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This is math 115AH — Honors Linear Algebra, a traditional first upper-division
course that UCLA math students usually take. It’s taught by Professor Elman, and our
TA is Harris Khan. We meet weekly on MWF at 2:00pm — 2:50pm for lectures, and our
discussion is on TR at 2:00pm — 2:50pm. With regard to book, we use Linear Algebra
274 by Hoffman and Kunze for the class. Note that some of the theorems’ name are
not necessarily the official name of the theorem; it’s just a way to assign meaning to a
theorem (easier for reference) instead of a tedious section number. Other course notes
can be found through my github site. Please contact me at ducvu2718Qucla.edu if you
find any concerning mathematical errors/typos.
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§1 ‘ Lec 1: Oct 2, 2020

Remark 1.1. To know a definition, theorem, lemma, proposition, corollary,etc., you must
1. Know its precise statement and what it means without any mistake
. Know explicit example of the statement and specific examples that do not satisfy it
. Know consequences of the statement
. Know how to compute using the statement

2
3
4
5. At least have an idea why you need the hypotheses — e.g., know counter-examples,. . .
6. Know the proof of the statement

7

. Know the important (key) steps of in the proof, separate from the formal part of the
proof — i.e., the main idea(s) of the proof

THIS IS NOT EASY AND TAKES TIME - EVEN WHEN YOU THINK
THAT YOU HAVE MASTERED THINGS.

§1.1 Field
What are the properties of the REAL NUMBERS?
R := {z|z is a real no.}

— at least algebraically?
There are two FUNCTIONS (or MAPS)

e +:R xR — R called ADDITION write a + b := +(a, b)
e - : R xR — R called MULTIPLICATION write a - b := -(a, b)

that satisfy certain rule e.g., associativity, commutativity,. ..
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M1 (a-b)-c=a-(b-c)

D2 (a+b)-c=a-c+b-c

(Definition 1.2 (Field) — A set F'is called a FIELD if there are two functions A
e Addition: +: F x F — F | write a + b := +(a, b)
e Multiplication: - : F x F' — F | write a - b := -(a,b)
satisfying the following AXIOMS(A: addition, M: multiplication, D: distributive)
Al (a+b)+c=a+ (b+c¢) Associativity
A2 Janelement 0 € F>a+0=a=0+a Existence of a Zero
A3 Vee Flye Fozx+y=0=y+=x Existence of an Additive Inverse
Ada+b=b+a Commutativity

M2 (A2) holds and 3 an element € F' with 1 20> a-1=a=1-a Existence of a

One

M3 (M2) holdsand VO £z € F Jye Foay=1=yzx Existence of a
Multiplicative Inverse

M4 z-y=y-x

Dla-(b+c)=a-b+a-c Distributive Law

Comments: Let F' be a field, a,b € F. Then the following are true
1. F # 0 (F at least has 2 elements)

2. 0 and 1 are unique

3. If a4+ b =0, then b is unique write b as —a :
if a4+ b=a+ c, then

b=b+0
=b+(a+c)
=(b+a)+c
=(a+b)+c
=0+c

=c
4. ifa+b=a+c, thenb=c

5. if a # 0 and ab = 1 = ba, then b is unique write a~' for b.

6. 0-a=0Va e F
0-a+0-a=0+0)-a=0-a=0-a+0
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so 0-a =0 by 3.
7. ifa-b=0,thena=00r b=0. If a # 0, then 0 = a~(ab) = (e ta)b=1b=1b
8. ifa-b=a-c, a#0, then b=c

10. —(—a) =a
11. if a # 0, then a™! #0 and (a7 !)"! =a

Example 1.3
a
Q= {gya,be Z,b;«éo}
R := set of real no.
C := {a + bi|a,b € R} with
(a+bvV—1+4(c+dvV-1)=(a+c)+ (b+d)vV-1
(a+bv—1)-(c+dv—1) = (ac—bd) + (ad + bc)v—1
Ya,b,c,d € R
Under usual +, - of C'
QcRcC
are all field and we say Q is a subfield of R, @, R subfield of C, i.e., they have the same
+7'707 1.
Z is not a field as An € Z 3 2n = 1, so Z do not satisfy (M3).

Note:To show something is FALSE, we need only one COUNTER-EXAMPLE. To show
something is TRUE, one needs to show true for all elements — not just example.

§ 2 ‘ Lec 2: Oct 5, 2020

§2.1 Field(Cont’d)

Note: Z does satisfy the weaker properly if a,b € Z then
(M3’) if ab =0 in Z, then a = 0 or b = 0 and all other axioms except M3 hold

1. Let FF={0,1}, 0 +# 1. Define +, - by following table Then F is a field.

Table 1: ADDITION
+ 1011

0101
11110
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Table 2: MULTIPLICATION
101

0
1

0

110

2. d fields with n elements for
n=22345"78911,13,16,17,19, ...
[conjecture?]

. Let F be a field

F[t] == {(formal polynomial in one variable}

with t, given by

(a0+a1t—|—a2t2+...)+(bg—|—b1t+bgt2—|—...) = (ag—l—a1)+

(a1 + bl)t + (ag + bg)tg + ...

(CLO + ait + a2t2 + .. ) . (bo + b1t + b2t2 + .. ) = agbg + (agbl + albo)t + ...

Note: f,g € F[t] are EQUAL iff they have the same COEFFICIENTS(coeffs) for
each ¢! (if t* does not occur we assume its coeff is 0.) F[t] is not a field but satisfy all
axioms except (M3) but it does satisfy (M3’) (compare Z ). Let

ro)={firge rig 2o} v
o L—Lif fk=gh
o [y hi=Idh f g h ke Flt]
o Lk=Lt g#0, k#0

is a field, the FIELD of RATIONAL POLYS over F'.
Note:the 0 in F[t] is §, f#0, and 1in F[t] is 4, f #0.

. let F be a field.

M, F = {A|Aann x nmatrix entries inF'}

usual +, - of matrices, i.e. for A, B € M, F’ let
Ajj = i7" entry of A, etc
Then
(A+ B);j = Aij + Bij

n
(AB)U = Cij = Z Aszk] VZ,]
k=1
Note: A= B iff A;; = B;; Vi,j.
If n =1, then
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F and M F and the “same” so M7 F is a field. If n > 1 then M, F is not a field nor
does it satisfy (M3), (M4), (M3’). It does satisfy other axioms with

1 ...0 0 ... 0
I=IL,=|: - |, 0=0,=

§2.2 Vector Space
R? := {(x,y)|z,y € R} = R x R Vector in R? are added as above and if v € R? is a vector,

v+w = (21 + T2, 51 + Y2)
w = (22,Y2) -

v=(z1,91)

Figure 1: Geometry in R?

av makes sense Vo € F by a(z,y) = (az, ay) called SCALAR MULTIPLICATION. For +,
scalar mult and (0,0) is the ZERO VECTOR satisfying various axioms. e.g., assoc, comm,
“distributive law...”. To abstractify this

10
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Definition 2.1 (Vector Space) — V is a vector space over F, via +,- or (V,+,-) is a
vector space over F' where

+: VXV =V - FxV >V
Addition Scalar Multiplication

write:v + w = +(v, w) write:a - v = -(a,v) or av
if the following axioms are satisfied
Yv,v1,v9,v3 €V, Va,B€F
L. v+ (v2 +v3) = (v1 +v2) + v3
2. Janelement 0 € V> v+0=v=0+v
3. (2) holds and the element (—1)v in V satisfies
v+ (-l)v=0=(-1)v+v
or (2) holdsand Vv e Viw e Vs v+w=0=w+v
4. v1 + vy = vy + V1
5. 1-v=v
6. (a-B)-v=a(f-v)
7. (a4 B)v=av+ pv

8. a(vi +v2) = avi + avy

Elements of V' are called vector, elements of F' scalars .

J

Comments: V: a vector space over F

1. The zero of F' is unique and is a scalar. The zero of V is unique and is a vector. They
are different (unless V' = F' ) even if we write 0 for both — should write 0, 0y for the
zero of F', V respectively.

2. ifv,w eV, a € F then

av+w makes sense

va,vw  do not make sense

3. We usually write
vector using Roman letter
scalar using Greek letter
exception things like (z1,...,2,) € R™, z; € RVi

4. +:V xV =V says
if v,weV, then v+weV

11
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write v,w €V — v+weV. Wesay V is CLOSED under +

implies

5. i FxV s Vsayssae FLveV = aveV. Wesay V is CLOSED under SCALAR
MULTIPLICATION.

Example 2.2
F afield, e.g., R or C

1. F' is a vector space over F' with -+, of a field, i.e., the field operation are the
vector space operation with O = Oy.

2. F" .= {ay,...,an}|a; € FYi is a vector space over F' under COMPONENT-
WISE OPERATION and
OFn = (0,,0)

Even have

Fhie = {(a1, ..., am, ...} |a; € FVi with only FINITELY MANY «; # 0

3. Leta< finR
I=la,p], (,B), lo,f), (]

including (o = —o00, 8 = 00). Let fxn I :== {f : I — R|f a fxn} called the SET
of REAL VALUE FXNS on I.

Define +, - as follows: Vf,g € Fxn I,

f+g by (f+9)(z)=f(z)+g(x)
af by (af)(z) =af(r) VaeR

and 0 by O(a) = OV € F. Then Fxn I is a vector space over R.

§3 ‘ Lec 3: Oct 7, 2020

§3.1 Vector Space(Cont’d)

Example 3.1
Fis a field, e.g. R or C

1. F is a vector space over F' with +,- of a field, i.e. the field operation are the
vector space operation with O = Oy .

2. F" = {(aq,...,an)|a; € FVi} is a vector space over F' under COMPONENT-
WISE OPERATIONS

(a1,...,an) + (B1,-..,Bn) = (1 + B1,...,an + Bn)
Blag,...,an) = (Bai,....,Lay)

12
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with aq,...,an,01,...,0, € F and 0pn == (0,...,0).

Even have:

F* =Fg {(a1,...,an,...)|a; € FYi with only FINITELY MANY «; # 0}

3. Let a < fin R
I = [Oz,ﬁ], (0475)7 [aaﬁ)ﬁ (O‘HB]

(including av = —00, 8 = 00. Let function I := {f : I — R|f a function}
Define +, - as follows: Vf,g € Fxn I,

f+g by (f+9)@) = f@)+g)
af by (af)@)=af(z) VaeR

and 0 by O(a) = OV € F. Then Fxn I is a vector space over R.

Using this, we get subsets which are also vector space over R with same +, -, 0.

e C(I)={f € fxn I|f continuous on I}

Diff (I) :=={f € fxn I|f differentiable on I}
C™(I) = {f € fxn I|f(n) then™ derivative of f and f exists on I and is con
C>*(I):={f € fxn I|f(n) exists¥n > 0 on I and is cont}

C¥(I) = {f € fxn I| f converges to its Taylor Series}
(in a neighborhood of every = € I — be careful at boundary points)

e Int (I) :={f € fxn I|f is integrable on I}

4. F[t] the set of polys, coeffs in F' old +, - with scalar mult

alag + art + ...+ apt") = aag + aaqt + ... + aa,t”

5.  F[t]l, = {0€ F[t]} U{f € F[t]|degf <n} (not closed under - of polys)
~——
truncating F'[t]

where deg f = the highest power of ¢t occurring non-trivially in f if f # 0 is a
vector space over F' with +, scalar mult,0.

Example 3.2 1. F™*™ :=set of mxn matrices entries in F' where A € F™*", A;; =
ij*™ entry of A
(A + B)ij = Aij +B;; e F VA, B € F"™*"
(aA)ij = adi; € F VYo € F
0O ... 0

0= |: .. | (mrowsand n columns)
0 ... 0

COMPONENTWISE OPERATION! Then F™*™ is a vector space over F, e.g.

tonI}

13
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M, F is a vector space over F.
Example to GENERALIZE

Let V be a vector space over F, ) # S a set. Set W := {f : S — V|f a map}.
Define +,- on W by

f+g (f+9)(s)=[f(s)+g(s) eV
af (af)(s)=a(f(s) eV
Ow 0(s) =0y ZERO FUNCTION

Vf,g € W;a € F;s € S. Then W is a vector space over F.(of componentwise
operation)

2. Let F C K be a fields under +,- on K. Same 0,1, i.e. F'is a SUBFIELD of k
e.g. R C C. Then K is a vector space over F' by RESTRICTION of SCALARS.

i.e.,, + =+ on K. With scalar mult, F x K — K by

Qu = Qv Vaoe FF YveV
~—~— ~—~—~
in K as a vector space over F' in K as a field

mr

e.g. R is a vector space over Q by 7r = 7%, m,n € Z,n # 0,7 € R. More
generally, let V be a vector space over K, F' C K subfield, then it is a vector
space over F' by RESTRICTION of SCALARS.

~|F><VzF><V—>V

e.g., K™ is a vector space over F' (e.g. C™ is a vector space over R ).

Properties of Vector Space: Let V' be a vector space over F'. Then Vo, 5 € F, Yv,w €V,
we have

1. The zero vector is unique write 0 or Oy .
2. (—1)v is the unique vector w > w+ v =0 = v + w write —v.

3.0-v=0

5. (—a)v = —(aw) = a(—v)

6. if av =0, then either « =0 or v =0
7. if av = aw, a # 0, then v = w

8. if av = Bv, v # 0, then a =

9. —(v+w)=(—v)+(—w) =—-v—-w

10. can ignore parentheses in +

14
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§3.2 Subspace

(Definition 3.3 (Subspace) — Let V be a vector space over F, W C V a subset. We\
say W is a subspace of V if W is a vector space over F' with the operation +,- on V/,
i.e., (V,4,-) is a vector space over ', via +:V xV — V and - : F x V — V then W
is a vector space over F' via

o +=+/wxw: W — W : restrict the domain to W x W

o - = :|pxw: FxW — W : restrict the domain to F' x W

i.e. W is closed under +,- from V, Vil € W Va € F, w; +ws € W and
awy € W and Oy = Oy.

- J

/Theorem 3.4 (Subspace) h

Let V be a vector space over F, ) # W C V a subset. Then the following are
equivalent:

1. W is a subspace for V'

2. W is closed under + and scalar mult from V

3. Ywi,we € W, Va € F, aw; +wy € W
\\ 4

Proof. Some of the implication are essentially 77

1) — 2) : by def. W is a subspace of V under +,- on V (and satisfies the axioms of a
vector space over F' ) as Oy = Oy .

2) = 1) claim: Oy € W and Oy =0y : As QA WIw e W

By 2)(—1)w € W, hence Oy = w+ (—w) € W. Since Oy +w’ = w' = w'+0y in V Vu' € W,
the claim follows. The other axioms hold for elements of V' hence for W C V.

2) = 3):let € F, wy,wy € W. As 2) holds, aw; € W hence also aw; + we € W

3) = 2) Let a € F, w1, wy € W. As above and 3)

Oy =wy + (—w1) € W and Oy = Oy

Therefore,
w1 t+wy=1-wy+wy €W and aw; +aw; +0y € W
by 3). O

Note:Usually 3) is the easiest condition to check. WARNING: must subsets of a vector
space over F' are NOT subspace.

Example 3.5

V' a vector space over F.

1. 0:= {0y} and V are subspace of V'

15
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2. Let I C R be an interval (not a point) then

C(I)y<C®()<...<C™"I)<...<C'(])
<Diff I<C(I) <Int I <Fxnl

are subspaces of the vector space containing then. .. where we write

A<B if ACB and A# B

3. Let F be afield, e.g R. Then F' = Ftlp < F[t]) < ... < Flt,] < ... < F[t] are
vector space over F' each a subspace of the vector space over F' containing it.

4. If Wy € Wy C V, Wy, Ws subspace of V,then Wy C W5 is a subspaces.
5. If W7 C Ws is a subspace and Wy C V is a subspace, then W7 C V is a subspace.

6. Let W :={(0,01,...,an|a; € F, 2<i<n}C F"is a subspace, but
{(1,a9,...,an|a; € F, 2 <1i<n}isnot. Why?

7. Every line or plane through the origin in R? is a subspace.

§4 ‘ Lec 4: Oct 9, 2020

§4.1 Span & Subspace

Definition 4.1 (Linear Combination) — Let V be a vector space over F, v1,...,v, € V
we say v € V is a LINEAR COMBINATION of vy,...,v, if daq,...,a, € F 3 v =
avy + ...+ apvy,.

Let
Span(vy,...,v,) = { all linear combos ofvy, ... ,v,}

Let v1,...,v, € V. Then

n
Span(vi,...,v,) = {Zaivilal,...,an € F}
i=1

is a subspace of V' (by the Subspace Theorem) called the SPAN of vq,...,v,. It is the
(unique) smallest subsapce of V' containing vy, ..., vy.

ie., if W C V is a subspace and vy,...,v, € W then Span(vy,...,v,) C W. We also
let Span () := {0y } = 0, the smallest vector space containing no vectors.

16
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Span(V) is a line

Va
AV

Vi

Span(Vy, V5) = R?
if they are not collinear

Question: If we view C as a vector space over R, then R is a subspace of C, but if we view
C is a vector space over C, then R is not a subspace of C (why? What’s going on?) — not
closed under operation(s).

(Definition 4.2 (Span) — Let V be a vector space over F, () #S C V a subset. Then,\
Span S := the set of all FINITE linear combos of vectors in S. i.e., if V' € Span S, then

Jvy,...,o0 €8, ai,...,an €E v =001 +... + apu,

Span S C V is a subspace. What is Span V?

Example 4.3 1. Let V = R3.
Span(i + j,i — j, k) = SpanV = Span(i, j,i + j, k) = Span(i + j,i — j, k +9)

2. Define
Symm,, F := {A € M F|A= AT}
Recall: AT is the transpose of A, i.e.,
(AN)ij = Aji Vi, j

is a subspace of M, F'

a c+di

V= . la,b,c,d € Ry C MyC
c—di b

is NOT a subspace as a vector space over C ,eg,

. a c+di\ ai —d+ci
Ne—di b )" \d+ci b

does not lie in V' if either a # 0 or b # 0 (cannot be imaginary). Also V' is not a
subspace of MsR as a vector space over R as V' ¢ MsR. V C M>C is a subspace
as a vector space over R.

17
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4. (Important computational example) Fix A € F™*". Let

0
kerA =z € F"*YAz = | : | in F™*!
0

called the KERNEL or NULL SPACE of A. Ker A C F™*! is a subspace and it
is the SOLUTION SPACE of the system of m linear equations in n unknowns. —
which we can compute by Gaussian elimination.

indexing set

is a subspaces of V' (why?)
6. In general, if Wy, Wy C V' are subspaces, W7 U W5 is NOT a subspace.
e.g., Span(i) U Span(j) = {(z,0)|x € R} U{(0,y)|y € R} is not a subspace
(z,y) = (2,0) + (0,y) ¢ Span(i) U Span(j)

ifx#0and y#0

(Definition 4.4 (Subspace & Span) — Let Wy, Wy C V be subspaces. Define

Wi+ Wy = {w1 + w2|w1 e Wi,wy € WQ}
= Span(W7 U W3)

So w1 + we C V is a subspace and the smallest subsapce of V' containing W7 and Wo.

More generally, if W; € V' is a subspace Vi € I let
Z W; = Z W; = +W,; = Span(U W)
I icl I

the smallest subspace of V' containing W;Vi € I. What do elements in ) _; W; look like?
Determine the span of vector vy, ..., v, in R"

Suppose v; = (@i, .., ani, @ = 1,...,n. To determine when w € R” lies in Span(uy, ..., un
) ie., if w=(b1,...,b,) € R" when does

w=av1 + ...+ apvn, a1y, 0 €ER

a1;
What v; is an n X 1 column matrix

Ang

18
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by
view w as | : |. To solve
bn
a1
Ax = B, X =
Qp
is equivalent to finding all the n x 1 matrices B (actually BT ) s.t.
Az =B
when the columns of A are the v; (v, ).
Note: If m = n an A is invertible then all B work.

§4.2 Linear Independence

We know that R™ is an n-dimensional vector space over R. Since we need n coordinates
(axes) to describe all vector in R™ but no fewer will do.
We want something like the following:

Let V be a vector space over F with V # (). Can we find distinct vectors vy ...,v, € V,
some n with following properties

1. V = Span(vy,...,v, )
2. No v; is a linear combos of vy, ..., v;_1,Vi11,...,0, (i.e. we need them all)

Then we want to call V an n-DIMENSIONAL VECTOR SPACE OVER F.

Lemma 4.5 h
Let V' be a vector space over F', n > 1. Suppose vy, ..., v, are distinct. Then (2) is
equivalent to

If cqur + ...+ apvy = B1v1 + .. + Bntn, ;0 € FVi,j
i.e. the “coordinates” are unique. )

Proof. (— >) If not, relabelling the v}s, we may assume that o # S2 in(*), then

n

(1 = Bu)vr = > (Bi — i)y

i=2
Asa; — B1 #0in F, a field, (a; — B1) ! exists, so

n

v1 = 2(041 — 81)7Y(B; — a;)v; € Span(vy,. .., vp)

1=2

a contradiction.
(< —) Relabelling, we may assume that

V1 = QU2 + ...+ apv,, some q; € F
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Then,
1-v14+0vg+...4+0v, =v1 =0 -v1 + v + ...+ apvy,

so 1 = 0, a contradiction. ]

Remark 4.6. The case n = 1 is special because there are two possibilities
Case 1: v #0: thenav =pv > a=p0
Case 2: v =0 : then av = fvVa, 5 € F

So the only time the above lemma is false is when n = 1 and v = 0. We do not want to say
this, so we use another definition.

§5 ‘ Lec 5: Oct 12, 2020

§5.1 Linear Independence(Cont’d)

Definition 5.1 (Linear Independence & Dependence) — Let V be a vector space over
F, vy,...,v, in V all distinct. We say {v1,...,v,} is LINEARLY DEPENDENT if
Jag, ..., a, € F not all zero >

oav] + ...+ apv, =0

and {v1,...,v,} is LINEARLY INDEPENDENT if it is NOT linearly dependent, i.e.,
if for any eqn
O=avy+...+apv,, oa1,...,0, €F,

then a; = 0V, i.e., the only linear comb of vy, ..., v, — the zero vector is the TRIVIAL
linear combo (we shall also say that distinct vy, ..., v, are linearly independent if
{v1,...,v,} is. More generally, a set ) .S C V is called LINEARLY DEPENDENT
if for some FINITE subset (of distinct elements of S ) of S is linearly dependent and
it is called LINEARLY INDEPENDENT if every FINITE subset of S (of distinct
elements) is linearly independent.

We say v;,i € F, all distinct are LINEARLY INDEPENDENT if {v;},.; is linearly
independent and v; # v;Vi,j € I,i # j.

J
Remark 5.2. Let V be a vector space over F, ) # .S C V a subset
1. If 0 € S, then S is linearly dependent as -0 =0
2. distinct: vq,...,v, in V are linearly independent iff
e nov; =0
® a1V + ... +apv, = B1v1 + ...+ Bpvn, ay, B; € F implies a; = 5;Vi
Note: v,v are linearly dependent if we allow repetitions — and {v,v} = {v}.
For homework, make sure to show this:
Suppose v1, ..., v, are distinct, n > 2, no v; = 0. Suppose no v; is a scalar multiple
of another v;, j # i. It does not follow that vi,...,v, are linearly independent (in

general).
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Example 5.3 (counter-example)

(1,0),(0,1),(1,1) in V =R?
(1,0),(0,1) are linearly indep. but not (1,0), (0,1), and (1, 1).

Remark 5.4. Let ) # T C S be a subset. If T is linearly dependent, so is S. Then the
contraposition is also true: if S is linearly indep., so is 7.

More remarks:
1. Let 0 # v € V. Then {v} is linearly independent and
Fv := Span(v)

is called a LINE in V:
av=0—>a=0

2. u,v,w € V\{0} and v ¢ Span(w ) (equivalently, w ¢ Span(v ), then {v,w} is linearly
indep. and span( v,w ) is called a PLANE in V.

3. (1,1),(—2, —2) are linearly dep. in R?.

4. (1,1),(2,—2) are linearly indep. in R? (show coefficients are equal to each other and
to 0).

5. More generally,

v;i = (ajy,...,a;,) in R", i=1,...,m (distinct)
Then
daq,...,an € Rnotall0 3 aqvy + ...+ apv, =0
iff v1,..., v, are linearly dep — iff Jaq,..., @y € R not all 0 s.t.
ar(ait, .y a1m) + .o+ am(@mi, ooy Amn) =0

iff the matrix

ai a1m

A=
Aml ... Amn

with rows v; row reduced to echelon form with a zero row. Also,

aill oo Aml

B=AT =
A1m Amn

i.e., write the vectors v; as columns then

B X =0
—~—

nxm mx1
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has a NON-TRIVIAL solution, i.e.,
kerB # (

where
kerB = {X € F"*!|BX = 0}

the kernel of B.
6. Let f1,...,fn € C" Y1), I=(a,B),a< BinR and

arfi+...Fapfn= 0
the zero func
ie, (aifi+ ... +anfn)(x) =0 Va € (a,B). Taking the derivatives (n — 1) times
and put them in matrix form, we have

i o fa a1 0
noof |
L -
1n PR o, 0
In particular, the Wronskian of fi,..., f, is not the zero func, i.e., 3x € («a, ) >

W(fi,...,fn)(x) # 0. This means that the matrix above is invertible for some
x € (a, ). Then, a; =0, ...,a, =0 by Cramer’s rule — only the trivial soln.

Conclusion: W(fi1,...,fn) #0— {f1,..., fn} is linearly indep.
WARNING: the converse is false.

Example 5.5 (of the conclusion)
Let a < 8 in R.

1. sinz, cosx are linearly indep. on («, ).
2. We need some (sub) defns for this example.

For x € R, define the map
ez : R[t] = R by

g=>Y ait' — g(x) = a;x" called EVALUATION at .

We call a map f: R — R (or some f: I — R(/ CR))aPOLYNOMIAL FUNCTION if

n
HPf = Zaiti S R[t]
i=1

and

f(x) = e, Py = Py(x) = Zaixi Vz e R
i=1
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i.e., the function arising from a (formal) polynomial by evaluation at each x. We let
Rlz] :=={f : R — R|f a poly fcn }

Note:Polynomial fens are defined on all of R. R[] is a vector space over R.
Warning: if we replace R by F, F[t] may be “very different” from F[z], e.g., let
F ={0,1}. Then
t,t? € F[t], t#1t* but P, = Pp

Now we can give our example using Wronskians

{1,z,...,2"}

is linearly indep. on (a, ) assuming o < .
HOMEWORK: Let aq,...,qa, € R be distinct, then

a1t ant
e, .,e"

are linearly indep. on («, ). THINK OVER IT!

Theorem 5.6 (Toss In)

Let V be a vector space over F, ) # S C V a linearly indep. subset. Suppose that
v € V\ Span S. Then S U {v} is linearly indep.

Proof. Suppose this is false which is S U {v} is linearly dep. Then Juvy,...,v, € S and
a,aq,...,q, € F some n not all zero s.t.

av+ aivy + ... +ayv, =0

Case 1: a=0
Then ayv; + ... 4+ ayv, = 0 not all oy, ..., «, zero so {v1,...,v,} is linearly dep., a
contradiction.
Case 2: a #0
Then o~ ! exists.
v = —a_lalvl — .= oz_loznvn
is a linear combo of vy,...,v,, i.e., v € Span (v1,...,v,) — a contradiction. Therefore,
S U {v} is linearly indep. O
4 I
Corollary 5.7
Let V' be a vector space over F and vy,...,v, € V linearly indep. if
Span(vi,...,v,) <V
then Jv,11 € V 3 v1,...,vp,Un41 are linearly indep. and
Span(vi,...,v,) < Span(vi,...,vp41) CV
o J
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Question 5.1. Why can’t we get a linearly indep. set spanning any vector space over F
using this theorem?

Ans: Certainly we may not get a finite set. We shall only be interested in the case, much of
the time, when such a finite linearly indep. set spans our vector space over F'.

Example 5.8

(1,3,1) € R? is linearly indep. but Span (1,3,1) < R3.

(1,1,0) ¢ Span (1,3,1) so (1,3,1),(1,1,0) are linearly indep. Similarly for (0,0, 1).
R3 = Span((la 3, 1)7 (17 1 O)a (07 0, 1))

§6 ‘ Lec 6: Oct 14, 2020

§6.1 Bases

(Definition 6.1 (Basis) — Let () # V be a vector space over F. A BASIS B for V is a\
linearly indep. set in V and spans V. i.e.,

1. V = Span B.
2. B is linearly indep.

We say V is a FINITE DIMENSIONAL VECTOR SPACE OVER F if there exists B
for V' with finitely many elements, i.e., |B| < oco. y

Notation: If V =0, we say V is a finite dimensional vector sapce over F' of DIMENSION
ZERO.

Goal: To show if V is finite dimensional vector space over F' with bases B and b then
|B| = |b|] < oco. This common integer is called the DIMENSION of V.

Example 6.2

Let V' be a vector space over F, S C V a linearly indep. set. Then S is a basis for
Span S.
Warning: S is not a subspace just a subset.

Definition 6.3 (Ordered Basis) — If V is a finite dimensional vector space over F'
with a basis B = {vy,...,v,} we called it an ORDERED BASIS if the given order
of v, ..., vy, is to be used, i.e., the i*" vector in B is the i*" in the written list, e.g.,
{v1,v2,v4,v3,...} then vy is the 3" element in the ordered list if we want B to be
ordered in this way.

J
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Theorem 6.4 (Coordinate)

Let V be a finite dimensional vector space over F' with basis B = {v1,...,v,} and
v € V. Then dlag,...,a, € F > v = aqv1 + ... + apv,. We call aq,...,aq, the
COORDINATE of v relative to the basis B and call «; the i*" coordinate relative to
B.

Proof. Existence: By defn, V = Span B, soif v € V
Jdaq,...,an € FDv=0aqv1 + ...+ av,

Uniqueness: Let v € V and suppose that ajvy + ... + apv, = f1v1 + ... + Buvn, for some
a1,...,00,01,...,0, € F. Then

(1 — Br)vr + ... + (o — Bn)vn =0

Since B is linearly indep,
a;=p;=0 fori=1,...,n ]

Question 6.1. Does the above theorem hold if the basis B is not necessarily finite? If so
prove it!

Exercise 6.1. Let V be a vector space over F, v1{,...,v, € V then

Span(vy,...,v,) = Span(va,...,v,) <= v € Span(ve,..., V)

Make sure to PROVE THIS

Note:For induction, you CAN'T assume n in the induction hypothesis is special in any way
except it is greater than 1. Also, you can start induction at n = 0,i.e., show P(0) true (or
at any n € Z).

KTheorem 6.5 (Toss Out) b

Let V be a vector space over F. If V' can be spanned by finitely many vector then V'
is a finite dimensional vector space over F. More precisely, if

V = Span(vi, ..., vy)

then a subset of {v1,...,v,} is a basis for V.
J
Proof. 1f V' = 0, there is nothing to prove. So we may assume that V' # 0. Suppose that
V = Span(vy,...,v,). We can use induction on n and show a subset of {vy,...,v,} is a
basis.

en=1:V==Span(v;) #0as V #0, so v; # 0. Hence {v1} is linearly indep and it is
the basis.
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e Assume V = Span(wi,...,w, ) — the induction hypothesis — to be true. Then a

subset of wy, ..., w, is a basis for V. Now suppose that v = Span(vy,...,v,41). To
show a subset of {v1,...,v,41} is a basis for V, we need to show if {v1,...,v,41} is
linearly indep., then it is a basis for V and it spans V and we are done. So let us
assume that {vy,...,v,41} is linearly dep. Hence,

Jaq, ..., ant1 € F not all zero >

a1v1 + ...+ apt1V4+1 =0

Assume a1 # 0, then
| -1
Upgl = —Q |1 QIV] — ... — Q{1 QpUy
lies in Span(vy,...,v,). By the Exercise above,
V = Span(vi,...,vnp41) = Span(vy, ..., v,)

By the induction hypo, a subset of {vi,...,v,} is a basis for V.

Example 6.6 1. Let ¢; = {(0,...,0,1,0,...)} € F"
s=sp:={e1,...,en} CF"
If v € F", then
v="(1,...,00) =11 + ...+ anen

since o; € F',so F" = Span s. If 0 = aje1+. . .+ane, = (a1,...,a,) = (0,...,0),
then a;; = 0V2. So s is linearly indep. Hence s is a basis for F"* called the standard
basis. More generally, let

eij € F™ ™ be the m x n matrix with all entries 0 except in the ith place.

Then sy = {eij|l <i<m,1<j <n}isa basis for F™*" called the STAN-
DARD BASIS for F™*™ — same proof — everything is done componentwise.

2. V = FIJt] == { polys in t, coeffs in F.} (F =R ). Let f € V. Then, there exists
n > 0in Z and ay,...,qy, in F s.t.

f=ap+ait+...+apt"
So B={t"|n>0} = {l,t,tQ,...} spans V' and by defn if

agF+oqt+...+apt"= 0

zero poly

then a; = 0 for all i so B is linearly indep. Hence B is a basis for F'[t]. B is not a
finite set. We shall see that F'[t] is not a finite dimensional vector space over F.

How?
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3. Flt]ln == {f € F[t]| f = Oor degf < n} C F[t] is spanned by {1,¢,¢%,...t"}. It
is a subset of linearly indep. set. {1, t,t2,.. } = {t"|n > 0} so also linearly indep.
and therefore a basis.

4. {1, \/j} is a basis for C as a vector space over R. {1} is a basis for C as a
vector space over C(indeed, if F' is a field, F' is a vector space over F' and if
0 # o € F, then o~ ! exists and * = xa~'a € Span F so {a} is a basis. e.g.,
{7} is a basis for R as a vector space over R ).

5. {e‘z, 63“”} is a basis for
V= {f € C*(—o0,00)|f" —2f —3f =0}
a vector space over R.

6. Given vy,...,v, € F", you know how to find W = Span(vy,...,v, ). Note:If
m > n then rows reducing A" must lead to a zero row so vy, ..., v, cannot be
linearly indep. If m = n we can see if

det AT =0 (or det A = 0)
then linearly dep. And if
det AT #£0 (or det A #0)

then linearly indep.

§7‘ Lec 7: Oct 16, 2020

§7.1 Replacement Theorem

\

Theorem 7.1 (Replacement)

Let V' be a vector space over F, {v1,...,v,} a basis for V. Suppose that v € V

satisfies

v =qU1 + ...+ apUy, Aty ..,0n € Fla; #0
Then
{v1, ., Vim1, 9, Vig1, -, Un}

is also a basis for V.
- J
Proof. Changing notation, we may assume oy # 0. To show {vy,ve,...,v,} is a basis for
V', we have to show {v,vs,...,v,} spans V. Since

v=au1 + ... +apv,, a; #0

al_l exists, so

v = ozl_lv — al_lozgvg - .. = al_loznvn
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lies in Span(v,vs,...,v, ). By Exercise ...,
V = Span(v,vy,...,v,) = Span(v, ve, ..., vy)

So {v,va,...,v,} spans V. Thus, {v,v,...,v,} is linearly indep.
Suppose 361, 82,...,8, € F not all 0 3

pv + Bova + ... + Brvy =0

Case 1: =0

Then fova+. ..+ Bpvy, = 0not all B; = 0. So {va,...,v,} is linearly dep., a contradiction.
Case 2: 3 # 0, so B! exists.

Then using (*), we see

v=0-v; —ﬂ_lﬁgvg—...—ﬁ_lﬂnvn:alvl+...+anvn
As {vg,...,v,} is a basis, by the Coordinate Theorem, we have
a1 =0 and o = ﬁflﬁi
a contradiction. O

Question 7.1. In the Replacement Theorem, do we need the basis to be finite?

Ans: T think it can be infinite ...

§7.2 Main Theorem

Theorem 7.2 (Main)

Suppose V' is a vector space over F' with V' = Span(vy,...,v,). Then any linearly
indep. subset of V' has at most n elements.

Proof. We know that a subset of B = {v1,...,v,} is a basis for V' by Toss Out Theorem.
So we may assume B is a basis for V. It suffices to show any linearly indep. set in V' has at
most |B| = n elements where B is a basis. Let {w1,...,wy,} C V be linearly indep. where
no w; = 0. To show m < n, the idea is to use Toss In and Toss out in conjunction with the
Replacement Theorem.

Claim 7.1. After changing notation, if necessary, for each k < n

{wi, ..., Wey Vrg1s -, U}

is a basis for V.

Suppose we have shown the above claim for ¥ = n. Apply the claim to k = n if m > k,
then {w1,...,wp4+1} is linearly dep., a contradiction as {ws,...,w,} is a basis. Thus, we
prove the claim for m < n as needed. We prove it by induction on k. BY the argument
above, we may assume k < n.
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e k=1: Asw; € Span B = Span (v1,...,v,) and wy # 0, oy, ...,a, € F not all 0
=
w] = a1 + ...+ apv,

Changing notation, we may assume «1 # 0. By the Replacement Theorem,
{w1,ve,...,v,} is a basis for V
e Assume the claim hold for k(k < n).
e We must show the claim holds for k& + 1,
{wi,..., Wk, Vkt+1,-..,Upn} is a basis for V
We can write

0 # wpg1 = frwr + ... + Brpwg + apgp1Vpr + ..+ oy

for some (new) Si,..., Bk, @kt1, ..., @, € F not all 0
Case 1: a1 =apio=...=a, =0
Then wg1 € Span(wy, ..., wg), hence {w1, ..., wgy1} is linearly dep., a contradiction.

Case 2: 33> qa; #0:

Changing notation, we may assume a1 7 0. By the Replacement Theorem

{wla <oy We 1, V42, - - avn}

is a basis for V. This completes the induction step thus prove the claim and establish
the theorem. O

§7.3 A Glance at Dimension

Corollary 7.3

Let V be a finite dimensional vector space over F, Bi, By two bases for V. Then
|B1| = |B2| < co. We call |Bj| the dimension of V, write dimV = dimpV = |B|
(dropping F' if F'is clear).

Proof. By defn of finite dimensional vector space over F', 3 a basis b for V' with |b| < oc.
By the Main Theorem, |B| < |b|, if B is a basis for V, so B is finite. Again by the Main
Theorem, |b| < |B| if B is a basis for V, so |b| = |B| for any basis B of V. O

The corollary above says dim V' is well-defined for all finite dimensional vector space over
F,ie., “dim” : {finite dimensional vector space over F' — Z* U {0}} is a function.
Warning: F' makes a difference.
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Example 7.4

dimcC=1 basis {1}

dimgC=2  basis{l,v/—-1}
dimg C =7

/Corollary 7.5

dimp F™ = n.

- J

Corollary 7.6

dimp F™*"™ = mn.

Corollary 7.7
dimp F[t], =1+ n.

Note: If V is a finite dimensional vector space over F' with bases B, then the Replacement
Theorem allows us to find many other bases.

/Corollary 7.8 A
Let V be a finite dimensional vector space over F, n = dimV, () # S C V a subset.
Then

o If |S| > n, then S is linearly dep.
e If |S| < n, then Span S < V. )

Proof. e First bullet point: The Main Theorem says:

A maximal linearly indep. set in V' is a basis and can have at most n elements by
Toss In Theorem.

e Second bullet point: By Toss Out Theorem, we can assume that S is linearly indep.,

so it cannot be a basis by Corollary 7.
O

Question 7.2. What is dimg M,,(C)?

§8 ‘ Lec 8: Oct 19, 2020

§8.1 Extension and Counting Theorem
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Theorem 8.1 (Extension)

Let V be a finite dimensional vector space over F, W C V a subspace. Then every
linearly independent subset .S in W is finite and part of a basis for W which is a finite
dimensional vector space over F'.

Proof. Any linearly indep. set in W is linearly indep. subset S in V so |S| < dimV < oo
by the Main Theorem. In particular,

dim SpanS < dim V'

if W = Span S, we are done.
If not, Jw; € W\ Span S, and hence S; = S U {w;} is linearly indep. by Toss In Theorem
and

IS1] =[S U{wi}|=|5]+1<dimV

if Span S; < W, then Jwe € W \ Span S1, so Sy = S U {wi,wy} C W is linearly indep.,
hence
|S2] =S|+ 2 < dimV

Continuing in this manner, we must stop when n < dimV — dim Span S as dim V' < oo.

So S is a part of a basis for W and W is a finite dimensional vector space over F. O

Corollary 8.2

Let V be a finite dimensional vector space over F'. Then any linearly indep. set in V'
can be EXTENDED to a basis for V, i.e., is part of a basis for V. We often call this
special case the Extension Theorem.

Corollary 8.3

Let V be a finite dimensional vector space over F', W C V a subspace. Then W is a
finite dimensional vector space over F' and dim W < dim V' with equality iff W = V.

Proof. Left as exercise. O

/Theorem 8.4 (Counting) b

Let V be a finite dimensional vector space over F', Wi, Wy C V subspaces. Suppose
that both W7 and Wy are finite dimensional vector space over F'. Then

1. Wi N Wy is a finite dimensional vector space over F'.
2. W1 + Wy is a finite dimensional vector space over F'.

3. dim Wp + dim Wy = dim(Wl + Wa) + dim(W; N Wy).
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Proof. 1. WinWy € W;,i=1,2, so it is a finite dimensional vector space over F' by

2.

corollary 8.2.
Let B; be a basis for W;, i =1,2,.... Then W; + W3 = Span (B; U Bg) and
|Bl UBQ| < |Bl| + |BQ| < 0

So Wy + Ws is a finite dimensional vector space over F' by Toss Out.

. Let B = {vy,...,v,} be a basis for W; N W,. Extend B to a basis

b1 = {vi,..., 0, Y1,...,yr} for Wy
by ={v1,...,Un,21,...,25} for Wo
using the Extension Theorem.
Claim 8.1. by Ubs = {v1,...,0n, Y1, Yr, 21, ..., 25} is a basis for W; + Wy and

has n + r + s elements. So if we show the claim, the result will follow.

Certainly,
Span(by U by) = Span by + Span by = Wy + Wo

So we need only to show by U by is linearly indep. Suppose this is false. Then
O=avi+...+apvn +01yi+ ...+ Gryr + 7121 + - .-+ V525 (*)

for some aq,...,Qn, 81y, BnsY1,---,7s in F not all zero.

Case 1: All the «; = 0. Since by is linearly indep., this is a contradiction.

Case 2: Some v; # 0.

Changing notation, we may assume ~; # 0. Since by is a basis, (*) leads to an
equation

0Fz=mz1+...+ 7% =—0101 — ... = apUn — f1y1 — ... — Br¥y

Therefore, 0 # z lies in Span by N Span by = Wo N W7, So we can write zi € W1 N Wo
using basis B as

0#2z=6v+...+0,v, somedq,...,0, €F
Thus W5 = Span by, we have
014 ...+ 0,0, — 021+ ... 402 =2=0v1 +...+ 0y + Y121+ ... + Vs2s

By the Coordinate Theorem, v; = 0, a contradiction.

O
/Corollary 8.5 A
Let V be a vector space over F', W1, Wy C V finite dimensional subspaces of V. Then
dim(W1 + WQ) = dim W7 + dim W
iff
WiNnWy =10
\In this case, we write W7 + Wy = W7 @& W5 called the DIRECT SUM. )
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§8.2 Linear Transformation

In mathematics, whenever you have a collection of objects, one studies maps between them
that preserves any special properties of the objects in the collection and tries to see what
information can be gained from such maps.

Definition 8.6 (Linear Transformation) — Let V, W be a vector space over F. A\
map T : V — W is called a Linear Transformation, write 7' : V' — W is linear if
Yvi,vg € V,Va € F

° T(Ul + ’1)2) = T(Ul) -+ T(Ug).

o T(avy) = aT(v1).

e T(0y) = Ow.

Notation: We write T'v for T'(v).

Remark 8.7. Let V,W be a vector space over F, T : V — W a map.
1. If T satisfies 1) and 2), then it satisfies 3):

Ow +T'(0v) = T(0v) = T(Ov + 0y) = T(0v) + T(0v)

SO OW = T(Ov)
2. T is linear iff T(avy + v2) = aTvy +Tvs Yvi,v5 € V,Va € F.

3. If T is linear, ay,...,ay € F,vy,...,v, € V, then

T (i aivi> = i o; T,
i=1 i=1

We leave a proof of 2) and 3) as exercises.

Example 8.8

Let V, W be a vector space over F. The followings are linear transformations
1. 0V7in—>WbyUl—>Ow.

22.V=W,1y: V=V by v — v

A linear transformation 7 : V' — V is called a Linear Operator.

3. If ) # Z C W is a subset, then we have a map
inc: Z—->W

given by z — z called the Inclusion Map. Then, Z is a subspace of V iff inc:
Z — W is linear.
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Note: inc = 1w s
——

Restriction map

This is the Subspace Theorem.

omit
4. T: F" — F" ! by (« ap) — (« i ay, for a fixed i
. : I 6 79 flgocog youoy Qp .

5. T: F" — F by (a,...,ap) — «; for a fixed i.

6. T:R*" ! - R" by (a1,...,n1+ (a1,...,0;-1,0,04,...,0ay) for fixed i.
7.T:R—R"by a— (0,0,...,,0,...,0) for fixed i.

8. fa<finR,D:Cca,B) = C(a,B) by f+— [

9. Ifa < SinR, Int: C(a,8) = C'(ar, B) by f +— [ f where [ f is the antiderivative
— constant of integration 0.

10. Fix a € F, then Aa : V — V by v — awv. Left translation by «.
11. Let A € F™*". Define
T:FP 5 Pt by T X =A-X
(05} (651
ie. N

Qn Qn

Matrices can be viewed as linear transformation. We should see the converse is
true IF V is a finite dimensional vector space over F. It is not true in general.

89 ‘ Lec 9: Oct 21, 2020

§9.1 Kernel, Image, and Dimension Theorem

Definition 9.1 (Kernel(Nullspace)) — Let V, W be a vector space over F', T : V — W
linear set
N(T)=ker T :={v e V|Tv=0w}

called the nullspace or kernel of T
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/Definition 9.2 (Range(lmage)) — Let V, W be a vector space over F', T : V — W\

linear set

mT=TV)={weW|weV>s3Tv=uw}

={Tvjv eV}
called the range or image of 7. )
Proposition 9.3 A
Let T: V — W be linear. Then

1. kerT' C V is a subspace.

2. imT C W is a subspace.
J
Proof. Left as exercise. O
\

Theorem 9.4 (Dimension)
Let T : V — W be linear with V' is a finite dimensional vector space over F'. Then

1. 9m T and ker T are finite dimensional vector space over F.

2. dimV =dimkerT + dimimT'.
\\ 4

Note: dimker T is also called the NULLITY of T and dim imT is also called the RANK of
T.

Proof. Let n=dim V.

kerT' C V is a subspace, V is a finite dimensional vector space over F' so kerT is a
finite dimensional vector space over F' and dimkerT < dimV = n. Say m = dimkerT'.
Let Ay = {v1,...,vn} be abasis for ker T'. By the Extension Theorem 3% = {v1,...,Um,...,Un}
a basis for V.

Claim 9.1. Tvy41,. .., Tv, are linearly indep. (in particular, distinct) and
€ ={Tvms1,...,Top}

is a basis for imT.

If we prove the claim above, then imT is a finite dimensional vector space over F' of
dimension n — m and we are done.
Step 1: € spans im/1":

Let w € imT. By definition, dv € V 2 Twv = w. As A is a basis for V day,...,a, € I3

V=1V + ...+ apvy
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Hence
w=Tw)=T(1v1 + ...+ apvy) = anTvy + ... + a,To,
=a0w + ...+ 00w + ami1Tvms1 + ... + T,
lies w Span(%) (as vi,...,vm € kerT"). need
Case 2: ¥ is linearly indep. recheck
Suppose am+1,---, 0, € F and
Oém+1TUm+1 + ...+ OénTUn = OW
Then

Ow = T(m4+1Vm+1 + - - + apoy

SO0 Amt1Vm+1 + - .-+ apvy € ker T By defn, %y is a basis for ker T'. So 361,...,08m € '3

Om+1Vm+1 + - - + apvy = B1v1 + ... + Bmon

Hence

0=—-pF1v1 — ... — BUm + Qm+1Vm+1 + - - - + Qpn
As A is a basis for V, it is linearly indep, so 51 = 0,...,8n = 0,041 =0,...,a, =0
(Coordinate Theorem) and the claim follows. O

Note: Let V be a finite dimensional vector space over F';, W C V a subspace, V/W the
quotient space, then —: V = V/W, v —»v=v+ W and dimV/W =dimV — dim W.
§9.2 Algebra of Linear Transformation

We want to study the set of all linear transformation from a vector space over F' 'V to a
vector space over F' W. Let V, W be a vector space over F'. Set

L(V,W)={T:V — WI|T is linear}

Check: if T,S € L(V,W),a € F, then T + S € L(V,W). Since we know % (V, W)
{f:V — W|f amap} is a vector space over F', by the Subspace Theorem, L(V, W)
F(V,W) is a subspace.

Nl

Proposition 9.5
Let V, W be a vector space over F, then L(V,W) C .%(V,W) is a subspace.

Now we know if we have maps
f:X—=Y and g:y— Z,
we have the COMPOSITE MAP
gof:X =27 by(gof)(x)=g(f(x))VzeX

where o is called the COMPOSITION (and often omitted when clear). Then we have
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Proposition 9.6 A

Let V,W, X, U be vector space over F', T, 7" :V - W, S8 : W X, R:X —>U
all be linear. Then,

1. SoT :V — W is linear.(the composition of linear transformations is linear).
2. Ro(SoT)=(RoS)oT and linear.
3. So(T'+T')=SoT+ SoT and linear.

4. (S+8)oT =SoT+ S5 oT and linear.

J
Proof.
(SoT)(avy +v2) =S (T(av; +v2)) = S(aTvy + Tvg)
=aSoT(v)+SoT(vg)
Yui,v9 € V,a € F.
The rest are left as exercises. O
/Definition 9.7 (Linear Operator) — Let V be a vector space over F', T : V' — V linear,
so a linear operator is defined as
T":=To...oT ifneZ"
—
n
™ =1y
g J
\

Proposition 9.8

Let V be a vector space over F. Then L(V,V) under 4+ and o of functions V" — V'
satisfies all the axioms of a field except possibly (M3) and (M4) with

one=1y:V =V byov—w
zero =0y :v —v byv—0

We say L(V,V) is a (non-commutative) ring of M, F.

§9.3 Linear Transformation Theorems
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\

/Definition 9.9 (Properties/Consequences of Linear Transformation) — Let T: V — W
be linear. We say that T is

1. a MONOMORPHISM (write mono or monic) or NONSINGULAR if T"is 1 — 1.
(i.e., injective).

2. an EPIMORPHISM (write epi or epic) if T' is onto (i.e., surjective).

3. an ISOMORPHISM (write iso) or INVERTIBLE if T is bijective and T~! : W —
V is linear. We say V, W vector spaces over F' are ISOMORPHIC (write V = W

if 4 an isomorphism S : V' — W, we also write an isomorphism S : V — W as

\_ S: VW )

Remark 9.10. V = W vector space over F means that we cannot take V and W apart
algebraically.

Example 9.11
Ftl >~ Flt], as F""' — Ft], by (ao,...,an) = oo + aity + ... + apt™ is an
isomorphism with inverse F[t], — F""! by ag + a1t + ...+ ant™ = (ag, ..., o)
T_l(awl +wsy) = T_l(aTvl + Tvy) = i (T(av1 + v2))
=TT (aw; + v2)
= av; + V2

=oT twy + Tflwg O

/Corollary 9.12
Let T : V — W be a monomorphism. Then V 22 imT via T.

Remark 9.13. If V, W, X are vector space over F', then
1. v=v
22.VEW W=V
3. V=Wand W= X then V=X

In algebra, isomorphisms are usually easier to check than are one might assume, because
the following result is often true.

Proposition 9.14
Let T : V — W be linear. Then T is an isomorphism iff T is bijective.

Proof. (—) immediate.
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(<) Let T~ : W — V be the set inverse of T': V — W, so
ToT ' =1y and T 'oT =1y
In particular, if v € V and w € W,
w=Tv if T lw=v
Let wi,wy € W, a € F. To show
T Y owy +wy) = oT twy + T 1wy

T is onto so
H’UiEVBTUi:wi,Z'Zl,...

Hence, we have

T Y ow; +ws) = T HaT v, + Twy) = T~ HT(awy + v2))
= T_IT(avl + vg) = avy + v
= oT Ywy + T twy O

§10 ‘ Lec 10: Oct 23, 2020

§10.1 Monomorphism, Epimorphism, and Isomorphism

Corollary 10.1
Let T: V — W be a monomorphism. Then V' 22 im T via T.

Definition 10.2 (Linear Map) — Let T': V — W be linear. We say T takes linearly
independent sets to linearly independent sets if v;,7 € I are linearly independent in V'
(in particular, distinct). Then, T'v;, € I are linearly indep. in W. (T'v; # Tv; if i # j
inl)

(Theorem 10.3 (Monomorphism)
Let T : V — W be linear. Then the followings are true

1. Tis 1 — 1, so it’s monomorphism.
2. T takes linearly indep. sets in V' to linearly indep. sets in W.

3. kerT =0 := {0y }.

\_ 4. dimkerT = 0. y

Proof. e 3) iff 4) is the defn of the 0-space.
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e 1) — 2) It suffices to show that T takes finite linearly indep. sets in V' to linearly
indep. sets in W.

Suppose that vy,...,v, € V are linearly indep. and aq,...,a, € F satisfy

Ow =T+ ... +a,Tv,

Then
T(Ov) =0y = T(a1v1 + ...+ anvn)
AsTis1-1
Oy =aiv1 + ...+ anv,
Since v1,...,v, are linearly indep. a; = 0,7 =1,...,n as needed.

e 2) — 3) Let v € kerT. Then Twv = Oy. If v # 0, then {v} is linearly indep. By 2)
Tv # Ow as then {Tv} is linearly indep. So v # 0.

e 3) = 1) If Tvy = Twy, vi,v9 € V, then
Ow =Tvy — Tve =T (v1 — v2)

So v1 — vy = 0y by 3), i.e., v1 = vy O

Remark 10.4. The Monomorphism Theorem says ker T' measures the deviation of T' from
being 1 — 1.

Note: In the Monomorphism Theorem, we do not assume that V' or W is a finite dimensional
vector space over F.

KTheorem 10.5 (Isomorphism) b

Suppose T : V. — W is linear with dimV = dim W < oo,i.e., V, W are finite dimen-
sional vector space over F' of the same dimension. Then the followings are true

1. T is an isomorphism.
2. T is a monomorphism.
3. T is an epimorphism.

4. If B = {v1,...,v,} is a basis for V, then {Tvy,...,Tv,} is a basis for W (so
Twvq,...,Tv, are distinct), i.e., T takes basis of V' to basis of W.

L 5. There exists a basis & of V' that maps to a basis of W. )
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Remark 10.6. 1. The condition that dimV = dim W < oo is crucial

Come up with a counter example

2. Let V2 W with V, W be finite dimensional vector space over F. So dimV = dim W.
Let S:V — W be linear. Then S may or may not be an isomorphism, e.g., if S is the
zero map then it is not an isomorphism unless V' = 0. The theorem only says that 3 an
isomorphism and any such satisfies the theorem.

3. Let f: A — B be a map of finite sets with |A| = |B|. Then f is a bijection iff f is an
injection iff f is a surjection.

Proof. (of Theorem)
e 1) — 2) follows by defn.
e 2) — 3) By the Dimension Theorem
dimW =dimV =dimkerT + dim im T

Thus, T is onto iff im 7" = W iff dimW = dim im 7' (by the Corollary to the
Existence Theorem) iff dimker7 =0 iff T"is 1 — 1.

e 3) » 1) as 3) — 2) and 1) = 2) 4 3) by the Proposition ,—

e 2) — 4) Let {vi,...,v,} be a basis for V. By the Monomorphism Theorem,
Tvy,...,Tv, are linearly indep. in W, so

n<dmW =dimV =n
Hence {Tvy,...,Tv,} also spans as dim W = dim V.

e 4) — 5) — 3) are clear.

§10.2 Existence of Linear Transformation

The next result is really the defining property of finite dimensional vector space and linear
transformation.
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4 )
Theorem 10.7 (Existence of Linear Transformation (UPVS))

— (Universal Property of Vector Space) Let V' be a finite dimensional vector space
over F'; B = {v1,...,v,} a basis for V and W an arbitrary vector space over F. Let
wi, ..., w, € W, not necessarily distinct. Then

A T:V — W linear > Tv; = w;Vi

We can write this in an other way as follows:
Let B — V be a basis for V, V' a finite dimensional vector space over F and W a
vector space over F'. Given a diagram,

B—V
of sets and
f set maps
w

then 37 : V — W linear >
B—=V

KT
w

commutes , i.e., T oinc = f.

J

Proof. Define T : V — W as follows: let V € V. The dlay,...,ap, € F3v=aqv1 + ...+
anV, by the Coordinate Theorem. Define

Tv=T(a1v1 + ...+ apvy) = qqwy + ...+ apwy,

Since the a; ARE UNIQUE, this defines a map —we say T : V — W is WELL — DEFINED.
Certainly, Tv; = w;, i = 1,...,n. To show T is linear, let v = > | ajv;,v" = > " | Bivy,
a,ai,ﬁj € FVi, 7. Then

T(av+v)=T (a Zn: o;v; + Zn: Bivi>
i=1 i=1
=T (Z(aai + @')%‘) = Z(aai + Bi)w;
i=1 i=1

n n
= aZaiwi + Zﬁiwi =aTv+TV

=1 =1

as needed. This shows existence.
Uniqueness: Let T : V — W by (*) and S : V' — W linear s.t. Sv; = w;Vi. To show S =T,
let v=>"", v, € Funique,i=1,...,n. Then Tv=>"", o;Tv; =Y ;" ; ayw; which

is equivalent to
n n
= ZaiSvi =5 (Z aivi> = Sv
i=1 i=1

So S is T and we have proven uniqueness. ]
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Remark 10.8. The theorem says a linear transformation from a finite dimensional vector
space over F' is completely determined by what it does to a fixed basis. i.e., as there are no
non — trivial RELATIONS on linear combos of elements in %, the only relation in im 7" will
arise from the kernel of T

§11 ‘ Lec 11: Oct 26, 2020

§11.1 Lec 10 (Cont’d)

Remark 11.1. 1. In the above, given fv; = w;Vi, we say that T : V — W by > ayv; —
a;w; EXTENDS f linearly.

2. Let V be any vector space over F' (not necessarily finite dimensional). Suppose V has a
basis %, then every v € V is a finite linear combo elements in %. Using the same proof
of UPVS, shows

if W is a vector space over F', then given a diagram

B—=V
of sets and
f set maps

w

of set and set maps. T : V' — W linear s.t.
B—V

inc

T

N
W

commutes. LE., if Z = {v;}, is a basis for V, w; € W, i € I (not necessarily distinct),
f:V —=>Wbyuwv+— wVie I Then 3T :V — W linear s.t. Tv; = w;Vi € I. So
any linear transformation from a vector space over F' V having a basis is completely
determined by what it does to that basis.

3. Axiom: Every vector space over F' has a basis. This is equivalent to the Axiom of
Choice.

Theorem 11.2 (Classification of Finite Dimensional Vector Space)

Let V, W be finite dimensional vector space over F'. Then

\ VW < dmV =dimW

Proof. (—)Let T : V. — W be an isomorphism, & = {vi,...,v,} a basis for V' (so
dimV =n ). By the Monomorphism Theorem,

€ ={Tvy,...,Tv,}

is linearly indep. in W. Since |€| = n and span(%) = w (as T is onto), ¢ is a basis for W
and dimW =dim V.

(<) Supposen = dimV = dim W. Let = {v1,...,v,} beabasisfor V, € = {w1,...,w,}
a basis for W. By the UPVS, 3T : V. — W linear v; — w;Vi, i.e., T takes the basis 4 of
V' to the basis € of W. By the Isomorphism Theorem, T is an isomorphism. O
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Example 11.3 1. F7xXm & pmXxn o pmn
2. M,F = F"

3. F[t], = Fnt!

Let T : V. — W be linear with V, W arbitrary. Since T only tells us about im 7T, we replace
the target W by im T = T(V), i.e., view T : V. — W surjective linear. Let % be a
basis for ker T" C V subspace. Then Extension. Theorem holds even when V is not finite
dimensional. Extend % to a basis Z = By U % so € N %By =0 and V = span 4. By the
argument proving the Dimension Theorem,

() ={T(y)ly € ¢}

is linearly indep. and since 1" is onto T'(%) is a basis for W. The new relation in W = im T
comes from
Ty = 0, T € %0

In the extra section (3), we showed
V/kerT = {vjv € V}
where
v=v+kerT ={v+z|z € ker T}

is a vector space over F. In fact, {7y € €’} is a basis for V/ker T. By the UPVS, 3! linear
transformation

T:V/kerT — W
given by 0 =7+ 0,2 € Bo,y — Ty,y € €. T is clearly onto and T is 1 — 1,
Tw)=Tw) YweV

So
T:V/kerT - W = im T

is an isomorphism.
As —:V = V/kerT by v — T is a surjective linear transformation, by definition,

av+ v =aov+ v

Note: ker — = ker T.
We have a commutative diagram

Vv imT
- J ~_ comimutes
T
V/kerT

with - an epimorphism
T an isomorphism
Notiece if W # im T, T is only a monomorphism.
We shall show that all of this is true without using bases (or the Extension Theorem in the

Extra Lecture). In particular,
V/kerT = im T
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§11.2 Matrices and Linear Transformations

Goal: Let V,W be finite dimensional vector spaces over F. Reduce the study of linear
transformations 7' : V' — W to matrix theory, hence often to computation (Deabstract-

ify).

I Remark 11.4. In this section, all bases are ORDERED.

Set up and Notation: Let V, W be finite dimensional vector space over F. Z = {v1,...,v,}
an ordered basis for V, so dimV = n. ¢ = {wi,...,w,} an ordered basis for W, so
dim W = m.
Step 1: If v € V, write

V=1V + ...+ QpUy

i.e., ai,...,a, are the unique coordinate of v relative to . Then let
aq
Wy=1:|eFr!
On

the coordinate matrix of v relative to the ordered basis #. E.g.,

0
[Ui],% = 1|

1

and set
vg = {[v]glv € V} = F*!
Then
v—>vg byvr [v]g isomorphism

as

v;—=e =11 ith,fml ={e1,...,en}

the standard basis for F?*!.
Step 2: Let T : V — W be linear, then

Tv; € W = Span € = Span(wi, ..., W)
as € is a basis for W. Therefore,

H!QijGF,lgiSm,lngnB

m
T’Uj: E Q4 Wy, jzl,...,n
=1
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Let A= (a5 € F™*™), i.e., Ajj = y;Vi, j. Then the 4 COLUMN of A is

alj
= [Tvj], € Wy = F™!

Oémj

Step 3: Let
A: Vg — Wy by A([vlg) =A-[v]y

This is a linear transformation.
A . F?’LXI — Fm><1

Since
A([vjly) =Tvjly,,i=1,...,n
A is the unique linear transformation s.t.

Alvslg = [Tvjly

So by UPVS,
Alvlg =[Tv], YveV (*)

Definition 11.5 (Matrix Representation) — The unique matrix A € F™*" in (*) is
called the matrix representation of T relative to the ordered bases, #,%. We denote
A by [T]%’,‘g-

Notation: if V. =W, =€, we usually write [T, for [Tz 2.

§12 ‘ Lec 12: Oct 28, 2020

§12.1 Lec 11 (Cont’d)

Summary: Let T': V — W be linear with V, W finite dimensional vector space over F

P = {v1,...,v,} an ordered basis for V,dimV =n
¢ = {wi,...,w,} an ordered basis for W,dim W =m

Then 3! A= [T],, € F™" satisfying
A[U]% = [T]{gfg [U]gg = [Tv]chv eV

Moreover, if

m
T”Uj: E Q4 Wy, jzl,...,n
i=1
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then the 5 column of A = [T 2% is precisely

Oélj
[Tvjle = : | e F™!
O[mj
ie.,
[T]L@fﬁ = [Tvl]cg Ce [Tvn]cg

columns

Warning: If &', ¢" are two other ordered bases for V, W respectively (even the same vectors
in A,% written in a different order), then in general

Tze # [Tz e

Example 12.1 1. Let Z = {v1,...,v,},€ = {w1,...,w,} be two ordered bases
for V. Let
T:V — V linear by v; — wi,i =1,...,n

Then [Tz = I, the identity matrix. Moreover, if

n
ij = wj = E OéijUZ‘
=1

then
@11 ... O1p

T = T2 = () =

Qnl Qnn

2. T:R?2 = R2 by (a, B) = (B, ), & = % = {e1,ea}, the standard ordered basis
for R?. Then

) = (Terl Teddr) = (o)

and if 4 is the ordered bases Z = {ez, €1} then

T2 = (Teils, [Te2)zn) = (é (1)>

3. Let = {1, z, 2, x3} be a basis for R[z]3, the polynomial functions of degree
<3 (and 0), and
D : R[z]|3 — R[z]3 differentiation
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Find [D]y

0

0

D-1=0so0[D-1]lg= 0
0

1

0

Dz =1so [Dx|g = 0
0

0

2 2 2
Dz* =2z so [Dz]| g = 0
0
0
3 2 3 0
Dzx° = 3z° so [Dz°] 5 = 3
0

Hence,

0100

00 2 0

Dlz =10 0 0 3

0 0 0O

Some more examples

Example 12.2 1. Let Ty : R? — R? be counterclockwise rotation by an £

Type1 = cos ey + sin fesy

Tyea = (—sinf)ey + cos es

So

[Ty].» = ([The1] »[Toe2).») = <0089 — sin 9)

sinf cosf

2. Let B = {v1,v2} be an ordered basis for V and ¢ = {w;, w2, w3} an ordered
basis for W. Suppose

Tv, = 3wy + ws

T:V - W by
Tvy = wy + 6wy + w3

then [T)g¢ =

= O W
—_ o =
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3. Let T : R3 — R3 be the reflection about the eq, ez plane. What is [T]?

e1 — e

€9 —r €9

e3 — —es3
1 0 O
So[T]ly=[0 1 0
0 0 -1

KTheorem 12.3 (Matrix Theory) b

(MTT) Let V, W be finite dimensional vector space F, dimV = n, dim W = m, and
%#,% ordered bases for V, W. Then the map

¢: L(V,W) = F™" by T v [T]

is an isomorphism. In particular

dim L(V, W) = mn
- J

Proof. Left as exercise (Homework). O
Using the fact that W — W is an isomorphism if w — [w]¢ show that

1. ¢ is linear

2. ¢ is onto

3. is1—1

4. dim L(V,W) = mn

Theorem 12.4

Let V,W,U be finite dimensional vector space over F with ordered bases A,%, %
respectively, T : V — W, S : W — U linear. Then

[SoT)g9=I[Sl¢9 Tzys

Proof.
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Exercise: Let V, W be finite dimensional vector space over F' with dimV = dim W, 4,%¢
ordered bases of V, W respectively, T' : V. — W linear. Then, T is an isomorphism iff
[T)z,¢ is invertible.
Let V be a finite dimensional vector space over F', dimV = n, & an ordered basis for V.
Then

¢:L(V,V) = M,Fby T w— [T

satisfies all of the following: VT, S € L(V,V)

(i) &(T' +S) = o(T) + ¢(5)
(ii) ¢(T o S) = o(T)e(5)
(ili) ¢(O0v) = Opnx1
(iv) ¢(1y) = 1paxa

By the exercise, ¢ is bijection linear transformation. Both L(V,V) and M, F' satisfy all
the axioms of a field except (M3) and (M4). We call them (NON COMMUTATIVE)
rings and since ¢ preserves all the structure i) — iv) as does its inverse(?), we say ¢ is an
ISOMORPHISM of rings

Definition 12.5 (Change of Basis Matrix) — Let V be a finite dimensional vector
space over F' with ordered bases %, % . Then the invertible matrix [1y]z .« is called a
CHANGE OF BASIS MATRIX. )

Example 12.6 1. .¥ = {ej,e2}, % = {(1,1),(2,1)},¢ = {(3,4),(6,1)} ordered

bases for R2.
1 2 10
[]‘RQ]:@,J” = (1 1)7 [1R2]§” = <0 1>

el = (i ?)  relg - (tl) (1))

2. % an ordered basis for V', a finite dimensional vector space over F', dim V = n,
then [1y]g =1 € M, F

3. V a finite dimensional vector space over F, %,% ordered bases for V, then
[1v]#.¢ is invertible and
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4. Apply 3) to 1)

-1
B (36 _ 1 /1 -6
[vlse =vilg o = <4 1) - 21\—-4 3

[v]lze = [lv]lsrzllls,.s
S C0e
o

Some more examples

Example 12.7 1. Any invertible matrix A € M, F' is a change of basis matrix for
some ordered bases &, % for F" : if A = (cy;) is invertible, define

n
Uj = Zaijei, % = {”Ul, 500 ,Un}
i=1
Then A = [A]»,» since A is invertible, so 4 is linearly indep., hence a basis by
counting and A = [%,]z, .

2. The j*® column of [1,]%¢, V a finite dimensional vector space over F is the j
vector of & expressed as a linear combo of vectors in %.

3. Generalizing (1), (3) from above example, we get the following crucial computa-
tional device: if V = F", %, %€ ordered bases for V, then
[Llze = [Llrwlla.s = Llgyllas

if we only have V = F™ then we have to use an isomorphism V' — F" — how?

Since [1,],.# and [1,]¢,» are usually (often?) easy to write down, this is quite
useful. What if V = F™*"?

( )
Theorem 12.8 (Change of Basis)

Let V, W be finite dimensional vector space over I’ with ordered bases %4, %' for V
and ¢,%¢" for W. Let T : V — W be linear. Then

Taz¢ = [lwle T2 ¢ 1v)s.s
= lwlg e [T e 1v]z.m

= [1W]%’,(€ [T]%’,(K’ [lv]:g},%

- J
Proof. We have

Mwlg = Mwler s and [Iv]ge = [1v], 4
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Since
wle ¢ Ta s 1v]as = 1w o T|w «1v]s,s
=[lwoToly]yge
=Tz«
the result follows. OJ

To use (and remember) this, do it as follows — to let the notation help you:

VB /

WC /

[T] B/ ’Cl

COMMUTES, i.e., can compose along any allowable arrows in the correct direction if we
arrive at the same place in different way starting at the same place we get the same answer.
Warning: You can only reverse direction if the arrow is an isomorphism and then you can
take the inverse. To remember the theorem, we write

T:V W
T
VB Tlzc We
[1v]B,B Awle.cr
Vi Wer

and fill in arrows you can find in the diagram before.

§13 ‘ Lec 13: Oct 30, 2020

§13.1 Some Examples of Change of Basis

If V, W are finite dimensional vector space over F' with ordered bases %, % respectively

and if T: V — W is linear
[Tv)e = [T)zvv)aVv eV

Note: There is nothing about the bases in which v was written.
1. V=R .7 = {e, e}, = {v1 = (1,1),v3 = (2,1)} ordered bases. Find [T]» in
the following (equivalently, [T].» [g] <~ T(a,B))
S

(i) T(1,1) = (2,1) and T(2,1) = (1,1)

52



Duc Vu (Fall 2020) 13 Lec 13: Oct 30, 2020

[T]5

VB VB
T I
s e Y

So

1o =[1lv]a.s [T]c%[l\/]gg}y

GHEHED

So T'(a,B) = (—a + 38, 3)

(i) T(1,1) = 6(1,1) + (2,1) and T(2,1) = —2(1,1) + (2, 1)
Vi s Vi

[1v]B,s j j[lv]B,s :G §>
Vs [T]s Vs

So -1
P O T (O T G I G

(i) T(1,1) = (3,1) and T(2,1) = (5,1)

VB VB
‘ TB,s ‘mB,S
Vs Vs

[Tz.7 = (T, D]£[T2,1)]7) = (G DG, 1])
-1
So [Ty = [T]%,Y[]-V];;iy which is equal to (? ?) G i)

2. Let T be a rotation about the axis (1,1,1) € V = R3 of an £ in the counter-clockwise
direction with (1,1,1) up. We will use stuff from 33A — dot product. Normalize
(1,1,1) to

< 1 1 1 ) (1,1,1)

U1 = Ty =y s = 771 4 a1

V3 V3 V3 (1,1, 1)

a unit vector in the DIRECTION of v;. Find a vector L to vy, say
Ué = (07 17 _1)

and normalize it to
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Let v3 = v1 X vg the cross product of vy, vse. It is orthogonal to v; and vo and by the
right hand rule in the correct orientation

?
1

k

1 < 2 1 1>
V3 = = -, /=,
Ty i V6' V6 V6

V2

S

a unit vector (or use Gram — Schmidt and check you have vz = v; X vy and not
—(1}1 X ’Ug)

§13.2 Orthonormal Basis

Definition 13.1 (Orthonormal Basis) — Let # = {v1,v2,v3} an ordered bases of
vectors of length 1 and each | to the others, called an ORTHONORMAL BASIS.

Tvi =11
Tvy = cos v + sin fug
Twvg = — sin Bvy + cos s

1 0 0
[T)]2= 10 cosf —sinf

0 sinf cosf
1 0 -2
oo,
War=\G 5
V3 V2 Ve
VB Tz VB
[lv]s,s J J[l‘/]B’S
Ve Ve
S s 7t

115 = les[T2lvlg, = W)esTslv]ss
Since both . and £ are orthonormal bases and F' = R, it turns out that
- T
Wlgy = vy,
This is, however, not true in general.

3. V=R3T:V - Vasin2)and S:V — V areflection about the plane L (1,2,3).
Find [S].» and [S o T] .

Find an orthonormal basis with (1,2, 3) direction of the first vector

(1,2,3),(0,3,-2), (—13,2,3)
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then normalize as follows:

(0 3 2
w2 = y T =y
2 13 V13
( —-13 2 3 >
w3 = ) 5
182 182 /182

Vi 115 Vg
lv]B.s ‘ ‘ 5]
V. V. 5.,V
S [T]S S S
] ] lv]c,s
Vi Vi
“ Sle ¢
g 13
A O Y
Vid /13 V182
Sl = [lvle,#[Sle[1vlgy
[So Ty = [Ivle,#[Sle1v] a7 [T 51v] 4,

The only reason to normalize % to an orthonormal basis is
[WI)E,. ! = [Wlg,»

§13.3 Similarity

Definition 13.2 (Similar Matrices) — Let A, B € M, F. We say A is SIMILAR to B
write A ~ B if 3C' € M,, F’ invertible >

A=C'BC
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Remark 13.3. A, B € M,F :
1. A~B—-B~A:
A= C71BC,C invertible - B= (C~H)"1AClasCC 1 =1=C"'C
2. If A ~ B, then det A = det B. If A = C~!BC, invertible, then
det A = det (C™'BC) = det(C~") det Bdet C
= (det ©)~ ! det Bdet C' = det B

3. ~ is an equivalence relation.

\
KTheorem 13.4 (Similar Matrices)

Let A,B € M,F. Then A ~ B iff 3V a vector space over F, dimV =n, T :V -V
linear and ordered bases %, % for V s.t

A=[T)g and B=[T|y

i.e., A ~ B iff they represent the same linear transformation relative to (possibly)
different ordered bases. )

-

§14 ‘ Lec 14: Nov 2, 2020

§14.1 Lec 13 (Cont’d)

Proof. (Of Similar Matrices Theorem) (+-) If A = [T]g, B = [T]g, then C = [ly], 4 €
M, F is invertible with A = C~'BC by the Change of Basis Theorem.
(=) Suppose C € M, F is invertible, A = C~!BC. Define V. =F", T :V — V by

T;j = Zn: Aije;
i=1
with . = {e1,...,e,} the standard basis
[Ty =A=C"'BC
Let wj = Y1 (C7Y)ijei, ie., (C71);; is the iR entry of C~1. As C is invertible, C~!

exists and is invertible. Then
B ={wi,...,w,}

is a basis for V and [1y]»,» = C~! figure here so A = C71[T)4C and B = [T)4 works. [

§14.2 Eigenvalues and Eigenvectors
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(Definition 14.1 (Eigenvalues, Eigenvectors & Eigenspace) — Let 0 # V be a vector\
space over F', T': V — V a linear operator and A € F. Set

S)\Z:T—)\lviv—)‘/,

a linear operator, so
Sa(v) =Tv— Vv eV

We say A is an EIGENVALUE of T' if Sy is not 1 — 1, i.e., ker S # 0. Let

Er(A\) =ker Sy = {v e V|Tv— v =0}
={v e V|Tv= v}
if Er(A) # 0, we call Ex(\) an EIGENSPACE of V relative T', A and any v € Ep(\) an

EIGENVECTOR of T relative to A\. So if T': V — V is linear, A € F' is an eigenvalue
of T iff

H0FveVsTv=N
- J

Remark 14.2. Let 0 # V be a vector space over F' and T': V — V linear

1. Eigenvalues occur as measured quantities in science and engineering, e.g., resonance,
quantum number — measurable values.

2. If A € F is an eigenvalue of T, then

0 # Ep(\) C V is a subspace

3. If A € F an eigenvalue, any v € Ep(\) is an eigenvector. In particular, any basis for
E7 () consists of eigenvectors of T relative to A. Hence

T ~ Al
Ery o Er®

(the notation above means we restrict the domain to E7()). In particular, if V = Er()),
then T = Aly.

4. If T =0, then V = Ep(\) with eigenvalue A = 0(\ = 1).

Example 14.3 5. Let V = R3, T : V — V a counterclockwise rotation by an
Z0,0 < 0 < 27 around the axis determined by 0 # v € V. Then

T(awv) = aTv =avVa € F

So Span(v) C Ep(1). Note if 0 # v is an eigenvector with eigenvalue u of linear
S:V — V, then

Sv € Span(v) = Fv so Span(v) C Es(u)

Do there exist other eigenvalues of T'? Ever? So the only other possibilities would
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be
f=m,A=-1

In that case
Ep(—1) = Span(wy, w2)

where wy,wy are linearly indep. with w; L v,i = 1,2. (of course, if one allows
0=0,T=1y.)

6. Let 0 # v € V. Suppose that
w=Tv=M, A\peckF

Then = A so 0 # v € V is an eigenvector of at most one eigenvalue of T' —
usually none. In particular,

Er(A)NErp(p) =0if A # p
and we write
Er(A) @ Er(p) = Er(A) + Er(p)
and call it the DIRECT SUM of the subspace Er () and Ep(u).
What do you think is W1 € Wa @ W3?
7. Suppose dimV =n, Z = {v1,...,v,} is an ordered basis for V. Suppose that

that
Tv; = v, 1=0,...,n

Al, ..., Ap € F not necessarily distinct. Then

[T)% = ()E)l ;)n)

is a DTAGONAL MATRIX, i.e., all non-diagonal entries 0. We say T is DIAGO-
NALIZABLE if 3 an ordered bases ¢ for V' > [T]4 is diagonal.

8. Suppose dimV = n(< oo) and T is diagonalizable, i.e., 3 an ordered basis
€ = {wy,...,wy} for V s.t.

M1 0
Tle=|: .
0 ... pn
Then Tw; = pyw;, ¢ = 1,...,n and ¥ is an ordered basis for V' consisting of

eigengenvalues for T'.

Conclusion: Let V be a finite dimensional vector space over F', T : V — V linear. Then T
is diagonalizable iff 3 a basis for V' consisting of eigenvectors of T

Note: If T is diagonalizable, T': V' — V linear, V a finite dimensional vector space over F,
ordered basis & for V. Then 3C € M, F, invertible, n = dimV > C~![T]4C is diagonal
by the Change of Basis Theorem.
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Example 14.4 9. Let V be a finite dimensional vector space over F', n = dim V', &
an ordered basis for V., S : V — V linear. Then by the Isomorphism Theorem,
S is 1-1 iff S is onto. Apply this to

SAZT—)\lviV—)V

to conclude:

A is an eigenvalue of T"iff S\ = T — Aly is singular (i.e., Sy is not 1-1)

iff
[Sa]# = [T — AMy] is not invertible
iff
det[T' — Ay |5 = 0 (by properties of det)
iff
det ([T]% — Allv]s) =0
iff
det ([T — M) =0
iff

det (Al — [T]5) = 0

Summary: Let V be a finite dimensional vector space over F, dimV =n, T : V =V
linear, # an ordered basis for V, A € F. Then, X is an eigenvalue of T iff det(AI — [T'] ) =
0.

Definition 14.5 (Characteristics Polynomial) — Let A € M, F. Define
fa =det(tI — A) € FJt]

called the Characteristics Polynomial of A.

The properties of the determinant on F'[t] is the same as on F' except that A € M, F[t] is
invertible iff det A € F'\ {0} and we assume these properties.

Proposition 14.6
If A, B € M, F are similar, then f4 = fp

Proof. If A= C~'BC, C € M,,F in

fa =det(C~(tI — B)C) = det C~ ! det(tI — B) det C
=det(t] — B) = fg -

0 1 11
i.e., the converse is false.

Warning: Let A = <1 0) and B = <1 0). Then, A and B are not similar, but f4 = fg,
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Corollary 14.7

Let V be a finite dimensional vector space over F, T : V — V linear, 4, % ordered
bases for V. Then

fims = il

Proof. Change of Basis Theorem. O

space over F', T': V' — V linear, & ordered basis for V. We call f[t] the characteristics
polynomial of 7. By the corollary, it is independent of %, so we denote it by fr(= fir),,)
and write fr = det(tly — T) == det(t — [T]»)

Theorem 14.9

Let V be a finite dimensional vector space over F, T : V — V linear. Then, the

Definition 14.8 (Characteristics Polynomial) — Let V be a finite dimensional Vector}
eigenvalues of T" are precisely, the roots of fr, i.e., those « € F' 5 fr(a) = 0. }

Proof. det A € F, % an ordered basis for V. Set A = [T, so fr = det(tI — A). Then A is
a root of fr iff evaluating fr at A, i.e., fr(\), we have

fr(A) =det(tI — A) =0 <= \is an eigenvalue of T

i.e., expanding the polynomial det(t/ — A) and plugging A for ¢ gives 0. O

We cannot use the following theorem if we fully prove it.

Theorem 14.10 (Cayley — Hamilton)
Let A € M, F. Then
fa(4A)=0

plugging A into the expansion of the determinant f4, you get 0.

Remark 14.11. By HW, we have {I, A A% ,A”2} C M, F is linearly dep., i.e., {I, A, ... ,AN}

is linearly dep. for some N > 0. This means 30 # g € F[t] with deg ¢ < N and g(A) =0 —
why?

So Cayley — Hamilton’s Theorem says {I, A,..., A"} in M, F is always linearly dep. in
M, F with fa(A) giving a dependence relation.

Note: If you know Cramer’s Rule in determinant theory, one can prove Cayley — Hamilton
follows from it. In fact, it is essentially Cramer’s Rule.
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Remark 14.12. Let V be a finite dimensional vector space over F', T : V — V linear. You
will show in your Take home Exam. There exists a polynomial ¢ € F[t] satisfying

1. ¢#0

2. q(A)=0

3. deg ¢ is the minimal degree for a poly g # 0 in F[t] to satisfy g(A) =0
4. ¢ is MONIC, i.e., leading coeff is 1.

Moreover, q is unique and called the MINIMAL POLYNOMIAL of A and denoted g7. Using
it we shows a stronger form of the Cayley — Hamilton Theorem.

§15 ‘ Lec 15: Nov 4, 2020

§15.1 Lec 14 (Cont’d)

Cayley — Hamilton (Stronger Form): Let V be a finite dimensional vector space over F,
T :V — V linear, then

qT|fT in F[t]

(where qr = q[T) %, # an ordered basis and g7 is indep. of & ). Why does this show the
other form?

Computation: Let V be a finite dimensional vector space over ', T': V — V linear. To
find eigenvalues and eigenvectors of T', you must solve

Tv = av
By Matrix Theory Theorem, this is equivalent to
[T)%[v]lz = Av] (*)

% an ordered basis for V. To find eigenvalues, we find the roots of fr. To find the
eigenvectors, we solve (*).

Theorem 15.1

Let T : V. — V be linear and \q,..., A\, in F distinct eigenvalues of T,0 # v; €
Ep(N\;),i=1,...,n. Then {vy,...,v,} is linearly indep.

Proof. We induct on n.
e n=1:v; #0so {v} is linearly indep.

e n > 1 — Induction Hypothesis (IH) : If A1,...,\,—1 are distinct eigenvalues of
T,0 #v; € Ep(N;),i=1,...,n—1 then {vy,...,v,-1} is linearly indep. Suppose
that

0=oaiv1 +...+apvp,01,...,00 € F (*)

Apply the linear operator Sy, =71 — A\,1y to (¥). As

S)\n (’Uz) = TUi — )\n'Ui = )\ﬂ]i — )\nvi = ()\z - )\n)vi
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We get

S,\n(alvl 4+ ...+ )\nvn) = ozlS)wnvl + ...+ Oan)\vn’Un
0=ai(o1 —ap)vr+ ...+ an_1(An—1 — An)Un—1

By the TH, a;(A\; = Ap) =0,i=1,...,n—1
As \i— X #0,i=1,....n—1,0,=0,i=1,....,n—1. So 0 = a,v,. As v, # 0,
ay, = 0 also.

O

Proof. (Alternative) Take T" of (*) to get an eqn 1). Multiply (*) by A, to get an eqn 2).
Subtract eqn 2) from eqn 1). The proof that if a1, ..., a, are distinct then eM?®, ..., eM®
are linearly indep. O

Corollary 15.2

Let V' be a finite dimensional vector space over F', dimV =n if T : V — V linear has
n distinct eigenvalues, then T is diagonalizable. The converse is false, e.g., T' = 1y.

Corollary 15.3

If V is a finite dimensional space over F', dimV =n, T : V — V linear, then T has at
most n distinct eigenvalues. This also follows as any 0 # f € F[t] has at most deg f
roots.

/Corollary 15.4 A
Let V be a vector space over ', T : V — V linear, A1, ..., A, distinct eigenvalues of
T. Set

w = ET()\I) + ...+ ET()\n)
if v; € Ep(N;),i=1,...,n satisfy
v+...+v,=0
then v; = 0,9 =1,...n. We write this as
W:ET()\l)@...@ET()\ )
- . J

Exercise 15.1. Let V be a vector space over F, Wi,...,W,, C V subspaces. Let W =
Wi+ ...+ W,. Then the followings are equivalent

1. fw; € Wi,i=1,...,n satisfy wi 4. ..+ w, = 0 then w; = 0Vi. We say W; are indep.
2. fveWldw, e W;dv=w +...+w,
3. WiﬂZ?#,j:leZUWZL---,"
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4. If AB; is a basis for W;,i=1,...,n then =%, U...UZA, is a basis for W.

If these hold for W, we say W is an (internal) direct sum of the W; and write

W=WwWa...eW,

I Remark 15.5. This generalizes to W = @W;, general I — How. What is the proof?

Exercise 15.2. Let V be a vector space over F', Wq,..., W, C V subspaces 3 V =
Wi+...+W,. Let

W=W; x...xW,= {(Wl,...,Wn)]wi C WlVZ}
a vector space over F' via component wise operations. Show

v=Wid..eW, < T : Wi x...xW,—=>V

by (wi,...,w,) = w1 + ... w, is an isomorphism. We call W the external direct sum of
the Wz
Consequences: Let V' be a finite dimensional vector space over F, Ai,..., A, distinct

eigenvalues of T': V' — V linear, ?; = dim Ep()\;), %; ordered basis for Ep(\;),i =1,...,n
if
V=Epr(\)+...+ Er(\)

then
V=Er(\)®...® Er(\)

and B = %1 U...UZB, is an ordered basis for V and

[AllET(Al)]%‘l
Tz =

[AnlET()‘n)] B,
(Block form) is a diagonal matrix. In particular,
fr=det(Tly —=T) == )" ... (t—=A)™

By determinant theory,

A 0
det(o B)detAdetB

A, B square matrices and 7T is diagonalizable.

Remark 15.6. T': V — V linear may or may not have eigenvalues
1. V=R2 fr =12+ 1, then T has not eigenvalues.

2. If V is a finite dimensional vector space over C, then T has an eigenvalue as fr has
a root by the FUNDAMENTAL THEOREM OF ALGEBRA (which we shall always
assume to be true).
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§15.2 Inner Product Space

We know that the dot product of vectors in R? allows us to define L , /, distance, etc.
We want to generalize this to “inner product spaces”. When we talk about inner product
spaces, we shall always assume that OUR FIELD F' LIES in C (e.g., Q,R,C ) as a subfield.
Let —:C — Cby a+ Bv—1+ a— Bv/—1Va, B € R denoted complex conjugation.
Note:Let a = o + fv/—1in C, a, 8 € R. Then

l.a=aiffaeR

ell

2.
3. la*> =aa >01in R as aa = o* + 5% and = 0 iff a= 0.
As we shall assume F' C C, we define:
F:={zeClzeF}

and we shall also assume that
F=F

This is true if /' C R or F' = C, but does not always hold UNLESS we only consider
those F' that do which we will.

4 — )
Definition 15.7 (Inner Product Space) — Let F' C C be a subfield satisfying F' = F,V
a vector space over F'. We call V' an inner product space over F', write V' is an ips /

F, under the map
()y=v:VxV=F

Write: (v, w) for (,)(v,w) if (,) satisfies Vv, ve,v3,v € V,Va € F

1. (v + vg,v3) = (v1,v3) + (ve,v3)

2. (v1,v9) = (va,v1)

3. (awi,v2) = afvi,v2) = (v1, Ava)

4. (v,v) € R and (v,v) > 0 with (v,v) =0 iff v = 0.

- J
If V is an inner product space over F' (under (, ), the LENGTH (or NORM or MAGNITUDE)

of v € V is given by
o]l =/ (v,v) 20 € R

Note: If F < C, |[v||? € F, but it is possible that ||[v]| ¢ F, e.g., if V = Q? a vector space
over Q and an inner product space over Q under the dot product ||(1,1)|| = v/2 ¢ Q. This
is a reason to work only with F =R or C.

8§16 ‘ Lec 16: Nov 6, 2020

§16.1 Lec 15 (Cont’d)

Properties: Let V be an inner product space over F, o € F,vi,vo,v3 € V.
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1. (0,v) =0= (w,0),Vo,w e V.

2. o (av) + v9,v3) = alvy, v3) + (v2, v3)

° (vl, avy + ’U3> = a<1)1,’02> -+ <1)1, 1)3>

3. If F' C R define the ANGLE 6,0 < 0 < 27 between v; # 0 and v # 0 in V' by

cosf = 7<UI’U2>
v [[f[va]l
and if F' ¢ R define 6 by
cos = 7\<v1,v2>|
v [lf[va]l

Note: This does not make sense yet, and will not until we show

|(v1, v2)]

<1 forvl#o,vg#o
[[oa][[|vall

4. (very useful prop) Let v € V. If (v,w) = 0,Vw € V (or (w,v) = OVw € W), then
v=0.

5. Let 0 #£ 2 € V. Then
(,z):V = Fbyvm— (v,z)

is a linear transformation, i.e., linear functional, i.e., (,x) € V*. However,
(x,): V= F by v (z,v)

is linear iff F¥ C R. In general, we say that (x,) is SESQUILINEAR as Va €
F Vv, €V
(x,avy + v9) = alx,v1) + (x,v9)

Of course if x =0, (0,)(,0) € V*.

Example 16.1

Let F C C,F = F = {@la € F}. The following V vector space over F are inner
product space over F' under the given (,) :

1. V=F"and (,) = . , Le., if

dot product

v = (al,...,an),w = (ﬁl,...,ﬁn),ai,ﬂi € F,Vi,j
Then,
n —_—
<U7w> = Zazﬁz
=1
Note: If F' C R, then
n
<U,’UJ> = Zazﬁz
=1

65



Duc Vu (Fall 2020) 16 Lec 16: Nov 6, 2020

2. Let I =[o, 8], a< B inR, V=C) with C(I)={f:1— R|f cont} then

(f,g) = /j fg

Think about what if C¢ :== {f : I — C|f cont}.
3. In 2), let h € C(I) satisfy h(x) > O0Vz € I. Then

B
(o= [ hig
the WEIGHTED INNER PRODUCT SPACE via h.
4. Let A € M, F. Define the adjoint of A to be A* where

(A*)Zj = Zjh VZ,]

the conjugate transpose of A., i.e., A* = A’ Soif F CR,A*=AT.

Remark 16.2. If A = F™*" then A* defined by (A*);; = Aj; still makes sense and is called
the ADJOINT of A. What can you say about AA* and A*A?

Let V = M, F under
(A, B) = tr(AB")

where tr C = Y"1 | Cyi. Soif F C R, (A, B) = tr(AB"). tr=trace

Example 16.3 5. Let F =R
ly = {(ao,al, ey lp,...)|a; € RYi — infinite seq with Za? < oo}

. . 0o
a vector space over F' by component wise operation ( a subspace of RS — see
below) and an inner product space over R via

(v,w) = Zaibi eR
i=0

ifv= (ag,al,...),w = (bo,bl,...)

0 < (a; + b))% = a? % 2a;b; + b2, Vi so

(o] o0 (o]
:FZZaibi < Za? +Zb? < 00
=0 =0 =0
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(Theorem 16.4 A
Let V be an inner product space over F. Then Yvi,vs € V,Va € F, we have

1. |lvi|l € R with ||v1]] > 0 and |jvi|| = 0 iff v; = 0.

2. Jawr]| = fedl|vr]-

3. Cauchy — Schwarz Inequality

[(v1, v2)| < Jlua]l[joz]l
4. Minkowski Inequality(special case)
[[o1 + vl < floal + [[vz]]

- J

Proof. 1) and 2) are left as exercise.
3) If vy = 0 or ve = 0, the result is immediate, so we may assume that v; # 0,v2 # 0. We

use the following important trick. Take the orthogonal projection. Let

<U27’U;>v1
[|v1]]

orthogonal projection on vy

V=1V —

Claim 16.1. (v,av;) = 0Va € F (ie., v L av;)

V9,V
(v, qvy) = (v — <||12j’1||;>v1,avl)
B (v2,v1)
= <’U2,0ﬂ)1> + <—W01, avl)
_ _ (vz,v1)
= a(vy,v1) A (v1, avy)
- . <U27U1>— 2_0
~ leen) =y el =
establishing the claim. Therefore, we have
V2,01
0% (00) =tz = L2y
V2, U1
= (v,v2) + (v1 — <HU1||2> v1) = (v, v2)
V2, U1 V2, V1
= (vg — <Hv1”2>v1,v2) = (v2,v2) — <“vl||2><v1,02>
(v1,v2) G
= [lvall* — (v1,v2) = [Jvaf|” —
[o]1? [Jo1]]?

So
|(v1,v2) > < [Joa [ [lvz1?
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or
[(v1,v2)| < [lvg||[Jvall

as required. O

Proof. 4.

|1 + va|* = (v1 + va,v1 + va)
= H111H2 + (v1,v2) + (v2,v1) + Hm”Q
= |lv1]|? + (v1,v2) + (v1,v2) + ||va?

Let (vi,v9) = a+ 8v/—1,a,5 € R. Then

lor + v2]|* = [Jo1 | + 20 + vz

< lodl® +2v/a2 + 52 + [|ve®

= [lv1ll? + 2[{vr, v2) | + [lvz®
2

< (llvrll =+ flv2l1)

So, [lor +vall < [orll + [lvz]- N

§17‘ Lec 17: Nov 9, 2020

§17.1 Lec 16 (Cont’d)

Example 17.1

Let V be an inner product space over F'

1. 1B + ... + anfa| < \/2;?:1 a?\/Z?:l B2, Yoy, B; € R.
2. [T rg<A\/[P 12/ [P 2, Vf, g € Cla,B).

3. Z between nonzero vectors in V makes sense.

W

. Distance between (end pts) vectors makes sense by the following:

If V is an inner product space over F', define the distance between vi,ve € V' by
d(vi,v2) = |lv1 —v2|| >0 €R
Then d satisfies Vo, w,z € V
e d(v,w)>0€R and d(v,w) =0 iff v = w.
e d(v,w) = d(w,v)

e Triangle inequality
d(v,z) < d(v,w) + d(w, x)

We call V a METRIC SPACE under d.
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Example 17.2 (Metric Space)
Ifv=(a,...,an), w=(B1,...,58,) € R" under the dot product, then

dv,w) = /(a1 — B1)2+ ... + (o — Bn)?

§17.2 Orthogonal Bases
Motivation: in R" (or C"), .¥ = ., = {e1,...,e,} the standard basis satisfies
1,if i = 4, Vi, j
ei-ej =05 =4 .
0,if ¢ # 4
Goal: Let V be a finite dimensional inner product space over F', FF = R or C. Find a basis
B =A{v1,...,v,} for V>
(vi,vj) = 6ij, Vi, j (*)
if we only want bases € = {wy,...,w,} for V 3

<U)¢,1Uj> = 0Vi 7£ Js

we can work with any subfield F' C C with F = F, since we do not need ||w;|| € F for such
a%.

Example 17.3
In R?, let 0 < @ < 27 be fixed. Then

%y = {(cosb,sinf),(—sinfb,cosb)}

satisfies (*)

Definition 17.4 (Orthonormal/Orthogonal) — Let V' be an inner product space over
F,(0)#S CV asubset. We say

1. S is ORTHOGONAL (or OR) if

(vyw)y=0Vv #w e S
2. If S is an OR set, we call it ORTHONORMAL (or ON) if, in addition |jv|| =
Vv € S.
3. An OR set is called an OR basis if, in addition, it is a basis for V.
4. Ifv,w € V, we say v, w are orthogonal or perpendicular if (v, w) = 0 write v L w.

9 (equivalently (w,v) = 0) y

Goal: If F C C is a subfield (and F = F), V a finite dimensional inner product space over
F, then V has an OR bases and an ON bases if F' =R or C.
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Remark 17.5. Let V be an inner product space over F', x,y € V.
1.0 Lz
2. xlyiffy Lz
3. 0 is the only vector perpendicular to all z € V.

/Theorem 17.6

Let V be an inner product space over F,S C V an OR set. Suppose that 0 # S, then
S is linearly indep. If, in addition, V is a finite dimensional inner product space over
\F and |S| = dimV, then S is an OR basis for V.

Proof. Let v € Span(S). Then 3 (distinct) vy,...,v, € S, 1, ..., 00 € F 3
V=V + ...+ apvy
We have

(v,v5) = (V1 + ... + apvy)
n
=Y ai(vi,v))
i=1

n
=3 aibij|lvjlf* = allv;|)?
=1

This is so useful, we record it as

Crucial Equation: If {vy,...,v,},04,...,0, € F then
(v, v5)
aj = Hv’jHQ,]:l,...,n

Note: If V is not necessarily finite dimensional and .S is an OR set not containing O, the
same holds.
Now, suppose that v =0, i.e.,

0=oaqv1 + ...+ anu,

SO

(W)  (00)
o = = =0,57=1,....,n
P el T el T

and the result follows. O

Note: If B ={v1,...,v,} is an OR set, v; # O0Vi, V = SpanZ, hence a basis for V' then

<U,Uj>
o2
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is the jth coordinate of v on v; and

. - <U,’Uj>
v= Z 2
[lojl

Jj=1

V1 Un
loal " ol

n n

U:Z@,vrgvj:z@ v > vj

= vl = il "ol

If, in addition, ||v;|| € F'Vj, then

is an ON basis and Vv € V.

Hence if w; = ‘”,i: 1,...,n,% ={wi,...,w,} is an ON basis and

[lvi

n

v= Z(v,wi)wi

=1

i.e., (v, w;) is the coordinate of v and w; for each i.

Remark 17.7. Does this look familiar?

1. Look at the proof of the Cauchy — Schwarz Inequality

over F' and

B ={f1,-- s fn}

f‘vvv”; ,i=1,...,n by Crucial Equation:

5
fi=(- =) V> F
' [l v |

and if € = {w1,...,w,} is an ON basis then

fi={w;) € €"
fi (v) = (v, w;)

i.e., we can associate a vector in V to a linear functional.

2. Let B = {v1,...,v,} be an OR basis for V a finite dimensional inner product space

the dual basis for V* = L(V, F). So, fi(v;) = 6;5,Vi,j. Then f; : V — F is f;(v)

KTheorem 17.8

for all but finitely many w € £ and
(v, w)
v = w
2 Tup?
is a finite sum. If, in addition, & is ON, then this becomes

v= Z(v,w)w
B

Let V' be an inner product space over F';, # an OR basis for V, v € V. Then (v,w) =0
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( )
Corollary 17.9 (Parseval's Equation)
Let V be a finite dimensional inner product space over F' with ON basis {v1,...,v,}
and v,w € V. Then
n
(v, w) = Z(v,v»(w,vﬁ
i=1
In particular,
n
o] = Z (v, v3) |2, (Pythagorean Theorem)
i=1
- Z J
Proof. Hw — Take home. O

§18 ‘ Veterans Day: Nov 11, 2020

No class :D

§19 ‘ Lec 18: Nov 16, 2020

§19.1 Lec 17 (Cont’d)

Example 19.1
Let V = C0,27] an inner product space over R via

27
(f,9) = fg

0

Let ug = \/%771" Uy = \/%7 sinnx, ugp41 = \/L; cosnz for all n € Z* and set
S = {wli >0}

By calculus
2
<uz~, u]'> = / uiuj = (51']',V’L‘,j
0

So S is ON hence linearly indep (0 ¢ S) and a ON basis for Span S.

Note: Vectors in span S are finite linear combos of vectors in S. In particular, C[0, 27]
is infinite dimensional (and Span S < C|[0,27] is a subspace). In calculus, you studied
convergent series, a convergent series

S ai (*)
=0

is called a FOURIER SERIES, the «; Fourier coefficients.

72



Duc Vu (Fall 2020) 19 Lec 18: Nov 16, 2020

Warning: S = # = U%,,, B, = {uili =0,...,2n+ 1} is ON but not a basis for C|0, 2]
or even
V ={f € C[0,27]|f converges to its Fourier series}

It can be shown that C'[0,27] C V.
Note: No one knows a precise basis for C[0, 27| although it exists by axioms.

Remark 19.2. 1. One can modify the interval [0, 27] in the above with appropriate changes
to the u;.

2. Infinite ON sets are very useful.

To solve our goal about finite dimensional inner product space over F', we know show:

/Theorem 19.3 (Gram-Schmidt) R

Let V be an inner product space over F and () # S, = {v1,...,v,} C V a linearly
indep. set. Then Jy1,...,y, €V >

® Yy =101

o T, ={y1,...,yn} is an OR set and linearly indep.

e Span T, = Span S,
. J

Proof. We construct T;, from S,,. This construction is called the Gram — Schmidt process.
n = 1 is clear. We proceed by induction. We may assume we have done the 5, case, i.e.,

Ly, .- symn€Viyn=v,y:, #0,i=1,...,n

2. T, ={y1,...,yn} is OR. (hence linearly indep. as 0 ¢ T},)
3. Span S, = Span{yi,...,yn}

4. Must extend this to the case of n 4 1.

As in the proof of GS (where we threw away one orthogonal complement), we subtract an

ORTHOGONAL PROJECTION figure here Define:

n
<U +1, yk>
Yn+1 = Un+1 — Z 7ﬁﬁyk (*)
el Yk

Claim 19.1. y,,41 # 0 : if y,+1 = 0, then v,41 € Span T;, = Span(vy, ..., v,) contradicting
S?, is linearly indep. So yn4+1 # 0
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Claim 19.2. (yp41,y;) =0,7=1,...,n

3

<U +1)y/€>
<yn+layj> = <UTL+1 - u 2 yk7y]>
2l
"~ (U1, Yr)
+1, Yk
= <'Un+1)yj> - Z ’ﬁkaQ (yk:y]>
k=1
~ (Unt1, k)
+15 Yk
= (Unt1,95) — W‘Skjﬂij
=1 Yk

= (Vn+1,¥Yj) — (Vnt1,95) =0

This prove the above claim.
Since 0 ¢ Ty11 = {y1,...,Ynt1} and Tp41 is OR, it is linearly indep. As Span T,, =
Span{vy,...,v,} and {v1,...,v,41} is linearly indep.

Span T,+1 = Span(vp41,Y1,- -+, Yn) = Span(vi, ..., Upt1)

by the Replacement Theorem and (*). The theorem follows by induction. O

Theorem 19.4 (Orthogonal)

Let V be a finite dimensional inner product space over F'. Then V has an OR basis.
If F =R or C, then V has an ON basis.

Proof. Any basis for V can be converted to an OR basis € for V by the GS process
if V is finite dimensional if ¥ = R or C, then {ﬁh} € ‘5} is an ON basis for V as
|v]| € RVv € € O

Remark 19.5. Let V = Q? a finite dimensional inner product space over Q with inner product
defined by

(01, 2), (B, B2))y = 5 (0B + afa)

i.e., WEIGHTED DOT PRODUCT by % Then V has an OR basis but not any ON basis

1
3]

I (%, %) ||% ¢ Q as 35%(7% = a%bg + b%a% has no solution in Z.

§19.2 Examples — Computation

Example 19.6 1. V = R3 under {,) = dot product with v; = (1,1,1),v3 =
(1,1,0),v3 = (1,0,1). GS wv1,v2,v3 to an OR basis and then to an ON ba-
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sis:

Y1 = (1a ]-a ]-)

v2-U
Yg = Vg — 3 Y1
[l

. some boring calculation — can refer online notes/textbook

Note:

1. Tt is easier to guess.

2. If instead of F' =R, we had F' = Q, we could not get an ON basis after GS-ing.

Example 19.7

V = R[z] (polynomial function) via

(f,9) = /11 fg

B, = {20 < i < n} is a basis for R[z],. GS, %, to an OR basis, at least start

go=1
1
glzx_<$)1>1:x_f—lx:x
[ 1
2 2
2 (.%',1) <.I',l'>
g2 =" — - T
11]12 ]2
1 9 1 3
2_f71$_f71$ _ o2 1

=2
Ll1 1 fi1 2 3

The g; are called LEGENDRE POLYNOMIALS. You can normalize them, i.e., form

”Sg’—?” to get an ON set.

These are important polynomials, g, satisfies the ODE
(1—2%)y" —2zy/ +n(n+ 1)y =0

These occur in physics, e.g., converting Laplace’s Equation V?¢g = 0 into spherical coor-
dinates in some cases in quantum mechanics in the solution of Schrodinger’s Eqn for the
hydrogen atom.

Flow of an (ideal fluid) past a sphere. Determination of the electric fluid due to a
charged sphere. Determination of the temperature distribution in a sphere given its surface
temperature. Computing g/,s by GS is too difficult. There are many formulas to determine
the g/,s. Many arise by proving the following recurrence relation:

Rodriguez Representation:

1 an
T 2npldan

In ($2 _ 1)n
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Some of these are, using the appropriate 7 of the binomial coefficient

n n!
= 0<m<n:
(m> ml(m —n)!

let M =5 or ”Tfl whichever one is an integer, i.e., [%] = greatest integer < 3.
M
1 (2n — 2m)! 9
— 9% —_1)™ ph2m
In ’mz:()( ) ml(n —m)!(n —2m)!

on Eﬂ: (Z)Q(x — 1) k(g 4 1)k

0 ()

§20 ‘ Lec 19: Nov 18, 2020

§20.1 Lec 18(Cont’d)

Note:Gamma function:
o
F(z):/ r* e %dx
0

where z is complex and Re (2) > 0 and I'(n) = (n — 1)!,Vn > 1,.

11 0 2).
3. GS <O 1> , <1 1) in M>(R) under

y1:<é 1) ,B) = tr AB"

_ (0 2 _tr(<(1] i)(é 1)) 11
N
SRR AL

(-1 1

L1 0
4. T : R? = R3 rotation counterclockwise by £ about a vector 0 # v; as axis. Find
T(a, B,7) i.e., [T]» complete v to a basis {v1,v2,v3} for R3. GS it to an OR basis,

then an ON basis 4. Compute [T]¢. Then use Change of Basis to compute [T]; or
guess v, normalize v1,ve to v}, v then vg C v} X v).

Note: If you have a basis with vectors of different lengths, it is hard to compute in
this basis. If each vector in your OR basis has the same length r, you can compute.
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§20.2 Orthogonal Polynomials

There are many interesting infinite sets of orthogonal polys {fn},cz+. They often arise as
relate a to the HYPERGEOMETRIC ODE

& d
A1) S+ [y = (a+B+ 1)z 22 —aBy =0

where z is a complex variable, y = y(2),a, 3,7 € C. They arise as OR sets or weighted
inner product space over R ( or C on an interval [a, b] (or variant).

b
/ fow = (f,g)w
where w > 0 in [a, b].

e A very general such is the OR set of JACOBI POLYNOMIALS {Pﬁ’ﬁ} under the

weighted inner product space

1
(fs 9w = /1fgw

and
(1—z)*(1+a)°

<Oé,6> -1

Often such OR sets are not orthonormalized but rather normalized “by dividing by
PP (1), In this case, PSP (1) = ("F*). The PP are solutions to the ODE.

w =

0=1-2Yy" +(B-a—(a+B+2)2)y +nn+a+p—1)y

used in Wigner d-matrix theory in quantum mechanics. There are many special cases
of Jacobi polys.

1. Gegenbauer polys (ultra-symmetric) polynomials, C’éa) where

w=(1- xQ)O‘_%

Jun

a—1a-1)

07(104) _ PT(L 2,073
(1—22)y" — 2a+ Dy +n(n+2a)y =0
potential theory, harmonics analysis, Newtonian’s potential.
2. Legendre polys. There are a special case of Gegenbauer polys, namely
w=1
1
Cy
((1=2%)y) +nmn+1)y=0
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3. Chebychev polys come in two kinds: T}, U,

1
w = —
V1—22
(~3.-3)
T,=P, > 2
l%
Un = P22

(1—a?)y" —ay' +n°y=0
(1—2%)y" =3z +n(n+2)y=0

Least square fit, optimal control, numerical analysis.
e Laguerre polys L' OR set with We(z) =z% ¥, o> —11in R on [0, 00)
vy +(a+1—2)y +ny=0,0#n€ecZ
quantum mechanics, plasma physics.
e HERMITE polys. H,, He,

w=e"*", for H, on (—00,0)

22

=e 2z, for He, on (—00,00)
(H,, is called physicist Hermite polys and He,, probabilists Hermite polys).
0= (eféﬁy/)’ + neiéﬁy =0

probability, numerical analysis, physics.

Remark 20.1. Let

D = diff p, q functions, w > 0

= %’
1
L=——(D(pD)+q), a linear operator
w
Then one wants to solve
Lf=M\f

The solutions are called eigenfunctions in the above they are the eigenfunctions for the given
ODEs.

§20.3 Orthogonal Complement

Notation: F' C C a field satisfying F = F.
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Definition 20.2 (Distance from a Vector to a Set) — Let V be an inner product space
over F,vy,v9 € V. We know that the DISTANCE between v, vs is defined to be

d(vy,v2) == |Jv; —v2]| >0

More generally, let () 2.5 C V be a subset and v € V. Define the DISTANCE of v to
S by
d(v,S) == inf {d(v,w)|w € S}

if it exists and hence finite. )

-

Problem 20.1. Let V be an inner product space over F, S C V a finite dimensional
subspaces, v € V. Determine

t d(v,S)

T w

Solution take the orthogonal projection of v to w in S

Definition 20.3 (Orthogonal Complement) — Let V' be an inner product space over
F,) #S CV asubset of, v € V. We say v is ORTHOGONAL to S, write v L. S, if

(s,v) =0,Vs € S

Set:
St ={veVplS}

called the ORTHOGONAL COMPLEMENT of S in V. )

.
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2. In R?(under the dot product)

(Spanel)l = Span(eq, e3)

arbitrary, then S° C V* is a subspace).

Proof. Hw.

W =W = (W°)°).

for V. Then
(Span(vy, ..., v,))" = Span(vyi1, . .., vn)
6. Let V be an inner product space over F,S C V a subspace. Then
Snst=0
if v € SN S+, then (v,v) = ||v]|> =0, so v = 0. In particular,

S+S5t=85p8t

important result for use about general inner product space over F' ) is:

Remark 20.4. 1. Compare S+ to S° C V*, if V is an arbitrary vector space over F.

3. Let V be an inner product space over F,{) # S C V a subset, not necessarily a subspace.
Then S+ C V is a subspace (if ) # S C V a subset with V a vector space over F, F

O

4. In 3), S ¢ S+ = (§+) L: S+ c S+ s0 § € S+ If, in addition, S C V is a
subspace and V is a finite dimensional inner product space over F, then S = S+ (if
V is a finite dimensional vector space over F, F arbitrary W C V a subspace, then

5. Let V be a finite dimensional inner product space over F, S = {vy,...,v,} an OR basis

We write: S @ S+ as S L S+ to show it is also orthogonal. The key result ( and most

.

\
Theorem 20.5 (Orthogonal Decomposition)
Let V be an inner product space over F,S C V a finite dimensional subspace, v € V.
Then
AseS,steStsv=s+st *)
In particular, V=S + S+, SNSt=0,50 V=5 1 S+. Moreover, if
v=s+sT,s€ S8 st €St
then
v]12 = |Is]|* + l|ls1I%, (Pythagorean Theorem)
In addition, if V' is a finite dimensional inner product space over F', then
dim V' = dim S + dim S+ y

§21 ‘ Lec 20: Nov 20, 2020
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§21.1 Lec 19 (Cont’d)

Proof. By the OR Theorem, 3 an OR basis & = {v,...,v,} for the finite dimensional
inner product space over F' S.
Existence: Let v € V. Define s € S = Span & by

H%HQ

=1

and set

SL:'U—S

Suppose we have shown s+ € S+. Then v = s + s giving existence as well as V = S + S+
and SN ST =0, ie, V =5& St Repeating the previous computation, we have if
7 =1,...,n then

<SJ‘,U]'> = <U - S?“j) = <U7vj> - <vaj>

3

— (o5} = 3 A )

=1
_ . }n:<7)”1> Mo 12
- <U7U]> H ”2 51]”UJ|| =0

=1

Since st L v;, j=1,...,nie, Yv; € B, if > I, qyv; € S, then

n n
s ag) =Y @(st ) =0
i=1 i=1

Thus, s+ € St as needed.
Uniqueness: If

s+st=v=r+rtresrtest
(s € 8,5 € S*) as both S, S+ are subspaces

s—r=rt—stesSnst=

So s = r and st = rt. O

4 N
Theorem 21.1 (Pythagorean)
Let v =5+ st,5s € 5,5+ € S+. Then
[ol> = (s + s, 5 +57) = (5,8) + (s,87) + (s7,8) + (sT,57)
= [|slI* + [Is™ 1
\_ J
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4 )
Corollary 21.2 (Bessel's Inequality)

Let V' be an inner product space over F, % = {v1,...,v,} an OR set in V with 0 ¢ A.
Let v € V. Then

vil|®

n 2

(v,0)
> R < ol
1=1

with equality iff

n
W) = Z <’U,’U]2> U;
2 il

- J
Proof. Hw. O

Remark 21.3. Let V' be an inner product space over F, S C V a finite subspace. Then by
the OR Decomposition Theorem, Vv € V3ls € S, s+ € S+ = v = s+ s1. We call s the
orthogonal projection of v on S and denote it by vg. By the proof of the OR Decomposition
Theorem, if Z = {v1,...,v,} is ANY OR basis for S, then the uniqueness of vg means

i.e.,is INDEPENDENT of OR basis. So the ORTHOGONAL PROJECTION of v onto S.

(Theorem 21.4 (Approximation) b

Let V be an inner product space over F, S C V a finite dimensional subspace, and
v € V. Then vg is closer to v than any other vector in 5, i.e.,

d(v,vs) = [lv = vs|| < [lv = 7|} = d(v,r)

in R,Vr € S. Equivalently,
d(v, S) = d(v,vg)

Moreover, if r € S, then

lv—wvs||l=|lv—7r] ER <= r=wvg

We say vg gives the BEST APPROXIMATION. )

J_:

Proof. By the OR Decomposition Theorem (and its proof), v = s + s+ with s = vg, s
v—5=uv—uvg,s- €8+ LetreS. Then

v = (0= vs)+ (s —1) = s* + (o5~ 7)
S C V is a subspace, so vg —r € S, hence s+ L vg —7, i.e.,
0= (st,v5—7r)=(v—vg,05 —r)
By the Pythagorean Theorem,

lo=7l* = llv = vs ] + [lvs = 7[|* > [lv = vs |
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with equality iff
lvs—7]| =0 < vs=r

Definition 21.5 (Error) — Let V be an inner product space over F,S C V a finite
dimensional subspace and v € S. Then, |[v — vg|| is called the error of v not being vg.

Problem 21.1. Let V, X be inner product space over F, S C V a finite dimensional
subspace v € V, and T : X — V linear. Find z € X with ||z| minimal s.t. Tz is the best
approximation to v € V in S, i.e., find x € X, ||z|| minimal > Tx = vg.

§21.2 Examples of Best Approximation

Example 21.6 (Fourier Coefficient)

Let V = C|0, 7] an inner product space over R via (f, g) = fozﬂ fg,ug = é,@n,l =

Sizi{qu..,un,“.}

an ON set (as we have seen) and let

'@n = {UO, 000 7u2n+1}
V,, == Span(%,,)

if f €V, then
fﬁ:ztﬂm :(ﬂpm1%%a

the function in V,, closest to f, i.e., the orthogonal projection of f onto V,,. So

2n+1
i=0
where o
(f,u;) = fui, Vi<2n
0

called the i*" FOURIER COEFFICIENT. The ERROR to the actual f is

27
d(fs f) = If = full = /O (f = fu)?

One checks:

1 n
fn = 500 + Z(ak cos kx + by, sin kx)
k=1
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with

2w
ag = ;'/0 f(x)dx

1 2

ap = — f(z)sin kzdx
T Jo
1 2

b, = — (x) sin kxdx
T Jo

is the BEST APPROXIMATION of f by such functions. If lim, || f — full = 0,
ie., f=>720(f ui)u; converges, we say f converges to its Fourier expansion (similar
results with modest change work for ([0, L]).

Example 21.7

Let V = C[-1,1] with (f,g) = f_ll fg. Let f(x) = e*. Find a linear polynomial
nearest f and compute d(f,g) (=error) for such a g and we let W = span(l,z) C V a
finite dimensional subspace. We want fyy. To do this, we compute ON (or OR) basis
for W i.e., GS {1, z} and normalize. GS yields 1,z (as before) and ON it to H—}H, H%II’

ie., L
1 \/§
— 2z
v2' V2

f—lll, fl z?
1,1 V3 V3

which is
-1

Let f =¢e*. Then

So, fW:%(e—%)—l—%x. Letaz%(e—%),ﬁz%x. So g = fw = a+ Bz and
1
I = fwll =11f =all* = [ (F =P d:

1
=/ (f*—2fg+ g% dz

-1

1
= / [(e** — 2e"(a + Bz) + o® + 2Bz + B%2?] dx
1
= ... (boring algebra)

7

S
e2
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d(f,g) =d(f, fw) = m ~ .05625

§21.3 Hermitian Operators

So

(Definition 21.8 (Hermitian/Self-Adjoint) — Let V be an inner product space over F,
T :V — V linear. We say T is HERMITIAN or SELF-ADJOINT if

(Tv,w) = (v, Tw),Yv,w € V

\if F C R is an hermitian operator, it is also called a SYMMETRIC OPERATOR.

Example 21.9 1. Let V = F™*! be an inner product space over F via the dot
product, i.e.,
aq B1 n

(o :1|:1: >::Zaigi

remember we always assume F' = F' C C. Note that some people write the dot
product v * w — they do not like columns.

Let A € M, (F). As usual, we view A as a linear operator,
APl s Xl hy X5 AW X

By HW, A is hermitian iff A = A* (so if F C R <= A = A!). In fact, you will
prove on the takehome the following theorem

KTheorem 21.10 A

Let V, W be finite dimensional inner product space over F' with ON bases, T : V — W
linear. Then, !7T* : W — V linear s.t.

(Tv,w)w = (v, T*w)y,Yv € V,Yw € W

T* is called the ADJOINT of T. Hence if T': V — V is a linear operator, then T is
hermitian iff 7= T and T exists.

- J

Example 21.11
Let a < fin R and V = Cla, 8] == {f : [a, f] = R/cont} an inner product space over

R by 5
(f,g) = / I
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If T:V — V linear, then T is hermitian iff

3
/ (fTg—gTf)=0,VfgeV (*)

Note: V is not finite dimensional and (*) is a commutativity type of condition.

Example 21.12 (fancy)

V =C®|a, 8], <  in R. (often C*|«, 5] vector space of convergent power series in
some neighborhood of every point of («, 3) and ? open neighborhood at «, 3). Again V/
is not finite dimensional and is an inner product space over R as in the above example.
Let p € V be fixed, p(x) > 0, and

W ={f € Vlp(a) f(a) =0 =p(B)f(B)}
an inner product space as in the above example (e.g., p(a) = 0p(B). Fix ¢ € W and let
Tpq=1T:W — W the linear operator

defined by
Tf = (pf) +af

called a STURM LIOUVILLE operator. Then T is hermitian. Check 7" satisfies (*) in
the above example using integration by parts.

Example 21.13

More generally, let V = C*[a, f],a < 8 € R an inner product space over R as in
the above. Let p,q,w € V,p(x) > 0,w(z) > 0, Vx € [a, f]. Fix a,b,¢,d € R 3 both
a=0=0>band c =0 =d are excluded. Let

w={f € Vl|af(a) +bf'(a) = 0=cf(B) +df (B)}

where f satisfies the boundary condition. Let W be an inner product space over R by
the weighted inner product

B
<ﬁmw=/1ﬁg
Define the STURM LIOUVILLE OPERATOR:
T =Thgw: W — W by

= —% ((pf") + qf). Then T is hermitian. This arises from finding eigenvalues of
T} q,w, i-e., solutions to the ODE

d dy
ar <pdx) +q(z)y = —dwy
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which have as special cases — Legendre ODE
(1—22)y" 4+ 2zy +n(n+1)=0

arising in spherical harmonic problems. Bessel’s ODE:

22y +xy + (22 —a®)y =0
a € C (often in Z or 2« € Z), i.e., one wants to find the eigenvalues of f =y, X in (¥)
for which there is a solution and f € Ep(\). Eigenvectors in function spaces are called
EIGENFUNCTIONS.

§22 ‘ Lec 21: Nov 23, 2020

§22.1 Lec 20 (Cont’d)

Goal: Spectral Theorem for Hermitian Operator: Let V be a finite dimensional inner
product space over F, FF =R or C,T : V — V hermitian. Then T is diagonalizable, i.e., 3
a basis 4 for V consisting of eigenvectors of T', and in fact, such a £ is ON.

Calculus Application: Let S C R™ be “nice” (open + nice boundary + ...), x1,...,z, the
rectilinear coordinate functions relative to the standard basis and

(+)f:S =R aC?— afunction
Calculus Theorem if f satisfies (+), then

Pf o Of
axi(%j N a$]8$1

(a),V:,Va € S

For each a € S, associate the symmetric matrix

Hf(a) == <afj<;;j (a)>

called the HESSIAN at f at a. Suppose a € S is a critical point of f, i.e.,

Df(a) = (gmfl(a),...,;ai(ao =(0,...,0)

Equivalently, Vf(a) = 0. Recall the TOTAL DERIVATIVE of f at a is the linear
transformation

f'(a,) : R™ — R given by

f'(a,v) = Df(a) - v. Now, let aq,...,a, € R be the eigenvalues of H f(a), so the roots
of f () counted with multiplicity. Since H f(a) is symmetric, by the Spectral Theorem,
m =n and

A1 0
Hf(a) ~ in M,R
0 An
A, ..., A\p not necessarily distinct. Then, we have the 2"? Derivative Test under the above

conditions at the critical point a.
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1. a is a relative minimum for f at a if \; > 0Vi.

2. a is a relative maximum for f at a if A\; < OVi.

3. a is a saddle point for f at a if 37,5 5 A, > 0,A; <O0.
4. No info if \; = 0Vi or 3i 5 \; = 0.

The total derivative f’(a,—) : R™ — R can be defined at a € S if it exists as the following:
it is a linear transformation
Ta:R" —-R>

3 a scalar valued function satisfying
fla+v) = f(a) + ||[v]| E(a,v)
for some r, 3 if ||v|| < r then

E(a,v) — 0 as [jv]| =0

Question 22.1. What is the total derivative

f(a,) :R" = R™if f: S —R™?

(Theorem 22.1 A

Let V be an inner product space over F,T : V — V linear, A an eigenvalue of
T,0 # v € Er(A). Then

In particular, A € R iff

N (Tw,v) = (v, Tv) )

Proof. By assumption, Tv = \v, [[v|| # 0.So (Tv,v) = (Av,v) = Av,v) = A|v||? and
(v, Tv) = (v, ) = Mv,v) = X = ||[v]|%. As ||v]| # 0, the first statement follows. Hence,

A=\ <= (Tw,v) = (v,Tv)

Corollary 22.2 (Hermitian)

Let V' be an inner product space over F,T" : V — V linear. Suppose that 7" is hermitian.
Then any eigenvalues of T is real, i.e., lies in F'NR.
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Theorem 22.3 (Fundatemental Theorem of Algebra)
Let f € C[t]\ C. Then f has a root in C, i.e., Ja € C> f(a) =0

Addendum: Let f € R[t] \R. As R C C,R[t] C C[t]. So we can view f € C[t]. Then f has
a root 8 € C. Of course, § may not lie in R.
Suppose S is real, i.e., B € R. As B is aroot of f € C

f=({t—-p)g,geC[t],eR

Then
f=(t—B)(h),h € RI(if B € R)

Proof. LIff=3%", a;t’, o € RVi and S ;3" = 0 in C with 8 € R, then every
term in Y ;3" lies in R, so 3 is a root of f when viewed in R[t].

2. (Generalization) Let F C K, K a field, F a subfield of K so same +,-,0,1 as in K
(e.g., R C C). Let f € F[t],a € F. By the DIVISION ALGORITHM,

f=ft—a)g+r, g€ F[t] unique withr =0 or deg r < deg(t —a) (*)

But deg(t — ) =1, so r € F (a constant). Evaluate (*) at t = a, so (e, : F[t] = F
by h +— h(«) a ring homomorphism)

- ()f = (t— a)g + f(a)

So
a € Fisarootin F <

(x)f = (t — a)g in F[t] some g € F[t]. So we have, viewing F[t] C K[t]. If § € K,
then
f=@=B)h+f(B),heK[t]

and if 8 € K is a root of f in K, then
f=@—pB)heK[t]
So if g € K is a root of f with 8 € F, then
f(B) =0k =0p,

so (x) holds.
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Remark 22.4. 1. By the Addendum and induction, FTA says if f € C[t] \ C, says
n =deg f > 1, then lay,...,a, € C, not necessarily distinct and g € C >

f=B8t—a1)...(t—ap)

i.e., f factors into a product of linear polys. We say f splits in C and ag, ..., «a, are
the unique roots (up to multiplicity) of f in C.

2. FTA is proven in Math 132 and math 110C. The essential analysis fact used in math
132 is if f € C[t]\ C, then |f(z)| — oo as |z] — oo and the essential analysis fact used in
math 110C is the Intermediate Value Theorem in the special case that says if f € R[t]
is of odd degree, then f has a real root.

3. The following fact is true: If V is a finite dimensional vector space over F,F an
arbitrary field, T': V' — V linear, then 3 an ordered basis 4 for V > [T, is UPPER
TRIANGULAR (ie. ([T]%),; = 0Vi > 1) iff fr € F[t] splits, i.e., factors into a product
of linear terms. If this occurs, we say T is TRIANGULARIZABLE. Can you prove
that if F' = C, then every such T is triangularizable? (7" is diagonalizable iff gp of the
HW7/Midterm splits and has no multiple roots)

§23 ‘ Lec 22: Nov 25, 2020

§23.1 Lec 21 (Cont’d)

(Definition 23.1 (T-invariant) — Let F be an arbitrary field, V' a vector space over

F,W C V asubspace, T : V — V linear. We say W is T-INVARIANT (or INVARIANT
under T') if
Tw e W,Yw e W, ie., T(W)CW

if W is T-invariant, then we can (and do) view

T W — W linear
w

-

- J
Example 23.2 1. Any subspace of an eigenspace of T' (if any) is T-invariant.
2. kerT C V is T-invariant.
3. im T' C V is T-invariant.
\

Lemma 23.3 (Hermitian Operator (Key Lemma))

Let V be an inner product space over F,T : V — V hermitian, S C V a T-invariant
subspaces. Then

1. S+ is T-invariant, i.e., T(S+) c S*.

2. T o S+ — 51 is hermitian.
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Proof. 1. Let w € S*. To show Tw € S*, if v € S, then Tv € S as S is T-invariant. So
(v, Twy = (Tv,w)y =0
So, Tw € S+.

2. By 1), T oL’ S+ — St is linear. As (Tw,w) = (v, Tw),Yv,w € V, this is certainly

true Vo, w € S+.
O

Remark 23.4. Let F =R or C, V a finite dimensional inner product space over F,T : V — V
hermitian. By the Hermitian Corollary, if 7' has an eigenvalue, it is real and « € F' is a roof
of fr in F iff eigenvalue of T. We know fr has a root in C[t] by the FTA. The key lemma
should allow us to induct on dim V.

Subtle Difficulty: Let V be a finite dimensional inner product space over R, T : V — V
hermitian. We know fr € RJt] has a root in C, but we do not know a priori that fr is the
characteristics polynomial of an hermitian operator over an inner product space over C, so
we do not know that the roots of fr are real.

Unfortunately, to over come this, we have use bases. There is an abstract way to do it but
we cannot do it.

Theorem 23.5 (Spectral — First Version)

(for Hermitian Operator) Let F' =R or C, V' a finite dimensional inner product space
over F;T : V — V hermitian. Then 3 an ON basis # = {v1,...,v,} for V with
each v;,i = 1,...,n, an eigenvector for some eigenvalues o; € R, = 1,...,n (not
necessarily distinct). In particular, T is diagonalizable.

Proof. We prove % exists by induction on dimV = n.
n=1:V =Span(v),any 0 #u € V. As Tv € Span(v),Ja € F 5 Tv = av ,s0 v € Ep(a).
As T is hermitian, o € R is real by Hermitian Corollary even if F = C. So & = {ﬁ}

n > 1 : Induction Hypothesis (IH): Let F' =R or C, W a finite dimensional inner product
space over F,dimW = n — 1,71y : W — W hermitian. Then 3 an ON basis for W of
eigenvectors of Ty and every eigenvalues of Ty is real.
Let € be an ON basis for n—dimensional V, which exists as F =R or C. Let A = [T]¢ €
M,F c M,C.

A=A*and Az -y =z - Ay,Va,y € O™}

since T is hermitian, i.e.,
A 0™ 5 0™ is hermitian

where C™*! is an inner product space over C via the dot product. By the FTA, f4 has a
root a € C, hence « is an eigenvalue of hermitian A : C**! — C™*!, Thus, a € R by the
Hermitian Corollary. But

Ir=firn, = fa
So fr has aroot a € R, if F =R or F' = C by the Addendum. Thus, 30 # u € Ep(\) C V
an eigenvector of T. Let Fv = Span(v) C Ep(A). Then Fv is T-invariant. By the OR

Decomposition Theorem,
V =Fv L (Fv)*
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and
dim V = dim Fv + dim (Fv)™ = 1 + dim (Fv)™*

hence
dim (Fv)* =n—1

By the Key Lemma, since F'v is T-invariant and 7' : V' — V is hermitian. (Fv)L is
T-invariant and

T’ . (Fv)t — (Fv)t is hermitian
(Fv)*
By the IH, (F'v)* has an ON basis, say {vs,...,v,} of eigenvectors for T (Fo). (Fo)t —
v
(Fv)*t. But
‘(Fv)l(vi) =Tvi,i=2,...,n
So, va,...,v, are eigenvectors of T': V' — V and all the eigenvalues of the v;,i1 =2,...,n

are real by IH. Since v L v;,i =2,...,n,0 # ||[v|| € R C F,
B = {||v]],ve,...,vn}

is an ON basis for V' of eigenvalues for 7' and all the eigenvalues are real and T is
diagonalizable. O

By the HW/Takehome, we know

(Theorem 23.6 b

Let V be a finite dimensional inner product space over F, F =R or C. Let %&,% be
ordered ON basis for V. Then

[1‘/]337% . Fn><1 N FTL><1
n =dimV, is an ISOMETRY. In particular,
vlge = vlGe
T :V — W linear is called an ISOMETRY if

e T is an isomorphism.

o (Tvi, Tva)w = (v1,v2)v,Yvi,v2 € V.

J

\
Theorem 23.7 (Spectral Theorem for Hermitian Operator (refined))

Let F = R or C, V a finite dimensional inner product space over F,T : V — V
hermitian. Then 3 an ordered ON basis % of eigenvectors for V' of T" and every set of
T if real. Moreover, if Z is any ordered ON basis for V, then

[T)¢ = C[T]2C*

for some invertible matrix C' € M, F, i.e., C = [ly]z«.
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Remark 23.8. The Spectral Theorem says, if V' is a finite dimensional inner product space
over F,;F =R or C,T:V — V hermitian, £ an ordered ON basis for V, then

A1 0
[Tz ~ ,n=dimV,a; € R,Vi
0 An

if V' =R", this is often called the PRINCIPAL AXIS THEOREM.

e.g., It means if
f= Za,-jtitj e R[t1,. ..t
with
aij = ajl-,Vi,j
This can always be arranged as t;t; = t;t; and we replace a;;, a;; with ig g
Then we can change variables to make it look like

if necessary.

MIZ+ . 4 AP
3]
(How? — Confer completing the square and TAT*, A = (a;;),T* = | : |. We want even

tn
more

Let F =R or C, V a finite dimensional inner product space over F,dimV =n,T:V — V
hermitian, # an ordered ON basis of eigenvectors of T for V. Reordering £ if necessary,

we may assume Ai, ..., A; are all the distinct eigenvalues of T, i.e., if j > k then Ji < k >
Aj =N\

Claim 23.1. Let v € Ep(\;), w € Ep(X;),1 <i,j < k,i # j. Then v L w: We may
assume that v # 0, w # 0. So

Ai{v,w) = (Nv,w) = (Tv,w) = (v, Tw)
= (v, Ajw> = )\7]'<U, w) = )\j<1),w>

as A; € RVI. Thus,
(/\i — )\j) <1),u)) =0€ F,)\Z‘ 7é /\j

S0
(v,w) =0

Claim 23.2. We have
W= Er(M)+...+ Er(\g) (*)
=Er(A\)@...® Er(Ag)
if w; € Ep(N\;),i=1,...,k and
0=w+...+wg,

then
0= (w1 + ...+ wg,w;) = (wj, w;) = |lw,|?

by the previous claim, so w; = 0 and (*) holds.
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§24 ‘ Lec 23: Nov 30, 2020

§24.1 Lec 22 (Cont’d)

Note: Of course we already know this claim, but this proof is nice. Recall this is equivalent
tow = Ep(A)+ ...+ Ep(\g) and

k
Er(\)N> Br(\)=0i=1,....k
7j=1

Also by the first claim, the DIRECT SUM DECOMPOSITION (*) of w is an ORTHOG-
ONAL DIRECT SUM. Since & is a bases for V of eigenvectors for T and & C W, we

have
V= ET()\l) ... L ET()\k) (*)

Genral Problem: Let V' be a vector space over F\T' : V — V linear operator. Can we
DECOMPOSE V as

V=WieWeyd..oW,.d...

with each subspace W; T-invariant, i.e., decomposition reflects the action 7. This can be
done if V' is finite dimensional vector space over F'. Then V is a finite direct sum. If ' = C,
the solution is called JORDAN CANONICAL FORM.

F arbitrary is called RATIONAL CANONICAL FORM (done in 115B or 110BH).

By the OR Decomposition Theorem,

V=Er(\) LEr(\)i=1,... .k (%)

So
Er(\)T =Er(\) L ... LEp(\) L... L Er(\)

i=1,...,k by uniqueness and, also by the OR Decomposition Theorem, as
V =Er(\) L Ep(\)*
means that (x) implies if v € V| then
U= VB () T VB ()
where v, (y,) is the ORTHOGONAL PROJECTION of v onto Er();),i = 1,..., k. Define:
P\ :V=Vbyveog,yi=1,...k

As P, is the composition

V= Ep(\) <=V,

VI Vs ()

It is a linear operator, ¢ = 1,..., k. Moreover, by (**),

im Py, = Er(\i)

ker Py, = BEp(\;)*

Since
P)\j (UET(M) = 5ijvET()\i)7i = 1, ey k
We see that
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1. P\Py, =0ifi# 3.
2. P\ Py, = Py..

So
P\;Py; = 06;jPy; : V =V linear

The Py, ..., Py, are called ORTHOGONAL IDEMPOTENTS. We now see what we have
done: Let v € V. Then

lvv =9 = UET(>\1) +"'+UET(>\k)
=Py, (v)+ ...+ P, (v)=(P\, +...+ P,) (v)
So
1V:P/\1+---+P)\k
We also have
T:T01V:TO(P)\1—|—...—{—P)\k)
=TPy, —I—...—f—TP)\k
=MPy\ + ...+ APy,

as
im P)\i = ET()\Z)

T =\1 Ni=1,...,k
Er(X) Br(a) !

We also have

lyoT = (P)q —|—+P)\k)T
= P,\1T+ —|—P)\kT
and
P, T =TPy,,i=1,...,k

This is called the SPECTRAL RESOLUTION of the Hermitian operator T : V' — V. Now,
appropriately reordering % to %', we have, with

n; = dlIIlET()\Z),Z = 1, NN ,kJ

A1

A
[T] B =
Ak

0 Ak
Summary(Spectral Theorem for Hermitian Operator — Full version):

Let F =R or C,V a finite dimensional inner product space over F,T : V — V hermitian,
A1, ..., A all distinct eigenvalues of T'. Then T is diagonalizable and
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L. MERi=1,....k

2. Let %; be an ordered ON basis for Ep();),i =1,...,k. Then B =%, U...UZAB, is
an ordered ON bases for V' consisting of eigenvectors of T'.

A1 0

Tz = A

0 ‘ Ak
n; = dim Ep()\;)

dmV =n=n1+...+ny
4. fr=(t—=A)™ ... (t—X\p)™
5. V=Ep(\1) L... LEp(\g)
6. Iy =Py, +...+ P, : V=V where Py, : V — V linear by v — v
7. P\ P\, =06;Py,i,5=1,...,k
8. T =MPy, +...+ Py,
9. TP\, =P\T,i=1,...,k

10. If ¥ is an ON basis for V, then

ie, [vlgy = ]y

Remark 24.1. One can also show that the MINIMAL POLYNOMIAL ¢ of the HW /Takehome
in the above is
qr = (thl)...(tf)\k)

In fact this is a necessary and sufficient condition <= to be diagonalizable.

Remark 24.2. The Spectral Theorem for hermitian operator for F' = R, e.g., symmetric
matrices, has a nice generalization:

Let F be a field with 2 # 0 in F' and A € M, F a symmetric matrix, i.e., A = A*. Then, 3 an
invertible matrix P in M, F > p*Ap is diagonal.

Note: in the above, we are not saying p! = p~*

Computation: To compute: let V' be a finite dimensional vector space over F, FF = R or
C,T : V — V hermitian. Find all the above:
Step 1: Find a basis for V and GS it to an OR bases, then normalize to an ON bases %.
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Step 2: Compute:
fr= f[T}cg = det (t[ — [T]<g)
Step 3: Factor fr, i.e., find all the roots of fr. There are the eigenvalues of T'. Since T is

hermitian fr splits and all the roots are real.
Step 4: For each eigenvalue of T', compute E7()) by solving

[Tlelvle = Alvle

(equivalently row reduce [T]¢ — Al to row echelon form and solve).

Step 5: For each eigenvalue A, find a basis for E7();) and GS to an ordered ON basis and
normalize to an ordered ON basis %). Let 8 = U%) an ordered ON basis of eigenvectors
of T. As ¢ is ON

[lvle,2T)¢[1lv]y 4 is diagonal

§25 ‘ Lec 24: Dec 2, 2020

§25.1 Normal Operators

We now need the following part of the Takehome

KTheorem 25.1 A

Let V be a finite dimensional inner product space over F having an ordered ON basis
A, T :V — V linear. Then I!T* : V — V linear s.t.

(Tv,w) = (v, T*w),Vo,w € V *)
called the ADJOINT of T. Moreover,

9 [T =T"]2 )

Remark 25.2. Actually, to prove (*), you do not need 3 an ON basis, only an OR basis
(which you know exist) if you prove it using dual bases.

Properties: Let V be a finite dimensional inner product space over F' with an ON basis
B, S, T:V —V linear, A € F. Then Vo, w € V

(i
(ii) T = (T*)* =T

(T*v,w) = (v, Tw)

)

)
(iii) (v, T*Tv) = (Tv, Tv) = || Tv|?

(iv) (v, TT*v) = (T*v, T*v) = || T*v|?
(v)
)

(
(
(T o S)* = §*oT*
(S+T) =8+ T

(vi
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(vii) (\T)* = AXT*,VA € F.
Proof. Left as exercise. O
Remark 25.3. The above means: Let V' be a finite dimensional inner product space over F'

with an ON basis. Then
¢o: L(V,V)— L(V,V)by T — T*

is a SESQUILINEAR transformation, i.e.,
ST +8) = \T* + S* VT,S € L(V,V),A€ F

and hence linear if F' C R and is also bijection with inverse sesquilinear so a sesquilinear
isomorphism.

/Lemma 25.4 (New Key) b

Let V be a finite dimensional inner product space over F, T : V — V linear. Suppose
that V has an ON basis and W C V is a T-invariant subspace. Then W+ C V is
T*-invariant. In particular,

T*| i : WH — W is linear

- J

Proof. Let w- € W+ and x € W be arbitrary. Then

z, T*wh) = (Tz,wt) =0,
(

as Tx € W by hypothesis. So T*w' € W+ as needed. O

Definition 25.5 (Triangularizability) — Let V be a finite dimensional vector space
over F,T : V — V linear. We say T is TRIANGULARIZABLE if 3 an ordered basis
% for V 5 [T)4 is upper triangular, i.e.,

[Tz =

ie., ([T]g); =0if i > j.
\_ J

Remark 25.6. In the above, [T] is upper triangular iff [T] ¢ is lower triangular where &’ is
an ordered basis with vectors in 4 in reverse ordered.

Theorem 25.7 (Schur)

Let V be a finite dimensional inner product space over C,T : V' — V linear. Then T is
triangularizable. Moreover, 3 an ordered ON basis & for T > [T is upper triangular.
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Proof. We induct on n = dim V.
e n =1 : is immediate: if {v} is a basis {ﬁ} works.

e n > 1: By the FTA, the characteristics poly fr+ for T* has a root A € C, hence A is
an eigenvalue of T*. Let 0 # v € Ep«(\). By the OR Decomposition Theorem,

V =Cv L (Cv)*
and

n = dimV = dim Cv + dim(Cv)*
=1+ dim(Cv)*

ie., dim(Cv)t = n — 1. Cv is T*-invariant as v € Ep«()\), so (Cv)* is (T*)* = T-
invariant by New Key Lemma. So may view

T‘((CU)J-(CU)J_ — (CU)J_ linear (*)

By induction, 3 an ordered ON basis %y = {v1,...,vn_1} for (Cv)* > [T‘(Cv)l]ﬂ

Bo
is upper triangular. Let & = {’Ul, ey Une1, ||UT||} an ordered ON basis for V. Then
by (*), we have

[T’((Cv)L]ggO *
| € M, C

*

0 *

O]

Remark 25.8. As mentioned before, if F' is arbitrary, V a finite dimensional vector space
over F', then T is triangularizable <= fp,T : V — V linear satisfies fr splits, i.e., factors
into a product of linear polys in F[t].

Proof. (=) is clear as fr is independent of a matrix representation.
( <) is not clear and we not prove it. O

KCoroIIary 25.9 A

Let V be a finite dimensional inner product space over C,T : V' — V linear, ¥ an
ordered ON basis for V. Then 3 an ordered ON basis & for V' > [T]z is upper
triangular and

[Tz = [Wls,2[Tls[1v]g 2

with [11/]%1@ = [1v]<}’t@.

Proof. Theorem and HW as €, % are ON. O
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(Definition 25.10 (Normal Operator) — Let V be an inner product space over F, T :
V' — V linear. Suppose that T* : V — V exists, i.e.,

(Tv,w) = (v, T*w),Vv,w € V

with 7% : V' — V linear. Then we say T is a NORMAL OPERATOR, if TT* = T*T.

J

§26 ‘ Lec 25: Nov 4, 2020

§26.1 Lec 24(Cont’d)

Example 26.1 1. Every hermitian operator is normal as T' = T™*

2. Let Ty : R? = R? be a rotation counterclockwise by £ with 0 < § < 27 and
0 # m. Then Ty has no eigenvalues in R. Viewing R? as an inner product space
over R via the dot product.

T o=T,' =T =Ty
So
TyTy = T;Ty

and Ty is normal. However, Ty is not diagonalizable (is not even triangularziable).
We shall show that this does not happen if F' = C, we start with (a replacement
for the Hermitian Corollary)

\
Lemma 26.2 (Crucial Property of Normal Operators)

Let V be an inner product space over F,T : V — V normal, A € F. Let 0 A v € V.
Then
v € Br(\) <= v e Epr-()\)
i.e., X is an eigenvalue of T with eigenvector v <= X is an eigenvalue of T* with (the
same) eigenvector v. So
Tov=M < T'v=)\v

\if T is normal. y

Proof. Suppose S : V — V is normal, v € V. Then
15v]* = (Sv, Sv) = (v, 5*Sv)
= (v, SS*v) = (S§*v, S*v) = ||S*v||?

Hence
Sv =0 <= S*v =0 when S is normal (*)

Let S =T — Aly : V — V linear. So A is an eigenvalue of T iff ker .S # 0. But
S*=(T = Aly)*=T* - Aly
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by properties of ()*. It follows that
S*S =858 as T*T =TT

i.e., S is also normal. The result follows by (*). O

\
Theorem 26.3 (Spectral Theorem for Normal Operator)

Let V be a finite dimensional inner product space over C, T : V — V normal. Then
3 an ordered ON basis ¥ for V consisting of eigenvectors of T'. In particular, T is
diagonalizable. Moreover, if % is an ordered ON basis for V', then

[Tl = [vlzzT)2lv]ze
- J

Proof. We induct on n = dim V.
e n =1 is immediate.

e n > 1: By the FTA, 3\ € C a root of fr« € C[t], hence an eigenvalue of T*. Let

0 # v € Ep«(A). By the lemma, v € Ep(\). Thus, C, is both T- and T*-invariant.
Hence, by New Key Lemma,

(C,)* is both T* and T-invariant

In particular,
(w,T*y) = (Tx,y) Va,ye (Cy)"

and (T |(Cv) L) is the unique linear map

<T| («:U)J  (Co)t = (Co)t
satisfying Va,y € (Cv)*

(z, (T‘(ccv)L|*y)>(<Cv)L = <T‘(<cv)ﬁ”’y>(€v)L

= <T‘T7 y)‘/
= <‘T7 T*y>V

It follows by the uniqueness of the adjoint that

T"|(coyr = (T‘(«:v%)*

Hence, we have
T}(CU)J‘ : (Co)t = (Co)t

is also normal. Since

dim V = dim Cv + dim(Cv)* = 1 + dim(Cv)*
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by the OR Decomposition Theorem, by induction 3 an ON basis 6y = {ve,...,v,}
for (Cv) ™ of eigenvectors of T| (Cv)L hence of eigenvectors of T'. It follows that

v
(g: {HUH,UQ,...,’Un}

is an ON basis for V' consisting of eigenvectors of T'. If % is an ON basis for V, then
Mvlge = []‘V];ﬂlcg by Hw, so

[Ty = WvlzeT2lv]iges

by the change of basis theorem.

In fact, the converse is also true.

Theorem 26.4

Let V be a finite dimensional inner product space over C,T : V — V linear. Then T
is normal iff 4 an ON basis Z for V consisting of eigenvectors of T'. In particular, T
is diagonalizable if either holds.

Proof. (=) Has been done.
(<= ) Let & has an ordered ON basis for V of eigenvectors of T'. Then

A1 0
[Tz = ,n=dmV
0 An
As % is ON, by HW o
A1 0
(1] = [T]% =
0 An
in M,,C. So

A1l 0
[T"T)% = [T"]2[T)% =

0 An?
= [T%[T"]z = [TT"]|»

(as [Ai]?2 = \idi = M\ € C) By the Matrix Theory Theorem,
61 L(V,V) = MyC by 5+ [S]

is an isomorphism, so
T =TT"

102



Duc Vu (Fall 2020) 27 Lec 26: Dec 7, 2020

Remark 26.5. The result needs F' = C. Indeed if V =R",n > 1, is an inner product space
over R via the dot product and T': V — V is a rotation by an £6,0 < 0 < 27,0 # 7 in some
plane through the origin in R™, then T is normal and not diagonalizable.

What is true is: Let F' = R or C,V a finite dimensional inner product space over F,T :
V — V linear 3 an ON basis for V' > [T]4 is triangularizable, then 7" is normal iff 7" is
diagonalizable.

I Remark 26.6. As in the Hermitian case, we can do more.
Extension: Let V' be a finite dimensional inner product space over C,dimV =n,T:V — V

normal, € an ordered basis of V' of eigenvalues for normal T'. After relabeling, we may
assume Aq, ..., A, are the distinct eigenvalues of T', i.e., if j > k3i,1 <i <k > A\ = Aj.

Claim 26.1. Let v € Ep(\;),w € Er(\;),i# j,i <1,j <k. Then v L w.

Proof. We may assume that v # 0 and w # 0. As w € Er();),w € Er«(\;) by the lemma,
as T' is normal. Hence

Ai(v,w) = (Nv,w) = (Tv,w) = (v, T w)
= <U’)‘7jw> = Aj{v,w)

Since A\; # Aj, (v,w) = 0. O

§27‘ Lec 26: Dec 7, 2020

§27.1 Lec 25 (Cont’d)

Let V' be a vector space over F', W; C V,i € I subspace. Suppose that V' =) ; W;. Then
V is a DIRECT SUM of the W;,i € I write V = €; W; if one of the following equivalent
condition hold

1. Yo € V3lw; € W; 2 w; =0 almost all ¢ and v = ), w;
2. If w; € Wi, almost all w; =0, and 0 = ) ; w;, then w; = 0Vi € [

3.Viel
W; N Z Wj =0
JELj#i

4. If #; is a basis for W;, i € I, then &8 = U%; is a basis for V.

If V is also an inner product space over F', and V = @; W; with (w;, w;) = 0Vi # j in I,
we call V' an orthogonal direct sum and write V = %WZ

Since \; # Aj, (v, w) = 0. Let

It is a direct OR sum for if

O:wl—i—...—i—wk,wiEET(/\i),izl,...,k
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then
0=(0,wj) = (w1 + ...+ wg, w;) = (wj, w;)
= [lw;®
j=1,...,k. Hence w; = 0Vi and
W =FEp(\M|@...® Epr(\))
(why — uniqueness follows immediately) and ¢ is a basis for V, so
V=Er(A)L...LEp(\)
By the OR Decomposition Theorem,
Er(\)T=Er(\) L ... LEr(\) L... LEr(\)

and ifv eV
v=wi+ ...+ wg,w; € W; unique
So
Wi = VEr(\)

the OR properties of v an Ep();) for i = 1,...,k by the OR Decomposition Theorem, as
V =Er(\) L Ep(\)*t

Let
Py, iV =>Vbyveog.o),t=1,....k
be the composition
V — ET()\Z) —V

U= VEr(\)
a linear operator
im P)\i = ET()\Z)

ker P)\i = ET()\i)J‘
P\, Py, = 6i Py, Vi, ]

ie., Py,,..., Py, are ORTHOGONAL IDEMPOTENTS and we see Vv € V'
v=P,v+...+Pyv
1V:P)\1 —I—...—i—P)\k
So

T:TolvaOP)\l—i-...—l-TOP)\k :)\1P)\1+-~+>\kP)\k
TZlvT:P)\lT—i-...—i-P,\kT
TP, = PyT,Vi
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as
T‘ET()\i) = )\ilET()\i)7i = 17 . .,k

This is the SPECTRAL RESOLUTION of T if n; = dim Ep()\;), %; an ordered ON basis
for Ep(\;), #; an ordered ON basis for Ep(A;),i =1,...,k. Then B =%,U...U % is
an ordered ON basis for V' consisting of eigenvectors of T’
n=dimV =ni; +...ng
fr=(t—=X)" ... (t— )"k
A1 0

A1

Theorem 27.1 (Spectral Theorem for Normal Operator - Full Version)

Let F = C,V a finite dimensional inner product space over C,T : V' — V normal,
A1, ..., A all the distinct eigenvalues of T'. Then T is diagonalizable and

1. Let %; be an ordered ON basis for Ep(\;), i =1,...,k. Then B =%, U...URB, is
an ordered ON basis for V' (obvious order) consisting of eigenvectors of T'.

A1 0

A1

0 Ak
where

n; = dimET(/\i),i = 1, - .,k
dmV =n=n1+... +nyg
3. fr=(t—=A)" .. (t— )™
4. V=FEp(A\) L... L Ep(\g)
5. ly =Py, +...+ P, : V= V where Py, : v — v linear by v = vg,.(\,),i=1,...k (viewed

inV). l
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P\ Py, = 0ijPyiyj =1,....k
T =MPy +...+ Py,
TP, =P T,i=1,....k

© o N >

If € is an ON basis for V then

i.e., [1V]gg}cg = [1\/1*%;7%

10. qr = (t—)\l)...(t—/\k)
Now T is normal so T* is also normal with distinct eigenvalues Ap,. .., \; and
ET()"L) = ET*(TZLZ = 17 R k

In fact, as o
Tv=M\v < Tv=\v

the orthogonal projection
for T* satisfy

as
YEr(N) = YEL (V)
Hence the spectral resolution for T is
T* = MP5 4.+ APy
:>\71P)\1 + ... Jr)\ikp/\k

§28 ‘ Lec 27: Dec 9, 2020

§28.1 Lec 26 (Cont’d)

We make a further computation using the Spectral Resolution of normal T : V — V|V a
finite dimensional inner product space over C. This also holds for hermitian 7" : V — V,V a
finite dimensional inner product space over R with distinct eigenvalues A1, .. ., Ag, orthogonal

idempotents Py, ..., Py, i.e, spectral resolution.

T = )\1P/\1 +"'+)‘kp>\k
As P)\iP)\j = (52']'P>\i, we have

T? = (MPy + ..+ MPy) (MNP 4+ Py, = NPy .. F AP,
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An easy induction shows
T" = N'"Py, + ...+ A'P\,,m € Z"

Since
1V:P)\1+~-+P)\k

we see that if for any
f=amt™ 4+ am_1t™ 1 + .. ag € Ft]

a poly (with F' = C if T normal, FF = R or C if T' is hermitian) that

f(T)=a,TT"+ ...+ aply
fI*)=anT" + ... +aoly

and as f(7) is also normal (resp hermitian)

k

F(T)=>"FN)Py,
=1
k p—

F(T) = i) Py Yf e Clt]
=1

Now let m =k — 1. Set
k
= 11 W cemi=1
j=lg#i = Y

the LAGRANGE POLY associated to Ay, ..., ;. By the LAGRANGE INTERPOLATION
THEOREM, Jlg € C[t], deg g i k, A > g(N\;) = A\i,i = 1,..., k. Thus by the above, we have

g(T) =gM)Py, + ...+ g A) Py, = Py + ...+ NPy =T (*)

i.e., T* is a polynomial in 7.

/Proposition 28.1 A

Let F' = C, V a finite dimensional inner product space over C,T : V' — V linear. Then
the following are true

1. T is normal iff 3g € C[t] > T* = g(T).
2. T is isometry iff T' is normal and |\| = 1 for every eigenvalue X of T.

3. If T is normal, then T is hermitian iff every eigenvalue of T is real.

Proof. 1. — is (),

T* is normal.
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2. — If T is an isometry, then 7% = T~!. Let % be an ON basis for V, the cols of [T]
corresponds to an ON basis for V' and we are done via the ¢ : L(V,V) — M,,C,T —
[T]%, i.e. MTT. In particular, 1y = TT* = T*T, so T is normal if v € V' then we
know

(RS ET()\) < v € Ep- ()\)
ie., B
Tv=M <= T*v =\
Soif v e Er(A), ...
We have
TT* = [M[°Py, + ...+ [ Ml Py,

Since |A;| = 1Vi,

TT*:P)\l—F...—i-P)\k =1y =TT
Therefore,

loll* = {T"Tv, v) = (Tw, Tv) = | Tv|”
ie., ||v]| = ||Tv|VYv € V. By Hw, T is an isometry.

3. — is the Hermitian Corollary.

<)\ € R eigenvalues of normal T implies T' = T™ by (x).

O
§28.2 Singular Value Theorem
/Theorem 28.2 (Singular Value) b
Let F=Ror C, A€ F™*". Then
JueUy(F)={Be M, FIBB*=1},X €¢U,F >
(51 0
X*AU = D = 7“0 & g
0 0
diagonal, i.e. D;; = 0Vi # j with Dy; = 0Vi > r, Dy; = p;,1 < r with
Wi >0 > pr >0
\and r =rank A )

Proof. A*A € M, F is hermitian with non-negative real eigenvalues using problem 9 of the
Take home. Let A1,..., A\, be the positive eigenvalues ordered such that

AL >0
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(there can be repetitions). By the Spectral Theorem for Hermitian Operators, 3U € U, F >

A1 0

(AU)*(AU) = U*(A*A)U = € M,F

(as A=[Aly, 7,) Let
C =AU € F"™*"

So
C*C = (AU)*(AU) € M, F

Write
Ne=p2pu;>0,1<i<r

(which we can do as A\; >0 € R ) and let
ANi=0fori>r

Set

H1 0

B= for e M,F

0 0
if E is a matrix let E®) denote the k' column of E. Then we have

n

Xidij = (C*C)i5 = Z JaC, = ZCZ Gy

=1

= Z C;Cr, = (€9, ¢y

Hence
c=[ch ... ¢ 0 ofermr
satisfies 6y = {C(l),. ’”)} is an OR set in F™*1. As C() £0,1 < i <r,% is linearly
independent. Therefore
Rank C' =r
with ‘ ‘ ‘
ICO1? = (€, CW) = N = i}
fori=1,...,r. As U is invertible

Rank A = Rank AU = Rank C =,

109



Duc Vu (Fall 2020) 29 Lec 28: Dec 11, 2020

ie.,

Rank A=r

as required. Now define

x0 = Lo ¢ Foxloi—=1,...,r
i

Then %y = {X(l), . ,X(T)} is an ON set in F™>*!, Extend this to an ordered ON basis
B — {X<1>, N .,X(m>} for Fmx1

Then the matrix
X = [XO X = (gl , € Mo

Since #,.%n1 are ON bases

X € Up(F)
Set
1 0
D = Hor c Fm><n
0
0 0
as in the statement of the theorem.
1 0
XD =[x . X<m>] for .
0 0
XD XM 0| =0 =AU
Hence
X*AU =D
as needed. O

§29 ‘ Lec 28: Dec 11, 2020

§29.1 Lec 27 (Cont’d)
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/Definition 29.1 (Singular Value Decomposition) — Let A € F™*" F =R or C A

(i) A= XDU*U € U,F,X € Uy, F (so D= X*AU as X1 = X* U~ =U*)
(ii) g1 > ... > ppr > 0 € R where

(iii)
M1

0

Then i),ii), i) is called a SINGULAR VALUE DECOMPOSITION (SVD) for A,

\,ul, ..., i the singular values of A, D the pseudo diagonal matrix of A. )

Note: Let A= XDU* be an SVD of A. Then

1. The singular values of A are the positive square roots of the positive eigenvalues of
A*A

2. The columns of X forms an ON basis for F™*! of eigenvectors of AA*

3. The rows of U form an ON basis for F1X" of eigenvectors of A*A

Corollary 29.2

The singular values of A € F™*" F =R or C, are unique (including multiplicity) up
to order.

Proof. Let A= XDU* be an SVD of A, X € U,,F,U € U,F. Then
A*A = (XDU*)*(XDU*) = UD*X*XDU* = UD*DU*
as X*X =1, so
diy
A*A ~ D*D =

have the same eigenvalues, d2;, ..., i.e., these are the eigenvalues of AA*. O

I Remark 29.3. An SVD of A € F™*" F =R or C may not be unique.

Corollary 29.4

The singular values of A € F™*" F =R or C are the same as the singular values of
A* € Frnxm,
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Proof. (XDU*)=UD*X* and D, D* have the same non-zero diagonal eigenvalues. O

~

Theorem 29.5 (Polar Decomposition)

Let F=Ror C, A€ M,F. Then 3U~ € U,F,N € MyF hermitian (i.e., N = N*)
with all its (real) eigenvalues non-negative s.t.

A=U"N
cf. polar form of a complex number U™ «> eﬁe, N & r. )

Proof. In the Singular Value Theorem, we have m = n, so if

A=XDU*isan SVD X,U € U,F,
We have D = D* is hermitian with non-negative eigenvalues AU = X D. So

A=XDU*=X(U*U)DU* = (XU*)(UDU™)

Since

(XUHXU") =UX"XU*=U0U" =1,
we have XU* € U, F.
So letting U~ = XU* € U, F, N = UDU* work. O

Exercise 29.1. In the above theorem, N is unique and U is unique if A invertible in M, F'.
(as it has positive eigenvalues).

§29.2 Application of SVD

Problem 29.1. Let /' =R or C, V a finite dimensional inner product space over F, W C V'
a subspace
Py :V - W by v oy

the orthogonal projection of V onto W. We know vy is the BEST APPROXIMATION
of v € V onto W. Now let X be another finite dimensional inner product space over
F,T:X — Vlnear, W =T(X)=im T,v € V,z € X. We call

(i) X a best approximation to v via T if

Tm =W = Pw(v)

(ii) X an optimal approximation to v via T if it is a best approximation to v via T and
||v|| is minimal among all best approximations to v via T'.

In the above, find an optimal approximation of x.
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Ans: Let A=T: Ft — Xl A ¢ Fon g e F™ (F=Ror C). Let A= XDU*
be an SVD
M1

D — Hr c men

Y

11 . > pr > 0 € R. Define

DT — Ky c Fn><m

Al =UDIX* ¢ Fr>m
called the Moore-Penrose generalized pseudo-inverse of A. Then
(i) rank A = rank Af

(ii) ATv is an optimal approximation in F™*! to v via A and is unique. (Hence AT is
well-defined, i.e., independent of SVD)

(iii) If rank A = n, then
Al = (A*A)~1Ar

Application (Least square): F' =R or C. Given date (z1,v1), .-, (Tpn,yn) € F?. Find the
best line relative to this data, i.e., find

y = Az + b, \ = slope

Let
1 1 Y1

- (A _
A_ . . 7X_<b>7Y_

Tn 1 Yn

Solve AX =Y. The solution is probably inconsistent, so want optimal soln. Solve
z 1 Y1
A .
L) =
Tn 1 Yn
(Least squares approximation) Let W = im A. To find optimal approximation to
AX =Yw
Then X = Ay works. If rank A = 2, then
X =(A*A) Ay
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§29.3 Smith Normal Form

Polynomials are important in analyzing linear operator T': V' — V', V a finite dimensional
vector space over F, e.g., fr,qr. Algebraically, this arises from the generalization of a
vector space over F'.

Let R be a ring, i.e., axioms of a field except M3, M4 (inverse and commutativity). Let M
be a set satisfying A1 — A4, i.e., axiom for + in Z. Then M is called a (left) R—Module via

tRxM—M (rym) — rm

if (M, +.,-) satisfies the axioms of a vector space over F' with R replacing a field.
For linear algebra, this arises as follows: Let V' be a vector space over F,aset T :V — V
a linear operator. Make V into a F'[t]-module by Yv € VVg € F[t]

g-v:—g(T)v
We let t in F'[t] act on V' by
tv .= T(v)

Then use module theory to break V into v = w; @ ... ® w,, w; T-invariant Vi (and nice) if
V' is a finite dimensional vector space over F'.

We say that A € F[t]™*" is in Smith Normal Form (or SNF) if A is the zero matrix or
if A is a matrix of the form

o 0
0 ¢
dr
0
0
with q1]q2]gs|- .. |g- € F[t] and all monic, i.e., there exists a positive integer r satisfying

r < min(m,n) and qi/g2|g3|...|g¢- monic in F[t] s.t. A; = ¢g; for 1 <i <rand A4;; =0
otherwise.

We generalize Gaussian elimination, i.e., row(and column) reduction for matrices with
entries in F' to matrices with entries in F[t]. The only difference arises because most
element of F'[t] do not have multiplicative inverses.

Let A € M, (F[t]). We say that A is an elementary matrix of

(i) Type I: If there exists A € F[t] and [ # k s.t.

1, ifi=j

Aij =9 A i (6,5) = (k1)

0, otherwise
(ii) Type II: If there exists k # [ s.t.
1, ifi=jAlori=j#k
0, ifi=j=lori=j=k
1, if (k1) = (i,5) or (k1) = (j,9)
0

, otherwise

Aij =
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(iii) Type III: If there exists a 0 # u € F and [ s.t
1, ifi=j#l
Aj=Ru, ifi=j=1

0, otherwise

Remark 29.6. Let A € F[t]™*". Multiplying A on the left (respectively right) by a suitable
size elementary matrix of

(a) Type I is equivalent to adding a multiple of a row (respectively column) of A to another
row (respectively column) of A.

(b) Type II is equivalent to interchanging two rows (respectively columns) of A.

(¢) Type III is equivalent to multiplying a row (respectively column) of A by an element in
F[t] having a multiplicative inverse.

Remark 29.7. 1. All elementary matrices are invertible.

2. The definition of elementary matrices of Types I and II is exactly the same as that given
when define over a field.

3. The elementary matrices of Type III have a restriction. The u’s appearing in the
definition are precisely the element in F'[t] having a multiplicative inverse TBA

Notation: We let
GL,(F[t]) ={A € M,(F[t])|A is invertible}

Warning: A matrix in M, (F[t]) having det(A) # 0 may no longer be invertible, i.e., have
an inverse. What is true is that GL,, (F[t]) = {A € M, (F[t])|0 # det(A) € F'}, equivalently
GL,(Ft]) consist of those matrices whose determinant have a multiplicative inverse in
Ft].

Definition 29.8 (Equivalent Matrix) — Let A, B € F[t]|™*". We say that A is
equivalent to B and write A ~ B if there exists matrices P € GL,,(F[t]) and
Q € GL,(F[t]) st. B=PAQ.

Theorem 29.9

Let A € F[t]™ ™. Then A is equivalent to a matrix in Smith Normal Form (SNF).
Moreover, there exists matrices P € GL,,(F[t]) and Q € GL,(F[t]), each a product of
matrices of Type I, Type II, and Type III, such that PAQ is in SNF.

Proof. The proof will, in fact, be an algorithm to find a SNF of A. Refer to www.math.
ucla.edu/~rse/115ah.1.20f/L28.pdf — Pg. 9-10. O

115


www.math.ucla.edu/~rse/115ah.1.20f/L28.pdf
www.math.ucla.edu/~rse/115ah.1.20f/L28.pdf

Duc Vu (Fall 2020) 29 Lec 28: Dec 11, 2020

Remark 29.10. The SNF derived by this algorithm is, in fact, unique. In particular, the
monic polynomial gi|ga|gs3]. .. |g- arising in the Smith Normal Form of a matrix A are unique
and are called the invariant factors of A. This is proven using results about determinants.
It follows if A, B € F[t]™*™ then A ~ B if and only if they have the same SNF if and only if
they have the same invariant factors.

So what good is the SNF relative to linear operators on finite dimensional vector spaces? It
tells us a great deal, because the following is true: Let A, B € M, (F'). Then A ~ B if and
only if tI — A~ tI — B € M, (F[t]) and this is completely determined by the SNF hence
the invariant factors of tI — A and tI — B. Now the SNF of tI — A may have some of its
invariant factors of 1, and we shall drop these.

§29.4 Some definitions

/
Definition 29.11 (Companion Matrix) — Let ¢ = t" + ap—1t" 1 + ...+ a1t + ap be a
monic polynomial in F[t]. The companion matrix C(q) is defined to be the n x n
matrix:

0 0 ... 0 —ap
10 ... 0 -—a1
0 0 ... 1 —Qp—1
- J
Definition 29.12 (Invariant Factors) — Let V be a finite dimensional vector space

over F' with &£ an ordered basis. Let T': V' — V be a linear operator. If one computes
the Smith Normal Form of tI — [T, it will have the form

1 0 0
0 1 0
q1
q2
0 qr

with ¢1]g1|...|g- are all the monic polynomials in F[t] \ F. These are called the
invariant factors of 1. They are uniquely determined by 7. )
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Definition 29.13 (Rational Canonical Form) — The main theorem is that there exists
an ordered basis & for V' such that
Clg) O 0
T) = 0 Clq2) | 0
0 ... Clgr)

and this matrix representation is unique. This is called the rational canonical form
or RCF of T. Moreover, the minimal polynomial of T is ¢,.. The algorithm computes
this as well as all invariant factors of T'. The characteristics polynomial fr of T is the
product of ¢ ...q,. This works over any field F', even if gr does not split. The basis
P gives a decomposition of V' into T-invariant subspaces V. = W1 @ ... & W, where
fryw, = aryw, = ¢ and if dim(W;) = n;, then %; = {Ui,TUi, e ,T"iilvi} is a basis
for W; ( we say that the W; are T-cyclic subspaces).

- J

dimensional vector space over F' with 4 an ordered basis. Let T': V' — V be a linear
operator. Suppose that gr splits over F'. Say

qi:(t*)\l)rl...(t*)\m)rm’i:1"."m

in F[t], with Ay,..., Ay, distinct. A matrix in M, (F') of the form

A0 0 0
1 A 0 0
Jr()‘) =[(0 1 A
0 0 ... 1 A
is called a Jordan block or size r x r with eigenvalue A\. The one can show that
C(qi),i =1,...,m is similar to the following matrix in block form:
Jr (A1) 0 0
0 Iy (A2) 0
0 0 coe I ()

Replacing each C(g;) in the rational canonical form by its Jordan blocks give what
is called Jordan Canonical Form or JCF of T'. It is unique up to the order of the
blocks (blocks with the same eigenvalues are usually put together).

(Definition 29.14 (Jordan Block/Size — Jordan Canonical Form) — Let V be a ﬁnite\

J
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8§30 ‘ Extra Lec: Nov 2/9, 2020

§30.1 Dual Bases — Dual Spaces

Let 0 # V be a vector space over F' with basis . For each vy € A, we define a map
fuo 1V — F linear

as follows: by the UPVS (which also holds if the basis is infinite, let fvy be the unique
linear transformation) s.t.

vg — 1
vi—>0 Yy F#veR

We have
0 < im fvp C F a subspace

(im fug #0 as vg # 0 ). As dimp F' = 1, we must have dim fvg =1, so fvg: V — F is an
epimorphism and
ker fug = {w € V|w has vy coordinate = 0}
= Span(Z \ {vo})

SoifweV, w=> a,v,a, € F almost all 0 with «, unique.

f UO(w) = Quyg
the coordinate of w on vg. We can do this for each v € B. If v/ € B, fiy : V — F is the
linear transformation determined by
1, ifv="1

, the Kronecker §
0, ifv#£v,vePB

fv’(v) = 5111}’ = {

Set
B* = {fvlv € B} f, is the coordinate functionf, on v

The vector space
V*=L(V,F)

is called the DUAL SPACE of V. So by the above if w € V'

w = Z auv, ay € F almost all 0
vER

then
ay = fy(w) the coordinate w,v € A

w = Zavv = va(w)v
B B

Now by the UPVS, we have a unique linear transformation

SO

Dgg:V—)VX

determined by v € # — f,. S0 YL v = Y 4o f, almost all o, =0
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Claim 30.1. Dy is 1-1.

Suppose w = Y 5 a,v > 0 almost all a, = 01i.e., Y H o fi =0 < in v*
Let vg € &, then

0= (Z Odva> (UO) = Zava(UO) = Zavsvvo = Qg
B B B

Hence > a,fy =0 — ap, = 0Vo € B, so w = 0. Dy is therefore 1-1 as claimed. O
Warning: If V' is not finite dimensional, then D4 is not onto, i.e., #* does not span V*.

()V*| = |F|# and |F| = |V| by UPVS if F is infinite)
Note: Dg : V — V* depends on the choice of basis 4.

Definition 30.1 (Linear Functionals) — If V is a vector space over F, elements in
V* = L(V, F) are called LINEAR FUNCTIONALS.

Fact 30.1. If S is a linearly indep. set in a vector space over F' (even infinite) then S is
part of a basis for V, i.e., the Extension Theorem holds (This needs the Axiom of Choice).

Example 30.2

V' a vector space over F'. Then followings are linear functionals

1. If 0 # v € V, then {v} extend to a basis & for V and #* satisfies Z* is linearly
indep.
fo(z) = SyzVz € B

Let w =) cz 02, ap = 0 almost all z € . Then f,(w) = o, € FVx € %,
w =73 fo(w)z

2. m: F" — F by (au,...,0,) — a;Vi
3. Let Int : Cla, 8] = R, < 3 be given by

Intf»—>/ﬁf

a

4. trace: M, F — F by
n
i=1

The sum of the diagonal entries of A called the TRACE of A.
We can iterate our constructions as follows:

Let % be a basis for V* = L(V, F') a vector space over F', where V is a vector
space over F'. Then
Dy :V* — (VI =V*
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V** is called the DOUBLE DUAL of V, is induced by
fo€EC — Gfo ee”

the coordinate function on fy, i.e.,

Zaff — ZO&fo
4 c*

with
Lif f= foVf, foe?

Gfo(f) :5th = {O it 4 o

So we have

v 2% v 26 e

and the composition is a monomorphism.

Wonderful Result: 3 a monomorphism

L:V V™

INDEPENDENT OF CHOICE OF BASES. We know want to show this:
For each v € V' define the following linear functionals on V*

Ly : V" = F by Ly(f) = f(v)

EVALUATION at v.
Check. L, : V* — F is linear, i.e., L, € V** = (V*)*:

Ly(af +g) = (af +9)(v) = af(v) + g(v)
=aLlyf+ Lvg

Vt,g € V*Va € F as needed. Now define
L:V V™ byv— L,
ie., L(v) = L,
Claim 30.2. L is linear.
VfeV* v,v € V,a e F, we have

L(av +V')(f) = Loyt (f) = flav + 1)
=af(v)+ f(v) =aLl,f + Ly f
= (aLv + Lv’)(f)

as needed.

Claim 30.3. L :V — V** is monic.
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Suppose v # 0. By Example TBA, 3f € V* 3 L,(f) = f(v) # 0. As L is linear, L is a
monomorphism. Hence

L:V V™
is a NATURAL or CANONICAL MONOMORPHISM, i.e., no basis is needed to define it.

We now assume that V is a finite dimensional vector space over F, let

PB = {v1,...,v,} be a basis for V
B = {fl, .. ,fn} C V* defined by fz‘('l}j) = (SijV’i,j

i.e., the f; are the coordinate functions relative to . Then, as before, we have a monomor-
phism
Dy :V — V* induced by v; — f;

But we also have
dimV* =dim L(V, F) =dimV dim F = dim V'

by the Matrix Theory Theorem, so D4 is an isomorphism by the Isomorphism Theorem
with %* a basis for V* called the DUAL BASIS of 4. We also have

VeV V™ o VeV
and
B ={Ly,,...,Ly,}
with
Lvi = wafz c A
Ly, (f5) = Lo (fj) = fi(vi) = 64

So %** is the DUAL BASIS of %#*. We also now L : V — V** is now a natural isomorphism
by the Isomorphism Theorem and even better that

fw)=Ly(f) YveV VfeV”®

EVALUATION at v. So when V is a finite dimensional vector space over F, we can and
do identify L, and v Yv € V.

Any v € V is determined by the ¢t € V* and every f € V* is determined by the L, € V**
and

f(v) = Lu(f)

So now we have: if V is a finite dimensional vector space over F

#B ={vi,...,v,} a basis for V
B ={f1,-- s fn}: {fors--+» Jv,} the dual basis of £

B = {Lfv17"'7Lfvn} ={Lwvi,...,Lv,} the dual basis of #*

i.e.,



Duc Vu (Fall 2020) 30 Extra Lec: Nov 2/9, 2020

and these satisfy
f‘ (vi) = tv;(vi) = 6 = Ly, (v5) = LUi(f‘)

If v € V, then
v = a1V + ...+ apv, unique aq,...,0, € F
fj(U) = fj(Oqu + ...+ anvn)
So

where f;(v) is the coordinate function relative to % and if f € V*, then

f261f1+---+ﬁnfn unique/@h--'aﬁneF

As
Lv1(f) = (Blfl + ... +/ann) (vj)

= B1fi(v1) + ...+ Bnfalvy) = 5‘

And
f=08fi+...+Bufn

=Ly, (f)fi + ...+ Ly, (f) fn

= flvi)fi+...+ f(va) fu
So,

f=Y fw)fi

where f(v;) is the coordinate function.

§30.2 The Transpose

Let V, W be vector space over F', T : V — W linear if g € W* = L(W, F), i.e., g: W — F
linear, then the composition

viw

is a linear functional, i.e., goT € V*.
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/Definition 30.3 (Transpose) — Let V, W be vector space over F,T:V — W linear.\
Define the transpose of 17" by
TT . W* = V*bygr goT
ie.,
TTg:=goT VgeW*
ie.,
T
A% W
\ chommutes
Ttg:=goT p
So
viw
T
Ve wr
- J

Claim 30.4. T" : W* — V* is linear if g, ¢/ € W*, o € F, then
T ag+g)=(ag+g)oT=agT +¢dT=al g+T"¢

T is called the transpose because of the followings

Theorem 30.4

Let V,W be finite dimensional vector space over F, %,% ordered bases for V, W
respectively, T': V' — W linear. Then

T = T+ 5

Proof. Let
B={vi,..., v}, B ={f1,---, [}
ig:{wla-wvwm}a ¢ :{917"'79m}

with %*,€* the ordered dual bases of ordered bases %, % of V, W respectively.
Let

[T5,% = (0uj) and [T']g- - = (Bij)

ie.,

m
TvkzzaikwiEW, k=1,....n

=1

n
Tng:Z,Bz'jfz‘GV*, j=1....m

=1
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Then computation gives

(Tng) (vk) = gj(Tw,) = g; <§m: aikﬂh‘)

=1

m m
= § kg (w;) = E aiplij = Qg
i—1 =1

and
<TT9> (vk) = (22 ﬂz’jfz‘) (k) = iﬁijfi(vk)
= Zn; Bijoix = Pr;
Hence, ajy = fi;¥j, k as needed. 7 0

Definition 30.5 (Annihilator) — Let V be a vector space over F,() # S C V a subset.
The set
S ={fe V*\f‘s =0} ={f e V*|f(s) =0Vs € S}

is called the annihilator of S.

Question 30.1. If V is an inner product space over F', can you find something analogous?
Claim 30.5. S° C V* is a subspaces (even if S is not).
Proof. Let f,g € S°,a € F. To show (af +g)‘s =0, let s € S, then
(af +9)(s) = af(s) + g(s) =0
soaf+geS°. O
Observation: Let T : V' — W be linear. Then
ker 7" = (im T)°

g€ kerTT iff TTg = 0iff (TTg)(v) = OVv € V iff g(Tv) = OVv € V iff g € (im T)°.

Proposition 30.6

Let V be a finite dimensional vector space over F', W C V a subspace. Then

dimV = dim W 4+ dim W°

Question 30.2. If V is a finite dimensional inner product space over F', can you find
something similar?
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Proof. Let {vy,...,v;} be a basis for W. Extend it to # = {v1,...,v,} a basis for V. Let
PB* ={f1,..., fn} be the dual basis of A, i.e.,

fi(vy) = 6i5¥i, j

Claim 30.6. € = {fx+1,.--, fn} is a basis for W°. Let f € W°. Then 354,...,6, € F >

k+1

f=> Bifi=)> flu)fi=) f(v)fi € Span ¥

As € C $B* and HB* is linearly indep., so is €. This proves the claim and the result
follows. O

/Corollary 30.7 A

Let V be a finite dimensional vector space over F', W C V a subspace. Identifying V'
and V** via v <> L,, we have

W = (W°)° := W

If V is a inner product space over F', can you find something similar?

J

Proof. We have W° C V* and W°° C V** =V are subspaces and by the last proposition,
we have

dimV = dim W + dim W°
dim V* = dim W° 4+ dim W*°°
dim W = dim W°°

If w e W, then
Lyf=flw)=0, VfeW?®
So
w= L, € W
i.e.,, W C W®° is a subspace. As dim W = dim W°°, W = W°°, O

Theorem 30.8
Let V, W be finite dimensional vector space over ', T : V — W linear. Then

dimim T = dimim T

Proof. We have dim W = dim W*

dimW = dimim T + dim (im 7)°
dimW* = dimim T + dimker T'"
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by the previous proposition and the Dimension Theorem. By observation,
(im T)° = ker T
dim(im T)° = dimker T'"
Hence,
dimim T = dimim 7" O

Application: Let A € F™*". The row (respectively column) RANK of A is the dimension
of the subspace spanned by the rows (respectively column of A viewed as vectors in F™
(respectively F™*1).

Using the theorems and our previous computation, we have

Claim 30.7. row rank A = col rank A.
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