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§1 Lec 1: Oct 2, 2020

Remark 1.1. To know a definition, theorem, lemma, proposition, corollary,etc., you must

1. Know its precise statement and what it means without any mistake

2. Know explicit example of the statement and specific examples that do not satisfy it

3. Know consequences of the statement

4. Know how to compute using the statement

5. At least have an idea why you need the hypotheses – e.g., know counter-examples,. . .

6. Know the proof of the statement

7. Know the important (key) steps of in the proof, separate from the formal part of the
proof – i.e., the main idea(s) of the proof

THIS IS NOT EASY AND TAKES TIME – EVEN WHEN YOU THINK
THAT YOU HAVE MASTERED THINGS.

§1.1 Field

What are the properties of the REAL NUMBERS?

R := {x|x is a real no.}

– at least algebraically?
There are two FUNCTIONS (or MAPS)

• + : R× R→ R called ADDITION write a+ b := +(a, b)

• · : R× R→ R called MULTIPLICATION write a · b := ·(a, b)

that satisfy certain rule e.g., associativity, commutativity,. . .
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Duc Vu (Fall 2020) 1 Lec 1: Oct 2, 2020

Definition 1.2 (Field) — A set F is called a FIELD if there are two functions

• Addition: + : F × F → F , write a+ b := +(a, b)

• Multiplication: · : F × F → F , write a · b := ·(a, b)

satisfying the following AXIOMS(A: addition, M: multiplication, D: distributive)

A1 (a+ b) + c = a+ (b+ c) Associativity

A2 ∃ an element 0 ∈ F 3 a+ 0 = a = 0 + a Existence of a Zero

A3 ∀x ∈ F∃y ∈ F 3 x+ y = 0 = y + x Existence of an Additive Inverse

A4 a+ b = b+ a Commutativity

M1 (a · b) · c = a · (b · c)

M2 (A2) holds and ∃ an element ∈ F with 1 6= 0 3 a · 1 = a = 1 · a Existence of a
One

M3 (M2) holds and ∀0 6= x ∈ F ∃y ∈ F 3 xy = 1 = yx Existence of a
Multiplicative Inverse

M4 x · y = y · x

D1 a · (b+ c) = a · b+ a · c Distributive Law

D2 (a+ b) · c = a · c+ b · c

Comments: Let F be a field, a, b ∈ F . Then the following are true

1. F 6= ∅ (F at least has 2 elements)

2. 0 and 1 are unique

3. If a+ b = 0, then b is unique write b as −a :

if a+ b = a+ c, then

b = b+ 0

= b+ (a+ c)

= (b+ a) + c

= (a+ b) + c

= 0 + c

= c

4. if a+ b = a+ c, then b = c

5. if a 6= 0 and ab = 1 = ba, then b is unique write a−1 for b.

6. 0 · a = 0∀a ∈ F
0 · a+ 0 · a = (0 + 0) · a = 0 · a = 0 · a+ 0

7



Duc Vu (Fall 2020) 2 Lec 2: Oct 5, 2020

so 0 · a = 0 by 3.

7. if a · b = 0, then a = 0 or b = 0. If a 6= 0, then 0 = a−1(ab) = (a−1a)b = 1b = b

8. if a · b = a · c, a 6= 0, then b = c

9. (−a)(−b) = ab

10. −(−a) = a

11. if a 6= 0, then a−1 6= 0 and (a−1)−1 = a

Example 1.3

Q :=
{a
b
|a, b ∈ Z, b 6= 0

}
R := set of real no.

C := {a+ bi|a, b ∈ R}with

(a+ b
√
−1 + (c+ d

√
−1) = (a+ c) + (b+ d)

√
−1

(a+ b
√
−1) · (c+ d

√
−1) = (ac− bd) + (ad+ bc)

√
−1

∀a, b, c, d ∈ R
Under usual +, · of C

Q ⊂ R ⊂ C

are all field and we say Q is a subfield of R, Q,R subfield of C, i.e., they have the same
+, ·, 0, 1.
Z is not a field as 6 ∃n ∈ Z 3 2n = 1, so Z do not satisfy (M3).

Note:To show something is FALSE, we need only one COUNTER-EXAMPLE. To show
something is TRUE, one needs to show true for all elements – not just example.

§2 Lec 2: Oct 5, 2020

§2.1 Field(Cont’d)

Note: Z does satisfy the weaker properly if a, b ∈ Z then
(M3’) if ab = 0 in Z, then a = 0 or b = 0 and all other axioms except M3 hold

1. Let F = {0, 1} , 0 6= 1. Define +, · by following table Then F is a field.

Table 1: ADDITION
+ 0 1

0 0 1

1 1 0

8
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Table 2: MULTIPLICATION
· 0 1

0 0 0

1 0 1

2. ∃ fields with n elements for

n = 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, . . .

[conjecture?]

3. Let F be a field

F [t] := {(formal polynomial in one variable}

with t, given by

(a0 + a1t+ a2t
2 + . . .) + (b0 + b1t+ b2t

2 + . . .) := (a0 + a1) + (a1 + b1)t+ (a2 + b2)t2 + . . .

(a0 + a1t+ a2t
2 + . . .) · (b0 + b1t+ b2t

2 + . . .) := a0b0 + (a0b1 + a1b0)t+ . . .

Note: f, g ∈ F [t] are EQUAL iff they have the same COEFFICIENTS(coeffs) for
each ti (if ti does not occur we assume its coeff is 0.) F [t] is not a field but satisfy all
axioms except (M3) but it does satisfy (M3’) (compare Z ). Let

F (t) :=

{
f

g
|f, g ∈ F [t], g 6= 0

}
with

• f
g = h

k if fk = gh

• f
g + h

k
:= fk+gh

gk ∀f, g, h, k ∈ F [t]

• f
g ·

h
k

:= fh
gk g 6= 0, k 6= 0

is a field, the FIELD of RATIONAL POLYS over F .

Note:the 0 in F [t] is 0
f , f 6= 0, and 1 in F [t] is f

f , f 6= 0.

4. let F be a field.
MnF := {A|Aann× nmatrix entries inF}

usual +, · of matrices, i.e. for A,B ∈MnF, let

Aij := ijth entry of A, etc

Then

(A+B)ij := Aij +Bij

(AB)ij := Cij :=
n∑
k=1

AikBkj ∀i, j

Note: A = B iff Aij = Bij ∀i, j.
If n = 1, then

9



Duc Vu (Fall 2020) 2 Lec 2: Oct 5, 2020

F and M1F and the “same” so M1F is a field. If n > 1 then MnF is not a field nor
does it satisfy (M3), (M4), (M3’). It does satisfy other axioms with

I = In :=

1 . . . 0
...

. . .
...

0 . . . 1

 , 0 = 0n :=

0 . . . 0
...

...
0 . . . 0


§2.2 Vector Space

R2 := {(x, y)|x, y ∈ R} = R× R Vector in R2 are added as above and if v ∈ R2 is a vector,

v + w = (x1 + x2, y1 + y2)
w = (x2, y2)

v = (x1, y1)

Figure 1: Geometry in R2

αv makes sense ∀α ∈ F by α(x, y) = (αx, αy) called SCALAR MULTIPLICATION. For +,
scalar mult and (0, 0) is the ZERO VECTOR satisfying various axioms. e.g., assoc, comm,
“distributive law. . . ”. To abstractify this

10



Duc Vu (Fall 2020) 2 Lec 2: Oct 5, 2020

Definition 2.1 (Vector Space) — V is a vector space over F , via +, · or (V,+, ·) is a
vector space over F where

+ : V × V → V · : F × V → V

Addition Scalar Multiplication

write:v + w := +(v, w) write:α · v := ·(α, v) or αv

if the following axioms are satisfied

∀v, v1, v2, v3 ∈ V, ∀α, β ∈ F

1. v1 + (v2 + v3) = (v1 + v2) + v3

2. ∃ an element 0 ∈ V 3 v + 0 = v = 0 + v

3. (2) holds and the element (−1)v in V satisfies

v + (−1)v = 0 = (−1)v + v

or (2) holds and ∀v ∈ V ∃w ∈ V 3 v + w = 0 = w + v

4. v1 + v2 = v2 + v1

5. 1 · v = v

6. (α · β) · v = α(β · v)

7. (α+ β)v = αv + βv

8. α(v1 + v2) = αv1 + αv2

Elements of V are called vector, elements of F scalars .

Comments: V : a vector space over F

1. The zero of F is unique and is a scalar. The zero of V is unique and is a vector. They
are different (unless V = F ) even if we write 0 for both – should write 0F , 0V for the
zero of F , V respectively.

2. if v, w ∈ V, α ∈ F then

αv + w makes sense

vα, vw do not make sense

3. We usually write

vector using Roman letter

scalar using Greek letter

exception things like (x1, . . . , xn) ∈ Rn, xi ∈ R∀i

4. + : V × V → V says
if v, w ∈ V, then v + w ∈ V

11
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write v, w ∈ V →︸︷︷︸
implies

v + w ∈ V . We say V is CLOSED under +

5. · : F × V → V says α ∈ F, v ∈ V → αv ∈ V . We say V is CLOSED under SCALAR
MULTIPLICATION.

Example 2.2

F a field, e.g., R or C

1. F is a vector space over F with +, · of a field, i.e., the field operation are the
vector space operation with 0F = 0V .

2. Fn := {α1, . . . , αn} |αi ∈ F∀i is a vector space over F under COMPONENT-
WISE OPERATION and

0Fn := (0, . . . , 0)

Even have

F∞finite = {(α1, . . . , αn, . . .} |αi ∈ F∀i with only FINITELY MANY αi 6= 0

3. Let α < β in R
I = [α, β] , (α, β), [α, β), (α, β]

including (α = −∞, β = ∞). Let fxn I := {f : I → R|f a fxn} called the SET
of REAL VALUE FXNS on I.

Define +, · as follows: ∀f, g ∈ Fxn I,

f + g by (f + g)(x) := f(x) + g(x)

αf by (αf)(x) := αf(x) ∀α ∈ R

and 0 by 0(α) = 0∀α ∈ F . Then Fxn I is a vector space over R.

§3 Lec 3: Oct 7, 2020

§3.1 Vector Space(Cont’d)

Example 3.1

F is a field, e.g. R or C

1. F is a vector space over F with +, · of a field, i.e. the field operation are the
vector space operation with 0F = 0V .

2. Fn := {(α1, . . . , αn)|αi ∈ F∀i} is a vector space over F under COMPONENT-
WISE OPERATIONS

(α1, . . . , αn) + (β1, . . . , βn) := (α1 + β1, . . . , αn + βn)

β(α1, . . . , αn) := (βα1, . . . ., βαn)

12
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with α1, . . . , αn, β1, . . . , βn ∈ F and 0Fn := (0, . . . , 0).

Even have:

F∞ = F∞this : {(α1, . . . , αn, . . .)|αi ∈ F∀i with only FINITELY MANY αi 6= 0}

3. Let α < β in R
I = [α, β] , (α, β), [α, β), (α, β]

(including α = −∞, β =∞. Let function I := {f : I → R|f a function}
Define +, · as follows: ∀f, g ∈ Fxn I,

f + g by (f + g)(x) := f(x) + g(x)

αf by (αf)(x) := αf(x) ∀α ∈ R

and 0 by 0(α) = 0∀α ∈ F . Then Fxn I is a vector space over R.

Using this, we get subsets which are also vector space over R with same +, ·, 0.

• C(I) := {f ∈ fxn I|f continuous on I}
• Diff (I) := {f ∈ fxn I|f differentiable on I}
• Cn(I) :=

{
f ∈ fxn I|f(n) thenth derivative of f and f exists on I and is cont on I

}
• C∞(I) := {f ∈ fxn I|f(n) exists∀n ≥ 0 on I and is cont}
• Cω(I) := {f ∈ fxn I| f converges to its Taylor Series}

(in a neighborhood of every x ∈ I – be careful at boundary points)

• Int (I) := {f ∈ fxn I|f is integrable on I}

4. F [t] the set of polys, coeffs in F old +, · with scalar mult

α(α0 + α1t+ . . .+ αnt
n) := αα0 + αα1t+ . . .+ ααnt

n

5. F [t]n︸ ︷︷ ︸
truncatingF [t]

:= {0 ∈ F [t]} ∪ {f ∈ F [t]|degf ≤ n} (not closed under · of polys)

where deg f = the highest power of t occurring non-trivially in f if f 6= 0 is a
vector space over F with +, scalar mult,0.

Example 3.2 1. Fm×n := set ofm×nmatrices entries in F whereA ∈ Fm×n, Aij =
ijth entry of A

(A+B)ij := Aij +Bij ∈ F ∀A,B ∈ Fm×n

(αA)ij := αAij ∈ F ∀α ∈ F

0 =

0 . . . 0
...

. . .
...

0 . . . 0

 ( m rows and n columns)

COMPONENTWISE OPERATION! Then Fm×n is a vector space over F , e.g.

13
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MnF is a vector space over F .

Example to GENERALIZE

Let V be a vector space over F , ∅ 6= S a set. Set W := {f : S → V |f a map}.
Define +, · on W by

f + g (f + g)(s) := f(s) + g(s) ∈ V
αf (αf)(s) := α(f(s)) ∈ V

0W 0(s) = 0V ZERO FUNCTION

∀f, g ∈ W ;α ∈ F ; s ∈ S. Then W is a vector space over F .(of componentwise
operation)

2. Let F ⊂ K be a fields under +, · on K. Same 0,1, i.e. F is a SUBFIELD of k
e.g. R ⊂ C. Then K is a vector space over F by RESTRICTION of SCALARS.

i.e., + = + on K. With scalar mult, F ×K → K by

αv︸︷︷︸
in K as a vector space over F

= αv︸︷︷︸
in K as a field

∀α ∈ F ∀v ∈ V

e.g. R is a vector space over Q by m
n r = mr

n , m, n ∈ Z, n 6= 0, r ∈ R. More
generally, let V be a vector space over K, F ⊂ K subfield, then it is a vector
space over F by RESTRICTION of SCALARS.

·|F×V : F × V → V

e.g., Kn is a vector space over F (e.g. Cn is a vector space over R ).

Properties of Vector Space: Let V be a vector space over F . Then ∀α, β ∈ F, ∀v, w ∈ V ,
we have

1. The zero vector is unique write 0 or 0V .

2. (−1)v is the unique vector w 3 w + v = 0 = v + w write −v.

3. 0 · v = 0

4. α · 0 = 0

5. (−α)v = −(αv) = α(−v)

6. if αv = 0, then either α = 0 or v = 0

7. if αv = αw, α 6= 0, then v = w

8. if αv = βv, v 6= 0, then α = β

9. −(v + w) = (−v) + (−w) = −v − w

10. can ignore parentheses in +

14
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§3.2 Subspace

Definition 3.3 (Subspace) — Let V be a vector space over F , W ⊂ V a subset. We
say W is a subspace of V if W is a vector space over F with the operation +, · on V ,
i.e., (V,+, ·) is a vector space over F , via + : V × V → V and · : F × V → V then W
is a vector space over F via

• + = +/W×W : W →W : restrict the domain to W ×W

• · = ·|F×W : F ×W →W : restrict the domain to F ×W
i.e. W is closed under +, · from V , ∀w1

w2
∈ W ∀α ∈ F, w1 + w2 ∈ W and

αw1 ∈W and 0W = 0V .

Theorem 3.4 (Subspace)

Let V be a vector space over F , ∅ 6= W ⊂ V a subset. Then the following are
equivalent:

1. W is a subspace for V

2. W is closed under + and scalar mult from V

3. ∀w1, w2 ∈W , ∀α ∈ F , αw1 + w2 ∈W

Proof. Some of the implication are essentially ??
1) → 2) : by def. W is a subspace of V under +, · on V (and satisfies the axioms of a
vector space over F ) as 0V = 0W .
2)→ 1) claim: 0V ∈W and 0W = 0V : As ∅ 6= W∃w ∈W
By 2)(−1)w ∈W, hence 0V = w+(−w) ∈W . Since 0V +w′ = w′ = w′+0V in V ∀w′ ∈W ,
the claim follows. The other axioms hold for elements of V hence for W ⊂ V .
2)→ 3) : let α ∈ F , w1, w2 ∈W . As 2) holds, αw1 ∈W hence also αw1 + w2 ∈W
3)→ 2) Let α ∈ F , w1, w2 ∈W . As above and 3)

0V = w1 + (−w1) ∈W and 0V = 0W

Therefore,
w1 + w2 = 1 · w1 + w2 ∈W and αw1 + αw1 + 0V ∈W

by 3).

Note:Usually 3) is the easiest condition to check. WARNING: must subsets of a vector
space over F are NOT subspace.

Example 3.5

V a vector space over F .

1. 0 := {0V } and V are subspace of V

15
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2. Let I ⊂ R be an interval (not a point) then

Cω(I) < C∞(I) < . . . < Cn(I) < . . . < C ′(I)

< Diff I < C(I) < Int I < Fxn I

are subspaces of the vector space containing then. . . where we write

A < B if A ⊂ B and A 6= B

3. Let F be afield, e.g R. Then F = F [t]0 < F [t]1 < . . . < F [tn] < . . . < F [t] are
vector space over F each a subspace of the vector space over F containing it.

4. If W1 ⊂W2 ⊂ V , W1,W2 subspace of V ,then W1 ⊂W2 is a subspaces.

5. If W1 ⊂W2 is a subspace and W2 ⊂ V is a subspace, then W1 ⊂ V is a subspace.

6. Let W := {(0, α1, . . . , αn|αi ∈ F, 2 ≤ i ≤ n} ⊂ Fn is a subspace, but

{(1, α2, . . . , αn|αi ∈ F, 2 ≤ i ≤ n} is not. Why?

7. Every line or plane through the origin in R3 is a subspace.

§4 Lec 4: Oct 9, 2020

§4.1 Span & Subspace

Definition 4.1 (Linear Combination) — Let V be a vector space over F , v1, . . . , vn ∈ V
we say v ∈ V is a LINEAR COMBINATION of v1, . . . , vn if ∃α1, . . . , αn ∈ F 3 v =
αv1 + . . .+ αnvn.

Let
Span(v1, . . . , vn) := { all linear combos ofv1, . . . , vn}

Let v1, . . . , vn ∈ V . Then

Span(v1, . . . , vn) =

{
n∑
i=1

αivi|α1, . . . , αn ∈ F

}

is a subspace of V (by the Subspace Theorem) called the SPAN of v1, . . . , vn. It is the
(unique) smallest subsapce of V containing v1, . . . , vn.

i.e., if W ⊂ V is a subspace and v1, . . . , vn ∈ W then Span(v1, . . . , vn) ⊂ W . We also
let Span ∅ := {0V } = 0, the smallest vector space containing no vectors.

16
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V

Span(V) is a line

V2

V1

Span(V1, V2) = R2

if they are not collinear

Question: If we view C as a vector space over R, then R is a subspace of C, but if we view
C is a vector space over C, then R is not a subspace of C (why? What’s going on?) – not
closed under operation(s).

Definition 4.2 (Span) — Let V be a vector space over F, ∅ 6= S ⊂ V a subset. Then,
Span S := the set of all FINITE linear combos of vectors in S. i.e., if V ∈ Span S, then

∃v1, . . . , vn ∈ S, α1, . . . , αn ∈ F 3 v = α1v1 + . . .+ αnvn

Span S ⊂ V is a subspace. What is Span V?

Example 4.3 1. Let V = R3.

Span(i+ j, i− j, k) = SpanV = Span(i, j, i+ j, k) = Span(i+ j, i− j, k + i)

2. Define
SymmnF :=

{
A ∈MnF |A = A>

}
Recall: A> is the transpose of A, i.e.,

(A>)ij := Aji ∀i, j

is a subspace of MnF

3.

V =

{(
a c+ di

c− di b

)
|a, b, c, d ∈ R

}
⊂M2C

is NOT a subspace as a vector space over C ,eg,

i

(
a c+ di

c− di b

)
=

(
ai −d+ ci

d+ ci bi

)
does not lie in V if either a 6= 0 or b 6= 0 (cannot be imaginary). Also V is not a
subspace of M2R as a vector space over R as V 6⊂M2R. V ⊂M2C is a subspace
as a vector space over R.

17
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4. (Important computational example) Fix A ∈ Fm×n. Let

kerA :=

x ∈ Fn×1|Ax =

0
...
0

 in Fm×1


called the KERNEL or NULL SPACE of A. Ker A ⊂ Fn×1 is a subspace and it
is the SOLUTION SPACE of the system of m linear equations in n unknowns. –
which we can compute by Gaussian elimination.

5. LetWi ⊂ Vi, i ∈ I︸︷︷︸
indexing set

be subspaces. Then
⋂
IW =

⋂
i∈IWi := {x ∈ V |x ∈Wi ∀i ∈ I}

is a subspaces of V (why?)

6. In general, if W1,W2 ⊂ V are subspaces, W1 ∪W2 is NOT a subspace.

e.g., Span(i) ∪ Span(j) = {(x, 0)|x ∈ R} ∪ {(0, y)|y ∈ R} is not a subspace

(x, y) = (x, 0) + (0, y) /∈ Span(i) ∪ Span(j)

if x 6= 0 and y 6= 0

Definition 4.4 (Subspace & Span) — Let W1,W2 ⊂ V be subspaces. Define

W1 +W2 := {w1 + w2|w1 ∈W1, w2 ∈W2}
= Span(W1 ∪W2)

So w1 + w2 ⊂ V is a subspace and the smallest subsapce of V containing W1 and W2.

More generally, if Wi ∈ V is a subspace ∀i ∈ I let∑
I

Wi =
∑
i∈I

Wi := +Wi := Span(
⋃
I

Wi)

the smallest subspace of V containing Wi∀i ∈ I. What do elements in
∑

IWi look like?
Determine the span of vector v1, . . . , vn in Rn

Suppose vi = (ai1 , . . . , ani, i = 1, . . . , n. To determine when w ∈ Rn lies in Span(u1, . . . , un
) i.e., if w = (b1, . . . , bn) ∈ Rn when does

w = α1v1 + . . .+ αnvn, α1, . . . , αn ∈ R

What vi is an n× 1 column matrix

α1i
...
ani



A = (aij), B =

b1...
bn
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view w as

b1...
bn

. To solve

Ax = B, X =

α1
...
αn


is equivalent to finding all the n× 1 matrices B (actually B> ) s.t.

Ax = B

when the columns of A are the vi(v
>
i ).

Note: If m = n an A is invertible then all B work.

§4.2 Linear Independence

We know that Rn is an n-dimensional vector space over R. Since we need n coordinates
(axes) to describe all vector in Rn but no fewer will do.
We want something like the following:

Let V be a vector space over F with V 6= ∅. Can we find distinct vectors v1 . . . , vn ∈ V ,
some n with following properties

1. V = Span(v1, . . . , vn )

2. No vi is a linear combos of v1, . . . , vi−1, vi+1, . . . , vn (i.e. we need them all)

Then we want to call V an n-DIMENSIONAL VECTOR SPACE OVER F .

Lemma 4.5

Let V be a vector space over F , n > 1. Suppose v1, . . . , vn are distinct. Then (2) is
equivalent to

If α1v1 + . . .+ αnvn = β1v1 + . . .+ βnvn, αi, βi ∈ F∀i, j

i.e. the “coordinates” are unique.

Proof. (− >) If not, relabelling the v′is, we may assume that α1 6= β2 in(*), then

(α1 − β1)v1 =
n∑
i=2

(βi − αi)vi

As α1 − β1 6= 0 in F , a field, (α1 − β1)−1 exists, so

v1 =
n∑
i=2

(α1 − β1)−1(βi − αi)vi ∈ Span(v1, . . . , vn)

a contradiction.
(< −) Relabelling, we may assume that

v1 = α2v2 + . . .+ αnvn, some αi ∈ F
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Then,
1 · v1 + 0v2 + . . .+ 0vn = v1 = 0 · v1 + α2v2 + . . .+ αnvn

so 1 = 0, a contradiction.

Remark 4.6. The case n = 1 is special because there are two possibilities
Case 1: v 6= 0 : then αv = βv → α = β
Case 2: v = 0 : then αv = βv∀α, β ∈ F

So the only time the above lemma is false is when n = 1 and v = 0. We do not want to say
this, so we use another definition.

§5 Lec 5: Oct 12, 2020

§5.1 Linear Independence(Cont’d)

Definition 5.1 (Linear Independence & Dependence) — Let V be a vector space over
F , v1, . . . , vn in V all distinct. We say {v1, . . . , vn} is LINEARLY DEPENDENT if
∃α1, . . . , αn ∈ F not all zero 3

α1v1 + . . .+ αnvn = 0

and {v1, . . . , vn} is LINEARLY INDEPENDENT if it is NOT linearly dependent, i.e.,
if for any eqn

0 = αv1 + . . .+ αnvn, α1, . . . , αn ∈ F,

then αi = 0∀i, i.e., the only linear comb of v1, . . . , vn – the zero vector is the TRIVIAL
linear combo (we shall also say that distinct v1, . . . , vn are linearly independent if
{v1, . . . , vn} is. More generally, a set ∅ 6= S ⊂ V is called LINEARLY DEPENDENT
if for some FINITE subset (of distinct elements of S ) of S is linearly dependent and
it is called LINEARLY INDEPENDENT if every FINITE subset of S (of distinct
elements) is linearly independent.
We say vi, i ∈ F , all distinct are LINEARLY INDEPENDENT if {vi}i∈I is linearly
independent and vi 6= vj∀i, j ∈ I, i 6= j.

Remark 5.2. Let V be a vector space over F , ∅ 6= S ⊂ V a subset

1. If 0 ∈ S, then S is linearly dependent as l · 0 = 0

2. distinct: v1, . . . , vn in V are linearly independent iff

• no vi = 0

• α1v1 + . . .+ αnvn = β1v1 + . . .+ βnvn, αi, βi ∈ F implies αi = βi∀i

Note: v, v are linearly dependent if we allow repetitions – and {v, v} = {v}.

For homework, make sure to show this:
Suppose v1, . . . , vn are distinct, n > 2, no vi = 0. Suppose no vi is a scalar multiple

of another vj , j 6= i. It does not follow that v1, . . . , vn are linearly independent (in
general).
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Example 5.3 (counter-example)

(1, 0), (0, 1), (1, 1) in V = R2

(1, 0), (0, 1) are linearly indep. but not (1, 0), (0, 1), and (1, 1).

Remark 5.4. Let ∅ 6= T ⊂ S be a subset. If T is linearly dependent, so is S. Then the
contraposition is also true: if S is linearly indep., so is T .

More remarks:

1. Let 0 6= v ∈ V . Then {v} is linearly independent and

Fv := Span(v)

is called a LINE in V:
αv = 0→ α = 0

2. u, v, w ∈ V \{0} and v /∈ Span(w ) (equivalently, w /∈ Span(v ), then {v, w} is linearly
indep. and span( v, w ) is called a PLANE in V .

3. (1, 1), (−2,−2) are linearly dep. in R2.

4. (1, 1), (2,−2) are linearly indep. in R2 (show coefficients are equal to each other and
to 0).

5. More generally,

vi = (ai1 , . . . , ain) in Rn, i = 1, . . . ,m (distinct)

Then
∃α1, . . . , αm ∈ R not all 0 3 α1v1 + . . .+ αmvm = 0

iff v1, . . . , vm are linearly dep – iff ∃α1, . . . , αm ∈ R not all 0 s.t.

α1(a11, . . . , a1m) + . . .+ αm(am1, . . . , amn) = 0

iff the matrix

A =

a11 . . . a1m
...

am1 . . . amn


with rows vi row reduced to echelon form with a zero row. Also,

B = A> =

a11 . . . am1
...

a1m amn


i.e., write the vectors vi as columns then

B︸︷︷︸
n×m

X︸︷︷︸
m×1

= 0
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has a NON-TRIVIAL solution, i.e.,

kerB 6= 0

where
kerB :=

{
X ∈ Fm×1|BX = 0

}
the kernel of B.

6. Let f1, . . . , fn ∈ Cn−1(I), I = (α, β), α < β in R and

α1f1 + . . .+ αnfn = 0︸︷︷︸
the zero func

i.e., (α1f1 + . . . + αnfn)(x) = 0 ∀x ∈ (α, β). Taking the derivatives (n − 1) times
and put them in matrix form, we have

f1 . . . fn
f ′1 . . . f ′n
... . . .

...

fn−1
1 . . . fn−1

n



α1
...
...
αn

 =


0
...
...
0


In particular, the Wronskian of f1, . . . , fn is not the zero func, i.e., ∃x ∈ (α, β) 3
W (f1, . . . , fn)(x) 6= 0. This means that the matrix above is invertible for some
x ∈ (α, β). Then, α1 = 0, . . . , αn = 0 by Cramer’s rule – only the trivial soln.

Conclusion: W (f1, . . . , fn) 6= 0→ {f1, . . . , fn} is linearly indep.

WARNING: the converse is false.

Example 5.5 (of the conclusion)

Let α < β in R.

1. sinx, cosx are linearly indep. on (α, β).

2. We need some (sub) defns for this example.

For x ∈ R, define the map
ex : R[t]→ R by

g =
∑
ait

i 7→ g(x) :=
∑
aix

i called EVALUATION at x.

We call a map f : R→ R (or some f : I → R(I ⊂ R) ) a POLYNOMIAL FUNCTION if

∃Pf =
n∑
i=1

ait
i ∈ R[t]

and

f(x) = exPf = Pf (x) =
n∑
i=1

aix
i ∀x ∈ R
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i.e., the function arising from a (formal) polynomial by evaluation at each x. We let

R[x] := {f : R→ R|f a poly fcn }

Note:Polynomial fcns are defined on all of R. R[x] is a vector space over R.
Warning: if we replace R by F , F [t] may be “very different” from F [x], e.g., let

F = {0, 1}. Then
t, t2 ∈ F [t], t 6= t2 but Pt = Pt2

Now we can give our example using Wronskians

{1, x, . . . , xn}

is linearly indep. on (α, β) assuming α < β.
HOMEWORK: Let α1, . . . , αn ∈ R be distinct, then

eα1t, . . . , eαnt

are linearly indep. on (α, β). THINK OVER IT!

Theorem 5.6 (Toss In)

Let V be a vector space over F , ∅ 6= S ⊂ V a linearly indep. subset. Suppose that
v ∈ V \ Span S. Then S ∪ {v} is linearly indep.

Proof. Suppose this is false which is S ∪ {v} is linearly dep. Then ∃v1, . . . , vn ∈ S and
α, α1, . . . , αn ∈ F some n not all zero s.t.

αv + α1v1 + . . .+ αnvn = 0

Case 1: α = 0
Then α1v1 + . . . + αnvn = 0 not all α1, . . . , αn zero so {v1, . . . , vn} is linearly dep., a

contradiction.
Case 2: α 6= 0

Then α−1 exists.
v = −α−1α1v1 − . . .− α−1αnvn

is a linear combo of v1, . . . , vn, i.e., v ∈ Span (v1, . . . , vn) – a contradiction. Therefore,
S ∪ {v} is linearly indep.

Corollary 5.7

Let V be a vector space over F and v1, . . . , vn ∈ V linearly indep. if

Span(v1, . . . , vn) < V

then ∃vn+1 ∈ V 3 v1, . . . , vn, vn+1 are linearly indep. and

Span(v1, . . . , vn) < Span(v1, . . . , vn+1) ⊂ V
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Question 5.1. Why can’t we get a linearly indep. set spanning any vector space over F
using this theorem?

Ans: Certainly we may not get a finite set. We shall only be interested in the case, much of
the time, when such a finite linearly indep. set spans our vector space over F .

Example 5.8

(1, 3, 1) ∈ R3 is linearly indep. but Span (1, 3, 1) < R3.
(1, 1, 0) /∈ Span (1, 3, 1) so (1, 3, 1), (1, 1, 0) are linearly indep. Similarly for (0, 0, 1).
R3 = Span((1, 3, 1), (1, 1, 0), (0, 0, 1))

§6 Lec 6: Oct 14, 2020

§6.1 Bases

Definition 6.1 (Basis) — Let ∅ 6= V be a vector space over F . A BASIS B for V is a
linearly indep. set in V and spans V . i.e.,

1. V = Span B.

2. B is linearly indep.

We say V is a FINITE DIMENSIONAL VECTOR SPACE OVER F if there exists B
for V with finitely many elements, i.e., |B| <∞.

Notation: If V = 0, we say V is a finite dimensional vector sapce over F of DIMENSION
ZERO.
Goal: To show if V is finite dimensional vector space over F with bases B and b then
|B| = |b| <∞. This common integer is called the DIMENSION of V .

Example 6.2

Let V be a vector space over F , S ⊂ V a linearly indep. set. Then S is a basis for
Span S.
Warning: S is not a subspace just a subset.

Definition 6.3 (Ordered Basis) — If V is a finite dimensional vector space over F
with a basis B = {v1, . . . , vn} we called it an ORDERED BASIS if the given order
of v1, . . . , vn is to be used, i.e., the ith vector in B is the ith in the written list, e.g.,
{v1, v2, v4, v3, . . .} then v4 is the 3rd element in the ordered list if we want B to be
ordered in this way.
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Theorem 6.4 (Coordinate)

Let V be a finite dimensional vector space over F with basis B = {v1, . . . , vn} and
v ∈ V . Then ∃!α1, . . . , αn ∈ F 3 v = α1v1 + . . . + αnvn. We call α1, . . . , αn the
COORDINATE of v relative to the basis B and call αi the ith coordinate relative to
B.

Proof. Existence: By defn, V = Span B, so if v ∈ V

∃α1, . . . , αn ∈ F 3 v = α1v1 + . . .+ αnvn

Uniqueness: Let v ∈ V and suppose that α1v1 + . . .+ αnvn = β1v1 + . . .+ βnvn, for some
α1, . . . , αn, β1, . . . , βn ∈ F . Then

(α1 − β1)v1 + . . .+ (αn − βn)vn = 0

Since B is linearly indep,
αi = βi = 0 for i = 1, . . . , n

Question 6.1. Does the above theorem hold if the basis B is not necessarily finite? If so
prove it!

Exercise 6.1. Let V be a vector space over F , v1, . . . , vn ∈ V then

Span(v1, . . . , vn) = Span(v2, . . . , vn) ⇐⇒ v1 ∈ Span(v2, . . . , vn)

Make sure to PROVE THIS

Note:For induction, you CAN’T assume n in the induction hypothesis is special in any way
except it is greater than 1. Also, you can start induction at n = 0,i.e., show P (0) true (or
at any n ∈ Z).

Theorem 6.5 (Toss Out)

Let V be a vector space over F . If V can be spanned by finitely many vector then V
is a finite dimensional vector space over F . More precisely, if

V = Span(v1, . . . , vn)

then a subset of {v1, . . . , vn} is a basis for V .

Proof. If V = 0, there is nothing to prove. So we may assume that V 6= 0. Suppose that
V = Span(v1, . . . , vn). We can use induction on n and show a subset of {v1, . . . , vn} is a
basis.

• n = 1 : V = Span(v1) 6= 0 as V 6= 0, so v1 6= 0. Hence {v1} is linearly indep and it is
the basis.
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• Assume V = Span(w1, . . . , wn ) – the induction hypothesis – to be true. Then a
subset of w1, . . . , wn is a basis for V . Now suppose that v = Span(v1, . . . , vn+1). To
show a subset of {v1, . . . , vn+1} is a basis for V , we need to show if {v1, . . . , vn+1} is
linearly indep., then it is a basis for V and it spans V and we are done. So let us
assume that {v1, . . . , vn+1} is linearly dep. Hence,

∃α1, . . . , αn+1 ∈ F not all zero 3

α1v1 + . . .+ αn+1vn+1 = 0

Assume αn+1 6= 0, then

vn+1 = −α−1
n+1α1v1 − . . .− α−1

n+1αnvn

lies in Span(v1, . . . , vn). By the Exercise above,

V = Span(v1, . . . , vn+1) = Span(v1, . . . , vn)

By the induction hypo, a subset of {v1, . . . , vn} is a basis for V .

Example 6.6 1. Let ei = {(0, . . . , 0, 1, 0, . . .)} ∈ Fn

s = sn := {e1, . . . , en} ⊂ Fn

If v ∈ Fn, then
v = (α1, . . . , αn) = α1e1 + . . .+ αnen

since αi ∈ F , so Fn = Span s. If 0 = α1e1+. . .+αnen = (α1, . . . , αn) = (0, . . . , 0),
then αi = 0∀i. So s is linearly indep. Hence s is a basis for Fn called the standard
basis. More generally, let

eij ∈ Fm×n be the m× n matrix with all entries 0 except in the ith place.

Then smn := {eij |1 ≤ i ≤ m, 1 ≤ j ≤ n} is a basis for Fm×n called the STAN-
DARD BASIS for Fm×n – same proof – everything is done componentwise.

2. V = F [t] := { polys in t, coeffs in F.} (F = R ). Let f ∈ V . Then, there exists
n ≥ 0 in Z and α0, . . . , αn in F s.t.

f = α0 + α1t+ . . .+ αnt
n

So B = {tn|n ≥ 0} =
{

1, t, t2, . . .
}

spans V and by defn if

α0 + α1t+ . . .+ αnt
n = 0︸︷︷︸

zero poly

then αi = 0 for all i so B is linearly indep. Hence B is a basis for F [t]. B is not a
finite set. We shall see that F [t] is not a finite dimensional vector space over F .

How?
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3. F [t]n := {f ∈ F [t]|f = 0or degf ≤ n} ⊂ F [t] is spanned by
{

1, t, t2, . . . , tn
}

. It
is a subset of linearly indep. set.

{
1, t, t2, . . .

}
= {tn|n ≥ 0} so also linearly indep.

and therefore a basis.

4.
{

1,
√
−1
}

is a basis for C as a vector space over R. {1} is a basis for C as a
vector space over C(indeed, if F is a field, F is a vector space over F and if
0 6= α ∈ F , then α−1 exists and x = xα−1α ∈ Span F so {α} is a basis. e.g.,
{π} is a basis for R as a vector space over R ).

5.
{
e−x, e3x

}
is a basis for

V :=
{
f ∈ C2(−∞,∞)|f ′′ − 2f ′ − 3f = 0

}
a vector space over R.

6. Given v1, . . . , vn ∈ Fn, you know how to find W = Span(v1, . . . , vn ). Note:If
m > n then rows reducing A> must lead to a zero row so v1, . . . , vm cannot be
linearly indep. If m = n we can see if

detA> = 0 (or det A = 0)

then linearly dep. And if

detA> 6= 0 (or det A 6= 0)

then linearly indep.

§7 Lec 7: Oct 16, 2020

§7.1 Replacement Theorem

Theorem 7.1 (Replacement)

Let V be a vector space over F , {v1, . . . , vn} a basis for V . Suppose that v ∈ V
satisfies

v = α1v1 + . . .+ αnvn, α1, . . . , αn ∈ F, αi 6= 0

Then
{v1, . . . , vi−1, v, vi+1, . . . , vn}

is also a basis for V .

Proof. Changing notation, we may assume α1 6= 0. To show {v1, v2, . . . , vn} is a basis for
V , we have to show {v, v2, . . . , vn} spans V . Since

v = α1v1 + . . .+ αnvn, α1 6= 0

α−1
1 exists, so

v1 = α−1
1 v − α−1

1 α2v2 − . . .− α−1
1 αnvn
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lies in Span(v, v2, . . . , vn ). By Exercise . . . ,

V = Span(v, v1, . . . , vn) = Span(v, v2, . . . , vn)

So {v, v2, . . . , vn} spans V . Thus, {v, v2, . . . , vn} is linearly indep.
Suppose ∃β1, β2, . . . , βn ∈ F not all 0 3

βv + β2v2 + . . .+ βnvn = 0

Case 1: β = 0
Then β2v2+. . .+βnvn = 0 not all βi = 0. So {v2, . . . , vn} is linearly dep., a contradiction.

Case 2: β 6= 0, so β−1 exists.
Then using (*), we see

v = 0 · v1 − β−1β2v2 − . . .− β−1βnvn = α1v1 + . . .+ αnvn

As {v2, . . . , vn} is a basis, by the Coordinate Theorem, we have

α1 = 0 and α1 = β−1βi

a contradiction.

Question 7.1. In the Replacement Theorem, do we need the basis to be finite?

Ans: I think it can be infinite . . .

§7.2 Main Theorem

Theorem 7.2 (Main)

Suppose V is a vector space over F with V = Span(v1, . . . , vn). Then any linearly
indep. subset of V has at most n elements.

Proof. We know that a subset of B = {v1, . . . , vn} is a basis for V by Toss Out Theorem.
So we may assume B is a basis for V . It suffices to show any linearly indep. set in V has at
most |B| = n elements where B is a basis. Let {w1, . . . , wm} ⊂ V be linearly indep. where
no wi = 0. To show m ≤ n, the idea is to use Toss In and Toss out in conjunction with the
Replacement Theorem.

Claim 7.1. After changing notation, if necessary, for each k ≤ n

{w1, . . . , wk, vk+1, . . . , vn}

is a basis for V .

Suppose we have shown the above claim for k = n. Apply the claim to k = n if m > k,
then {w1, . . . , wn+1} is linearly dep., a contradiction as {w1, . . . , wn} is a basis. Thus, we
prove the claim for m ≤ n as needed. We prove it by induction on k. BY the argument
above, we may assume k ≤ n.
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• k = 1 : As w1 ∈ Span B = Span (v1, . . . , vn) and w1 6= 0, ∃α1, . . . , αn ∈ F not all 0
3

w1 = α1v1 + . . .+ αnvn

Changing notation, we may assume α1 6= 0. By the Replacement Theorem,

{w1, v2, . . . , vn} is a basis for V

• Assume the claim hold for k(k < n).

• We must show the claim holds for k + 1,

{w1, . . . , wk, vk+1, . . . , vn} is a basis for V

We can write

0 6= wk+1 = β1w1 + . . .+ βkwk + αk+1vk+1 + . . .+ αnvn

for some (new) β1, . . . , βk, αk+1, . . . , αn ∈ F not all 0

Case 1: αk+1 = αk+2 = . . . = αn = 0

Then wk+1 ∈ Span(w1, . . . , wk), hence {w1, . . . , wk+1} is linearly dep., a contradiction.

Case 2: ∃i 3 αi 6= 0 :

Changing notation, we may assume αk+1 6= 0. By the Replacement Theorem

{w1, . . . , wk+1, vk+2, . . . , vn}

is a basis for V . This completes the induction step thus prove the claim and establish
the theorem.

§7.3 A Glance at Dimension

Corollary 7.3

Let V be a finite dimensional vector space over F , B1, B2 two bases for V . Then
|B1| = |B2| < ∞. We call |B1| the dimension of V , write dimV = dimF V = |B1|
(dropping F if F is clear).

Proof. By defn of finite dimensional vector space over F , ∃ a basis b for V with |b| <∞.
By the Main Theorem, |B| ≤ |b|, if B is a basis for V , so B is finite. Again by the Main
Theorem, |b| ≤ |B| if B is a basis for V , so |b| = |B| for any basis B of V .

The corollary above says dimV is well-defined for all finite dimensional vector space over
F , i.e., “dim” : {finite dimensional vector space over F → Z+ ∪ {0}} is a function.
Warning: F makes a difference.
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Example 7.4

dimCC = 1 basis {1}
dimRC = 2 basis

{
1,
√
−1
}

dimQC =?

Corollary 7.5

dimF F
n = n.

Corollary 7.6

dimF F
m×n = mn.

Corollary 7.7

dimF F [t]n = 1 + n.

Note: If V is a finite dimensional vector space over F with bases B, then the Replacement
Theorem allows us to find many other bases.

Corollary 7.8

Let V be a finite dimensional vector space over F , n = dimV , ∅ 6= S ⊂ V a subset.
Then

• If |S| > n, then S is linearly dep.

• If |S| < n, then Span S < V .

Proof. • First bullet point: The Main Theorem says:

A maximal linearly indep. set in V is a basis and can have at most n elements by
Toss In Theorem.

• Second bullet point: By Toss Out Theorem, we can assume that S is linearly indep.,
so it cannot be a basis by Corollary ?.

Question 7.2. What is dimRMn(C)?

§8 Lec 8: Oct 19, 2020

§8.1 Extension and Counting Theorem
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Theorem 8.1 (Extension)

Let V be a finite dimensional vector space over F , W ⊂ V a subspace. Then every
linearly independent subset S in W is finite and part of a basis for W which is a finite
dimensional vector space over F .

Proof. Any linearly indep. set in W is linearly indep. subset S in V so |S| ≤ dimV <∞
by the Main Theorem. In particular,

dim SpanS ≤ dimV

if W = Span S, we are done.
If not, ∃w1 ∈W \ Span S, and hence S1 = S ∪ {w1} is linearly indep. by Toss In Theorem
and

|S1| = |S ∪ {w1} | = |S|+ 1 ≤ dimV

if Span S1 < W , then ∃w2 ∈ W \ Span S1, so S2 = S ∪ {w1, w2} ⊂ W is linearly indep.,
hence

|S2| = |S|+ 2 ≤ dimV

Continuing in this manner, we must stop when n ≤ dimV − dim Span S as dimV < ∞.
So S is a part of a basis for W and W is a finite dimensional vector space over F . Think

about the
proof for
this

Corollary 8.2

Let V be a finite dimensional vector space over F . Then any linearly indep. set in V
can be EXTENDED to a basis for V , i.e., is part of a basis for V . We often call this
special case the Extension Theorem.

Corollary 8.3

Let V be a finite dimensional vector space over F , W ⊂ V a subspace. Then W is a
finite dimensional vector space over F and dimW ≤ dimV with equality iff W = V .

Proof. Left as exercise.

Theorem 8.4 (Counting)

Let V be a finite dimensional vector space over F , W1,W2 ⊂ V subspaces. Suppose
that both W1 and W2 are finite dimensional vector space over F . Then

1. W1 ∩W2 is a finite dimensional vector space over F .

2. W1 +W2 is a finite dimensional vector space over F .

3. dimW1 + dimW2 = dim(W1 +W2) + dim(W1 ∩W2).
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Proof. 1. W1 ∩W2 ⊂ Wi, i = 1, 2, so it is a finite dimensional vector space over F by
corollary 8.2.

2. Let Bi be a basis for Wi, i = 1, 2, . . .. Then W1 +W2 = Span (B1 ∪B2) and

|B1 ∪B2| ≤ |B1|+ |B2| <∞

So W1 +W2 is a finite dimensional vector space over F by Toss Out.

3. Let B = {v1, . . . , vn} be a basis for W1 ∩W2. Extend B to a basis

b1 = {v1, . . . , vn, y1, . . . , yr} for W1

b2 = {v1, . . . , vn, z1, . . . , zs} for W2

using the Extension Theorem.

Claim 8.1. b1 ∪ b2 = {v1, . . . , vn, y1, . . . , yr, z1, . . . , zs} is a basis for W1 + W2 and
has n+ r + s elements. So if we show the claim, the result will follow.

Certainly,
Span(b1 ∪ b2) = Span b1 + Span b2 = W1 +W2

So we need only to show b1 ∪ b2 is linearly indep. Suppose this is false. Then

0 = α1v1 + . . .+ αnvn + β1y1 + . . .+ βryr + γ1z1 + . . .+ γszs (*)

for some α1, . . . , αn, β1, . . . , βn, γ1, . . . , γs in F not all zero.

Case 1: All the γi = 0. Since b1 is linearly indep., this is a contradiction.

Case 2: Some γi 6= 0.

Changing notation, we may assume γ1 6= 0. Since b2 is a basis, (*) leads to an
equation

0 6= z = γ1z1 + . . .+ γszs = −α1v1 − . . .− αnvn − β1y1 − . . .− βryr
Therefore, 0 6= z lies in Span b2 ∩ Span b1 = W2 ∩W1. So we can write zi ∈W1 ∩W2

using basis B as

0 6= z = δ1v1 + . . .+ δnvn some δ1, . . . , δn ∈ F

Thus W2 = Span b2, we have

δ1v1 + . . .+ δnvn − 0z1 + . . .+ 0zs = z = 0v1 + . . .+ 0vn + γ1z1 + . . .+ γszs

By the Coordinate Theorem, γ1 = 0, a contradiction.

Corollary 8.5

Let V be a vector space over F , W1,W2 ⊂ V finite dimensional subspaces of V . Then

dim(W1 +W2) = dimW1 + dimW2

iff
W1 ∩W2 = ∅

In this case, we write W1 +W2 = W1 ⊕W2 called the DIRECT SUM.
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§8.2 Linear Transformation

In mathematics, whenever you have a collection of objects, one studies maps between them
that preserves any special properties of the objects in the collection and tries to see what
information can be gained from such maps.

Definition 8.6 (Linear Transformation) — Let V,W be a vector space over F . A
map T : V → W is called a Linear Transformation, write T : V → W is linear if
∀v1, v2 ∈ V,∀α ∈ F

• T (v1 + v2) = T (v1) + T (v2).

• T (αv1) = αT (v1).

• T (0V ) = 0W .

Notation: We write Tv for T (v).

Remark 8.7. Let V,W be a vector space over F , T : V →W a map.

1. If T satisfies 1) and 2), then it satisfies 3):

0W + T (0V ) = T (0V ) = T (0V + 0V ) = T (0V ) + T (0V )

so 0W = T (0V ).

2. T is linear iff T (αv1 + v2) = αTv1 + Tv2 ∀v1, v2 ∈ V,∀α ∈ F .

3. If T is linear, α1, . . . , αn ∈ F, v1, . . . , vn ∈ V , then

T

(
n∑
i=1

αivi

)
=

n∑
i=1

αiTvi

We leave a proof of 2) and 3) as exercises.

Example 8.8

Let V,W be a vector space over F . The followings are linear transformations

1. 0V,W : V →W by v 7→ 0W .

2. V = W , 1V : V → V by v 7→ v.

A linear transformation T : V → V is called a Linear Operator.

3. If ∅ 6= Z ⊂W is a subset, then we have a map

inc : Z →W

given by z 7→ z called the Inclusion Map. Then, Z is a subspace of V iff inc:
Z ↪→W is linear.
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Note: inc = 1W

∣∣∣
Z︸ ︷︷ ︸

Restriction map

.

This is the Subspace Theorem.

4. T : Fn → Fn−1 by (α1, . . . , αn) 7→ (α1, . . . ,

omit︷︸︸︷
i , . . . , αn for a fixed i.

5. T : Fn → F by (α1, . . . , αn) 7→ αi for a fixed i.

6. T : Rn−1 → Rn by (α1, . . . , αn−1 7→ (α1, . . . , αi−1, 0, αi, . . . , αn) for fixed i.

7. T : R→ Rn by α 7→ (0, 0, . . . , α, 0, . . . , 0) for fixed i.

8. If α < β in R, D : C ′(α, β)→ C(α, β) by f 7→ f ′.

9. If α < β in R, Int: C(α, β)→ C ′(α, β) by f 7→
∫
f where

∫
f is the antiderivative

– constant of integration 0.

10. Fix α ∈ F , then λα : V → V by v 7→ αv. Left translation by α.

11. Let A ∈ Fm×n. Define

T : Fn×1 → Fm×1 by T ·X = A ·X

i.e.

α1
...
αn

 7→ A

α1
...
αn


Matrices can be viewed as linear transformation. We should see the converse is
true IF V is a finite dimensional vector space over F . It is not true in general.

§9 Lec 9: Oct 21, 2020

§9.1 Kernel, Image, and Dimension Theorem

Definition 9.1 (Kernel(Nullspace)) — Let V,W be a vector space over F , T : V →W
linear set

N(T ) = ker T := {v ∈ V |Tv = 0W }

called the nullspace or kernel of T .
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Definition 9.2 (Range(Image)) — Let V,W be a vector space over F , T : V → W
linear set

im T = T (V ) := {w ∈W |∃v ∈ V 3 Tv = w}
= {Tv|v ∈ V }

called the range or image of T .

Proposition 9.3

Let T : V →W be linear. Then

1. kerT ⊂ V is a subspace.

2. imT ⊂W is a subspace.

Proof. Left as exercise.

Theorem 9.4 (Dimension)

Let T : V →W be linear with V is a finite dimensional vector space over F . Then

1. im T and kerT are finite dimensional vector space over F .

2. dimV = dim kerT + dim imT .

Note: dim kerT is also called the NULLITY of T and dim imT is also called the RANK of
T .

Proof. Let n = dimV .
kerT ⊂ V is a subspace, V is a finite dimensional vector space over F so kerT is a

finite dimensional vector space over F and dim kerT ≤ dimV = n. Say m = dim kerT .
Let B0 = {v1, . . . , vm} be a basis for kerT . By the Extension Theorem ∃B = {v1, . . . , vm, . . . , vn}
a basis for V .

Claim 9.1. Tvm+1, . . . , T vn are linearly indep. (in particular, distinct) and

C = {Tvm+1, . . . , T vn}

is a basis for imT .

If we prove the claim above, then imT is a finite dimensional vector space over F of
dimension n−m and we are done.
Step 1: C spans imT :

Let w ∈ imT . By definition, ∃v ∈ V 3 Tv = w. As B is a basis for V ∃α1, . . . , αn ∈ F 3

v = α1v1 + . . .+ αnvn
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Hence

w = T (v) = T (α1v1 + . . .+ αnvn) = α1Tv1 + . . .+ αnTvn

= α10W + . . .+ αm0W + αm+1Tvm+1 + . . .+ αnTvn

lies w Span(C ) (as v1, . . . , vm ∈ kerT ). need
recheckCase 2: C is linearly indep.

Suppose αm+1, . . . , αn ∈ F and

αm+1Tvm+1 + . . .+ αnTvn = 0W

Then
0W = T (αm+1vm+1 + . . .+ αnvn

So αm+1vm+1 + . . .+αnvn ∈ kerT . By defn, B0 is a basis for kerT . So ∃β1, . . . , βm ∈ F 3

αm+1vm+1 + . . .+ αnvn = β1v1 + . . .+ βmvn

Hence
0 = −β1v1 − . . .− βmvm + αm+1vm+1 + . . .+ αnvn

As B is a basis for V , it is linearly indep, so β1 = 0, . . . , βm = 0, αm+1 = 0, . . . , αn = 0
(Coordinate Theorem) and the claim follows.

Note: Let V be a finite dimensional vector space over F , W ⊂ V a subspace, V/W the
quotient space, then − : V → V/W , v 7→ v = v +W and dimV/W = dimV − dimW .

§9.2 Algebra of Linear Transformation

We want to study the set of all linear transformation from a vector space over F V to a
vector space over F W . Let V,W be a vector space over F . Set

L(V,W ) := {T : V →W |T is linear}

Check: if T, S ∈ L(V,W ), α ∈ F , then αT + S ∈ L(V,W ). Since we know F (V,W ) =
{f : V →W |f a map} is a vector space over F , by the Subspace Theorem, L(V,W ) ⊂
F (V,W ) is a subspace.

Proposition 9.5

Let V,W be a vector space over F , then L(V,W ) ⊂ F (V,W ) is a subspace.

Now we know if we have maps

f : X → Y and g : y → Z,

we have the COMPOSITE MAP

g ◦ f : X → Z by (g ◦ f)(x) = g (f(x))∀x ∈ X

where ◦ is called the COMPOSITION (and often omitted when clear). Then we have
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Proposition 9.6

Let V,W,X,U be vector space over F , T, T ′ : V →W, S, S′ : W → X, R : X → U
all be linear. Then,

1. S ◦ T : V →W is linear.(the composition of linear transformations is linear).

2. R ◦ (S ◦ T ) = (R ◦ S) ◦ T and linear.

3. S ◦ (T + T ′) = S ◦ T + S ◦ T ′ and linear.

4. (S + S′) ◦ T = S ◦ T + S′ ◦ T and linear.

Proof.

(S ◦ T )(αv1 + v2) = S (T (αv1 + v2)) = S(αTv1 + Tv2)

= αS ◦ T (v1) + S ◦ T (v2)

∀v1, v2 ∈ V, α ∈ F .
The rest are left as exercises.

Definition 9.7 (Linear Operator) — Let V be a vector space over F , T : V → V linear,
so a linear operator is defined as

Tn := T ◦ . . . ◦ T︸ ︷︷ ︸
n

if n ∈ Z+

T 0 = 1V

Proposition 9.8

Let V be a vector space over F . Then L(V, V ) under + and ◦ of functions V → V
satisfies all the axioms of a field except possibly (M3) and (M4) with

one = 1V : V → V by v 7→ v

zero = 0V : v → v by v 7→ 0

We say L(V, V ) is a (non-commutative) ring of MnF .

§9.3 Linear Transformation Theorems
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Definition 9.9 (Properties/Consequences of Linear Transformation) — Let T : V →W
be linear. We say that T is

1. a MONOMORPHISM (write mono or monic) or NONSINGULAR if T is 1− 1.
(i.e., injective).

2. an EPIMORPHISM (write epi or epic) if T is onto (i.e., surjective).

3. an ISOMORPHISM (write iso) or INVERTIBLE if T is bijective and T−1 : W →
V is linear. We say V,W vector spaces over F are ISOMORPHIC (write V ∼= W
if ∃ an isomorphism S : V → W , we also write an isomorphism S : V → W as
S : V

∼→W

Remark 9.10. V ∼= W vector space over F means that we cannot take V and W apart
algebraically.

Example 9.11

Fn+1 ∼= F [t]n as Fn+1 → F [t]n by (α0, . . . , αn) 7→ α0 + α1t1 + . . . + αnt
n is an

isomorphism with inverse F [t]n → Fn+1 by α0 + α1t+ . . .+ αnt
n 7→ (α0, . . . , αn)

T−1(αw1 + w2) = T−1(αTv1 + Tv2) = T−1 (T (αv1 + v2))

= T−1T (αv1 + v2)

= αv1 + v2

= αT−1w1 + T−1w2

Corollary 9.12

Let T : V →W be a monomorphism. Then V ∼= imT via T .

Remark 9.13. If V,W,X are vector space over F , then

1. V ∼= V

2. V ∼= W →W ∼= V

3. V ∼= W and W ∼= X then V ∼= X

In algebra, isomorphisms are usually easier to check than are one might assume, because
the following result is often true.

Proposition 9.14

Let T : V →W be linear. Then T is an isomorphism iff T is bijective.

Proof. (→) immediate.
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(←) Let T−1 : W → V be the set inverse of T : V →W , so

T ◦ T−1 = 1W and T−1 ◦ T = 1V

In particular, if v ∈ V and w ∈W ,

w = Tv iff T−1w = v

Let w1, w2 ∈W , α ∈ F . To show

T−1(αw1 + w2) = αT−1w1 + T−1w2

T is onto so
∃vi ∈ V 3 Tvi = wi, i = 1, . . .

Hence, we have

T−1(αw1 + w2) = T−1(αTv1 + Tv2) = T−1(T (αv1 + v2))

= T−1T (αv1 + v2) = αv1 + v2

= αT−1w1 + T−1w2

§10 Lec 10: Oct 23, 2020

§10.1 Monomorphism, Epimorphism, and Isomorphism

Corollary 10.1

Let T : V →W be a monomorphism. Then V ∼= im T via T .

Definition 10.2 (Linear Map) — Let T : V →W be linear. We say T takes linearly
independent sets to linearly independent sets if vi, i ∈ I are linearly independent in V
(in particular, distinct). Then, Tvi, i ∈ I are linearly indep. in W . (Tvi 6= Tvj if i 6= j
in I )

Theorem 10.3 (Monomorphism)

Let T : V →W be linear. Then the followings are true

1. T is 1− 1, so it’s monomorphism.

2. T takes linearly indep. sets in V to linearly indep. sets in W .

3. kerT = 0 := {0V }.

4. dim kerT = 0.

Proof. • 3) iff 4) is the defn of the 0-space.
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• 1) → 2) It suffices to show that T takes finite linearly indep. sets in V to linearly
indep. sets in W .

Suppose that v1, . . . , vn ∈ V are linearly indep. and α1, . . . , αn ∈ F satisfy

0W = α1Tv1 + . . .+ αnTvn

Then
T (0V ) = 0W = T (α1v1 + . . .+ αnvn)

As T is 1− 1
0V = α1v1 + . . .+ αnvn

Since v1, . . . , vn are linearly indep. αi = 0, i = 1, . . . , n as needed.

• 2) → 3) Let v ∈ kerT . Then Tv = 0W . If v 6= 0, then {v} is linearly indep. By 2)
Tv 6= 0W as then {Tv} is linearly indep. So v 6= 0.

• 3) → 1) If Tv1 = Tv2, v1, v2 ∈ V , then

0W = Tv1 − Tv2 = T (v1 − v2)

So v1 − v2 = 0V by 3), i.e., v1 = v2

Remark 10.4. The Monomorphism Theorem says kerT measures the deviation of T from
being 1− 1.

Note: In the Monomorphism Theorem, we do not assume that V orW is a finite dimensional
vector space over F .

Theorem 10.5 (Isomorphism)

Suppose T : V → W is linear with dimV = dimW < ∞,i.e., V,W are finite dimen-
sional vector space over F of the same dimension. Then the followings are true

1. T is an isomorphism.

2. T is a monomorphism.

3. T is an epimorphism.

4. If B = {v1, . . . , vn} is a basis for V , then {Tv1, . . . , T vn} is a basis for W (so
Tv1, . . . , T vn are distinct), i.e., T takes basis of V to basis of W .

5. There exists a basis B of V that maps to a basis of W .
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Remark 10.6. 1. The condition that dimV = dimW <∞ is crucial

Come up with a counter example

2. Let V ∼= W with V,W be finite dimensional vector space over F . So dimV = dimW .
Let S : V →W be linear. Then S may or may not be an isomorphism, e.g., if S is the
zero map then it is not an isomorphism unless V = 0. The theorem only says that ∃ an
isomorphism and any such satisfies the theorem.

3. Let f : A→ B be a map of finite sets with |A| = |B|. Then f is a bijection iff f is an
injection iff f is a surjection.

Proof. (of Theorem)

• 1) → 2) follows by defn.

• 2) → 3) By the Dimension Theorem

dimW = dimV = dim kerT + dim im T

Thus, T is onto iff im T = W iff dimW = dim im T (by the Corollary to the
Existence Theorem) iff dim kerT = 0 iff T is 1− 1.

• 3) → 1) as 3) → 2) and 1) = 2) + 3) by the Proposition ?

• 2) → 4) Let {v1, . . . , vn} be a basis for V . By the Monomorphism Theorem,
Tv1, . . . , T vn are linearly indep. in W , so

n ≤ dimW = dimV = n

Hence {Tv1, . . . , T vn} also spans as dimW = dimV .

• 4) → 5) → 3) are clear.

§10.2 Existence of Linear Transformation

The next result is really the defining property of finite dimensional vector space and linear
transformation.
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Theorem 10.7 (Existence of Linear Transformation (UPVS))

– (Universal Property of Vector Space) Let V be a finite dimensional vector space
over F , B = {v1, . . . , vn} a basis for V and W an arbitrary vector space over F . Let
w1, . . . , wn ∈W , not necessarily distinct. Then

∃! T : V →W linear 3 Tvi = wi∀i

We can write this in an other way as follows:
Let B ↪→ V be a basis for V , V a finite dimensional vector space over F and W a
vector space over F . Given a diagram,

B ↪→ V

W

f
of sets and
set maps

then ∃!T : V →W linear 3
B ↪→ V

inc
T

f

W

commutes , i.e., T ◦ inc = f .

Proof. Define T : V →W as follows: let V ∈ V . The ∃!α1, . . . , αn ∈ F 3 v = α1v1 + . . .+
αnvn by the Coordinate Theorem. Define

Tv = T (α1v1 + . . .+ αnvn) := α1w1 + . . .+ αnwn

Since the αi ARE UNIQUE, this defines a map – we say T : V →W is WELL – DEFINED.
Certainly, Tvi = wi, i = 1, . . . , n. To show T is linear, let v =

∑n
i=1 αivi, v

′ =
∑n

i=1 βivi,
α, αi, βj ∈ F∀i, j. Then

T (αv + v′) = T

(
α

n∑
i=1

αivi +
n∑
i=1

βivi

)

= T

(
n∑
i=1

(ααi + βi)vi

)
=

n∑
i=1

(ααi + βi)wi

= α

n∑
i=1

αiwi +

n∑
i=1

βiwi = αTv + Tv′

as needed. This shows existence.
Uniqueness: Let T : V →W by (*) and S : V →W linear s.t. Svi = wi∀i. To show S = T ,
let v =

∑n
i=1 αivi, αi ∈ F unique, i = 1, . . . , n. Then Tv =

∑n
i=1 αiTvi =

∑n
i=1 αiwi which

is equivalent to

=
n∑
i=1

αiSvi = S

(
n∑
i=1

αivi

)
= Sv

So S is T and we have proven uniqueness.
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Remark 10.8. The theorem says a linear transformation from a finite dimensional vector
space over F is completely determined by what it does to a fixed basis. i.e., as there are no
non – trivial RELATIONS on linear combos of elements in B, the only relation in im T will
arise from the kernel of T .

§11 Lec 11: Oct 26, 2020

§11.1 Lec 10 (Cont’d)

Remark 11.1. 1. In the above, given fvi = wi∀i, we say that T : V →W by
∑
αivi 7→

αiwi EXTENDS f linearly.

2. Let V be any vector space over F (not necessarily finite dimensional). Suppose V has a
basis B, then every v ∈ V is a finite linear combo elements in B. Using the same proof
of UPVS, shows

if W is a vector space over F , then given a diagram

B ↪→ V

W

f
of sets and
set maps

of set and set maps. ∃!T : V →W linear s.t.

B ↪→ V
inc

T
f

W

commutes. I.E., if B = {vi}I is a basis for V , wi ∈W , i ∈ I (not necessarily distinct),
f : V → W by vi 7→ wi∀i ∈ I. Then ∃!T : V → W linear s.t. Tvi = wi∀i ∈ I. So
any linear transformation from a vector space over F V having a basis is completely
determined by what it does to that basis.

3. Axiom: Every vector space over F has a basis. This is equivalent to the Axiom of
Choice.

Theorem 11.2 (Classification of Finite Dimensional Vector Space)

Let V,W be finite dimensional vector space over F . Then

V ∼= W ⇐⇒ dimV = dimW

Proof. (→)Let T : V → W be an isomorphism, B = {v1, . . . , vn} a basis for V (so
dimV = n ). By the Monomorphism Theorem,

C = {Tv1, . . . , T vn}

is linearly indep. in W . Since |C | = n and span(C ) = w (as T is onto), C is a basis for W
and dimW = dimV .
(←) Suppose n = dimV = dimW . Let B = {v1, . . . , vn} be a basis for V , C = {w1, . . . , wn}
a basis for W . By the UPVS, ∃!T : V →W linear vi 7→ wi∀i, i.e., T takes the basis B of
V to the basis C of W . By the Isomorphism Theorem, T is an isomorphism.
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Example 11.3 1. Fn×m ∼= Fm×n ∼= Fmn

2. MnF ∼= Fn
2

3. F [t]n ∼= Fn+1

Let T : V →W be linear with V,W arbitrary. Since T only tells us about im T , we replace
the target W by im T = T (V ), i.e., view T : V → W surjective linear. Let B0 be a
basis for kerT ⊂ V subspace. Then Extension. Theorem holds even when V is not finite
dimensional. Extend B0 to a basis B = B0 ∪ C so C ∩B0 = ∅ and V = span B. By the
argument proving the Dimension Theorem,

T (C ) = {T (y)|y ∈ C }

is linearly indep. and since T is onto T (C ) is a basis for W . The new relation in W = im T
comes from

Tx = 0, x ∈ B0

In the extra section (3), we showed

V/ kerT = {v|v ∈ V }

where
v = v + kerT = {v + z|z ∈ kerT}

is a vector space over F . In fact, {y|y ∈ C } is a basis for V/ kerT . By the UPVS, ∃! linear
transformation

T : V/ kerT →W

given by 0 = x 7→ 0, x ∈ B0, y 7→ Ty, y ∈ C . T is clearly onto and T is 1− 1,

T (v) = T (v) ∀v ∈ V

So
T : V/ kerT →W = im T

is an isomorphism.
As − : V → V/ kerT by v 7→ v is a surjective linear transformation, by definition,

αv + v′ = αv + v′

Note: ker− = kerT .
We have a commutative diagram

V
T

im T

-

V/ kerT
T

commutes

with - an epimorphism

T an isomorphism

Notiece if W 6= im T, T is only a monomorphism.
We shall show that all of this is true without using bases (or the Extension Theorem in the
Extra Lecture). In particular,

V/ kerT ∼= im T
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§11.2 Matrices and Linear Transformations

Goal: Let V,W be finite dimensional vector spaces over F . Reduce the study of linear
transformations T : V → W to matrix theory, hence often to computation (Deabstract-
ify).

Remark 11.4. In this section, all bases are ORDERED.

Set up and Notation: Let V,W be finite dimensional vector space over F . B = {v1, . . . , vn}
an ordered basis for V , so dimV = n. C = {w1, . . . , wm} an ordered basis for W , so
dimW = m.
Step 1: If v ∈ V , write

v = α1v1 + . . .+ αnvn

i.e., α1, . . . , αn are the unique coordinate of v relative to B. Then let

[v]B :=

α1
...
αn

 ∈ Fn×1

the coordinate matrix of v relative to the ordered basis B. E.g.,

[vi]B =


0
...
1
...
1

 ith

and set
vB := {[v]B|v ∈ V } = Fn×1

Then
v → vB by v 7→ [v]B isomorphism

as

vi 7→ ei :=


0
...
1
...
0

 ith, fn,1 = {e1, . . . , en}

the standard basis for Fn×1.
Step 2: Let T : V →W be linear, then

Tvi ∈W = Span C = Span(w1, . . . , wm)

as C is a basis for W . Therefore,

∃!αij ∈ F, 1 ≤ i ≤ m, 1 ≤ j ≤ n 3

Tvj =

m∑
i=1

αijwi, j = 1, . . . , n
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Let A = (αij ∈ Fm×n), i.e., Aij = αij∀i, j. Then the jth COLUMN of A isα1j
...

αmj

 = [Tvj ]C ∈WC = Fm×1

Step 3: Let
A : VB →WC by A ([v]B) = A · [v]B

This is a linear transformation.

A : Fn×1 → Fm×1

Since
A
(
[vj ]B

)
= [Tvj ]C , j = 1, . . . , n

A is the unique linear transformation s.t.

A[vj ]B = [Tvj ]C

So by UPVS,
A[v]B = [Tv]C ∀v ∈ V (*)

Definition 11.5 (Matrix Representation) — The unique matrix A ∈ Fm×n in (*) is
called the matrix representation of T relative to the ordered bases, B,C . We denote
A by [T ]B,C .

Notation: if V = W , B = C , we usually write [T ]B for [T ]B,B.

§12 Lec 12: Oct 28, 2020

§12.1 Lec 11 (Cont’d)

Summary: Let T : V →W be linear with V,W finite dimensional vector space over F

B = {v1, . . . , vn} an ordered basis for V,dimV = n

C = {w1, . . . , wn} an ordered basis for W, dimW = m

Then ∃! A = [T ]B,C ∈ Fm×n satisfying

A[v]B = [T ]B,C [v]B = [Tv]C ∀v ∈ V

Moreover, if

Tvj =

m∑
i=1

αijwi, j = 1, . . . , n
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then the jth column of A = [T ]B,C is precisely

[Tvj ]C =

α1j
...

αmj

 ∈ Fm×1

i.e.,

[T ]B,C =

[Tv1]C . . . [Tvn]C︸ ︷︷ ︸
columns


Warning: If B′,C ′ are two other ordered bases for V,W respectively (even the same vectors
in B,C written in a different order), then in general

[T ]B,C 6= [T ]B′,C ′

Example 12.1 1. Let B = {v1, . . . , vn} ,C = {w1, . . . , wn} be two ordered bases
for V . Let

T : V → V linear by vi 7→ wi, i = 1, . . . , n

Then [T ]B,C = I, the identity matrix. Moreover, if

Tvj = wj =
n∑
i=1

αijvi

then

[T ]B = [T ]B,B = (αij) =

α11 . . . α1n
...

...
αn1 αnn


2. T : R2 → R2 by (α, β) 7→ (β, α), S = S2 = {e1, e2}, the standard ordered basis

for R2. Then

[T ]S = ([Te1]S , [Te2]S ) =

(
0 1
1 0

)
and if B is the ordered bases B = {e2, e1} then

[T ]S ,B = ([Te1]B, [Te2]B) =

(
1 0
0 1

)

3. Let B =
{

1, x, x2, x3
}

be a basis for R[x]3, the polynomial functions of degree
≤ 3 (and 0), and

D : R[x]3 → R[x]3 differentiation
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Find [D]B

D · 1 = 0 so [D · 1]B =


0
0
0
0



Dx = 1 so [Dx]B =


1
0
0
0



Dx2 = 2x so [Dx2]B =


0
2
0
0



Dx3 = 3x2 so [Dx3]B =


0
0
3
0


Hence,

[D]B =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0


Some more examples

Example 12.2 1. Let Tθ : R2 → R2 be counterclockwise rotation by an ∠θ

Tθe1 = cos θe1 + sin θe2

Tθe2 = (− sin θ)e1 + cos θe2

So

[Tθ]S = ([Tθe1]S [Tθe2]S ) =

(
cos θ − sin θ
sin θ cos θ

)
2. Let B = {v1, v2} be an ordered basis for V and C = {w1, w2, w3} an ordered

basis for W . Suppose

T : V →W by

{
Tv1 = 3w1 + w3

Tv2 = w1 + 6w2 + w3

then [T ]B,C =

3 1
0 6
1 1
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3. Let T : R3 → R3 be the reflection about the e1, e2 plane. What is [T ]S ?

e1 7→ e1

e2 7→ e2

e3 7→ −e3

So [T ]S =

1 0 0
0 1 0
0 0 −1



Theorem 12.3 (Matrix Theory)

(MTT) Let V,W be finite dimensional vector space F , dimV = n, dimW = m, and
B,C ordered bases for V,W . Then the map

φ : L(V,W )→ Fm×n by T 7→ [T ]B,C

is an isomorphism. In particular

dimL(V,W ) = mn

Proof. Left as exercise (Homework).

Using the fact that W →WC is an isomorphism if w 7→ [w]C show that

1. φ is linear

2. φ is onto

3. φ is 1− 1

4. dimL(V,W ) = mn

Theorem 12.4

Let V,W,U be finite dimensional vector space over F with ordered bases B,C ,D
respectively, T : V →W , S : W → U linear. Then

[S ◦ T ]B,D = [S]C ,D · [T ]B,C

Proof.

[S]C ,D [T ]B,C [v]B = [S]C ,D [Tv]C

= [S(Tv)]D

= [(S ◦ T )(v)]D
= [S ◦ T ]B,D [v]B
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Exercise: Let V,W be finite dimensional vector space over F with dimV = dimW , B,C
ordered bases of V,W respectively, T : V → W linear. Then, T is an isomorphism iff
[T ]B,C is invertible.
Let V be a finite dimensional vector space over F , dimV = n, B an ordered basis for V .
Then

φ : L(V, V )→MnF by T 7→ [T ]B

satisfies all of the following: ∀T, S ∈ L(V, V )

(i) φ(T + S) = φ(T ) + φ(S)

(ii) φ(T ◦ S) = φ(T )φ(S)

(iii) φ(0V ) = 0Fn×1

(iv) φ(1V ) = 1Fn×1

By the exercise, φ is bijection linear transformation. Both L(V, V ) and MnF satisfy all
the axioms of a field except (M3) and (M4). We call them (NON COMMUTATIVE)
rings and since φ preserves all the structure i) – iv) as does its inverse(?), we say φ is an
ISOMORPHISM of rings

Definition 12.5 (Change of Basis Matrix) — Let V be a finite dimensional vector
space over F with ordered bases B,C . Then the invertible matrix [1V ]B,C is called a
CHANGE OF BASIS MATRIX.

Example 12.6 1. S = {e1, e2} ,B = {(1, 1), (2, 1)} ,C = {(3, 4), (6, 1)} ordered
bases for R2.

[1R2 ]B,S =

(
1 2
1 1

)
, [1R2 ]S =

(
1 0
0 1

)
[1R2 ]C ,S =

(
3 6
4 1

)
, [1R2 ]B =

(
1 0
0 1

)
2. B an ordered basis for V , a finite dimensional vector space over F , dimV = n,

then [1V ]B = I ∈MnF

3. V a finite dimensional vector space over F , B,C ordered bases for V , then
[1V ]B,C is invertible and

[1V ]−1
B,C = [1V ]C ,B

[1V ]B,C [1V ]C ,B = [1V ]C

= I

= [1V ]C ,B[1V ]B,C
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4. Apply 3) to 1)

[1V ]S ,C = [1V ]−1
C ,S =

(
3 6
4 1

)−1

= − 1

21

(
1 −6
−4 3

)
[1V ]B,C = [1V ]S ,C [1]B,S

= − 1

21

(
1 −6
−4 3

)(
1 2
1 1

)
= − 1

21

(
−5 −4
−1 −5

)

Some more examples

Example 12.7 1. Any invertible matrix A ∈MnF is a change of basis matrix for
some ordered bases B,C for Fn : if A = (αij) is invertible, define

vj =
n∑
i=1

αijei, B = {v1, . . . , vn}

Then A = [A]B,S since A is invertible, so B is linearly indep., hence a basis by
counting and A = [Fv]B,S .

2. The jth column of [1v]B,C , V a finite dimensional vector space over F is the jth

vector of B expressed as a linear combo of vectors in C .

3. Generalizing (1), (3) from above example, we get the following crucial computa-
tional device: if V = Fn,B,C ordered bases for V , then

[1v]B,C = [1v]S ,C [1v]B,S = [1v]
−1
C ,S [1v]B,S

if we only have V ∼= Fn, then we have to use an isomorphism V → Fn – how?

Since [1v]B,S and [1v]C ,S are usually (often?) easy to write down, this is quite
useful. What if V = Fm×n?

Theorem 12.8 (Change of Basis)

Let V,W be finite dimensional vector space over F with ordered bases B,B′ for V
and C ,C ′ for W . Let T : V →W be linear. Then

[T ]B,C = [1W ]C ′,C [T ]B′,C ′ [1V ]B,B′

= [1W ]−1
C ,C ′ [T ]B′,C ′ [1V ]B,B′

= [1W ]C ′,C [T ]B′,C ′ [1V ]−1
B′,B

Proof. We have
[1W ]−1

C ,C ′ = [1W ]C ′,C and [1V ]B,B′ = [1V ]−1
B′,B
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Since

[1W ]C ′,C [T ]B′,C ′ [1V ]B,B′ = [1W ◦ T ]B′,C [1V ]B,B′

= [1W ◦ T ◦ 1V ]B,C

= [T ]B,C

the result follows.

To use (and remember) this, do it as follows – to let the notation help you:

T : V →W

WC

WC′

[1W ]C,C′[1W ]−1
C′,C

VB

[1V ]B,C

[1V ]B′,B

[1V ]−1
B,B′

‖

VB′

[T ]B,C

[T ]B′,C′

[T ]B,C′

[T ]B′,C

COMMUTES, i.e., can compose along any allowable arrows in the correct direction if we
arrive at the same place in different way starting at the same place we get the same answer.
Warning: You can only reverse direction if the arrow is an isomorphism and then you can
take the inverse. To remember the theorem, we write

T : V →W

WC

WC′

VB

VB′

[T ]B,C

[1V ]B,B′ [1W ]C,C′

and fill in arrows you can find in the diagram before.

§13 Lec 13: Oct 30, 2020

§13.1 Some Examples of Change of Basis

If V,W are finite dimensional vector space over F with ordered bases B,C respectively
and if T : V →W is linear

[Tv]C = [T ]B,C [v]B∀v ∈ V

Note: There is nothing about the bases in which v was written.

1. V = R2, S = {e1, e2} ,B = {v1 = (1, 1), v2 = (2, 1)} ordered bases. Find [T ]S in

the following (equivalently, [T ]S

[
α
β

]
S

↔ T (α, β))

(i) T (1, 1) = (2, 1) and T (2, 1) = (1, 1)
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VB VB

VS

[T ]B

[1V ]B,S

VS[T ]S

[1V ]B,S =
1 2

1 1

So

[T ]S = [1V ]B,S [T ]B[1V ]−1
B,S

=

(
1 2
1 1

)(
0 1
1 0

)(
1 2
1 1

)−1

=

(
−1 3
0 1

)
So T (α, β) = (−α+ 3β, β)

(ii) T (1, 1) = 6(1, 1) + (2, 1) and T (2, 1) = −2(1, 1) + (2, 1)

VB VB

VS

[T ]B

[1V ]B,S

VS[T ]S

[1V ]B,S =
1 2

1 1

So

[T ]S =

(
1 2
1 1

)(
6 −2
1 1

)(
1 2
1 1

)−1

=

(
−8 16
−8 15

)
(iii) T (1, 1) = (3, 1) and T (2, 1) = (5, 1)

VB VB

VS VS

[T ]B,S [1]B,S

[T ]B,S = ([T (1, 1)]S [T (2, 1)]S ) = ([(3, 1)][(5, 1)]S )

So [T ]S = [T ]B,S [1V ]−1
B,S which is equal to

(
3 5
1 1

) (
1 2
1 1

)−1

2. Let T be a rotation about the axis (1, 1, 1) ∈ V = R3 of an ∠θ in the counter-clockwise
direction with (1, 1, 1) up. We will use stuff from 33A – dot product. Normalize
(1, 1, 1) to

v1 =

(
1√
3
,

1√
3
,

1√
3

)
=

(1, 1, 1)

‖(1, 1, 1)‖
a unit vector in the DIRECTION of v1. Find a vector ⊥ to v1, say

v′2 = (0, 1,−1)

and normalize it to

v2 =

(
0,

1√
2
,− 1√

2

)
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Let v3 = v1 × v2 the cross product of v1, v2. It is orthogonal to v1 and v2 and by the
right hand rule in the correct orientation

v3 =

 i j k
1√
3

1√
3

1√
3

0 1√
2
− 1√

2

 =

(
− 2√

6
,

1√
6
,

1√
6

)

a unit vector (or use Gram – Schmidt and check you have v3 = v1 × v2 and not
−(v1 × v2)

§13.2 Orthonormal Basis

Definition 13.1 (Orthonormal Basis) — Let B = {v1, v2, v3} an ordered bases of
vectors of length 1 and each ⊥ to the others, called an ORTHONORMAL BASIS.

Tv1 = v1

Tv2 = cos θv2 + sin θv3

Tv3 = − sin θv2 + cos θv3

[T ]B =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ


[1V ]B,S =


1√
3

0 − 2√
6

1√
3

1√
2

1√
6

1√
3
− 1√

2
1√
6


VB VB

VS

[T ]B

[1V ]B,S

VS[T ]S

[1V ]B,S

[T ]S = [1V ]B,S [T ]B[1V ]−1
B,S = [1V ]B,S [T ]B[1V ]S ,B

Since both S and B are orthonormal bases and F = R, it turns out that

[1V ]−1
B,S = [1V ]>B,S

This is, however, not true in general.

3. V = R3, T : V → V as in 2) and S : V → V a reflection about the plane ⊥ (1, 2, 3).
Find [S]S and [S ◦ T ]S .

Find an orthonormal basis with (1, 2, 3) direction of the first vector

(1, 2, 3), (0, 3,−2), (−13, 2, 3)
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then normalize as follows:

w1 =

(
1√
14
,

2√
14
,

3√
14

)
w2 =

(
0,

3√
13
,− 2√

13

)
w3 =

(
−13√
182

,
2√
182

,
3√
182

)

So C = {w1, w2, w3} is an orthonormal basis and

[S]C =

−1 0 0
0 1 0
0 0 1



VB VB

VS

[T ]B

[1V ]B,S

VS[T ]S
VS

VC

[S]S

VC[S]C

[1V ]C,S

[1V ]C ,S =


1√
14

0 13√
182

2√
14

3√
13

2√
182

3√
14
− 2√

13
3√
182


[S]S = [1V ]C ,S [S]C [1V ]−1

C ,S

[S ◦ T ]S = [1V ]C ,S [S]C [1V ]B,S [T ]B[1V ]−1
B,S

The only reason to normalize C to an orthonormal basis is

[1V ]))C ,S −1 = [1V ]>C ,S

§13.3 Similarity

Definition 13.2 (Similar Matrices) — Let A,B ∈MnF . We say A is SIMILAR to B
write A ∼ B if ∃C ∈MnF invertible 3

A = C−1BC
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Remark 13.3. A,B ∈MnF :

1. A ∼ B → B ∼ A :

A = C−1BC,C invertible → B = (C−1)−1AC−1 as CC−1 = I = C−1C

2. If A ∼ B, then detA = detB. If A = C−1BC, invertible, then

detA = det
(
C−1BC

)
= det(C−1) detB detC

= (detC)−1 detB detC = detB

3. ∼ is an equivalence relation.

Theorem 13.4 (Similar Matrices)

Let A,B ∈MnF . Then A ∼ B iff ∃V a vector space over F , dimV = n, T : V → V
linear and ordered bases B,C for V s.t

A = [T ]B and B = [T ]C

i.e., A ∼ B iff they represent the same linear transformation relative to (possibly)
different ordered bases.

§14 Lec 14: Nov 2, 2020

§14.1 Lec 13 (Cont’d)

Proof. (Of Similar Matrices Theorem) (←) If A = [T ]B, B = [T ]C , then C = [1V ]B,C ∈
MnF is invertible with A = C−1BC by the Change of Basis Theorem.
(→) Suppose C ∈MnF is invertible, A = C−1BC. Define V = Fn, T : V → V by

Tij =
n∑
i=1

Aijei

with S = {e1, . . . , en} the standard basis

[T ]S = A = C−1BC

Let wj :=
∑n

i=1(C−1)ijei, i.e., (C−1)ij is the ijth entry of C−1. As C is invertible, C−1

exists and is invertible. Then
B = {w1, . . . , wn}

is a basis for V and [1V ]B,S = C−1 figure here so A = C−1[T ]BC and B = [T ]B works.

§14.2 Eigenvalues and Eigenvectors
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Definition 14.1 (Eigenvalues, Eigenvectors & Eigenspace) — Let 0 6= V be a vector
space over F , T : V → V a linear operator and λ ∈ F . Set

Sλ := T − λ1V : V → V,

a linear operator, so
Sλ(v) = Tv − λv∀v ∈ V

We say λ is an EIGENVALUE of T if Sλ is not 1− 1, i.e., kerSλ 6= 0. Let

ET (λ) := kerSλ = {v ∈ V |Tv − λv = 0}
= {v ∈ V |Tv = λv}

if ET (λ) 6= 0, we call ET (λ) an EIGENSPACE of V relative T, λ and any v ∈ ET (λ) an
EIGENVECTOR of T relative to λ. So if T : V → V is linear, λ ∈ F is an eigenvalue
of T iff

∃0 6= v ∈ V 3 Tv = λv

Remark 14.2. Let 0 6= V be a vector space over F and T : V → V linear

1. Eigenvalues occur as measured quantities in science and engineering, e.g., resonance,
quantum number – measurable values.

2. If λ ∈ F is an eigenvalue of T , then

0 6= ET (λ) ⊂ V is a subspace

3. If λ ∈ F an eigenvalue, any v ∈ ET (λ) is an eigenvector. In particular, any basis for
ET (λ) consists of eigenvectors of T relative to λ. Hence

T
∣∣∣
ET (λ)

= λ1ET (λ)

(the notation above means we restrict the domain to ET (λ). In particular, if V = ET (λ),
then T = λ1V .

4. If T = 0, then V = ET (λ) with eigenvalue λ = 0(λ = 1).

Example 14.3 5. Let V = R3, T : V → V a counterclockwise rotation by an
∠θ, 0 < θ < 2π around the axis determined by 0 6= v ∈ V . Then

T (αv) = αTv = αv∀α ∈ F

So Span(v) ⊂ ET (1). Note if 0 6= v is an eigenvector with eigenvalue µ of linear
S : V → V , then

Sv ∈ Span(v) = Fv so Span(v) ⊂ ES(µ)

Do there exist other eigenvalues of T ? Ever? So the only other possibilities would
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be
θ = π, λ = −1

In that case
ET (−1) = Span(w1, w2)

where w1, w2 are linearly indep. with wi ⊥ v, i = 1, 2. (of course, if one allows
θ = 0, T = 1V .)

6. Let 0 6= v ∈ V . Suppose that

µv = Tv = λv, λ, µ ∈ F

Then µ = λ so 0 6= v ∈ V is an eigenvector of at most one eigenvalue of T –
usually none. In particular,

ET (λ) ∩ ET (µ) = 0 if λ 6= µ

and we write
ET (λ)⊕ ET (µ) = ET (λ) + ET (µ)

and call it the DIRECT SUM of the subspace ET (λ) and ET (µ).

What do you think is W1

⊕
W2

⊕
W3?

7. Suppose dimV = n, B = {v1, . . . , vn} is an ordered basis for V . Suppose that
that

Tvi = αivi, i = 0, . . . , n

λ1, . . . , λn ∈ F not necessarily distinct. Then

[T ]B =

(
λ1 0
0 λn

)
is a DIAGONAL MATRIX, i.e., all non-diagonal entries 0. We say T is DIAGO-
NALIZABLE if ∃ an ordered bases C for V 3 [T ]C is diagonal.

8. Suppose dimV = n(< ∞) and T is diagonalizable, i.e., ∃ an ordered basis
C = {w1, . . . , wn} for V s.t.

[T ]C =

µ1 . . . 0
...

. . .
...

0 . . . µn


Then Twi = µiwi, i = 1, . . . , n and C is an ordered basis for V consisting of
eigengenvalues for T .

Conclusion: Let V be a finite dimensional vector space over F , T : V → V linear. Then T
is diagonalizable iff ∃ a basis for V consisting of eigenvectors of T .
Note: If T is diagonalizable, T : V → V linear, V a finite dimensional vector space over F ,
ordered basis B for V . Then ∃C ∈MnF , invertible, n = dimV 3 C−1[T ]BC is diagonal
by the Change of Basis Theorem.
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Example 14.4 9. Let V be a finite dimensional vector space over F , n = dimV , B
an ordered basis for V , S : V → V linear. Then by the Isomorphism Theorem,
S is 1-1 iff S is onto. Apply this to

Sλ = T − λ1V : V → V

to conclude:

λ is an eigenvalue of T iff Sλ = T − λ1V is singular (i.e., Sλ is not 1-1)

iff
[Sλ]B = [T − λ1V ]B is not invertible

iff
det[T − λ1V ]B = 0 (by properties of det)

iff
det ([T ]B − λ[1V ]B) = 0

iff
det ([T ]B − λI) = 0

iff
det (λI − [T ]B) = 0

Summary: Let V be a finite dimensional vector space over F , dimV = n, T : V → V
linear, B an ordered basis for V , λ ∈ F . Then, λ is an eigenvalue of T iff det(λI − [T ]B) =
0.

Definition 14.5 (Characteristics Polynomial) — Let A ∈MnF . Define

fA := det(tI −A) ∈ F [t]

called the Characteristics Polynomial of A.

The properties of the determinant on F [t] is the same as on F except that A ∈MnF [t] is
invertible iff detA ∈ F \ {0} and we assume these properties.

Proposition 14.6

If A,B ∈MnF are similar, then fA = fB

Proof. If A = C−1BC, C ∈MnF in

fA = det(C−1(tI −B)C) = detC−1 det(tI −B) detC

= det(tI −B) = fB

Warning: Let A =

(
1 0
0 1

)
and B =

(
1 0
1 1

)
. Then, A and B are not similar, but fA = fB ,

i.e., the converse is false.
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Corollary 14.7

Let V be a finite dimensional vector space over F , T : V → V linear, B,C ordered
bases for V . Then

f[T ]B = f[T ]C

Proof. Change of Basis Theorem.

Definition 14.8 (Characteristics Polynomial) — Let V be a finite dimensional vector
space over F , T : V → V linear, B ordered basis for V . We call f [t]B the characteristics
polynomial of T . By the corollary, it is independent of B, so we denote it by fT (= f[T ]B)
and write fT = det(t1V − T ) := det(tI − [T ]B)

Theorem 14.9

Let V be a finite dimensional vector space over F , T : V → V linear. Then, the
eigenvalues of T are precisely, the roots of fT , i.e., those α ∈ F 3 fT (α) = 0.

Proof. detλ ∈ F,B an ordered basis for V . Set A = [T ]B, so fT = det(tI −A). Then λ is
a root of fT iff evaluating fT at λ, i.e., fT (λ), we have

fT (λ) = det(tI −A)
∣∣∣
t=λ

= 0 ⇐⇒ λ is an eigenvalue of T

i.e., expanding the polynomial det(tI −A) and plugging λ for t gives 0.

We cannot use the following theorem if we fully prove it.

Theorem 14.10 (Cayley – Hamilton)

Let A ∈MnF . Then
fA(A) = 0

plugging A into the expansion of the determinant fA, you get 0.

Remark 14.11. By HW, we have
{
I, A,A2, . . . , An

2
}
⊂MnF is linearly dep., i.e.,

{
I,A, . . . , AN

}
is linearly dep. for some N > 0. This means ∃0 6= g ∈ F [t] with deg g ≤ N and g(A) = 0 –
why?

So Cayley – Hamilton’s Theorem says {I, A, . . . , An} in MnF is always linearly dep. in
MnF with fA(A) giving a dependence relation.
Note: If you know Cramer’s Rule in determinant theory, one can prove Cayley – Hamilton
follows from it. In fact, it is essentially Cramer’s Rule.
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Remark 14.12. Let V be a finite dimensional vector space over F , T : V → V linear. You
will show in your Take home Exam. There exists a polynomial q ∈ F [t] satisfying

1. q 6= 0

2. q(A) = 0

3. deg q is the minimal degree for a poly g 6= 0 in F [t] to satisfy g(A) = 0

4. q is MONIC, i.e., leading coeff is 1.

Moreover, q is unique and called the MINIMAL POLYNOMIAL of A and denoted qT . Using
it we shows a stronger form of the Cayley – Hamilton Theorem.

§15 Lec 15: Nov 4, 2020

§15.1 Lec 14 (Cont’d)

Cayley – Hamilton (Stronger Form): Let V be a finite dimensional vector space over F ,
T : V → V linear, then

qT |fT in F [t]

(where qT = q[T ]B, B an ordered basis and qT is indep. of B ). Why does this show the
other form?
Computation: Let V be a finite dimensional vector space over F , T : V → V linear. To
find eigenvalues and eigenvectors of T , you must solve

Tv = αv

By Matrix Theory Theorem, this is equivalent to

[T ]B[v]B = λ[v]B (*)

B an ordered basis for V . To find eigenvalues, we find the roots of fT . To find the
eigenvectors, we solve (*).

Theorem 15.1

Let T : V → V be linear and λ1, . . . , λn in F distinct eigenvalues of T, 0 6= vi ∈
ET (λi), i = 1, . . . , n. Then {v1, . . . , vn} is linearly indep.

Proof. We induct on n.

• n = 1 : v1 6= 0 so {v} is linearly indep.

• n > 1 – Induction Hypothesis (IH) : If λ1, . . . , λn−1 are distinct eigenvalues of
T, 0 6= vi ∈ ET (λi), i = 1, . . . , n − 1 then {v1, . . . , vn−1} is linearly indep. Suppose
that

0 = α1v1 + . . .+ αnvn, α1, . . . , αn ∈ F (*)

Apply the linear operator Sλn = T − λn1V to (*). As

Sλn(vi) = Tvi − λnvi = λivi − λnvi = (λi − λn)vi
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We get

Sλn(α1v1 + . . .+ λnvn) = α1Sλvnv1 + . . .+ αnSλvnvn

0 = α1(α1 − αn)v1 + . . .+ αn−1(λn−1 − λn)vn−1

By the IH, αi(λi − λn) = 0, i = 1, . . . , n− 1

As λi − λn 6= 0, i = 1, . . . , n − 1, αi = 0, i = 1, . . . , n − 1. So 0 = αnvn. As vn 6= 0,
αn = 0 also.

Proof. (Alternative) Take T of (*) to get an eqn 1). Multiply (*) by λn to get an eqn 2).
Subtract eqn 2) from eqn 1). The proof that if α1, . . . , αn are distinct then eλ1x, . . . , eλnx

are linearly indep.

Corollary 15.2

Let V be a finite dimensional vector space over F , dimV = n if T : V → V linear has
n distinct eigenvalues, then T is diagonalizable. The converse is false, e.g., T = 1V .

Corollary 15.3

If V is a finite dimensional space over F , dimV = n, T : V → V linear, then T has at
most n distinct eigenvalues. This also follows as any 0 6= f ∈ F [t] has at most deg f
roots.

Corollary 15.4

Let V be a vector space over F , T : V → V linear, λ1, . . . , λn distinct eigenvalues of
T . Set

w = ET (λ1) + . . .+ ET (λn)

if vi ∈ ET (λi), i = 1, . . . , n satisfy

v1 + . . .+ vn = 0

then vi = 0, i = 1, . . . n. We write this as

W = ET (λ1)⊕ . . .⊕ ET (λn)

Exercise 15.1. Let V be a vector space over F , W1, . . . ,Wn ⊂ V subspaces. Let W =
W1 + . . .+Wn. Then the followings are equivalent

1. If wi ∈Wi, i = 1, . . . , n satisfy w1 + . . .+wn = 0 then wi = 0∀i. We say Wi are indep.

2. If v ∈W∃!wi ∈Wi 3 v = w1 + . . .+ wn

3. Wi ∩
∑n

j 6=i,j=1Wj = 0∀i = 1, . . . , n
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4. If Bi is a basis for Wi, i = 1, . . . , n then B = B1 ∪ . . . ∪Bn is a basis for W .

If these hold for W , we say W is an (internal) direct sum of the Wi and write

W = W1 ⊕ . . .⊕Wn

Remark 15.5. This generalizes to W = ⊕Wi, general I – How. What is the proof?

Exercise 15.2. Let V be a vector space over F , W1, . . . ,Wn ⊂ V subspaces 3 V =
W1 + . . .+Wn. Let

W = W1 × . . .×Wn = {(W1, . . . ,Wn)|wi ⊂Wi∀i}

a vector space over F via component wise operations. Show

v = W1 ⊕ . . .⊕Wn ⇐⇒ T : W1 × . . .×Wn → V

by (w1, . . . , wn) 7→ w1 + . . . wn is an isomorphism. We call W the external direct sum of
the Wi.

Consequences: Let V be a finite dimensional vector space over F , λ1, . . . , λn distinct
eigenvalues of T : V → V linear, ?i = dimET (λi),Bi ordered basis for ET (λi), i = 1, . . . , n
if

V = ET (λ1) + . . .+ ET (λn)

then
V = ET (λ1)⊕ . . .⊕ ET (λn)

and B = B1 ∪ . . . ∪Bn is an ordered basis for V and

[T ]B =


[
λ11ET (λ1)

]
B1

. . . [
λn1ET (λn)

]
Bn


(Block form) is a diagonal matrix. In particular,

fT = det(T1V − T ) = (t− λ1)r1 . . . (t− λn)rn

By determinant theory,

det

(
A 0
0 B

)
= detAdetB

A,B square matrices and T is diagonalizable.

Remark 15.6. T : V → V linear may or may not have eigenvalues

1. V = R2, fT = t2 + 1, then T has not eigenvalues.

2. If V is a finite dimensional vector space over C, then T has an eigenvalue as fT has
a root by the FUNDAMENTAL THEOREM OF ALGEBRA (which we shall always
assume to be true).
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§15.2 Inner Product Space

We know that the dot product of vectors in R3 allows us to define ⊥ , ∠, distance, etc.
We want to generalize this to “inner product spaces”. When we talk about inner product
spaces, we shall always assume that OUR FIELD F LIES in C (e.g., Q,R,C ) as a subfield.
Let − : C→ C by α+ β

√
−1 7→ α− β

√
−1∀α, β ∈ R denoted complex conjugation.

Note:Let a = α+ β
√
−1 in C, α, β ∈ R. Then

1. a = a iff a ∈ R

2. a

3. |a|2 := aa ≥ 0 in R as aa = α2 + β2 and = 0 iff a= 0.

As we shall assume F ⊂ C, we define:

F := {z ∈ C|z ∈ F}

and we shall also assume that
F = F

This is true if F ⊂ R or F = C, but does not always hold UNLESS we only consider
those F that do which we will.

Definition 15.7 (Inner Product Space) — Let F ⊂ C be a subfield satisfying F = F , V
a vector space over F . We call V an inner product space over F , write V is an ips /
F, under the map

〈, 〉 := 〈, 〉V : V × V → F

Write: 〈v, w〉 for 〈, 〉(v, w) if 〈, 〉 satisfies ∀v1, v2, v3, v ∈ V,∀α ∈ F

1. 〈v1 + v2, v3〉 = 〈v1, v3〉+ 〈v2, v3〉

2. 〈v1, v2〉 = 〈v2, v1〉

3. 〈αv1, v2〉 = α〈v1, v2〉 = 〈v1, αv2〉

4. 〈v, v〉 ∈ R and 〈v, v〉 ≥ 0 with 〈v, v〉 = 0 iff v = 0.

If V is an inner product space over F (under 〈, 〉, the LENGTH (or NORM or MAGNITUDE)
of v ∈ V is given by

‖v‖ :=
√
〈v, v〉 ≥ 0 ∈ R

Note: If F < C, ‖v‖2 ∈ F , but it is possible that ‖v‖ /∈ F, e.g., if V = Q2 a vector space
over Q and an inner product space over Q under the dot product ‖(1, 1)‖ =

√
2 /∈ Q. This

is a reason to work only with F = R or C.

§16 Lec 16: Nov 6, 2020

§16.1 Lec 15 (Cont’d)

Properties: Let V be an inner product space over F , α ∈ F, v1, v2, v3 ∈ V .
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1. 〈0, v〉 = 0 = 〈w, 0〉,∀v, w ∈ V .

2. • 〈αv1 + v2, v3〉 = α〈v1, v3〉+ 〈v2, v3〉
• 〈v1, αv2 + v3〉 = α〈v1, v2〉+ 〈v1, v3〉

3. If F ⊂ R define the ANGLE θ, 0 ≤ θ ≤ 2π between v1 6= 0 and v2 6= 0 in V by

cos θ :=
〈v1, v2〉
‖v1‖‖v2‖

and if F 6⊂ R define θ by

cos θ :=
|〈v1, v2〉|
‖v1‖‖v2‖

Note: This does not make sense yet, and will not until we show

|〈v1, v2〉|
‖v1‖‖v2‖

≤ 1 for v1 6= 0, v2 6= 0

4. (very useful prop) Let v ∈ V . If 〈v, w〉 = 0,∀w ∈ V (or 〈w, v〉 = 0∀w ∈ W ), then
v = 0.

5. Let 0 6= x ∈ V . Then
〈, x〉 : V → F by v 7→ 〈v, x〉

is a linear transformation, i.e., linear functional, i.e., 〈, x〉 ∈ V ∗. However,

〈x, 〉 : V → F by v 7→ 〈x, v〉

is linear iff F ⊂ R. In general, we say that 〈x, 〉 is SESQUILINEAR as ∀α ∈
F,∀v1, v2 ∈ V

〈x, αv1 + v2〉 = α〈x, v1〉+ 〈x, v2〉

Of course if x = 0, 〈0, 〉〈, 0〉 ∈ V ∗.

Example 16.1

Let F ⊂ C, F = F = {α|α ∈ F}. The following V vector space over F are inner
product space over F under the given 〈, 〉 :

1. V = Fn and 〈, 〉 = ·︸︷︷︸
dot product

, i.e., if

v = (α1, . . . , αn) , w = (β1, . . . , βn) , αi, βi ∈ F,∀i, j

Then,

〈v, w〉 =
n∑
i=1

αiβi

Note: If F ⊂ R, then

〈v, w〉 =

n∑
i=1

αiβi
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2. Let I = [α, β] , α < β in R, V = C(I) with C (I) = {f : I → R|f cont} then

〈f, g〉 :=

∫ β

α
fg

Think about what if CC := {f : I → C|f cont}.

3. In 2), let h ∈ C(I) satisfy h(x) > 0∀x ∈ I. Then

〈f, g〉h :=

∫ β

α
hfg

the WEIGHTED INNER PRODUCT SPACE via h.

4. Let A ∈MnF . Define the adjoint of A to be A∗ where

(A∗)ij := Aji, ∀i, j

the conjugate transpose of A., i.e., A∗ = A
>

. So if F ⊂ R, A∗ = A>.

Remark 16.2. If A = Fm×n, then A∗ defined by (A∗)ij = Aji still makes sense and is called
the ADJOINT of A. What can you say about AA∗ and A∗A?

Let V = MnF under
〈A,B〉 := tr(AB∗)

where tr C =
∑n

i=1Cii. So if F ⊂ R, 〈A,B〉 = tr(AB>). tr=trace

Example 16.3 5. Let F = R

l2 :=
{

(a0, a1, . . . , an, . . .) |ai ∈ R∀i – infinite seq with
∑

a2
i <∞

}
a vector space over F by component wise operation ( a subspace of R∞inf – see
below) and an inner product space over R via

〈v, w〉 :=
∞∑
i=0

aibi ∈ R

if v = (a0, a1, . . .), w = (b0, b1, . . .)

0 ≤ (ai ± bi)2 = a2
i ± 2aibi + b2i ,∀i so

∓2
∞∑
i=0

aibi ≤
∞∑
i=0

a2
i +

∞∑
i=0

b2i <∞
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Theorem 16.4

Let V be an inner product space over F . Then ∀v1, v2 ∈ V,∀α ∈ F , we have

1. ‖v1‖ ∈ R with ‖v1‖ ≥ 0 and ‖v1‖ = 0 iff v1 = 0.

2. ‖αv1‖ = |α|‖v1‖.

3. Cauchy – Schwarz Inequality

|〈v1, v2〉| ≤ ‖v1‖‖v2‖

4. Minkowski Inequality(special case)

‖v1 + v2‖ ≤ ‖v1‖+ ‖v2‖

Proof. 1) and 2) are left as exercise.
3) If v1 = 0 or v2 = 0, the result is immediate, so we may assume that v1 6= 0, v2 6= 0. We
use the following important trick. Take the orthogonal projection. Let

v = v2 −
〈v2, v1〉
‖v1‖2

v1︸ ︷︷ ︸
orthogonal projection on v1

Claim 16.1. 〈v, αv1〉 = 0∀α ∈ F (i.e., v ⊥ αv1)

〈v, αv1〉 = 〈v2 −
〈v2, v1〉
‖v1‖2

v1, αv1〉

= 〈v2, αv1〉+ 〈−〈v2, v1〉
‖v1‖2

v1, αv1〉

= α〈v2, v1〉 −
〈v2, v1〉
‖v1‖2

〈v1, αv1〉

= α〈v2, v1〉 −
〈v2, v1〉
‖v1‖2

α‖v1‖2 = 0

establishing the claim. Therefore, we have

0 ≤ 〈v, v〉 = 〈v, v2 −
〈v2, v1〉
‖v1‖2

v1〉

= 〈v, v2〉+ 〈v1 −
〈v2, v1〉
‖v1‖2

v1〉 = 〈v, v2〉

= 〈v2 −
〈v2, v1〉
‖v1‖2

v1, v2〉 = 〈v2, v2〉 −
〈v2, v1〉
‖v1‖2

〈v1, v2〉

= ‖v2‖2 −
〈v1, v2〉
‖v1‖2

〈v1, v2〉 = ‖v2‖2 −
|〈v1, v2〉|2

‖v1‖2

So
|〈v1, v2〉|2 ≤ ‖v1‖2‖v2‖2
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or
|〈v1, v2〉| ≤ ‖v1‖‖v2‖

as required.

Proof. 4.

‖v1 + v2‖2 = 〈v1 + v2, v1 + v2〉
= ‖v1‖2 + 〈v1, v2〉+ 〈v2, v1〉+ ‖v2‖2

= ‖v1‖2 + 〈v1, v2〉+ 〈v1, v2〉+ ‖v2‖2

Let 〈v1, v2〉 = α+ β
√
−1, α, β ∈ R. Then

‖v1 + v2‖2 = ‖v1‖2 + 2α+ ‖v2‖2

≤ ‖v1‖2 + 2
√
α2 + β2 + ‖v2‖2

= ‖v1‖2 + 2 |〈v1, v2〉|+ ‖v2‖2

≤ (‖v1‖+ ‖v2‖)2

So, ‖v1 + v2‖ ≤ ‖v1‖+ ‖v2‖.

§17 Lec 17: Nov 9, 2020

§17.1 Lec 16 (Cont’d)

Example 17.1

Let V be an inner product space over F

1. |α1β1 + . . .+ αnβn| ≤
√∑n

i=1 α
2
i

√∑n
i=1 β

2
i , ∀αi, βi ∈ R.

2.
∫ β
α fg ≤

√∫ β
α f

2

√∫ β
α g

2, ∀f, g ∈ C[α, β].

3. ∠ between nonzero vectors in V makes sense.

4. Distance between (end pts) vectors makes sense by the following:

If V is an inner product space over F , define the distance between v1, v2 ∈ V by

d(v1, v2) := ‖v1 − v2‖ ≥ 0 ∈ R

Then d satisfies ∀v, w, x ∈ V

• d(v, w) ≥ 0 ∈ R and d(v, w) = 0 iff v = w.

• d(v, w) = d(w, v)

• Triangle inequality
d(v, x) ≤ d(v, w) + d(w, x)

We call V a METRIC SPACE under d.
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Example 17.2 (Metric Space)

If v = (α1, . . . , αn), w = (β1, . . . , βn) ∈ Rn under the dot product, then

d(v, w) =
√

(α1 − β1)2 + . . .+ (αn − βn)2

§17.2 Orthogonal Bases

Motivation: in Rn (or Cn), S = Sn = {e1, . . . , en} the standard basis satisfies

ei · ej = δij :=

{
1, if i = j,∀i, j
0, if i 6= j

Goal: Let V be a finite dimensional inner product space over F , F = R or C. Find a basis
B = {v1, . . . , vn} for V 3

〈vi, vj〉 = δij , ∀i, j (*)

if we only want bases C = {w1, . . . , wn} for V 3

〈wi, wj〉 = 0∀i 6= j,

we can work with any subfield F ⊂ C with F = F , since we do not need ‖wi‖ ∈ F for such
a C .

Example 17.3

In R2, let 0 ≤ θ < 2π be fixed. Then

Cθ = {(cos θ, sin θ) , (− sin θ, cos θ)}

satisfies (*)

Definition 17.4 (Orthonormal/Orthogonal) — Let V be an inner product space over
F , ∅ 6= S ⊂ V a subset. We say

1. S is ORTHOGONAL (or OR) if

〈v, w〉 = 0∀v 6= w ∈ S

2. If S is an OR set, we call it ORTHONORMAL (or ON) if, in addition ‖v‖ =
1∀v ∈ S.

3. An OR set is called an OR basis if, in addition, it is a basis for V .

4. If v, w ∈ V , we say v, w are orthogonal or perpendicular if 〈v, w〉 = 0 write v ⊥ w.
(equivalently 〈w, v〉 = 0)

Goal: If F ⊂ C is a subfield (and F = F ), V a finite dimensional inner product space over
F , then V has an OR bases and an ON bases if F = R or C.
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Remark 17.5. Let V be an inner product space over F , x, y ∈ V .

1. 0 ⊥ x

2. x ⊥ y iff y ⊥ x

3. 0 is the only vector perpendicular to all z ∈ V .

Theorem 17.6

Let V be an inner product space over F, S ⊂ V an OR set. Suppose that 0 6= S, then
S is linearly indep. If, in addition, V is a finite dimensional inner product space over
F and |S| = dimV, then S is an OR basis for V .

Proof. Let v ∈ Span(S). Then ∃ (distinct) v1, . . . , vn ∈ S, α1, . . . , αn ∈ F 3

v = α1v1 + . . .+ αnvn

We have

〈v, vj〉 = 〈α1v1 + . . .+ αnvn〉

=
n∑
i=1

αi〈vi, vj〉

=
n∑
i=1

αiδij‖vj‖2 = αj‖vj‖2

This is so useful, we record it as
Crucial Equation: If {v1, . . . , vn} , α1, . . . , αn ∈ F then

αj =
〈v, vj〉
‖vj‖2

, j = 1, . . . , n

Note: If V is not necessarily finite dimensional and S is an OR set not containing O, the
same holds.
Now, suppose that v = 0, i.e.,

0 = α1v1 + . . .+ αnvn

so

αj =
〈v, vj〉
‖vi‖2

=
〈0, vj〉
‖vi‖2

= 0, j = 1, . . . , n

and the result follows.

Note: If B = {v1, . . . , vn} is an OR set, vi 6= 0∀i, V = SpanB, hence a basis for V then

〈v, vj〉
‖vj‖2
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is the jth coordinate of v on vj and

v =

n∑
j=1

〈v, vj〉
‖vj‖2

If, in addition, ‖vj‖ ∈ F∀j, then

C =

{
v1

‖v1‖
, . . . ,

vn
‖vn‖

}
is an ON basis and ∀v ∈ V .

v =

n∑
j=1

〈v, vj〉
‖vj‖2

vj =

n∑
j=1

〈v, vj
‖vj‖
〉 vj
‖vj‖

Hence if wi = vi
‖vi‖ , i = 1, . . . , n,C = {w1, . . . , wn} is an ON basis and

v =

n∑
i=1

〈v, wi〉wi

i.e., 〈v, wi〉 is the coordinate of v and wi for each i.

Remark 17.7. Does this look familiar?

1. Look at the proof of the Cauchy – Schwarz Inequality

2. Let B = {v1, . . . , vn} be an OR basis for V a finite dimensional inner product space
over F and

B∗ = {f1, . . . , fn}

the dual basis for V ∗ = L(V, F ). So, fi(vj) = δij ,∀i, j. Then fi : V → F is fi(v) =
〈v,vi〉
‖vi‖2 , i = 1, . . . , n by Crucial Equation:

fi = 〈−, vi
‖vi‖2

〉 : V → F

and if C = {w1, . . . , wn} is an ON basis then

fi = 〈, wi〉 ∈ C ∗

fi (v) = 〈v, wi〉

i.e., we can associate a vector in V to a linear functional.

Theorem 17.8

Let V be an inner product space over F , B an OR basis for V , v ∈ V . Then 〈v, w〉 = 0
for all but finitely many w ∈ B and

v =
∑
B

〈v, w〉
‖w‖2

w

is a finite sum. If, in addition, B is ON, then this becomes

v =
∑
B

〈v, w〉w
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Corollary 17.9 (Parseval’s Equation)

Let V be a finite dimensional inner product space over F with ON basis {v1, . . . , vn}
and v, w ∈ V . Then

〈v, w〉 =

n∑
i=1

〈v, vi〉〈w, vi〉

In particular,

‖v‖2 =
n∑
i=1

|〈v, vi〉|2 , (Pythagorean Theorem)

Proof. Hw – Take home.

§18 Veterans Day: Nov 11, 2020

No class :D

§19 Lec 18: Nov 16, 2020

§19.1 Lec 17 (Cont’d)

Example 19.1

Let V = C[0, 2π] an inner product space over R via

〈f, g〉 :=

∫ 2π

0
fg

Let u0 = 1√
2π
, u2n = 1√

π
sinnx, u2n+1 = 1√

π
cosnx for all n ∈ Z+ and set

S = {ui|i ≥ 0}

By calculus

〈ui, uj〉 =

∫ 2π

0
uiuj = δij ,∀i, j

So S is ON hence linearly indep (0 /∈ S) and a ON basis for Span S.

Note: Vectors in span S are finite linear combos of vectors in S. In particular, C[0, 2π]
is infinite dimensional (and Span S < C[0, 2π] is a subspace). In calculus, you studied
convergent series, a convergent series

∞∑
i=0

αiui (*)

is called a FOURIER SERIES, the αi Fourier coefficients.

72



Duc Vu (Fall 2020) 19 Lec 18: Nov 16, 2020

Warning: S = B = ∪Bn,Bn = {ui|i = 0, . . . , 2n+ 1} is ON but not a basis for C[0, 2π]
or even

V = {f ∈ C[0, 2π]|f converges to its Fourier series}

It can be shown that C ′[0, 2π] ⊂ V .
Note: No one knows a precise basis for C[0, 2π] although it exists by axioms.

Remark 19.2. 1. One can modify the interval [0, 2π] in the above with appropriate changes
to the ui.

2. Infinite ON sets are very useful.

To solve our goal about finite dimensional inner product space over F , we know show:

Theorem 19.3 (Gram-Schmidt)

Let V be an inner product space over F and ∅ 6= Sn = {v1, . . . , vn} ⊂ V a linearly
indep. set. Then ∃y1, . . . , yn ∈ V 3

• y1 = v1

• Tn = {y1, . . . , yN} is an OR set and linearly indep.

• Span Tn = Span Sn

Proof. We construct Tn from Sn. This construction is called the Gram – Schmidt process.
n = 1 is clear. We proceed by induction. We may assume we have done the Sn case, i.e.,

1. y1, . . . , yn ∈ V, y1 = v1, yi 6= 0, i = 1, . . . , n

2. Tn = {y1, . . . , yn} is OR. (hence linearly indep. as 0 /∈ Tn)

3. Span Sn = Span{y1, . . . , yn}

4. Must extend this to the case of n+ 1.

As in the proof of GS (where we threw away one orthogonal complement), we subtract an
ORTHOGONAL PROJECTION figure here Define:

yn+1 = vn+1 −
n∑
k=1

〈vn+1, yk〉
‖yk‖2

yk (*)

Claim 19.1. yn+1 6= 0 : if yn+1 = 0, then vn+1 ∈ Span Tn = Span(v1, . . . , vn) contradicting
S?, is linearly indep. So yn+1 6= 0
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Claim 19.2. 〈yn+1, yj〉 = 0, j = 1, . . . , n

〈yn+1, yj〉 = 〈vn+1 −
n∑
k=1

〈vn+1, yk〉
‖yk‖2

yk, yj〉

= 〈vn+1, yj〉 −
n∑
k=1

〈vn+1, yk〉
‖yk‖2

〈yk, yj〉

= 〈vn+1, yj〉 −
n∑
k=1

〈vn+1, yk〉
‖yk‖2

δkj‖yj‖2

= 〈vn+1, yj〉 − 〈vn+1, yj〉 = 0

This prove the above claim.
Since 0 /∈ Tn+1 = {y1, . . . , yn+1} and Tn+1 is OR, it is linearly indep. As Span Tn =
Span{v1, . . . , vn} and {v1, . . . , vn+1} is linearly indep.

Span Tn+1 = Span(vn+1, y1, . . . , yn) = Span(v1, . . . , vn+1)

by the Replacement Theorem and (∗). The theorem follows by induction.

Theorem 19.4 (Orthogonal)

Let V be a finite dimensional inner product space over F . Then V has an OR basis.
If F = R or C, then V has an ON basis.

Proof. Any basis for V can be converted to an OR basis C for V by the GS process

if V is finite dimensional if F = R or C, then
{

v
‖v‖ |v ∈ C

}
is an ON basis for V as

‖v‖ ∈ R∀v ∈ C

Remark 19.5. Let V = Q2 a finite dimensional inner product space over Q with inner product
defined by

〈(α1, α2), (β1, β2)〉 1
3

:=
1

3
(α1β1 + α2β2)

i.e., WEIGHTED DOT PRODUCT by 1
3 . Then V has an OR basis but not any ON basis

‖
(
a1
b1
, a2b2

)
‖ 1

3
/∈ Q as 3b21b

2
2 = a2

1b
2
2 + b21a

2
2 has no solution in Z.

§19.2 Examples – Computation

Example 19.6 1. V = R3 under 〈, 〉 = dot product with v1 = (1, 1, 1), v2 =
(1, 1, 0), v3 = (1, 0, 1). GS v1, v2, v3 to an OR basis and then to an ON ba-
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sis:

y1 = (1, 1, 1)

y2 = v2 −
v2 · y1

‖y1‖2
y1

. . . some boring calculation – can refer online notes/textbook

Note:

1. It is easier to guess.

2. If instead of F = R, we had F = Q, we could not get an ON basis after GS-ing.

Example 19.7

V = R[x] (polynomial function) via

〈f, g〉 :=

∫ 1

−1
fg

Bn =
{
xi|0 ≤ i ≤ n

}
is a basis for R[x]n. GS, Bn to an OR basis, at least start

g0 = 1

g1 = x− 〈x, 1〉
‖1‖2

1 = x−
∫ 1
−1 x∫ 1
−1 1

= x

g2 = x2 − 〈x
2, 1〉
‖1‖2

1− 〈x
2, x〉
‖x‖2

x

= x2 −
∫ 1
−1 x

2∫ 1
−1 1

−
∫ 1
−1 x

3∫ 1
−1 x

2
x = x2 − 1

3

...

The gi are called LEGENDRE POLYNOMIALS. You can normalize them, i.e., form
gi
‖gi‖ to get an ON set.

These are important polynomials, gn satisfies the ODE

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0

These occur in physics, e.g., converting Laplace’s Equation ∇2g = 0 into spherical coor-
dinates in some cases in quantum mechanics in the solution of Schrodinger’s Eqn for the
hydrogen atom.
Flow of an (ideal fluid) past a sphere. Determination of the electric fluid due to a
charged sphere. Determination of the temperature distribution in a sphere given its surface
temperature. Computing g′ns by GS is too difficult. There are many formulas to determine
the g′ns. Many arise by proving the following recurrence relation:
Rodriguez Representation:

gn =
1

2nn!

dn

dxn
(x2 − 1)n
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Some of these are, using the appropriate ? of the binomial coefficient(
n

m

)
:=

n!

m!(m− n)!
, 0 ≤ m ≤ n :

let M = n
2 or n−1

2 whichever one is an integer, i.e.,
[
n
2

]
= greatest integer ≤ n

2 .

gn = 2
1
n

M∑
m=0

(−1)m
(2n− 2m)!

m!(n−m)!(n− 2m)!
xn−2m

= 2n
n∑
k=0

(
n

k

)2

(x− 1)n−k(x+ 1)k

=
n∑
k=0

(
n

k

)(
−n− 1

k

)(
1− x

2

)k

§20 Lec 19: Nov 18, 2020

§20.1 Lec 18(Cont’d)

Note:Gamma function:

Γ(z) =

∫ ∞
0

xz−1e−xdx

where z is complex and Re (z) > 0 and Γ(n) = (n− 1)!,∀n > 1,.

3. GS

(
1 1
0 1

)
,

(
0 2
1 1

)
in M2(R) under

〈A,B〉 = tr AB∗

y1 =

(
1 1
0 1

)

y2 =

(
0 2
1 1

)
−

tr

((
0 2
1 1

)(
1 1
0 1

)∗)
tr

((
1 1
0 1

)(
1 1
0 1

)∗) (1 1
0 1

)

y2 =

(
0 2
1 1

)
−

tr

((
0 2
1 1

)(
1 0
1 1

))
tr

((
1 1
0 1

)(
1 0
1 1

)) (1 1
0 1

)

=

(
−1 1
1 0

)
4. T : R3 → R3 rotation counterclockwise by ∠θ about a vector 0 6= v1 as axis. Find
T (α, β, γ) i.e., [T ]S complete v1 to a basis {v1, v2, v3} for R3. GS it to an OR basis,
then an ON basis C . Compute [T ]C . Then use Change of Basis to compute [T ]l or
guess v2, normalize v1, v2 to v′1, v

′
2 then v3 ⊂ v′1 × v′2.

Note: If you have a basis with vectors of different lengths, it is hard to compute in
this basis. If each vector in your OR basis has the same length r, you can compute.
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§20.2 Orthogonal Polynomials

There are many interesting infinite sets of orthogonal polys {fn}n∈Z+ . They often arise as
relate α to the HYPERGEOMETRIC ODE

z(1− z)d
2y

dz2
+ [γ − (α+ β + 1)z]

dy

dz
− αβy = 0

where z is a complex variable, y = y(z), α, β, γ ∈ C. They arise as OR sets or weighted
inner product space over R ( or C on an interval [a, b] (or variant).∫ b

a
fgw = 〈f, g〉w

where w > 0 in [a, b].

• A very general such is the OR set of JACOBI POLYNOMIALS
{
Pα,βn

}
under the

weighted inner product space

〈f, g〉w =

∫ 1

−1
fgw

and

w =
(1− x)α(1 + x)β

〈α, β〉 − 1

Often such OR sets are not orthonormalized but rather normalized “by dividing by
Pα,βn (1). In this case, Pα,βn (1) =

(
n+α
n

)
. The Pα,βn are solutions to the ODE.

0 = (1− x2)y′′ + (β − α− (α+ β + 2)x)y′ + n(n+ α+ β − 1)y

used in Wigner d-matrix theory in quantum mechanics. There are many special cases
of Jacobi polys.

1. Gegenbauer polys (ultra-symmetric) polynomials, C
(α)
n where

w = (1− x2)α−
1
2

C(α)
n = P

(α− 1
2
,α− 1

2
)

n

(1− x2)y′′ − (2α+ 1)xy′ + n(n+ 2α)y = 0

potential theory, harmonics analysis, Newtonian’s potential.

2. Legendre polys. There are a special case of Gegenbauer polys, namely

w = 1

C
1
2
n(

(1− x2)y′
)′

+ n(n+ 1)y = 0
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3. Chebychev polys come in two kinds: Tn, Un

w =
1√

1− x2

Tn = P
(− 1

2
,− 1

2
)

n

Un = P
( 1
2
, 1
2

)
n

(1− x2)y′′ − xy′ + n2y = 0

(1− x2)y′′ − 3xy′ + n(n+ 2)y = 0

Least square fit, optimal control, numerical analysis.

• Laguerre polys L
(α)
n OR set with wα(x) = xαe−x, α > −1 in R on [0,∞)

xy′′ + (α+ 1− x)y′ + ny = 0, 0 6= n ∈ Z

quantum mechanics, plasma physics.

• HERMITE polys. Hn, Hen

w = e−x
2
, for Hn on (−∞,∞)

= e−
x2

2 , for Hen on (−∞,∞)

(Hn is called physicist Hermite polys and Hen probabilists Hermite polys).

0 = (e−
1
2
x2y′)′ + ne−

1
2
x2y = 0

probability, numerical analysis, physics.

Remark 20.1. Let

D = diff =
d

dx
, p, q functions, w > 0

L = − 1

w
(D(pD) + q) , a linear operator

Then one wants to solve
Lf = λf

The solutions are called eigenfunctions in the above they are the eigenfunctions for the given
ODEs.

§20.3 Orthogonal Complement

Notation: F ⊂ C a field satisfying F = F .
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Definition 20.2 (Distance from a Vector to a Set) — Let V be an inner product space
over F, v1, v2 ∈ V . We know that the DISTANCE between v1, v2 is defined to be

d(v1, v2) := ‖v1 − v2‖ ≥ 0

More generally, let ∅ 6= S ⊂ V be a subset and v ∈ V . Define the DISTANCE of v to
S by

d(v, S) := inf {d(v, w)|w ∈ S}

if it exists and hence finite.

Problem 20.1. Let V be an inner product space over F, S ⊂ V a finite dimensional
subspaces, v ∈ V . Determine

z

x

v

y

w

d(v, S)

Solution take the orthogonal projection of v to w in S

Definition 20.3 (Orthogonal Complement) — Let V be an inner product space over
F, ∅ 6= S ⊂ V a subset of, v ∈ V . We say v is ORTHOGONAL to S, write v ⊥ S, if

〈s, v〉 = 0,∀s ∈ S

Set:
S⊥ := {v ∈ V |v ⊥ S}

called the ORTHOGONAL COMPLEMENT of S in V .
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Remark 20.4. 1. Compare S⊥ to S◦ ⊂ V ∗, if V is an arbitrary vector space over F .

2. In R3(under the dot product)

(Spane1)⊥ = Span(e2, e3)

3. Let V be an inner product space over F, ∅ 6= S ⊂ V a subset, not necessarily a subspace.
Then S⊥ ⊂ V is a subspace (if ∅ 6= S ⊂ V a subset with V a vector space over F, F
arbitrary, then S◦ ⊂ V ∗ is a subspace).

Proof. Hw.

4. In 3), S ⊂ S⊥⊥ :=
(
S⊥
)
⊥: S⊥ ⊂ S⊥⊥ so S ⊂ S⊥⊥. If, in addition, S ⊂ V is a

subspace and V is a finite dimensional inner product space over F , then S = S⊥⊥ (if
V is a finite dimensional vector space over F, F arbitrary W ⊂ V a subspace, then
W = W ◦◦ = (W ◦)◦).

5. Let V be a finite dimensional inner product space over F, S = {v1, . . . , vn} an OR basis
for V . Then

(Span(v1, . . . , vr))
⊥

= Span(vr+1, . . . , vn)

6. Let V be an inner product space over F, S ⊂ V a subspace. Then

S ∩ S⊥ = 0

if v ∈ S ∩ S⊥, then 〈v, v〉 = ‖v‖2 = 0, so v = 0. In particular,

S + S⊥ = S ⊕ S⊥

We write: S ⊕ S⊥ as S ⊥ S⊥ to show it is also orthogonal. The key result ( and most
important result for use about general inner product space over F ) is:

Theorem 20.5 (Orthogonal Decomposition)

Let V be an inner product space over F, S ⊂ V a finite dimensional subspace, v ∈ V .
Then

∃!s ∈ S, s⊥ ∈ S⊥ 3 v = s+ s⊥ (*)

In particular, V = S + S⊥, S ∩ S⊥ = 0, so V = S ⊥ S⊥. Moreover, if

v = s+ s⊥, s ∈ S, s⊥ ∈ S⊥

then
‖v‖2 = ‖s‖2 + ‖s⊥‖2, (Pythagorean Theorem)

In addition, if V is a finite dimensional inner product space over F , then

dimV = dimS + dimS⊥

§21 Lec 20: Nov 20, 2020
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§21.1 Lec 19 (Cont’d)

Proof. By the OR Theorem, ∃ an OR basis B = {v1, . . . , vn} for the finite dimensional
inner product space over F S.
Existence: Let v ∈ V . Define s ∈ S = Span B by

s =
n∑
i=1

〈v, vi〉
‖vi‖2

vi

and set
s⊥ = v − s

Suppose we have shown s⊥ ∈ S⊥. Then v = s+ s⊥ giving existence as well as V = S + S⊥

and S ∩ S⊥ = 0, i.e., V = S ⊕ S⊥. Repeating the previous computation, we have if
j = 1, . . . , n then

〈s⊥, vj〉 = 〈v − s, vj〉 = 〈v, vj〉 − 〈s, vj〉

= 〈v, vj〉 −
n∑
i=1

〈v, vi〉
‖vi‖2

〈vi, vj〉

= 〈v, vj〉 −
n∑
i=1

〈v, vi〉
‖vi‖2

δij‖vj‖2 = 0

Since s⊥ ⊥ vj , j = 1, . . . , n i.e., ∀vj ∈ B, if
∑n

i=1 αivi ∈ S, then

〈s⊥,
n∑
i=1

αivi〉 =
n∑
i=1

αi〈s⊥, vi〉 = 0

Thus, s⊥ ∈ S⊥ as needed.
Uniqueness: If

s+ s⊥ = v = r + r⊥, r ∈ S, r⊥ ∈ S⊥

(s ∈ S, s⊥ ∈ S⊥) as both S, S⊥ are subspaces

s− r = r⊥ − s⊥ ∈ S ∩ S⊥ = 0

So s = r and s⊥ = r⊥.

Theorem 21.1 (Pythagorean)

Let v = s+ s⊥, s ∈ S, s⊥ ∈ S⊥. Then

‖v‖2 = 〈s+ s⊥, s+ s⊥〉 = 〈s, s〉+ 〈s, s⊥〉+ 〈s⊥, s〉+ 〈s⊥, s⊥〉
= ‖s‖2 + ‖s⊥‖2
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Corollary 21.2 (Bessel’s Inequality)

Let V be an inner product space over F,B = {v1, . . . , vn} an OR set in V with 0 /∈ B.
Let v ∈ V . Then

n∑
i=1

|〈v, vj〉|2

‖vi‖2
≤ ‖v‖2

with equality iff

v =
n∑
i=1

〈v, vj〉
‖vi‖2

vi

Proof. Hw.

Remark 21.3. Let V be an inner product space over F, S ⊂ V a finite subspace. Then by
the OR Decomposition Theorem, ∀v ∈ V ∃!s ∈ S, s⊥ ∈ S⊥ =⇒ v = s + s⊥. We call s the
orthogonal projection of v on S and denote it by vS . By the proof of the OR Decomposition
Theorem, if B = {v1, . . . , vn} is ANY OR basis for S, then the uniqueness of vS means

vS =

n∑
i=1

〈v, vi〉
‖vi‖2

vi

i.e.,is INDEPENDENT of OR basis. So the ORTHOGONAL PROJECTION of v onto S.

Theorem 21.4 (Approximation)

Let V be an inner product space over F, S ⊂ V a finite dimensional subspace, and
v ∈ V . Then vS is closer to v than any other vector in S, i.e.,

d(v, vS) = ‖v − vS‖ ≤ ‖v − r‖ = d(v, r)

in R, ∀r ∈ S. Equivalently,
d(v, S) = d(v, vS)

Moreover, if r ∈ S, then

‖v − vS‖ = ‖v − r‖ ∈ R ⇐⇒ r = vS

We say vS gives the BEST APPROXIMATION.

Proof. By the OR Decomposition Theorem (and its proof), v = s+ s⊥ with s = vS , s
⊥ =

v − s = v − vS , s⊥ ∈ S⊥. Let r ∈ S. Then

v − r = (v − vS) + (vS − r) = s⊥ + (vS − r)

S ⊂ V is a subspace, so vS − r ∈ S, hence s⊥ ⊥ vS − r, i.e.,

0 = 〈s⊥, vS − r〉 = 〈v − vS , vS − r〉

By the Pythagorean Theorem,

‖v − r‖2 = ‖v − vS‖2 + ‖vs − r‖2 ≥ ‖v − vS‖2
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with equality iff
‖vS − r‖ = 0 ⇐⇒ vs = r

Definition 21.5 (Error) — Let V be an inner product space over F, S ⊂ V a finite
dimensional subspace and v ∈ S. Then, ‖v − vS‖ is called the error of v not being vS .

Problem 21.1. Let V,X be inner product space over F , S ⊂ V a finite dimensional
subspace v ∈ V, and T : X → V linear. Find x ∈ X with ‖x‖ minimal s.t. Tx is the best
approximation to v ∈ V in S, i.e., find x ∈ X, ‖x‖ minimal 3 Tx = vS .

§21.2 Examples of Best Approximation

Example 21.6 (Fourier Coefficient)

Let V = C[0, π] an inner product space over R via 〈f, g〉 =
∫ 2π

0 fg, u0 = 1√
2π
, u2n−1 =

cosnx√
π
, u2n = sinnx√

π
, n > 0. Set

S = {u0, . . . , un, . . .}

an ON set (as we have seen) and let

Bn := {u0, . . . , u2n+1}
Vn := Span(Bn)

if f ∈ V , then
fn := fvn = fspan Bn ,

the function in Vn closest to f , i.e., the orthogonal projection of f onto Vn. So

fn =
2n+1∑
i=0

〈f, ui〉ui

where

〈f, ui〉 =

∫ 2π

0
fui, ∀i ≤ 2n

called the ith FOURIER COEFFICIENT. The ERROR to the actual f is

d(f, fn) = ‖f − fn‖ =

√∫ 2π

0
(f − fn)2

One checks:

fn =
1

2
00 +

n∑
k=1

(ak cos kx+ bk sin kx)
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with

a0 =
1

π

∫ 2π

0
f(x)dx

ak =
1

π

∫ 2π

0
f(x) sin kxdx

bk =
1

π

∫ 2π

0
f(x) sin kxdx

is the BEST APPROXIMATION of f by such functions. If limn→∞ ‖f − fn‖ = 0,
i.e., f =

∑∞
i=0〈f, ui〉ui converges, we say f converges to its Fourier expansion (similar

results with modest change work for ([0, L]).

Example 21.7

Let V = C[−1, 1] with 〈f, g〉 =
∫ 1
−1 fg. Let f(x) = ex. Find a linear polynomial

nearest f and compute d(f, g) (=error) for such a g and we let W = span(1, x) ⊂ V a
finite dimensional subspace. We want fW . To do this, we compute ON (or OR) basis
for W i.e., GS {1, x} and normalize. GS yields 1, x (as before) and ON it to 1

‖1‖ ,
x
‖x‖ ,

i.e., 1√∫ 1
−1 1

, x√∫ 1
−1 x

2
which is

1√
2
,

√
3

2
x

Let f = ex. Then

fW = 〈f, 1√
2
〉 1√

2
+ 〈f,

√
3

2
x〉
√

3

2
x

=
1

2

∫ 1

−1
ezdz +

3

2
x

∫ 1

−1
zezdz

= . . .

=
1

2
(e− 1

e
) +

3

e
x

So, fW = 1
2(e− 1

e ) + 3
ex. Let α = 1

2(e− 1
e ), β = 3

ex. So g = fW = α+ βx and

‖f − fW ‖2 = ‖f − g‖2 =

∫ 1

−1
(f − g)2 dz

=

∫ 1

−1
(f2 − 2fg + g2) dz

=

∫ 1

−1

[
(e2x − 2ex(α+ βx) + α2 + 2αβx+ β2x2

]
dx

= . . . (boring algebra)

= 1− 7

e2
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So

d(f, g) = d(f, fW ) =

√
1− 7

e2
≈ .05625

§21.3 Hermitian Operators

Definition 21.8 (Hermitian/Self-Adjoint) — Let V be an inner product space over F ,
T : V → V linear. We say T is HERMITIAN or SELF-ADJOINT if

〈Tv,w〉 = 〈v, Tw〉,∀v, w ∈ V

if F ⊂ R is an hermitian operator, it is also called a SYMMETRIC OPERATOR.

Example 21.9 1. Let V = Fn×1 be an inner product space over F via the dot
product, i.e.,

〈

α1
...
αn

 ,

β1
...
βn

〉 :=

n∑
i=1

αiβi

remember we always assume F = F ⊂ C. Note that some people write the dot
product v ∗ w – they do not like columns.

Let A ∈Mn(F ). As usual, we view A as a linear operator,

A : Fn×1 → Fn×1 by X 7→ A ·X

By HW, A is hermitian iff A = A∗ (so if F ⊂ R ⇐⇒ A = At). In fact, you will
prove on the takehome the following theorem

Theorem 21.10

Let V,W be finite dimensional inner product space over F with ON bases, T : V →W
linear. Then, ∃!T ∗ : W → V linear s.t.

〈Tv,w〉W = 〈v, T ∗w〉V ,∀v ∈ V,∀w ∈W

T ∗ is called the ADJOINT of T . Hence if T : V → V is a linear operator, then T is
hermitian iff T = T ∗ and T ∗ exists.

Example 21.11

Let α < β in R and V = C[α, β] := {f : [α, β]→ R/cont} an inner product space over
R by

〈f, g〉 :=

∫ β

α
fg
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If T : V → V linear, then T is hermitian iff∫ β

α
(fTg − gTf) = 0,∀f, g ∈ V (*)

Note: V is not finite dimensional and (*) is a commutativity type of condition.

Example 21.12 (fancy)

V = C∞[α, β], α < β in R. (often C∞[α, β] vector space of convergent power series in
some neighborhood of every point of (α, β) and ? open neighborhood at α, β). Again V
is not finite dimensional and is an inner product space over R as in the above example.
Let p ∈ V be fixed, p(x) > 0, and

W = {f ∈ V |p(α)f(α) = 0 = p(β)f(β)}

an inner product space as in the above example (e.g., p(α) = 0p(β). Fix q ∈W and let

Tp,q = T : W →W the linear operator

defined by
Tf := (pf ′)′ + qf

called a STURM LIOUVILLE operator. Then T is hermitian. Check T satisfies (*) in
the above example using integration by parts.

Example 21.13

More generally, let V = C∞[α, β], α < β ∈ R an inner product space over R as in
the above. Let p, q, w ∈ V, p(x) > 0, w(x) > 0, ∀x ∈ [α, β]. Fix a, b, c, d ∈ R 3 both
a = 0 = b and c = 0 = d are excluded. Let

w =
{
f ∈ V |af(α) + bf ′(α) = 0 = cf(β) + df ′(β)

}
where f satisfies the boundary condition. Let W be an inner product space over R by
the weighted inner product

〈f, g〉w =

∫ β

α
wfg

Define the STURM LIOUVILLE OPERATOR:

T = Tp,q,w : W →W by

f 7→ − 1
w ((pf ′)′ + qf). Then T is hermitian. This arises from finding eigenvalues of

Tp,q,w, i.e., solutions to the ODE

d

dx

(
p
dy

dx

)
+ q(x)y = −λwy
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which have as special cases – Legendre ODE

(1− x2)y′′ + 2xy′ + n(n+ 1) = 0

arising in spherical harmonic problems. Bessel’s ODE:

x2y′′ + xy′ + (x2 − a2)y = 0

α ∈ C (often in Z or 2α ∈ Z), i.e., one wants to find the eigenvalues of f = y, λ in (*)
for which there is a solution and f ∈ ET (λ). Eigenvectors in function spaces are called
EIGENFUNCTIONS.

§22 Lec 21: Nov 23, 2020

§22.1 Lec 20 (Cont’d)

Goal: Spectral Theorem for Hermitian Operator: Let V be a finite dimensional inner
product space over F, F = R or C, T : V → V hermitian. Then T is diagonalizable, i.e., ∃
a basis B for V consisting of eigenvectors of T , and in fact, such a B is ON.
Calculus Application: Let S ⊂ Rn be “nice” (open + nice boundary + . . . ), x1, . . . , xn the
rectilinear coordinate functions relative to the standard basis and

(+)f : S → R a C2 − a function

Calculus Theorem if f satisfies (+), then

∂2f

∂xi∂xj
(a) =

∂2f

∂xj∂xi
(a), ∀ij , ∀a ∈ S

For each a ∈ S, associate the symmetric matrix

Hf(a) :=:=

(
∂2f

∂xi∂xj
(a)

)
called the HESSIAN at f at a. Suppose a ∈ S is a critical point of f , i.e.,

Df(a) :=

(
∂f

∂x1
(a), . . . ,

∂f

∂xn
(a)

)
= (0, . . . , 0)

Equivalently, ∇f(a) = 0. Recall the TOTAL DERIVATIVE of f at a is the linear
transformation

f ′(a, ) : Rn → R given by

f ′(a, v) = Df(a) · v. Now, let α1, . . . , αn ∈ R be the eigenvalues of Hf(a), so the roots
of fHf(a) counted with multiplicity. Since Hf(a) is symmetric, by the Spectral Theorem,
m = n and

Hf(a) ∼

λ1 0
. . .

0 λn

 in MnR

λ1, . . . , λn not necessarily distinct. Then, we have the 2nd Derivative Test under the above
conditions at the critical point a.
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1. a is a relative minimum for f at a if λi > 0∀i.

2. a is a relative maximum for f at a if λi < 0∀i.

3. a is a saddle point for f at a if ∃i, j 3 λi > 0, λj < 0.

4. No info if λi = 0∀i or ∃i 3 λi = 0.

The total derivative f ′(a,−) : Rn → R can be defined at a ∈ S if it exists as the following:
it is a linear transformation

Ta : Rn → R 3

∃ a scalar valued function satisfying

f(a+ v) = f(a) + ‖v‖E(a, v)

for some r,3 if ‖v‖ < r then

E(a, v)→ 0 as ‖v‖ → 0

Question 22.1. What is the total derivative

f ′(a, ·) : Rn → Rm if f : S → Rm?

Theorem 22.1

Let V be an inner product space over F, T : V → V linear, λ an eigenvalue of
T, 0 6= v ∈ ET (λ). Then

λ =
〈Tv, v〉
‖v‖2

and λ =
〈v, Tv〉
‖v‖2

In particular, λ ∈ R iff
〈Tv, v〉 = 〈v, Tv〉

Proof. By assumption, Tv = λv, ‖v‖ 6= 0.So 〈Tv, v〉 = 〈λv, v〉 = λ〈v, v〉 = λ‖v‖2 and
〈v, Tv〉 = 〈v, λv〉 = λ〈v, v〉 = λ = ‖v‖2. As ‖v‖ 6= 0, the first statement follows. Hence,

λ = λ ⇐⇒ 〈Tv, v〉 = 〈v, Tv〉

Corollary 22.2 (Hermitian)

Let V be an inner product space over F, T : V → V linear. Suppose that T is hermitian.
Then any eigenvalues of T is real, i.e., lies in F ∩ R.
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Theorem 22.3 (Fundatemental Theorem of Algebra)

Let f ∈ C[t] \ C. Then f has a root in C, i.e., ∃α ∈ C 3 f(α) = 0

Addendum: Let f ∈ R[t] \ R. As R ⊂ C,R[t] ⊂ C[t]. So we can view f ∈ C[t]. Then f has
a root β ∈ C. Of course, β may not lie in R.
Suppose β is real, i.e., β ∈ R. As β is a root of f ∈ C

f = (t− β)g, g ∈ C[t], β ∈ R

Then
f = (t− β)(h), h ∈ R[t](if β ∈ R)

Proof. 1. If f =
∑n

i=0 αit
i, αi ∈ R∀i and

∑n
i=1 αiβ

i = 0 in C with β ∈ R, then every
term in

∑
αiβ

i lies in R, so β is a root of f when viewed in R[t].

2. (Generalization) Let F ⊂ K, K a field, F a subfield of K so same +, ·, 0, 1 as in K
(e.g., R ⊂ C). Let f ∈ F [t], α ∈ F . By the DIVISION ALGORITHM,

f = f(t− α)g + r, r, g ∈ F [t] unique with r = 0 or deg r < deg(t− α) (*)

But deg(t− α) = 1, so r ∈ F (a constant). Evaluate (*) at t = α, so (eα : F [t]→ F
by h 7→ h(α) a ring homomorphism)

f(α) = (α− α)g(α) + r = r

i.e.,
(+)f = (t− α)g + f(α)

So
α ∈ F is a root in F ⇐⇒

(?)f = (t − α)g in F [t] some g ∈ F [t]. So we have, viewing F [t] ⊂ K[t]. If β ∈ K,
then

f = (t− β)h+ f(β), h ∈ K[t]

and if β ∈ K is a root of f in K, then

f = (t− β)h ∈ K[t]

So if β ∈ K is a root of f with β ∈ F , then

f(β) = 0K = 0F ,

so (?) holds.
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Remark 22.4. 1. By the Addendum and induction, FTA says if f ∈ C[t] \ C, says
n = deg f ≥ 1, then ∃!α1, . . . , αn ∈ C, not necessarily distinct and β ∈ C 3

f = β(t− α1) . . . (t− αn)

i.e., f factors into a product of linear polys. We say f splits in C and α1, . . . , αn are
the unique roots (up to multiplicity) of f in C.

2. FTA is proven in Math 132 and math 110C. The essential analysis fact used in math
132 is if f ∈ C[t] \C, then |f(z)| → ∞ as |z| → ∞ and the essential analysis fact used in
math 110C is the Intermediate Value Theorem in the special case that says if f ∈ R[t]
is of odd degree, then f has a real root.

3. The following fact is true: If V is a finite dimensional vector space over F, F an
arbitrary field, T : V → V linear, then ∃ an ordered basis B for V 3 [T ]B is UPPER
TRIANGULAR (i.e. ([T ]B)ij = 0∀i > 1) iff fT ∈ F [t] splits, i.e., factors into a product
of linear terms. If this occurs, we say T is TRIANGULARIZABLE. Can you prove
that if F = C, then every such T is triangularizable? (T is diagonalizable iff qT of the
HW7/Midterm splits and has no multiple roots)

§23 Lec 22: Nov 25, 2020

§23.1 Lec 21 (Cont’d)

Definition 23.1 (T-invariant) — Let F be an arbitrary field, V a vector space over
F,W ⊂ V a subspace, T : V → V linear. We sayW is T-INVARIANT (or INVARIANT
under T ) if

Tw ∈W, ∀w ∈W, i.e., T (W ) ⊂W

if W is T-invariant, then we can (and do) view

T
∣∣∣
W

: W →W linear

Example 23.2 1. Any subspace of an eigenspace of T (if any) is T-invariant.

2. kerT ⊂ V is T-invariant.

3. im T ⊂ V is T-invariant.

Lemma 23.3 (Hermitian Operator (Key Lemma))

Let V be an inner product space over F, T : V → V hermitian, S ⊂ V a T-invariant
subspaces. Then

1. S⊥ is T-invariant, i.e., T (S⊥) ⊂ S⊥.

2. T
∣∣∣
S⊥

: S⊥ → S⊥ is hermitian.
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Proof. 1. Let w ∈ S⊥. To show Tw ∈ S⊥, if v ∈ S, then Tv ∈ S as S is T-invariant. So

〈v, Tw〉 = 〈Tv,w〉 = 0

So, Tw ∈ S⊥.

2. By 1), T
∣∣∣
S⊥

: S⊥ → S⊥ is linear. As 〈Tv,w〉 = 〈v, Tw〉,∀v, w ∈ V , this is certainly

true ∀v, w ∈ S⊥.

Remark 23.4. Let F = R or C, V a finite dimensional inner product space over F, T : V → V
hermitian. By the Hermitian Corollary, if T has an eigenvalue, it is real and α ∈ F is a roof
of fT in F iff eigenvalue of T . We know fT has a root in C[t] by the FTA. The key lemma
should allow us to induct on dimV .

Subtle Difficulty: Let V be a finite dimensional inner product space over R, T : V → V
hermitian. We know fT ∈ R[t] has a root in C, but we do not know a priori that fT is the
characteristics polynomial of an hermitian operator over an inner product space over C, so
we do not know that the roots of fT are real.
Unfortunately, to over come this, we have use bases. There is an abstract way to do it but
we cannot do it.

Theorem 23.5 (Spectral – First Version)

(for Hermitian Operator) Let F = R or C, V a finite dimensional inner product space
over F, T : V → V hermitian. Then ∃ an ON basis B = {v1, . . . , vn} for V with
each vi, i = 1, . . . , n, an eigenvector for some eigenvalues αi ∈ R, i = 1, . . . , n (not
necessarily distinct). In particular, T is diagonalizable.

Proof. We prove B exists by induction on dimV = n.
n = 1 : V = Span(v), any 0 6= u ∈ V . As Tv ∈ Span(v), ∃α ∈ F 3 Tv = αv ,so v ∈ ET (α).

As T is hermitian, α ∈ R is real by Hermitian Corollary even if F = C. So B =
{

v
‖v‖

}
.

n > 1 : Induction Hypothesis (IH): Let F = R or C, W a finite dimensional inner product
space over F,dimW = n − 1, T0 : W → W hermitian. Then ∃ an ON basis for W of
eigenvectors of T0 and every eigenvalues of T0 is real.
Let C be an ON basis for n−dimensional V, which exists as F = R or C. Let A = [T ]C ∈
MnF ⊂MnC.

A = A∗ and Ax · y = x ·Ay,∀x, y ∈ Cn×1

since T is hermitian, i.e.,
A : Cn×1 → Cn×1 is hermitian

where Cn×1 is an inner product space over C via the dot product. By the FTA, fA has a
root α ∈ C, hence α is an eigenvalue of hermitian A : Cn×1 → Cn×1. Thus, α ∈ R by the
Hermitian Corollary. But

fT = f[T ]C = fA

So fT has a root α ∈ R, if F = R or F = C by the Addendum. Thus, ∃0 6= u ∈ ET (λ) ⊂ V
an eigenvector of T . Let Fv = Span(v) ⊂ ET (λ). Then Fv is T-invariant. By the OR
Decomposition Theorem,

V = Fv ⊥ (Fv)⊥
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and
dimV = dimFv + dim (Fv)⊥ = 1 + dim (Fv)⊥

hence
dim (Fv)⊥ = n− 1

By the Key Lemma, since Fv is T-invariant and T : V → V is hermitian. (Fv)⊥ is
T-invariant and

T
∣∣∣
(Fv)⊥

: (Fv)⊥ → (Fv)⊥ is hermitian

By the IH, (Fv)⊥ has an ON basis, say {v2, . . . , vn} of eigenvectors for T
∣∣∣
(Fv)⊥

: (Fv)⊥ →

(Fv)⊥. But

T
∣∣∣
(Fv)⊥

(vi) = Tvi, i = 2, . . . , n

So, v2, . . . , vn are eigenvectors of T : V → V and all the eigenvalues of the vi, i = 2, . . . , n
are real by IH. Since v ⊥ vi, i = 2, . . . , n, 0 6= ‖v‖ ∈ R ⊂ F,

B = {‖v‖, v2, . . . , vn}

is an ON basis for V of eigenvalues for T and all the eigenvalues are real and T is
diagonalizable.

By the HW/Takehome, we know

Theorem 23.6

Let V be a finite dimensional inner product space over F, F = R or C. Let B,C be
ordered ON basis for V . Then

[1V ]B,C : Fn×1 → Fn×1

n = dimV , is an ISOMETRY. In particular,

[1V ]−1
B,C = [1V ]∗B,C

T : V →W linear is called an ISOMETRY if

• T is an isomorphism.

• 〈Tv1, T v2〉W = 〈v1, v2〉V ,∀v1, v2 ∈ V .

Theorem 23.7 (Spectral Theorem for Hermitian Operator (refined))

Let F = R or C, V a finite dimensional inner product space over F, T : V → V
hermitian. Then ∃ an ordered ON basis C of eigenvectors for V of T and every set of
T if real. Moreover, if B is any ordered ON basis for V , then

[T ]C = C[T ]BC
∗

for some invertible matrix C ∈MnF , i.e., C = [1V ]B,C .
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Remark 23.8. The Spectral Theorem says, if V is a finite dimensional inner product space
over F, F = R or C, T : V → V hermitian, B an ordered ON basis for V , then

[T ]B ∼

λ1 0
. . .

0 λn

 , n = dimV, αi ∈ R,∀i

if V = Rn, this is often called the PRINCIPAL AXIS THEOREM.

e.g., It means if

f =
∑

aijtitj ∈ R[t1, . . . , tn]

with
aij = aji,∀i, j

This can always be arranged as titj = tjti and we replace aij , aji with
aij+aji

2 if necessary.
Then we can change variables to make it look like

λ1I
2
1 + . . .+ λnI

2
n

(How? – Confer completing the square and TAT ∗, A = (aij), T
∗ =

t1...
tn

. We want even

more
Let F = R or C, V a finite dimensional inner product space over F,dimV = n, T : V → V
hermitian, B an ordered ON basis of eigenvectors of T for V . Reordering B if necessary,
we may assume λ1, . . . , λk are all the distinct eigenvalues of T , i.e., if j > k then ∃i < k 3
λj = λi.

Claim 23.1. Let v ∈ ET (λi), w ∈ ET (λj), 1 ≤ i, j ≤ k, i 6= j. Then v ⊥ w: We may
assume that v 6= 0, w 6= 0. So

λi〈v, w〉 = 〈λiv, w〉 = 〈Tv,w〉 = 〈v, Tw〉
= 〈v, λjw〉 = λj〈v, w〉 = λj〈v, w〉

as λl ∈ R∀l. Thus,
(λi − λj) 〈v, w〉 = 0 ∈ F, λi 6= λj

so
〈v, w〉 = 0

Claim 23.2. We have

W := ET (λ1) + . . .+ ET (λk) (*)

= ET (λ1)⊕ . . .⊕ ET (λk)

if wi ∈ ET (λi), i = 1, . . . , k and

0 = w1 + . . .+ wk,

then
0 = 〈w1 + . . .+ wk, wj〉 = 〈wj , wj〉 = ‖wj‖2

by the previous claim, so wj = 0 and (*) holds.
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§24 Lec 23: Nov 30, 2020

§24.1 Lec 22 (Cont’d)

Note: Of course we already know this claim, but this proof is nice. Recall this is equivalent
to w = ET (λ1) + . . .+ ET (λk) and

ET (λi) ∩
k∑
j=1

ET (λj) = 0, i = 1, . . . , k

Also by the first claim, the DIRECT SUM DECOMPOSITION (*) of w is an ORTHOG-
ONAL DIRECT SUM. Since B is a bases for V of eigenvectors for T and B ⊂ W , we
have

V = ET (λ1) ⊥ . . . ⊥ ET (λk) (?)

Genral Problem: Let V be a vector space over F, T : V → V linear operator. Can we
DECOMPOSE V as

V = W1 ⊕W2 ⊕ . . .⊕Wr ⊕ . . .
with each subspace Wi T-invariant, i.e., decomposition reflects the action T . This can be
done if V is finite dimensional vector space over F . Then V is a finite direct sum. If F = C,
the solution is called JORDAN CANONICAL FORM.
F arbitrary is called RATIONAL CANONICAL FORM (done in 115B or 110BH).
By the OR Decomposition Theorem,

V = ET (λi) ⊥ ET (λi)
⊥, i = 1, . . . , k (**)

So
ET (λi)

⊥ = ET (λi) ⊥ . . . ⊥ ET (λi) ⊥ . . . ⊥ ET (λk)

i = 1, . . . , k by uniqueness and, also by the OR Decomposition Theorem, as

V = ET (λi) ⊥ ET (λi)
⊥

means that (?) implies if v ∈ V , then

v = vET (λ1) + . . .+ vET (λk)

where vET (λi) is the ORTHOGONAL PROJECTION of v onto ET (λi), i = 1, . . . , k. Define:

Pλi : V → V by v 7→ vET (λi), i = 1, . . . , k

As Pλi is the composition

V → ET (λi) ↪→ V,

v 7→ vET (λi)

It is a linear operator, i = 1, . . . , k. Moreover, by (**),

im Pλi = ET (λi)

kerPλi = ET (λi)
⊥

Since
Pλj (vET (λi) = δijvET (λi), i = 1, . . . , k

We see that

94



Duc Vu (Fall 2020) 24 Lec 23: Nov 30, 2020

1. PλiPλj = 0 if i 6= j.

2. PλiPλi = Pλi .

So
PλiPλj = δijPλi : V → V linear

The Pλ1 , . . . , Pλk are called ORTHOGONAL IDEMPOTENTS. We now see what we have
done: Let v ∈ V . Then

1V v = v = vET (λ1) + . . .+ vET (λk)

= Pλ1(v) + . . .+ Pλk(v) = (Pλ1 + . . .+ Pλk) (v)

So
1V = Pλ1 + . . .+ Pλk

We also have

T = T ◦ 1V = T ◦ (Pλ1 + . . .+ Pλk)

= TPλ1 + . . .+ TPλk
= λ1Pλ1 + . . .+ λkPλk

as

im Pλi = ET (λi)

T
∣∣∣
ET (λi)

= λi1ET (λi), i = 1, . . . , k

We also have

1V ◦ T = (Pλ1 + . . .+ Pλk)T

= Pλ1T + . . .+ PλkT

and
PλiT = TPλi , i = 1, . . . , k

This is called the SPECTRAL RESOLUTION of the Hermitian operator T : V → V . Now,
appropriately reordering B to B′, we have, with

ni = dimET (λi), i = 1, . . . , k

[T ]B′ =



λ1

. . . 0
λ1

. . .

λk
. . .

0 λk


Summary(Spectral Theorem for Hermitian Operator – Full version):
Let F = R or C, V a finite dimensional inner product space over F, T : V → V hermitian,
λ1, . . . , λk all distinct eigenvalues of T . Then T is diagonalizable and
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1. λi ∈ R, i = 1, . . . , k

2. Let Bi be an ordered ON basis for ET (λi), i = 1, . . . , k. Then B = B1 ∪ . . . ∪Bn is
an ordered ON bases for V consisting of eigenvectors of T .

3.

[T ]B =


λ1 0

. . . λ1

. . .

0 λk


ni = dimET (λi)

dimV = n = n1 + . . .+ nk

4. fT = (t− λ1)n1 . . . (t− λk)nk

5. V = ET (λ1) ⊥ . . . ⊥ ET (λk)

6. 1V = Pλ1 + . . .+ Pλk : V → V where Pλi : V → V linear by v 7→ v

7. PλiPλj = δijPλi , i, j = 1, . . . , k

8. T = λ1Pλ1 + . . .+ λkPλk

9. TPλi = PλiT, i = 1, . . . , k

10. If C is an ON basis for V , then

[T ]B = [1V ]C ,B[T ]C [1V ]B,C

= [1V ]C ,B[T ]C [1V ]−1
C ,B

= [1V ]C ,B[T ]C [1V ]∗C ,B

i.e., [1V ]−1
B,C = [1V ]∗B,C

Remark 24.1. One can also show that the MINIMAL POLYNOMIAL qT of the HW/Takehome
in the above is

qT = (t− λ1) . . . (t− λk)

In fact this is a necessary and sufficient condition ⇐⇒ to be diagonalizable.

Remark 24.2. The Spectral Theorem for hermitian operator for F = R, e.g., symmetric
matrices, has a nice generalization:
Let F be a field with 2 6= 0 in F and A ∈MnF a symmetric matrix, i.e., A = At. Then, ∃ an
invertible matrix P in MnF 3 ptAp is diagonal.

Note: in the above, we are not saying pt = p−1

Computation: To compute: let V be a finite dimensional vector space over F , F = R or
C, T : V → V hermitian. Find all the above:
Step 1: Find a basis for V and GS it to an OR bases, then normalize to an ON bases C .
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Step 2: Compute:
fT = f[T ]C = det (tI − [T ]C )

Step 3: Factor fT , i.e., find all the roots of fT . There are the eigenvalues of T . Since T is
hermitian fT splits and all the roots are real.
Step 4: For each eigenvalue of T , compute ET (λ) by solving

[T ]C [v]C = λ[v]C

(equivalently row reduce [T ]C − λI to row echelon form and solve).
Step 5: For each eigenvalue λ, find a basis for ET (λi) and GS to an ordered ON basis and
normalize to an ordered ON basis Bλ. Let B = ∪Bλ an ordered ON basis of eigenvectors
of T . As C is ON

[1V ]C ,B[T ]C [1V ]∗C ,B is diagonal

§25 Lec 24: Dec 2, 2020

§25.1 Normal Operators

We now need the following part of the Takehome

Theorem 25.1

Let V be a finite dimensional inner product space over F having an ordered ON basis
B, T : V → V linear. Then ∃!T ∗ : V → V linear s.t.

〈Tv,w〉 = 〈v, T ∗w〉, ∀v, w ∈ V (*)

called the ADJOINT of T . Moreover,

[T ]∗B = [T ∗]B

Remark 25.2. Actually, to prove (*), you do not need ∃ an ON basis, only an OR basis
(which you know exist) if you prove it using dual bases.

Properties: Let V be a finite dimensional inner product space over F with an ON basis
B, S, T : V → V linear, λ ∈ F . Then ∀v, w ∈ V

(i) 〈T ∗v, w〉 = 〈v, Tw〉

(ii) T ∗∗ := (T ∗)∗ = T

(iii) 〈v, T ∗Tv〉 = 〈Tv, Tv〉 = ‖Tv‖2

(iv) 〈v, TT ∗v〉 = 〈T ∗v, T ∗v〉 = ‖T ∗v‖2

(v) (T ◦ S)∗ = S∗ ◦ T ∗

(vi) (S + T )∗ = S∗ + T ∗
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(vii) (λT )∗ = λT ∗, ∀λ ∈ F .

Proof. Left as exercise.

Remark 25.3. The above means: Let V be a finite dimensional inner product space over F
with an ON basis. Then

φ : L(V, V )→ L(V, V ) by T → T ∗

is a SESQUILINEAR transformation, i.e.,

φ(λT + S) = λT ∗ + S∗,∀T, S ∈ L(V, V ), λ ∈ F

and hence linear if F ⊂ R and is also bijection with inverse sesquilinear so a sesquilinear
isomorphism.

Lemma 25.4 (New Key)

Let V be a finite dimensional inner product space over F, T : V → V linear. Suppose
that V has an ON basis and W ⊂ V is a T-invariant subspace. Then W⊥ ⊂ V is
T ∗-invariant. In particular,

T ∗
∣∣
W⊥

: W⊥ →W⊥ is linear

Proof. Let w⊥ ∈W⊥ and x ∈W be arbitrary. Then

〈x, T ∗w⊥〉 = 〈Tx,w⊥〉 = 0,

as Tx ∈W by hypothesis. So T ∗w⊥ ∈W⊥ as needed.

Definition 25.5 (Triangularizability) — Let V be a finite dimensional vector space
over F, T : V → V linear. We say T is TRIANGULARIZABLE if ∃ an ordered basis
B for V 3 [T ]B is upper triangular, i.e.,

[T ]B =

∗ ∗
. . .

0 ∗


i.e., ([T ]B)ij = 0 if i > j.

Remark 25.6. In the above, [T ]B is upper triangular iff [T ]B is lower triangular where B′ is
an ordered basis with vectors in B in reverse ordered.

Theorem 25.7 (Schur)

Let V be a finite dimensional inner product space over C, T : V → V linear. Then T is
triangularizable. Moreover, ∃ an ordered ON basis B for T 3 [T ]B is upper triangular.
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Proof. We induct on n = dimV .

• n = 1 : is immediate: if {v} is a basis
{

v
‖v‖

}
works.

• n > 1 : By the FTA, the characteristics poly fT ∗ for T ∗ has a root λ ∈ C, hence λ is
an eigenvalue of T ∗. Let 0 6= v ∈ ET ∗(λ). By the OR Decomposition Theorem,

V = Cv ⊥ (Cv)⊥

and

n = dimV = dimCv + dim(Cv)⊥

= 1 + dim(Cv)⊥

i.e., dim(Cv)⊥ = n − 1. Cv is T ∗-invariant as v ∈ ET ∗(λ), so (Cv)⊥ is (T ∗)∗ = T -
invariant by New Key Lemma. So may view

T
∣∣
(Cv)⊥

(Cv)⊥ → (Cv)⊥ linear (*)

By induction, ∃ an ordered ON basis B0 = {v1, . . . , vn−1} for (Cv)⊥ 3
[
T
∣∣
(Cv)⊥

]
B0

is upper triangular. Let B =
{
v1, . . . , vn−1,

v
‖v‖

}
an ordered ON basis for V . Then

by (*), we have 
[
T
∣∣
(Cv)⊥

]
B0

∗
...
∗

0 . . . ∗

 ∈MnC

Remark 25.8. As mentioned before, if F is arbitrary, V a finite dimensional vector space
over F , then T is triangularizable ⇐⇒ fT , T : V → V linear satisfies fT splits, i.e., factors
into a product of linear polys in F [t].

Proof. ( =⇒ ) is clear as fT is independent of a matrix representation.
(⇐= ) is not clear and we not prove it.

Corollary 25.9

Let V be a finite dimensional inner product space over C, T : V → V linear, C an
ordered ON basis for V . Then ∃ an ordered ON basis B for V 3 [T ]B is upper
triangular and

[T ]B = [1V ]C ,B[T ]C [1V ]∗C ,B

with [1V ]−1
C ,B = [1V ]∗C ,B.

Proof. Theorem and HW as C ,B are ON.
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Definition 25.10 (Normal Operator) — Let V be an inner product space over F, T :
V → V linear. Suppose that T ∗ : V → V exists, i.e.,

〈Tv,w〉 = 〈v, T ∗w〉, ∀v, w ∈ V

with T ∗ : V → V linear. Then we say T is a NORMAL OPERATOR, if TT ∗ = T ∗T .

§26 Lec 25: Nov 4, 2020

§26.1 Lec 24(Cont’d)

Example 26.1 1. Every hermitian operator is normal as T = T ∗

2. Let Tθ : R2 → R2 be a rotation counterclockwise by ∠θ with 0 < θ < 2π and
θ 6= π. Then Tθ has no eigenvalues in R. Viewing R2 as an inner product space
over R via the dot product.

T−θ = T−1
θ = T tθ = T ∗θ

So
TθT

∗
θ = T ∗θ Tθ

and Tθ is normal. However, Tθ is not diagonalizable (is not even triangularziable).
We shall show that this does not happen if F = C, we start with (a replacement
for the Hermitian Corollary)

Lemma 26.2 (Crucial Property of Normal Operators)

Let V be an inner product space over F, T : V → V normal, λ ∈ F . Let 0 6= v ∈ V .
Then

v ∈ ET (λ) ⇐⇒ v ∈ ET ∗(λ)

i.e., λ is an eigenvalue of T with eigenvector v ⇐⇒ λ is an eigenvalue of T ∗ with (the
same) eigenvector v. So

Tv = λv ⇐⇒ T ∗v = λv

if T is normal.

Proof. Suppose S : V → V is normal, v ∈ V . Then

‖Sv‖2 = 〈Sv, Sv〉 = 〈v, S∗Sv〉
= 〈v, SS∗v〉 = 〈S∗v, S∗v〉 = ‖S∗v‖2

Hence
Sv = 0 ⇐⇒ S∗v = 0 when S is normal (*)

Let S = T − λ1V : V → V linear. So λ is an eigenvalue of T iff kerS 6= 0. But

S∗ = (T − λ1V )∗ = T ∗ − λ1V
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by properties of ()∗. It follows that

S∗S = SS∗ as T ∗T = TT ∗

i.e., S is also normal. The result follows by (*).

Theorem 26.3 (Spectral Theorem for Normal Operator)

Let V be a finite dimensional inner product space over C, T : V → V normal. Then
∃ an ordered ON basis C for V consisting of eigenvectors of T . In particular, T is
diagonalizable. Moreover, if B is an ordered ON basis for V , then

[T ]C = [1V ]B,C [T ]B[1V ]∗B,C

Proof. We induct on n = dimV .

• n = 1 is immediate.

• n > 1 : By the FTA, ∃λ ∈ C a root of fT ∗ ∈ C[t], hence an eigenvalue of T ∗. Let
0 6= v ∈ ET ∗(λ). By the lemma, v ∈ ET (λ). Thus, Cv is both T- and T ∗-invariant.
Hence, by New Key Lemma,

(Cv)⊥ is both T ∗ and T-invariant

In particular,
〈x, T ∗y〉 = 〈Tx, y〉 ∀x, y ∈ (Cv)⊥

and
(
T
∣∣
(Cv)⊥

)∗
is the unique linear map(

T
∣∣
(Cv)⊥

)∗
: (Cv)⊥ → (Cv)⊥

satisfying ∀x, y ∈ (Cv)⊥

〈x,
(
T
∣∣
(Cv)⊥

|∗y
)
〉(Cv)⊥ = 〈T

∣∣
(Cv)⊥

x, y〉(Cv)⊥

= 〈Tx, y〉V
= 〈x, T ∗y〉V

It follows by the uniqueness of the adjoint that

T ∗
∣∣
(Cv)⊥

=
(
T
∣∣
(Cv)⊥

)∗
Hence, we have

T
∣∣
(Cv)⊥

: (Cv)⊥ → (Cv)⊥

is also normal. Since

dimV = dimCv + dim(Cv)⊥ = 1 + dim(Cv)⊥
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by the OR Decomposition Theorem, by induction ∃ an ON basis C0 = {v2, . . . , vn}
for (Cv)+ of eigenvectors of T

∣∣
(Cv)⊥

hence of eigenvectors of T . It follows that

C =

{
v

‖v‖
, v2, . . . , vn

}
is an ON basis for V consisting of eigenvectors of T . If B is an ON basis for V , then
[1V ]∗B,C = [1V ]−1

B,C by Hw, so

[T ]C = [1V ]B,C [T ]B[1V ]∗B,C

by the change of basis theorem.

In fact, the converse is also true.

Theorem 26.4

Let V be a finite dimensional inner product space over C, T : V → V linear. Then T
is normal iff ∃ an ON basis B for V consisting of eigenvectors of T . In particular, T
is diagonalizable if either holds.

Proof. ( =⇒ ) Has been done.
(⇐= ) Let B has an ordered ON basis for V of eigenvectors of T . Then

[T ]B =

λ1 0
. . .

0 λn

 , n = dimV

As B is ON, by HW

[T ∗]B = [T ]∗B =

λ1 0
. . .

0 λn


in MnC. So

[T ∗T ]B = [T ∗]B[T ]B =

|λ1|2 0
. . .

0 |λn|2


= [T ]B[T ∗]B = [TT ∗]B

(as |λi|2 = λiλi = λiλi ∈ C) By the Matrix Theory Theorem,

φ : L(V, V )→MnC by S 7→ [S]B

is an isomorphism, so
T ∗T = TT ∗
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Remark 26.5. The result needs F = C. Indeed if V = Rn, n > 1, is an inner product space
over R via the dot product and T : V → V is a rotation by an ∠θ, 0 < θ < 2π, θ 6= π in some
plane through the origin in Rn, then T is normal and not diagonalizable.

What is true is: Let F = R or C, V a finite dimensional inner product space over F, T :
V → V linear ∃ an ON basis for V 3 [T ]B is triangularizable, then T is normal iff T is
diagonalizable.

Remark 26.6. As in the Hermitian case, we can do more.

Extension: Let V be a finite dimensional inner product space over C,dimV = n, T : V → V
normal, C an ordered basis of V of eigenvalues for normal T . After relabeling, we may
assume λ1, . . . , λk are the distinct eigenvalues of T , i.e., if j > k∃i, 1 ≤ i ≤ k 3 λi = λj .

Claim 26.1. Let v ∈ ET (λi), w ∈ ET (λi), i 6= j, i ≤ 1, j ≤ k. Then v ⊥ w.

Proof. We may assume that v 6= 0 and w 6= 0. As w ∈ ET (λj), w ∈ ET ∗(λj) by the lemma,
as T is normal. Hence

λi〈v, w〉 = 〈λiv, w〉 = 〈Tv,w〉 = 〈v, T ∗w〉
= 〈v, λjw〉 = λj〈v, w〉

Since λi 6= λj , 〈v, w〉 = 0.

§27 Lec 26: Dec 7, 2020

§27.1 Lec 25 (Cont’d)

Let V be a vector space over F , Wi ⊂ V, i ∈ I subspace. Suppose that V =
∑

IWi. Then
V is a DIRECT SUM of the Wi, i ∈ I write V =

⊕
IWi if one of the following equivalent

condition hold

1. ∀v ∈ V ∃!wi ∈Wi 3 wi = 0 almost all i and v =
∑

I wi

2. If wi ∈Wi, almost all wi = 0, and 0 =
∑

I wi, then wi = 0∀i ∈ I

3. ∀i ∈ I
Wi ∩

∑
j∈I,j 6=i

Wj = 0

4. If Bi is a basis for Wi, i ∈ I, then B = ∪Bi is a basis for V .

If V is also an inner product space over F , and V =
⊕

IWi with 〈wi, wj〉 = 0∀i 6= j in I,
we call V an orthogonal direct sum and write V = 1

IWi.
Since λi 6= λj , 〈v, w〉 = 0. Let

W = ET (λ1) + . . .+ ET (λk)

It is a direct OR sum for if

0 = w1 + . . .+ wk, wi ∈ ET (λi), i = 1, . . . , k
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then

0 = 〈0, wj〉 = 〈w1 + . . .+ wk, wj〉 = 〈wj , wj〉
= ‖wj‖2

j = 1, . . . , k. Hence wj = 0∀i and

W = ET (λ1| ⊕ . . .⊕ ET (λk))

(why – uniqueness follows immediately) and C is a basis for V , so

V = ET (λ1) ⊥ . . . ⊥ ET (λk)

By the OR Decomposition Theorem,

ET (λi)
⊥ = ET (λ1) ⊥ . . . ⊥ ET (λi) ⊥ . . . ⊥ ET (λk)

and if v ∈ V
v = w1 + . . .+ wk, wi ∈Wi unique

So
wi = vET (λi)

the OR properties of v an ET (λi) for i = 1, . . . , k by the OR Decomposition Theorem, as

V = ET (λi) ⊥ ET (λi)
⊥

Let
Pλi : V → V by v 7→ vET (λi), i = 1, . . . , k

be the composition

V → ET (λi) ↪→ V

v 7→ vET (λi)

a linear operator

im Pλi = ET (λi)

kerPλi = ET (λi)
⊥

PλiPλj = δijPλj ,∀i, j

i.e., Pλ1 , . . . , Pλk are ORTHOGONAL IDEMPOTENTS and we see ∀v ∈ V

v = Pλ1v + . . .+ Pλkv

1V = Pλ1 + . . .+ Pλk

So

T = T ◦ 1V = T ◦ Pλ1 + . . .+ T ◦ Pλk = λ1Pλ1 + . . .+ λkPλk
T = 1V T = Pλ1T + . . .+ PλkT

TPλi = PλiT, ∀i
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as
T
∣∣
ET (λi)

= λi1ET (λi), i = 1, . . . , k

This is the SPECTRAL RESOLUTION of T if ni = dimET (λi),Bi an ordered ON basis
for ET (λi), Bi an ordered ON basis for ET (λi), i = 1, . . . , k. Then B = B1 ∪ . . . ∪Bk is
an ordered ON basis for V consisting of eigenvectors of T

n = dimV = n1 + . . . nk

fT = (t− λ1)n1 . . . (t− λk)nk

[T ]B =



λ1 0
. . .

λ1

. . .

λk
. . .

0 λk



Theorem 27.1 (Spectral Theorem for Normal Operator - Full Version)

Let F = C, V a finite dimensional inner product space over C, T : V → V normal,
λ1, . . . , λk all the distinct eigenvalues of T . Then T is diagonalizable and

1. Let Bi be an ordered ON basis for ET (λi), i = 1, . . . , k. Then B = B1 ∪ . . . ∪Bn is
an ordered ON basis for V (obvious order) consisting of eigenvectors of T .

2.

[T ]B =



λ1 0
. . .

λ1

. . .

λk
. . .

0 λk


where

ni = dimET (λi), i = 1, . . . , k

dimV = n = n1 + . . .+ nk

3. fT = (t− λ1)n1 . . . (t− λk)nk

4. V = ET (λ1) ⊥ . . . ⊥ ET (λk)

5. 1V = Pλ1 + . . .+Pλk : V → V where Pλi : v → v linear by v 7→ vET (λi),i=1,...,k (viewed
in V ).
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6. PλiPλj = δijPλi , i, j = 1, . . . , k

7. T = λ1Pλ1 + . . .+ λkPλk

8. TPλi = PλiT, i = 1, . . . , k

9. If C is an ON basis for V then

[T ]B = [1V ]C ,B[T ]C [1V ]B,C

= [1V ]C ,B[T ]C [1V ]−1
C ,B

= [1V ]C ,B[T ]C [1V ]∗C ,B

i.e., [1V ]−1
B,C = [1V ]∗B,C

10. qT = (t− λ1) . . . (t− λk)

Now T is normal so T ∗ is also normal with distinct eigenvalues λ1, . . . , λk and

ET (λi) = ET ∗(λi), i = 1, . . . , k

In fact, as
Tv = λiv ⇐⇒ T ∗v = λiv

the orthogonal projection
Pλ1 , . . . , Pλk

for T ∗ satisfy
Pλi = Pλi , i = 1, . . . , k

as
vET (λi) = vE∗T (λi)

Hence the spectral resolution for T ∗ is

T ∗ = λ1Pλ1 + . . .+ λkPλk

= λ1Pλ1 + . . .+ λkPλk

§28 Lec 27: Dec 9, 2020

§28.1 Lec 26 (Cont’d)

We make a further computation using the Spectral Resolution of normal T : V → V, V a
finite dimensional inner product space over C. This also holds for hermitian T : V → V, V a
finite dimensional inner product space over R with distinct eigenvalues λ1, . . . , λk, orthogonal
idempotents Pλ1 , . . . , Pλk i.e, spectral resolution.

T = λ1Pλ1 + . . .+ λkPλk

As PλiPλj = δijPλi , we have

T 2 = (λ1Pλ1 + . . .+ λkPλk) (λ1Pλ1 + . . .+ λkPλk) = λ2
1Pλ1 + . . .+ λ2

kPλk
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An easy induction shows

Tm = λm1 Pλ1 + . . .+ λmk Pλk ,m ∈ Z+

Since
1V = Pλ1 + . . .+ Pλk

we see that if for any
f = amt

m + am−1t
m−1 + . . . a0 ∈ F [t]

a poly (with F = C if T normal, F = R or C if T is hermitian) that

f(T ) = amT
m + . . .+ a01V

f(T ∗) = amT
∗m + . . .+ a01V

and as f(T ) is also normal (resp hermitian)

f(T ) =

k∑
i=1

f(λi)Pλi

f(T ∗) =
k∑
i=1

fi(λi)Pλi∀f ∈ C[t]

Now let m = k − 1. Set

fi =
k∏

j=1,j 6=i

(t− λj)
λi − λj

∈ C[t], j = 1, . . . , k

the LAGRANGE POLY associated to λ1, . . . , λk. By the LAGRANGE INTERPOLATION
THEOREM, ∃!g ∈ C[t], deg g ¡ k, λ 3 g(λi) = λi, i = 1, . . . , k. Thus by the above, we have

g(T ) = g(λ1)Pλ1 + . . .+ g(λk)Pλk = λ1Pλ1 + . . .+ λkPλk = T ∗ (?)

i.e., T ∗ is a polynomial in T .

Proposition 28.1

Let F = C, V a finite dimensional inner product space over C, T : V → V linear. Then
the following are true

1. T is normal iff ∃g ∈ C[t] 3 T ∗ = g(T ).

2. T is isometry iff T is normal and |λ| = 1 for every eigenvalue λ of T.

3. If T is normal, then T is hermitian iff every eigenvalue of T is real.

Proof. 1. → is (?),
Tg(T ) = g(T )T

T ∗ is normal.
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2. → If T is an isometry, then T ∗ = T−1. Let B be an ON basis for V , the cols of [T ]B
corresponds to an ON basis for V and we are done via the φ : L(V, V )→MnC, T 7→
[T ]B, i.e. MTT. In particular, 1V = TT ∗ = T ∗T , so T is normal if v ∈ V then we
know

v ∈ ET (λ) ⇐⇒ v ∈ ET ∗(λ)

i.e.,
Tv = λv ⇐⇒ T ∗v = λv

So if v ∈ ET (λ), . . .

We have
TT ∗ = |λ1|2Pλ1 + . . .+ |λk|2Pλk

Since |λi| = 1∀i,
TT ∗ = Pλ1 + . . .+ Pλk = 1V = T ∗T

Therefore,
‖v‖2 = 〈T ∗Tv, v〉 = 〈Tv, Tv〉 = ‖Tv‖2

i.e., ‖v‖ = ‖Tv‖∀v ∈ V . By Hw, T is an isometry.

3. → is the Hermitian Corollary.

←)λi ∈ R eigenvalues of normal T implies T = T ∗ by (?).

§28.2 Singular Value Theorem

Theorem 28.2 (Singular Value)

Let F = R or C, A ∈ Fm×n. Then

∃u ∈ Un(F ) := {B ∈MnF |BB∗ = I} , X ∈ UnF 3

X∗AU = D :=



u1 0
. . .

ur
0

. . .

0 0


∈ Fm×n

diagonal, i.e. Dij = 0∀i 6= j with Dii = 0∀i > r,Dii = µi, i ≤ r with

µi � . . .� µr > 0

and r = rank A

Proof. A∗A ∈MnF is hermitian with non-negative real eigenvalues using problem 9 of the
Take home. Let λ1, . . . , λr be the positive eigenvalues ordered such that

λ1 � . . . λr > 0
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(there can be repetitions). By the Spectral Theorem for Hermitian Operators, ∃U ∈ UnF 3

(AU)∗(AU) = U∗(A∗A)U =



λ1 0
. . .

λr
0

. . .

0 0


∈MnF

(as A = [A]Sn,Sm). Let
C = AU ∈ Fm×n

So
C∗C = (AU)∗(AU) ∈MnF

Write
λi = µ2

i , µi > 0, 1 ≤ i ≤ r

(which we can do as λi > 0 ∈ R ) and let

λi = 0 for i > r

Set

B =



µ1 0
. . .

µr
0

. . .

0 0


∈MnF

if E is a matrix let E(k) denote the kth column of E. Then we have

λiδij = (C∗C)ij =
n∑
l=1

(C∗)ilClj =
n∑
i=1

CliClj

=
n∑
l=1

CljCli = 〈C(j), C(i)〉

Hence
C =

[
C(1) . . . C(r) 0 0

]
∈ Fm×n

satisfies C0 =
{
C(1), . . . , C(r)

}
is an OR set in Fm×1. As C(i) 6= 0, 1 ≤ i ≤ r,C0 is linearly

independent. Therefore,
Rank C = r

with
‖C(i)‖2 = 〈C(i), C(i)〉 = λi = µ2

i

for i = 1, . . . , r. As U is invertible

Rank A = Rank AU = Rank C = r,
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i.e.,
Rank A = r

as required. Now define

X(i) :=
1

µi
C(i) ∈ Fm×1, i = 1, . . . , r

Then B0 =
{
X(1), . . . , X(r)

}
is an ON set in Fm×1. Extend this to an ordered ON basis

B =
{
X(1), . . . , X(m)

}
for Fm×1

Then the matrix
X =

[
X(1) . . . X(m)

]
= [1Fm×1 ]B,Sm,1

∈MmF

Since B,Sm,1 are ON bases
X ∈ Um(F )

Set

D =



µ1 0
. . .

µr
0

. . .

0 0


∈ Fm×n

as in the statement of the theorem.

XD =
[
X(1) . . . X(m)

]


µ1 0
. . .

µr
0

. . .

0 0


[
µ1X

(1) . . . µrX
(r)0 . . . 0

]
= C = AU

Hence
X∗AU = D

as needed.

§29 Lec 28: Dec 11, 2020

§29.1 Lec 27 (Cont’d)
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Definition 29.1 (Singular Value Decomposition) — Let A ∈ Fm×n, F = R or C

(i) A = XDU∗, U ∈ UnF,X ∈ UmF (so D = X∗AU as X−1 = X∗, U−1 = U∗)

(ii) µ1 ≥ . . . ≥ µr > 0 ∈ R where

(iii)

D =



µ1

. . .

µr
0

. . .

0


Then i), ii), iii) is called a SINGULAR VALUE DECOMPOSITION (SVD) for A,
µ1, . . . , µr the singular values of A,D the pseudo diagonal matrix of A.

Note: Let A = XDU∗ be an SVD of A. Then

1. The singular values of A are the positive square roots of the positive eigenvalues of
A∗A

2. The columns of X forms an ON basis for Fm×1 of eigenvectors of AA∗

3. The rows of U form an ON basis for F 1×n of eigenvectors of A∗A

Corollary 29.2

The singular values of A ∈ Fm×n, F = R or C, are unique (including multiplicity) up
to order.

Proof. Let A = XDU∗ be an SVD of A,X ∈ UmF,U ∈ UnF . Then

A∗A = (XDU∗)∗(XDU∗) = UD∗X∗XDU∗ = UD∗DU∗

as X∗X = I, so

A∗A ∼ D∗D =

d
2
11

. . .


have the same eigenvalues, d2

11, . . . , i.e., these are the eigenvalues of AA∗.

Remark 29.3. An SVD of A ∈ Fm×n, F = R or C may not be unique.

Corollary 29.4

The singular values of A ∈ Fm×n, F = R or C are the same as the singular values of
A∗ ∈ Fn×m.
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Proof. (XDU∗) = UD∗X∗ and D,D∗ have the same non-zero diagonal eigenvalues.

Theorem 29.5 (Polar Decomposition)

Let F = R or C, A ∈MnF . Then ∃U∼ ∈ UnF,N ∈MNF hermitian (i.e., N = N∗ )
with all its (real) eigenvalues non-negative s.t.

A = U∼N

cf. polar form of a complex number U∼ ↔ e
√
−1θ, N ↔ r.

Proof. In the Singular Value Theorem, we have m = n, so if

A = XDU∗ is an SVD X,U ∈ UuF,

We have D = D∗ is hermitian with non-negative eigenvalues AU = XD. So

A = XDU∗ = X(U∗U)DU∗ = (XU∗)(UDU∗)

Since
(XU∗)∗(XU∗) = UX∗XU∗ = UU∗ = I,

we have XU∗ ∈ UnF .
So letting U∼ = XU∗ ∈ UnF,N = UDU∗ work.

Exercise 29.1. In the above theorem, N is unique and U is unique if A invertible in MnF .
(as it has positive eigenvalues).

§29.2 Application of SVD

Problem 29.1. Let F = R or C, V a finite dimensional inner product space over F,W ⊂ V
a subspace

PW : V →W by v 7→ vW

the orthogonal projection of V onto W . We know vW is the BEST APPROXIMATION
of v ∈ V onto W . Now let X be another finite dimensional inner product space over
F, T : X → V linear, W = T (X) = im T, v ∈ V, x ∈ X. We call

(i) X a best approximation to v via T if

Tx = vW = PW (v)

(ii) X an optimal approximation to v via T if it is a best approximation to v via T and
‖v‖ is minimal among all best approximations to v via T .

In the above, find an optimal approximation of x.
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Ans: Let A = T : Fn×1 → Fm×1, A ∈ Fm×n, v ∈ Fm×1 (F = R or C ). Let A = XDU∗

be an SVD

D =



µ1

. . .

µr
0

. . .

0


∈ Fm×n

µ1 ≥ . . . ≥ µr > 0 ∈ R. Define

D† =



µ−1
1

. . .

µ−1
r

0
. . .

0


∈ Fn×m

A† := UD†X∗ ∈ Fn×m

called the Moore-Penrose generalized pseudo-inverse of A. Then

(i) rank A = rank A†

(ii) A†v is an optimal approximation in Fn×1 to v via A and is unique. (Hence A† is
well-defined, i.e., independent of SVD)

(iii) If rank A = n, then
A† = (A∗A)−1A∗

Application (Least square): F = R or C. Given date (x1, y1), . . . , (xn, yn) ∈ F 2. Find the
best line relative to this data, i.e., find

y = λx+ b, λ = slope

Let

A =

x1 1
...

...
xn 1

 , X =

(
λ
b

)
, Y =

y1
...
yn


Solve AX = Y . The solution is probably inconsistent, so want optimal soln. Solvex1 1

...
...

xn 1

(λ
b

)
=

y1
...
yn


(Least squares approximation) Let W = im A. To find optimal approximation to

AX = YW

Then X = A†y works. If rank A = 2, then

X = (A∗A)−1A∗Y
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§29.3 Smith Normal Form

Polynomials are important in analyzing linear operator T : V → V , V a finite dimensional
vector space over F , e.g., fT , qT . Algebraically, this arises from the generalization of a
vector space over F .
Let R be a ring, i.e., axioms of a field except M3, M4 (inverse and commutativity). Let M
be a set satisfying A1−A4, i.e., axiom for + in Z. Then M is called a (left) R−Module via

· : R×M →M (r,m) 7→ rm

if (M,+., ·) satisfies the axioms of a vector space over F with R replacing a field.
For linear algebra, this arises as follows: Let V be a vector space over F , a set T : V → V
a linear operator. Make V into a F [t]-module by ∀v ∈ V ∀g ∈ F [t]

g · v :7→ g(T )v

We let t in F [t] act on V by
tv := T (v)

Then use module theory to break V into v = w1 ⊕ . . .⊕ wr, wi T-invariant ∀i (and nice) if
V is a finite dimensional vector space over F .
We say that A ∈ F [t]m×n is in Smith Normal Form (or SNF) if A is the zero matrix or
if A is a matrix of the form 

q1 0 . . .
0 q2
...

. . .

qr
0

. . .

0


with q1|q2|q3| . . . |qr ∈ F [t] and all monic, i.e., there exists a positive integer r satisfying
r ≤ min(m,n) and q1|q2|q3| . . . |qr monic in F [t] s.t. Aii = qi for 1 ≤ i ≤ r and Aij = 0
otherwise.
We generalize Gaussian elimination, i.e., row(and column) reduction for matrices with
entries in F to matrices with entries in F [t]. The only difference arises because most
element of F [t] do not have multiplicative inverses.
Let A ∈Mn(F [t]). We say that A is an elementary matrix of

(i) Type I: If there exists λ ∈ F [t] and l 6= k s.t.

Aij =


1, if i = j

λ, if (i, j) = (k, l)

0, otherwise

(ii) Type II: If there exists k 6= l s.t.

Aij =


1, if i = j 6= l or i = j 6= k

0, if i = j = l or i = j = k

1, if (k, l) = (i, j) or (k, l) = (j, i)

0, otherwise
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(iii) Type III: If there exists a 0 6= u ∈ F and l s.t

Aij =


1, if i = j 6= l

u, if i = j = l

0, otherwise

Remark 29.6. Let A ∈ F [t]m×n. Multiplying A on the left (respectively right) by a suitable
size elementary matrix of

(a) Type I is equivalent to adding a multiple of a row (respectively column) of A to another
row (respectively column) of A.

(b) Type II is equivalent to interchanging two rows (respectively columns) of A.

(c) Type III is equivalent to multiplying a row (respectively column) of A by an element in
F [t] having a multiplicative inverse.

Remark 29.7. 1. All elementary matrices are invertible.

2. The definition of elementary matrices of Types I and II is exactly the same as that given
when define over a field.

3. The elementary matrices of Type III have a restriction. The u’s appearing in the
definition are precisely the element in F [t] having a multiplicative inverse TBA

Notation: We let

GLn(F [t]) := {A ∈Mn(F [t])|A is invertible}

Warning: A matrix in Mn(F [t]) having det(A) 6= 0 may no longer be invertible, i.e., have
an inverse. What is true is that GLn(F [t]) = {A ∈Mn(F [t])|0 6= det(A) ∈ F}, equivalently
GLn(F [t]) consist of those matrices whose determinant have a multiplicative inverse in
F [t].

Definition 29.8 (Equivalent Matrix) — Let A,B ∈ F [t]m×n. We say that A is
equivalent to B and write A ≈ B if there exists matrices P ∈ GLm(F [t]) and
Q ∈ GLn(F [t]) s.t. B = PAQ.

Theorem 29.9

Let A ∈ F [t]m×n. Then A is equivalent to a matrix in Smith Normal Form (SNF).
Moreover, there exists matrices P ∈ GLm(F [t]) and Q ∈ GLn(F [t]), each a product of
matrices of Type I, Type II, and Type III, such that PAQ is in SNF.

Proof. The proof will, in fact, be an algorithm to find a SNF of A. Refer to www.math.

ucla.edu/~rse/115ah.1.20f/L28.pdf – Pg. 9-10.
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Remark 29.10. The SNF derived by this algorithm is, in fact, unique. In particular, the
monic polynomial q1|q2|q3| . . . |qr arising in the Smith Normal Form of a matrix A are unique
and are called the invariant factors of A. This is proven using results about determinants.
It follows if A,B ∈ F [t]m×n then A ∼ B if and only if they have the same SNF if and only if
they have the same invariant factors.

So what good is the SNF relative to linear operators on finite dimensional vector spaces? It
tells us a great deal, because the following is true: Let A,B ∈Mn(F ). Then A ∼ B if and
only if tI −A ≈ tI −B ∈Mn(F [t]) and this is completely determined by the SNF hence
the invariant factors of tI −A and tI −B. Now the SNF of tI −A may have some of its
invariant factors of 1, and we shall drop these.

§29.4 Some definit ions

Definition 29.11 (Companion Matrix) — Let q = tn + an−1t
n−1 + . . .+ a1t+ a0 be a

monic polynomial in F [t]. The companion matrix C(q) is defined to be the n× n
matrix: 

0 0 . . . 0 −a0

1 0 . . . 0 −a1
...

. . .
...

0 0 . . . 1 −an−1



Definition 29.12 (Invariant Factors) — Let V be a finite dimensional vector space
over F with B an ordered basis. Let T : V → V be a linear operator. If one computes
the Smith Normal Form of tI − [T ]B, it will have the form

1 0 . . . . . . 0
0 1 0
...

. . .
...

q1

q2
...

. . .
...

0 . . . . . . qr


with q1|q1| . . . |qr are all the monic polynomials in F [t] \ F . These are called the
invariant factors of T . They are uniquely determined by T .
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Definition 29.13 (Rational Canonical Form) — The main theorem is that there exists
an ordered basis B for V such that

[T ]B =


C(q1) 0 . . . 0

0 C(q2) . . . 0
...

. . .
...

0 . . . C(qr)


and this matrix representation is unique. This is called the rational canonical form
or RCF of T . Moreover, the minimal polynomial of T is qr. The algorithm computes
this as well as all invariant factors of T . The characteristics polynomial fT of T is the
product of q1 . . . qr. This works over any field F , even if qT does not split. The basis
B gives a decomposition of V into T-invariant subspaces V = W1 ⊕ . . .⊕Wr where
fT |Wi

= qT |Wi
= qi and if dim(Wi) = ni, then Bi =

{
vi, T vi, . . . , T

ni−1vi
}

is a basis
for Wi ( we say that the Wi are T-cyclic subspaces).

Definition 29.14 (Jordan Block/Size – Jordan Canonical Form) — Let V be a finite
dimensional vector space over F with B an ordered basis. Let T : V → V be a linear
operator. Suppose that qT splits over F . Say

qi = (t− λ1)r1 . . . (t− λm)rm , i = 1, . . . ,m

in F [t], with λ1, . . . , λm distinct. A matrix in Mr(F ) of the form

Jr(λ) =


λ 0 . . . 0 0
1 λ 0 . . . 0
0 1 λ . . .
...

...
. . .

. . .
...

0 0 . . . 1 λ


is called a Jordan block or size r × r with eigenvalue λ. The one can show that
C(qi), i = 1, . . . ,m is similar to the following matrix in block form:

Jr1(λ1) 0 . . . 0
0 Jr2(λ2) . . . 0
...

...
. . .

...
0 0 . . . Jrm(λm)


Replacing each C(qi) in the rational canonical form by its Jordan blocks give what
is called Jordan Canonical Form or JCF of T . It is unique up to the order of the
blocks (blocks with the same eigenvalues are usually put together).
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§30 Extra Lec: Nov 2/9, 2020

§30.1 Dual Bases – Dual Spaces

Let 0 6= V be a vector space over F with basis B. For each v0 ∈ B, we define a map

fv0 : V → F linear

as follows: by the UPVS (which also holds if the basis is infinite, let fv0 be the unique
linear transformation) s.t.

v0 7→ 1

v 7→ 0 ∀v0 6= v ∈ B

We have
0 < im fv0 ⊂ F a subspace

(im fv0 6= 0 as v0 6= 0 ). As dimF F = 1, we must have dim fv0 = 1, so fv0 : V → F is an
epimorphism and

ker fv0 = {w ∈ V |w has v0 coordinate = 0}
= Span(B \ {v0})

So if w ∈ V , w =
∑
αvv, αv ∈ F almost all 0 with αv unique.

fv0(w) = αv0

the coordinate of w on v0. We can do this for each v ∈ B. If v′ ∈ B, fV : V → F is the
linear transformation determined by

fv′(v) = δvv′ =

{
i, if v = v′

0, if v 6= v′, v ∈ B
, the Kronecker δ

Set
B∗ := {fv|v ∈ B} fv is the coordinate functionfv on v

The vector space
V ∗ := L(V, F )

is called the DUAL SPACE of V . So by the above if w ∈ V

w =
∑
v∈B

αvv, αv ∈ F almost all 0

then
αv = fv(w) the coordinate w, v ∈ B

so

w =
∑
B

αvv =
∑
B

fv(w)v

Now by the UPVS, we have a unique linear transformation

DB : V → V ×

determined by v ∈ B 7→ fv. So
∑

B αvv 7→
∑

B αvfv almost all αv = 0
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Claim 30.1. DB is 1-1.

Suppose w =
∑

B αvv 7→ 0 almost all αv = 0 i.e.,
∑

B αvfv = 0 ← in v∗

Let v0 ∈ B, then

0 =

(∑
B

αvfv

)
(v0) =

∑
B

αvfv(v0) =
∑
B

αvSvv0 = αv0

Hence
∑
αvfv = 0→ αv = 0∀v ∈ B, so w = 0. DB is therefore 1-1 as claimed.

Warning: If V is not finite dimensional, then DB is not onto, i.e., B∗ does not span V ∗.(
|V ∗| = |F ||B| and |F | = |V | by UPVS if F is infinite

)
Note: DB : V → V ∗ depends on the choice of basis B.

Definition 30.1 (Linear Functionals) — If V is a vector space over F , elements in
V ∗ = L(V, F ) are called LINEAR FUNCTIONALS.

Fact 30.1. If S is a linearly indep. set in a vector space over F (even infinite) then S is
part of a basis for V , i.e., the Extension Theorem holds (This needs the Axiom of Choice).

Example 30.2

V a vector space over F . Then followings are linear functionals

1. If 0 6= v ∈ V , then {v} extend to a basis B for V and B∗ satisfies B∗ is linearly
indep.

fv(x) = Svx∀x ∈ B

Let w =
∑

x∈B αxx, αx = 0 almost all x ∈ B. Then fx(w) = αx ∈ F∀x ∈ B,
w =

∑
fx(w)x

2. πi : Fn → F by (α1, . . . , αn) 7→ αi∀i

3. Let Int : C[α, β]→ R, α < β be given by

Int f 7→
∫ β

α
f

4. trace: MnF → F by

A 7→
n∑
i=1

Aii

The sum of the diagonal entries of A called the TRACE of A.

We can iterate our constructions as follows:

Let C be a basis for V ∗ = L(V, F ) a vector space over F , where V is a vector
space over F . Then

DC : V ∗ → (V ∗)∗ := V ∗∗
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V ∗∗ is called the DOUBLE DUAL of V , is induced by

f0 ∈ C 7→ Gf0 ∈ C ∗

the coordinate function on f0, i.e.,∑
C

αff 7→
∑
C ∗

αfGf

with

Gf0(f) = δtf0 =

{
1 if f = f0∀f, f0 ∈ C

0 if f 6= f0

So we have
V

DB→ V ∗
DC→ V ∗∗

and the composition is a monomorphism.

Wonderful Result: ∃ a monomorphism

L : V → V ∗∗

INDEPENDENT OF CHOICE OF BASES. We know want to show this:
For each v ∈ V define the following linear functionals on V ∗

Lv : V ∗ → F by Lv(f) := f(v)

EVALUATION at v.
Check. Lv : V ∗ → F is linear, i.e., Lv ∈ V ∗∗ = (V ∗)∗ :

Lv(αf + g) = (αf + g)(v) = αf(v) + g(v)

= αLvf + Lvg

∀t, g ∈ V ∗∀α ∈ F as needed. Now define

L : V → V ∗∗ by v 7→ Lv

i.e., L(v) = Lv

Claim 30.2. L is linear.

∀f ∈ V ∗, v, v′ ∈ V, α ∈ F, we have

L(αv + v′)(f) = Lαv+v′(f) = f(αv + v′)

= αf(v) + f(v′) = αLvf + Lv′f

= (αLv + Lv′)(f)

as needed.

Claim 30.3. L : V → V ∗∗ is monic.
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Suppose v 6= 0. By Example TBA, ∃f ∈ V ∗ 3 Lv(f) = f(v) 6= 0. As L is linear, L is a
monomorphism. Hence

L : V → V ∗∗

is a NATURAL or CANONICAL MONOMORPHISM, i.e., no basis is needed to define it.
We now assume that V is a finite dimensional vector space over F , let

B = {v1, . . . , vn} be a basis for V

B∗ = {f1, . . . , fn} ⊂ V ∗ defined by fi(vj) = δij∀i, j

i.e., the fi are the coordinate functions relative to B. Then, as before, we have a monomor-
phism

DB : V → V ∗ induced by vi 7→ fi

But we also have

dimV ∗ = dimL(V, F ) = dimV dimF = dimV

by the Matrix Theory Theorem, so DB is an isomorphism by the Isomorphism Theorem
with B∗ a basis for V ∗ called the DUAL BASIS of B. We also have

V ∼= V ∗ ∼= V ∗∗, so V ∼= V ∗∗

and
B∗∗ := {Lv1 , . . . , Lvn}

with
Lvi := Lfi , fi ∈ B∗

Lfi(fj) = Lvi(fj) = fj(vi) = δij

So B∗∗ is the DUAL BASIS of B∗. We also now L : V → V ∗∗ is now a natural isomorphism
by the Isomorphism Theorem and even better that

f(v) = Lv(f) ∀v ∈ V ∀f ∈ V ∗

EVALUATION at v. So when V is a finite dimensional vector space over F , we can and
do identify Lv and v ∀v ∈ V .
Any v ∈ V is determined by the t ∈ V ∗ and every f ∈ V ∗ is determined by the Lv ∈ V ××
and

f(v) = Lv(f)

So now we have: if V is a finite dimensional vector space over F

B = {v1, . . . , vn} a basis for V

B∗ = {f1, . . . , fn} : {fv1 , . . . , fvn} the dual basis of B

B∗∗ =
{
Lfv1 , . . . , Lfvn

}
= {Lv1, . . . , Lvn} the dual basis of B∗

i.e.,

fi = fvi

Lfvi = Lvi
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and these satisfy
f∣∣(vi) = tvj(vi) = δij = Lfvi (vj) = Lvi(f

∣∣)
If v ∈ V , then

v = α1v1 + . . .+ αnvn unique α1, . . . , αn ∈ F
fj(v) = fj(α1v1 + . . .+ αnvn)

= αj

So

v =
n∑
i=1

fi(v)vi

where fi(v) is the coordinate function relative to B and if f ∈ V ∗, then

f = β1f1 + . . .+ βnfn unique β1, . . . , βn ∈ F

As

Lv1(f) = (β1f1 + . . .+ βnfn) (vj)

= β1f1(v1) + . . .+ βnfn(vj) = β∣∣
And

f = β1f1 + . . .+ βnfn

= Lv1(f)f1 + . . .+ Lvn(f)fn

= f(v1)f1 + . . .+ f(vn)fn

So,

f =
∑

f(vi)fi

where f(vi) is the coordinate function.

§30.2 The Transpose

Let V,W be vector space over F , T : V →W linear if g ∈W ∗ = L(W,F ), i.e., g : W → F
linear, then the composition

V
T→W

g→

is a linear functional, i.e., g ◦ T ∈ V ∗.
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Definition 30.3 (Transpose) — Let V,W be vector space over F, T : V →W linear.
Define the transpose of T by

T> : W ∗ → V ∗ by g 7→ g ◦ T

i.e.,
T>g := g ◦ T ∀g ∈W ∗

i.e.,

V W
T

p

g

T tg := g ◦ T
commutes

So

V
T→W

V ∗
T>← W ∗

Claim 30.4. T> : W ∗ → V ∗ is linear if g, g′ ∈W ∗, α ∈ F , then

T>(αg + g′) = (αg + g′) ◦ T = αgT + g′T = αT>g + T>g′

T> is called the transpose because of the followings

Theorem 30.4

Let V,W be finite dimensional vector space over F , B,C ordered bases for V,W
respectively, T : V →W linear. Then

[T ]>B,C = [T>]C ∗,B∗

Proof. Let

B = {v1, . . . , vn} , B∗ = {f1, . . . , fn}
C = {w1, . . . , wm} , C ∗ = {g1, . . . , gm}

with B∗,C ∗ the ordered dual bases of ordered bases B,C of V,W respectively.
Let

[T ]B,C = (αij) and [T>]C ∗,B∗ = (βij)

i.e.,

Tvk =

m∑
i=1

αikwi ∈W, k = 1, . . . , n

T>gj =
n∑
i=1

βijfi ∈ V ∗, j = 1, . . . ,m
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Then computation gives

(
T>gj

)
(vk) = gj(Tvk) = gj

(
m∑
i=1

αikwi

)

=
m∑
i=1

αikgj(wi) =
m∑
i=1

αikδij = αjk

and (
T>g

)
(vk) =

(
n∑
i=1

βijfi

)
(vk) =

n∑
i=1

βijfi(vk)

=
n∑
i=1

βijδik = βkj

Hence, αjk = βkj∀j, k as needed.

Definition 30.5 (Annihilator) — Let V be a vector space over F, ∅ 6= S ⊂ V a subset.
The set

S◦ :=
{
f ∈ V ∗|f

∣∣
S

= 0
}

= {f ∈ V ∗|f(s) = 0∀s ∈ S}

is called the annihilator of S.

Question 30.1. If V is an inner product space over F , can you find something analogous?

Claim 30.5. S◦ ⊂ V ∗ is a subspaces (even if S is not).

Proof. Let f, g ∈ S◦, α ∈ F . To show (αf + g)
∣∣
S

= 0, let s ∈ S, then

(αf + g)(s) = αf(s) + g(s) = 0

so αf + g ∈ S◦.

Observation: Let T : V →W be linear. Then

kerT> = (im T )◦

g ∈ kerT> iff T>g = 0 iff (T>g)(v) = 0∀v ∈ V iff g (Tv) = 0∀v ∈ V iff g ∈ (im T )◦.

Proposition 30.6

Let V be a finite dimensional vector space over F , W ⊂ V a subspace. Then

dimV = dimW + dimW ◦

Question 30.2. If V is a finite dimensional inner product space over F , can you find
something similar?
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Proof. Let {v1, . . . , vk} be a basis for W . Extend it to B = {v1, . . . , vn} a basis for V . Let
B∗ = {f1, . . . , fn} be the dual basis of B, i.e.,

fi(vj) = δij∀i, j

Claim 30.6. C = {fk+1, . . . , fn} is a basis for W ◦. Let f ∈W ◦. Then ∃β1, . . . , βn ∈ F 3

f =
n∑
i=1

βifi =
n∑
i=1

f(vi)︸ ︷︷ ︸
βi

fi =
k+1∑
i=1

f(vi)fi ∈ Span C

As C ⊂ B∗ and B∗ is linearly indep., so is C . This proves the claim and the result
follows.

Corollary 30.7

Let V be a finite dimensional vector space over F , W ⊂ V a subspace. Identifying V
and V ∗∗ via v ↔ Lv, we have

W = (W ◦)◦ := W ◦◦

If V is a inner product space over F , can you find something similar?

Proof. We have W ◦ ⊂ V ∗ and W ◦◦ ⊂ V ∗∗ = V are subspaces and by the last proposition,
we have

dimV = dimW + dimW ◦

dimV ∗ = dimW ◦ + dimW ◦◦

dimW = dimW ◦◦

If w ∈W , then
Lwf = f(w) = 0, ∀f ∈W ◦

So
w = Lw ∈W ◦◦

i.e., W ⊂W ◦◦ is a subspace. As dimW = dimW ◦◦,W = W ◦◦.

Theorem 30.8

Let V,W be finite dimensional vector space over F , T : V →W linear. Then

dim im T = dim im T>

Proof. We have dimW = dimW ∗

dimW = dim im T + dim (im T )◦

dimW ∗ = dim im T> + dim kerT>
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by the previous proposition and the Dimension Theorem. By observation,

(im T )◦ = kerT>

dim(im T )◦ = dim kerT>

Hence,
dim im T = dim im T>

Application: Let A ∈ Fm×n. The row (respectively column) RANK of A is the dimension
of the subspace spanned by the rows (respectively column of A viewed as vectors in Fm

(respectively Fn×1).
Using the theorems and our previous computation, we have

Claim 30.7. row rank A = col rank A.
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