}
0 & \leq\langle v, v\rangle=\left\langle v, v_{2}-\frac{\left\langle v_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}\right\rangle \\
& =\left\langle v, v_{2}\right\rangle+\left\langle v_{1}-\frac{\left\langle v_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}\right\rangle=\left\langle v, v_{2}\right\rangle \\
& =\left\langle v_{2}-\frac{\left\langle v_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}, v_{2}\right\rangle=\left\langle v_{2}, v_{2}\right\rangle-\frac{\left\langle v_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}}\left\langle v_{1}, v_{2}\right\rangle \\
& =\left\|v_{2}\right\|^{2}-\frac{\left\langle v_{1}, v_{2}\right\rangle}{\left\|v_{1}\right\|^{2}}\left\langle v_{1}, v_{2}\right\rangle=\left\|v_{2}\right\|^{2}-\frac{\left|\left\langle v_{1}, v_{2}\right\rangle\right|^{2}}{\left\|v_{1}\right\|^{2}}
\end{aligned}
$$

So

$$
\left|\left\langle v_{1}, v_{2}\right\rangle\right|^{2} \leq\left\|v_{1}\right\|^{2}\left\|v_{2}\right\|^{2}
$$

or

$$
\left|\left\langle v_{1}, v_{2}\right\rangle\right| \leq\left\|v_{1}\right\|\left\|v_{2}\right\|
$$

as required.
Proof. 4.

$$
\begin{aligned}
\left\|v_{1}+v_{2}\right\|^{2} & =\left\langle v_{1}+v_{2}, v_{1}+v_{2}\right\rangle \\
& =\left\|v_{1}\right\|^{2}+\left\langle v_{1}, v_{2}\right\rangle+\left\langle v_{2}, v_{1}\right\rangle+\left\|v_{2}\right\|^{2} \\
& =\left\|v_{1}\right\|^{2}+\left\langle v_{1}, v_{2}\right\rangle+\overline{\left\langle v_{1}, v_{2}\right\rangle}+\left\|v_{2}\right\|^{2}
\end{aligned}
$$

Let $\left\langle v_{1}, v_{2}\right\rangle=\alpha+\beta \sqrt{-1}, \alpha, \beta \in \mathbb{R}$. Then

$$
\begin{aligned}
\left\|v_{1}+v_{2}\right\|^{2} & =\left\|v_{1}\right\|^{2}+2 \alpha+\left\|v_{2}\right\|^{2} \\
& \leq\left\|v_{1}\right\|^{2}+2 \sqrt{\alpha^{2}+\beta^{2}}+\left\|v_{2}\right\|^{2} \\
& =\left\|v_{1}\right\|^{2}+2\left|\left\langle v_{1}, v_{2}\right\rangle\right|+\left\|v_{2}\right\|^{2} \\
& \leq\left(\left\|v_{1}\right\|+\left\|v_{2}\right\|\right)^{2}
\end{aligned}
$$

So, $\left\|v_{1}+v_{2}\right\| \leq\left\|v_{1}\right\|+\left\|v_{2}\right\|$.

§17| Lec 17: Nov 9, 2020

$\S 17.1 \quad$ Lec 16 (Cont'd)

Example 17.1

Let V be an inner product space over F

1. $\left|\alpha_{1} \beta_{1}+\ldots+\alpha_{n} \beta_{n}\right| \leq \sqrt{\sum_{i=1}^{n} \alpha_{i}^{2}} \sqrt{\sum_{i=1}^{n} \beta_{i}^{2}}, \forall \alpha_{i}, \beta_{i} \in \mathbb{R}$.
2. $\int_{\alpha}^{\beta} f g \leq \sqrt{\int_{\alpha}^{\beta} f^{2}} \sqrt{\int_{\alpha}^{\beta} g^{2}}, \forall f, g \in C[\alpha, \beta]$.
3. \angle between nonzero vectors in V makes sense.
4. Distance between (end pts) vectors makes sense by the following:

If V is an inner product space over F, define the distance between $v_{1}, v_{2} \in V$ by

$$
d\left(v_{1}, v_{2}\right):=\left\|v_{1}-v_{2}\right\| \geq 0 \in \mathbb{R}
$$

Then d satisfies $\forall v, w, x \in V$

- $d(v, w) \geq 0 \in \mathbb{R}$ and $d(v, w)=0$ iff $v=w$.
- $d(v, w)=d(w, v)$
- Triangle inequality

$$
d(v, x) \leq d(v, w)+d(w, x)
$$

We call V a METRIC SPACE under d.

Example 17.2 (Metric Space)

If $v=\left(\alpha_{1}, \ldots, \alpha_{n}\right), w=\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{R}^{n}$ under the dot product, then

$$
d(v, w)=\sqrt{\left(\alpha_{1}-\beta_{1}\right)^{2}+\ldots+\left(\alpha_{n}-\beta_{n}\right)^{2}}
$$

§17.2 Orthogonal Bases

Motivation: in $\mathbb{R}^{n}\left(\right.$ or $\left.\mathbb{C}^{n}\right), \mathscr{S}=\mathscr{S}_{n}=\left\{e_{1}, \ldots, e_{n}\right\}$ the standard basis satisfies

$$
e_{i} \cdot e_{j}=\delta_{i j}:=\left\{\begin{array}{l}
1, \text { if } i=j, \forall i, j \\
0, \text { if } i \neq j
\end{array}\right.
$$

Goal: Let V be a finite dimensional inner product space over $F, F=\mathbb{R}$ or \mathbb{C}. Find a basis $\mathscr{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ for $V \ni$

$$
\begin{equation*}
\left\langle v_{i}, v_{j}\right\rangle=\delta_{i j}, \forall i, j \tag{*}
\end{equation*}
$$

if we only want bases $\mathscr{C}=\left\{w_{1}, \ldots, w_{n}\right\}$ for $V \ni$

$$
\left\langle w_{i}, w_{j}\right\rangle=0 \forall i \neq j,
$$

we can work with any subfield $F \subset \mathbb{C}$ with $F=\bar{F}$, since we do not need $\left\|w_{i}\right\| \in F$ for such a \mathscr{C}.

Example 17.3

In \mathbb{R}^{2}, let $0 \leq \theta<2 \pi$ be fixed. Then

$$
\mathscr{C}_{\theta}=\{(\cos \theta, \sin \theta),(-\sin \theta, \cos \theta)\}
$$

satisfies (*)

Definition 17.4 (Orthonormal/Orthogonal) - Let V be an inner product space over $F, \emptyset \neq S \subset V$ a subset. We say

1. S is ORTHOGONAL (or OR) if

$$
\langle v, w\rangle=0 \forall v \neq w \in S
$$

2. If S is an OR set, we call it ORTHONORMAL (or ON) if, in addition $\|v\|=$ $1 \forall v \in S$.
3. An OR set is called an OR basis if, in addition, it is a basis for V.
4. If $v, w \in V$, we say v, w are orthogonal or perpendicular if $\langle v, w\rangle=0$ write $v \perp w$. (equivalently $\langle w, v\rangle=0$)

Goal: If $F \subset \mathbb{C}$ is a subfield (and $F=\bar{F}$), V a finite dimensional inner product space over F, then V has an OR bases and an ON bases if $F=\mathbb{R}$ or \mathbb{C}.

Remark 17.5. Let V be an inner product space over $F, x, y \in V$.

1. $0 \perp x$
2. $x \perp y$ iff $y \perp x$
3. 0 is the only vector perpendicular to all $z \in V$.

Theorem 17.6

Let V be an inner product space over $F, S \subset V$ an OR set. Suppose that $0 \neq S$, then S is linearly indep. If, in addition, V is a finite dimensional inner product space over F and $|S|=\operatorname{dim} V$, then S is an OR basis for V.

Proof. Let $v \in \operatorname{Span}(S)$. Then \exists (distinct) $v_{1}, \ldots, v_{n} \in S, \alpha_{1}, \ldots, \alpha_{n} \in F \ni$

$$
v=\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}
$$

We have

$$
\begin{aligned}
\left\langle v, v_{j}\right\rangle & =\left\langle\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}\right\rangle \\
& =\sum_{i=1}^{n} \alpha_{i}\left\langle v_{i}, v_{j}\right\rangle \\
& =\sum_{i=1}^{n} \alpha_{i} \delta_{i j}\left\|v_{j}\right\|^{2}=\alpha_{j}\left\|v_{j}\right\|^{2}
\end{aligned}
$$

This is so useful, we record it as
Crucial Equation: If $\left\{v_{1}, \ldots, v_{n}\right\}, \alpha_{1}, \ldots, \alpha_{n} \in F$ then

$$
\alpha_{j}=\frac{\left\langle v, v_{j}\right\rangle}{\left\|v_{j}\right\|^{2}}, j=1, \ldots, n
$$

Note: If V is not necessarily finite dimensional and S is an OR set not containing O, the same holds.
Now, suppose that $v=0$, i.e.,

$$
0=\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}
$$

So

$$
\alpha_{j}=\frac{\left\langle v, v_{j}\right\rangle}{\left\|v_{i}\right\|^{2}}=\frac{\left\langle 0, v_{j}\right\rangle}{\left\|v_{i}\right\|^{2}}=0, j=1, \ldots, n
$$

and the result follows.

Note: If $\mathscr{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ is an OR set, $v_{i} \neq 0 \forall i, V=\operatorname{Span} \mathscr{B}$, hence a basis for V then

$$
\frac{\left\langle v, v_{j}\right\rangle}{\left\|v_{j}\right\|^{2}}
$$

is the jth coordinate of v on v_{j} and

$$
v=\sum_{j=1}^{n} \frac{\left\langle v, v_{j}\right\rangle}{\left\|v_{j}\right\|^{2}}
$$

If, in addition, $\left\|v_{j}\right\| \in F \forall j$, then

$$
\mathscr{C}=\left\{\frac{v_{1}}{\left\|v_{1}\right\|}, \ldots, \frac{v_{n}}{\left\|v_{n}\right\|}\right\}
$$

is an ON basis and $\forall v \in V$.

$$
v=\sum_{j=1}^{n} \frac{\left\langle v, v_{j}\right\rangle}{\left\|v_{j}\right\|^{2}} v_{j}=\sum_{j=1}^{n}\left\langle v, \frac{v_{j}}{\left\|v_{j}\right\|}\right\rangle \frac{v_{j}}{\left\|v_{j}\right\|}
$$

Hence if $w_{i}=\frac{v_{i}}{\left\|v_{i}\right\|}, i=1, \ldots, n, \mathscr{C}=\left\{w_{1}, \ldots, w_{n}\right\}$ is an ON basis and

$$
v=\sum_{i=1}^{n}\left\langle v, w_{i}\right\rangle w_{i}
$$

i.e., $\left\langle v, w_{i}\right\rangle$ is the coordinate of v and w_{i} for each i.

Remark 17.7. Does this look familiar?

1. Look at the proof of the Cauchy - Schwarz Inequality
2. Let $\mathscr{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ be an OR basis for V a finite dimensional inner product space over F and

$$
\mathscr{B}^{*}=\left\{f_{1}, \ldots, f_{n}\right\}
$$

the dual basis for $V^{*}=L(V, F)$. So, $f_{i}\left(v_{j}\right)=\delta_{i j}, \forall i, j$. Then $f_{i}: V \rightarrow F$ is $f_{i}(v)=$ $\frac{\left\langle v, v_{i}\right\rangle}{\left\|v_{i}\right\|^{2}}, i=1, \ldots, n$ by Crucial Equation:

$$
f_{i}=\left\langle-, \frac{v_{i}}{\left\|v_{i}\right\|^{2}}\right\rangle: V \rightarrow F
$$

and if $\mathscr{C}=\left\{w_{1}, \ldots, w_{n}\right\}$ is an ON basis then

$$
\begin{aligned}
f_{i} & =\left\langle, w_{i}\right\rangle \in \mathscr{C}^{*} \\
f_{i}(v) & =\left\langle v, w_{i}\right\rangle
\end{aligned}
$$

i.e., we can associate a vector in V to a linear functional.

Theorem 17.8

Let V be an inner product space over F, \mathscr{B} an OR basis for $V, v \in V$. Then $\langle v, w\rangle=0$ for all but finitely many $w \in \mathscr{B}$ and

$$
v=\sum_{\mathscr{B}} \frac{\langle v, w\rangle}{\|w\|^{2}} w
$$

is a finite sum. If, in addition, \mathscr{B} is ON , then this becomes

$$
v=\sum_{\mathscr{B}}\langle v, w\rangle w
$$

Corollary 17.9 (Parseval's Equation)

Let V be a finite dimensional inner product space over F with ON basis $\left\{v_{1}, \ldots, v_{n}\right\}$ and $v, w \in V$. Then

$$
\langle v, w\rangle=\sum_{i=1}^{n}\left\langle v, v_{i}\right\rangle \overline{\left\langle w, v_{i}\right\rangle}
$$

In particular,

$$
\|v\|^{2}=\sum_{i=1}^{n}\left|\left\langle v, v_{i}\right\rangle\right|^{2}, \quad \text { (Pythagorean Theorem) }
$$

Proof. Hw - Take home.

§18| Veterans Day: Nov 11, 2020

No class :D
§19| Lec 18: Nov 16, 2020

§19.1 Lec 17 (Cont'd)

Example 19.1

Let $V=C[0,2 \pi]$ an inner product space over \mathbb{R} via

$$
\langle f, g\rangle:=\int_{0}^{2 \pi} f g
$$

Let $u_{0}=\frac{1}{\sqrt{2 \pi}}, u_{2 n}=\frac{1}{\sqrt{\pi}} \sin n x, u_{2 n+1}=\frac{1}{\sqrt{\pi}} \cos n x$ for all $n \in \mathbb{Z}^{+}$and set

$$
S=\left\{u_{i} \mid i \geq 0\right\}
$$

By calculus

$$
\left\langle u_{i}, u_{j}\right\rangle=\int_{0}^{2 \pi} u_{i} u_{j}=\delta_{i j}, \forall i, j
$$

So S is ON hence linearly indep $(0 \notin S)$ and a ON basis for Span S.

Note: Vectors in span S are finite linear combos of vectors in S. In particular, $C[0,2 \pi]$ is infinite dimensional (and Span $S<C[0,2 \pi]$ is a subspace). In calculus, you studied convergent series, a convergent series

$$
\begin{equation*}
\sum_{i=0}^{\infty} \alpha_{i} u_{i} \tag{*}
\end{equation*}
$$

is called a FOURIER SERIES, the α_{i} Fourier coefficients.

Warning: $S=\mathscr{B}=\cup \mathscr{B}_{n}, \mathscr{B}_{n}=\left\{u_{i} \mid i=0, \ldots, 2 n+1\right\}$ is ON but not a basis for $C[0,2 \pi]$ or even

$$
V=\{f \in C[0,2 \pi] \mid f \text { converges to its Fourier series }\}
$$

It can be shown that $C^{\prime}[0,2 \pi] \subset V$.
Note: No one knows a precise basis for $C[0,2 \pi]$ although it exists by axioms.
Remark 19.2. 1. One can modify the interval $[0,2 \pi]$ in the above with appropriate changes to the u_{i}.
2. Infinite ON sets are very useful.

To solve our goal about finite dimensional inner product space over F, we know show:

Theorem 19.3 (Gram-Schmidt)

Let V be an inner product space over F and $\emptyset \neq S_{n}=\left\{v_{1}, \ldots, v_{n}\right\} \subset V$ a linearly indep. set. Then $\exists y_{1}, \ldots, y_{n} \in V \ni$

- $y_{1}=v_{1}$
- $T_{n}=\left\{y_{1}, \ldots, y_{N}\right\}$ is an OR set and linearly indep.
- $\operatorname{Span} T_{n}=\operatorname{Span} S_{n}$

Proof. We construct T_{n} from S_{n}. This construction is called the Gram - Schmidt process. $n=1$ is clear. We proceed by induction. We may assume we have done the S_{n} case, i.e.,

1. $y_{1}, \ldots, y_{n} \in V, y_{1}=v_{1}, y_{i} \neq 0, i=1, \ldots, n$
2. $T_{n}=\left\{y_{1}, \ldots, y_{n}\right\}$ is OR. (hence linearly indep. as $0 \notin T_{n}$)
3. $\operatorname{Span} S_{n}=\operatorname{Span}\left\{y_{1}, \ldots, y_{n}\right\}$
4. Must extend this to the case of $n+1$.

As in the proof of GS (where we threw away one orthogonal complement), we subtract an ORTHOGONAL PROJECTION figure here Define:

$$
\begin{equation*}
y_{n+1}=v_{n+1}-\sum_{k=1}^{n} \frac{\left\langle v_{n+1}, y_{k}\right\rangle}{\left\|y_{k}\right\|^{2}} y_{k} \tag{*}
\end{equation*}
$$

Claim 19.1. $y_{n+1} \neq 0$: if $y_{n+1}=0$, then $v_{n+1} \in \operatorname{Span} T_{n}=\operatorname{Span}\left(v_{1}, \ldots, v_{n}\right)$ contradicting S?, is linearly indep. So $y_{n+1} \neq 0$

Claim 19.2. $\left\langle y_{n+1}, y_{j}\right\rangle=0, j=1, \ldots, n$

$$
\begin{aligned}
\left\langle y_{n+1}, y_{j}\right\rangle & =\left\langle v_{n+1}-\sum_{k=1}^{n} \frac{\left\langle v_{n+1}, y_{k}\right\rangle}{\left\|y_{k}\right\|^{2}} y_{k}, y_{j}\right\rangle \\
& =\left\langle v_{n+1}, y_{j}\right\rangle-\sum_{k=1}^{n} \frac{\left\langle v_{n+1}, y_{k}\right\rangle}{\left\|y_{k}\right\|^{2}}\left\langle y_{k}, y_{j}\right\rangle \\
& =\left\langle v_{n+1}, y_{j}\right\rangle-\sum_{k=1}^{n} \frac{\left\langle v_{n+1}, y_{k}\right\rangle}{\left\|y_{k}\right\|^{2}} \delta_{k j}\left\|y_{j}\right\|^{2} \\
& =\left\langle v_{n+1}, y_{j}\right\rangle-\left\langle v_{n+1}, y_{j}\right\rangle=0
\end{aligned}
$$

This prove the above claim.
Since $0 \notin T_{n+1}=\left\{y_{1}, \ldots, y_{n+1}\right\}$ and T_{n+1} is OR, it is linearly indep. As Span $T_{n}=$ $\operatorname{Span}\left\{v_{1}, \ldots, v_{n}\right\}$ and $\left\{v_{1}, \ldots, v_{n+1}\right\}$ is linearly indep.

$$
\operatorname{Span} T_{n+1}=\operatorname{Span}\left(v_{n+1}, y_{1}, \ldots, y_{n}\right)=\operatorname{Span}\left(v_{1}, \ldots, v_{n+1}\right)
$$

by the Replacement Theorem and $(*)$. The theorem follows by induction.

Theorem 19.4 (Orthogonal)

Let V be a finite dimensional inner product space over F. Then V has an OR basis. If $F=\mathbb{R}$ or \mathbb{C}, then V has an ON basis.

Proof. Any basis for V can be converted to an OR basis \mathscr{C} for V by the GS process if V is finite dimensional if $F=\mathbb{R}$ or \mathbb{C}, then $\left\{\left.\frac{v}{\|v\|} \right\rvert\, v \in \mathscr{C}\right\}$ is an ON basis for V as $\|v\| \in \mathbb{R} \forall v \in \mathscr{C}$

Remark 19.5. Let $V=\mathbb{Q}^{2}$ a finite dimensional inner product space over \mathbb{Q} with inner product defined by

$$
\left\langle\left(\alpha_{1}, \alpha_{2}\right),\left(\beta_{1}, \beta_{2}\right)\right\rangle_{\frac{1}{3}}:=\frac{1}{3}\left(\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}\right)
$$

i.e., WEIGHTED DOT PRODUCT by $\frac{1}{3}$. Then V has an OR basis but not any ON basis $\left\|\left(\frac{a_{1}}{b_{1}}, \frac{a_{2}}{b_{2}}\right)\right\|_{\frac{1}{3}} \notin \mathbb{Q}$ as $3 b_{1}^{2} b_{2}^{2}=a_{1}^{2} b_{2}^{2}+b_{1}^{2} a_{2}^{2}$ has no solution in \mathbb{Z}.

§19.2 Examples - Computation

Example 19.6 1. $V=\mathbb{R}^{3}$ under $\langle\rangle=,\operatorname{dot}$ product with $v_{1}=(1,1,1), v_{2}=$ $(1,1,0), v_{3}=(1,0,1)$. GS v_{1}, v_{2}, v_{3} to an OR basis and then to an ON ba-
sis:

$$
\begin{aligned}
& y_{1}=(1,1,1) \\
& y_{2}=v_{2}-\frac{v_{2} \cdot y_{1}}{\left\|y_{1}\right\|^{2}} y_{1}
\end{aligned}
$$

... some boring calculation - can refer online notes/textbook

Note:

1. It is easier to guess.
2. If instead of $F=\mathbb{R}$, we had $F=\mathbb{Q}$, we could not get an ON basis after GS-ing.

Example 19.7

$V=\mathbb{R}[x]$ (polynomial function) via

$$
\langle f, g\rangle:=\int_{-1}^{1} f g
$$

$\mathscr{B}_{n}=\left\{x^{i} \mid 0 \leq i \leq n\right\}$ is a basis for $\mathbb{R}[x]_{n} . \mathrm{GS}, \mathscr{B}_{n}$ to an OR basis, at least start

$$
\begin{aligned}
g_{0} & =1 \\
g_{1} & =x-\frac{\langle x, 1\rangle}{\|1\|^{2}} 1=x-\frac{\int_{-1}^{1} x}{\int_{-1}^{1} 1}=x \\
g_{2} & =x^{2}-\frac{\left\langle x^{2}, 1\right\rangle}{\|1\|^{2}} 1-\frac{\left\langle x^{2}, x\right\rangle}{\|x\|^{2}} x \\
& =x^{2}-\frac{\int_{-1}^{1} x^{2}}{\int_{-1}^{1} 1}-\frac{\int_{-1}^{1} x^{3}}{\int_{-1}^{1} x^{2}} x=x^{2}-\frac{1}{3}
\end{aligned}
$$

The g_{i} are called LEGENDRE POLYNOMIALS. You can normalize them, i.e., form $\frac{g_{i}}{\left\|g_{i}\right\|}$ to get an ON set.

These are important polynomials, g_{n} satisfies the ODE

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0
$$

These occur in physics, e.g., converting Laplace's Equation $\nabla^{2} g=0$ into spherical coordinates in some cases in quantum mechanics in the solution of Schrodinger's Eqn for the hydrogen atom.
Flow of an (ideal fluid) past a sphere. Determination of the electric fluid due to a charged sphere. Determination of the temperature distribution in a sphere given its surface temperature. Computing $g_{n}^{\prime} s$ by GS is too difficult. There are many formulas to determine the $g_{n}^{\prime} s$. Many arise by proving the following recurrence relation:
Rodriguez Representation:

$$
g_{n}=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}
$$

Some of these are, using the appropriate? of the binomial coefficient

$$
\binom{n}{m}:=\frac{n!}{m!(m-n)!}, 0 \leq m \leq n:
$$

let $M=\frac{n}{2}$ or $\frac{n-1}{2}$ whichever one is an integer, i.e., $\left[\frac{n}{2}\right]=$ greatest integer $\leq \frac{n}{2}$.

$$
\begin{aligned}
g_{n} & =2^{\frac{1}{n}} \sum_{m=0}^{M}(-1)^{m} \frac{(2 n-2 m)!}{m!(n-m)!(n-2 m)!} x^{n-2 m} \\
& =2^{n} \sum_{k=0}^{n}\binom{n}{k}^{2}(x-1)^{n-k}(x+1)^{k} \\
& =\sum_{k=0}^{n}\binom{n}{k}\binom{-n-1}{k}\left(\frac{1-x}{2}\right)^{k}
\end{aligned}
$$

$\S 20 \mid$ Lec 19: Nov 18, 2020

§20.1 Lec 18 (Cont'd)

Note: Gamma function:

$$
\Gamma(z)=\int_{0}^{\infty} x^{z-1} e^{-x} d x
$$

where z is complex and $\operatorname{Re}(z)>0$ and $\Gamma(n)=(n-1)!, \forall n>1$, .
3. GS $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 2 \\ 1 & 1\end{array}\right)$ in $M_{2}(\mathbb{R})$ under

$$
\begin{aligned}
&\langle A, B\rangle=\operatorname{tr} A B^{*} \\
& y_{1}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \\
& y_{2}=\left(\begin{array}{ll}
0 & 2 \\
1 & 1
\end{array}\right)-\frac{\operatorname{tr}\left(\left(\begin{array}{ll}
0 & 2 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)^{*}\right)}{\operatorname{tr}\left(\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\right)}\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \\
& y_{2}=\left(\begin{array}{ll}
0 & 2 \\
1 & 1
\end{array}\right)-\frac{\operatorname{tr}\left(\left(\begin{array}{ll}
0 & 2 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\right)}{\operatorname{tr}\left(\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\right)}\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \\
&=\left(\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

4. $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ rotation counterclockwise by $\angle \theta$ about a vector $0 \neq v_{1}$ as axis. Find $T(\alpha, \beta, \gamma)$ i.e., $[T]_{\mathscr{S}}$ complete v_{1} to a basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ for \mathbb{R}^{3}. GS it to an OR basis, then an ON basis \mathscr{C}. Compute $[T]_{\mathscr{C}}$. Then use Change of Basis to compute $[T]_{l}$ or guess v_{2}, normalize v_{1}, v_{2} to $v_{1}^{\prime}, v_{2}^{\prime}$ then $v_{3} \subset v_{1}^{\prime} \times v_{2}^{\prime}$.
Note: If you have a basis with vectors of different lengths, it is hard to compute in this basis. If each vector in your OR basis has the same length r, you can compute.

§20.2 Orthogonal Polynomials

There are many interesting infinite sets of orthogonal polys $\left\{f_{n}\right\}_{n \in \mathbb{Z}^{+}}$. They often arise as relate α to the HYPERGEOMETRIC ODE

$$
z(1-z) \frac{d^{2} y}{d z^{2}}+[\gamma-(\alpha+\beta+1) z] \frac{d y}{d z}-\alpha \beta y=0
$$

where z is a complex variable, $y=y(z), \alpha, \beta, \gamma \in \mathbb{C}$. They arise as OR sets or weighted inner product space over \mathbb{R} (or \mathbb{C} on an interval $[a, b]$ (or variant).

$$
\int_{a}^{b} f g w=\langle f, g\rangle_{w}
$$

where $w>0$ in $[a, b]$.

- A very general such is the OR set of JACOBI POLYNOMIALS $\left\{P_{n}^{\alpha, \beta}\right\}$ under the weighted inner product space

$$
\langle f, g\rangle_{w}=\int_{-1}^{1} f g w
$$

and

$$
w=\frac{(1-x)^{\alpha}(1+x)^{\beta}}{\langle\alpha, \beta\rangle-1}
$$

Often such OR sets are not orthonormalized but rather normalized "by dividing by $P_{n}^{\alpha, \beta}(1)$. In this case, $P_{n}^{\alpha, \beta}(1)=\binom{n+\alpha}{n}$. The $P_{n}^{\alpha, \beta}$ are solutions to the ODE.

$$
0=\left(1-x^{2}\right) y^{\prime \prime}+(\beta-\alpha-(\alpha+\beta+2) x) y^{\prime}+n(n+\alpha+\beta-1) y
$$

used in Wigner d-matrix theory in quantum mechanics. There are many special cases of Jacobi polys.

1. Gegenbauer polys (ultra-symmetric) polynomials, $C_{n}^{(\alpha)}$ where

$$
\begin{gathered}
w=\left(1-x^{2}\right)^{\alpha-\frac{1}{2}} \\
C_{n}^{(\alpha)}=P_{n}^{\left(\alpha-\frac{1}{2}, \alpha-\frac{1}{2}\right)} \\
\left(1-x^{2}\right) y^{\prime \prime}-(2 \alpha+1) x y^{\prime}+n(n+2 \alpha) y=0
\end{gathered}
$$

potential theory, harmonics analysis, Newtonian's potential.
2. Legendre polys. There are a special case of Gegenbauer polys, namely

$$
\begin{gathered}
w=1 \\
C_{n}^{\frac{1}{2}} \\
\left(\left(1-x^{2}\right) y^{\prime}\right)^{\prime}+n(n+1) y=0
\end{gathered}
$$

3. Chebychev polys come in two kinds: T_{n}, U_{n}

$$
\begin{gathered}
w=\frac{1}{\sqrt{1-x^{2}}} \\
T_{n}=P_{n}^{\left(-\frac{1}{2},-\frac{1}{2}\right)} \\
U_{n}=P_{n}^{\left(\frac{1}{2}, \frac{1}{2}\right)} \\
\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+n^{2} y=0 \\
\left(1-x^{2}\right) y^{\prime \prime}-3 x y^{\prime}+n(n+2) y=0
\end{gathered}
$$

Least square fit, optimal control, numerical analysis.

- Laguerre polys $L_{n}^{(\alpha)}$ OR set with $w_{\alpha}(x)=x^{\alpha} e^{-x}, \alpha>-1$ in \mathbb{R} on $[0, \infty)$

$$
x y^{\prime \prime}+(\alpha+1-x) y^{\prime}+n y=0,0 \neq n \in \mathbb{Z}
$$

quantum mechanics, plasma physics.

- HERMITE polys. $H_{n}, H e_{n}$

$$
\begin{aligned}
w & =e^{-x^{2}}, \text { for } H_{n} \text { on }(-\infty, \infty) \\
& =e^{-\frac{x^{2}}{2}}, \text { for } H e_{n} \text { on }(-\infty, \infty)
\end{aligned}
$$

(H_{n} is called physicist Hermite polys and $H e_{n}$ probabilists Hermite polys).

$$
0=\left(e^{-\frac{1}{2} x^{2}} y^{\prime}\right)^{\prime}+n e^{-\frac{1}{2} x^{2}} y=0
$$

probability, numerical analysis, physics.

Remark 20.1. Let

$$
\begin{aligned}
D & =\operatorname{diff}=\frac{d}{d x}, \quad p, q \text { functions, } w>0 \\
L & =-\frac{1}{w}(D(p D)+q), \quad \text { a linear operator }
\end{aligned}
$$

Then one wants to solve

$$
L f=\lambda f
$$

The solutions are called eigenfunctions in the above they are the eigenfunctions for the given ODEs.

§20.3 Orthogonal Complement

Notation: $F \subset \mathbb{C}$ a field satisfying $F=\bar{F}$.

Definition 20.2 (Distance from a Vector to a Set) - Let V be an inner product space over $F, v_{1}, v_{2} \in V$. We know that the DISTANCE between v_{1}, v_{2} is defined to be

$$
d\left(v_{1}, v_{2}\right):=\left\|v_{1}-v_{2}\right\| \geq 0
$$

More generally, let $\emptyset \neq S \subset V$ be a subset and $v \in V$. Define the DISTANCE of v to S by

$$
d(v, S):=\inf \{d(v, w) \mid w \in S\}
$$

if it exists and hence finite.

Problem 20.1. Let V be an inner product space over $F, S \subset V$ a finite dimensional subspaces, $v \in V$. Determine

Solution take the orthogonal projection of v to w in S

Definition 20.3 (Orthogonal Complement) - Let V be an inner product space over $F, \emptyset \neq S \subset V$ a subset of, $v \in V$. We say v is ORTHOGONAL to S, write $v \perp S$, if

$$
\langle s, v\rangle=0, \forall s \in S
$$

Set:

$$
S^{\perp}:=\{v \in V \mid v \perp S\}
$$

called the ORTHOGONAL COMPLEMENT of S in V.

Remark 20.4. 1. Compare S^{\perp} to $S^{\circ} \subset V^{*}$, if V is an arbitrary vector space over F.
2. In \mathbb{R}^{3} (under the dot product)

$$
\left(\operatorname{Span} e_{1}\right)^{\perp}=\operatorname{Span}\left(e_{2}, e_{3}\right)
$$

3. Let V be an inner product space over $F, \emptyset \neq S \subset V$ a subset, not necessarily a subspace. Then $S^{\perp} \subset V$ is a subspace (if $\emptyset \neq S \subset V$ a subset with V a vector space over F, F arbitrary, then $S^{\circ} \subset V^{*}$ is a subspace).

Proof. Hw.
4. In 3), $S \subset S^{\perp \perp}:=\left(S^{\perp}\right) \perp: S^{\perp} \subset S^{\perp \perp}$ so $S \subset S^{\perp \perp}$. If, in addition, $S \subset V$ is a subspace and V is a finite dimensional inner product space over F, then $S=S^{\perp \perp}$ (if V is a finite dimensional vector space over F, F arbitrary $W \subset V$ a subspace, then $\left.W=W^{\circ \circ}=\left(W^{\circ}\right)^{\circ}\right)$.
5. Let V be a finite dimensional inner product space over $F, S=\left\{v_{1}, \ldots, v_{n}\right\}$ an OR basis for V. Then

$$
\left(\operatorname{Span}\left(v_{1}, \ldots, v_{r}\right)\right)^{\perp}=\operatorname{Span}\left(v_{r+1}, \ldots, v_{n}\right)
$$

6. Let V be an inner product space over $F, S \subset V$ a subspace. Then

$$
S \cap S^{\perp}=0
$$

if $v \in S \cap S^{\perp}$, then $\langle v, v\rangle=\|v\|^{2}=0$, so $v=0$. In particular,

$$
S+S^{\perp}=S \oplus S^{\perp}
$$

We write: $S \oplus S^{\perp}$ as $S \perp S^{\perp}$ to show it is also orthogonal. The key result (and most important result for use about general inner product space over F) is:

Theorem 20.5 (Orthogonal Decomposition)

Let V be an inner product space over $F, S \subset V$ a finite dimensional subspace, $v \in V$. Then

$$
\begin{equation*}
\exists!s \in S, s^{\perp} \in S^{\perp} \ni v=s+s^{\perp} \tag{*}
\end{equation*}
$$

In particular, $V=S+S^{\perp}, S \cap S^{\perp}=0$, so $V=S \perp S^{\perp}$. Moreover, if

$$
v=s+s^{\perp}, s \in S, s^{\perp} \in S^{\perp}
$$

then

$$
\|v\|^{2}=\|s\|^{2}+\left\|s^{\perp}\right\|^{2}, \quad(\text { Pythagorean Theorem })
$$

In addition, if V is a finite dimensional inner product space over F, then

$$
\operatorname{dim} V=\operatorname{dim} S+\operatorname{dim} S^{\perp}
$$

§21 Lec 20: Nov 20, 2020

§21.1 Lec 19 (Cont'd)

Proof. By the OR Theorem, \exists an OR basis $\mathscr{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ for the finite dimensional inner product space over $F S$.
Existence: Let $v \in V$. Define $s \in S=\operatorname{Span} \mathscr{B}$ by

$$
s=\sum_{i=1}^{n} \frac{\left\langle v, v_{i}\right\rangle}{\left\|v_{i}\right\|^{2}} v_{i}
$$

and set

$$
s^{\perp}=v-s
$$

Suppose we have shown $s^{\perp} \in S^{\perp}$. Then $v=s+s^{\perp}$ giving existence as well as $V=S+S^{\perp}$ and $S \cap S^{\perp}=0$, i.e., $V=S \oplus S^{\perp}$. Repeating the previous computation, we have if $j=1, \ldots, n$ then

$$
\begin{aligned}
\left\langle s^{\perp}, v_{j}\right\rangle & =\left\langle v-s, v_{j}\right\rangle=\left\langle v, v_{j}\right\rangle-\left\langle s, v_{j}\right\rangle \\
& =\left\langle v, v_{j}\right\rangle-\sum_{i=1}^{n} \frac{\left\langle v, v_{i}\right\rangle}{\left\|v_{i}\right\|^{2}}\left\langle v_{i}, v_{j}\right\rangle \\
& =\left\langle v, v_{j}\right\rangle-\sum_{i=1}^{n} \frac{\left\langle v, v_{i}\right\rangle}{\left\|v_{i}\right\|^{2}} \delta_{i j}\left\|v_{j}\right\|^{2}=0
\end{aligned}
$$

Since $s^{\perp} \perp v_{j}, j=1, \ldots, n$ i.e., $\forall v_{j} \in \mathscr{B}$, if $\sum_{i=1}^{n} \alpha_{i} v_{i} \in S$, then

$$
\left\langle s^{\perp}, \sum_{i=1}^{n} \alpha_{i} v_{i}\right\rangle=\sum_{i=1}^{n} \overline{\alpha_{i}}\left\langle s^{\perp}, v_{i}\right\rangle=0
$$

Thus, $s^{\perp} \in S^{\perp}$ as needed.
Uniqueness: If

$$
s+s^{\perp}=v=r+r^{\perp}, r \in S, r^{\perp} \in S^{\perp}
$$

$\left(s \in S, s^{\perp} \in S^{\perp}\right)$ as both S, S^{\perp} are subspaces

$$
s-r=r^{\perp}-s^{\perp} \in S \cap S^{\perp}=0
$$

So $s=r$ and $s^{\perp}=r^{\perp}$.

Theorem 21.1 (Pythagorean)

Let $v=s+s^{\perp}, s \in S, s^{\perp} \in S^{\perp}$. Then

$$
\begin{aligned}
\|v\|^{2} & =\left\langle s+s^{\perp}, s+s^{\perp}\right\rangle=\langle s, s\rangle+\left\langle s, s^{\perp}\right\rangle+\left\langle s^{\perp}, s\right\rangle+\left\langle s^{\perp}, s^{\perp}\right\rangle \\
& =\|s\|^{2}+\left\|s^{\perp}\right\|^{2}
\end{aligned}
$$

Corollary 21.2 (Bessel's Inequality)

Let V be an inner product space over $F, \mathscr{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ an OR set in V with $0 \notin \mathscr{B}$. Let $v \in V$. Then

$$
\sum_{i=1}^{n} \frac{\left|\left\langle v, v_{j}\right\rangle\right|^{2}}{\left\|v_{i}\right\|^{2}} \leq\|v\|^{2}
$$

with equality iff

$$
v=\sum_{i=1}^{n} \frac{\left\langle v, v_{j}\right\rangle}{\left\|v_{i}\right\|^{2}} v_{i}
$$

Proof. Hw.

Remark 21.3. Let V be an inner product space over $F, S \subset V$ a finite subspace. Then by the OR Decomposition Theorem, $\forall v \in V \exists!s \in S, s^{\perp} \in S^{\perp} \Longrightarrow v=s+s^{\perp}$. We call s the orthogonal projection of v on S and denote it by v_{S}. By the proof of the OR Decomposition Theorem, if $\mathscr{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ is ANY OR basis for S, then the uniqueness of v_{S} means

$$
v_{S}=\sum_{i=1}^{n} \frac{\left\langle v, v_{i}\right\rangle}{\left\|v_{i}\right\|^{2}} v_{i}
$$

i.e.,is INDEPENDENT of OR basis. So the ORTHOGONAL PROJECTION of v onto S.

Theorem 21.4 (Approximation)

Let V be an inner product space over $F, S \subset V$ a finite dimensional subspace, and $v \in V$. Then v_{S} is closer to v than any other vector in S, i.e.,

$$
d\left(v, v_{S}\right)=\left\|v-v_{S}\right\| \leq\|v-r\|=d(v, r)
$$

in $\mathbb{R}, \forall r \in S$. Equivalently,

$$
d(v, S)=d\left(v, v_{S}\right)
$$

Moreover, if $r \in S$, then

$$
\left\|v-v_{S}\right\|=\|v-r\| \in \mathbb{R} \Longleftrightarrow r=v_{S}
$$

We say v_{S} gives the BEST APPROXIMATION.

Proof. By the OR Decomposition Theorem (and its proof), $v=s+s^{\perp}$ with $s=v_{S}, s^{\perp}=$ $v-s=v-v_{S}, s^{\perp} \in S^{\perp}$. Let $r \in S$. Then

$$
v-r=\left(v-v_{S}\right)+\left(v_{S}-r\right)=s^{\perp}+\left(v_{S}-r\right)
$$

$S \subset V$ is a subspace, so $v_{S}-r \in S$, hence $s^{\perp} \perp v_{S}-r$, i.e.,

$$
0=\left\langle s^{\perp}, v_{S}-r\right\rangle=\left\langle v-v_{S}, v_{S}-r\right\rangle
$$

By the Pythagorean Theorem,

$$
\|v-r\|^{2}=\left\|v-v_{S}\right\|^{2}+\left\|v_{s}-r\right\|^{2} \geq\left\|v-v_{S}\right\|^{2}
$$

with equality iff

$$
\left\|v_{S}-r\right\|=0 \Longleftrightarrow v_{s}=r
$$

Definition 21.5 (Error) - Let V be an inner product space over $F, S \subset V$ a finite dimensional subspace and $v \in S$. Then, $\left\|v-v_{S}\right\|$ is called the error of v not being v_{S}.

Problem 21.1. Let V, X be inner product space over $F, S \subset V$ a finite dimensional subspace $v \in V$, and $T: X \rightarrow V$ linear. Find $x \in X$ with $\|x\|$ minimal s.t. $T x$ is the best approximation to $v \in V$ in S, i.e., find $x \in X,\|x\|$ minimal $\ni T x=v_{S}$.

§21.2 Examples of Best Approximation

Example 21.6 (Fourier Coefficient)

Let $V=C[0, \pi]$ an inner product space over \mathbb{R} via $\langle f, g\rangle=\int_{0}^{2 \pi} f g, u_{0}=\frac{1}{\sqrt{2 \pi}}, u_{2 n-1}=$ $\frac{\cos n x}{\sqrt{\pi}}, u_{2 n}=\frac{\sin n x}{\sqrt{\pi}}, n>0$. Set

$$
S=\left\{u_{0}, \ldots, u_{n}, \ldots\right\}
$$

an ON set (as we have seen) and let

$$
\begin{aligned}
\mathscr{B}_{n} & :=\left\{u_{0}, \ldots, u_{2 n+1}\right\} \\
V_{n} & :=\operatorname{Span}\left(\mathscr{B}_{n}\right)
\end{aligned}
$$

if $f \in V$, then

$$
f_{n}:=f_{v_{n}}=f_{\text {span }} \mathscr{B}_{n},
$$

the function in V_{n} closest to f, i.e., the orthogonal projection of f onto V_{n}. So

$$
f_{n}=\sum_{i=0}^{2 n+1}\left\langle f, u_{i}\right\rangle u_{i}
$$

where

$$
\left\langle f, u_{i}\right\rangle=\int_{0}^{2 \pi} f u_{i}, \quad \forall i \leq 2 n
$$

called the $i^{\text {th }}$ FOURIER COEFFICIENT. The ERROR to the actual f is

$$
d\left(f, f_{n}\right)=\left\|f-f_{n}\right\|=\sqrt{\int_{0}^{2 \pi}\left(f-f_{n}\right)^{2}}
$$

One checks:

$$
f_{n}=\frac{1}{2} 0_{0}+\sum_{k=1}^{n}\left(a_{k} \cos k x+b_{k} \sin k x\right)
$$

with

$$
\begin{aligned}
& a_{0}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) d x \\
& a_{k}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \sin k x d x \\
& b_{k}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \sin k x d x
\end{aligned}
$$

is the BEST APPROXIMATION of f by such functions. If $\lim _{n \rightarrow \infty}\left\|f-f_{n}\right\|=0$, i.e., $f=\sum_{i=0}^{\infty}\left\langle f, u_{i}\right\rangle u_{i}$ converges, we say f converges to its Fourier expansion (similar results with modest change work for $([0, L])$.

Example 21.7

Let $V=C[-1,1]$ with $\langle f, g\rangle=\int_{-1}^{1} f g$. Let $f(x)=e^{x}$. Find a linear polynomial nearest f and compute $d(f, g)$ (=error) for such a g and we let $W=\operatorname{span}(1, x) \subset V$ a finite dimensional subspace. We want f_{W}. To do this, we compute ON (or OR) basis for W i.e., GS $\{1, x\}$ and normalize. GS yields $1, x$ (as before) and ON it to $\frac{1}{\|1\|}, \frac{x}{\|x\|}$, i.e., $\frac{1}{\sqrt{\int_{-1}^{1} 1}}, \frac{x}{\sqrt{\int_{-1}^{1} x^{2}}}$ which is

$$
\frac{1}{\sqrt{2}}, \sqrt{\frac{3}{2}} x
$$

Let $f=e^{x}$. Then

$$
\begin{aligned}
f_{W} & =\left\langle f, \frac{1}{\sqrt{2}}\right\rangle \frac{1}{\sqrt{2}}+\left\langle f, \frac{\sqrt{3}}{2} x\right\rangle \frac{\sqrt{3}}{2} x \\
& =\frac{1}{2} \int_{-1}^{1} e^{z} d z+\frac{3}{2} x \int_{-1}^{1} z e^{z} d z \\
& =\ldots \\
& =\frac{1}{2}\left(e-\frac{1}{e}\right)+\frac{3}{e} x
\end{aligned}
$$

So, $f_{W}=\frac{1}{2}\left(e-\frac{1}{e}\right)+\frac{3}{e} x$. Let $\alpha=\frac{1}{2}\left(e-\frac{1}{e}\right), \beta=\frac{3}{e} x$. So $g=f_{W}=\alpha+\beta x$ and

$$
\begin{aligned}
\left\|f-f_{W}\right\|^{2} & =\|f-g\|^{2}=\int_{-1}^{1}(f-g)^{2} d z \\
& =\int_{-1}^{1}\left(f^{2}-2 f g+g^{2}\right) d z \\
& =\int_{-1}^{1}\left[\left(e^{2 x}-2 e^{x}(\alpha+\beta x)+\alpha^{2}+2 \alpha \beta x+\beta^{2} x^{2}\right] d x\right. \\
& =\ldots(\text { boring algebra }) \\
& =1-\frac{7}{e^{2}}
\end{aligned}
$$

So

$$
d(f, g)=d\left(f, f_{W}\right)=\sqrt{1-\frac{7}{e^{2}}} \approx .05625
$$

§21.3 Hermitian Operators

Definition 21.8 (Hermitian/Self-Adjoint) - Let V be an inner product space over F, $T: V \rightarrow V$ linear. We say T is HERMITIAN or SELF-ADJOINT if

$$
\langle T v, w\rangle=\langle v, T w\rangle, \forall v, w \in V
$$

if $F \subset \mathbb{R}$ is an hermitian operator, it is also called a SYMMETRIC OPERATOR.

Example 21.9 1. Let $V=F^{n \times 1}$ be an inner product space over F via the dot product, i.e.,

$$
\left\langle\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right),\left(\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{n}
\end{array}\right)\right\rangle:=\sum_{i=1}^{n} \alpha_{i} \bar{\beta}_{i}
$$

remember we always assume $F=\bar{F} \subset \mathbb{C}$. Note that some people write the dot product $v * w$ - they do not like columns.

Let $A \in M_{n}(F)$. As usual, we view A as a linear operator,

$$
A: F^{n \times 1} \rightarrow F^{n \times 1} \text { by } X \mapsto A \cdot X
$$

By HW, A is hermitian iff $A=A^{*}$ (so if $F \subset \mathbb{R} \Longleftrightarrow A=A^{t}$). In fact, you will prove on the takehome the following theorem

Theorem 21.10

Let V, W be finite dimensional inner product space over F with ON bases, $T: V \rightarrow W$ linear. Then, $\exists!T^{*}: W \rightarrow V$ linear s.t.

$$
\langle T v, w\rangle_{W}=\left\langle v, T^{*} w\right\rangle_{V}, \forall v \in V, \forall w \in W
$$

T^{*} is called the ADJOINT of T. Hence if $T: V \rightarrow V$ is a linear operator, then T is hermitian iff $T=T^{*}$ and T^{*} exists.

Example 21.11

Let $\alpha<\beta$ in \mathbb{R} and $V=C[\alpha, \beta]:=\{f:[\alpha, \beta] \rightarrow \mathbb{R} /$ cont $\}$ an inner product space over \mathbb{R} by

$$
\langle f, g\rangle:=\int_{\alpha}^{\beta} f g
$$

If $T: V \rightarrow V$ linear, then T is hermitian iff

$$
\begin{equation*}
\int_{\alpha}^{\beta}(f T g-g T f)=0, \forall f, g \in V \tag{*}
\end{equation*}
$$

Note: V is not finite dimensional and $\left(^{*}\right)$ is a commutativity type of condition.

Example 21.12 (fancy)
$V=C^{\infty}[\alpha, \beta], \alpha<\beta$ in \mathbb{R}. (often $C^{\infty}[\alpha, \beta]$ vector space of convergent power series in some neighborhood of every point of (α, β) and? open neighborhood at $\alpha, \beta)$. Again V is not finite dimensional and is an inner product space over \mathbb{R} as in the above example. Let $p \in V$ be fixed, $p(x)>0$, and

$$
W=\{f \in V \mid p(\alpha) f(\alpha)=0=p(\beta) f(\beta)\}
$$

an inner product space as in the above example (e.g., $p(\alpha)=0 p(\beta)$. Fix $q \in W$ and let

$$
T_{p, q}=T: W \rightarrow W \text { the linear operator }
$$

defined by

$$
T f:=\left(p f^{\prime}\right)^{\prime}+q f
$$

called a STURM LIOUVILLE operator. Then T is hermitian. Check T satisfies (*) in the above example using integration by parts.

Example 21.13

More generally, let $V=C^{\infty}[\alpha, \beta], \alpha<\beta \in \mathbb{R}$ an inner product space over \mathbb{R} as in the above. Let $p, q, w \in V, p(x)>0, w(x)>0, \forall x \in[\alpha, \beta]$. Fix $a, b, c, d \in \mathbb{R} \ni$ both $a=0=b$ and $c=0=d$ are excluded. Let

$$
w=\left\{f \in V \mid a f(\alpha)+b f^{\prime}(\alpha)=0=c f(\beta)+d f^{\prime}(\beta)\right\}
$$

where f satisfies the boundary condition. Let W be an inner product space over \mathbb{R} by the weighted inner product

$$
\langle f, g\rangle_{w}=\int_{\alpha}^{\beta} w f g
$$

Define the STURM LIOUVILLE OPERATOR:

$$
T=T_{p, q, w}: W \rightarrow W \text { by }
$$

$f \mapsto-\frac{1}{w}\left(\left(p f^{\prime}\right)^{\prime}+q f\right)$. Then T is hermitian. This arises from finding eigenvalues of $T_{p, q, w}$, i.e., solutions to the ODE

$$
\frac{d}{d x}\left(p \frac{d y}{d x}\right)+q(x) y=-\lambda w y
$$

which have as special cases - Legendre ODE

$$
\left(1-x^{2}\right) y^{\prime \prime}+2 x y^{\prime}+n(n+1)=0
$$

arising in spherical harmonic problems. Bessel's ODE:

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-a^{2}\right) y=0
$$

$\alpha \in \mathbb{C}$ (often in \mathbb{Z} or $2 \alpha \in \mathbb{Z}$), i.e., one wants to find the eigenvalues of $f=y, \lambda$ in $\left({ }^{*}\right)$ for which there is a solution and $f \in E_{T}(\lambda)$. Eigenvectors in function spaces are called EIGENFUNCTIONS.

$\S 22$ Lec 21: Nov 23, 2020

§22.1 Lec 20 (Cont'd)

Goal: Spectral Theorem for Hermitian Operator: Let V be a finite dimensional inner product space over $F, F=\mathbb{R}$ or $\mathbb{C}, T: V \rightarrow V$ hermitian. Then T is diagonalizable, i.e., \exists a basis \mathscr{B} for V consisting of eigenvectors of T, and in fact, such a \mathscr{B} is ON.
Calculus Application: Let $S \subset \mathbb{R}^{n}$ be "nice" (open + nice boundary $+\ldots$), x_{1}, \ldots, x_{n} the rectilinear coordinate functions relative to the standard basis and

$$
(+) f: S \rightarrow \mathbb{R} \text { a } C^{2}-\text { a function }
$$

Calculus Theorem if f satisfies $(+)$, then

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(a)=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}(a), \forall_{j}^{i}, \forall a \in S
$$

For each $a \in S$, associate the symmetric matrix

$$
H f(a):=:=\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(a)\right)
$$

called the HESSIAN at f at a. Suppose $a \in S$ is a critical point of f, i.e.,

$$
D f(a):=\left(\frac{\partial f}{\partial x_{1}}(a), \ldots, \frac{\partial f}{\partial x_{n}}(a)\right)=(0, \ldots, 0)
$$

Equivalently, $\nabla f(a)=0$. Recall the TOTAL DERIVATIVE of f at a is the linear transformation

$$
f^{\prime}(a,): \mathbb{R}^{n} \rightarrow \mathbb{R} \text { given by }
$$

$f^{\prime}(a, v)=D f(a) \cdot v$. Now, let $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$ be the eigenvalues of $H f(a)$, so the roots of $f_{H f(a)}$ counted with multiplicity. Since $H f(a)$ is symmetric, by the Spectral Theorem, $m=n$ and

$$
H f(a) \sim\left(\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right) \text { in } M_{n} \mathbb{R}
$$

$\lambda_{1}, \ldots, \lambda_{n}$ not necessarily distinct. Then, we have the $2^{\text {nd }}$ Derivative Test under the above conditions at the critical point a.

1. a is a relative minimum for f at a if $\lambda_{i}>0 \forall i$.
2. a is a relative maximum for f at a if $\lambda_{i}<0 \forall i$.
3. a is a saddle point for f at a if $\exists i, j \ni \lambda_{i}>0, \lambda_{j}<0$.
4. No info if $\lambda_{i}=0 \forall i$ or $\exists i \ni \lambda_{i}=0$.

The total derivative $f^{\prime}(a,-): \mathbb{R}^{n} \rightarrow \mathbb{R}$ can be defined at $a \in S$ if it exists as the following: it is a linear transformation

$$
T a: \mathbb{R}^{n} \rightarrow \mathbb{R} \ni
$$

\exists a scalar valued function satisfying

$$
f(a+v)=f(a)+\|v\| E(a, v)
$$

for some r, \ni if $\|v\|<r$ then

$$
E(a, v) \rightarrow 0 \text { as }\|v\| \rightarrow 0
$$

Question 22.1. What is the total derivative

$$
f^{\prime}(a, \cdot): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \text { if } f: S \rightarrow \mathbb{R}^{m} ?
$$

Theorem 22.1

Let V be an inner product space over $F, T: V \rightarrow V$ linear, λ an eigenvalue of $T, 0 \neq v \in E_{T}(\lambda)$. Then

$$
\lambda=\frac{\langle T v, v\rangle}{\|v\|^{2}} \text { and } \bar{\lambda}=\frac{\langle v, T v\rangle}{\|v\|^{2}}
$$

In particular, $\lambda \in \mathbb{R}$ iff

$$
\langle T v, v\rangle=\langle v, T v\rangle
$$

Proof. By assumption, $T v=\lambda v,\|v\| \neq 0 . \operatorname{So}\langle T v, v\rangle=\langle\lambda v, v\rangle=\lambda\langle v, v\rangle=\lambda\|v\|^{2}$ and $\langle v, T v\rangle=\langle v, \lambda v\rangle=\bar{\lambda}\langle v, v\rangle=\bar{\lambda}=\|v\|^{2}$. As $\|v\| \neq 0$, the first statement follows. Hence,

$$
\lambda=\bar{\lambda} \Longleftrightarrow\langle T v, v\rangle=\langle v, T v\rangle
$$

Corollary 22.2 (Hermitian)

Let V be an inner product space over $F, T: V \rightarrow V$ linear. Suppose that T is hermitian. Then any eigenvalues of T is real, i.e., lies in $F \cap \mathbb{R}$.

Theorem 22.3 (Fundatemental Theorem of Algebra)
Let $f \in \mathbb{C}[t] \backslash \mathbb{C}$. Then f has a root in \mathbb{C}, i.e., $\exists \alpha \in \mathbb{C} \ni f(\alpha)=0$

Addendum: Let $f \in \mathbb{R}[t] \backslash \mathbb{R}$. As $\mathbb{R} \subset \mathbb{C}, \mathbb{R}[t] \subset \mathbb{C}[t]$. So we can view $f \in \mathbb{C}[t]$. Then f has a root $\beta \in \mathbb{C}$. Of course, β may not lie in \mathbb{R}.
Suppose β is real, i.e., $\beta \in \mathbb{R}$. As β is a root of $f \in \mathbb{C}$

$$
f=(t-\beta) g, g \in \mathbb{C}[t], \beta \in \mathbb{R}
$$

Then

$$
f=(t-\beta)(h), h \in \mathbb{R}[t](\text { if } \beta \in \mathbb{R})
$$

Proof. 1. If $f=\sum_{i=0}^{n} \alpha_{i} t^{i}, \alpha_{i} \in \mathbb{R} \forall i$ and $\sum_{i=1}^{n} \alpha_{i} \beta^{i}=0$ in \mathbb{C} with $\beta \in \mathbb{R}$, then every term in $\sum \alpha_{i} \beta^{i}$ lies in \mathbb{R}, so β is a root of f when viewed in $\mathbb{R}[t]$.
2. (Generalization) Let $F \subset K, K$ a field, F a subfield of K so same $+, \cdot, 0,1$ as in K (e.g., $\mathbb{R} \subset \mathbb{C}$). Let $f \in F[t], \alpha \in F$. By the DIVISION ALGORITHM,

$$
\begin{equation*}
f=f(t-\alpha) g+r, \quad r, g \in F[t] \text { unique with } \mathrm{r}=0 \text { or } \operatorname{deg} \mathrm{r}<\operatorname{deg}(t-\alpha) \tag{*}
\end{equation*}
$$

But $\operatorname{deg}(t-\alpha)=1$, so $r \in F$ (a constant). Evaluate $\left(^{*}\right)$ at $t=\alpha$, so $\left(e_{\alpha}: F[t] \rightarrow F\right.$ by $h \mapsto h(\alpha)$ a ring homomorphism)

$$
f(\alpha)=(\alpha-\alpha) g(\alpha)+r=r
$$

i.e.,

$$
(+) f=(t-\alpha) g+f(\alpha)
$$

So

$$
\alpha \in F \text { is a root in } F \Longleftrightarrow
$$

$(\star) f=(t-\alpha) g$ in $F[t]$ some $g \in F[t]$. So we have, viewing $F[t] \subset K[t]$. If $\beta \in K$, then

$$
f=(t-\beta) h+f(\beta), h \in K[t]
$$

and if $\beta \in K$ is a root of f in K, then

$$
f=(t-\beta) h \in K[t]
$$

So if $\beta \in K$ is a root of f with $\beta \in F$, then

$$
f(\beta)=0_{K}=0_{F}
$$

so (\star) holds.

Remark 22.4. 1. By the Addendum and induction, FTA says if $f \in \mathbb{C}[t] \backslash \mathbb{C}$, says $n=\operatorname{deg} f \geq 1$, then $\exists!\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$, not necessarily distinct and $\beta \in \mathbb{C} \ni$

$$
f=\beta\left(t-\alpha_{1}\right) \ldots\left(t-\alpha_{n}\right)
$$

i.e., f factors into a product of linear polys. We say f splits in \mathbb{C} and $\alpha_{1}, \ldots, \alpha_{n}$ are the unique roots (up to multiplicity) of f in \mathbb{C}.
2. FTA is proven in Math 132 and math 110C. The essential analysis fact used in math 132 is if $f \in \mathbb{C}[t] \backslash \mathbb{C}$, then $|f(z)| \rightarrow \infty$ as $|z| \rightarrow \infty$ and the essential analysis fact used in math 110 C is the Intermediate Value Theorem in the special case that says if $f \in \mathbb{R}[t]$ is of odd degree, then f has a real root.
3. The following fact is true: If V is a finite dimensional vector space over F, F an arbitrary field, $T: V \rightarrow V$ linear, then \exists an ordered basis \mathscr{B} for $V \ni[T]_{\mathscr{B}}$ is UPPER TRIANGULAR (i.e. $\left.\left([T]_{\mathscr{B}}\right)_{i j}=0 \forall i>1\right)$ iff $f_{T} \in F[t]$ splits, i.e., factors into a product of linear terms. If this occurs, we say T is TRIANGULARIZABLE. Can you prove that if $F=\mathbb{C}$, then every such T is triangularizable? (T is diagonalizable iff q_{T} of the HW7/Midterm splits and has no multiple roots)

§23 Lec 22: Nov 25, 2020

§23.1 Lec 21 (Cont'd)

Definition 23.1 (T-invariant) - Let F be an arbitrary field, V a vector space over $F, W \subset V$ a subspace, $T: V \rightarrow V$ linear. We say W is T-INVARIANT (or INVARIANT under T) if

$$
T w \in W, \forall w \in W \text {, i.e., } T(W) \subset W
$$

if W is T-invariant, then we can (and do) view

$$
\left.T\right|_{W}: W \rightarrow W \text { linear }
$$

Example 23.2 1. Any subspace of an eigenspace of T (if any) is T-invariant.
2. $\operatorname{ker} T \subset V$ is T-invariant.
3. im $T \subset V$ is T -invariant.

Lemma 23.3 (Hermitian Operator (Key Lemma))

Let V be an inner product space over $F, T: V \rightarrow V$ hermitian, $S \subset V$ a T-invariant subspaces. Then

1. S^{\perp} is T-invariant, i.e., $T\left(S^{\perp}\right) \subset S^{\perp}$.
2. $\left.T\right|_{S^{\perp}}: S^{\perp} \rightarrow S^{\perp}$ is hermitian.

Proof. 1. Let $w \in S^{\perp}$. To show $T w \in S^{\perp}$, if $v \in S$, then $T v \in S$ as S is T-invariant. So

$$
\langle v, T w\rangle=\langle T v, w\rangle=0
$$

So, $T w \in S^{\perp}$.
2. By 1), $\left.T\right|_{S^{\perp}}: S^{\perp} \rightarrow S^{\perp}$ is linear. As $\langle T v, w\rangle=\langle v, T w\rangle, \forall v, w \in V$, this is certainly true $\forall v, w \in S^{\perp}$.

Remark 23.4. Let $F=\mathbb{R}$ or \mathbb{C}, V a finite dimensional inner product space over $F, T: V \rightarrow V$ hermitian. By the Hermitian Corollary, if T has an eigenvalue, it is real and $\alpha \in F$ is a roof of f_{T} in F iff eigenvalue of T. We know f_{T} has a root in $\mathbb{C}[t]$ by the FTA. The key lemma should allow us to induct on $\operatorname{dim} V$.

Subtle Difficulty: Let V be a finite dimensional inner product space over $\mathbb{R}, T: V \rightarrow V$ hermitian. We know $f_{T} \in \mathbb{R}[t]$ has a root in \mathbb{C}, but we do not know a priori that f_{T} is the characteristics polynomial of an hermitian operator over an inner product space over \mathbb{C}, so we do not know that the roots of f_{T} are real.
Unfortunately, to over come this, we have use bases. There is an abstract way to do it but we cannot do it.

Theorem 23.5 (Spectral - First Version)

(for Hermitian Operator) Let $F=\mathbb{R}$ or \mathbb{C}, V a finite dimensional inner product space over $F, T: V \rightarrow V$ hermitian. Then \exists an ON basis $\mathscr{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ for V with each $v_{i}, i=1, \ldots, n$, an eigenvector for some eigenvalues $\alpha_{i} \in \mathbb{R}, i=1, \ldots, n$ (not necessarily distinct). In particular, T is diagonalizable.

Proof. We prove \mathscr{B} exists by induction on $\operatorname{dim} V=n$.
$n=1: V=\operatorname{Span}(v)$, any $0 \neq u \in V . \operatorname{As} T v \in \operatorname{Span}(v), \exists \alpha \in F \ni T v=\alpha v$, so $v \in E_{T}(\alpha)$. As T is hermitian, $\alpha \in \mathbb{R}$ is real by Hermitian Corollary even if $F=\mathbb{C}$. So $\mathscr{B}=\left\{\frac{v}{\|v\|}\right\}$. $n>1$: Induction Hypothesis (IH): Let $F=\mathbb{R}$ or \mathbb{C}, W a finite dimensional inner product space over $F, \operatorname{dim} W=n-1, T_{0}: W \rightarrow W$ hermitian. Then \exists an ON basis for W of eigenvectors of T_{0} and every eigenvalues of T_{0} is real.
Let \mathscr{C} be an ON basis for n-dimensional V, which exists as $F=\mathbb{R}$ or \mathbb{C}. Let $A=[T]_{\mathscr{C}} \in$ $M_{n} F \subset M_{n} \mathbb{C}$.

$$
A=A^{*} \text { and } A x \cdot y=x \cdot A y, \forall x, y \in C^{n \times 1}
$$

since T is hermitian, i.e.,

$$
A: C^{n \times 1} \rightarrow C^{n \times 1} \text { is hermitian }
$$

where $C^{n \times 1}$ is an inner product space over \mathbb{C} via the dot product. By the FTA, f_{A} has a root $\alpha \in \mathbb{C}$, hence α is an eigenvalue of hermitian $A: \mathbb{C}^{n \times 1} \rightarrow C^{n \times 1}$. Thus, $\alpha \in \mathbb{R}$ by the Hermitian Corollary. But

$$
f_{T}=f_{[T]_{\mathscr{C}}}=f_{A}
$$

So f_{T} has a root $\alpha \in \mathbb{R}$, if $F=\mathbb{R}$ or $F=\mathbb{C}$ by the Addendum. Thus, $\exists 0 \neq u \in E_{T}(\lambda) \subset V$ an eigenvector of T. Let $F v=\operatorname{Span}(v) \subset E_{T}(\lambda)$. Then $F v$ is T-invariant. By the OR Decomposition Theorem,

$$
V=F v \perp(F v)^{\perp}
$$

and

$$
\operatorname{dim} V=\operatorname{dim} F v+\operatorname{dim}(F v)^{\perp}=1+\operatorname{dim}(F v)^{\perp}
$$

hence

$$
\operatorname{dim}(F v)^{\perp}=n-1
$$

By the Key Lemma, since $F v$ is T-invariant and $T: V \rightarrow V$ is hermitian. $(F v)^{\perp}$ is T-invariant and

$$
\left.T\right|_{(F v)^{\perp}}:(F v)^{\perp} \rightarrow(F v)^{\perp} \text { is hermitian }
$$

By the $\mathrm{IH},(F v)^{\perp}$ has an ON basis, say $\left\{v_{2}, \ldots, v_{n}\right\}$ of eigenvectors for $\left.T\right|_{(F v)^{\perp}}:(F v)^{\perp} \rightarrow$ $(F v)^{\perp}$. But

$$
\left.T\right|_{(F v)^{\perp}}\left(v_{i}\right)=T v_{i}, i=2, \ldots, n
$$

So, v_{2}, \ldots, v_{n} are eigenvectors of $T: V \rightarrow V$ and all the eigenvalues of the $v_{i}, i=2, \ldots, n$ are real by IH . Since $v \perp v_{i}, i=2, \ldots, n, 0 \neq\|v\| \in \mathbb{R} \subset F$,

$$
\mathscr{B}=\left\{\|v\|, v_{2}, \ldots, v_{n}\right\}
$$

is an ON basis for V of eigenvalues for T and all the eigenvalues are real and T is diagonalizable.

By the HW/Takehome, we know

Theorem 23.6

Let V be a finite dimensional inner product space over $F, F=\mathbb{R}$ or \mathbb{C}. Let \mathscr{B}, \mathscr{C} be ordered ON basis for V. Then

$$
\left[1_{V}\right]_{\mathscr{B}, \mathscr{C}}: F^{n \times 1} \rightarrow F^{n \times 1}
$$

$n=\operatorname{dim} V$, is an ISOMETRY. In particular,

$$
\left[1_{V}\right]_{\mathscr{B}, \mathscr{C}}^{-1}=\left[1_{V}\right]_{\mathscr{B}, \mathscr{C}}^{*}
$$

$T: V \rightarrow W$ linear is called an ISOMETRY if

- T is an isomorphism.
- $\left\langle T v_{1}, T v_{2}\right\rangle_{W}=\left\langle v_{1}, v_{2}\right\rangle_{V}, \forall v_{1}, v_{2} \in V$.

Theorem 23.7 (Spectral Theorem for Hermitian Operator (refined))
Let $F=\mathbb{R}$ or \mathbb{C}, V a finite dimensional inner product space over $F, T: V \rightarrow V$ hermitian. Then \exists an ordered ON basis \mathscr{C} of eigenvectors for V of T and every set of T if real. Moreover, if \mathscr{B} is any ordered ON basis for V, then

$$
[T]_{\mathscr{C}}=C[T]_{\mathscr{B}} C^{*}
$$

for some invertible matrix $C \in M_{n} F$, i.e., $C=\left[1_{V}\right]_{\mathscr{B}, \mathscr{C}}$.

Remark 23.8. The Spectral Theorem says, if V is a finite dimensional inner product space over $F, F=\mathbb{R}$ or $\mathbb{C}, T: V \rightarrow V$ hermitian, \mathscr{B} an ordered ON basis for V, then

$$
[T]_{\mathscr{B}} \sim\left(\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right), n=\operatorname{dim} V, \alpha_{i} \in \mathbb{R}, \forall i
$$

if $V=\mathbb{R}^{n}$, this is often called the PRINCIPAL AXIS THEOREM.
e.g., It means if

$$
f=\sum a_{i j} t_{i} t_{j} \in \mathbb{R}\left[t_{1}, \ldots, t_{n}\right]
$$

with

$$
a_{i j}=a_{j i}, \forall i, j
$$

This can always be arranged as $t_{i} t_{j}=t_{j} t_{i}$ and we replace $a_{i j}, a_{j i}$ with $\frac{a_{i j}+a_{j i}}{2}$ if necessary. Then we can change variables to make it look like

$$
\lambda_{1} I_{1}^{2}+\ldots+\lambda_{n} I_{n}^{2}
$$

(How? - Confer completing the square and $T A T^{*}, A=\left(a_{i j}\right), T^{*}=\left(\begin{array}{c}t_{1} \\ \vdots \\ t_{n}\end{array}\right)$. We want even more
Let $F=\mathbb{R}$ or \mathbb{C}, V a finite dimensional inner product space over $F, \operatorname{dim} V=n, T: V \rightarrow V$ hermitian, \mathscr{B} an ordered ON basis of eigenvectors of T for V. Reordering \mathscr{B} if necessary, we may assume $\lambda_{1}, \ldots, \lambda_{k}$ are all the distinct eigenvalues of T, i.e., if $j>k$ then $\exists i<k \ni$ $\lambda_{j}=\lambda_{i}$.

Claim 23.1. Let $v \in E_{T}\left(\lambda_{i}\right), w \in E_{T}\left(\lambda_{j}\right), 1 \leq i, j \leq k, i \neq j$. Then $v \perp w$: We may assume that $v \neq 0, w \neq 0$. So

$$
\begin{aligned}
\lambda_{i}\langle v, w\rangle & =\left\langle\lambda_{i} v, w\right\rangle=\langle T v, w\rangle=\langle v, T w\rangle \\
& =\left\langle v, \lambda_{j} w\right\rangle=\overline{\lambda_{j}}\langle v, w\rangle=\lambda_{j}\langle v, w\rangle
\end{aligned}
$$

as $\lambda_{l} \in \mathbb{R} \forall l$. Thus,

$$
\left(\lambda_{i}-\lambda_{j}\right)\langle v, w\rangle=0 \in F, \lambda_{i} \neq \lambda_{j}
$$

SO

$$
\langle v, w\rangle=0
$$

Claim 23.2. We have

$$
\begin{align*}
W & :=E_{T}\left(\lambda_{1}\right)+\ldots+E_{T}\left(\lambda_{k}\right) \tag{*}\\
& =E_{T}\left(\lambda_{1}\right) \oplus \ldots \oplus E_{T}\left(\lambda_{k}\right)
\end{align*}
$$

if $w_{i} \in E_{T}\left(\lambda_{i}\right), i=1, \ldots, k$ and

$$
0=w_{1}+\ldots+w_{k}
$$

then

$$
0=\left\langle w_{1}+\ldots+w_{k}, w_{j}\right\rangle=\left\langle w_{j}, w_{j}\right\rangle=\left\|w_{j}\right\|^{2}
$$

by the previous claim, so $w_{j}=0$ and $(*)$ holds.
$\S 24 \mid \operatorname{Lec} 23:$ Nov 30, 2020

§24.1 Lec 22 (Cont'd)

Note: Of course we already know this claim, but this proof is nice. Recall this is equivalent to $w=E_{T}\left(\lambda_{1}\right)+\ldots+E_{T}\left(\lambda_{k}\right)$ and

$$
E_{T}\left(\lambda_{i}\right) \cap \sum_{j=1}^{k} E_{T}\left(\lambda_{j}\right)=0, i=1, \ldots, k
$$

Also by the first claim, the DIRECT SUM DECOMPOSITION $\left(^{*}\right)$ of w is an ORTHOGONAL DIRECT SUM. Since \mathscr{B} is a bases for V of eigenvectors for T and $\mathscr{B} \subset W$, we have

$$
V=E_{T}\left(\lambda_{1}\right) \perp \ldots \perp E_{T}\left(\lambda_{k}\right)
$$

Genral Problem: Let V be a vector space over $F, T: V \rightarrow V$ linear operator. Can we DECOMPOSE V as

$$
V=W_{1} \oplus W_{2} \oplus \ldots \oplus W_{r} \oplus \ldots
$$

with each subspace $W_{i} \mathrm{~T}$-invariant, i.e., decomposition reflects the action T. This can be done if V is finite dimensional vector space over F. Then V is a finite direct sum. If $F=\mathbb{C}$, the solution is called JORDAN CANONICAL FORM.
F arbitrary is called RATIONAL CANONICAL FORM (done in 115B or 110BH).
By the OR Decomposition Theorem,

$$
\begin{equation*}
V=E_{T}\left(\lambda_{i}\right) \perp E_{T}\left(\lambda_{i}\right)^{\perp}, i=1, \ldots, k \tag{**}
\end{equation*}
$$

So

$$
E_{T}\left(\lambda_{i}\right)^{\perp}=E_{T}\left(\lambda_{i}\right) \perp \ldots \perp E_{T}\left(\lambda_{i}\right) \perp \ldots \perp E_{T}\left(\lambda_{k}\right)
$$

$i=1, \ldots, k$ by uniqueness and, also by the OR Decomposition Theorem, as

$$
V=E_{T}\left(\lambda_{i}\right) \perp E_{T}\left(\lambda_{i}\right)^{\perp}
$$

means that (\star) implies if $v \in V$, then

$$
v=v_{E_{T}\left(\lambda_{1}\right)}+\ldots+v_{E_{T}\left(\lambda_{k}\right)}
$$

where $v_{E_{T}\left(\lambda_{i}\right)}$ is the ORTHOGONAL PROJECTION of v onto $E_{T}\left(\lambda_{i}\right), i=1, \ldots, k$. Define:

$$
P_{\lambda_{i}}: V \rightarrow V \text { by } v \mapsto v_{E_{T}\left(\lambda_{i}\right)}, i=1, \ldots, k
$$

As $P_{\lambda_{i}}$ is the composition

$$
\begin{aligned}
V & \rightarrow E_{T}\left(\lambda_{i}\right) \hookrightarrow V, \\
v & \mapsto v_{E_{T}\left(\lambda_{i}\right)}
\end{aligned}
$$

It is a linear operator, $i=1, \ldots, k$. Moreover, by $\left({ }^{* *}\right)$,

$$
\begin{aligned}
\operatorname{im} P_{\lambda_{i}} & =E_{T}\left(\lambda_{i}\right) \\
\operatorname{ker} P_{\lambda_{i}} & =E_{T}\left(\lambda_{i}\right)^{\perp}
\end{aligned}
$$

Since

$$
P_{\lambda_{j}}\left(v_{E_{T}\left(\lambda_{i}\right)}=\delta_{i j} v_{E_{T}\left(\lambda_{i}\right)}, i=1, \ldots, k\right.
$$

We see that

1. $P_{\lambda_{i}} P_{\lambda_{j}}=0$ if $i \neq j$.
2. $P_{\lambda_{i}} P_{\lambda_{i}}=P_{\lambda_{i}}$.

So

$$
P_{\lambda_{i}} P_{\lambda_{j}}=\delta_{i j} P_{\lambda_{i}}: V \rightarrow V \text { linear }
$$

The $P_{\lambda_{1}}, \ldots, P_{\lambda_{k}}$ are called ORTHOGONAL IDEMPOTENTS. We now see what we have done: Let $v \in V$. Then

$$
\begin{aligned}
1_{V} v & =v=v_{E_{T}\left(\lambda_{1}\right)}+\ldots+v_{E_{T}\left(\lambda_{k}\right)} \\
& =P_{\lambda_{1}}(v)+\ldots+P_{\lambda_{k}}(v)=\left(P_{\lambda_{1}}+\ldots+P_{\lambda_{k}}\right)(v)
\end{aligned}
$$

So

$$
1_{V}=P_{\lambda_{1}}+\ldots+P_{\lambda_{k}}
$$

We also have

$$
\begin{aligned}
T & =T \circ 1_{V}=T \circ\left(P_{\lambda_{1}}+\ldots+P_{\lambda_{k}}\right) \\
& =T P_{\lambda_{1}}+\ldots+T P_{\lambda_{k}} \\
& =\lambda_{1} P_{\lambda_{1}}+\ldots+\lambda_{k} P_{\lambda_{k}}
\end{aligned}
$$

as

$$
\begin{aligned}
\operatorname{im} P_{\lambda_{i}} & =E_{T}\left(\lambda_{i}\right) \\
\left.T\right|_{E_{T}\left(\lambda_{i}\right)} & =\lambda_{i} 1_{E_{T}\left(\lambda_{i}\right)}, i=1, \ldots, k
\end{aligned}
$$

We also have

$$
\begin{aligned}
1_{V} \circ T & =\left(P_{\lambda_{1}}+\ldots+P_{\lambda_{k}}\right) T \\
& =P_{\lambda_{1}} T+\ldots+P_{\lambda_{k}} T
\end{aligned}
$$

and

$$
P_{\lambda_{i}} T=T P_{\lambda_{i}}, i=1, \ldots, k
$$

This is called the SPECTRAL RESOLUTION of the Hermitian operator $T: V \rightarrow V$. Now, appropriately reordering \mathscr{B} to \mathscr{B}^{\prime}, we have, with

$$
\begin{gathered}
n_{i}=\operatorname{dim} E_{T}\left(\lambda_{i}\right), i=1, \ldots, k \\
{[T]_{\mathscr{B}^{\prime}}=\left(\begin{array}{lllllll}
\lambda_{1} & & & & & & \\
& \ddots & & & & 0 & \\
& & \lambda_{1} & & & & \\
& & & \ddots & & & \\
& & & & \lambda_{k} & & \\
& & & & & \ddots & \\
0 & & & & & & \lambda_{k}
\end{array}\right)}
\end{gathered}
$$

Summary(Spectral Theorem for Hermitian Operator - Full version):
Let $F=\mathbb{R}$ or \mathbb{C}, V a finite dimensional inner product space over $F, T: V \rightarrow V$ hermitian, $\lambda_{1}, \ldots, \lambda_{k}$ all distinct eigenvalues of T. Then T is diagonalizable and

1. $\lambda_{i} \in \mathbb{R}, i=1, \ldots, k$
2. Let \mathscr{B}_{i} be an ordered ON basis for $E_{T}\left(\lambda_{i}\right), i=1, \ldots, k$. Then $\mathscr{B}=\mathscr{B}_{1} \cup \ldots \cup \mathscr{B}_{n}$ is an ordered ON bases for V consisting of eigenvectors of T.
3.

$$
\begin{aligned}
{[T]_{\mathscr{B}} } & =\left(\begin{array}{ccccc}
\lambda_{1} & & & & 0 \\
& \ddots & \lambda_{1} & & \\
& & \ddots & & \\
0 & & & \lambda_{k}
\end{array}\right) \\
n_{i} & =\operatorname{dim} E_{T}\left(\lambda_{i}\right) \\
\operatorname{dim} V & =n=n_{1}+\ldots+n_{k}
\end{aligned}
$$

4. $f_{T}=\left(t-\lambda_{1}\right)^{n_{1}} \ldots\left(t-\lambda_{k}\right)^{n k}$
5. $V=E_{T}\left(\lambda_{1}\right) \perp \ldots \perp E_{T}\left(\lambda_{k}\right)$
6. $1_{V}=P_{\lambda_{1}}+\ldots+P_{\lambda_{k}}: V \rightarrow V$ where $P_{\lambda_{i}}: V \rightarrow V$ linear by $v \mapsto v$
7. $P_{\lambda_{i}} P_{\lambda_{j}}=\delta_{i j} P_{\lambda_{i}}, i, j=1, \ldots, k$
8. $T=\lambda_{1} P_{\lambda_{1}}+\ldots+\lambda_{k} P_{\lambda_{k}}$
9. $T P_{\lambda_{i}}=P_{\lambda_{i}} T, i=1, \ldots, k$
10. If \mathscr{C} is an ON basis for V, then

$$
\begin{aligned}
{[T]_{\mathscr{B}} } & =\left[1_{V}\right]_{\mathscr{C}, \mathscr{B}}[T]_{\mathscr{C}}\left[1_{V}\right]_{\mathscr{B}, \mathscr{C}} \\
& =\left[1_{V}\right]_{\mathscr{C}, \mathscr{B}}[T]_{\mathscr{C}}\left[1_{V}\right]_{\mathscr{C}, \mathscr{B}}^{-1} \\
& =\left[1_{V}\right]_{\mathscr{C}, \mathscr{B}}[T]_{\mathscr{C}}\left[1_{V}\right]_{\mathscr{C}, \mathscr{B}}^{*}
\end{aligned}
$$

i.e., $\left[1_{V}\right]_{\mathscr{B}, \mathscr{C}}^{-1}=\left[1_{V}\right]_{\mathscr{B}, \mathscr{C}}^{*}$

Remark 24.1. One can also show that the MINIMAL POLYNOMIAL q_{T} of the HW/Takehome in the above is

$$
q_{T}=\left(t-\lambda_{1}\right) \ldots\left(t-\lambda_{k}\right)
$$

In fact this is a necessary and sufficient condition \Longleftrightarrow to be diagonalizable.
Remark 24.2. The Spectral Theorem for hermitian operator for $F=\mathbb{R}$, e.g., symmetric matrices, has a nice generalization:
Let F be a field with $2 \neq 0$ in F and $A \in M_{n} F$ a symmetric matrix, i.e., $A=A^{t}$. Then, \exists an invertible matrix P in $M_{n} F \ni p^{t} A p$ is diagonal.

Note: in the above, we are not saying $p^{t}=p^{-1}$
Computation: To compute: let V be a finite dimensional vector space over $F, F=\mathbb{R}$ or $\overline{\mathbb{C}, T: V \rightarrow V}$ hermitian. Find all the above:
Step 1: Find a basis for V and GS it to an OR bases, then normalize to an ON bases \mathscr{C}.

Step 2: Compute:

$$
f_{T}=f_{[T]_{\mathscr{C}}}=\operatorname{det}\left(t I-[T]_{\mathscr{C}}\right)
$$

Step 3: Factor f_{T}, i.e., find all the roots of f_{T}. There are the eigenvalues of T. Since T is hermitian f_{T} splits and all the roots are real.
Step 4: For each eigenvalue of T, compute $E_{T}(\lambda)$ by solving

$$
[T]_{\mathscr{C}}[v]_{\mathscr{C}}=\lambda[v]_{\mathscr{C}}
$$

(equivalently row reduce $[T]_{\mathscr{C}}-\lambda I$ to row echelon form and solve).
Step 5: For each eigenvalue λ, find a basis for $E_{T}\left(\lambda_{i}\right)$ and GS to an ordered ON basis and normalize to an ordered ON basis \mathscr{B}_{λ}. Let $\mathscr{B}=\cup \mathscr{B}_{\lambda}$ an ordered ON basis of eigenvectors of T. As \mathscr{C} is ON

$$
\left[1_{V}\right]_{\mathscr{C}, \mathscr{B}}[T]_{\mathscr{C}}\left[1_{V}\right]_{\mathscr{C}, \mathscr{B}}^{*} \text { is diagonal }
$$

§25 Lec 24: Dec 2, 2020

§25.1 Normal Operators

We now need the following part of the Takehome

Theorem 25.1

Let V be a finite dimensional inner product space over F having an ordered ON basis $\mathscr{B}, T: V \rightarrow V$ linear. Then $\exists!T^{*}: V \rightarrow V$ linear s.t.

$$
\begin{equation*}
\langle T v, w\rangle=\left\langle v, T^{*} w\right\rangle, \forall v, w \in V \tag{*}
\end{equation*}
$$

called the ADJOINT of T. Moreover,

$$
[T]_{\mathscr{B}}^{*}=\left[T^{*}\right]_{\mathscr{B}}
$$

Remark 25.2. Actually, to prove $\left({ }^{*}\right)$, you do not need \exists an ON basis, only an OR basis (which you know exist) if you prove it using dual bases.

Properties: Let V be a finite dimensional inner product space over F with an ON basis $\overline{\mathscr{B}, S, T: V} \rightarrow V$ linear, $\lambda \in F$. Then $\forall v, w \in V$
(i) $\left\langle T^{*} v, w\right\rangle=\langle v, T w\rangle$
(ii) $T^{* *}:=\left(T^{*}\right)^{*}=T$
(iii) $\left\langle v, T^{*} T v\right\rangle=\langle T v, T v\rangle=\|T v\|^{2}$
(iv) $\left\langle v, T T^{*} v\right\rangle=\left\langle T^{*} v, T^{*} v\right\rangle=\left\|T^{*} v\right\|^{2}$
(v) $(T \circ S)^{*}=S^{*} \circ T^{*}$
(vi) $(S+T)^{*}=S^{*}+T^{*}$
(vii) $(\lambda T)^{*}=\bar{\lambda} T^{*}, \forall \lambda \in F$.

Proof. Left as exercise.

Remark 25.3. The above means: Let V be a finite dimensional inner product space over F with an ON basis. Then

$$
\phi: L(V, V) \rightarrow L(V, V) \text { by } T \rightarrow T^{*}
$$

is a SESQUILINEAR transformation, i.e.,

$$
\phi(\lambda T+S)=\bar{\lambda} T^{*}+S^{*}, \forall T, S \in L(V, V), \lambda \in F
$$

and hence linear if $F \subset \mathbb{R}$ and is also bijection with inverse sesquilinear so a sesquilinear isomorphism.

Lemma 25.4 (New Key)

Let V be a finite dimensional inner product space over $F, T: V \rightarrow V$ linear. Suppose that V has an ON basis and $W \subset V$ is a T-invariant subspace. Then $W^{\perp} \subset V$ is T^{*}-invariant. In particular,

$$
\left.T^{*}\right|_{W^{\perp}}: W^{\perp} \rightarrow W^{\perp} \text { is linear }
$$

Proof. Let $w^{\perp} \in W^{\perp}$ and $x \in W$ be arbitrary. Then

$$
\left\langle x, T^{*} w^{\perp}\right\rangle=\left\langle T x, w^{\perp}\right\rangle=0
$$

as $T x \in W$ by hypothesis. So $T^{*} w^{\perp} \in W^{\perp}$ as needed.

Definition 25.5 (Triangularizability) - Let V be a finite dimensional vector space over $F, T: V \rightarrow V$ linear. We say T is TRIANGULARIZABLE if \exists an ordered basis \mathscr{B} for $V \ni[T]_{\mathscr{B}}$ is upper triangular, i.e.,

$$
[T]_{\mathscr{B}}=\left(\begin{array}{lll}
* & & * \\
& \ddots & \\
0 & & *
\end{array}\right)
$$

i.e., $\left([T]_{\mathscr{B}}\right)_{i j}=0$ if $i>j$.

Remark 25.6. In the above, $[T]_{\mathscr{B}}$ is upper triangular iff $[T]_{\mathscr{B}}$ is lower triangular where \mathscr{B}^{\prime} is an ordered basis with vectors in \mathscr{B} in reverse ordered.

Theorem 25.7 (Schur)

Let V be a finite dimensional inner product space over $\mathbb{C}, T: V \rightarrow V$ linear. Then T is triangularizable. Moreover, \exists an ordered ON basis \mathscr{B} for $T \ni[T]_{\mathscr{B}}$ is upper triangular.

Proof. We induct on $n=\operatorname{dim} V$.

- $n=1$: is immediate: if $\{v\}$ is a basis $\left\{\frac{v}{\|v\|}\right\}$ works.
- $n>1$: By the FTA, the characteristics poly $f_{T^{*}}$ for T^{*} has a root $\lambda \in \mathbb{C}$, hence λ is an eigenvalue of T^{*}. Let $0 \neq v \in E_{T^{*}}(\lambda)$. By the OR Decomposition Theorem,

$$
V=\mathbb{C} v \perp(\mathbb{C} v)^{\perp}
$$

and

$$
\begin{aligned}
n=\operatorname{dim} V & =\operatorname{dim} \mathbb{C} v+\operatorname{dim}(\mathbb{C} v)^{\perp} \\
& =1+\operatorname{dim}(\mathbb{C} v)^{\perp}
\end{aligned}
$$

i.e., $\operatorname{dim}(\mathbb{C} v)^{\perp}=n-1$. $\mathbb{C} v$ is T^{*}-invariant as $v \in E_{T^{*}}(\lambda)$, so $(\mathbb{C} v)^{\perp}$ is $\left(T^{*}\right)^{*}=T$ invariant by New Key Lemma. So may view

$$
\begin{equation*}
\left.T\right|_{(\mathbb{C} v)^{\perp}}(\mathbb{C} v)^{\perp} \rightarrow(\mathbb{C} v)^{\perp} \text { linear } \tag{*}
\end{equation*}
$$

By induction, \exists an ordered ON basis $\mathscr{B}_{0}=\left\{v_{1}, \ldots, v_{n-1}\right\}$ for $(\mathbb{C} v)^{\perp} \ni\left[\left.T\right|_{(\mathbb{C} v)^{\perp}}\right]_{\mathscr{B}_{0}}$ is upper triangular. Let $\mathscr{B}=\left\{v_{1}, \ldots, v_{n-1}, \frac{v}{\|v\|}\right\}$ an ordered ON basis for V. Then by (*), we have

$$
\left(\begin{array}{ccc}
{\left[\left.T\right|_{(\mathbb{C} v)^{\perp}}\right]_{\mathscr{B}_{0}}} & & * \\
& & \vdots \\
& & * \\
0 & \ldots & *
\end{array}\right) \in M_{n} \mathbb{C}
$$

Remark 25.8. As mentioned before, if F is arbitrary, V a finite dimensional vector space over F, then T is triangularizable $\Longleftrightarrow f_{T}, T: V \rightarrow V$ linear satisfies f_{T} splits, i.e., factors into a product of linear polys in $F[t]$.

Proof. (\Longrightarrow) is clear as f_{T} is independent of a matrix representation.
($\Longleftarrow)$ is not clear and we not prove it.

Corollary 25.9

Let V be a finite dimensional inner product space over $\mathbb{C}, T: V \rightarrow V$ linear, \mathscr{C} an ordered ON basis for V. Then \exists an ordered ON basis \mathscr{B} for $V \ni[T]_{\mathscr{B}}$ is upper triangular and

$$
[T]_{\mathscr{B}}=\left[1_{V}\right]_{\mathscr{C}, \mathscr{B}}[T]_{\mathscr{C}}\left[1_{V}\right]_{\mathscr{E}, \mathscr{B}}^{*}
$$

with $\left[1_{V}\right]_{\mathscr{C}, \mathscr{B}}^{-1}=\left[1_{V}\right]_{\mathscr{C}, \mathscr{B}}^{*}$.

Proof. Theorem and HW as \mathscr{C}, \mathscr{B} are ON.

Definition 25.10 (Normal Operator) - Let V be an inner product space over F, T : $V \rightarrow V$ linear. Suppose that $T^{*}: V \rightarrow V$ exists, i.e.,

$$
\langle T v, w\rangle=\left\langle v, T^{*} w\right\rangle, \forall v, w \in V
$$

with $T^{*}: V \rightarrow V$ linear. Then we say T is a NORMAL OPERATOR, if $T T^{*}=T^{*} T$.

$\S 26 \mid \operatorname{Lec} 25:$ Nov 4, 2020

§26.1 Lec 24(Cont'd)

Example 26.1 1. Every hermitian operator is normal as $T=T^{*}$
2. Let $T_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a rotation counterclockwise by $\angle \theta$ with $0<\theta<2 \pi$ and $\theta \neq \pi$. Then T_{θ} has no eigenvalues in \mathbb{R}. Viewing \mathbb{R}^{2} as an inner product space over \mathbb{R} via the dot product.

$$
T_{-\theta}=T_{\theta}^{-1}=T_{\theta}^{t}=T_{\theta}^{*}
$$

So

$$
T_{\theta} T_{\theta}^{*}=T_{\theta}^{*} T_{\theta}
$$

and T_{θ} is normal. However, T_{θ} is not diagonalizable (is not even triangularziable). We shall show that this does not happen if $F=\mathbb{C}$, we start with (a replacement for the Hermitian Corollary)

Lemma 26.2 (Crucial Property of Normal Operators)

Let V be an inner product space over $F, T: V \rightarrow V$ normal, $\lambda \in F$. Let $0 \neq v \in V$. Then

$$
v \in E_{T}(\lambda) \Longleftrightarrow v \in E_{T^{*}}(\bar{\lambda})
$$

i.e., λ is an eigenvalue of T with eigenvector $v \Longleftrightarrow \bar{\lambda}$ is an eigenvalue of T^{*} with (the same) eigenvector v. So

$$
T v=\lambda v \Longleftrightarrow T^{*} v=\bar{\lambda} v
$$

if T is normal.

Proof. Suppose $S: V \rightarrow V$ is normal, $v \in V$. Then

$$
\begin{aligned}
\|S v\|^{2} & =\langle S v, S v\rangle=\left\langle v, S^{*} S v\right\rangle \\
& =\left\langle v, S S^{*} v\right\rangle=\left\langle S^{*} v, S^{*} v\right\rangle=\left\|S^{*} v\right\|^{2}
\end{aligned}
$$

Hence

$$
\begin{equation*}
S v=0 \Longleftrightarrow S^{*} v=0 \text { when } \mathrm{S} \text { is normal } \tag{}
\end{equation*}
$$

Let $S=T-\lambda 1_{V}: V \rightarrow V$ linear. So λ is an eigenvalue of T iff $\operatorname{ker} S \neq 0$. But

$$
S^{*}=\left(T-\lambda 1_{V}\right)^{*}=T^{*}-\bar{\lambda} 1_{V}
$$

by properties of ()*. It follows that

$$
S^{*} S=S S^{*} \text { as } T^{*} T=T T^{*}
$$

i.e., S is also normal. The result follows by $\left(^{*}\right)$.

Theorem 26.3 (Spectral Theorem for Normal Operator)

Let V be a finite dimensional inner product space over $\mathbb{C}, T: V \rightarrow V$ normal. Then \exists an ordered ON basis \mathscr{C} for V consisting of eigenvectors of T. In particular, T is diagonalizable. Moreover, if \mathscr{B} is an ordered ON basis for V, then

$$
[T]_{\mathscr{C}}=\left[1_{V}\right]_{\mathscr{B}, \mathscr{C}}[T]_{\mathscr{B}}\left[1_{V}\right]_{\mathscr{B}, \mathscr{C}}^{*}
$$

Proof. We induct on $n=\operatorname{dim} V$.

- $n=1$ is immediate.
- $n>1$: By the FTA, $\exists \bar{\lambda} \in \mathbb{C}$ a root of $f_{T^{*}} \in \mathbb{C}[t]$, hence an eigenvalue of T^{*}. Let $0 \neq v \in E_{T^{*}}(\bar{\lambda})$. By the lemma, $v \in E_{T}(\lambda)$. Thus, \mathbb{C}_{v} is both T - and T^{*}-invariant. Hence, by New Key Lemma,

$$
\left(\mathbb{C}_{v}\right)^{\perp} \text { is both } T^{*} \text { and T-invariant }
$$

In particular,

$$
\left\langle x, T^{*} y\right\rangle=\langle T x, y\rangle \quad \forall x, y \in\left(\mathbb{C}_{v}\right)^{\perp}
$$

and $\left(\left.T\right|_{(\mathbb{C} v)^{\perp}}\right)^{*}$ is the unique linear map

$$
\left(\left.T\right|_{(\mathbb{C} v)^{\perp}}\right)^{*}:(\mathbb{C} v)^{\perp} \rightarrow(\mathbb{C} v)^{\perp}
$$

satisfying $\forall x, y \in(\mathbb{C} v)^{\perp}$

$$
\begin{aligned}
\left\langle x,\left(\left.\left.T\right|_{(\mathbb{C} v)^{\perp}}\right|^{*} y\right)\right\rangle_{(\mathbb{C} v)^{\perp}} & =\left\langle\left. T\right|_{(\mathbb{C} v)^{\perp}} x, y\right\rangle_{(\mathbb{C} v)^{\perp}} \\
& =\langle T x, y\rangle_{V} \\
& =\left\langle x, T^{*} y\right\rangle_{V}
\end{aligned}
$$

It follows by the uniqueness of the adjoint that

$$
\left.T^{*}\right|_{(\mathbb{C} v)^{\perp}}=\left(\left.T\right|_{(\mathbb{C} v)^{\perp}}\right)^{*}
$$

Hence, we have

$$
\left.T\right|_{(\mathbb{C} v)^{\perp}}:(\mathbb{C} v)^{\perp} \rightarrow(\mathbb{C} v)^{\perp}
$$

is also normal. Since

$$
\operatorname{dim} V=\operatorname{dim} \mathbb{C} v+\operatorname{dim}(\mathbb{C} v)^{\perp}=1+\operatorname{dim}(\mathbb{C} v)^{\perp}
$$

by the OR Decomposition Theorem, by induction \exists an ON basis $\mathscr{C}_{0}=\left\{v_{2}, \ldots, v_{n}\right\}$ for $(\mathbb{C} v)^{+}$of eigenvectors of $\left.T\right|_{(\mathbb{C} v)^{\perp}}$ hence of eigenvectors of T. It follows that

$$
\mathscr{C}=\left\{\frac{v}{\|v\|}, v_{2}, \ldots, v_{n}\right\}
$$

is an ON basis for V consisting of eigenvectors of T. If \mathscr{B} is an ON basis for V, then $\left[1_{V}\right]_{\mathscr{B}, \mathscr{C}}^{*}=\left[1_{V}\right]_{\mathscr{B}, \mathscr{C}}^{-1}$ by Hw, so

$$
[T]_{\mathscr{C}}=\left[1_{V}\right]_{\mathscr{B}, \mathscr{C}}[T]_{\mathscr{B}}\left[1_{V}\right]_{\mathscr{B}, \mathscr{C}}^{*}
$$

by the change of basis theorem.

In fact, the converse is also true.

Theorem 26.4

Let V be a finite dimensional inner product space over $\mathbb{C}, T: V \rightarrow V$ linear. Then T is normal iff \exists an ON basis \mathscr{B} for V consisting of eigenvectors of T. In particular, T is diagonalizable if either holds.

Proof. (\Longrightarrow) Has been done.
(\Longleftarrow) Let \mathscr{B} has an ordered ON basis for V of eigenvectors of T. Then

$$
[T]_{\mathscr{B}}=\left(\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right), n=\operatorname{dim} V
$$

As \mathscr{B} is ON, by HW

$$
\left[T^{*}\right]_{\mathscr{B}}=[T]_{\mathscr{B}}^{*}=\left(\begin{array}{ccc}
\overline{\lambda_{1}} & & 0 \\
& \ddots & \\
0 & & \overline{\lambda_{n}}
\end{array}\right)
$$

in $M_{n} \mathbb{C}$. So

$$
\begin{aligned}
{\left[T^{*} T\right]_{\mathscr{B}} } & =\left[T^{*}\right]_{\mathscr{B}}[T]_{\mathscr{B}}=\left(\begin{array}{ccc}
\left|\lambda_{1}\right|^{2} & & 0 \\
& \ddots & \\
0 & & \left|\lambda_{n}\right|^{2}
\end{array}\right) \\
& =[T]_{\mathscr{B}}\left[T^{*}\right]_{\mathscr{B}}=\left[T T^{*}\right]_{\mathscr{B}}
\end{aligned}
$$

(as $\left|\lambda_{i}\right|^{2}=\lambda_{i} \overline{\lambda_{i}}=\overline{\lambda_{i}} \lambda_{i} \in \mathbb{C}$) By the Matrix Theory Theorem,

$$
\phi: L(V, V) \rightarrow M_{n} \mathbb{C} \text { by } S \mapsto[S]_{\mathscr{B}}
$$

is an isomorphism, so

$$
T^{*} T=T T^{*}
$$

Remark 26.5. The result needs $F=\mathbb{C}$. Indeed if $V=\mathbb{R}^{n}, n>1$, is an inner product space over \mathbb{R} via the dot product and $T: V \rightarrow V$ is a rotation by an $\angle \theta, 0<\theta<2 \pi, \theta \neq \pi$ in some plane through the origin in \mathbb{R}^{n}, then T is normal and not diagonalizable.

What is true is: Let $F=\mathbb{R}$ or \mathbb{C}, V a finite dimensional inner product space over F, T : $V \rightarrow V$ linear \exists an ON basis for $V \ni[T]_{\mathscr{B}}$ is triangularizable, then T is normal iff T is diagonalizable.

Remark 26.6. As in the Hermitian case, we can do more.
Extension: Let V be a finite dimensional inner product space over \mathbb{C}, $\operatorname{dim} V=n, T: V \rightarrow V$ normal, \mathscr{C} an ordered basis of V of eigenvalues for normal T. After relabeling, we may assume $\lambda_{1}, \ldots, \lambda_{k}$ are the distinct eigenvalues of T, i.e., if $j>k \exists i, 1 \leq i \leq k \ni \lambda_{i}=\lambda_{j}$.

Claim 26.1. Let $v \in E_{T}\left(\lambda_{i}\right), w \in E_{T}\left(\lambda_{i}\right), i \neq j, i \leq 1, j \leq k$. Then $v \perp w$.
Proof. We may assume that $v \neq 0$ and $w \neq 0$. As $w \in E_{T}\left(\lambda_{j}\right), w \in E_{T^{*}}\left(\bar{\lambda}_{j}\right)$ by the lemma, as T is normal. Hence

$$
\begin{aligned}
\lambda_{i}\langle v, w\rangle & =\left\langle\lambda_{i} v, w\right\rangle=\langle T v, w\rangle=\left\langle v, T^{*} w\right\rangle \\
& =\left\langle v, \overline{\lambda_{j}} w\right\rangle=\lambda_{j}\langle v, w\rangle
\end{aligned}
$$

Since $\lambda_{i} \neq \lambda_{j},\langle v, w\rangle=0$.

$\S 27$ Lec 26: Dec 7, 2020

§27.1 Lec 25 (Cont'd)

Let V be a vector space over $F, W_{i} \subset V, i \in I$ subspace. Suppose that $V=\sum_{I} W_{i}$. Then V is a DIRECT SUM of the $W_{i}, i \in I$ write $V=\bigoplus_{I} W_{i}$ if one of the following equivalent condition hold

1. $\forall v \in V \exists!w_{i} \in W_{i} \ni w_{i}=0$ almost all i and $v=\sum_{I} w_{i}$
2. If $w_{i} \in W_{i}$, almost all $w_{i}=0$, and $0=\sum_{I} w_{i}$, then $w_{i}=0 \forall i \in I$
3. $\forall i \in I$

$$
W_{i} \cap \sum_{j \in I, j \neq i} W_{j}=0
$$

4. If \mathscr{B}_{i} is a basis for $W_{i}, i \in I$, then $\mathscr{B}=\cup \mathscr{B}_{i}$ is a basis for V.

If V is also an inner product space over F, and $V=\bigoplus_{I} W_{i}$ with $\left\langle w_{i}, w_{j}\right\rangle=0 \forall i \neq j$ in I, we call V an orthogonal direct sum and write $V=\frac{1}{I} W_{i}$.
Since $\lambda_{i} \neq \lambda_{j},\langle v, w\rangle=0$. Let

$$
W=E_{T}\left(\lambda_{1}\right)+\ldots+E_{T}\left(\lambda_{k}\right)
$$

It is a direct OR sum for if

$$
0=w_{1}+\ldots+w_{k}, w_{i} \in E_{T}\left(\lambda_{i}\right), i=1, \ldots, k
$$

then

$$
\begin{aligned}
0 & =\left\langle 0, w_{j}\right\rangle=\left\langle w_{1}+\ldots+w_{k}, w_{j}\right\rangle=\left\langle w_{j}, w_{j}\right\rangle \\
& =\left\|w_{j}\right\|^{2}
\end{aligned}
$$

$j=1, \ldots, k$. Hence $w_{j}=0 \forall i$ and

$$
W=E_{T}\left(\lambda_{1} \mid \oplus \ldots \oplus E_{T}\left(\lambda_{k}\right)\right)
$$

(why - uniqueness follows immediately) and \mathscr{C} is a basis for V, so

$$
V=E_{T}\left(\lambda_{1}\right) \perp \ldots \perp E_{T}\left(\lambda_{k}\right)
$$

By the OR Decomposition Theorem,

$$
E_{T}\left(\lambda_{i}\right)^{\perp}=E_{T}\left(\lambda_{1}\right) \perp \ldots \perp E_{T}\left(\lambda_{i}\right) \perp \ldots \perp E_{T}\left(\lambda_{k}\right)
$$

and if $v \in V$

$$
v=w_{1}+\ldots+w_{k}, w_{i} \in W_{i} \text { unique }
$$

So

$$
w_{i}=v_{E_{T}\left(\lambda_{i}\right)}
$$

the OR properties of v an $E_{T}\left(\lambda_{i}\right)$ for $i=1, \ldots, k$ by the OR Decomposition Theorem, as

$$
V=E_{T}\left(\lambda_{i}\right) \perp E_{T}\left(\lambda_{i}\right)^{\perp}
$$

Let

$$
P_{\lambda_{i}}: V \rightarrow V \text { by } v \mapsto v_{E_{T}\left(\lambda_{i}\right)}, i=1, \ldots, k
$$

be the composition

$$
\begin{gathered}
V \rightarrow E_{T}\left(\lambda_{i}\right) \hookrightarrow V \\
v \mapsto v_{E_{T}\left(\lambda_{i}\right)}
\end{gathered}
$$

a linear operator

$$
\begin{aligned}
\operatorname{im} P_{\lambda_{i}} & =E_{T}\left(\lambda_{i}\right) \\
\operatorname{ker} P_{\lambda_{i}} & =E_{T}\left(\lambda_{i}\right)^{\perp} \\
P_{\lambda_{i}} P_{\lambda_{j}} & =\delta_{i j} P_{\lambda_{j}}, \forall i, j
\end{aligned}
$$

i.e., $P_{\lambda_{1}}, \ldots, P_{\lambda_{k}}$ are ORTHOGONAL IDEMPOTENTS and we see $\forall v \in V$

$$
\begin{aligned}
v & =P_{\lambda_{1}} v+\ldots+P_{\lambda_{k}} v \\
1_{V} & =P_{\lambda_{1}}+\ldots+P_{\lambda_{k}}
\end{aligned}
$$

So

$$
\begin{aligned}
T & =T \circ 1_{V}=T \circ P_{\lambda_{1}}+\ldots+T \circ P_{\lambda_{k}}=\lambda_{1} P_{\lambda_{1}}+\ldots+\lambda_{k} P_{\lambda_{k}} \\
T & =1_{V} T=P_{\lambda_{1}} T+\ldots+P_{\lambda_{k}} T \\
T P_{\lambda_{i}} & =P_{\lambda_{i}} T, \forall i
\end{aligned}
$$

as

$$
\left.T\right|_{E_{T}\left(\lambda_{i}\right)}=\lambda_{i} 1_{E_{T}\left(\lambda_{i}\right)}, i=1, \ldots, k
$$

This is the SPECTRAL RESOLUTION of T if $n_{i}=\operatorname{dim} E_{T}\left(\lambda_{i}\right), \mathscr{B}_{i}$ an ordered ON basis for $E_{T}\left(\lambda_{i}\right), \mathscr{B}_{i}$ an ordered ON basis for $E_{T}\left(\lambda_{i}\right), i=1, \ldots, k$. Then $\mathscr{B}=\mathscr{B}_{1} \cup \ldots \cup \mathscr{B}_{k}$ is an ordered ON basis for V consisting of eigenvectors of T

$$
\begin{aligned}
n & =\operatorname{dim} V=n_{1}+\ldots n_{k} \\
f_{T} & =\left(t-\lambda_{1}\right)^{n_{1}} \ldots\left(t-\lambda_{k}\right)^{n k} \\
{[T]_{\mathscr{B}} } & =\left(\begin{array}{lllllll}
\lambda_{1} & & & & & & \\
& \ddots & & & & & \\
& & \lambda_{1} & & & & \\
& & & \ddots & & & \\
& & & & \lambda_{k} & & \\
& & & & & \ddots & \\
0 & & & & & & \lambda_{k}
\end{array}\right)
\end{aligned}
$$

Theorem 27.1 (Spectral Theorem for Normal Operator - Full Version)
Let $F=\mathbb{C}, V$ a finite dimensional inner product space over $\mathbb{C}, T: V \rightarrow V$ normal, $\lambda_{1}, \ldots, \lambda_{k}$ all the distinct eigenvalues of T. Then T is diagonalizable and

1. Let \mathscr{B}_{i} be an ordered ON basis for $E_{T}\left(\lambda_{i}\right), i=1, \ldots, k$. Then $\mathscr{B}=\mathscr{B}_{1} \cup \ldots \cup \mathscr{B}_{n}$ is an ordered ON basis for V (obvious order) consisting of eigenvectors of T.
2.

$$
[T]_{\mathscr{B}}=\left(\begin{array}{lllllll}
\lambda_{1} & & & & & & 0 \\
& \ddots & & & & & \\
& & \lambda_{1} & & & & \\
& & & \ddots & & & \\
& & & & \lambda_{k} & & \\
& & & & & \ddots & \\
0 & & & & & & \lambda_{k}
\end{array}\right)
$$

where

$$
\begin{aligned}
n_{i} & =\operatorname{dim} E_{T}\left(\lambda_{i}\right), i=1, \ldots, k \\
\operatorname{dim} V & =n=n_{1}+\ldots+n_{k}
\end{aligned}
$$

3. $f_{T}=\left(t-\lambda_{1}\right)^{n_{1}} \ldots\left(t-\lambda_{k}\right)^{n k}$
4. $V=E_{T}\left(\lambda_{1}\right) \perp \ldots \perp E_{T}\left(\lambda_{k}\right)$
5. $1_{V}=P_{\lambda_{1}}+\ldots+P_{\lambda_{k}}: V \rightarrow V$ where $P_{\lambda_{i}}: v \rightarrow v$ linear by $v \mapsto v_{E_{T}\left(\lambda_{i}\right), i=1, \ldots, k}$ (viewed in V).
6. $P_{\lambda_{i}} P_{\lambda_{j}}=\delta_{i j} P_{\lambda_{i}}, i, j=1, \ldots, k$
7. $T=\lambda_{1} P_{\lambda_{1}}+\ldots+\lambda_{k} P_{\lambda_{k}}$
8. $T P_{\lambda_{i}}=P_{\lambda_{i}} T, i=1, \ldots, k$
9. If \mathscr{C} is an ON basis for V then

$$
\begin{aligned}
{[T]_{\mathscr{B}} } & =\left[1_{V}\right]_{\mathscr{C}, \mathscr{B}}[T]_{\mathscr{C}}\left[1_{V}\right]_{\mathscr{B}, \mathscr{C}} \\
& =\left[1_{V}\right]_{\mathscr{C}, \mathscr{B}}[T]_{\mathscr{C}}\left[1_{V}\right]_{\mathscr{C}, \mathscr{B}}^{-1} \\
& =\left[1_{V}\right]_{\mathscr{C}, \mathscr{B}}[T]_{\mathscr{C}}\left[1_{V}\right]_{\mathscr{B}, \mathscr{B}}^{*}
\end{aligned}
$$

i.e., $\left[1_{V}\right]_{\mathscr{B}, \mathscr{C}}^{-1}=\left[1_{V}\right]_{\mathscr{B}, \mathscr{C}}^{*}$
10. $q_{T}=\left(t-\lambda_{1}\right) \ldots\left(t-\lambda_{k}\right)$

Now T is normal so T^{*} is also normal with distinct eigenvalues $\overline{\lambda_{1}}, \ldots, \overline{\lambda_{k}}$ and

$$
E_{T}\left(\lambda_{i}\right)=E_{T^{*}}\left(\overline{\lambda_{i}}\right), i=1, \ldots, k
$$

In fact, as

$$
T v=\lambda_{i} v \Longleftrightarrow T^{*} v=\overline{\lambda_{i}} v
$$

the orthogonal projection

$$
P_{\overline{\lambda_{1}}}, \ldots, P_{\overline{\lambda_{k}}}
$$

for T^{*} satisfy

$$
P_{\lambda_{i}}=P_{\overline{\lambda_{i}}}, i=1, \ldots, k
$$

as

$$
v_{E_{T}\left(\lambda_{i}\right)}=v_{E_{T}^{*}\left(\overline{\lambda_{i}}\right)}
$$

Hence the spectral resolution for T^{*} is

$$
\begin{aligned}
T^{*} & =\overline{\lambda_{1}} P_{\overline{\lambda_{1}}}+\ldots+\overline{\lambda_{k}} P_{\overline{\lambda_{k}}} \\
& =\overline{\lambda_{1}} P_{\lambda_{1}}+\ldots+\overline{\lambda_{k}} P_{\lambda_{k}}
\end{aligned}
$$

§28 Lec 27: Dec 9, 2020

§28.1 Lec 26 (Cont'd)

We make a further computation using the Spectral Resolution of normal $T: V \rightarrow V, V$ a finite dimensional inner product space over \mathbb{C}. This also holds for hermitian $T: V \rightarrow V, V$ a finite dimensional inner product space over \mathbb{R} with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$, orthogonal idempotents $P_{\lambda_{1}}, \ldots, P_{\lambda_{k}}$ i.e, spectral resolution.

$$
T=\lambda_{1} P_{\lambda_{1}}+\ldots+\lambda_{k} P_{\lambda_{k}}
$$

As $P_{\lambda_{i}} P_{\lambda_{j}}=\delta_{i j} P_{\lambda_{i}}$, we have

$$
T^{2}=\left(\lambda_{1} P_{\lambda_{1}}+\ldots+\lambda_{k} P_{\lambda_{k}}\right)\left(\lambda_{1} P_{\lambda_{1}}+\ldots+\lambda_{k} P_{\lambda_{k}}\right)=\lambda_{1}^{2} P_{\lambda_{1}}+\ldots+\lambda_{k}^{2} P_{\lambda_{k}}
$$

An easy induction shows

$$
T^{m}=\lambda_{1}^{m} P_{\lambda_{1}}+\ldots+\lambda_{k}^{m} P_{\lambda_{k}}, m \in \mathbb{Z}^{+}
$$

Since

$$
1_{V}=P_{\lambda_{1}}+\ldots+P_{\lambda_{k}}
$$

we see that if for any

$$
f=a_{m} t^{m}+a_{m-1} t^{m-1}+\ldots a_{0} \in F[t]
$$

a poly (with $F=\mathbb{C}$ if T normal, $F=\mathbb{R}$ or \mathbb{C} if T is hermitian) that

$$
\begin{aligned}
f(T) & =a_{m} T^{m}+\ldots+a_{0} 1_{V} \\
f\left(T^{*}\right) & =a_{m} T^{* m}+\ldots+a_{0} 1_{V}
\end{aligned}
$$

and as $f(T)$ is also normal (resp hermitian)

$$
\begin{aligned}
f(T) & =\sum_{i=1}^{k} f\left(\lambda_{i}\right) P_{\lambda_{i}} \\
f\left(T^{*}\right) & =\sum_{i=1}^{k} f_{i}\left(\bar{\lambda}_{i}\right) P_{\lambda_{i}} \forall f \in \mathbb{C}[t]
\end{aligned}
$$

Now let $m=k-1$. Set

$$
f_{i}=\prod_{j=1, j \neq i}^{k} \frac{\left(t-\lambda_{j}\right)}{\lambda_{i}-\lambda_{j}} \in \mathbb{C}[t], j=1, \ldots, k
$$

the LAGRANGE POLY associated to $\lambda_{1}, \ldots, \lambda_{k}$. By the LAGRANGE INTERPOLATION THEOREM, $\exists!g \in \mathbb{C}[t]$, $\operatorname{deg} \mathrm{g} ; \mathrm{k}, \lambda \ni g\left(\lambda_{i}\right)=\overline{\lambda_{i}}, i=1, \ldots, k$. Thus by the above, we have

$$
g(T)=g\left(\lambda_{1}\right) P_{\lambda_{1}}+\ldots+g\left(\lambda_{k}\right) P_{\lambda_{k}}=\bar{\lambda}_{1} P_{\lambda_{1}}+\ldots+\bar{\lambda}_{k} P_{\lambda_{k}}=T^{*}
$$

i.e., T^{*} is a polynomial in T.

Proposition 28.1

Let $F=\mathbb{C}, V$ a finite dimensional inner product space over $\mathbb{C}, T: V \rightarrow V$ linear. Then the following are true

1. T is normal iff $\exists g \in \mathbb{C}[t] \ni T^{*}=g(T)$.
2. T is isometry iff T is normal and $|\lambda|=1$ for every eigenvalue λ of T .
3. If T is normal, then T is hermitian iff every eigenvalue of T is real.

Proof.

$$
\text { 1. } \rightarrow \text { is }(\star) \text {, }
$$

$$
T g(T)=g(T) T
$$

T^{*} is normal.
2. \rightarrow If T is an isometry, then $T^{*}=T^{-1}$. Let \mathscr{B} be an ON basis for V, the cols of $[T]_{\mathscr{B}}$ corresponds to an ON basis for V and we are done via the $\phi: L(V, V) \rightarrow M_{n} \mathbb{C}, T \mapsto$ $[T]_{\mathscr{B}}$, i.e. MTT. In particular, $1_{V}=T T^{*}=T^{*} T$, so T is normal if $v \in V$ then we know

$$
v \in E_{T}(\lambda) \Longleftrightarrow v \in E_{T^{*}}(\bar{\lambda})
$$

i.e.,

$$
T v=\lambda v \Longleftrightarrow T^{*} v=\bar{\lambda} v
$$

So if $v \in E_{T}(\lambda), \ldots$
We have

$$
T T^{*}=\left|\lambda_{1}\right|^{2} P_{\lambda_{1}}+\ldots+\left|\lambda_{k}\right|^{2} P_{\lambda_{k}}
$$

Since $\left|\lambda_{i}\right|=1 \forall i$,

$$
T T^{*}=P_{\lambda_{1}}+\ldots+P_{\lambda_{k}}=1_{V}=T^{*} T
$$

Therefore,

$$
\|v\|^{2}=\left\langle T^{*} T v, v\right\rangle=\langle T v, T v\rangle=\|T v\|^{2}
$$

i.e., $\|v\|=\|T v\| \forall v \in V$. By Hw, T is an isometry.
3. \rightarrow is the Hermitian Corollary.
$\leftarrow) \lambda_{i} \in \mathbb{R}$ eigenvalues of normal T implies $T=T^{*}$ by (\star).

§28.2 Singular Value Theorem

Theorem 28.2 (Singular Value)

Let $F=\mathbb{R}$ or $\mathbb{C}, A \in F^{m \times n}$. Then

$$
\begin{aligned}
& \exists u \in U_{n}(F):=\left\{B \in M_{n} F \mid B B^{*}=I\right\}, X \in U_{n} F \ni \\
& X^{*} A U=D:=\left(\begin{array}{llllll}
u_{1} & & & & & 0 \\
& \ddots & & & & \\
& & u_{r} & & & \\
& & & 0 & & \\
& & & & \ddots & \\
0 & & & & & 0
\end{array}\right) \in F^{m \times n}
\end{aligned}
$$

diagonal, i.e. $D_{i j}=0 \forall i \neq j$ with $D_{i i}=0 \forall i>r, D_{i i}=\mu_{i}, i \leq r$ with

$$
\mu_{i} \gg \ldots \gg \mu_{r}>0
$$

and $r=\operatorname{rank} A$

Proof. $A^{*} A \in M_{n} F$ is hermitian with non-negative real eigenvalues using problem 9 of the Take home. Let $\lambda_{1}, \ldots, \lambda_{r}$ be the positive eigenvalues ordered such that

$$
\lambda_{1} \gg \ldots \lambda_{r}>0
$$

(there can be repetitions). By the Spectral Theorem for Hermitian Operators, $\exists U \in U_{n} F \ni$

$$
(A U)^{*}(A U)=U^{*}\left(A^{*} A\right) U=\left(\begin{array}{cccccc}
\lambda_{1} & & & & & 0 \\
& \ddots & & & & \\
& & \lambda_{r} & & & \\
& & & 0 & & \\
0 & & & & \ddots & \\
0 & & & & & 0
\end{array}\right) \in M_{n} F
$$

(as $\left.A=[A]_{\mathscr{S}_{n}, \mathscr{S}_{m}}\right)$. Let

$$
C=A U \in F^{m \times n}
$$

So

$$
C^{*} C=(A U)^{*}(A U) \in M_{n} F
$$

Write

$$
\lambda_{i}=\mu_{i}^{2}, \mu_{i}>0,1 \leq i \leq r
$$

(which we can do as $\lambda_{i}>0 \in \mathbb{R}$) and let

$$
\lambda_{i}=0 \text { for } i>r
$$

Set

$$
B=\left(\begin{array}{llllll}
\mu_{1} & & & & & 0 \\
& \ddots & & & & \\
& & \mu_{r} & & & \\
& & & 0 & & \\
& & & & \ddots & \\
0 & & & & & 0
\end{array}\right) \in M_{n} F
$$

if E is a matrix let $E^{(k)}$ denote the $k^{\text {th }}$ column of E . Then we have

$$
\begin{aligned}
\lambda_{i} \delta_{i j} & =\left(C^{*} C\right)_{i j}=\sum_{l=1}^{n}\left(C^{*}\right)_{i l} C_{l_{j}}=\sum_{i=1}^{n} \overline{C_{l_{i}}} C_{l_{j}} \\
& =\sum_{l=1}^{n} C_{l j} \overline{C_{l_{i}}}=\left\langle C^{(j)}, C^{(i)}\right\rangle
\end{aligned}
$$

Hence

$$
C=\left[\begin{array}{lllll}
C^{(1)} & \ldots & C^{(r)} & 0 & 0
\end{array}\right] \in F^{m \times n}
$$

satisfies $\mathscr{C}_{0}=\left\{C^{(1)}, \ldots, C^{(r)}\right\}$ is an OR set in $F^{m \times 1}$. As $C^{(i)} \neq 0,1 \leq i \leq r, \mathscr{C}_{0}$ is linearly independent. Therefore,

$$
\text { Rank } C=r
$$

with

$$
\left\|C^{(i)}\right\|^{2}=\left\langle C^{(i)}, C^{(i)}\right\rangle=\lambda_{i}=\mu_{i}^{2}
$$

for $i=1, \ldots, r$. As U is invertible

$$
\operatorname{Rank} A=\operatorname{Rank} A U=\operatorname{Rank} C=r,
$$

i.e.,

$$
\text { Rank } A=r
$$

as required. Now define

$$
X^{(i)}:=\frac{1}{\mu_{i}} C^{(i)} \in F^{m \times 1}, i=1, \ldots, r
$$

Then $\mathscr{B}_{0}=\left\{X^{(1)}, \ldots, X^{(r)}\right\}$ is an ON set in $F^{m \times 1}$. Extend this to an ordered ON basis

$$
\mathscr{B}=\left\{X^{(1)}, \ldots, X^{(m)}\right\} \text { for } F^{m \times 1}
$$

Then the matrix

$$
X=\left[X^{(1)} \ldots X^{(m)}\right]=\left[1_{F^{m \times 1}}\right]_{\mathscr{B}, \mathscr{S}_{m, 1}} \in M_{m} F
$$

Since $\mathscr{B}, \mathscr{S}_{m, 1}$ are ON bases

$$
X \in U_{m}(F)
$$

Set

$$
D=\left(\begin{array}{cccccc}
\mu_{1} & & & & & 0 \\
& \ddots & & & & \\
& & \mu_{r} & & & \\
& & & 0 & & \\
0 & & & & \ddots & \\
0 & & & & & 0
\end{array}\right) \in F^{m \times n}
$$

as in the statement of the theorem.

$$
X D=\left[X^{(1)} \ldots X^{(m)}\right]\left(\begin{array}{cccccc}
\mu_{1} & & & & & 0 \\
& \ddots & & & & \\
& & \mu_{r} & & & \\
& & & 0 & & \\
0 & & & & \ddots & \\
0 & & & & & 0
\end{array}\right)
$$

$$
\left[\mu_{1} X^{(1)} \ldots \mu_{r} X^{(r)} 0 \ldots 0\right]=C=A U
$$

Hence

$$
X^{*} A U=D
$$

as needed.
$\S 29 \mid$ Lec 28: Dec 11, 2020
§29.1 Lec 27 (Cont'd)

Definition 29.1 (Singular Value Decomposition) - Let $A \in F^{m \times n}, F=\mathbb{R}$ or \mathbb{C}
(i) $A=X D U^{*}, U \in U_{n} F, X \in U_{m} F$ (so $D=X^{*} A U$ as $X^{-1}=X^{*}, U^{-1}=U^{*}$)
(ii) $\mu_{1} \geq \ldots \geq \mu_{r}>0 \in \mathbb{R}$ where
(iii)

$$
D=\left(\begin{array}{llllll}
\mu_{1} & & & & & \\
& \ddots & & & & \\
& & \mu_{r} & & & \\
& & & 0 & & \\
& & & & \ddots & \\
& & & & & 0
\end{array}\right)
$$

Then i,,$i i$,,$i i i$) is called a SINGULAR VALUE DECOMPOSITION (SVD) for A, μ_{1}, \ldots, μ_{r} the singular values of A, D the pseudo diagonal matrix of A.

Note: Let $A=X D U^{*}$ be an SVD of A. Then

1. The singular values of A are the positive square roots of the positive eigenvalues of $A^{*} A$
2. The columns of X forms an ON basis for $F^{m \times 1}$ of eigenvectors of $A A^{*}$
3. The rows of U form an ON basis for $F^{1 \times n}$ of eigenvectors of $A^{*} A$

Corollary 29.2

The singular values of $A \in F^{m \times n}, F=\mathbb{R}$ or \mathbb{C}, are unique (including multiplicity) up to order.

Proof. Let $A=X D U^{*}$ be an SVD of $A, X \in U_{m} F, U \in U_{n} F$. Then

$$
A^{*} A=\left(X D U^{*}\right)^{*}\left(X D U^{*}\right)=U D^{*} X^{*} X D U^{*}=U D^{*} D U^{*}
$$

as $X^{*} X=I$, so

$$
A^{*} A \sim D^{*} D=\left(\begin{array}{lll}
d_{11}^{2} & & \\
& \ddots \\
& &
\end{array}\right)
$$

have the same eigenvalues, d_{11}^{2}, \ldots, i.e., these are the eigenvalues of $A A^{*}$.

Remark 29.3. An SVD of $A \in F^{m \times n}, F=\mathbb{R}$ or \mathbb{C} may not be unique.

Corollary 29.4

The singular values of $A \in F^{m \times n}, F=\mathbb{R}$ or \mathbb{C} are the same as the singular values of $A^{*} \in F^{n \times m}$.

Proof. $\left(X D U^{*}\right)=U D^{*} X^{*}$ and D, D^{*} have the same non-zero diagonal eigenvalues.

Theorem 29.5 (Polar Decomposition)
Let $F=\mathbb{R}$ or $\mathbb{C}, A \in M_{n} F$. Then $\exists U^{\sim} \in U_{n} F, N \in M_{N} F$ hermitian (i.e., $N=N^{*}$) with all its (real) eigenvalues non-negative s.t.

$$
A=U^{\sim} N
$$

cf. polar form of a complex number $U^{\sim} \leftrightarrow e^{\sqrt{-1} \theta}, N \leftrightarrow r$.

Proof. In the Singular Value Theorem, we have $m=n$, so if

$$
A=X D U^{*} \text { is an } \mathrm{SVD} \quad X, U \in U_{u} F
$$

We have $D=D^{*}$ is hermitian with non-negative eigenvalues $A U=X D$. So

$$
A=X D U^{*}=X\left(U^{*} U\right) D U^{*}=\left(X U^{*}\right)\left(U D U^{*}\right)
$$

Since

$$
\left(X U^{*}\right)^{*}\left(X U^{*}\right)=U X^{*} X U^{*}=U U^{*}=I
$$

we have $X U^{*} \in U_{n} F$.
So letting $U^{\sim}=X U^{*} \in U_{n} F, N=U D U^{*}$ work.
Exercise 29.1. In the above theorem, N is unique and U is unique if A invertible in $M_{n} F$. (as it has positive eigenvalues).

§29.2 Application of SVD

Problem 29.1. Let $F=\mathbb{R}$ or \mathbb{C}, V a finite dimensional inner product space over $F, W \subset V$ a subspace

$$
P_{W}: V \rightarrow W \text { by } v \mapsto v_{W}
$$

the orthogonal projection of V onto W. We know v_{W} is the BEST APPROXIMATION of $v \in V$ onto W. Now let X be another finite dimensional inner product space over $F, T: X \rightarrow V$ linear, $W=T(X)=\operatorname{im} T, v \in V, x \in X$. We call
(i) X a best approximation to v via T if

$$
T_{x}=v_{W}=P_{W}(v)
$$

(ii) X an optimal approximation to v via T if it is a best approximation to v via T and $\|v\|$ is minimal among all best approximations to v via T.

In the above, find an optimal approximation of x.

Ans: Let $A=T: F^{n \times 1} \rightarrow F^{m \times 1}, A \in F^{m \times n}, v \in F^{m \times 1}(F=\mathbb{R}$ or $\mathbb{C})$. Let $A=X D U^{*}$ be an SVD

$$
D=\left(\begin{array}{cccccc}
\mu_{1} & & & & & \\
& \ddots & & & & \\
& & \mu_{r} & & & \\
& & & 0 & & \\
& & & & \ddots & \\
& & & & & 0
\end{array}\right) \in F^{m \times n}
$$

$\mu_{1} \geq \ldots \geq \mu_{r}>0 \in \mathbb{R}$. Define

$$
D^{\dagger}=\left(\begin{array}{cccccc}
\mu_{1}^{-1} & & & & & \\
& \ddots & & & & \\
& & \mu_{r}^{-1} & & & \\
& & & 0 & & \\
& & & & \ddots & \\
& A^{\dagger}:=U D^{\dagger} X^{*} \in F^{n \times m}
\end{array}\right.
$$

called the Moore-Penrose generalized pseudo-inverse of A. Then
(i) $\operatorname{rank} A=\operatorname{rank} A^{\dagger}$
(ii) $A^{\dagger} v$ is an optimal approximation in $F^{n \times 1}$ to v via A and is unique. (Hence A^{\dagger} is well-defined, i.e., independent of SVD)
(iii) If $\operatorname{rank} A=n$, then

$$
A^{\dagger}=\left(A^{*} A\right)^{-1} A^{*}
$$

$\underline{\text { Application (Least square): } F=\mathbb{R} \text { or } \mathbb{C} \text {. Given date }\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in F^{2} \text {. Find the }{ }^{\text {a }} \text {. }}$ best line relative to this data, i.e., find

$$
y=\lambda x+b, \lambda=\text { slope }
$$

Let

$$
A=\left(\begin{array}{cc}
x_{1} & 1 \\
\vdots & \vdots \\
x_{n} & 1
\end{array}\right), X=\binom{\lambda}{b}, Y=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)
$$

Solve $A X=Y$. The solution is probably inconsistent, so want optimal soln. Solve

$$
\left(\begin{array}{cc}
x_{1} & 1 \\
\vdots & \vdots \\
x_{n} & 1
\end{array}\right)\binom{\lambda}{b}=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)
$$

(Least squares approximation) Let $W=\operatorname{im} A$. To find optimal approximation to

$$
A X=Y_{W}
$$

Then $X=A^{\dagger} y$ works. If rank $A=2$, then

$$
X=\left(A^{*} A\right)^{-1} A^{*} Y
$$

§29.3 Smith Normal Form

Polynomials are important in analyzing linear operator $T: V \rightarrow V, V$ a finite dimensional vector space over F, e.g., f_{T}, q_{T}. Algebraically, this arises from the generalization of a vector space over F.
Let \mathbb{R} be a ring, i.e., axioms of a field except M3, M4 (inverse and commutativity). Let M be a set satisfying $A 1-A 4$, i.e., axiom for + in \mathbb{Z}. Then M is called a (left) R-Module via

$$
\cdot: R \times M \rightarrow M \quad(r, m) \mapsto r m
$$

if $(M,+., \cdot)$ satisfies the axioms of a vector space over F with R replacing a field.
For linear algebra, this arises as follows: Let V be a vector space over F, a set $T: V \rightarrow V$ a linear operator. Make V into a $F[t]$-module by $\forall v \in V \forall g \in F[t]$

$$
g \cdot v: \mapsto g(T) v
$$

We let t in $F[t]$ act on V by

$$
t v:=T(v)
$$

Then use module theory to break V into $v=w_{1} \oplus \ldots \oplus w_{r}, w_{i}$ T-invariant $\forall i$ (and nice) if V is a finite dimensional vector space over F. We say that $A \in F[t]^{m \times n}$ is in Smith Normal Form (or SNF) if A is the zero matrix or if A is a matrix of the form

$$
\left(\begin{array}{cccccc}
q_{1} & 0 & \ldots & & & \\
0 & q_{2} & & & & \\
\vdots & & \ddots & & & \\
& & & q_{r} & & \\
& & & & 0 & \\
& & & & & \ddots \\
0 & & & & &
\end{array}\right)
$$

with $q_{1}\left|q_{2}\right| q_{3}|\ldots| q_{r} \in F[t]$ and all monic, i.e., there exists a positive integer r satisfying $r \leq \min (m, n)$ and $q_{1}\left|q_{2}\right| q_{3}|\ldots| q_{r}$ monic in $F[t]$ s.t. $A_{i i}=q_{i}$ for $1 \leq i \leq r$ and $A_{i j}=0$ otherwise.
We generalize Gaussian elimination, i.e., row(and column) reduction for matrices with entries in F to matrices with entries in $F[t]$. The only difference arises because most element of $F[t]$ do not have multiplicative inverses.
Let $A \in M_{n}(F[t])$. We say that A is an elementary matrix of
(i) Type I: If there exists $\lambda \in F[t]$ and $l \neq k$ s.t.

$$
A_{i j}= \begin{cases}1, & \text { if } i=j \\ \lambda, & \text { if }(i, j)=(k, l) \\ 0, & \text { otherwise }\end{cases}
$$

(ii) Type II: If there exists $k \neq l$ s.t.

$$
A_{i j}= \begin{cases}1, & \text { if } i=j \neq l \text { or } i=j \neq k \\ 0, & \text { if } i=j=l \text { or } i=j=k \\ 1, & \text { if }(k, l)=(i, j) \text { or }(k, l)=(j, i) \\ 0, & \text { otherwise }\end{cases}
$$

(iii) Type III: If there exists a $0 \neq u \in F$ and l s.t

$$
A_{i j}= \begin{cases}1, & \text { if } i=j \neq l \\ u, & \text { if } i=j=l \\ 0, & \text { otherwise }\end{cases}
$$

Remark 29.6. Let $A \in F[t]^{m \times n}$. Multiplying A on the left (respectively right) by a suitable size elementary matrix of
(a) Type I is equivalent to adding a multiple of a row (respectively column) of A to another row (respectively column) of A.
(b) Type II is equivalent to interchanging two rows (respectively columns) of A.
(c) Type III is equivalent to multiplying a row (respectively column) of A by an element in $F[t]$ having a multiplicative inverse.

Remark 29.7. 1. All elementary matrices are invertible.
2. The definition of elementary matrices of Types I and II is exactly the same as that given when define over a field.
3. The elementary matrices of Type III have a restriction. The u's appearing in the definition are precisely the element in $F[t]$ having a multiplicative inverse TBA

Notation: We let

$$
G L_{n}(F[t]):=\left\{A \in M_{n}(F[t]) \mid A \text { is invertible }\right\}
$$

Warning: A matrix in $M_{n}(F[t])$ having $\operatorname{det}(A) \neq 0$ may no longer be invertible, i.e., have an inverse. What is true is that $G L_{n}(F[t])=\left\{A \in M_{n}(F[t]) \mid 0 \neq \operatorname{det}(A) \in F\right\}$, equivalently $G L_{n}(F[t])$ consist of those matrices whose determinant have a multiplicative inverse in $F[t]$.

Definition 29.8 (Equivalent Matrix) - Let $A, B \in F[t]^{m \times n}$. We say that A is equivalent to B and write $A \approx B$ if there exists matrices $P \in G L_{m}(F[t])$ and $Q \in G L_{n}(F[t])$ s.t. $B=P A Q$.

Theorem 29.9

Let $A \in F[t]^{m \times n}$. Then A is equivalent to a matrix in Smith Normal Form (SNF). Moreover, there exists matrices $P \in G L_{m}(F[t])$ and $Q \in G L_{n}(F[t])$, each a product of matrices of Type I, Type II, and Type III, such that $P A Q$ is in SNF.

Proof. The proof will, in fact, be an algorithm to find a SNF of A. Refer to www.math. ucla.edu/~rse/115ah.1.20f/L28.pdf - Pg. 9-10.

Remark 29.10. The SNF derived by this algorithm is, in fact, unique. In particular, the monic polynomial $q_{1}\left|q_{2}\right| q_{3}|\ldots| q_{r}$ arising in the Smith Normal Form of a matrix A are unique and are called the invariant factors of A. This is proven using results about determinants. It follows if $A, B \in F[t]^{m \times n}$ then $A \sim B$ if and only if they have the same SNF if and only if they have the same invariant factors.

So what good is the SNF relative to linear operators on finite dimensional vector spaces? It tells us a great deal, because the following is true: Let $A, B \in M_{n}(F)$. Then $A \sim B$ if and only if $t I-A \approx t I-B \in M_{n}(F[t])$ and this is completely determined by the SNF hence the invariant factors of $t I-A$ and $t I-B$. Now the SNF of $t I-A$ may have some of its invariant factors of 1 , and we shall drop these.

§29.4 Some definitions

Definition 29.11 (Companion Matrix) - Let $q=t^{n}+a_{n-1} t^{n-1}+\ldots+a_{1} t+a_{0}$ be a monic polynomial in $F[t]$. The companion matrix $C(q)$ is defined to be the $n \times n$ matrix:

$$
\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & -a_{0} \\
1 & 0 & \ldots & 0 & -a_{1} \\
\vdots & & \ddots & & \vdots \\
0 & 0 & \ldots & 1 & -a_{n-1}
\end{array}\right)
$$

Definition 29.12 (Invariant Factors) - Let V be a finite dimensional vector space over F with \mathscr{B} an ordered basis. Let $T: V \rightarrow V$ be a linear operator. If one computes the Smith Normal Form of $t I-[T]_{\mathscr{B}}$, it will have the form

$$
\left(\begin{array}{ccccccc}
1 & 0 & & \cdots & \cdots & & 0 \\
0 & 1 & & & & & 0 \\
\vdots & & \ddots & & & & \vdots \\
& & & q_{1} & & & \\
& & & & q_{2} & & \\
\vdots & & & & & \ddots & \vdots \\
0 & & & \cdots & \cdots & & q_{r}
\end{array}\right)
$$

with $q_{1}\left|q_{1}\right| \ldots \mid q_{r}$ are all the monic polynomials in $F[t] \backslash F$. These are called the invariant factors of T. They are uniquely determined by T.

Definition 29.13 (Rational Canonical Form) - The main theorem is that there exists an ordered basis \mathscr{B} for V such that

$$
[T]_{\mathscr{B}}=\left(\begin{array}{cccc}
C\left(q_{1}\right) & 0 & \ldots & 0 \\
0 & C\left(q_{2}\right) & \ldots & 0 \\
\vdots & & \ddots & \vdots \\
0 & & \ldots & C\left(q_{r}\right)
\end{array}\right)
$$

and this matrix representation is unique. This is called the rational canonical form or RCF of T. Moreover, the minimal polynomial of T is q_{r}. The algorithm computes this as well as all invariant factors of T. The characteristics polynomial f_{T} of T is the product of $q_{1} \ldots q_{r}$. This works over any field F, even if q_{T} does not split. The basis \mathscr{B} gives a decomposition of V into T-invariant subspaces $V=W_{1} \oplus \ldots \oplus W_{r}$ where $f_{T \mid W_{i}}=q_{T \mid W_{i}}=q_{i}$ and if $\operatorname{dim}\left(W_{i}\right)=n_{i}$, then $\mathscr{B}_{i}=\left\{v_{i}, T v_{i}, \ldots, T^{n_{i}-1} v_{i}\right\}$ is a basis for W_{i} (we say that the W_{i} are T-cyclic subspaces).

Definition 29.14 (Jordan Block/Size - Jordan Canonical Form) - Let V be a finite dimensional vector space over F with \mathscr{B} an ordered basis. Let $T: V \rightarrow V$ be a linear operator. Suppose that q_{T} splits over F. Say

$$
q_{i}=\left(t-\lambda_{1}\right)^{r_{1}} \ldots\left(t-\lambda_{m}\right)^{r_{m}}, i=1, \ldots, m
$$

in $F[t]$, with $\lambda_{1}, \ldots, \lambda_{m}$ distinct. A matrix in $M_{r}(F)$ of the form

$$
J_{r}(\lambda)=\left(\begin{array}{ccccc}
\lambda & 0 & \ldots & 0 & 0 \\
1 & \lambda & 0 & \ldots & 0 \\
0 & 1 & \lambda & \ldots & \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \ldots & 1 & \lambda
\end{array}\right)
$$

is called a Jordan block or size $r \times r$ with eigenvalue λ. The one can show that $C\left(q_{i}\right), i=1, \ldots, m$ is similar to the following matrix in block form:

$$
\left(\begin{array}{cccc}
J_{r_{1}}\left(\lambda_{1}\right) & 0 & \ldots & 0 \\
0 & J_{r_{2}}\left(\lambda_{2}\right) & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & J_{r_{m}}\left(\lambda_{m}\right)
\end{array}\right)
$$

Replacing each $C\left(q_{i}\right)$ in the rational canonical form by its Jordan blocks give what is called Jordan Canonical Form or JCF of T. It is unique up to the order of the blocks (blocks with the same eigenvalues are usually put together).
§30 Extra Lec: Nov 2/9, 2020

§30.1 Dual Bases - Dual Spaces

Let $0 \neq V$ be a vector space over F with basis \mathscr{B}. For each $v_{0} \in \mathscr{B}$, we define a map

$$
f_{v_{0}}: V \rightarrow F \text { linear }
$$

as follows: by the UPVS (which also holds if the basis is infinite, let $f v_{0}$ be the unique linear transformation) s.t.

$$
\begin{aligned}
v_{0} & \mapsto 1 \\
v & \mapsto 0 \quad \forall v_{0} \neq v \in \mathscr{B}
\end{aligned}
$$

We have

$$
0<\operatorname{im} f v_{0} \subset F \text { a subspace }
$$

$\left(\operatorname{im} f v_{0} \neq 0\right.$ as $\left.v_{0} \neq 0\right)$. As $\operatorname{dim}_{F} F=1$, we must have $\operatorname{dim} f v_{0}=1$, so $f v_{0}: V \rightarrow F$ is an epimorphism and

$$
\text { ker } \begin{aligned}
f v_{0} & =\left\{w \in V \mid w \text { has } v_{0} \text { coordinate }=0\right\} \\
& =\operatorname{Span}\left(\mathscr{B} \backslash\left\{v_{0}\right\}\right)
\end{aligned}
$$

So if $w \in V, w=\sum \alpha_{v} v, \alpha_{v} \in F$ almost all 0 with α_{v} unique.

$$
f v_{0}(w)=\alpha_{v_{0}}
$$

the coordinate of w on v_{0}. We can do this for each $v \in \mathscr{B}$. If $v^{\prime} \in \mathscr{B}, f_{V}: V \rightarrow F$ is the linear transformation determined by

$$
f_{v^{\prime}}(v)=\delta_{v v^{\prime}}=\left\{\begin{array}{l}
i, \text { if } v=v^{\prime} \\
0, \text { if } v \neq v^{\prime}, v \in \mathscr{B}
\end{array} \quad, \text { the Kronecker } \delta\right.
$$

Set

$$
\mathscr{B}^{*}:=\{f v \mid v \in \mathscr{B}\} f_{v} \text { is the coordinate function } f_{v} \text { on } v
$$

The vector space

$$
V^{*}:=L(V, F)
$$

is called the DUAL SPACE of V. So by the above if $w \in V$

$$
w=\sum_{v \in \mathscr{B}} \alpha_{v} v, \alpha_{v} \in F \text { almost all } 0
$$

then

$$
\alpha_{v}=f_{v}(w) \text { the coordinate } w, v \in \mathscr{B}
$$

so

$$
w=\sum_{\mathscr{B}} \alpha_{v} v=\sum_{\mathscr{B}} f_{v}(w) v
$$

Now by the UPVS, we have a unique linear transformation

$$
D_{\mathscr{B}}: V \rightarrow V^{\times}
$$

determined by $v \in \mathscr{B} \mapsto f_{v}$. So $\sum_{\mathscr{B}} \alpha_{v} v \mapsto \sum_{\mathscr{B}} \alpha_{v} f_{v}$ almost all $\alpha_{v}=0$

Claim 30.1. $D_{\mathscr{B}}$ is 1-1.
Suppose $w=\sum_{\mathscr{B}} \alpha_{v} v \mapsto 0$ almost all $\alpha_{v}=0$ i.e., $\sum_{\mathscr{B}} \alpha_{v} f_{v}=0 \leftarrow$ in v^{*} Let $v_{0} \in \mathscr{B}$, then

$$
0=\left(\sum_{\mathscr{B}} \alpha_{v} f_{v}\right)\left(v_{0}\right)=\sum_{\mathscr{B}} \alpha_{v} f_{v}\left(v_{0}\right)=\sum_{\mathscr{B}} \alpha_{v} S_{v v_{0}}=\alpha v_{0}
$$

Hence $\sum \alpha_{v} f_{v}=0 \rightarrow \alpha_{v}=0 \forall v \in \mathscr{B}$, so $w=0 . D_{\mathscr{B}}$ is therefore 1-1 as claimed.
Warning: If V is not finite dimensional, then $D_{\mathscr{B}}$ is not onto, i.e., \mathscr{B}^{*} does not span V^{*}.
$\left(\left|V^{*}\right|=|F|^{|\mathscr{B}|}\right.$ and $|F|=|V|$ by UPVS if F is infinite $)$
Note: $D_{\mathscr{B}}: V \rightarrow V^{*}$ depends on the choice of basis \mathscr{B}.

Definition 30.1 (Linear Functionals) - If V is a vector space over F, elements in $V^{*}=L(V, F)$ are called LINEAR FUNCTIONALS.

Fact 30.1. If S is a linearly indep. set in a vector space over F (even infinite) then S is part of a basis for V, i.e., the Extension Theorem holds (This needs the Axiom of Choice).

Example 30.2

V a vector space over F. Then followings are linear functionals

1. If $0 \neq v \in V$, then $\{v\}$ extend to a basis \mathscr{B} for V and \mathscr{B}^{*} satisfies \mathscr{B}^{*} is linearly indep.

$$
f_{v}(x)=S_{v x} \forall x \in \mathscr{B}
$$

Let $w=\sum_{x \in \mathscr{B}} \alpha_{x} x, \alpha_{x}=0$ almost all $x \in \mathscr{B}$. Then $f_{x}(w)=\alpha_{x} \in F \forall x \in \mathscr{B}$, $w=\sum f_{x}(w) x$
2. $\pi_{i}: F^{n} \rightarrow F$ by $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \mapsto \alpha_{i} \forall i$
3. Let Int : $C[\alpha, \beta] \rightarrow \mathbb{R}, \alpha<\beta$ be given by

$$
\text { Int } f \mapsto \int_{\alpha}^{\beta} f
$$

4. trace: $M_{n} F \rightarrow F$ by

$$
A \mapsto \sum_{i=1}^{n} A_{i i}
$$

The sum of the diagonal entries of A called the TRACE of A.
We can iterate our constructions as follows:
Let \mathscr{C} be a basis for $V^{*}=L(V, F)$ a vector space over F, where V is a vector space over F. Then

$$
D_{\mathscr{C}}: V^{*} \rightarrow\left(V^{*}\right)^{*}:=V^{* *}
$$

$V^{* *}$ is called the DOUBLE DUAL of V, is induced by

$$
f_{0} \in \mathscr{C} \mapsto G_{f_{0}} \in \mathscr{C}^{*}
$$

the coordinate function on f_{0}, i.e.,

$$
\sum_{\mathscr{C}} \alpha_{f} f \mapsto \sum_{\mathscr{C} *} \alpha_{f} G_{f}
$$

with

$$
G_{f_{0}}(f)=\delta_{t f_{0}}=\left\{\begin{array}{l}
1 \text { if } f=f_{0} \forall f, f_{0} \in \mathscr{C} \\
0 \text { if } f \neq f_{0}
\end{array}\right.
$$

So we have

$$
V^{\mathscr{D} \mathscr{P}} V^{*} \xrightarrow{\mathscr{D}} \mathscr{G} V^{* *}
$$

and the composition is a monomorphism.

Wonderful Result: \exists a monomorphism

$$
L: V \rightarrow V^{* *}
$$

INDEPENDENT OF CHOICE OF BASES. We know want to show this:
For each $v \in V$ define the following linear functionals on V^{*}

$$
L_{v}: V^{*} \rightarrow F \text { by } L_{v}(f):=f(v)
$$

EVALUATION at v.
Check. $L_{v}: V^{*} \rightarrow F$ is linear, i.e., $L_{v} \in V^{* *}=\left(V^{*}\right)^{*}$:

$$
\begin{aligned}
L_{v}(\alpha f+g) & =(\alpha f+g)(v)=\alpha f(v)+g(v) \\
& =\alpha L_{v} f+L_{v} g
\end{aligned}
$$

$\forall t, g \in V^{*} \forall \alpha \in F$ as needed. Now define

$$
L: V \rightarrow V^{* *} \text { by } v \mapsto L_{v}
$$

i.e., $L(v)=L_{v}$

Claim 30.2. L is linear.
$\forall f \in V^{*}, v, v^{\prime} \in V, \alpha \in F$, we have

$$
\begin{aligned}
L\left(\alpha v+v^{\prime}\right)(f) & =L_{\alpha v+v^{\prime}}(f)=f\left(\alpha v+v^{\prime}\right) \\
& =\alpha f(v)+f\left(v^{\prime}\right)=\alpha L_{v} f+L_{v^{\prime}} f \\
& =\left(\alpha L_{v}+L_{v^{\prime}}\right)(f)
\end{aligned}
$$

as needed.
Claim 30.3. $L: V \rightarrow V^{* *}$ is monic.

Suppose $v \neq 0$. By Example TBA, $\exists f \in V^{*} \ni L_{v}(f)=f(v) \neq 0$. As L is linear, L is a monomorphism. Hence

$$
L: V \rightarrow V^{* *}
$$

is a NATURAL or CANONICAL MONOMORPHISM, i.e., no basis is needed to define it. We now assume that V is a finite dimensional vector space over F, let

$$
\begin{aligned}
\mathscr{B} & =\left\{v_{1}, \ldots, v_{n}\right\} \text { be a basis for } V \\
\mathscr{B}^{*} & =\left\{f_{1}, \ldots, f_{n}\right\} \subset V^{*} \text { defined by } f_{i}\left(v_{j}\right)=\delta_{i j} \forall i, j
\end{aligned}
$$

i.e., the f_{i} are the coordinate functions relative to \mathscr{B}. Then, as before, we have a monomorphism

$$
D_{\mathscr{B}}: V \rightarrow V^{*} \text { induced by } v_{i} \mapsto f_{i}
$$

But we also have

$$
\operatorname{dim} V^{*}=\operatorname{dim} L(V, F)=\operatorname{dim} V \operatorname{dim} F=\operatorname{dim} V
$$

by the Matrix Theory Theorem, so $D_{\mathscr{B}}$ is an isomorphism by the Isomorphism Theorem with \mathscr{B}^{*} a basis for V^{*} called the DUAL BASIS of \mathscr{B}. We also have

$$
V \cong V^{*} \cong V^{* *}, \text { so } V \cong V^{* *}
$$

and

$$
\mathscr{B}^{* *}:=\left\{L_{v_{1}}, \ldots, L_{v_{n}}\right\}
$$

with

$$
\begin{gathered}
L_{v_{i}}:=L_{f_{i}}, f_{i} \in \mathscr{B}^{*} \\
L_{f_{i}}\left(f_{j}\right)=L_{v_{i}}\left(f_{j}\right)=f_{j}\left(v_{i}\right)=\delta_{i j}
\end{gathered}
$$

So $\mathscr{B}^{* *}$ is the DUAL BASIS of \mathscr{B}^{*}. We also now $L: V \rightarrow V^{* *}$ is now a natural isomorphism by the Isomorphism Theorem and even better that

$$
f(v)=L_{v}(f) \quad \forall v \in V \quad \forall f \in V^{*}
$$

EVALUATION at v. So when V is a finite dimensional vector space over F, we can and do identify L_{v} and $v \forall v \in V$.
Any $v \in V$ is determined by the $t \in V^{*}$ and every $f \in V^{*}$ is determined by the $L_{v} \in V^{\times \times}$ and

$$
f(v)=L_{v}(f)
$$

So now we have: if V is a finite dimensional vector space over F

$$
\begin{aligned}
\mathscr{B} & =\left\{v_{1}, \ldots, v_{n}\right\} \text { a basis for } V \\
\mathscr{B}^{*} & =\left\{f_{1}, \ldots, f_{n}\right\}:\left\{f_{v_{1}}, \ldots, f_{v_{n}}\right\} \text { the dual basis of } \mathscr{B} \\
\mathscr{B}^{* *} & =\left\{L_{f_{v_{1}}}, \ldots, L_{f_{v_{n}}}\right\}=\left\{L v_{1}, \ldots, L v_{n}\right\} \text { the dual basis of } \mathscr{B}^{*}
\end{aligned}
$$

i.e.,

$$
\begin{aligned}
f_{i} & =f_{v_{i}} \\
L_{f_{v_{i}}} & =L_{v_{i}}
\end{aligned}
$$

and these satisfy

$$
f_{\mid}\left(v_{i}\right)=t v_{j}\left(v_{i}\right)=\delta_{i j}=L_{f_{v_{i}}}\left(v_{j}\right)=L_{v_{i}}\left(f_{\mid}\right)
$$

If $v \in V$, then

$$
\begin{aligned}
v & =\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n} \text { unique } \alpha_{1}, \ldots, \alpha_{n} \in F \\
f_{j}(v) & =f_{j}\left(\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}\right) \\
& =\alpha_{j}
\end{aligned}
$$

So

$$
v=\sum_{i=1}^{n} f_{i}(v) v_{i}
$$

where $f_{i}(v)$ is the coordinate function relative to \mathscr{B} and if $f \in V^{*}$, then

$$
f=\beta_{1} f_{1}+\ldots+\beta_{n} f_{n} \text { unique } \beta_{1}, \ldots, \beta_{n} \in F
$$

As

$$
\begin{aligned}
L_{v_{1}}(f) & =\left(\beta_{1} f_{1}+\ldots+\beta_{n} f_{n}\right)\left(v_{j}\right) \\
& =\beta_{1} f_{1}\left(v_{1}\right)+\ldots+\beta_{n} f_{n}\left(v_{j}\right)=\beta
\end{aligned}
$$

And

$$
\begin{aligned}
f & =\beta_{1} f_{1}+\ldots+\beta_{n} f_{n} \\
& =L_{v_{1}}(f) f_{1}+\ldots+L_{v_{n}}(f) f_{n} \\
& =f\left(v_{1}\right) f_{1}+\ldots+f\left(v_{n}\right) f_{n}
\end{aligned}
$$

So,

$$
f=\sum f\left(v_{i}\right) f_{i}
$$

where $f\left(v_{i}\right)$ is the coordinate function.

§30.2 The Transpose

Let V, W be vector space over $F, T: V \rightarrow W$ linear if $g \in W^{*}=L(W, F)$, i.e., $g: W \rightarrow F$ linear, then the composition

$$
V \xrightarrow{T} W \xrightarrow{g}
$$

is a linear functional, i.e., $g \circ T \in V^{*}$.

Definition 30.3 (Transpose) - Let V, W be vector space over $F, T: V \rightarrow W$ linear. Define the transpose of T by

$$
T^{\top}: W^{*} \rightarrow V^{*} \text { by } g \mapsto g \circ T
$$

i.e.,

$$
T^{\top} g:=g \circ T \quad \forall g \in W^{*}
$$

i.e.,

$$
T^{t} g:=g \circ T \quad \underset{\mathrm{p}}{\mathrm{~V}} \stackrel{\mathrm{~T}}{\mathrm{~W}} \mathrm{~g}_{\text {commutes }}
$$

So

$$
\begin{gathered}
V \xrightarrow{T} W \\
V^{*} \stackrel{T^{\top}}{\leftarrow} W^{*}
\end{gathered}
$$

Claim 30.4. $T^{\top}: W^{*} \rightarrow V^{*}$ is linear if $g, g^{\prime} \in W^{*}, \alpha \in F$, then

$$
T^{\top}\left(\alpha g+g^{\prime}\right)=\left(\alpha g+g^{\prime}\right) \circ T=\alpha g T+g^{\prime} T=\alpha T^{\top} g+T^{\top} g^{\prime}
$$

T^{\top} is called the transpose because of the followings

Theorem 30.4

Let V, W be finite dimensional vector space over $F, \mathscr{B}, \mathscr{C}$ ordered bases for V, W respectively, $T: V \rightarrow W$ linear. Then

$$
[T]_{\mathscr{B}, \mathscr{C}}^{\top}=\left[T^{\top}\right]_{\mathscr{C}^{*}, \mathscr{B}^{*}}
$$

Proof. Let

$$
\begin{array}{ll}
\mathscr{B}=\left\{v_{1}, \ldots, v_{n}\right\}, \mathscr{B}^{*} & =\left\{f_{1}, \ldots, f_{n}\right\} \\
\mathscr{C}=\left\{w_{1}, \ldots, w_{m}\right\}, \mathscr{C}^{*} & =\left\{g_{1}, \ldots, g_{m}\right\}
\end{array}
$$

with $\mathscr{B}^{*}, \mathscr{C}^{*}$ the ordered dual bases of ordered bases \mathscr{B}, \mathscr{C} of V, W respectively.
Let

$$
[T]_{\mathscr{B}, \mathscr{C}}=\left(\alpha_{i j}\right) \text { and }\left[T^{\top}\right]_{\mathscr{C}^{*}, \mathscr{B}^{*}}=\left(\beta_{i j}\right)
$$

i.e.,

$$
\begin{aligned}
T_{v_{k}} & =\sum_{i=1}^{m} \alpha_{i k} w_{i} \in W, \quad k=1, \ldots, n \\
T^{\top} g_{j} & =\sum_{i=1}^{n} \beta_{i j} f_{i} \in V^{*}, \quad j=1, \ldots, m
\end{aligned}
$$

Then computation gives

$$
\begin{aligned}
\left(T^{\top} g_{j}\right)\left(v_{k}\right) & =g_{j}\left(T_{v_{k}}\right)=g_{j}\left(\sum_{i=1}^{m} \alpha_{i k} w_{i}\right) \\
& =\sum_{i=1}^{m} \alpha_{i k} g_{j}\left(w_{i}\right)=\sum_{i=1}^{m} \alpha_{i k} \delta_{i j}=\alpha_{j k}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(T^{\top} g\right)\left(v_{k}\right) & =\left(\sum_{i=1}^{n} \beta_{i j} f_{i}\right)\left(v_{k}\right)=\sum_{i=1}^{n} \beta_{i j} f_{i}\left(v_{k}\right) \\
& =\sum_{i=1}^{n} \beta_{i j} \delta_{i k}=\beta_{k j}
\end{aligned}
$$

Hence, $\alpha_{j k}=\beta_{k j} \forall j, k$ as needed.

Definition 30.5 (Annihilator) - Let V be a vector space over $F, \emptyset \neq S \subset V$ a subset.
The set

$$
S^{\circ}:=\left\{f \in V^{*}|f|_{S}=0\right\}=\left\{f \in V^{*} \mid f(s)=0 \forall s \in S\right\}
$$

is called the annihilator of S.

Question 30.1. If V is an inner product space over F, can you find something analogous?
Claim 30.5. $S^{\circ} \subset V^{*}$ is a subspaces (even if S is not).
Proof. Let $f, g \in S^{\circ}, \alpha \in F$. To show $\left.(\alpha f+g)\right|_{S}=0$, let $s \in S$, then

$$
(\alpha f+g)(s)=\alpha f(s)+g(s)=0
$$

so $\alpha f+g \in S^{\circ}$.
Observation: Let $T: V \rightarrow W$ be linear. Then

$$
\operatorname{ker} T^{\top}=(\operatorname{im} T)^{\circ}
$$

$g \in \operatorname{ker} T^{\top}$ iff $T^{\top} g=0$ iff $\left(T^{\top} g\right)(v)=0 \forall v \in V$ iff $g(T v)=0 \forall v \in V$ iff $g \in(\operatorname{im} T)^{\circ}$.

Proposition 30.6

Let V be a finite dimensional vector space over $F, W \subset V$ a subspace. Then

$$
\operatorname{dim} V=\operatorname{dim} W+\operatorname{dim} W^{\circ}
$$

Question 30.2. If V is a finite dimensional inner product space over F, can you find something similar?

Proof. Let $\left\{v_{1}, \ldots, v_{k}\right\}$ be a basis for W. Extend it to $\mathscr{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ a basis for V. Let $\mathscr{B}^{*}=\left\{f_{1}, \ldots, f_{n}\right\}$ be the dual basis of \mathscr{B}, i.e.,

$$
f_{i}\left(v_{j}\right)=\delta_{i j} \forall i, j
$$

Claim 30.6. $\mathscr{C}=\left\{f_{k+1}, \ldots, f_{n}\right\}$ is a basis for W°. Let $f \in W^{\circ}$. Then $\exists \beta_{1}, \ldots, \beta_{n} \in F \ni$

$$
f=\sum_{i=1}^{n} \beta_{i} f_{i}=\sum_{i=1}^{n} \underbrace{f\left(v_{i}\right)}_{\beta_{i}} f_{i}=\sum_{i=1}^{k+1} f\left(v_{i}\right) f_{i} \in \operatorname{Span} \mathscr{C}
$$

As $\mathscr{C} \subset \mathscr{B}^{*}$ and \mathscr{B}^{*} is linearly indep., so is \mathscr{C}. This proves the claim and the result follows.

Corollary 30.7

Let V be a finite dimensional vector space over $F, W \subset V$ a subspace. Identifying V and $V^{* *}$ via $v \leftrightarrow L_{v}$, we have

$$
W=\left(W^{\circ}\right)^{\circ}:=W^{\circ \circ}
$$

If V is a inner product space over F, can you find something similar?

Proof. We have $W^{\circ} \subset V^{*}$ and $W^{\circ \circ} \subset V^{* *}=V$ are subspaces and by the last proposition, we have

$$
\begin{aligned}
\operatorname{dim} V & =\operatorname{dim} W+\operatorname{dim} W^{\circ} \\
\operatorname{dim} V^{*} & =\operatorname{dim} W^{\circ}+\operatorname{dim} W^{\circ \circ} \\
\operatorname{dim} W & =\operatorname{dim} W^{\circ \circ}
\end{aligned}
$$

If $w \in W$, then

$$
L_{w} f=f(w)=0, \quad \forall f \in W^{\circ}
$$

So

$$
w=L_{w} \in W^{\circ \circ}
$$

i.e., $W \subset W^{\circ \circ}$ is a subspace. As $\operatorname{dim} W=\operatorname{dim} W^{\circ 0}, W=W^{\circ \circ}$.

Theorem 30.8

Let V, W be finite dimensional vector space over $F, T: V \rightarrow W$ linear. Then

$$
\operatorname{dimim} T=\operatorname{dimim} T^{\top}
$$

Proof. We have $\operatorname{dim} W=\operatorname{dim} W^{*}$

$$
\begin{aligned}
\operatorname{dim} W & =\operatorname{dimim} T+\operatorname{dim}(\operatorname{im} T)^{\circ} \\
\operatorname{dim} W^{*} & =\operatorname{dimim} T^{\top}+\operatorname{dim} \operatorname{ker} T^{\top}
\end{aligned}
$$

by the previous proposition and the Dimension Theorem. By observation,

$$
\begin{aligned}
(\operatorname{im} T)^{\circ} & =\operatorname{ker} T^{\top} \\
\operatorname{dim}(\operatorname{im} T)^{\circ} & =\operatorname{dim} \operatorname{ker} T^{\top}
\end{aligned}
$$

Hence,

$$
\operatorname{dimim} T=\operatorname{dimim} T^{\top}
$$

Application: Let $A \in F^{m \times n}$. The row (respectively column) RANK of A is the dimension of the subspace spanned by the rows (respectively column of A viewed as vectors in F^{m} (respectively $F^{n \times 1}$).
Using the theorems and our previous computation, we have
Claim 30.7. row rank $A=\operatorname{col} \operatorname{rank} A$.

