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This is math 115AH & 115B — Undergraduate (Honors) Linear Algebra sequence at
UCLA. We meet weekly on MWF from 2:00pm — 2:50pm for lectures. There are two
textbooks for the classes, Linear Algebra by Hoffman & Kunze used in 115AH and
Linear Algebra by Friedberg, Incel & Spence which is optional for 115B. Keep in mind
that there are a total of 57 official lectures; the first 28 are for 115AH, and the rest
of them is from 115B with a few extra lectures provided by Professor Elman. Thus,
the lecture number would be adjusted accordingly for each class. In addition, there are
some overlaps in the definition and theorem listed above since a few materials covered
in 115AH are supposed to be taught in 115B. All the typos/errors in the notes are
my responsibility, and please let me know through my email if you spot any of them.
Additional details with regard to note taking in live lecture and other course notes can
also be found at my blog site.
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§1 ‘ Lec 1: Oct 2, 2020

Remark 1.1. To know a definition, theorem, lemma, proposition, corollary,etc., you must
1. Know its precise statement and what it means without any mistake
. Know explicit example of the statement and specific examples that do not satisfy it
. Know consequences of the statement
. Know how to compute using the statement

2
3
4
5. At least have an idea why you need the hypotheses — e.g., know counter-examples,. . .
6. Know the proof of the statement

7

. Know the important (key) steps of in the proof, separate from the formal part of the
proof — i.e., the main idea(s) of the proof

THIS IS NOT EASY AND TAKES TIME — EVEN WHEN YOU THINK
THAT YOU HAVE MASTERED THINGS.

§1.1 Field
What are the properties of the REAL NUMBERS?
R := {z|z is a real no.}

— at least algebraically?
There are two FUNCTIONS (or MAPS)

e +:R xR — R called ADDITION write a + b := +(a, b)
e - :R xR — R called MULTIPLICATION write a - b := -(a, b)

that satisfy certain rule e.g., associativity, commutativity,. ..

12
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(Definition 1.2 (Field) — A set F is called a FIELD if there are two functions
e Addition: +: F x F — F | write a + b := +(a, b)
e Multiplication: - : F x F' — F | write a - b := -(a,b)

satisfying the following AXIOMS(A: addition, M: multiplication, D: distributive)

Al (a+b)+c=a+(b+c¢) Associativity
A2 Janelement 0 e F32a+0=a=0+a Existence of a Zero
A3 Vee Flye Fozx+y=0=y+=x Existence of an Additive Inverse
Ada+b=b+a Commutativity

M1 (a-b)-c=a-(b-c)

M2 (A2) holds and 3 an element € F with 1 #0 > a-1=a = 1-a Existence of a

One

M3 (M2) holdsand VO £z € F Jye Foay=1=vyx Existence of a
Multiplicative Inverse

M4 - y=y-x

Dla-(b+c¢c)=a-b+a-c Distributive Law

D2 (a+b)-c=a-c+b-c
J

Comments: Let F' be a field, a,b € F. Then the following are true
1. F #0( (F at least has 2 elements)
2. 0 and 1 are unique
3. If a4+ b =0, then b is unique write b as —a :

ifa+b=a-+c, then

b=0b+0
=b+(a+c)
=(b+a)+c
=(a+b)+c
=0+c

=c
4. ifa+b=a+c, thenb=c

5. if a # 0 and ab = 1 = ba, then b is unique write a~' for b.

6. 0-a=0Va e F
0-a+0-a=(0+0)-a=0-a=0-a+0

so0-a=0 by 3.
7.ifa-b=0,thena=0o0r b=0. If a # 0, then 0 = a"(ab) = (a"ta)b=1b=b

13
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8. ifa-b=a-c, a#0, then b=c
9. (—a)(—b) = ab
10. —(—a) =a

11. if a # 0, then a™! #0 and (a7 ')~ =a

Example 1.3

a
Q= {g|a,be Z,byéo}
R := set of real no.
C = {a + bila,b € R} with

(a+bV/=14 (c+dvV=1)=(a+¢c)+ (b+d)V-1
(a+bv—-1) - (c+dv—1) = (ac — bd) + (ad + bc)v/—1
Va,b,c,d € R

Under usual +, - of C'
QcRcC

are all field and we say Q is a subfield of R, Q, R subfield of C, i.e., they have the
same +, -, 0, 1.
Z is not a field as An € Z 3 2n = 1, so Z do not satisfy (M3).

Note:To show something is FALSE, we need only one COUNTER-EXAMPLE. To show
something is TRUE, one needs to show true for all elements — not just example.

14
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§2 ‘ Lec 2: Oct 5, 2020

§2.1 Field(Cont’d)

Note: 7 does satisfy the weaker properly if a,b € Z then
(M3’) if ab =0 in Z, then a = 0 or b = 0 and all other axioms except M3 hold

1. Let F ={0,1}, 0+# 1. Define +, - by following table Then F is a field.

Table 0.1.: ADDITION

+ 101
0101
117110

Table 0.2.: MULTIPLICATION
01
00
11071

2. 3 fields with n elements for
n=2345"78911,13,16,17,19,. ..
[conjecture?]
3. Let F be a field
F[t] .= {(formal polynomial in one variable}

with t, given by

(a0+a1t—|—a2t2+...)+(bg—|—b1t+bgt2—|—...) = (ag—l—a1)+(a1—|—b1)t—|—(a2+b2)t2+...

(ao + a1t + a2t2 + .. ) . (bo + b1t + b2t2 + .. ) = apbg + (a0b1 + albo)t + ...

Note: f,g € F[t] are EQUAL iff they have the same COEFFICIENTS(coeffs) for
each t* (if t* does not occur we assume its coeff is 0.) F[t] is not a field but satisfy
all axioms except (M3) but it does satisfy (M3’) (compare Z ). Let

r)={Lirge Fig 2o} win

o L—Rif fk=gh
o Lph = lah f g hkeF[t]
05‘%:2% g#0, E#0

is a field, the FIELD of RATIONAL POLYS over F'.
Note:the 0 in F'[t] is %, f#0,and 1 in F[t] is %, f#0.
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4. let F' be a field.
M, F = {A|Aann x nmatrix entries inF'}
usual +, - of matrices, i.e. for A, B € M, F, let
Ajj = i7" entry of A, etc
Then
(A+ B)ij == Aij + Byj

(AB);j = Cjj = Z ApBy; Vi, j
k=1
Note: A= B iff Az‘j = Bij VZ,]
If n =1, then
F and M7 F and the “same” so M1 F is a field. If n > 1 then M, F is not a field
nor does it satisfy (M3), (M4), (M3’). It does satisfy other axioms with

1 ... 0 0 ... 0
I=Ly=|: . |, 0=0,:=

§2.2 Vector Space

R? := {(z,y)|z,y € R} = RxR Vector in R? are added as above and if v € R? is a vector,

V4w = (21 + T2, Y1 + Y2)
w = (x2,42) -

v = (21,41)

Figure 0.1.: Geometry in R?

av makes sense Vo € F' by a(z,y) = (ax, ay) called SCALAR MULTIPLICATION. For
+, scalar mult and (0,0) is the ZERO VECTOR satisfying various axioms. e.g., assoc,
comm, “distributive law...”. To abstractify this

16
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~

Definition 2.1 (Vector Space) — V is a vector space over F', via +,- or (V,+,) is
a vector space over F where

+: VXV >V S FxV >V
Addition Scalar Multiplication

write:v + w = +(v, w) write:a - v == -(a,v) or av
if the following axioms are satisfied
Yv,vi,v0,v3 €V, Va,B€F

L. w1+ (v2 +v3) = (v1 +v2) +v3

2. Janelement 0 € V> v+0=v=0+v

3. (2) holds and the element (—1)v in V satisfies

v+ (-v=0=(-lv+v
or (2) holdsand Vo e Viw e Vs v+w=0=w+wv

4. v1 +va =v2 + vy

5. 1-v=v

6. (a-f) -v=0a(f-v)

7. (a+ B)v=av+pv

8. a(v1 +v2) = avi + avy

Elements of V' are called vector, elements of F' scalars .

Comments: V: a vector space over F'

1. The zero of F' is unique and is a scalar. The zero of V' is unique and is a vector.
They are different (unless V' = F' ) even if we write 0 for both — should write
0, Oy for the zero of F', V respectively.

2. ifv,w e V,a € F then

av +w  makes sense

va,vw  do not make sense

3. We usually write
vector using Roman letter
scalar using Greek letter
exception things like (z1,...,2,) € R™", x; € RVi
4. +:V xV =V says
if v,weV, then v+weV

write v,w €V — v+weV. Wesay V is CLOSED under +

implies

17



Duc Vu (Fall 2020 — Spring 2021) 115AH Lectures

5. -t FxV - Vsayssa € Flv e V= av € V. We say V is CLOSED under
SCALAR MULTIPLICATION.

Example 2.2
F afield, e.g., R or C

1. F is a vector space over F' with +, - of a field, i.e., the field operation are the
vector space operation with O = Oy/.

2. F" ={ay,...,an} |a; € FVi is a vector space over F' under COMPONENT-
WISE OPERATION and
OFn = (0,,0)

Even have

Fo%e = {(a1,...,an,...} |y € FVi with only FINITELY MANY o # 0

3. Let a < fin R
I = [047/8]7 (aaﬁ)a [a75)7 (a,[i’]

including (o« = —00, 8 = o0). Let fxn I := {f : I — R|f a fxn} called the
SET of REAL VALUE FXNS on [.

Define +, - as follows: Vf,g € Fxn I,

f+g by (f+9)(x):= f(z)+g(x)
af by (af)(z) =af(x) VYaeR

and 0 by 0(a) = OVa € F. Then Fxn I is a vector space over R.

18
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§3 ‘ Lec 3: Oct 7, 2020

§3.1 Vector Space(Cont’d)

Example 3.1
Fis a field, e.g. Ror C

1. I is a vector space over I’ with +, - of a field, i.e. the field operation are the
vector space operation with 0p = Oy .

2. F" ={(ou,...,0p)|0q € FYi} is a vector space over F' under COMPONEN-
TWISE OPERATIONS

(ala"'van)+</817"'a/8n) = (al"i_ﬂlv"':an"i_/@n)
5(0517'-')041’1,) = (Balv'-"aﬁan)

with a1,..., a0, B1,...,0n € F and Opn := (0,...,0).

Even have:

F* =FS: {(a1,...,an,...)|a; € F¥i with only FINITELY MANY «; # 0}

3. Let a < fin R
1= [Oé,ﬁ], (aaﬁ)a [avﬁ)v (OZ,B]

(including o = —o0, f = co. Let function I :== {f : I — R|f a function}
Define +, - as follows: Vf,g € Fxn I,

f+g by (f+9)(@)=f(z)+g(z)
af by (af)(z)=af(z) VYaeR

and 0 by O(a) = OVa € F. Then Fxn I is a vector space over R.
Using this, we get subsets which are also vector space over R with same +, -, 0.
o C(I):={f € fxn I|f continuous on I}
e Diff (/) :== {f € fxn I|f differentiable on I}
o C"(I):={f € fxn I|f(n) then™ derivative of f and f exists on I and is
o C°(I):={f € fxn I|f(n) exists¥n > 0 on I and is cont}
e C¥(I)={f € fxn I| f converges to its Taylor Series}
(in a neighborhood of every x € I — be careful at boundary points)

e Int (I) :={f € fxn I|f is integrable on I}

4. F[t] the set of polys, coeffs in F' old +, - with scalar mult

alag + art+ ... + apt") = aag + aaqt + ... + aa,t”

5.  F[t]l, ={0€F[t]}U{f € Flt]|degf < n} (not closed under - of polys)

——
truncating F'[t]
where deg f = the highest power of ¢ occurring non-trivially in f if f #0is a
vector space over F' with +, scalar mult,0.

19
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Example 3.2 1. F™*" := get of m X n matrices entries in F where A €
SRR A = ij™ entry of A

(A I B)ij = Aij = Bij eF VA,B € Fmxn
(aA)ij = adi; € F Va € F
0 ... 0

0=1]: . | (mrows and n columns)

0 ... 0

COMPONENTWISE OPERATION! Then F™*"™ is a vector space over F,
e.g. M,F' is a vector space over F.

Example to GENERALIZE

Let V be a vector space over F', ) # S a set. Set W = {f:S — V|f a map}.
Define +,- on W by

f+g (f+9)(s)=[f(s)+g(s) eV
af (af)(s)=a(f(s) eV
Ow 0(s) =0y ZERO FUNCTION

Vf,g e Wi;a € F;s € S. Then W is a vector space over F'.(of componentwise
operation)

2. Let FF C K be a fields under +,- on K. Same 0,1, i.e. F'is a SUBFIELD
of k e.g. R C C. Then K is a vector space over F' by RESTRICTION of
SCALARS.

i.e., + =+ on K. With scalar mult, F x K — K by

v = av YVaoe FF YveV
—~— ~—
in K as a vector space over F in K as a field
e.g. R is a vector space over Q by 7tr = =, m,n € Z,n # 0,7 € R. More

generally, let V' be a vector space over K, F' C K subfield, then it is a vector
space over F' by RESTRICTION of SCALARS.

“vatFXV—>V

e.g., K™ is a vector space over F' (e.g. C™ is a vector space over R ).

Properties of Vector Space: Let V' be a vector space over F'. Then Vo, 5 € F, Vv, w €
V', we have

1. The zero vector is unique write 0 or Oy .

2. (—1)v is the unique vector w 3 w4+ v = 0 = v + w write —v.

6. if av = 0, then either a =0 or v =0
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7. if av = aw, a # 0, then v = w
8. if av = fv, v # 0, then o = 8
9. —-(v+w)=(—v)+ (—w)=—v—w

10. can ignore parentheses in +

§3.2 Subspace

(Definition 3.3 (Subspace) — Let V be a vector space over F', W C V a subset.\
We say W is a subspace of V if W is a vector space over F' with the operation +, -
on V, ie. (V,4,-)is a vector space over F,via +:V XV —Vand -: FxV =V
then W is a vector space over F' via

o +=+/wxw : W — W : restrict the domain to W x W

o - = :|pxw : FxW — W : restrict the domain to F' x W

i.e. W is closed under +,- from V, Vil € W Va € F, w; +wy € W and
aw; € W and Oy = Oy

- J
4 I
Theorem 3.4 (Subspace)
Let V be a vector space over F, () # W C V a subset. Then the following are
equivalent:
1. W is a subspace for V
2. W is closed under + and scalar mult from V'
3. Ywi,we e W, Va € F, awy +wy € W
. J

Proof. Some of the implication are essentially 77

1) = 2) : by def. W is a subspace of V under +,- on V' (and satisfies the axioms of a
vector space over F' ) as Oy = Opy.

2) = 1) claim: Oy €e W and O =0y : As 0 # W3w e W

By 2)(—1)w € W, hence Oy = w + (—w) € W. Since Oy + v’ = w' = w' + 0y in V
Vw' € W, the claim follows. The other axioms hold for elements of V' hence for W C V.
2) = 3):let € F, wy,we € W. As 2) holds, aw; € W hence also aw; + wy € W

3) = 2) Let a € F, wy,wy € W. As above and 3)

OV:w1+(—w1) eW and Oy =0y

Therefore,
wy+wr=1-w; +we €W and cow; +aw; +0y € W

by 3). O

Note:Usually 3) is the easiest condition to check. WARNING: must subsets of a vector
space over I’ are NOT subspace.
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Example 3.5

V' a vector space over F'.
1. 0:= {0y} and V are subspace of V'

2. Let I C R be an interval (not a point) then

cCY()<C®)<...<C™"I)<...<C'(I)
<Diff I<C(I)<Int I <Fxnl

are subspaces of the vector space containing then. .. where we write

A<B if ACB and A#B
3. Let F be afield, e.g R. Then F' = F[t]o < F[th < ... < Fty] < ... < F[t] are
vector space over F' each a subspace of the vector space over F' containing it.
4. If Wy € Wy C V', Wy, Wy subspace of V,then Wy C W5 is a subspaces.

5. If Wi C Ws is a subspace and Wy C V is a subspace, then W7 C V is a
subspace.

6. Let W :={(0,01,...,an|a; € F, 2<i<n}C F"is a subspace, but
{(L,ag,...,an|a; € F, 2 <1i<n}isnot. Why?

7. Every line or plane through the origin in R? is a subspace.
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§4 ‘ Lec 4: Oct 9, 2020

§4.1 Span & Subspace

Definition 4.1 (Linear Combination) — Let V be a vector space over F, v1,...,v, €
V we say v € V is a LINEAR COMBINATION of vy, ..., v, if Jay,...,a, € F'3
V=aU1 + ...+ Q.

Let
Span(vy,...,v,) = { all linear combos ofvy,...,v,}

Let vy,...,v, € V. Then

n
Span(vy,...,v,) = {Zaivﬂal, e,y € F}
i=1

is a subspace of V' (by the Subspace Theorem) called the SPAN of vy,...,v,. It is the
(unique) smallest subsapce of V' containing vy, ..., v,.

i.e., if W C V is a subspace and vy,...,v, € W then Span(vy,...,v,) C W. We also
let Span () := {0y } = 0, the smallest vector space containing no vectors.

Span(V) is a line

Vs
Vv

Vi

Span(Vi, V) = R?
if they are not collinear

Question: If we view C as a vector space over R, then R is a subspace of C, but if we
view C is a vector space over C, then R is not a subspace of C (why? What’s going on?)
— not closed under operation(s).

(Definition 4.2 (Span) — Let V be a vector space over F,() # S C V a subset.\
Then, Span S := the set of all FINITE linear combos of vectors in S. i.e., if V €
Span S, then

vy, ...,00 €8, ai,...,an EF3v=01v1 + ...+ apu,

\Span S C V is a subspace. What is Span V?
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Example 4.3 1. Let V = R3.
Span(i + j,i — j, k) = SpanV = Span(i, 7,7 + j, k) = Span(i + j,i — j, k + 9)
2. Define
Symm, F = {A € M,F|A = AT}
Recall: AT is the transpose of A, i.e.,
(AT)y = Ay Vi, j
is a subspace of M, F'
V= {( a C““) |a,b,c,d€R} c MyC

c—di b

is NOT a subspace as a vector space over C ,eg,

[ a cH+di\ [ a —d+ci
"Ne—di b ) " \d+e b

does not lie in V if either a # 0 or b # 0 (cannot be imaginary). Also V is
not a subspace of MsR as a vector space over R as V' ¢ MsR. V C M>C is a
subspace as a vector space over R.

4. (Important computational example) Fix A € F™*". Let
0
kerA = x € F**YAx = | : | in F™¥!
0
called the KERNEL or NULL SPACE of A. Ker A C F™*! is a subspace

and it is the SOLUTION SPACE of the system of m linear equations in n
unknowns. — which we can compute by Gaussian elimination.

5. Let W; C V;,i € 1 be subspaces. Then (W = (,c;W: =
indexing set

{r e V|x € W; Vie I} isa subspaces of V (why?)

6. In general, if Wy, Ws C V are subspaces, W1 U W5 is NOT a subspace.
e.g., Span(i) U Span(j) = {(z,0)|z € R} U {(0,y)|y € R} is not a subspace

(z,y) = (,0) + (0,y) ¢ Span(i) U Span(j)

if x £ 0 and y #0
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(Definition 4.4 (Subspace & Span) — Let Wy, W5 C V be subspaces. Define

Wi+ Wy = {w1 + w2|w1 e Wi,wo € WQ}
= Span(W1 U WQ)

So wy + wy C V is a subspace and the smallest subsapce of V' containing W; and

Wo.
\_ Y,

More generally, if W; € V' is a subspace Vi € I let

Zm = Z W; = +W,; = Span(U Wi)
I

el 1

the smallest subspace of V' containing W;Vi € I. What do elements in ), W; look like?

Determine the span of vector vy,...,v, in R
Suppose v; = (@jy,...,ani, © = 1,...,n. To determine when w € R" lies in
Span(uq,...,uy ) ie., if w = (by,...,b,) € R™ when does
W=V + ...+ apvn, at,...,an €R
14

What v; is an n x 1 column matrix

QA
b1
A=(ag), B=|:
bn,
b1
view w as | : |. To solve
br,
o
Az = B, X =
Qp

is equivalent to finding all the n x 1 matrices B (actually BT ) s.t.

Ax =B
when the columns of A are the v;(v;).
Note: If m = n an A is invertible then all B work.

§4.2 Linear Independence

We know that R™ is an n-dimensional vector space over R. Since we need n coordinates
(axes) to describe all vector in R™ but no fewer will do.
We want something like the following:

Let V be a vector space over F' with V' # (). Can we find distinct vectors vy ..., v, € V,
some n with following properties

1. V = Span(vy,...,v, )
2. No v; is a linear combos of vy, ..., v—1,Vi11,...,0, (i.e. we need them all)

Then we want to call V an n-DIMENSIONAL VECTOR SPACE OVER F.
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Lemma 4.5 b
Let V be a vector space over F', n > 1. Suppose v, ..., v, are distinct. Then (2) is
equivalent to
If acqvr + ...+ apvy, = B1v1 + ... + Bpn, oy, B; € FYi,j
i.e. the “coordinates” are unique.
J
Proof. (— >) If not, relabelling the v]s, we may assume that o # 2 in(*), then
n
(1 = Br)vr = > (B — ai)u;
i=2
As a; — B1 #0in F, a field, (a; — B1) ! exists, so
n
v =Y (a1 — 1) (B — ew)v; € Span(vy, ..., vp)
i=2
a contradiction.
(< —) Relabelling, we may assume that
V1 = QU + ...+ anvy, some q; € F
Then,
1-v14+0v+...+0v,=v1 =0 -v1 +agvy + ...+ a,v,
so 1 = 0, a contradiction. O

Remark 4.6. The case n = 1 is special because there are two possibilities
Case 1: v £0: thenav =pv > a =0
Case 2: v =0 : then av = fvVa, 5 € F

So the only time the above lemma is false is when n = 1 and v = 0. We do not want to
say this, so we use another definition.
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§5 ‘ Lec 5: Oct 12, 2020

§5.1 Linear Independence(Cont’d)

Definition 5.1 (Linear Independence & Dependence) — Let V' be a vector space over
F, vi,...,v, in V all distinct. We say {vi,...,v,} is LINEARLY DEPENDENT
if dag,...,a, € F not all zero >

aivy + ...+ apv, =0

and {v1,...,v,} is LINEARLY INDEPENDENT if it is NOT linearly dependent,
i.e., if for any eqn

O=avi+...+apv,, ai,...,an € F,

then a; = 0Vi, i.e., the only linear comb of vq,...,v, — the zero vector is the
TRIVIAL linear combo (we shall also say that distinct vy,...,v, are linearly
independent if {vy,...,v,} is. More generally, a set ) # S C V is called LINEARLY
DEPENDENT if for some FINITE subset (of distinct elements of S ) of S is linearly
dependent and it is called LINEARLY INDEPENDENT if every FINITE subset of
S (of distinct elements) is linearly independent.

We say v;,i € F, all distinct are LINEARLY INDEPENDENT if {v;},.; is linearly
independent and v; # v;Vi,j € 1,7 # j.

J
Remark 5.2. Let V be a vector space over F, ) S C V a subset
1. If 0 € S, then S is linearly dependent as -0 =0
2. distinct: vq,...,v, in V are linearly independent iff
e nov; =0
® VU] F ...+ anv, = B+ ...+ Bpun, g, B € F implies o; = B;Vi
Note: v,v are linearly dependent if we allow repetitions — and {v,v} = {v}.
For homework, make sure to show this:
Suppose v1, ..., v, are distinct, n > 2, no v; = 0. Suppose no v; is a scalar multiple
of another vj, j # 4. It does not follow that vi,...,v, are linearly independent (in

general).

Example 5.3 (counter-example)

(1,0),(0,1),(1,1) in V =R?
(1,0),(0,1) are linearly indep. but not (1,0), (0,1), and (1, 1).

Remark 5.4. Let () 2T C S be a subset. If T is linearly dependent, so is S. Then the
contraposition is also true: if S is linearly indep., so is 7'

More remarks:
1. Let 0 # v € V. Then {v} is linearly independent and
Fv = Span(v)
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is called a LINE in V:
av=0—=>a=0

2. u,v,w € V\ {0} and v ¢ Span(w ) (equivalently, w ¢ Span(v ), then {v,w} is
linearly indep. and span( v, w ) is called a PLANE in V.

3. (1,1),(—2,—2) are linearly dep. in R2.

4. (1,1),(2,—2) are linearly indep. in R? (show coefficients are equal to each other
and to 0).

5. More generally,

v; = (ajy,...,a;,) in R" i=1,...,m (distinct)
Then
dag,...,an € Rnotall0 3 av1+...+ anv, =0
iff v1,..., v, are linearly dep — iff Jaq, ..., € R not all 0 s.t.
ar(ait, .y aim) + oo+ am(@mi, ooy amn) =0
iff the matrix
aill oo Aim
A:
Aml .. Amn

with rows v; row reduced to echelon form with a zero row. Also,

ail o Aml
B=AT =

Q1m Gmn

i.e., write the vectors v; as columns then

B X =0
~—

nxm mx1

has a NON-TRIVIAL solution, i.e.,
kerB # 0

where
kerB := {X € F"*!|BX =0}

the kernel of B.
6. Let f1,...,fn € C" 1), I=(a,B),a< B inR and

arfi+ ... +anfn= 0

the zero func

ie, (a1fi+...+anfn)(z) =0 Vz € (a, ). Taking the derivatives (n — 1) times
and put them in matrix form, we have

fi o fa ) [ 0
1 R 4 : B :
o)\, 0
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In particular, the Wronskian of f1,..., f, is not the zero func, i.e., 3z € (o, ) 2
W(fi,..., fn)(z) # 0. This means that the matrix above is invertible for some
x € (a, ). Then, a; =0, ...,a, =0 by Cramer’s rule — only the trivial soln.

Conclusion: W (f1,..., fn) #0 = {f1,..., fn} is linearly indep.
WARNING: the converse is false.

Example 5.5 (of the conclusion)
Let a < S in R.

1. sinx, cosx are linearly indep. on («, f3).
2. We need some (sub) defns for this example.

For z € R, define the map
ey : R[t] = R by

g=>Y ait' = g(x) = a;x" called EVALUATION at .

We call amap f: R — R (or some f: I — R(I C R))aPOLYNOMIAL FUNCTION if
IP; =) ait’ € R[t]
i=1

and

n
f(x) = ex Py = Ps(x) = Zaia:i Ve e R
i=1
i.e., the function arising from a (formal) polynomial by evaluation at each x. We let
Rlz] == {f :R — R|f a poly fcn }

Note:Polynomial fcns are defined on all of R. R[] is a vector space over R.
Warning: if we replace R by F, F[t] may be “very different” from F[z], e.g., let
F ={0,1}. Then
t,t> € F[t], t#1t*> but P, = Pp

Now we can give our example using Wronskians
{1,z,...,2"}

is linearly indep. on («, 3) assuming o < 3.
HOMEWORK: Let aq,...,qa, € R be distinct, then

et . eont

are linearly indep. on («, ). THINK OVER IT!

Theorem 5.6 (Toss In)

Let V be a vector space over F, ) #S C V a linearly indep. subset. Suppose that
v € V\ Span S. Then S U {v} is linearly indep.
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Proof. Suppose this is false which is S U {v} is linearly dep. Then Jvy,...,v, € S and
a,aq,...,q, € F some n not all zero s.t.

av+ avy + ...+ apv, =0

Case 1: a=0

Then ajv; + ... + apv, =0 not all oy, ..., «, zero so {v1,...,v,} is linearly dep., a
contradiction.
Case 2: a #0

Then o~ ! exists.

v = —ofloqvl — .= a_lanvn

is a linear combo of vy,...,v,, i.e., v € Span (v1,...,v,) — a contradiction. Therefore,
S U{v} is linearly indep. O
4 I

Corollary 5.7

Let V' be a vector space over F and vy,...,v, € V linearly indep. if

Span(vy,...,v,) <V
then Jv,11 € V 3 v1,...,vp,Un41 are linearly indep. and
Span(vy,...,v,) < Span(vi,...,vp41) CV

- ’ J

Question 5.1. Why can’t we get a linearly indep. set spanning any vector space over
F using this theorem?

Ans: Certainly we may not get a finite set. We shall only be interested in the case,
much of the time, when such a finite linearly indep. set spans our vector space over
F.

Example 5.8

(1,3,1) € R? is linearly indep. but Span (1,3,1) < R3.

(1,1,0) ¢ Span (1,3,1) so (1,3,1),(1,1,0) are linearly indep. Similarly for (0,0, 1).
R3 = Span((1,3,1),(1,1,0),(0,0,1))
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§6 ‘ Lec 6: Oct 14, 2020

§6.1 Bases

(Definition 6.1 (Basis) — Let 0 # V be a vector space over F. A BASIS B for V\
is a linearly indep. set in V' and spans V. i.e.,

1. V = Span B.
2. B is linearly indep.

We say V is a FINITE DIMENSIONAL VECTOR SPACE OVER F if there exists
B for V with finitely many elements, i.e., |B| < co.

J

Notation: If V' =0, we say V is a finite dimensional vector sapce over F' of DIMENSION
ZERO.

Goal: To show if V is finite dimensional vector space over F' with bases B and b then
|B| = |b] < co. This common integer is called the DIMENSION of V.

Example 6.2

Let V be a vector space over F', S C V a linearly indep. set. Then S is a basis for
Span S.
Warning: S is not a subspace just a subset.

Definition 6.3 (Ordered Basis) — If V is a finite dimensional vector space over F
with a basis B = {v1,...,v,} we called it an ORDERED BASIS if the given order
of v1,...,v, is to be used, i.e., the i*" vector in B is the i*" in the written list, e.g.,

{v1,v2,v4,v3,...} then vy is the 3" element in the ordered list if we want B to be
ordered in this way.

Theorem 6.4 (Coordinate)

Let V be a finite dimensional vector space over F with basis B = {v1,...,v,} and
v € V. Then Aoy, ...,a, € F v =a1v1 +...+ ayv,. Wecall ai,...,a, the
COORDINATE of v relative to the basis B and call o the i*" coordinate relative
to B.

Proof. Existence: By defn, V = Span B, soifv eV
dag,...,an € F320v=0iv1 4+ ...+ anv,

Uniqueness: Let v € V' and suppose that ayvi + ... + apv, = v + ... + Bpoy, for
some 1, ...,0n,51,...,0n € F. Then

(a1 —Br)vr + ...+ (ap — Bp)vp, =0
Since B is linearly indep,

a;=0;=0 fori=1,....n O
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Question 6.1. Does the above theorem hold if the basis B is not necessarily finite? If

S0 prove it!
Exercise 6.1. Let V be a vector space over F', v1,...,v, € V then
Span(vy,...,v,) = Span(ve,...,v,) <=  v; € Span(ve,...,U,)
Make sure to PROVE THIS )

Note:For induction, you CAN’T assume n in the induction hypothesis is special in any
way except it is greater than 1. Also, you can start induction at n = 0,i.e., show P(0)
true (or at any n € 7).

/Theorem 6.5 (Toss Out) A

Let V be a vector space over F. If V' can be spanned by finitely many vector then
V' is a finite dimensional vector space over F'. More precisely, if

V = Span(vy,...,v,)

then a subset of {vi,...,v,} is a basis for V.
J
Proof. If V=0, there is nothing to prove. So we may assume that V' = 0. Suppose that
V = Span(vy,...,v,). We can use induction on n and show a subset of {v1,...,v,} isa
basis.

en=1:V=Span(v1) #0as V #0, so v; # 0. Hence {v;} is linearly indep and
it is the basis.

e Assume V = Span(wj, ..., w, ) — the induction hypothesis — to be true. Then a
subset of wy, ..., w, is a basis for V. Now suppose that v = Span(vy,...,v,4+1). To
show a subset of {v1,...,v,41} is a basis for V', we need to show if {v1,...,vp41}
is linearly indep., then it is a basis for V' and it spans V' and we are done. So let
us assume that {vy,...,vp41} is linearly dep. Hence,

Jaq, ..., ant1 € F not all zero >

a1+ ...+ apgr1vp41 =0

Assume oy, 41 # 0, then
o ~1
Un+1 = —Oln_HOélUl i Oén_HOann
lies in Span(vy,...,v,). By the Exercise above,
V = Span(vi,...,vn+1) = Span(vi, ..., v,)

By the induction hypo, a subset of {vy,...,v,} is a basis for V.
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Example 6.6 1. Let ¢; = {(0,...,0,1,0,...)} € F™

s=sp:={e1,...,en} CF"
If v € F", then
v=(a1,...,an) =11+ ... + aney
since o; € F, s0 F™ = Span s. If 0 = age; + ... + apey, = (aq,...,0p) =

(0,...,0), then a; = 0Vi. So s is linearly indep. Hence s is a basis for F"
called the standard basis. More generally, let

eij € ™™ be the m x n matrix with all entries 0 except in the ith place.

Then sy, == {ej;|1 <i <m,1 < j <n}isa basis for F""*" called the STAN-
DARD BASIS for F™*™ — same proof — everything is done componentwise.

2. V= FJt] = { polysin t, coeffsin F.} (FF =R ). Let f € V. Then, there
exists n > 0 in Z and ag,...,q, in F s.t.

f=ap+ait+...+ a,t"
So B={t"|n>0} = {1,t,t2,...} spans V and by defn if

agt+oait+...+apt"= 0

zero poly

then a; = 0 for all i so B is linearly indep. Hence B is a basis for F[t]. B is
not a finite set. We shall see that F[t] is not a finite dimensional vector space
over F.

How? J

3. Flt]n == {f € F[t]|f = Oor degf < n} C FI[t] is spanned by {1,¢,¢%,...,¢"}.
It is a subset of linearly indep. set. {1,¢,t%,...} = {t"|n > 0} so also linearly
indep. and therefore a basis.

4. {1, \/j} is a basis for C as a vector space over R. {1} is a basis for C' as a
vector space over C(indeed, if F' is a field, F' is a vector space over F' and if
0# a € F, then o~ ! exists and 2 = za~'a € Span F so {a} is a basis. e.g.,
{7} is a basis for R as a vector space over R ).

5. {e‘x, 637”} is a basis for
V= {f € C*(—o0,00)| " — 2f" - 3f = 0}
a vector space over R.

6. Given vy,...,v, € F", you know how to find W = Span(vy,...,v, ). Note:If
m > n then rows reducing A" must lead to a zero row so v1, ..., v, cannot
be linearly indep. If m = n we can see if

det AT =0 (or det A =0)
then linearly dep. And if
det AT #0 (or det A #0)

then linearly indep.
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§7‘ Lec 7: Oct 16, 2020

§7.1 Replacement Theorem

\

Theorem 7.1 (Replacement)

Let V be a vector space over F', {vy,...,v,} a basis for V. Suppose that v € V

satisfies

v=qaiv] + ...+ apv,, at,...,an € Fla; #£0
Then
{Ula <o Vi1, 0, Vit 1, - - - ,'Un}

is also a basis for V.
. J
Proof. Changing notation, we may assume a; # 0. To show {vy,vs,...,v,} is a basis
for V', we have to show {v,vs,...,v,} spans V. Since

v=aqv1 + ...+ apvy, a; #0

al_l exists, so
v = ozl_lv — 041_1042@2 — .= al_lanvn

lies in Span(v,vs,...,v, ). By Exercise ...,
V = Span(v,v1,...,v,) = Span(v, ve, ..., vy)

So {v,va,...,v,} spans V. Thus, {v,vs,...,v,} is linearly indep.
Suppose 351, B2, ..., 8, € F not all 0 5

Bv + Pava + ... + Bpvy =0

Case 1: =0

Then fovy + ...+ Brv, = 0 not all §; = 0. So {wva,...,v,} is linearly dep., a
contradiction.
Case 2: 3 # 0, so 7! exists.

Then using (*), we see

v=0- v —B*1ﬁ2v2—...—Bflﬂnvn:awl—i-...—i-anvn
As {vg,...,v,} is a basis, by the Coordinate Theorem, we have
a1 =0 and oy = Bil,ﬁi
a contradiction. O

Question 7.1. In the Replacement Theorem, do we need the basis to be finite?

Ans: T think it can be infinite ...

§7.2 Main Theorem
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Theorem 7.2 (Main)

Suppose V is a vector space over F' with V' = Span(vy,...,v,). Then any linearly
indep. subset of V' has at most n elements.

Proof. We know that a subset of B = {v1,...,v,} is a basis for V' by Toss Out Theorem.
So we may assume B is a basis for V. It suffices to show any linearly indep. set in V
has at most |B| = n elements where B is a basis. Let {wj,...,w,} C V be linearly
indep. where no w; = 0. To show m < n, the idea is to use Toss In and Toss out in
conjunction with the Replacement Theorem.

Claim 7.1. After changing notation, if necessary, for each k < n
{'LUl, sy Wy Vg1, - - - ,’Un}

is a basis for V.

Suppose we have shown the above claim for k = n. Apply the claim to k = n if
m > k, then {wi,...,wp41} is linearly dep., a contradiction as {wy,...,w,} is a basis.
Thus, we prove the claim for m < n as needed. We prove it by induction on k. BY the
argument above, we may assume k < n.

e k=1: Asw; € Span B = Span (vi,...,v,) and wy # 0, Jaq,...,a, € F not
all 0 3
wy = oav; + ...+ apv,

Changing notation, we may assume «1 # 0. By the Replacement Theorem,
{wi,ve,...,v,} is a basis for V
e Assume the claim hold for k(k < n).
e We must show the claim holds for k& + 1,
{wy,..., Wk, Vkt1,...,0,} is a basis for V
We can write

0 # wpg1 = frwr + ... + Brpwg + apg1Vp1 + ...+ apvy

for some (new) Si,..., Bk, Qkt1, ..., @, € F not all 0

Case 1: a1 =apo=...=a, =0

Then wy11 € Span(wy, ..., wg), hence {w1, ..., wgy1} is linearly dep., a contradic-
tion.

Case 2: 3i3a; #0:

Changing notation, we may assume aj11 # 0. By the Replacement Theorem

{wi, o Weg1, Vrg2s -, U0}

is a basis for V. This completes the induction step thus prove the claim and
establish the theorem. O
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§7.3 A Glance at Dimension

Corollary 7.3

Let V be a finite dimensional vector space over F', By, By two bases for V. Then
|B1| = |B2| < co. We call |Bj| the dimension of V, write dim V' = dimp V = | By |
(dropping F' if F is clear).

Proof. By defn of finite dimensional vector space over F', 3 a basis b for V' with |b] < oc.
By the Main Theorem, |B| < |b|, if B is a basis for V', so B is finite. Again by the Main
Theorem, [b| < |B| if B is a basis for V, so |b| = |B| for any basis B of V. O

The corollary above says dim V' is well-defined for all finite dimensional vector space
over F, i.e., “dim” : {finite dimensional vector space over F' — Z* U {0}} is a function.
Warning: F' makes a difference.
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Example 7.4

dimcC =1 basis {1}
dimp C=2  basis {1,v/-1}
dimg C =7

[Corollary 7.5

dimp F™ = n.

Corollary 7.6

dimp F™*"™ = mn,.

Corollary 7.7
dimp Ft], =1+ n.

Note: If V is a finite dimensional vector space over F' with bases B, then the Replacement
Theorem allows us to find many other bases.

/Corollary 7.8 A

Let V be a finite dimensional vector space over F, n =dimV, ) #S C V a subset.
Then

o If |S| > n, then S is linearly dep.

o If |S| < n, then Span S < V.

J

Proof. e First bullet point: The Main Theorem says:

A maximal linearly indep. set in V is a basis and can have at most n elements by
Toss In Theorem.

e Second bullet point: By Toss Out Theorem, we can assume that S is linearly
indep., so it cannot be a basis by Corollary 7.
O

Question 7.2. What is dimg M,,(C)?
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§8 ‘ Lec 8: Oct 19, 2020

§8.1 Extension and Counting Theorem

Theorem 8.1 (Extension)

Let V be a finite dimensional vector space over F', W C V a subspace. Then every
linearly independent subset S in W is finite and part of a basis for W which is a
finite dimensional vector space over F'.

Proof. Any linearly indep. set in W is linearly indep. subset S'in V' so [S| < dimV < co
by the Main Theorem. In particular,

dim SpanS < dim V'

if W = Span S, we are done.
If not, Jw; € W\ Span S, and hence S; = S U {w} is linearly indep. by Toss In
Theorem and

IS1] =S U{wi}|=|5]+1<dimV

if Span S; < W, then Jwy € W\ Span Si, so So = S U {wi, w2} C W is linearly indep.,
hence
|S2] =S|+ 2 < dimV

Continuing in this manner, we must stop when n < dim V' — dim Span S as dim V' < oo.

So S is a part of a basis for W and W is a finite dimensional vector space over F. [J

Corollary 8.2

Let V be a finite dimensional vector space over F'. Then any linearly indep. set in
V can be EXTENDED to a basis for V, i.e., is part of a basis for V. We often call
this special case the Extension Theorem.

is a finite dimensional vector space over F' and dim W < dim V' with equality iff

Corollary 8.3
Let V be a finite dimensional vector space over F', W C V a subspace. Then W
W=V.

Proof. Left as exercise. O

(Theorem 8.4 (Counting) A

Let V be a finite dimensional vector space over F', W1, Wy C V subspaces. Suppose
that both W7 and W5 are finite dimensional vector space over F'. Then

1. Wi N Wy is a finite dimensional vector space over F'.
2. W1 + Wy is a finite dimensional vector space over F'.

3. dim W; + dim Wy = dim(W; + Wy) + dim(W; N Wa).
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Proof. 1. WinWse C W;,i =1,2, so it is a finite dimensional vector space over F' by

2.

corollary 8.2.
Let B; be a basis for W;, i =1,2,.... Then W; + W3 = Span (B; U Bg) and
’Bl U Bg| < ‘Bl| + ‘BQ| < o0

So Wi + Ws is a finite dimensional vector space over F' by Toss Out.

. Let B ={vy,...,v,} be a basis for W7 N Ws,. Extend B to a basis

b1 = {v1,...,0n,Y1,...,yr} for Wy
by ={v1,...,Un,21,...,25} for Wo

using the Extension Theorem.

Claim 8.1. by Uby = {v1,...,Un,Y1,- -, Yr, 21, .., 2s} is & basis for W + Wy and
has n + r + s elements. So if we show the claim, the result will follow.

Certainly,
Span(by U bg) = Span by + Span by = W + Ws

So we need only to show by U by is linearly indep. Suppose this is false. Then
O=av+...+apvp +B1y1+ ...+ Bryr + 7121+ ..o+ Ys2s (*)

for some aq,...,0n, 81y, BnyV1,---,7s in F not all zero.
Case 1: All the «; = 0. Since b; is linearly indep., this is a contradiction.
Case 2: Some 7; # 0.

Changing notation, we may assume 7 # 0. Since by is a basis, (*) leads to an
equation

0#fz=y1214 ... +Ys2s = QU] — ... — QU — B1Y1 — - - - — BrYr

Therefore, 0 # z lies in Span boNSpan by = WoNW7. So we can write zi € W1NWs
using basis B as

0#z=d0v1+...+ 6,0, somed,..., 05 €F
Thus Wy = Span by, we have
o1+ ...+ 0, — 021+ ...+ 0z =2=0v1 4+ ...+ 00, + Y121+ ... + Vs2s

By the Coordinate Theorem, v; = 0, a contradiction.
O

iff

/Corollary 8.5

Let V be a vector space over F, Wi, Wy C V finite dimensional subspaces of V.
Then

\In this case, we write W7 + Wy = W7 & W5 called the DIRECT SUM.

\

dim(W1 -+ WQ) = dim W7 + dim Wy

WiNnWy, =0
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§8.2 Linear Transformation

In mathematics, whenever you have a collection of objects, one studies maps between
them that preserves any special properties of the objects in the collection and tries to
see what information can be gained from such maps.

Definition 8.6 (Linear Transformation) — Let V, W be a vector space over F. A
map T : V — W is called a Linear Transformation, write T": V' — W is linear if
Yvi,vg € V,Va € F

° T(Ul -+ 1)2) = T(Ul) -+ T(Ug).

o T'(avy) = oT'(v1).

e T(0y) = Ow.

Notation: We write T'v for T'(v).

Remark 8.7. Let V,W be a vector space over F', T : V — W a map.
1. If T satisfies 1) and 2), then it satisfies 3):

Ow +T'(0v) = T(0v) = T(Ov +0v) = T(0v) + T(0v)

SO OW = T(Ov)
2. T is linear iff T'(avy + v2) = aTvy +Tvs Yvi,v9 € V,Va € F.

3. If T is linear, aq,...,ay, € F,vy,...,v, € V, then

T <i CviUi) = i OéiT’Ui
i=1 i=1

We leave a proof of 2) and 3) as exercises.
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Example 8.8

Let V, W be a vector space over F. The followings are linear transformations
1.

2.

. If ) £ Z C W is a subset, then we have a map

T
.T:F"— F by (a1,...,a,) — «; for a fixed i.
T

. T:R—R"by a (0,0,...,a,0,...,0) for fixed i.
Ma<pinR,D:C'a,8) = C(a, B) by f— [
o < fin R, Int: C(o, ) = C'(a,8) by f — [f where [ f is the

10.

11.

0V7in—>WbyUl—>Ow.
V=W,1y:V =V by v+— .

A linear transformation 7 : V' — V is called a Linear Operator.

inc: 2 —W

given by z — z called the Inclusion Map. Then, Z is a subspace of V iff inc:
Z — W is linear.

Note: inc = 1%
%

Restriction map

This is the Subspace Theorem. J

omit

. n n—1 g g
:F" — F" by (aq,...,ap) — (a1,..., @ ,...,0p for a fixed i.

‘R 5 R” by (a1,...,00-1+ (a1,...,0;-1,0,04,...,0ay) for fixed i.

antiderivative — constant of integration 0.
Fix a € F, then Aa: V — V by v — av. Left translation by a.

Let A € F™*"™  Define

T:F>P 5 ™t by T X=A-X
aq aq
i.e. : — A
Op (077
Matrices can be viewed as linear transformation. We should see the converse

is true IF V is a finite dimensional vector space over F. It is not true in
general.
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89 ‘ Lec 9: Oct 21, 2020

§9.1 Kernel, Image, and Dimension Theorem

Definition 9.1 (Kernel(Nullspace)) — Let V, W be a vector space over F, T : V —

W linear set
N(T)=ker T :={v e V|Tv =0y}

called the nullspace or kernel of T

/Definition 9.2 (Range(lmage)) — Let V, W be a vector space over F', T : V — W\

linear set

mT=T(V)={weW|veV >3Tv=uw}

= {Tvjv eV}
called the range or image of T. )
Proposition 9.3 b
Let T : V — W be linear. Then

1. kerT' C V is a subspace.

2. vmT C W is a subspace.
J
Proof. Left as exercise. O
\

Theorem 9.4 (Dimension)

Let T : V — W be linear with V is a finite dimensional vector space over F. Then

1. 4m T and ker T are finite dimensional vector space over F.

2. dimV =dimkerT + dimimT.
\\ 4

Note: dimker T is also called the NULLITY of T and dim ¢mT is also called the RANK
of T.

Proof. Let n =dim V.

kerT' C V is a subspace, V is a finite dimensional vector space over F' so ker T is a
finite dimensional vector space over F' and dimkerT' < dimV = n. Say m = dimker T
Let By = {vi1,...,vn} be a basis for kerT. By the Extension Theorem 3% =
{vi,...,Um,...,v,} a basis for V.

Claim 9.1. Tvy41,. .., Tv, are linearly indep. (in particular, distinct) and
€ ={Tvms1,...,Tv}

is a basis for imT.
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If we prove the claim above, then imT is a finite dimensional vector space over F' of
dimension n — m and we are done.
Step 1: € spans im/1":
Let w € imT. By definition, dv € V > Twv = w. As £ is a basis for V day,...,a, €
F>
V=01V1 + ...+ QpUy

Hence
w=TwW)=T(a1v1 + ...+ apvy) = a1Tvy + ... + a,To,
=a 0w +...+ 0w + ami1Tvms1 + ... + T,

lies w Span(%) (as vi,..., v, € kerT").
Case 2: % is linearly indep.
Suppose ami1,---,0n € F and

Oém+1TUm+1 + ...+ OénTUn = OW

Then
Ow = T(am+1vm+1 + ...+ apvp

So a1 Vmt1+- - - Fanv, € ker T. By defn, %y is a basis for ker T'. So 351, ...,8n € F'2
Omt1Vm+1 + ..+ apvp = B1v1 + ...+ Bvn

Hence

0=—-01v1 — ... — Bm + Qun+1Vm+1 + - - - + apvp
As A is a basis for V, it is linearly indep, so 81 =0,...,8n =0,@m4+1 =0,...,0, =0
(Coordinate Theorem) and the claim follows. O

Note: Let V be a finite dimensional vector space over F'; W C V a subspace, V/W the
quotient space, then —: V = V/W, v —»v=v+ W and dimV/W =dimV — dim W.

§9.2 Algebra of Linear Transformation

We want to study the set of all linear transformation from a vector space over F' V' to a
vector space over F' W. Let V, W be a vector space over F'. Set

L(V,W):={T:V — W|T is linear}

Check: if TS € L(V,W),a € F, then T + S € L(V,W). Since we know % (V, W)
{f:V — W|f amap} is a vector space over F', by the Subspace Theorem, L(V, W)
F(V,W) is a subspace.

Nl

Proposition 9.5
Let V, W be a vector space over F, then L(V,W) C .#(V,W) is a subspace.

Now we know if we have maps
f:X—=>Y and g:y— Z
we have the COMPOSITE MAP

gof: X —=Z by(gof)z)=g(f(z))VreX

where o is called the COMPOSITION (and often omitted when clear). Then we
have
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Proposition 9.6 b

Let V,W, X, U be vector space over F, T.T":V - W, S8 :W —- X, R:X —
U all be linear. Then,

1. SoT :V — W is linear.(the composition of linear transformations is linear).
2. Ro(SoT)=(RoS)oT and linear.
3. So(T+T')=SoT+ SoT and linear.

4. (S+5)oT =S0T+ S5 oT and linear.

Proof.
(SoT)(avy +v2) =S (T(av1 + v2)) = S(aTvy + Tva)
=aSoT(v1)+ SoT(vg)

Yvi,v9 € V,a € F.
The rest are left as exercises. O

/Definition 9.7 (Linear Operator) — Let V be a vector space over F', T : V — V\

linear, so a linear operator is defined as

TV :=To...oT ifneZ"

n

70 =1y
- J

Proposition 9.8 A
Let V' be a vector space over F. Then L(V, V) under + and o of functions V. — V
satisfies all the axioms of a field except possibly (M3) and (M4) with

one=1y:V =V byve—w

zero =0y :v —v byv—0
We say L(V,V) is a (non-commutative) ring of M, F'. )

§9.3 Linear Transformation Theorems

~

[Definition 9.9 (Properties/Consequences of Linear Transformation) — Let T': V —
W be linear. We say that 7' is

1. a MONOMORPHISM (write mono or monic) or NONSINGULAR if T is
1 —1. (i.e., injective).

2. an EPIMORPHISM (write epi or epic) if T' is onto (i.e., surjective).

3. an ISOMORPHISM (write iso) or INVERTIBLE if T is bijective and 7! :
W — V is linear. We say V, W vector spaces over F are ISOMORPHIC
(write V' =2 W if 3 an isomorphism S : V' — W we also write an isomorphism
S:VoaWasS:VEW )

&
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Remark 9.10. V =2 W vector space over F' means that we cannot take V' and W apart
algebraically.

Example 9.11

Ftl = F[t], as F** — F[t], by (ag,...,an) = ag + aqty + ... + a,t™ is an
isomorphism with inverse F[t], — F"*! by ag + aqt + ... + ant" = (ag, ..., an)

T ows +wa) = T (aTwvy + Twg) = T (T(avr + v2))
= T_lT(owl + v2)
= av1 + V2

= ozT_lwl + T_lwg O]

/Corollary 9.12
Let T : V — W be a monomorphism. Then V 22 ¢mT via T

Remark 9.13. If V, W, X are vector space over F', then
1. VeV
2.VEW w2V
3. V=2Wand W= X then V=X

In algebra, isomorphisms are usually easier to check than are one might assume, because
the following result is often true.

Proposition 9.14
Let T : V — W be linear. Then T is an isomorphism iff 7" is bijective.

Proof. (—) immediate.
(«<) Let T71 : W — V be the set inverse of T : V — W, so

ToT ' =1y and T 'oT =1y
In particular, if v € V and w € W,
w=Tv if Tlw=v
Let wy,wy € W, a € F. To show
T_l(ozwl + wg) = aT wy + T w,

T is onto so
dv, e VaoaTv,=w;,i=1,...

Hence, we have
Tﬁl(ozun + wg) = Tﬁl(aT’Ul + T’Uz) = Tﬁl(T(OzUl + ’Ug))
= T_lT(owl +vg) = avy + vy
=aT  wy + T wsy O
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§10 ‘ Lec 10: Oct 23, 2020

§10.1 Monomorphism, Epimorphism, and Isomorphism

Corollary 10.1
Let T : V — W be a monomorphism. Then V' = im T via T

Definition 10.2 (Linear Map) — Let T': V' — W be linear. We say T takes linearly
independent sets to linearly independent sets if v;,7 € I are linearly independent in
V' (in particular, distinct). Then, T'v;, 4 € I are linearly indep. in W. (T'v; # Tv; if
i#jinl)

(
Theorem 10.3 (Monomorphism)
Let T': V — W be linear. Then the followings are true

1. T'is 1 — 1, so it’s monomorphism.
2. T takes linearly indep. sets in V to linearly indep. sets in W.

3. kerT' =0:= {0y }.

\ 4. dimker7T = 0. )

Proof. e 3) iff 4) is the defn of the 0-space.

e 1) — 2) It suffices to show that T" takes finite linearly indep. sets in V' to linearly
indep. sets in W.

Suppose that vy,...,v, € V are linearly indep. and aq,...,a, € F satisfy

Ow = a1Tv + ...+ aTvu,

Then
T(Ov) =0y = T(qul +...+ Oén’l)n)
AsTis1-1
Oy =aiv1 + ...+ apvy,
Since vy, ...,v, are linearly indep. a; = 0,7 =1,...,n as needed.

e 2) — 3) Let v € kerT. Then Twv = Op. If v # 0, then {v} is linearly indep. By 2)
Tv # Ow as then {Tv} is linearly indep. So v # 0.

e 3) = 1) If Tvy = Tws, v,v3 € V, then
OW = T’Ul — TU2 = T(U1 — UQ)

So v1 — vy = 0y by 3), i.e., v1 = vy O
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Remark 10.4. The Monomorphism Theorem says ker 7" measures the deviation of 1" from
being 1 — 1.

Note: In the Monomorphism Theorem, we do not assume that V or W is a finite dimensional
vector space over F.

/Theorem 10.5 (Isomorphism) R

Suppose T : V. — W is linear with dimV = dim W < oo,i.e., V,W are finite
dimensional vector space over F' of the same dimension. Then the followings are
true

1. T is an isomorphism.
2. T is a monomorphism.
3. T is an epimorphism.

4. If B ={v1,...,vn} is a basis for V, then {Tvy,...,Tv,} is a basis for W (so
Twy,...,Tv, are distinct), i.e., T' takes basis of V to basis of W.

L 5. There exists a basis & of V' that maps to a basis of W. )

Remark 10.6. 1. The condition that dimV = dim W < oo is crucial

Come up with a counter example J

2. Let V2 W with V, W be finite dimensional vector space over F.. So dim V = dim W.
Let S:V — W be linear. Then S may or may not be an isomorphism, e.g., if S is
the zero map then it is not an isomorphism unless V' = 0. The theorem only says
that 3 an isomorphism and any such satisfies the theorem.

3. Let f: A — B be a map of finite sets with |A| = |B|. Then f is a bijection iff f is
an injection iff f is a surjection.

Proof. (of Theorem)
e 1) — 2) follows by defn.
e 2) — 3) By the Dimension Theorem
dimW =dimV =dimker7 4+ dim im T

Thus, T is onto iff im 7' = W iff dim W = dim im T (by the Corollary to the
Existence Theorem) iff dimker7T =0 iff 7"is 1 — 1.

e 3) > 1)as 3) = 2) and 1) = 2) 4+ 3) by the Proposition

e 2) — 4) Let {vi,...,v,} be a basis for V. By the Monomorphism Theorem,
Tvy,...,Tv, are linearly indep. in W, so

n<dmW =dimV =n
Hence {T'vy,...,Tv,} also spans as dim W = dim V.

e 4) — 5) — 3) are clear.
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§10.2 Existence of Linear Transformation

The next result is really the defining property of finite dimensional vector space and
linear transformation.

[Theorem 10.7 (Existence of Linear Transformation (UPVS)) b

— (Universal Property of Vector Space) Let V' be a finite dimensional vector space
over F';, B = {v1,...,v,} a basis for V and W an arbitrary vector space over F.
Let wy, ..., w, € W, not necessarily distinct. Then

' T:V — W linear > Twv; = w;Vi

We can write this in an other way as follows:
Let B <— V be a basis for V', V' a finite dimensional vector space over F' and W a
vector space over F. Given a diagram,

B—V
\ of sets and
f set maps
w
then 37 : V — W linear >
B—=V

KT
w

commutes , i.e., T oinc = f.

J

Proof. Define T' : V. — W as follows: let V € V. The dlay,...,a, € F 2 v =
a1v1 + ... + a,v, by the Coordinate Theorem. Define

Tv=T(1v1 + ...+ apvy) = qqwy + ... + apwy,

Since the «; ARE UNIQUE, this defines a map — we say T : V — W is WELL —
DEFINED. Certainly, Tv; = w;, i = 1,...,n. To show T is linear, let v = > """ | ayjv;, v =
Sy Bivi, @, a4, Bj € FVi,j. Then

n n
T(av+d)=T <O‘Z Qiv; + Z /Bivi)
i=1 i=1
n

=T < (o + @')%‘) = Z(aai + Bi)w;
=1 =1

n n

= az ojw; + Zﬁlwl =aTv+ TV
i=1 i=1

as needed. This shows existence.

Uniqueness: Let T': V — W by (*) and S : V. — W linear s.t. Sv; = w;Vi. To show S =

T,let v=>" v, € Funique, i =1,...,n. Then Tv =" oTv; = Y " | a;w;

which is equivalent to
n n
= Z%‘Sw =9 <Z 0%%’) = Sv
i=1 i=1

So S is T and we have proven uniqueness. O
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Remark 10.8. The theorem says a linear transformation from a finite dimensional vector
space over F' is completely determined by what it does to a fixed basis. i.e., as there are no
non — trivial RELATIONS on linear combos of elements in 4, the only relation in im 7'
will arise from the kernel of T'.
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§11 ‘ Lec 11: Oct 26, 2020

§11.1 Lec 10 (Cont’d)

Remark 11.1. 1. In the above, given fv; = w;Vi, we say that T : V. — W by > a;v; —
a;w; EXTENDS f linearly.

2. Let V be any vector space over F' (not necessarily finite dimensional). Suppose V
has a basis 4, then every v € V is a finite linear combo elements in %. Using the
same proof of UPVS, shows

if W is a vector space over F, then given a diagram
B—=V

of sets and
f set maps
W
of set and set maps. J'T : V — W linear s.t.

B—V

NT

w
commutes. LE., if Z = {v;}, is a basis for V, w; € W, i € I (not necessarily distinct),
f:V—=>Whbywv+— wViel Then T :V — W linear s.t. Tv; = w;Vi € I. So
any linear transformation from a vector space over F' V having a basis is completely
determined by what it does to that basis.

3. Axiom: Every vector space over F' has a basis. This is equivalent to the Axiom of
Choice.

Theorem 11.2 (Classification of Finite Dimensional Vector Space)

Let V, W be finite dimensional vector space over F'. Then

VW <— dimV =dimW

-

Proof. (—)Let T : V. — W be an isomorphism, & = {v1,...,v,} a basis for V' (so
dimV =n ). By the Monomorphism Theorem,

€ ={Tvi,...,Tv,}

is linearly indep. in W. Since |%| = n and span(%’) = w (as T is onto), ¥ is a basis for
W and dim W =dim V.

(<) Suppose n = dimV = dimW. Let # = {vi,...,v,} be a basis for V, ¢ =
{wy,...,w,} a basis for W. By the UPVS, 3T : V — W linear v; — w;Vi, i.e., T
takes the basis #Z of V' to the basis ¥ of W. By the Isomorphism Theorem, T is an
isomorphism. O

Example 11.3 1. FxXm & pmXn o pmn

9. M,,F =~ F"

3. F[t], = Fnt!

o1
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Let T : V — W be linear with V, W arbitrary. Since T only tells us about im T, we
replace the target W by im T'= T'(V), i.e., view T : V. — W surjective linear. Let %,
be a basis for kerT' C V subspace. Then Extension. Theorem holds even when V' is not
finite dimensional. Extend %, to a basis & = o U%€ so € N %y = and V = span A.
By the argument proving the Dimension Theorem,

T(¢)={T(y)ly € €}

is linearly indep. and since T is onto T(%) is a basis for W. The new relation in
W = im T comes from
Tx =0, € By

In the extra section (3), we showed
V/kerT ={vjv € V}

where
v=v+kerT ={v+z|z € ker T}

is a vector space over F'. In fact, {y|y € €} is a basis for V/ker T. By the UPVS, 3!
linear transformation

T:V/kerT — W
given by 0 =% — 0,2 € By, 5+ Ty,y € €. T is clearly onto and T is 1 — 1,
T(w)=T(v) YveV

So
T:V/kerT - W = im T

is an isomorphism.
As —:V — V/kerT by v — T is a surjective linear transformation, by definition,

av +v = av+ v

Note: ker — = kerT.
We have a commutative diagram

Vv imT
- J ~_ commutes
T
V/kerT

with - an epimorphism

T an isomorphism

Notiece if W # im T, T is only a monomorphism.
We shall show that all of this is true without using bases (or the Extension Theorem in
the Extra Lecture). In particular,

V/kerT = im T
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§11.2 Matrices and Linear Transformations

Goal: Let V,W be finite dimensional vector spaces over F. Reduce the study of
linear transformations 7" : V' — W to matrix theory, hence often to computation
(Deabstractify).

I Remark 11.4. In this section, all bases are ORDERED.

Set up and Notation: Let V,W be finite dimensional vector space over F. % =
{v1,...,v,} an ordered basis for V, so dimV =n. € = {w,...,w,} an ordered basis
for W, so dim W = m.
Step 1: If v € V, write

V=011 + ...+ apv,

i.e., ai,...,qa, are the unique coordinate of v relative to . Then let
aq
[U}gg — c Fn><1
Qn

the coordinate matrix of v relative to the ordered basis A. E.g.,

0
[vilg = | 1 it
1
and set
vg = {[v]glv e V} = F**!
Then
v—>vg byvr [v]g isomorphism
as
0
vi e = |1 ith,fml ={e1,...,en}
0

the standard basis for F?*L.
Step 2: Let T : V — W be linear, then

Tv; € W = Span ¢ = Span(ws, ..., wy,)
as € is a basis for W. Therefore,

oy e F,1<i<m,1<j<n>

m
ij: E Qi Wy, jzl,...,n
i=1
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Let A = (aj; € F™"), i.e., Ajj = a;;¥i, 5. Then the j'" COLUMN of A is

alj
= [Tv;], € Wy = F"*!

amj

Step 3: Let
A: Vg — Wy by A([vlg) =A-[v]y

This is a linear transformation.
A Fn><1 N mel

Since
A ([U]]@) = [ij]% ,j = 1, oo n
A is the unique linear transformation s.t.
Alvjlz = [Ty

So by UPVS,
Avlg =[Tv], YveV (*)

Definition 11.5 (Matrix Representation) — The unique matrix A € F™*" in (*)
is called the matrix representation of 1" relative to the ordered bases, #,%. We
denote A by [T -

Notation: if V=W, # = ¢, we usually write [T, for [Tz 4.
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§12 ‘ Lec 12: Oct 28, 2020

§12.1 Lec 11 (Cont’d)

Summary: Let T : V — W be linear with V, W finite dimensional vector space over F

B ={v1,...,v,} an ordered basis for V,dimV =n
¢ = {w1,...,wy} an ordered basis for W, dim W =m

Then 3! A = [T],, € F™*" satisfying
A[U]gg = [T]gg;bﬂ[’u]g = [T’U]%)VU eV
Moreover, if

m
T’Uj: E QWi jzl,...,n
i=1

then the j*® column of A = [T]4.¢ is precisely

a1y
[Tvjle = | : | e F™
amj
i.e.,
T)as = | Toils ... [Tonls
columns

Warning: If Z',¢" are two other ordered bases for V, W respectively (even the same
vectors in A, % written in a different order), then in general

[T].@,‘f 7& [T] B E
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Example 12.1 1. Let Z = {v1,...,v,},% = {w1,...,w,} be two ordered bases
for V. Let
T:V — V linear by v; — w;,i =1,...,n

Then [Tz ¢ = I, the identity matrix. Moreover, if

n
T’Uj = wj = E ozijvi
=1

then
@11 ... O1n

Tz = [Tz.2 = (qi5) =
(0775} Onn

2. T:R? - R? by (o, B) = (B,0), . = % = {e1, e}, the standard ordered
basis for R2. Then

1) = ([Teil ) = § )

and if A is the ordered bases Z = {ez, €1} then

10
). = (Terlas [Tesla) = 5 )
3. Let 8 = {1, x, 2, x3} be a basis for R[x]3, the polynomial functions of degree
< 3 (and 0), and
D : R[z]|3 — R[z]3 differentiation

Find [D]y

0

0

D-1=0so0[D-1l]g= 0
0

1

0

Dz =1so [Dx]g = 0
0

0

2 2 2
Dzx* = 2x so [Dz?]|g = 0
0
0
3 2 3 0
Dz® = 3x° so [Dz°] 4 = 5
0

Hence,

01 00

00 20

DPlz =10 0 0 3

0 00O
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Some more examples

Example 12.2 1. Let Ty : R?> — R? be counterclockwise rotation by an £

Typer = cos ey + sin fegy

Tyea = (—sinf)eq + cos ey

So

[Tol.# = ([Toe1]#[Toeals) = (COSH —sin 0)

sinf cosf

2. Let # = {v1,v2} be an ordered basis for V' and ¢ = {w;, w2, w3} an ordered
basis for W. Suppose

Ty = 3wy + ws
TUQ

T:V —- W by
w1 + 6wy + ws

then [T]z% =

= O W

1
6
1

3. Let T : R3 — R3 be the reflection about the ey, e2 plane. What is [T].?

e} — el

€9 —r €9

e3 — —e3
1 0 O
So[Tl»=(0 1 0
0 0 -1

KTheorem 12.3 (Matrix Theory) b

(MTT) Let V,W be finite dimensional vector space F', dimV = n, dimW = m,
and %, % ordered bases for V,W. Then the map

¢ : L(V,W) = F™" by T s [T) g

is an isomorphism. In particular

dim L(V, W) = mn
- J

Proof. Left as exercise (Homework). O

Using the fact that W — W is an isomorphism if w — [w]¢ show that
1. ¢ is linear
2. ¢ is onto
3. pis1—1
4. dim L(V,W) = mn
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Theorem 12.4

Let V, W, U be finite dimensional vector space over F' with ordered bases %#,%, 2
respectively, T : V — W, S : W — U linear. Then

[SoT)z9=[5%9" Tas

Proof.

[Sle.2[T)2%v]s = [Sle.o[Tv]s
= [S(Tv)]
[(SoT)(v)lg
=[5

oT]O [v]2 O

Exercise: Let V, W be finite dimensional vector space over F with dimV = dim W,
A, % ordered bases of V, W respectively, T : V. — W linear. Then, T is an isomorphism
iff [T 5« is invertible.
Let V be a finite dimensional vector space over F, dimV = n, 4 an ordered basis for
V. Then

¢: L(V,V)—= M,FbyTw— [T

satisfies all of the following: VT, S € L(V,V)

(i) (T +5) = o(T) + ¢(S5)
(ii) ¢(T 0 S) = ¢(T)e(5)
(ili) ¢(0v) = Opnx1
(iv) ¢(1y) = 1pnx

By the exercise, ¢ is bijection linear transformation. Both L(V, V') and M, F satisfy all
the axioms of a field except (M3) and (M4). We call them (NON COMMUTATIVE)
rings and since ¢ preserves all the structure i) — iv) as does its inverse(?), we say ¢ is an
ISOMORPHISM of rings

Definition 12.5 (Change of Basis Matrix) — Let V be a finite dimensional vector
space over F' with ordered bases %, ¢ . Then the invertible matrix [1y]z« is called
a CHANGE OF BASIS MATRIX.
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Example 12.6 1. ¥ ={ej,e2}, B ={(1,1),(2,1)},% = {(3,4),(6,1)} ordered
bases for R2.

g2z, = G ?), [lg2] _ <(1) (1)>

3 6

[1r2]y o = <4 1) » [lr2lg - ((1) (1)>

2. % an ordered basis for V, a finite dimensional vector space over F', dim V' = n,
then [1‘/]35 =1eM,F

3. V a finite dimensional vector space over F', #,% ordered bases for V, then
[1v].% is invertible and

4. Apply 3) to 1)

]y = [v]2h, = (° 6\ _ 1 (1 6
e Viewr = \4 1 21 \—-4 3

v]zs = lv]szllla,.»
-l 3G )
-~ (7 %)

Some more examples
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Example 12.7 1. Any invertible matrix A € M, F is a change of basis matrix
for some ordered bases %, % for F" : if A = («ayj) is invertible, define

n
Uy = E agje;, B ={v1,...,vn}
=1l

Then A = [A]z,» since A is invertible, so 4 is linearly indep., hence a basis
by counting and A = [,z ».

2. The j* column of [1,] 2%, V a finite dimensional vector space over F'is the

7 vector of Z expressed as a linear combo of vectors in €.

3. Generalizing (1), (3) from above example, we get the following crucial compu-
tational device: if V = F", %, % ordered bases for V, then
Llzy = [Llrellla.s = Llgylde.s

if we only have V' = F", then we have to use an isomorphism V — F™ — how?

Since [1,]z,» and [1,]¢ » are usually (often?) easy to write down, this is
quite useful. What if V' = F™>*"?

(" )
Theorem 12.8 (Change of Basis)

Let V, W be finite dimensional vector space over F' with ordered bases &, %’ for V
and ¢,%¢" for W. Let T : V — W be linear. Then

Tzs = lwle ¢ [T)a ¢ lv]sz
= [1W]<},1<g/ [T < [1v) 5,2

= lwleeTe e 1v]g 4

- J
Proof. We have

[wlgly = Mwlere and [Iv]zm = [Iv] 4 4

Since
Uwle [Tz« 1v]as = 1w o Tz «[1v]s,s
=[lwoToly]ye
=[Tze
the result follows. O

To use (and remember) this, do it as follows — to let the notation help you:

T:V W
T
v T)s,c We
T ’
lvlp B s
I [wls, lwledwle ¢
lv)an
[ V]B,B T]B’,C >
B [T]B’,C' c’
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COMMUTES, i.e., can compose along any allowable arrows in the correct direction if
we arrive at the same place in different way starting at the same place we get the same
answer.

Warning: You can only reverse direction if the arrow is an isomorphism and then you
can take the inverse. To remember the theorem, we write

T:V—->W
T
VB Tls.c We
v]s.B [lwlc,cr
Vg Wen

and fill in arrows you can find in the diagram before.
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§13 ‘ Lec 13: Oct 30, 2020

§13.1 Some Examples of Change of Basis

If V, W are finite dimensional vector space over F' with ordered bases %, % respectively
and if T : V — W is linear

[Tv]e = [T]pg;g [v]gYv € V

Note: There is nothing about the bases in which v was written.

1. V=R%.9={e, e}, % ={vi =(1,1),v3 = (2,1)} ordered bases. Find [T]» in

the following (equivalently, [T g e T(a, B))
(i) T(1,1) = (2,1) and T(2,1) = (1,1)
v, LB
ls.s \ \[mg,s :G f)
Vs [T]s Vs
So
1]y = [1 [T2[1v] 4y

<)(>1

»—nc,o\—/

So T'(a, B) = (—a+ 38, 8)
(il) T(1,1) =6(1,1) + (2,1) and T'(2,1) = —2(1,1) + (2,1)

[T]5

VB VB

2

[v]s.s ‘ ‘HV]B’S :G 1>
Vg Vg

[T]s

me-GDEDED -G

(i) T(1,1) = (3,1) and T(2,1) = (5,1)

%> %>
‘ [T}B’S‘[l]B,S
Vg Vg

[Tz, = (T, D]#[T(2,D)]r) = (B, DI, )].r)

3 5\ /1 2\
] o _1 . .
So [T)y = [T]gg,y[lv]gy which is equal to (1 1) (1 1)
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2. Let T be a rotation about the axis (1,1,1) € V = R3 of an Zf in the counter-
clockwise direction with (1,1,1) up. We will use stuff from 33A — dot product.
Normalize (1,1,1) to

< 1 1 1 > (1,1,1)
U1 = =~ -k B = 7771 14 a1
V3 V3 V3 (1,1, 1)
a unit vector in the DIRECTION of v;. Find a vector L to vy, say
vh = (0,1,-1)

and normalize it to . .

o= (0,2 =
Let v3 = v1 X vy the cross product of vy, vs. It is orthogonal to v; and ve and by
the right hand rule in the correct orientation

k

; 11 1 <2 1 1)

3 = =\ "= Y= =

vow A NGV
V2 V2

a unit vector (or use Gram — Schmidt and check you have v3 = v; X v and not
—(’Ul X 1)2)

§13.2 Orthonormal Basis

Definition 13.1 (Orthonormal Basis) — Let % = {v;,v2,v3} an ordered bases of
vectors of length 1 and each L to the others, called an ORTHONORMAL BASIS.

T’U1 = U1

Tvy = cos Bvy + sin Ovs

Tvg = —sin Bvy + cos Qug
1 0 0
[T]z= (0 cosf® —sind
0 sinf cosf
1 0 _2
v
S
Vi V2 V6
T
VB Tl5 VB
[1y]B.s J J 1v]B,s
\% \%

[Ty = Wz [Tsllvlg, = [Wvlas Tlallv]s .z
Since both . and £ are orthonormal bases and F' = R, it turns out that

Wiz = [Wlke

This is, however, not true in general.
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3. V=R}T:V = Vasin2)and S:V — V areflection about the plane L (1,2,3).
Find [S]y and [S OT]y.

Find an orthonormal basis with (1,2, 3) direction of the first vector
(1a 2’ 3)’ (07 37 _2)7 (_137 2a 3)

then normalize as follows:

Vi s Vi
lv]s,s J J 5
S
V. V. V.
S s Y 5
w w[lv]o,s
Ve Ve
¢ g5 e
1 0 13
sl e
Via V13 Vis2

8] = [Wvle,# [Sle vz

[So Ty = [Ivle,#[Sle(lv]z,#[Tslv] 4,

The only reason to normalize € to an orthonormal basis is
)%, 7" =vlg,

§13.3 Similarity

Definition 13.2 (Similar Matrices) — Let A, B € M, F. We say A is SIMILAR to
B write A ~ B if AC € M, F invertible >

A=C"'BC
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Remark 13.3. A, B € M,F :
1. A~B— B~ A:
A=C7'BC,C invertible - B = (C~HtAC tasCCl=T=C"1C
2. If A~ B, then det A = det B. If A = C~'BC, invertible, then
det A = det (C7'BC) = det(C~ ") det Bdet C
= (det C)~! det Bdet C = det B

3. ~ is an equivalence relation.

KTheorem 13.4 (Similar Matrices) A

Let A,B € M,F. Then A ~ B iff 3V a vector space over F, dimV =n,T:V -V
linear and ordered bases %, % for V s.t

A= [T]gg and B = [T]cg

i.e., A ~ B iff they represent the same linear transformation relative to (possibly)
different ordered bases.

- J
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§14 ‘ Lec 14: Nov 2, 2020

§14.1 Lec 13 (Cont’d)

Proof. (Of Similar Matrices Theorem) (=) If A = [T, B = [T]g, then C = [ly] 4 €
M, F is invertible with A = C~'BC by the Change of Basis Theorem.
(—) Suppose C' € M,F is invertible, A= C~'BC. Define V.=F", T:V — V by

n
T;; = E Ajje;
i—1

with . = {ej,...,e,} the standard basis
[T]y = A=C"'BC

Let w; = Y"1 (C7Y);;e4, ie., (C71);5 is the it entry of C~1. As C is invertible, C~!
exists and is invertible. Then
B = {wl,...,wn}

is a basis for V and [ly]g.» = C™! figure here so A = C7![T]4C and B = [Ty
works. O

§14.2 Eigenvalues and Eigenvectors

(Definition 14.1 (Eigenvalues, Eigenvectors & Eigenspace) — Let 0 # V be a Vector\
space over ', T : V — V a linear operator and A € F. Set

S)\ZZT—)\l\/IV—)V,

a linear operator, so
Sa(v) =Tv— Vv eV

We say A is an EIGENVALUE of T if Sy is not 1 — 1, i.e., ker Sy # 0. Let

Er(A) =ker Sy ={v e V|Tv— v =0}
={veV|Tv= X}

if Ep(A\) # 0, we call Ep(\) an EIGENSPACE of V relative T, A and any v € Ep()\)
an EIGENVECTOR of T relative to A. So if T : V' — V is linear, A € F' is an
eigenvalue of T iff

HA£veVsTv=
. J
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Remark 14.2. Let 0 # V be a vector space over F and T : V — V linear

1. Eigenvalues occur as measured quantities in science and engineering, e.g., resonance,
quantum number — measurable values.

2. If A € F is an eigenvalue of T, then

0 # Er(\) CV is a subspace

3. If A € F an eigenvalue, any v € Ep(\) is an eigenvector. In particular, any basis for
Er () consists of eigenvectors of T relative to A. Hence

T =l
Br(\) Er(X)

(the notation above means we restrict the domain to Er(A). In particular, if
V= ET()\), then T' = )\lv.

4. If T =0, then V = Ep()) with eigenvalue A = 0(A = 1).
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Example 14.3 5. Let V =R3, T : V — V a counterclockwise rotation by an
/0,0 < 0 < 27 around the axis determined by 0 # v € V. Then

T(aw) = aTv = avVa € F

So Span(v) C Ep(1). Note if 0 # v is an eigenvector with eigenvalue p of
linear S : V — V, then

Sv € Span(v) = Fv so Span(v) C Eg(u)

Do there exist other eigenvalues of 177 Ever? So the only other possibilities
would be
0=mA=-1

In that case
Er(—1) = Span(w1, w)

where wy, we are linearly indep. with w; L v,i = 1,2. (of course, if one allows
0=0,T=1y.)

6. Let 0 # v € V. Suppose that
pw=Tv= N, ANpuebF

Then = Aso 0# v €V is an eigenvector of at most one eigenvalue of T' —
usually none. In particular,

Er(A)NEr(p) =0if A#p
and we write
Er(A) © Er(p) = Er(A) + Er(p)
and call it the DIRECT SUM of the subspace Er(\) and Ep(u).
What do you think is W1 @ Wo @ W3? J

7. Suppose dimV = n, = {v1,...,v,} is an ordered basis for V. Suppose
that that
Tvi:aivi, iz(),...,n

Al, ..., Ap € F not necessarily distinct. Then

(M0
is a DTAGONAL MATRIX, i.e., all non-diagonal entries 0. We say T is

DIAGONALIZABLE if 3 an ordered bases € for V' > [Ty is diagonal.

8. Suppose dimV = n(< oo) and T is diagonalizable, i.e., 3 an ordered basis
¢ = {wi,...,w,} for V s.t.

H1 0
Tle=|: . :
0 ... pn
Then Tw; = pyw;, ¢t =1,...,n and ¥ is an ordered basis for V' consisting of

eigengenvalues for 7T'.
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Conclusion: Let V be a finite dimensional vector space over F', T': V — V linear. Then
T is diagonalizable iff 3 a basis for V' consisting of eigenvectors of T'.

Note: If T is diagonalizable, T : V' — V linear, V a finite dimensional vector space
over F, ordered basis & for V. Then 3C € M, F, invertible, n = dimV > C~!T]4C is
diagonal by the Change of Basis Theorem.

Example 14.4 9. Let V be a finite dimensional vector space over F', n = dimV,
% an ordered basis for V., S : V — V linear. Then by the Isomorphism
Theorem, S is 1-1 iff S is onto. Apply this to

S,\:T—)\lv:V—H/

to conclude:

A is an eigenvalue of T"iff S\ = T — Aly is singular (i.e., Sy is not 1-1)

iff
[Sa]lz = [T — My is not invertible
iff
det[T — Aly|% = 0 (by properties of det)
iff
det ([T — A[1v]z) =0
iff
det ([T — M) =0
iff

det (Al — [T]) = 0

Summary: Let V' be a finite dimensional vector space over F', dimV =n,T:V -V
linear, & an ordered basis for V., A € F. Then, A is an eigenvalue of T" iff det (A —[T]5) =
0.

Definition 14.5 (Characteristics Polynomial) — Let A € M, F. Define
fa =det(tI — A) € FJt]

called the Characteristics Polynomial of A.

The properties of the determinant on F'[t] is the same as on F' except that A € M, F'[t]
is invertible iff det A € F'\ {0} and we assume these properties.

Proposition 14.6
If A, B € M, F are similar, then f4 = fp

Proof. If A= C~'BC, C € M,,F in
fa =det(C~HtI — B)C) = det C~' det(tI — B)det C
=det(tI — B) = fg =

Warning: Let A = <(1) (1)> and B = (1 (1)> Then, A and B are not similar, but

fa = fB, i.e., the converse is false.
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Corollary 14.7

Let V' be a finite dimensional vector space over F', T': V — V linear, &, % ordered
bases for V. Then

e = s

(I

Proof. Change of Basis Theorem.

Definition 14.8 (Characteristics Polynomial) — Let V be a finite dimensional
vector space over F, T': V — V linear, & ordered basis for V. We call f[t]# the
characteristics polynomial of T'. By the corollary, it is independent of A, so we
denote it by fr(= fir),) and write fr = det(tly — T') := det(t] — [1T]x)

Theorem 14.9

Let V be a finite dimensional vector space over F', T': V' — V linear. Then, the
eigenvalues of T are precisely, the roots of fr, i.e., those o € F' 3 fr(a) = 0.

Proof. det A € F, % an ordered basis for V. Set A = [T'|5, so fr = det(t] — A). Then
A is a root of fp iff evaluating fr at A, i.e., fr()), we have

fr(A\) =det(tl — A) T 0 <= \is an eigenvalue of T’

i.e., expanding the polynomial det(tI — A) and plugging X for ¢ gives 0. O

We cannot use the following theorem if we fully prove it.

Theorem 14.10 (Cayley — Hamilton)
Let A € M, F. Then
fa(A)=0

plugging A into the expansion of the determinant f4, you get 0.

Remark 14.11. By HW, we have {I,A,Az,...,A"Z} C M,F is linearly dep., i.e.,

{I,A,...,AN} is linearly dep. for some N > 0. This means 30 # g € F[t] with deg
g < N and g(A) =0 — why?

So Cayley — Hamilton’s Theorem says {I, A,..., A"} in M, F is always linearly dep. in
M, F with fa(A) giving a dependence relation.

Note: If you know Cramer’s Rule in determinant theory, one can prove Cayley — Hamilton
follows from it. In fact, it is essentially Cramer’s Rule.
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4.

Moreover, ¢ is unique and called the MINIMAL POLYNOMIAL of A and denoted gr.
Using it we shows a stronger form of the Cayley — Hamilton Theorem.

Remark 14.12. Let V be a finite dimensional vector space over F', T : V — V linear. You
will show in your Take home Exam. There exists a polynomial g € F[t] satisfying

1. ¢#0
2.
3

q(A)=0

. deg ¢ is the minimal degree for a poly g # 0 in F'[t] to satisfy g(4) =0

q is MONIC, i.e., leading coeff is 1.
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§15 ‘ Lec 15: Nov 4, 2020

§15.1 Lec 14 (Cont’d)

Cayley — Hamilton (Stronger Form): Let V' be a finite dimensional vector space over F,
T :V — V linear, then

qr|fr in Ft]

(where qp = q[T) 5, % an ordered basis and gr is indep. of Z ). Why does this show
the other form?

Computation: Let V be a finite dimensional vector space over F, T : V — V linear. To
find eigenvalues and eigenvectors of 1", you must solve

Tv =av
By Matrix Theory Theorem, this is equivalent to
[T]zlv]z = Alv]2 )

% an ordered basis for V. To find eigenvalues, we find the roots of fr. To find the
eigenvectors, we solve (*).

Theorem 15.1

Let T : V — V be linear and Aq,...,\, in F distinct eigenvalues of 1,0 # v; €
Er(N),i=1,...,n. Then {vq,...,v,} is linearly indep.

Proof. We induct on n.
e n=1:v #0so {v} is linearly indep.

e n > 1 — Induction Hypothesis (IH) : If A1,..., \,—1 are distinct eigenvalues of
T,0 #v; € Ep(\),i=1,...,n—1 then {v1,...,v,-1} is linearly indep. Suppose
that

0=ao1v1+...+apvp,a1,...,an € F (*)

Apply the linear operator Sy, =T — A, 1y to (*). As
S)\n (vz) = T’UZ' — )\nvi = /\i'Uz' — )\nvi = <)\z — )\n)vi
We get

Sxn(Q1v1 + .o 4 M) = 1Sy, v1 F ...+ @Sy, Un
0=ai(a1 —ap)vr + ...+ an_1(An—1 — An)Un—1
By the IH, aj(N\; — \) =0,i=1,...,n—1
As A=A #0,i=1,...,.n—1,0;,=0,i=1,...,n—1. So 0 = ayvp,. As v, #0,
o, = 0 also.

O]

Proof. (Alternative) Take T of (*) to get an eqn 1). Multiply (*) by A, to get an eqn 2).
Subtract eqn 2) from eqn 1). The proof that if a1, ..., a, are distinct then eM®, ... e*n®
are linearly indep. O
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Corollary 15.2

Let V be a finite dimensional vector space over F', dimV =n if T': V — V linear
has n distinct eigenvalues, then T is diagonalizable. The converse is false, e.g.,
T=1y.

Corollary 15.3

If V is a finite dimensional space over F, dimV =n, T : V — V linear, then T" has
at most n distinct eigenvalues. This also follows as any 0 # f € F[t] has at most
deg f roots.

/Corollary 15.4 A

Let V be a vector space over F', T : V — V linear, A\q,..., A\, distinct eigenvalues
of T'. Set

if v; € Ep(N;),i=1,...,n satisfy
v+...+v,=0

then v; = 0,9 =1,...n. We write this as

X W =Er(\)&...® Er(\) )

Exercise 15.1. Let V be a vector space over F', Wi,..., W, C V subspaces. Let
W =Wi +...4+ W,. Then the followings are equivalent

1. If w; € Wy, i =1,...,n satisfy wy + ... + w, = 0 then w; = 0Vi. We say W, are
indep.

2. fveWiadw, e W, sv=w1 +...+wy,
3. Win Z?#,j:l W;=0vi=1,...,n
4. If %; is a basis for W;,i =1,...,n then =%, U...U %, is a basis for W.
If these hold for W, we say W is an (internal) direct sum of the W; and write
W=W@...0oW,

I Remark 15.5. This generalizes to W = ®W,, general I — How. What is the proof?

Exercise 15.2. Let V be a vector space over F', Wy,..., W, C V subspaces > V =
Wi+...+W,. Let

W=W; x...xW, = {(Wl,...,Wn)|wi C WZVZ}
a vector space over F' via component wise operations. Show

v=Wi1ad..eoW, < T : Wi x...xW, =V

by (w1,...,wy) — w1 + ... w, is an isomorphism. We call W the external direct sum of
the Wz
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Consequences: Let V' be a finite dimensional vector space over F', Aq1,..., A, distinct
eigenvalues of 7' : V. — V linear, 7; = dim Ep(\;), %; ordered basis for Ep()\;),i =
1,...,nif

V=Er(\)+...+Er(\)

then
V= ET<)\1) D...D ET()\n)

and & = %, U...UZB, is an ordered basis for V and
P‘llET(M)]ggl
[Tz =
[)\n]'ET()‘n)} B
(Block form) is a diagonal matrix. In particular,
fT = det(TlV — T) = (t — )\1)711 R (t — )\n)r"

By determinant theory,

A 0
det(o B)—detAdetB

A, B square matrices and T is diagonalizable.

Remark 15.6. T': V — V linear may or may not have eigenvalues
1. V. =R?, fr =t2 4+ 1, then T has not eigenvalues.

2. If V is a finite dimensional vector space over C, then T" has an eigenvalue as fr has
a root by the FUNDAMENTAL THEOREM OF ALGEBRA (which we shall always
assume to be true).

§15.2 Inner Product Space

We know that the dot product of vectors in R3 allows us to define L , /, distance,
etc. We want to generalize this to “inner product spaces”. When we talk about inner
product spaces, we shall always assume that OUR FIELD F LIES in C (e.g., Q,R,C)
as a subfield.

Let —:C — C by a+ Bv/—1+ a — Bv/—1Va, € R denoted complex conjugation.
Note:Let a = o + 3v/—1in C, a, 8 € R. Then

l.a=aifaeR

ol

2.
3. la? =aa >01in R as aa = o® + 5% and = 0 iff a= 0.
As we shall assume F' C C, we define:
F={zeClzeF}

and we shall also assume that
F=F

This is true if F C R or /' = C, but does not always hold UNLESS we only
consider those F' that do which we will.
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[Definition 15.7 (Inner Product Space) — Let F C C be a subfield satisfying\
F = F,V a vector space over F'. We call V' an inner product space over F', write
V is an ips / F, under the map

(V=()v: VXV > F
Write: (v, w) for (,)(v,w) if (,) satisfies Yvy, vy, v3,v € V,Var € F
1

v1 + v2,v3) = (v, v3) + (v2,v3)

2. (v1,v2) = (v2,v1)

W

|
Ny

3. (awy,v2) = afvi,ve) = (v1, @va)
.

v,v) € R and (v,v) > 0 with (v,v) =0 iff v = 0.
- J

If V is an inner product space over F' (under (,), the LENGTH (or NORM or MAGNI-
TUDE) of v € V is given by

loll = \/To,0) > 0 € R

Note: If F < C, ||v||> € F, but it is possible that |[v|| ¢ F, e.g., if V = Q? a vector space
over Q and an inner product space over Q under the dot product |(1,1)]| = v2 ¢ Q.
This is a reason to work only with /' =R or C.
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§16 ‘ Lec 16: Nov 6, 2020

§16.1 Lec 15 (Cont’d)
Properties: Let V be an inner product space over F, a € F,vy,vo,v3 € V.
1. (0,v) =0= (w,0),Vo,w € V.

2. o (avy + v9,v3) = (v, v3) + (v2,v3)

° <1)1, vy + U3> = a<1)1,’02> + <1)1, U3>

3. If F' C R define the ANGLE 6,0 < 0 < 27 between v; # 0 and v # 0 in V' by

g i VLV2)
[oa][[lvz]]
and if F' ¢ R define 6 by
cosf = 7|<1)1,U2>‘
[or][f|vz]]

Note: This does not make sense yet, and will not until we show

[(v1, v2)|

<1 forw; #0,v2 #0
[[oa[[f[vz]]

4. (very useful prop) Let v € V. If (v,w) = 0,Yw € V (or (w,v) = OVw € W), then
v=0.

5. Let 0 # 2 € V. Then
(,z):V = F by v (v,z)

is a linear transformation, i.e., linear functional, i.e., (,x) € V*. However,
(,): V — F by v (z,v)

is linear iff F C R. In general, we say that (z,) is SESQUILINEAR as Va €
FNYvi, v €V
(m, vy + v2) = alx,v1) + (@, v2)

Of course if x =0, (0,)(,0) € V*.
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Example 16.1

Let F C C,F = F = {@|a € F}. The following V vector space over F' are inner
product space over F' under the given (,) :

1. V=F"and (,) = . , Le., if
~—

dot product
V= (al,...,an),w: (61,...,611),0@,6@ EF,Vi,j

Then,
n JE—
<U, U)> = Z o B;
=1
Note: If F' C R, then
n
(v,w) = 0f;
i=1

2. Let I =[o,f]l,a< pinR, V=C) with C(I) ={f:1— R|f cont} then

(frg) = /j fg

Think about what if C¢ :== {f : I — C|f cont}.
3. In 2), let h € C(I) satisfy h(z) > 0Vz € I. Then

(f:9)n = /j hfg
the WEIGHTED INNER PRODUCT SPACE via h.
4. Let A € M, F. Define the adjoint of A to be A* where
(A%)ij = Aji, Vi, j

the conjugate transpose of A., i.e., A* = A’ Soif F CR,A*=AT.

Remark 16.2. If A = F™*", then A* defined by (A4*);; = Aj; still makes sense and is
called the ADJOINT of A. What can you say about AA* and A*A?

Let V = M, F under
(A, B) == tr(ABY)

where tr C =Y | Cj;. Soif F C R, (A, B) = tr(ABT).

7
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Example 16.3 5. Let F =R

Iy = {(ao,al, ey, .. .) |a; € RYE — infinite seq with Za? < oo}

a vector space over F' by component wise operation ( a subspace of RS — see
below) and an inner product space over R via

(v, w) == Zaibi eR
i=0

ifv= (ao,al,...),w = (bo,bl,...)

0<(a; bi)2 = a? + 2a;b; + b?,Vi SO

00 oo )
:F2Zaibi < Zaf+2bf < 00
1=0 =0 1=0

[Theorem 16.4
Let V be an inner product space over F. Then Yvi,vy € V,Va € F, we have

1. |Ju1]| € R with ||v1|| > 0 and |jv1|| = 0 iff v; = 0.
2. [Javi|| = lalffo].-

3. Cauchy — Schwarz Inequality

[{v1, v2)| < [lvr]l[|v2]l

4. Minkowski Inequality(special case)

lvr + val| < Jor]l + [lva]]
\

J

Proof. 1) and 2) are left as exercise.

3) If v1 = 0 or vy = 0, the result is immediate, so we may assume that vy # 0,v2 # 0.

We use the following important trick. Take the orthogonal projection. Let

B (v2,v1)
e ENE

orthogonal projection on v

Claim 16.1. (v,av;) = 0Va € F (i.e., v L avy)

V2, U1
(v, av1) = (vy — <||v’1||2> vy, Q1)
V2, U1
= <’L)2, OZ'U1> + <— <||’U’1”2> 1, Ol’Ul>
_ <’U2,'U1>
— Oé<U2,U1> — W<’U1,av1>
_ U2,V1) _
= oz o) = el =0

78



Duc Vu (Fall 2020 — Spring 2021) 115AH Lectures

establishing the claim. Therefore, we have

<U2,U1>
0 < (v,v) = (v,v9 — 1
(0.0) = {orva = 2208
Vg,V
= (v,v2) + (v1 — %vﬂ = (v, v3)
o1
V2, U1 v2, U1
= {2 = <Huln?> o1, v2) = {v2,02) = <||v’1|2> w2
(v, v2) [{v1, v2) |
= [lva]® = ||v’1||2 (v1,v2) = |Jv2|* — W
So
(o1, v2)* < [Jvr || |vz1?
or
[(v1, v2)] < [loa|[|vz]|
as required. O
Proof. 4.

lur + U2||2 = (v1 + v2,v1 + v2)
= ||1)1H2 + (v1,v2) + (va,v1) + HU2H2
= Hv1H2 + (v1,v2) + (v1,v9) + H112H2
Let (v1,v9) = a+ 8v/—1,a,5 € R. Then
o1 + v2]|* = [loa ]| + 2a + [|va||®

< Jlorll* + 2v/a? + 52 + [|va |

= [Jorl]? + 2[{vr, va)| + [lv2]?
2

< (lvrll + llo211)

So, [lor +val| < [orll + [lvzf- 0
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§17‘ Lec 17: Nov 9, 2020

§17.1 Lec 16 (Cont’d)

Example 17.1

Let V be an inner product space over F'

L [a1f+ .+ anfal < /S0 02/, B2, Vau, i € R.

2. [0 192 /12 210 91,9 € Cla, ).

3. Z between nonzero vectors in V' makes sense.

4. Distance between (end pts) vectors makes sense by the following:

If V is an inner product space over F', define the distance between vi,v9 € V
by
d(vl,vg) = ||’L)1 = ’U2|| >0eR

Then d satisfies Vv, w,z € V
e d(v,w) >0€R and d(v,w) =0 iff v = w.
o d(v,w) = d(w,v)
e Triangle inequality

d(v,z) < d(v,w) + d(w, x)

We call V a METRIC SPACE under d.

Example 17.2 (Metric Space)
Ifv=(a1,...,00), w=(P1,-..,5:) € R” under the dot product, then

d(v,w) = /(a1 — B1)2+ ... + (a, — Bn)?

§17.2 Orthogonal Bases

Motivation: in R" (or C"), . = ., = {e1,...,e,} the standard basis satisfies

1,if i = 5,V4,j
eirej=05=9 " "
0,if i # 5
Goal: Let V be a finite dimensional inner product space over F', F = R or C. Find a
basis & = {v1,...,v,} for V>

</Ui7’Uj> = 51],v2,j (*)
if we only want bases ¢ = {wy,...,w,} for V 3
<wiawj> = 0V # J,

we can work with any subfield F' C C with F = F, since we do not need ||w;| € F for
such a .
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Example 17.3
In R?, let 0 < @ < 27 be fixed. Then

%o = {(cosb,sinf), (—sinb,cos0)}

satisfies (¥*)

[Definition 17.4 (Orthonormal/Orthogonal) — Let V be an inner product space\
over F, ) #S C V a subset. We say

1. S is ORTHOGONAL (or OR) if

(vyw)y=0Vv #£w € S
2. If S is an OR set, we call it ORTHONORMAL (or ON) if, in addition
|lv]] = 1Vv € S.
3. An OR set is called an OR basis if, in addition, it is a basis for V.
4. If v,w € V, we say v, w are orthogonal or perpendicular if (v, w) = 0 write
9 v L w. (equivalently (w,v) = 0) y

Goal: If F C C is a subfield (and F = F), V a finite dimensional inner product space
over F', then V has an OR bases and an ON bases if F' =R or C.

Remark 17.5. Let V be an inner product space over F', x,y € V.
1.0 Lz
2. v Llyiffy L

3. 0 is the only vector perpendicular to all z € V.

/Theorem 17.6

Let V be an inner product space over F, S C V an OR set. Suppose that 0 # S,
then S is linearly indep. If, in addition, V is a finite dimensional inner product
\space over F' and |S| = dim V, then S is an OR basis for V.

Proof. Let v € Span(S). Then 3 (distinct) vy,...,v, € S, 1, ..., 00 € F 3

V=011 + ...+ apu,

We have

(v,vj) = (v1 + ... + apvy)
n
= ailvi,vj)
=1

n
= Zai(SinUjHQ = ajHUjHZ
i—1
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This is so useful, we record it as
Crucial Equation: If {v1,...,v,},a1,...,a, € F then

_ <U, vj>
lo;[|2”

Qj j=1....n

Note: If V is not necessarily finite dimensional and S is an OR set not containing O,
the same holds.

Now, suppose that v =0, i.e.,

O0=aivi +...+ apv,

" (w,0;)  (0,0;)

Qf = = =0,5=1,...,n
Tl el Y

and the result follows. O

Note: If = {v1,...,v,} is an OR set, v; # OVi, V = SpanZ, hence a basis for V then

<U7Uj>
o 12

is the jth coordinate of v on v; and

If, in addition, ||v;|| € F'Vj, then

U1 Un,
o]l [lonl

is an ON basis and Vv € V.

" (v, ;) - v Vj
v = 3321)].:2(@’ iy 3
= sl = ol Nl
Hence if w; = m, i=1,...,n,% = {wi,...,w,} is an ON basis and
n
v = Z(v,wi>wi
i=1

i.e., (v,w;) is the coordinate of v and w; for each i.
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Remark 17.7. Does this look familiar?
1. Look at the proof of the Cauchy — Schwarz Inequality

2. Let B ={v1,...,v,} be an OR basis for V a finite dimensional inner product space
over F' and

#* ={f1,.... fa}
the dual basis for V* = L(V,F). So, fi(v;) = 6;5,Vi,j. Then f; : V — F is
filv) = ffjj””g) ,i=1,...,n by Crucial Equation:

Vs
AR IS VN
fi= S p Vo

and if € = {w1,...,w,} is an ON basis then

fi=(w;) €€”
fi (v) = (v, w;)

i.e., we can associate a vector in V to a linear functional.

/Theorem 17.8 A

Let V be an inner product space over F', & an OR basis for V, v € V. Then
(v,w) = 0 for all but finitely many w € £ and

v=3

B

is a finite sum. If, in addition, £ is ON, then this becomes

v= Z(v,w)w

B
- J
4 )
Corollary 17.9 (Parseval's Equation)
Let V be a finite dimensional inner product space over F' with ON basis {v1, ..., v}
and v,w € V. Then
(v, w) = Z<Ua ) (w, v;)
i=1
In particular,
o> =Y |(v,v)|?,  (Pythagorean Theorem)
i=1
- J
Proof. Hw — Take home. O
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§18 ‘ Lec 18: Nov 16, 2020

§18.1 Lec 17 (Cont’d)

Example 18.1

Let V = C0,27] an inner product space over R via

2w

(f,9) = fg
0

Let ug = \/%, Uy = ﬁ sinne, ugp41 = ﬁ cosnz for all n € Z1 and set

S = {wli > 0}

By calculus
2
(ui,uj) = / uiuj = (5ij,Vi,j
0

So S is ON hence linearly indep (0 ¢ S) and a ON basis for Span S.

Note: Vectors in span S are finite linear combos of vectors in S. In particular, C[0, 27]
is infinite dimensional (and Span S < C[0, 27| is a subspace). In calculus, you studied
convergent series, a convergent series

S i (*)
=0

is called a FOURIER SERIES, the «; Fourier coefficients.
Warning: S = B = U%B,, B, = {u;|i =0,...,2n+ 1} is ON but not a basis for C[0, 27|
or even
V ={f € C[0,27]|f converges to its Fourier series}

It can be shown that C'[0,27] C V.
Note: No one knows a precise basis for C'[0, 27] although it exists by axioms.

Remark 18.2. 1. One can modify the interval [0, 27] in the above with appropriate
changes to the u;.

2. Infinite ON sets are very useful.

To solve our goal about finite dimensional inner product space over F, we know
show:

[Theorem 18.3 (Gram-Schmidt) b

Let V' be an inner product space over F' and ) # S,, = {v1,...,v,} CV a linearly
indep. set. Then Jyq,...,y, €V >

® Y1 =11

o T, ={y1,...,yn} is an OR set and linearly indep.

e Span T, = Span S,
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Proof. We construct T;, from S,,. This construction is called the Gram — Schmidt process.
n =1 is clear. We proceed by induction. We may assume we have done the S, case, i.e.,

L. ?/17~~-7?/n€Vay1:Ulyyi#07i:1w~7”
2. T, ={y1,...,yn} is OR. (hence linearly indep. as 0 ¢ T},)

3. Span S, = Span{yi,...,yn}
4. Must extend this to the case of n + 1.

As in the proof of GS (where we threw away one orthogonal complement), we subtract
an ORTHOGONAL PROJECTION figure here Define:

n

Un+1, Yk
Yn+1 = Un+1 — E Wyk (*)
1 Yk

Claim 18.1. y, 41 # 0 : if y,41 = 0, then v,41 € Span T,, = Span(vy,...,v,) contra-
dicting S7, is linearly indep. So y,+1 # 0

Claim 18.2. (yn11,y;) =0,7=1,...,n

n

Un+1, Yk
(Ynt1,Y5) = (Vny1 — %yk,yﬁ
=l
“~ (Unt1, Yk)
+15 Yk
= <Un+1ayj> - Z W@kayj)
k=1
— (Unt1, Uk)
+15 Yk
= (Un+1,Y5) — Z Wfskj\\yj”z
1 Yk

= <Un+17yj> - <vn+1ayj> =0

This prove the above claim.
Since 0 ¢ Tp+1 = {y1,...,Yn+1} and Tj,11 is OR, it is linearly indep. As Span T,, =

Span{vy,...,v,} and {v1,...,vn41} is linearly indep.
Span Ty+1 = Span(vp41,Y1,- -+, Yn) = Span(vi, ..., Up41)
by the Replacement Theorem and (*). The theorem follows by induction. 0

Theorem 18.4 (Orthogonal)

Let V be a finite dimensional inner product space over F. Then V has an OR basis.
If F =R or C, then V has an ON basis.

Proof. Any basis for V' can be converted to an OR basis € for V by the GS process
if V' is finite dimensional if ' = R or C, then {ﬁh} € ‘5} is an ON basis for V' as
|lv]| € RVv € € O

Remark 18.5. Let V = Q? a finite dimensional inner product space over Q with inner
product defined by

1
(a1, a2), (B1, B2))1 = 5(04151 + azf)
i.e., WEIGHTED DOT PRODUCT by % Then V has an OR basis but not any ON basis

I (%’ %) ||% ¢ Q as 3()%[)% = a%bg + b%a% has no solution in Z.

85



Duc Vu (Fall 2020 — Spring 2021) 115AH Lectures

§18.2 Examples — Computation

Example 18.6 1. V = R3 under (,) = dot product with v; = (1,1,1),v3 =
(1,1,0),v3 = (1,0,1). GS v1,v2,v3 to an OR basis and then to an ON basis:

Yy = (17171)
V2 - Y1

Y2 = Vg — R4
[yl

. some boring calculation — can refer online notes/textbook

Note:

1. Tt is easier to guess.

2. If instead of F =R, we had F' = Q, we could not get an ON basis after GS-ing.

Example 18.7

V = R[z] (polynomial function) via

(9= [ 11 fo

B, = {2'|0 <i < n} is a basis for R[z],. GS, %, to an OR basis, at least start

go =1
1
gl=1c— <$71>1:x_f—1x —
Nk T
2 2
2 <3§' a]-> <aj ,LE>
g2 =" — 1= x
1112 [l
1 1
g_f_1x2_f_1m3 _ 2 1

1 1 r =X
S50 Jo =P 3

The g; are called LEGENDRE POLYNOMIALS. You can normalize them, i.e., form

”g—zu to get an ON set.

These are important polynomials, g, satisfies the ODE
(1—2%)y" =22y +n(n+1)y =0

These occur in physics, e.g., converting Laplace’s Equation V2¢g = 0 into spherical
coordinates in some cases in quantum mechanics in the solution of Schrodinger’s Eqn
for the hydrogen atom.
Flow of an (ideal fluid) past a sphere. Determination of the electric fluid due to a
charged sphere. Determination of the temperature distribution in a sphere given its
surface temperature. Computing g/, s by GS is too difficult. There are many formulas to
determine the g/;s. Many arise by proving the following recurrence relation:
Rodriguez Representation:

1 dr

_ 2
= Supigen @ V"

In
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Some of these are, using the appropriate 7 of the binomial coefficient

n n!
=——F— 0<m<n:
(m> ml(m —n)!

let M =5 or ”T_l whichever one is an integer, i.e., [%] = greatest integer < 7.
M
1 (2n — 2m)! 9
— 2n 71 m n m
In 2. (1) mi(n —m)l(n — 2m)!"
m=0
n n 2
=" <k> (x — 1) F(x+ 1)
k=0

> ()
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§19 ‘ Lec 19: Nov 18, 2020

§19.1 Lec 18(Cont’d)

Note:Gamma function:
o0
I‘(z):/ z* e % dx
0

where z is complex and Re (2) > 0 and I'(n) = (n — 1)!,Vn > 1,.

11 0 2Y\.
3. GS <0 1> , <1 1) in M>(R) under

(A,B) = tr AB*
(11
“1=10 1
Yo = 11

w=(11)-
(7o)

4. T : R® — R3 rotation counterclockwise by Z6 about a vector 0 # v; as axis. Find
T (o, B3,7) i.e., [T]» complete v1 to a basis {v1,vq,v3} for R3. GS it to an OR

basis, then an ON basis . Compute [T]¢. Then use Change of Basis to compute
[T]; or guess vg, normalize vy, v2 to v}, v then vy C v} X v}.

[es)}
[\)
—_
—_

—_
—_
o
—_

/\/\6—\/—\
[u—
S~ N~

—_
—_

)
[\
—_
o

—_
—_
—_
—_

—_
—_
—_
o

(=

=
7~ N7 N 7 N\ |/
N N R

o =

— =
Ne—— [N [ N—

)
—_
—_
—_

Note: If you have a basis with vectors of different lengths, it is hard to compute in
this basis. If each vector in your OR basis has the same length r, you can compute.

§19.2 Orthogonal Polynomials

There are many interesting infinite sets of orthogonal polys {f.},cz+. They often arise
as relate a to the HYPERGEOMETRIC ODE

d? d
z(l—z)d—;—i-[7—(a+6+1)z]d—g—aﬂy:()

where z is a complex variable, y = y(2), «, 5,7 € C. They arise as OR sets or weighted
inner product space over R (or C on an interval [a, b] (or variant).

/ab fow =}, 9)w

where w > 0 in [a, b].
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e A very general such is the OR set of JACOBI POLYNOMIALS {Pﬁ‘ B } under the
weighted inner product space

1
(b= [ fow
and
(1—2)%(1+x)?
<Oé7 B) -1
Often such OR sets are not orthonormalized but rather normalized “by dividing
by PP (1). In this case, P&?(1) = ("T*). The P3P are solutions to the ODE.

0=(1-2")'+(B—a—(a+B+2z)y +nn+a+8—1)y

w =

used in Wigner d-matrix theory in quantum mechanics. There are many special
cases of Jacobi polys.

1. Gegenbauer polys (ultra-symmetric) polynomials, Cv(f‘) where
w=(1- xQ)O‘_%
cle) — pleza3)
(1 —22)y" — (2a + V)zy +n(n +2a)y =0
potential theory, harmonics analysis, Newtonian’s potential.

2. Legendre polys. There are a special case of Gegenbauer polys, namely

w=1
1
o]
(1=2)y) +nn+1)y=0

3. Chebychev polys come in two kinds: T),, U,

1
W= ——
V1—zx2
(-1-1)
T, = P72
(3:3)
U, = P>

(1—a?)y" —ay +n’y=0
(1—22)y" —3zy +n(n+2)y =0
Least square fit, optimal control, numerical analysis.
e Laguerre polys L' OR set with We(z) =z% %, o> —11in R on [0, c0)
vy’ +(a+1—2)y +ny=0,0#£necZ
quantum mechanics, plasma physics.

e HERMITE polys. H,, He,

w=e", for H, on (—00,00)

22

=e¢ 2, for He, on (—o00,00)
(H,, is called physicist Hermite polys and He,, probabilists Hermite polys).
0= (e*%"’“ﬂy’)' + ne*%ﬁy =0

probability, numerical analysis, physics.
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Remark 19.1. Let
o d .
D =diff = —, p,q functions,w > 0
dz
1
L=—-—(D(pD)+¢q), alinear operator
w

Then one wants to solve

Lf=\f
The solutions are called eigenfunctions in the above they are the eigenfunctions for the
given ODEs.

§19.3 Orthogonal Complement

Notation: F' C C a field satisfying F = F.

(Definition 19.2 (Distance from a Vector to a Set) — Let V' be an inner product
space over F,vi,v9 € V. We know that the DISTANCE between vy, vo is defined

to be
d(’l)l,’l)g) = H'Ul — UQH > 0
More generally, let ) # S C V be a subset and v € V. Define the DISTANCE of v

to S by
d(v, S) = inf {d(v,w)|w € S}

if it exists and hence finite. )

&

Problem 19.1. Let V be an inner product space over F, S C V a finite dimensional
subspaces, v € V. Determine

t d(v,S)

X w

Solution take the orthogonal projection of v to w in S
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Definition 19.3 (Orthogonal Complement) — Let V be an inner product space over
F,) #S C V asubset of, v € V. We say v is ORTHOGONAL to S, write v L S, if

(s,v) =0,Vs € S

Set:
St ={veVpLS}

\called the ORTHOGONAL COMPLEMENT of S in V. )

Remark 19.4. 1. Compare S+ to S° C V*, if V is an arbitrary vector space over F.
2. In R3(under the dot product)

(Spanel)J‘ = Span(ea, e3)

3. Let V be an inner product space over F,() # S C V a subset, not necessarily a
subspace. Then S+ C V is a subspace (if ) # S C V a subset with V a vector space
over F, F arbitrary, then S° C V* is a subspace).

Proof. Hw. O

4. In 3), S c S+ = (§+) L: 8+ c S+ so § C S+ If, in addition, S C Vis a
subspace and V is a finite dimensional inner product space over F, then S = S++ (if
V' is a finite dimensional vector space over F, F' arbitrary W C V a subspace, then
W =We° = (W°)°).

5. Let V be a finite dimensional inner product space over F,S = {v1,...,v,} an OR
basis for V. Then

(Span(vy, ... ,vr))J‘ = Span(Vy41, ..., Up)
6. Let V be an inner product space over F,S C V a subspace. Then
SnSt=0
if v € SN SL, then (v,v) = ||v]|> =0, so v = 0. In particular,
S+8t=808"

We write: S @ S+ as S L S+ to show it is also orthogonal. The key result ( and
most important result for use about general inner product space over F' ) is:
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\
Theorem 19.5 (Orthogonal Decomposition)
Let V be an inner product space over F,S C V a finite dimensional subspace,
v € V. Then
dse S steStsv=s5+s" (*)
In particular, V =8 + S8+, SN S+ =0,s0 V=9 L S+. Moreover, if
v=s+st,se€S st st
then
Iv]|2 = |Is|1% + lIs* 17, (Pythagorean Theorem)
In addition, if V is a finite dimensional inner product space over F', then
dim V = dim S + dim S+
- J
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§20 ‘ Lec 20: Nov 20, 2020

§20.1 Lec 19 (Cont’d)

Proof. By the OR Theorem, 3 an OR basis & = {v1,...,v,} for the finite dimensional
inner product space over F' S.
Existence: Let v € V. Define s € S = Span & by

and set

Suppose we have shown s € S. Then v = s+ s+ giving existence as well as V = S+ 5+
and SN S+ =0, ie, V =8& S Repeating the previous computation, we have if
j=1,...,n then

2 P
n
(v, vi)
{v,07) = Z HU’HZQ 8ijllvjlI* = 0
i=1 "

Since st L v;, j=1,...,nie, Yv; € B, if > I, qyv; € S, then

<3L, iawﬁ = zn:aﬁ(sl,vﬁ =0
i=1 i=1

Thus, s+ € S* as needed.
Uniqueness: If
s+st=v=r4+rtresrtest

(s € 8,5 € S*) as both S, S+ are subspaces

s—r=rt—stesnst=0

So s =r and s+ =rt. O
4 I
Theorem 20.1 (Pythagorean)
Let v =5+ st,5s € 8,5+ € S+. Then
llI> = (s + s, s+ s7) = (5,8) + (5,57) + (57, 8) + (5T, 5T)
= [IsI* + lls™[I?
. J
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/Corollary 20.2 (Bessel's Inequality) b

Let V be an inner product space over F, % = {vi,...,v,} an OR set in V with
0¢ A. Let ve V. Then

n 2
0,05

>0 R < ol

i=1

vl

with equality iff

_ - Y,

Proof. Hw. O

Remark 20.3. Let V be an inner product space over F, S C V a finite subspace. Then by
the OR Decomposition Theorem, Vo € V3ls € S, st € S+ — v =5+ 5. We call s the
orthogonal projection of v on S and denote it by vg. By the proof of the OR Decomposition
Theorem, if = {v1,...,v,} is ANY OR basis for S, then the uniqueness of vg means

_ <’U,”Ui>
05 =D e

i=1

i.e.,is INDEPENDENT of OR basis. So the ORTHOGONAL PROJECTION of v onto S.

/Theorem 20.4 (Approximation) b

Let V be an inner product space over F, S C V a finite dimensional subspace, and
v € V. Then wvg is closer to v than any other vector in S, i.e.,

d(v,vs) = [lv = vs| < [lv = || = d(v,7)

in R,Vr € S. Equivalently,
d(v,S) = d(v,vs)

Moreover, if r € S, then

lv—vs||=|lv—r|| ER <= r=wvg

\We say vg gives the BEST APPROXIMATION. )

Proof. By the OR Decomposition Theorem (and its proof), v = s+ s+ with s = vg, s+ =
v—s=uv—uvg,s" €8+ LetrcS. Then

v—r=(v—uvg)+ (vg—71) =5+ (vg—71)
S C V is a subspace, so vg —r € S, hence s+ L vg —r, i.e.,
0= (st vg—7)=(v—vg,vg—7)
By the Pythagorean Theorem,
lo =7l = llo = vsl* + [lvs = 7||* > [Jv - vs]?

with equality iff
lvs—7]| =0 <= vs=r
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Definition 20.5 (Error) — Let V be an inner product space over F, S C V a finite
dimensional subspace and v € S. Then, ||v — vg]| is called the error of v not being

vs.

Problem 20.1. Let V, X be inner product space over I', S C V a finite dimensional
subspace v € V, and T : X — V linear. Find z € X with ||z| minimal s.t. Tz is the
best approximation to v € V in S, i.e., find € X, ||z|| minimal 5 Tz = vg.

§20.2 Examples of Best Approximation
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Example 20.6 (Fourier Coefficient)

Let V' = C[0, 7] an inner product space over R via (f, g) = f027r fg,ug = %, Ugp—1 =
CO\S/;QC,UQn = Sl\r‘/@w, n > 0. Set

8= {uo,...,un,...}
an ON set (as we have seen) and let

%n = {’U,O7 000 ,U2n+1}
V,, = Span(%,)

if f €V, then
fn = fvn = fspan B
the function in V,, closest to f, i.e., the orthogonal projection of f onto V,,. So

2n+1

i=0
where

(f,us) = /027r fu;, Vi<2n

called the i*" FOURIER COEFFICIENT. The ERROR to the actual f is

2
A(fs f) = I — full = /0 (f = fu)?

One checks:
1 . :
fn = 500 + Z(ak cos kx + by, sin kx)
k=1
with
1 21
= — d
a0 = — /0 f(z)dx
1 27
ar = — (x) sin kxdz
T Jo
1 21
by = — (x) sin kxdz
T Jo

is the BEST APPROXIMATION of f by such functions. If lim, || f — ful = 0,
e, f = >7,(f, ui)u; converges, we say f converges to its Fourier expansion
(similar results with modest change work for ([0, L]).
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Example 20.7

Let V = C[-1,1] with (f, g) f fg. Let f(z) = e*. Find a linear polynomial
nearest f and compute d(f,g) (= error) for such a g and we let W =span(1l,z) C V
a finite dimensional subspace. We want fyy. To do this, we compute ON (or OR)

1 1 T

1

basis for W i.e., GS {1,z} and normalize. GS yields 1,z (as before) and ON it to

L |” ie., RN which is
1 \/3
Ve
Let f = ¢€*. Then
B VB VB

1 1 3 [t
:2/_lezdz+2x/_lzezdz

3

1

So, fiv = 5(e =) + 2z Let a = j(e — 1), 8= 2z. So g = fiy = a+ fz and

1
I = fwl? = Hf—gH2=/ (f - 9) dz
-1

[

1
= / [(e% — 2¢%(a + Bz) + o? + 208z + ngz] dx
~1

—2fg+g°)dz

= ... (boring algebra)

7
=1-+
So
7
d(f,g) = d(f, fw) = \/; ~ .05625
§20.3 Hermitian Operators

(Definition 20.8 (Hermitian/Self-Adjoint) — Let V' be an inner product space over
F,T:V — V linear. We say T is HERMITTAN or SELF-ADJOINT if

(Tv,w) = (v, Tw),Yv,w € V

\if F C R is an hermitian operator, it is also called a SYMMETRIC OPERATOR.
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Example 20.9 1. Let V = F"*! be an inner product space over F via the dot
product, i.e.,
oy B n

( ) > = Z O‘iBi

Qp, ﬁn =1

remember we always assume F' = F C C. Note that some people write the
dot product v * w — they do not like columns.

Let A € M, (F). As usual, we view A as a linear operator,
A: Pt S Xl by X s A X

By HW, A is hermitian iff A = A* (so if F C R <= A = A!). In fact, you
will prove on the takehome the following theorem

KTheorem 20.10 b

Let V, W be finite dimensional inner product space over F' with ON bases, T': V —
W linear. Then, 3T : W — V linear s.t.

(Tv,wyw = (v, T*w)y,Yv € V,Yw € W

T* is called the ADJOINT of T. Hence if T': V' — V is a linear operator, then T is
hermitian iff 7= T* and T exists.

- J

Example 20.11
Let « < fin R and V = Clao, 5] :== {f : [a, f] = R/cont} an inner product space

over R by 5
()= [ 19

(07

If T:V — V linear, then T is hermitian iff

8
/ (fTg—gTf)=0,Yf,geV (*)

Note: V is not finite dimensional and (*) is a commutativity type of condition.
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Example 20.12 (fancy)

V =C®|a, B],a < B in R. (often C*[a, B] vector space of convergent power series
in some neighborhood of every point of («,3) and ? open neighborhood at «, j3).
Again V is not finite dimensional and is an inner product space over R as in the

above example.
Let p € V be fixed, p(x) > 0, and

W ={f e Vip(a)f(a) =0=p(B)f(B)}

an inner product space as in the above example (e.g., p(a) = Op(B). Fix ¢ € W and
let
Tpq =T : W — W the linear operator

defined by
Tf=@f)+af

called a STURM LIOUVILLE operator. Then T is hermitian. Check 7" satisfies (*)
in the above example using integration by parts.

Example 20.13

More generally, let V = C*®[a, f],« < 5 € R an inner product space over R as in
the above. Let p,q,w € V,p(z) > 0,w(z) > 0, Vx € [a, 8]. Fix a,b,c,d € R > both
a=0=0>band c=0=d are excluded. Let

w={f € Vlaf(a) +bf'(a) = 0=cf(8) + df (8)}

where f satisfies the boundary condition. Let W be an inner product space over R
by the weighted inner product

(s = / " wfa

Define the STURM LIOUVILLE OPERATOR:
T = Tpguw: W — W by

= —% ((pf") + qf). Then T is hermitian. This arises from finding eigenvalues of
Tp,q,w, i-e., solutions to the ODE

d dy
ar <pd:r:) +q(z)y = —Awy
which have as special cases — Legendre ODE
(1—22)y" + 22y +n(n+1)=0

arising in spherical harmonic problems. Bessel’s ODE:

x2y” +:cy' + (1‘2 o a2)y =0
a € C (often in Z or 2« € Z), i.e., one wants to find the eigenvalues of f =y, A in

(*) for which there is a solution and f € Ep(\). Eigenvectors in function spaces are
called EIGENFUNCTIONS.
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§21 ‘ Lec 21: Nov 23, 2020

§21.1 Lec 20 (Cont’d)

Goal: Spectral Theorem for Hermitian Operator: Let V be a finite dimensional inner
product space over F, F' =R or C,T : V — V hermitian. Then T is diagonalizable, i.e.,
3 a basis Z# for V consisting of eigenvectors of T, and in fact, such a & is ON.
Calculus Application: Let S C R™ be “nice” (open + nice boundary + ...), x1,...,2,
the rectilinear coordinate functions relative to the standard basis and

(H)f:S—Ra C? — a function

Calculus Theorem if f satisfies (+), then

O*f 0% f i
8:@-8:@ a) N 8@6% (a)vvj’va < s
For each a € S, associate the symmetric matrix
0% f
H ==
@) == (5o @)

called the HESSIAN at f at a. Suppose a € S is a critical point of f, i.e.,

Df(a) = <$(Q),...,$(a)) =(0,...,0)

Equivalently, Vf(a) = 0. Recall the TOTAL DERIVATIVE of f at a is the linear

transformation

f'(a,) : R™ — R given by

f'(a,v) = Df(a) -v. Now, let aq,...,a, € R be the eigenvalues of H f(a), so the roots
of fr () counted with multiplicity. Since H f(a) is symmetric, by the Spectral Theorem,

m =n and
A1 0
Hf(a) ~ in M,R
0 An
A, ..., A\p not necessarily distinct. Then, we have the 2"4 Derivative Test under the

above conditions at the critical point a.
1. a is a relative minimum for f at a if \; > 0Vi.
2. a is a relative maximum for f at a if A\; < OVi.
3. a is a saddle point for f at a if 37,5 > A\; > 0,\; < 0.
4. No info if \; = 0Vi or 32 3 \; = 0.

The total derivative f'(a,—) : R™ — R can be defined at a € S if it exists as the
following: it is a linear transformation

Ta:R"—>R>
3 a scalar valued function satisfying
fla+v) = f(a) + ||lv]| E(a,v)
for some r, 3 if ||v|| < r then

E(a,v) = 0as |jv]| =0
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Question 21.1. What is the total derivative

f(a,) :R" - R™if f: 8 — R"™?

/Theorem 21.1 A

Let V be an inner product space over F,T : V — V linear, A an eigenvalue of
T,0 # v € Er(A). Then

T = T
(To.0) 5 _ (0.T0)

A=
lv]}? [v]|?

In particular, A € R iff

N (Tv,v) = (v, Tv) )

Proof. By assumption, Tv = \v, ||v|| # 0.So (Tv,v) = (Av,v) = A(v,v) = A||v||? and
(v, Tv) = (v, ) = Mv,v) = X = ||[v]|%. As ||v]| # 0, the first statement follows. Hence,

A=)\ <= (Twv,v) = (v,Tv)

Corollary 21.2 (Hermitian)

Let V be an inner product space over F,T : V — V linear. Suppose that T is
hermitian. Then any eigenvalues of 7" is real, i.e., lies in F'NR.

Theorem 21.3 (Fundatemental Theorem of Algebra)
Let f € C[t]\ C. Then f has a root in C, i.e., Ja € C> f(a) =0

Addendum: Let f € R[t] \R. As R C C,R[t] C C[t]. So we can view f € C[t]. Then f
has a root § € C. Of course, 8 may not lie in R.
Suppose 3 is real, i.e., S € R. As 3 is a root of f € C

f=@t—-Bg,9geClt],BeR

Then
f=(@—=p)(h),h € R[t](if B €R)

Proof. 1. If f =" ja;t',c; € RVi and Y o;3° = 0 in C with 3 € R, then every
term in Y ;3" lies in R, so 3 is a root of f when viewed in R[t].

2. (Generalization) Let F' C K, K a field, F' a subfield of K so same +,-,0,1 as in
K (e.g., R C C). Let f € F[t],a € F. By the DIVISION ALGORITHM,

f=ft—a)g+r, r,ge F[t] unique withr =0 or deg r < deg(t — ) (*)

But deg(t —a) =1, so r € F' (a constant). Evaluate (*) at t = «, so (eq : F[t| = F
by h + h(«) a ring homomorphism)

fl@)=(a—a)gle) +r=r
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- (+)f = (t— a)g + f(a)

So
a € Fisarootin F <—

(*)f = (t — a)g in F[t] some g € F[t]. So we have, viewing F[t] C K[t]. If 8 € K,
then

f={t=B)h+f(B),heKl]
and if § € K is a root of f in K, then

f=@{t-pB)heKl]
So if § € K is a root of f with 8 € F, then

f(B) =0k = OF,
so (%) holds.

Remark 21.4. 1. By the Addendum and induction, FTA says if f € CJ[t] \ C, says
n =deg f > 1, then Jlag,...,a, € C, not necessarily distinct and 5 € C >

f=pt—a1)...(t —ay)

i.e., f factors into a product of linear polys. We say f splits in C and aq, ..., a, are
the unique roots (up to multiplicity) of f in C.

2. FTA is proven in Math 132 and math 110C. The essential analysis fact used in math
132 is if f € C[t] \ C, then |f(z)| — oo as |z| — oo and the essential analysis fact
used in math 110C is the Intermediate Value Theorem in the special case that says
if f € R[t] is of odd degree, then f has a real root.

3. The following fact is true: If V is a finite dimensional vector space over F, F an
arbitrary field, T': V' — V linear, then 3 an ordered basis & for V 3 [T, is UPPER
TRIANGULAR (ie. ([T]g);; = 0Vi > 1) iff fr € F[t] splits, i.e., factors into a
product of linear terms. If this occurs, we say T is TRIANGULARIZABLE. Can
you prove that if FF = C, then every such T is triangularizable? (7T is diagonalizable
iff gr of the HW7/Midterm splits and has no multiple roots)
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§22 ‘ Lec 22: Nov 25, 2020

§22.1 Lec 21 (Cont’d)

(Definition 22.1 (T-invariant) — Let F' be an arbitrary field, V' a vector space
over F; W/ C V a subspace, T : V — V linear. We say W is T-INVARIANT (or
INVARIANT under 7T') if

Twe W Nwe W, ie, T(W)CW
if W is T-invariant, then we can (and do) view

T : W — W linear
w

- J
Example 22.2 1. Any subspace of an eigenspace of T' (if any) is T-invariant.
2. kerT C V is T-invariant.
3. im T C V is T-invariant.
\

Lemma 22.3 (Hermitian Operator (Key Lemma))

Let V be an inner product space over F,T : V — V hermitian, S C V a T-invariant
subspaces. Then

1. St is T-invariant, i.e., T(S+) C S*.

2. T " : 8+ — St is hermitian.

o J
Proof. 1. Let w € S*. To show Tw € S+, if v € S, then Tv € S as S is T-invariant.
So

(v, Tw) = (Tv,w) =0
So, Tw € S+.

2. By1), T o S+ — St islinear. As (Tw,w) = (v, Tw),Vv,w € V, this is certainly

true Yo, w € S+.
O

Remark 22.4. Let F =R or C, V a finite dimensional inner product space over F,T :
V' — V hermitian. By the Hermitian Corollary, if 7" has an eigenvalue, it is real and o € F
is a roof of fr in F iff eigenvalue of T. We know fr has a root in C[¢] by the FTA. The
key lemma should allow us to induct on dim V.

Subtle Difficulty: Let V' be a finite dimensional inner product space over R, T : V — V
hermitian. We know fr € R[t] has a root in C, but we do not know a priori that fr
is the characteristics polynomial of an hermitian operator over an inner product space
over C, so we do not know that the roots of fr are real.

Unfortunately, to over come this, we have use bases. There is an abstract way to do it
but we cannot do it.
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Theorem 22.5 (Spectral — First Version)

(for Hermitian Operator) Let F' = R or C, V a finite dimensional inner product
space over F,T : V — V hermitian. Then 3 an ON basis # = {vi,...,v,} for V
with each v;,7 = 1,...,n, an eigenvector for some eigenvalues a; € R,i =1,...,n
(not necessarily distinct). In particular, T' is diagonalizable.

Proof. We prove Z exists by induction on dimV = n.
n=1:V = Span(v), any 0 # u € V. As Tv € Span(v),Ja € F 3 Tv = av ,s0
v € Ep(a). As T is hermitian, a € R is real by Hermitian Corollary even if F' = C. So
%= {1}

flvll
n > 1 : Induction Hypothesis (IH): Let FF = R or C, W a finite dimensional inner
product space over F,dimW =n —1,Ty : W — W hermitian. Then 3 an ON basis for
W of eigenvectors of Ty and every eigenvalues of Ty is real.
Let € be an ON basis for n—dimensional V, which exists as ' = R or C. Let A =
[Ty € M,,F C M,C.

A= A*and Az -y =z - Ay,Va,y € C"™*}
since T is hermitian, i.e.,
A 0™t 0™ g hermitian

where C™*! is an inner product space over C via the dot product. By the FTA, f4 has
aroot a € C, hence « is an eigenvalue of hermitian A : C**! — C™*!. Thus, a € R by
the Hermitian Corollary. But

Ifr=fin, = fa
So fr has aroot @ € R, if F =R or F = C by the Addendum. Thus, 30 # u € Ep(\) C
V' an eigenvector of T'. Let F'v = Span(v) C Er(A). Then Fv is T-invariant. By the

OR Decomposition Theorem,
V =Fuv L (Fv)*

and
dim V = dim Fv + dim (Fv)*" = 1 + dim (Fv)*
hence
dim (Fo)t =n—1

By the Key Lemma, since Fv is T-invariant and 7' : V' — V is hermitian. (F v)L is
T-invariant and

T‘ . (Fv)t — (Fv)?t is hermitian
(Fo)*
By the IH, (F'v)* has an ON basis, say {vs, ...,v,} of eigenvectors for T (FuL D(Fo)t —
v
(Fv)*t. But
T‘(Fv)l(vi) =Tv;,i=2,...,n
So, va, ..., v, are eigenvectors of T : V' — V and all the eigenvalues of the v;,i = 2,...,n

are real by IH. Since v L v;,i =2,...,n,0 # |[v|| € R C F,
B ={]||v|,v2,...,vn}

is an ON basis for V of eigenvalues for T and all the eigenvalues are real and T is
diagonalizable. O

By the HW/Takehome, we know
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[Theorem 22.6 A

Let V be a finite dimensional inner product space over F,F' =R or C. Let 4,¢
be ordered ON basis for V. Then

[1‘/]%7% . Fn><1 - FTLXI
n =dimV, is an ISOMETRY. In particular,
vz = [lvlze
T :V — W linear is called an ISOMETRY if

e T is an isomorphism.

° <T1)1,T1)2>W = (vl,vg>V,Vv1,v2 eV.

J

\
Theorem 22.7 (Spectral Theorem for Hermitian Operator (refined))

Let F =R or C, V a finite dimensional inner product space over F,T : V — V
hermitian. Then 3 an ordered ON basis % of eigenvectors for V of T and every set
of T if real. Moreover, if Z is any ordered ON basis for V', then

[T]¢ = C[T]2C*

for some invertible matrix C' € M, F, i.e., C = [ly]z¢.

J

Remark 22.8. The Spectral Theorem says, if V' is a finite dimensional inner product space
over I, F =R or C,T:V — V hermitian, & an ordered ON basis for V, then

A 0
Tz ~ ,n=dmV,a; € R,Vi
0 An

if V' =R", this is often called the PRINCIPAL AXIS THEOREM.

e.g., It means if
f= Z aitit; € R[tl, R ,tn]
with
aij = ajl-,W,j
This can always be arranged as ¢;t; = t;t; and we replace a;;, aj; with Gty
Then we can change variables to make it look like

MIE+ . M2

if necessary.

(How? — Confer completing the square and TAT*, A = (a;;),T* = | : |. We want
tn

even more

Let F' = Ror C, V afinite dimensional inner product space over F,dimV =n,T :V — V

hermitian, % an ordered ON basis of eigenvectors of T for V. Reordering £ if necessary,

we may assume Aq,..., A, are all the distinct eigenvalues of T, i.e., if j > k then

<k A =M\
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Claim 22.1. Let v € Ep(\;), w € Ep();),1 <4,j < k,i # j. Then v L w: We may
assume that v # 0,w # 0. So

Ai{v,w) = (Nv,w) = (Tv,w) = (v, Tw)
= <U7)‘]'w> = Tj<v’w> = )‘J'(U’w)

as \; € RVI. Thus,
()\i —)\j) <v,w> =0€e F N\ 75 )\j

S0
(v,w) =0

Claim 22.2. We have

W = ET()\I) +---+ET<)\k) <*)

ifwiEET()\i),Z‘:L...,k and
0=wi+ ...+ wg,

then
0= (u +...+Wk,wj> = <wj7wj> = ||wj||2

by the previous claim, so w; = 0 and (*) holds.
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§23 ‘ Lec 23: Nov 30, 2020

§23.1 Lec 22 (Cont’d)

Note: Of course we already know this claim, but this proof is nice. Recall this is
equivalent to w = Ep(A1) + ...+ Er(A;) and

Also by the first claim, the DIRECT SUM DECOMPOSITION (*) of w is an ORTHOG-
ONAL DIRECT SUM. Since 4 is a bases for V of eigenvectors for T and & C W, we

have
V=Er(\) L... LEpr(\) (%)

Genral Problem: Let V' be a vector space over F,T : V — V linear operator. Can we
DECOMPOSE V as
V=W eWyd..aW,d...

with each subspace W; T-invariant, i.e., decomposition reflects the action T". This can
be done if V is finite dimensional vector space over F'. Then V is a finite direct sum. If
F = C, the solution is called JORDAN CANONICAL FORM.

F arbitrary is called RATIONAL CANONICAL FORM (done in 115B or 110BH).

By the OR Decomposition Theorem,

V=Er(\) LEr()t =1,k (**)
So
Er()t=Er(\) L... LEp(\) L... L Ep(\)
i=1,...,k by uniqueness and, also by the OR Decomposition Theorem, as

V =Erp(\) L Ep(h)*
means that (x) implies if v € V, then

V=UEp(\) T T VB

where vg,(y,) is the ORTHOGONAL PROJECTION of v onto Er(A;),i = 1,...,k.
Define:
PM : V—>bev'—>UET()\i),i:1,...,k

As Py, is the composition
V — ET()\z) — V,
U VER(n)
It is a linear operator, ¢ = 1,..., k. Moreover, by (**),
im P)\i = ET()\z)
ker P)\i = ET()\Z)J'

Since
P,\j (UET(Ai) = 6ijUET(>\i)7i = 1, ceey k
We see that
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1. P\,Py, =0if i # .
2. P\ Py, = Py..

So
P)\ip)\j = 5z‘jp/\¢ :V — V linear

The Py,,..., Py, are called ORTHOGONAL IDEMPOTENTS. We now see what we
have done: Let v € V. Then

lvo=v=1vp(n) + -+ VBr(n)
:PA1(U)+---+PAk(U) = (P>\1 —|—...—|—P>\k)(v)

So
1V:P)\1+"'+P)\k

We also have

TZTOlV:TO(P)\l—l-...—i-P)\k)
:TP)\1+.--+TP)\k
:)\1P)\1+-~+)\kp>\k

as

im P/\i = ET()\i)

T =Nlg.oy,i=1,....k
ET()\'L) ET(Az) t

We also have

1VoT=(P/\1—|—...+P)\k)T
:P,\1T+.--+P)\kT

and
P\, T =TPy,,i=1,...,k

This is called the SPECTRAL RESOLUTION of the Hermitian operator T : V — V.
Now, appropriately reordering % to %', we have, with

n; = dlmET()\Z),Z = 1,... ,k‘
A1

A1

Ak

0 v
Summary(Spectral Theorem for Hermitian Operator — Full version):

Let F' =R or C, V a finite dimensional inner product space over F,T : V — V hermitian,
A1, ..., A\ all distinct eigenvalues of T'. Then T is diagonalizable and

L. NeERi=1,...,k
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2. Let %; be an ordered ON basis for Ep(\;),i =1,...,k. Then Z=%,U...U%,
is an ordered ON bases for V' consisting of eigenvectors of T

3.
A1 0
A
[T = !
0 Ak
dmV =n=n1+...+ny
4. fp=0H— )™ ... (t— )\k)”k’

5. V=Ep(\1)L... LEp(A\)

6. Iy =Py, +...+ Py, : V=V where Py, : V — V linear by v — v
7. P\P\, =06;Py,i,5=1,...,k

8. T =MPy, +...+ Py,

9. TP\, =P\T,i=1,...,k

10. If % is an ON basis for V, then

ie, [vlgly = ]y

Remark 23.1. One can also show that the MINIMAL POLYNOMIAL g7 of the HW /Takehome
in the above is

gr=(t—XM)...(t = Xg)

In fact this is a necessary and sufficient condition <= to be diagonalizable.

Remark 23.2. The Spectral Theorem for hermitian operator for F' = R, e.g., symmetric
matrices, has a nice generalization:

Let F be a field with 2 # 0 in F and A € M, F a symmetric matrix, i.e., A = A*. Then, 3
an invertible matrix P in M, F > p'Ap is diagonal.

Note: in the above, we are not saying p! = p~!

Computation: To compute: let V' be a finite dimensional vector space over F', F' =R or
C,T : V — V hermitian. Find all the above:

Step 1: Find a basis for V and GS it to an OR bases, then normalize to an ON bases %.
Step 2: Compute:

fr = fir), = det (tI — [Tg)

Step 3: Factor fr, i.e., find all the roots of fr. There are the eigenvalues of T. Since T
is hermitian fr splits and all the roots are real.
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Step 4: For each eigenvalue of T', compute E7(A) by solving

[Tle[vle = Alv]e

(equivalently row reduce [T]¢ — Al to row echelon form and solve).

Step 5: For each eigenvalue A, find a basis for Er()\;) and GS to an ordered ON basis
and normalize to an ordered ON basis %). Let 8 = UZ), an ordered ON basis of
eigenvectors of T. As ¥ is ON

vle,%(Tl¢[1v]e & is diagonal
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§24 ‘ Lec 24: Dec 2, 2020

§24.1 Normal Operators

We now need the following part of the Takehome

KTheorem 24.1 A

Let V be a finite dimensional inner product space over F' having an ordered ON
basis B, T : V — V linear. Then J!T™* : V — V linear s.t.

(Tv,w) = (v, T*w),Yv,w € V (*)

called the ADJOINT of T. Moreover,

9 [T = [T")2 )

Remark 24.2. Actually, to prove (*), you do not need 3 an ON basis, only an OR basis
(which you know exist) if you prove it using dual bases.

Properties: Let V' be a finite dimensional inner product space over F' with an ON basis
#,5,T:V — V linear, A € F. Then Vo,w €V

(v, T*Tv) = (Tv, Tv) = || Tv|?

(v, TT*v) = (T*v, T*v) = || T*v|?
(ToS)*=8*oT*
(
(A

(v
(Vi) (S+T)*=5"+T*
(vii) (\T)* = A\T*,VA € F.
Proof. Left as exercise. O

Remark 24.3. The above means: Let V be a finite dimensional inner product space over
F with an ON basis. Then

¢: LV, V)= L(V,V)by T —T*
is a SESQUILINEAR transformation, i.e.,
ST + 8) = \T* + S* VT,S € L(V,V),A€ F

and hence linear if F' C R and is also bijection with inverse sesquilinear so a sesquilinear
isomorphism.
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/Lemma 24.4 (New Key) b

Let V be a finite dimensional inner product space over F,T": V' — V linear. Suppose
that V has an ON basis and W C V is a T-invariant subspace. Then W+ C V is
T*-invariant. In particular,

T*‘Wl : W+ — W+ is linear

- J

Proof. Let w- € W+ and x € W be arbitrary. Then

<a:,T*wJ‘> = <Ta:,wJ‘> =0,

as Tx € W by hypothesis. So T*w' € W+ as needed. O

Definition 24.5 (Triangularizability) — Let V be a finite dimensional vector space
over F,T : V — V linear. We say T is TRIANGULARIZABLE if 3 an ordered
basis Z for V 3 [T]4 is upper triangular, i.e.,

[Tz =

ie., ([T]g); =0if i > j.
. J

Remark 24.6. In the above, [Tz is upper triangular iff [T is lower triangular where
' is an ordered basis with vectors in Z in reverse ordered.

Theorem 24.7 (Schur)

Let V be a finite dimensional inner product space over C, T : V — V linear. Then
T is triangularizable. Moreover, 3 an ordered ON basis £ for T' > [Ty is upper
triangular.

Proof. We induct on n = dim V.

e n =1: is immediate: if {v} is a basis {ﬁ} works.

e n > 1: By the FTA, the characteristics poly fr« for T* has a root A € C, hence A
is an eigenvalue of T%. Let 0 # v € Ep«(\). By the OR Decomposition Theorem,

V =Cv L (Cv)*
and

n = dim V = dim Cv 4 dim(Cv)~*
=1+ dim(Cov)*

i.e., dim(Cv)t =n — 1. Cv is T*-invariant as v € Ep«()\), so (Cv)* is (T*)* = T-
invariant by New Key Lemma. So may view

T|(<c@)¢(CU)L — (Cv)™* linear *)
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By induction, 3 an ordered ON basis %y = {v1,...,v,_1} for (Cv)*+ > |:T|((Cv)l} ”
Bo

is upper triangular. Let & = {vl, ey Un—1, ”5—”} an ordered ON basis for V. Then
by (*), we have

[T‘(CU)J—}QO *
.| € M,,C

*

0 *

O]

Remark 24.8. As mentioned before, if F' is arbitrary, V a finite dimensional vector space
over F, then T is triangularizable <= fp,T : V — V linear satisfies fr splits, i.e., factors
into a product of linear polys in F[t].

Proof. (=) is clear as fr is independent of a matrix representation.
( <) is not clear and we not prove it. O

/Corollary 24.9 A

Let V be a finite dimensional inner product space over C, T : V — V linear, ¥ an
ordered ON basis for V. Then 3 an ordered ON basis & for V 5 [T is upper
triangular and

[Tz = [Wle#Tls[lv]e 2

with I:].V]%}% = DV]%,%‘

Proof. Theorem and HW as €, % are ON. O

Definition 24.10 (Normal Operator) — Let V be an inner product space over
F,T:V — V linear. Suppose that T* : V — V exists, i.e.,

(Tv,w) = (v, T*w),Yv,w € V

with 7% : V' — V linear. Then we say T"is a NORMAL OPERATOR, if T'T* = T*T./
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§25 ‘ Lec 25: Nov 4, 2020

§25.1 Lec 24(Cont’d)

Example 25.1 1. Every hermitian operator is normal as T' = T*

2. Let Ty : R — R? be a rotation counterclockwise by /0 with 0 < # < 27 and
§ # 7. Then Ty has no eigenvalues in R. Viewing R? as an inner product
space over R via the dot product.

To=T;'=Tj =Ty

So

ToTy =T,Ty
and Ty is normal. However, Ty is not diagonalizable (is not even triangularzi-
able). We shall show that this does not happen if F' = C, we start with (a
replacement for the Hermitian Corollary)

\
Lemma 25.2 (Crucial Property of Normal Operators)

Let V' be an inner product space over F,T : V — V normal, A € F. Let 0 £v € V.
Then

NS ET()\) < v € Ep« ()\)

i.e., \ is an eigenvalue of T with eigenvector v <= X is an eigenvalue of T* with
(the same) eigenvector v. So

Tv =M < T*v=\v

\if T is normal. )

Proof. Suppose S : V — V is normal, v € V. Then

|Sv||* = (Sv, Sv) = (v, S*Sv)
= (v, SS*v) = (S§*v, S*v) = ||S*v||?

Hence
Sv =0 <= S*v =0 when S is normal (*)

Let S=T — Aly : V — V linear. So A is an eigenvalue of T' iff ker S # 0. But
S* = (T - My)* =T"— Ay
by properties of ()*. It follows that
S*S=8S"asT*T =TT"

i.e., S is also normal. The result follows by (*). O
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Theorem 25.3 (Spectral Theorem for Normal Operator)

Let V be a finite dimensional inner product space over C,T : V' — V normal. Then
3 an ordered ON basis € for V' consisting of eigenvectors of T'. In particular, T is
diagonalizable. Moreover, if Z is an ordered ON basis for V/, then

\

Tle = [IvlzeT)2lv]ge

Proof. We induct on n = dim V.

e n =1 is immediate.

e n>1: By the FTA, 3) € C a root of fr+ € C[t], hence an eigenvalue of T*. Let

0 # v € Ep«(\). By the lemma, v € Ep(A). Thus, C, is both T- and T*-invariant.
Hence, by New Key Lemma,

(Cy)* is both T* and T-invariant

In particular,
(¢, T*y) = (Tz,y) Va,y € (C,)"

and <T|(<Cv) l)* is the unique linear map
(T](CU)L) . (Co)t — (Co)t
satisfying Vz,y € (Cv)*-

(z, (T}(cy)l|*y>>(<Cv)l = <T‘(<Cv)lx’y>(<Cv)l

= (Tz,y)v
= (z, T y)v
It follows by the uniqueness of the adjoint that
Tl = (Tliews)
Hence, we have
T’((C’U)J‘ . (Cv)t — (Co)*

is also normal. Since
dim V = dim Cv 4 dim(Cv)* = 1 4 dim(Cv)*

by the OR Decomposition Theorem, by induction 3 an ON basis ¢y = {va, ..., v, }
for (Cv)™ of eigenvectors of T’ (Cv)L hence of eigenvectors of T'. It follows that

(%
Cg: {H,UH,UQ,...,’UTL}

is an ON basis for V' consisting of eigenvectors of T. If # is an ON basis for V,
then [1‘/]!’;5’(\g = [1V];31<g by Hw, so

Tl = [Wv]asT]2lv]se

by the change of basis theorem.

In fact, the converse is also true.
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Theorem 25.4

Let V be a finite dimensional inner product space over C, T : V' — V linear. Then
T is normal iff 3 an ON basis & for V consisting of eigenvectors of T'. In particular,
T is diagonalizable if either holds.

Proof. (=) Has been done.
(<= Let # has an ordered ON basis for V' of eigenvectors of 7. Then

A1 0
re ,n=dimV
0 An
As % is ON, by HW o
A1 0
[T") = [T =
0 An
in M, C. So

Au]? 0
[T"T)% = [T"]2[T]% =
0 Al
=[T2[1"]% =[TT"]»
(as [Ni]?2 = Midi = M\ € C) By the Matrix Theory Theorem,
¢: L(V,V) = M,Cby S~ [S]z
is an isomorphism, so
™T=TT"
O

Remark 25.5. The result needs F' = C. Indeed if V = R",n > 1, is an inner product
space over R via the dot product and T': V — V is a rotation by an £0,0 < 0 < 27,0 # «
in some plane through the origin in R™, then 7" is normal and not diagonalizable.

What is true is: Let FF = R or C,V a finite dimensional inner product space over
F,T:V — V linear 3 an ON basis for V' 3 [T]4 is triangularizable, then 7" is normal iff
T is diagonalizable.

I Remark 25.6. As in the Hermitian case, we can do more.

Extension: Let V be a finite dimensional inner product space over C,dimV =n,T : V —
V normal, ¥ an ordered basis of V' of eigenvalues for normal T'. After relabeling, we may
assume Ap, ..., A, are the distinct eigenvalues of T, i.e., if j > kJi, 1 <i <k 3> N\ = Aj.

Claim 25.1. Let v € Ep(\;),w € Ep(\;),1 # j,i < 1,7 < k. Then v L w.

Proof. We may assume that v # 0 and w # 0. As w € Ep(\j),w € Ep«();) by the
lemma, as 7T is normal. Hence

Ai{v,w) = (Nv,w) = (T, w) = (v, T w)
= <U7>‘7jw> = >\j<’U,’LU>
Since A\; # Aj, (v,w) = 0. O
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§26 ‘ Lec 26: Dec 7, 2020

§26.1 Lec 25 (Cont’d)

Let V' be a vector space over F, W; C V,i € I subspace. Suppose that V = >, W;.
Then V is a DIRECT SUM of the Wj,i € I write V = @, W; if one of the following
equivalent condition hold

1. Vo € V3lw; € W; 2 w; =0 almost all ¢ and v = ), w;
2. If w; € W;, almost all w; =0, and 0 = ) ; w;, then w; = 0Vi € [

3. Viel
WinN Z Wj =0
JELj#i
4. If %; is a basis for W;, i € I, then &8 = U%; is a basis for V.

If V' is also an inner product space over F', and V = @; W; with (w;, w;) = 0Vi # j in
I, we call V an orthogonal direct sum and write V = %Wl
Since A; # Aj, (v,w) = 0. Let

W =FEp(A)+...+ Ep(Xg)
It is a direct OR sum for if
O=w +...+wg,w; € Ep(N),i=1,...,k
then
0= (0, wj) = (w1 + ... + wk, wj) = (wj, wy)
= [Jw;I?
j=1,...,k. Hence w; = 0Vi and
W =Er(\M|@...®Er(\))
(why — uniqueness follows immediately) and % is a basis for V, so
V=FEp(\1)L...LEp(\)
By the OR Decomposition Theorem,
Er(\)T=Er(\) L... LEr(\) L... L Er(\)

and ifv e V
v=wy + ...+ w,w; € W; unique
So
ws; :/UET(AZ')

the OR properties of v an Ep();) for i = 1,...,k by the OR Decomposition Theorem,
as

V =Er(\) L Er(\)*

Let
P)\Z.ZV—>be1)'—>?}ET()\i),i=1,...,k
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be the composition

V — ET()\z) —V

U= VEr(n)
a linear operator

im PM = ET(/\z)
ker P>\i = ET(AZ')J‘
P\, Py, = 6i Py, i, ]

ie., P,,..., P\, are ORTHOGONAL IDEMPOTENTS and we see Vv € V

k

’U:P)\lv—l—...—i—P)\k’U
1V:P)\1+---+P/\k

So
T:Tolv:T'O]D/\l—{—...—i—TOP)\k:)\1P)\1—I—...—i—)\].cp/\,C
TZlvT:PAIT—I—...—i—P)\kT
TP\, = P\, T,Vi
as

TlET()\Z-) =Ailg,(n),t=1,....k

This is the SPECTRAL RESOLUTION of T if n; = dim Ep()\;), %; an ordered ON basis
for Ep()\;), %; an ordered ON basis for Ep(A;),i =1,..., k. Then Z =%, U...U %

is an ordered ON basis for V' consisting of eigenvectors of T’
n=dmV =n1+...n;
fr= (=)™ ... (t—\)"F
Al 0
A1

Ak

Theorem 26.1 (Spectral Theorem for Normal Operator - Full Version)

Let F = C,V a finite dimensional inner product space over C,T : V' — V normal,
A1, ..., A, all the distinct eigenvalues of 1. Then T is diagonalizable and

1. Let %; be an ordered ON basis for Ep(X;),i=1,...,k. Then B =% U...UZB,
is an ordered ON basis for V' (obvious order) consisting of eigenvectors of T'.
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A1

where
n; = dlmET()\Z),Z = 1,... ,k‘
dimV =n=n1+...+ng
3. fr=(t—=A)" .. (t— )™
4. V=FEp(A\) L ... L Ep(A\g)

5.1y =P\, +...+ P, : V = V where Py, : v = v linear by v = vg,(x)i=1,..k
(viewed in V).

6. PP, =8Py, ij=1,....k
7. T=MP\ +... + NPy,
8. TP\, =P\T,i=1,...,k
9. If € is an ON basis for V then
T2 = lvle 2[T)¢[lv]ze
= [Wle#[Tlellvigy
= [Wvle.2[Tl«[1v]g »
ie, (V] = (V]G
10. gr=(t—A1)...(t— )
Now T is normal so T* is also normal with distinct eigenvalues \p, ..., \; and

BEr(\) = BEp-(N),i=1,...k

In fact, as B
Ty = \v < Tv = \v

the orthogonal projection
for T* satisfy

as
VBr(n) = YEr ()
Hence the spectral resolution for T is
T* = MPs;+ ..+ M Py
:)\71]3)\1 —l—...—i-/\ikp)\k
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§27‘ Lec 27: Dec 9, 2020

§27.1 Lec 26 (Cont’d)

We make a further computation using the Spectral Resolution of normal T': V' — V|V a
finite dimensional inner product space over C. This also holds for hermitian T : V — V.V
a finite dimensional inner product space over R with distinct eigenvalues A1, ..., Ag,
orthogonal idempotents Py, ..., Py, i.e, spectral resolution.

k
T =MP\ +...4+ NP,
As Py, Py; = 6;jPy;, we have
T? = (MPy 4o+ NPy (MNP 4o+ MNPy = MNPy 4.+ AP,
An easy induction shows

T™ = A["Py, + ... + A\['Py,,m € ZT

Since
1V:P)\1 —i—...—i—P)\k

we see that if for any
f=amt™ +am_1t" '+ ... a9 € Ft]
a poly (with FF = C if T normal, FF = R or C if T is hermitian) that

f(T) = ame + ...+ aolv
f(T") =anT" + ...+ aoly

and as f(7T) is also normal (resp hermitian)
k
J(T) =3 FO)Py,
i=1

k
FT) =" fi)PaYf € Clt]
=1

Now let m =k — 1. Set

=L,

the LAGRANGE POLY associated to Ay, ..., Ax. By the LAGRANGE INTERPOLA-
TION THEOREM, 3lg € C[t], deg g i k, A > g(\;) = N\;,i = 1,..., k. Thus by the above,

we have
g(T) = g()\l)P)\l + ...+ g()\k)P,\k = le)\l + ...+ XkP)\k =T (*)

i.e., T* is a polynomial in 7.
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Proposition 27.1 )
Let F'=C, V a finite dimensional inner product space over C,T : V' — V linear.
Then the following are true

1. T is normal iff 3g € C[t] 5 T* = ¢g(T).

2. T is isometry iff T' is normal and |A| = 1 for every eigenvalue \ of T.

3. If T is normal, then T is hermitian iff every eigenvalue of T is real. )

Proof. 1. — is (%),

T* is normal.

2. — If T is an isometry, then 7" = T—!. Let % be an ON basis for V, the cols of
[T] % corresponds to an ON basis for V' and we are done via the ¢ : L(V,V) —
M,C,T — [T], i.e. MTT. In particular, 1)y = TT* = T*T, so T is normal if
v € V then we know

v e Er(\) <= veEp(\)

i.e.,
Tv =M < T*v =)\

Soifv e ET(A),

We have
TT* = [M|*Pyy + ...+ M| ? Py,

Since |A;| = 1Vi,
TT* :P>\1 —i—...—}—P)\k =1y =T*T

Therefore,
[]|* = (T*Tv,v) = (Tv, Tw) = | To||?

ie., ||v]] = ||Tv|Vv € V. By Hw, T is an isometry.

3. — is the Hermitian Corollary.

+)A; € R eigenvalues of normal T implies "= T* by ().

§27.2 Singular Value Theorem
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( )
Theorem 27.2 (Singular Value)
Let F=Ror C, A€ F™ ", Then
JueU,(F)={Be M,FIBB*=1},X € U,F >
Ul 0
X*AU =D = R € Fmn
0 0
diagonal, i.e. D;; = OVi # j with Dy = 0Vi > r, Dy; = p;,1 < r with
Wi >0 > e >0
\and r =rank A )

Proof. A*A € M, F is hermitian with non-negative real eigenvalues using problem 9 of
the Take home. Let Aq,..., A, be the positive eigenvalues ordered such that

AL> . A>0

(there can be repetitions). By the Spectral Theorem for Hermitian Operators, 3U €
U, F >

A1 0

(AU)*(AU) = U*(A*A)U = € M,F

(as A=[Aly, #,) Let
C = AU € Fpmxn

So
C*C = (AU)*(AU) € M, F

Write
Ni= i >0,1<i<r

(which we can do as A\; >0 € R ) and let
Ni=0fori>r

Set

1 0

B = Hr e M,F
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if £ is a matrix let E®) denote the k™™ column of E. Then we have

n

Aidij = (C*C)ij = Y _(C*)aCy, ZC’,CI

=1

_ Z Cy;Cy, = <C(j), C(i)>
=1

Hence

[ c™ o o e prm

satisfies €y = {C'(1 .,C) } is an OR set in F™*1. As C® #£0,1 <1< r% is
linearly independent. Therefore

Rank C' =r
with
[CO? = (C®,CD) = xi = i}
fori=1,...,r. As U is invertible
Rank A = Rank AU = Rank C =r,
ie.,

Rank A =1r

as required. Now define

X0 = iC'(i) e ™t i=1,...,r
223

Then %) = {X(l) . X(T)} is an ON set in F*!. Extend this to an ordered ON basis
B = {X(l),...,X(m)} for <1
Then the matrix
X = [X0 X = [paly s, € MnF

Since &, % m1 are ON bases

X € Un(F)
Set
JI51 0
_ Hor mxn
D= 0 el
0 0
as in the statement of the theorem.
1 0
0 0
X0 x| = € = av
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Hence
X*AU =D

as needed. O
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§28 ‘ Lec 28: Dec 11, 2020

§28.1 Lec 27 (Cont’d)

(Definition 28.1 (Singular Value Decomposition) — Let A € F™*" F =Ror C
(i) A= XDU*\U € U,F,X € Up,,F (so D =X*AU as X' = X* U~ =U*)
(i) g1 >...> pr >0 € R where

(iii)

M1

D= “’“

0

Then i), i), 1) is called a SINGULAR VALUE DECOMPOSITION (SVD) for A,
M1, - - -l the singular values of A, D the pseudo diagonal matrix of A. )

.

Note: Let A= XDU* be an SVD of A. Then

1. The singular values of A are the positive square roots of the positive eigenvalues
of A*A

2. The columns of X forms an ON basis for F*! of eigenvectors of AA*

3. The rows of U form an ON basis for F1*" of eigenvectors of A*A

Corollary 28.2

The singular values of A € F"*" F =R or C, are unique (including multiplicity)
up to order.

Proof. Let A= XDU* be an SVD of A, X € U,,F,U € U,F. Then
A*A = (XDU*)*(XDU*) = UD*X*XDU* = UD*DU*
as X*X =1, so
diy
A*A ~ D*D =

have the same eigenvalues, d2;, ..., i.e., these are the eigenvalues of AA*. O

I Remark 28.3. An SVD of A € F™*" F =R or C may not be unique.
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Corollary 28.4

The singular values of A € F™*" F =R or C are the same as the singular values
of A* € <™,

Proof. (XDU*) =UD*X* and D, D* have the same non-zero diagonal eigenvalues. [

\
Theorem 28.5 (Polar Decomposition)

Let F=Ror C, A€ M,F. Then 3U~ € U,F, N € MyF hermitian (i.e., N = N*
) with all its (real) eigenvalues non-negative s.t.

A=U"N
cf. polar form of a complex number U™ eﬁe, N <. )

Proof. In the Singular Value Theorem, we have m = n, so if

A=XDU*isan SVD X,U € U,F,
We have D = D* is hermitian with non-negative eigenvalues AU = X D. So

A=XDU*=X(U*U)DU* = (XU*)(UDU™)

Since

(XUH(XU") =UX"XU*=UU"=1,
we have XU* € U, F.
So letting U~ = XU* € U, F, N = UDU* work. O

Exercise 28.1. In the above theorem, N is unique and U is unique if A invertible in
M, F. (as it has positive eigenvalues).

§28.2 Application of SVD

Problem 28.1. Let FF = R or C,V a finite dimensional inner product space over
F,W C V a subspace
Py :V - W by v— vw

the orthogonal projection of V' onto W. We know vy is the BEST APPROXIMATION
of v € V onto W. Now let X be another finite dimensional inner product space over
F,T:X — Vlinear, W =T(X) =im T,v € V,z € X. We call

(i) X a best approximation to v via T' if

Ta7 = vw = Pw<’l))

(ii) X an optimal approximation to v via T if it is a best approximation to v via T
and |lv|| is minimal among all best approximations to v via 7.

In the above, find an optimal approximation of x.
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Ans: Let A =T : ot — Xl g e proniy € F™1 (F = R or C ). Let
A= XDU* be an SVD

M1

D = Hor c FmXn

w1 > ... > pp >0 €R. Define

DT — Ky c prnxm

At =UDIX* ¢ Frxm
called the Moore-Penrose generalized pseudo-inverse of A. Then
(i) rank A = rank Af

(i) Afv is an optimal approximation in F™*! to v via A and is unique. (Hence A is
well-defined, i.e., independent of SVD)

(iii) If rank A = n, then
Al = (A*A)1 A

Application (Least square): F' =R or C. Given date (x1,v1), ..., (Tn,yn) € F2. Find
the best line relative to this data, i.e., find

y = Ax + b, A = slope

Let
1 1 Y1

. . J— A J—
A= . . 7X_<b>7Y_

x, 1 Yn

Solve AX =Y. The solution is probably inconsistent, so want optimal soln. Solve
zp 1 (1
: AN |
L) =
Tp 1 Yn
(Least squares approximation) Let W = im A. To find optimal approximation to
AX =Yw
Then X = Afy works. If rank A = 2, then

X = (A*A) 1Ay
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§28.3 Smith Normal Form

Polynomials are important in analyzing linear operator 7' : V' — V| V a finite dimensional
vector space over F, e.g., fr,qpr. Algebraically, this arises from the generalization of a
vector space over F'.
Let R be a ring, i.e., axioms of a field except M3, M4 (inverse and commutativity).
Let M be a set satisfying A1 — A4, i.e., axiom for + in Z. Then M is called a (left)
R—Module via

T RxM—M (r,m) — rm

if (M, +.,-) satisfies the axioms of a vector space over F' with R replacing a field.
For linear algebra, this arises as follows: Let V' be a vector space over F,aset T : V — V
a linear operator. Make V' into a F[t]-module by Yv € VVg € F[t]

g-v:i—g(T)v
We let ¢ in F[t] act on V by
tv ==T(v)

Then use module theory to break V into v = wy @ ... ® w,,w; T-invariant Vi (and nice)
if V' is a finite dimensional vector space over F.

We say that A € F[t]™*" is in Smith Normal Form (or SNF) if A is the zero matrix
or if A is a matrix of the form

o 0
0 @
qr
0
0
with q1]q2/gs| - - - |g- € F[t] and all monic, i.e., there exists a positive integer r satisfying

r < min(m,n) and ¢i|g2|g3]| . .. |¢- monic in F[t] s.t. A;; =¢; for 1 <i<r and A;; =0
otherwise.

We generalize Gaussian elimination, i.e., row(and column) reduction for matrices with
entries in F' to matrices with entries in F[t]. The only difference arises because most
element of F'[t] do not have multiplicative inverses.

Let A € M, (F[t]). We say that A is an elementary matrix of

(i) Type I: If there exists A € F[t] and | # k s.t.

0, otherwise
(ii) Type II: If there exists k # [ s.t.

ifi=j#lori=j#k
ifi=j=lori=j—=k
if (k,1) = (i,7) or (k,1) = (j,1)

otherwise

Aij =

o = O =
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(iii) Type III: If there exists a 0 # u € F and I s.t
1, ifi=j#1

0, otherwise

Remark 28.6. Let A € F[t|™*". Multiplying A on the left (respectively right) by a
suitable size elementary matrix of

(a) Type I is equivalent to adding a multiple of a row (respectively column) of A to
another row (respectively column) of A.

(b) Type II is equivalent to interchanging two rows (respectively columns) of A.

(c) Type III is equivalent to multiplying a row (respectively column) of A by an element
in F[t] having a multiplicative inverse.

Remark 28.7. 1. All elementary matrices are invertible.

2. The definition of elementary matrices of Types I and II is exactly the same as that
given when define over a field.

3. The elementary matrices of Type III have a restriction. The u’s appearing in the
definition are precisely the element in F[¢] having a multiplicative inverse TBA

Notation: We let
GL,(F[t]) = {A € M,(F[t])|A is invertible}

Warning: A matrix in M, (F[t]) having det(A) # 0 may no longer be invertible, i.e.,
have an inverse. What is true is that GL,(F[t]) = {A € M, (F[t])|0 # det(A) € F},
equivalently G L, (F[t]) consist of those matrices whose determinant have a multiplicative
inverse in F[t].

Definition 28.8 (Equivalent Matrix) — Let A, B € F[t]™*". We say that A is
equivalent to B and write A ~ B if there exists matrices P € GL,,(F[t]) and
Q € GL,(F[t]) s.t. B=PAQ.

Theorem 28.9

Let A € F[t]™ ™. Then A is equivalent to a matrix in Smith Normal Form (SNF).
Moreover, there exists matrices P € GLy,(F[t]) and @ € GL,(F'[t]), each a product
of matrices of Type I, Type II, and Type III, such that PAQ is in SNF.

Proof. The proof will, in fact, be an algorithm to find a SNF of A. Refer to www.math.
ucla.edu/~rse/115ah.1.20f/L28.pdf — Pg. 9-10. O

Remark 28.10. The SNF derived by this algorithm is, in fact, unique. In particular,
the monic polynomial ¢|gz|gs] . . . |g- arising in the Smith Normal Form of a matrix A are
unique and are called the invariant factors of A. This is proven using results about
determinants. It follows if A, B € F[t]"*™ then A ~ B if and only if they have the same
SNF if and only if they have the same invariant factors.
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So what good is the SNF relative to linear operators on finite dimensional vector spaces?
It tells us a great deal, because the following is true: Let A, B € M,,(F). Then A ~ B if
and only if t/ — A~ tI — B € M, (Ft]) and this is completely determined by the SNF
hence the invariant factors of tI — A and ¢t/ — B. Now the SNF of ¢t/ — A may have
some of its invariant factors of 1, and we shall drop these.

§28.4 Some definitions

4 . ,
Definition 28.11 (Companion Matrix) — Let ¢ = t" + ap—1t"" 1 + ...+ a1t + ag be
a monic polynomial in F[t]. The companion matrix C(q) is defined to be the
n X n matrix:

00 ... 0 —ag
1 0 0 —aq
00 ... 1 —Qp—1
- J
Definition 28.12 (Invariant Factors) — Let V be a finite dimensional vector space

over F' with % an ordered basis. Let T : V — V be a linear operator. If one
computes the Smith Normal Form of ¢tI — [T, it will have the form

1 0 0
0 1 0
q1
q2
0 qr

with ¢i]qi1|...|gr are all the monic polynomials in F[¢] \ F. These are called the
invariant factors of 7. They are uniquely determined by 7.

J
Definition 28.13 (Rational Canonical Form) — The main theorem is that there
exists an ordered basis % for V such that
C (ql) 0 cee 0
0 C (QQ) ce 0
Ta=| o
0 .. Clqr)
and this matrix representation is unique. This is called the rational canonical
form or RCF of T. Moreover, the minimal polynomial of T" is ¢,.. The algorithm
computes this as well as all invariant factors of 7. The characteristics polynomial f7
of T is the product of ¢ . .. q,. This works over any field F', even if g7 does not split.
The basis Z gives a decomposition of V into T-invariant subspaces V = W1 ®...®W,
where frw, = qryw, = ¢ and if dim(W;) = n;, then %; = {vi,Tvi, . ,T"i_lvi} is
a basis for W; ( we say that the W; are T-cyclic subspaces). y
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(Definition 28.14 (Jordan Block/Size — Jordan Canonical Form) — Let V be a ﬁnite\
dimensional vector space over F' with % an ordered basis. Let T : V — V be a
linear operator. Suppose that gr splits over F. Say

Gi=(E—A)" ... (t—Ap)™i=1,...,m

in F[t], with A1,..., Ay, distinct. A matrix in M, (F) of the form

A0 . 0 O
1 X 0 0
L) =[0 1 A
00 ... 1 A
is called a Jordan block or size r x r with eigenvalue A\. The one can show that
C(¢i),i=1,...,m is similar to the following matrix in block form:
Jr (A1) 0 0
0 Iry(A2) 0
0 0 coe Ir (Am)

Replacing each C'(g;) in the rational canonical form by its Jordan blocks give what
is called Jordan Canonical Form or JCF of T'. It is unique up to the order of
the blocks (blocks with the same eigenvalues are usually put together). )
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§29 ‘ Extra Lec: Nov 2/9, 2020

§29.1 Dual Bases — Dual Spaces

Let 0 # V be a vector space over F' with basis %. For each vg € %, we define a map
fvo 1V — F linear

as follows: by the UPVS (which also holds if the basis is infinite, let fvy be the unique
linear transformation) s.t.

vo — 1
vi—>0 Yy #veR

We have
0 < im fvy C F a subspace

(im fvg # 0 as vg # 0 ). As dimp F' = 1, we must have dim fvg = 1, so fvg: V — F'is

an epimorphism and

ker fup = {w € V|w has vy coordinate = 0}
= Span(#\ {vo})

SoifweV, w=> a,w,a, € F almost all 0 with a,, unique.

foo(w) = au,

the coordinate of w on vg. We can do this for each v € B. If v/ € B, fiy : V — F is the
linear transformation determined by

i, if v =1
(V) = Oy = < , the Kronecker &
Jor(0) = 0wy {O, ifv£d,ve R

Set
PB* = {fv|v € B} f, is the coordinate functionf, on v

The vector space
V*=L(V,F)

is called the DUAL SPACE of V. So by the above if w € V

w = Z v, oy, € F almost all 0
vER

then
ay = fy(w) the coordinate w,v € A

w = ZO%U = va(w)v
B B

Now by the UPVS, we have a unique linear transformation

SO

D@:V%VX

determined by v € # — f,. S0 Y 4 av = Y 4o f, almost all o, =0
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Claim 29.1. Dy is 1-1.

Suppose w = Y 5 av — 0 almost all a, = 01i.e., Y H o fu =0  in v*
Let vg € %, then

' (Z Oéva) (vo) = Za”f”(vo) = Zavswo = avg

Hence > ayfy =0 — ap, = O0Vo € B, so w = 0. Dy is therefore 1-1 as claimed. O
Warning: If V' is not finite dimensional, then D is not onto, i.e., % does not span V*.

(V*| = [F|#! and |F| = |V| by UPVS if F is infinite)
Note: Dy : V — V* depends on the choice of basis 4.

Definition 29.1 (Linear Functionals) — If V is a vector space over F, elements in
V* = L(V,F) are called LINEAR FUNCTIONALS.

Fact 29.1. If S is a linearly indep. set in a vector space over F' (even infinite) then S
is part of a basis for V, i.e., the Extension Theorem holds (This needs the Axiom of
Choice).
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Example 29.2

V' a vector space over F. Then followings are linear functionals

1. If 0 # v € V, then {v} extend to a basis & for V and #* satisfies #* is
linearly indep.
fo(x) = SpVa € B

Let w =) 502, a, =0 almost all z € . Then f,(w) = o, € FVx € &,
w=73 fo(w)z

2. m : F" — F by (a1,...,a,) — a;Vi

3. Let Int : Cla, 8] = R, < 8 be given by
B
Intf»—)/ f

4. trace: M, F — F by
n
i=1

The sum of the diagonal entries of A called the TRACE of A.
We can iterate our constructions as follows:

Let € be a basis for V* = L(V, F') a vector space over F', where V' is a vector
space over F'. Then
Dy : V' — (VI =V**

V** is called the DOUBLE DUAL of V, is induced by
fo€EC— Gy €€

the coordinate function on fy, i.e.,

Zaff — Zafo
4

(g*
with
1if f= foVf,foe ¥
Gro(f) =iy = 4 f=fovf, fo
0if f # fo
So we have

v 2% yr 26 e

and the composition is a monomorphism.

Wonderful Result: 3 a monomorphism

L:V V™

INDEPENDENT OF CHOICE OF BASES. We know want to show this:
For each v € V' define the following linear functionals on V*

Ly, : V* = F by L,(f) == f(v)

EVALUATION at v.
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Check. L, : V* — F is linear, i.e., L, € V** = (V*)*:
Ly(af +g) = (af +9)(v) = af(v) + g(v)
=alyf + Lyg
Vt,g € V*Va € F as needed. Now define
L:V>V*™byv— L,
ie., L(v) = L,
Claim 29.2. L is linear.
VfeV* v,v € V,a e F, we have
L(aw + ') (f) = Lav+w (f) = flav +2)

= af(v) + f(U/) =alyf+ Ly f
= (aL’U + Lv’)(f)

as needed.
Claim 29.3. L :V — V** is monic.

Suppose v # 0. By Example TBA, 3f € V* > L,(f) = f(v) # 0. As L is linear, L is
a monomorphism. Hence

L:V V™

is a NATURAL or CANONICAL MONOMORPHISM, i.e., no basis is needed to define
it. We now assume that V' is a finite dimensional vector space over F', let

PB = {v1,...,v,} be a basis for V
B = {fl, R ,fn} C V* defined by fi(vj) = 5Z]V1,j

i.e., the f; are the coordinate functions relative to 4. Then, as before, we have a

monomorphism
Dy :V — V* induced by v; — f;

But we also have
dimV* =dim L(V,F) =dimV dim F = dimV'

by the Matrix Theory Theorem, so D is an isomorphism by the Isomorphism Theorem
with #* a basis for V* called the DUAL BASIS of . We also have

VeV V™ so VeV

and
B ={Ly,..., Ly, }

with
Lvi = Lf“fi € B

Ly, (fj) = Lo, (f5) = [(vi) = 04

So %** is the DUAL BASIS of #4*. We also now L : V — V** is now a natural
isomorphism by the Isomorphism Theorem and even better that

f)=Ly(f) YweV VfeV”®
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EVALUATION at v. So when V is a finite dimensional vector space over F, we can and
do identify L, and v Yv € V.

Any v € V is determined by the t € V* and every f € V* is determined by the L, € V' **
and

f(v) = Ly(f)

So now we have: if V is a finite dimensional vector space over F'

B ={v1,...,vn} a basis for V
B ={f1,-- s fn} : {for,--+, fv,} the dual basis of A

B = {Lfvl,.. : 7Lfvn} ={Lv,...,Lv,} the dual basis of #*

ie.,

and these satisfy
f{ (vi) = tv;(vi) = 6i5 = Ly, (v5) = Lvi(f‘)

If v € V|, then
v =1V + ...+ apv, unique aq,...,a, € F
fi(w) = filawvr + ... + anvy)
So

v = Z fi(v)v;
i=1

where f;(v) is the coordinate function relative to % and if f € V*, then

f="51h+ ...+ Bnfn unique Bi, ..., B € F

As
Lvl(f) = (ﬁlfl +... +ann) (Uj)

= B1fi(v1) + ...+ Bufalvy) = 5‘

And
f=Bifi+...+Bufn

=Ly, (f)f1+ ...+ Ly, (f) fn

= flo)fi+ ...+ f(vn)fn
So,

=Y fw)f

where f(v;) is the coordinate function.
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§29.2 The Transpose

Let V,W be vector space over F';, T : V. — W linear if ¢ € W* = L(W,F), i.e.,
g : W — F linear, then the composition

viwds

is a linear functional, i.e., goT € V*.

/Definition 29.3 (Transpose) — Let V, W be vector space over F,\ T : V — W linear.\
Define the transpose of T' by
TT . W* = V*bygrsgoT
i.e.,
TTg:=goT VgeW*
i.e.,
A% i W
\ chommutes
Tig:=goT p
So
viw
v we
(S J

Claim 29.4. T" : W* — V* is linear if g, ¢/ € W*, o € F, then
T ag+d)=(ag+g)oT=agT+¢T=al ' g+T"g

T is called the transpose because of the followings

Theorem 29.4

Let V, W be finite dimensional vector space over F', A, % ordered bases for V, W
respectively, T : V' — W linear. Then

T3 = [T ez

Proof. Let

%:{vl,...,vn}, %* :{f17---7fn}
€ ={wy,...,wn}t, €* ={g1,---,9m}

with %*,€™* the ordered dual bases of ordered bases %, % of V, W respectively.
Let

[T)2% = (aij) and [T gz = (Bi5)
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ie.,

m
Tvk:ZaikwieW, k=1,...,n
=1

n
Tng225ijfi€V*, j=1....m
i=1

Then computation gives

(Tng) (vk) = 95(Tv,.) = 9; (i aikﬂ’i)

=1

m m
= E aig;(w;) = E Qi0ij = Qjg
i—1 i—1

and
(TT9> (k) = <Zn; /Bijfi> (k) = zn;ﬁijfi(vk)
= iﬁijéik = Bi;
Hence, ajx = Bi,¥j, k as needed. } 0

(Definition 29.5 (Annihilator) — Let V be a vector space over F,() # S C V a\

subset. The set

S° = {f € V*|f]g =0} = {f € V*|f(s) = O¥s € S}

\is called the annihilator of S. )

Question 29.1. If V is an inner product space over F', can you find something analogous?
Claim 29.5. S° C V* is a subspaces (even if S is not).
Proof. Let f,g € S°,a € F. To show (ozf—{—g)’s =0, let s € .S, then
(af +9)(s) = af(s) + g(s) =0
so af +g¢€ S°. O
Observation: Let T : V — W be linear. Then
ker 7" = (im T)°

g € kerTT iff TTg = 0 iff (TTg)(v) = OV € V iff g(Tw) = OVv € V iff g €
(im T)°.

Proposition 29.6

Let V be a finite dimensional vector space over ', W C V a subspace. Then

dimV = dim W + dim W°
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Question 29.2. If V is a finite dimensional inner product space over F', can you find
something similar?

Proof. Let {v1,...,v;} be a basis for W. Extend it to & = {v1,...,v,} a basis for V.
Let #* = {fi1,..., fn} be the dual basis of £, i.e.,

fi(vy) = 645V, j

Claim 29.6. ¢ = {fx+1,..., fn} is a basis for W°. Let f € W°. Then 354,...,08, €

F>
k+1

f= Bifi = fvi) fi = f(vi)fi € Span €

As € C #* and $B* is linearly indep., so is €. This proves the claim and the result
follows. O

/Corollary 29.7 A

Let V be a finite dimensional vector space over F', W C V a subspace. Identifying
V and V** via v <+ L,, we have

W = (W°)° = W

If V is a inner product space over F', can you find something similar?

J

Proof. We have W° C V* and W°° C V** =V are subspaces and by the last proposition,
we have

dimV =dim W + dim W°
dim V* = dim W° + dim W°°
dim W = dim W*°

If w e W, then
Lyf=fw)=0, VfeW?
So
w= L, € W
ie., W C W° is a subspace. As dim W = dim W, W = W°°, O

Theorem 29.8
Let V, W be finite dimensional vector space over ', T': V — W linear. Then

dimim 7 = dimim T'"

Proof. We have dim W = dim W*

dim W = dimim 7 + dim (im 7T')°
dim W* = dimim T + dimker T'"
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by the previous proposition and the Dimension Theorem. By observation,
(im T)° = ker T
dim(im 7)° = dimker 7'

Hence,
dimim 7 = dimim 7" O

Application: Let A € F*™. The row (respectively column) RANK of A is the dimension
of the subspace spanned by the rows (respectively column of A viewed as vectors in F™
(respectively F™*1).

Using the theorems and our previous computation, we have

Claim 29.7. row rank A = col rank A.
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8§30 ‘ Lec 1: Mar 29, 2021

§30.1 Vector Spaces

Notation: if x : Ax B — B is a map (= function) write axb for x(a, b), e.g., + : ZXZ — 7
where Z = the integer.

(Definition 30.1 (Field) — A set F' is called a FIELD under A

e Addition: +: F x FF — F

e Multiplication: - : FF x FF — F
if Va, b,c € F, we have
Al) (a+b)+c=a+(b+¢)
A3) A2) holdsand Ixr € F3a+zx=0=x+a

A4

)
A2) 30€ F>3a+0=a=0+a
)
Ja+b=b+a

M1) (a-b)-c=a-(b-c)

M2) A2) holds and 31 #0 € F st. a-1=a=1-a (1 is unique and written 1 or
1r)

M3) M2) holds and VO # x € F Jy € F 3 xy = 1 = yx (y is seen to be unique
and written z71)

M4) z-y=y-x

Dl) a-(b+c)=a-b+a-c

D2) (a+b)-c=a-c+b-c

Example 30.2
Q, R, C are fields as is

Fy := {0,1} with + : given by

Fact 30.1. Let p > 0 be a prime number in Z. Then 3 a field FF,,» having p" elements
write [Fpn| =p™ Vn € Z7.
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(Definition 30.3 (Ring) — Let R be a set with A
e +:RXxR—R
e :RXxR—R
satisfying A1) — A4), M1), M2), D1), D2), then R is called a RING.
A ring is called
i) a commutative ring if it also satisfies M4).
ii) an (integral) domain if it is a commutative ring and satisfies
M3)a-b=0 = a=0o0rb=0
9 (0 = {0} is also called a ring — the only ring with 1 = 0) y

Example 30.4 (Proof left as exercises) 1. Z is a domain and not a field.
2. Any field is a domain.

3. Let F be a field
F[t] == {polys coeffs in F'}

with usual +, - of polys, is a domain but not a field. So if f € F[t]
f=ag+ait+...+ayt"
where ag,...,a, € F.

4. Q:={%la,beZ, b#0} < C (< means C and #) with usual +, - of fractions.
(when does § = 97)

5. If F'is a field
F(t) = {f\f,g e Ft], g # 0} (rational function)
g

with usual +, - of fractions is a field.
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Example 30.5 (Cont’d from above) 6. Q[v/—1] = {a +BvV-1€Cla,B € Q} <
C. Then Q[v/—1] is a field and
QV=T) = {3la,b e QV-T}, b # 0}
— qivA)
= {%]a,b e ZIV=1], b # o}
where Z[v/—1] = {a—f—ﬁ\/j eC, a,p€ Z} < C. How to show this? —

rationalize (Z[v/—1] is a domain not a field, F[t] < F(t) if F is a field so we
have to be careful).

7. F a field
M, F' := {n X n matrices entries in F'}

is a ring under +, - of matrices.

1 0
Iy, r = I, = n X n identity matrix

0 1

0 ... 0
Om,,r = 0 = 0, = n X n zero matrix

0 ... 0

is not commutative if n > 1.

In the same way, if R is a ring we have
M, R = {n x n matrices entries in R}
e.g., if R is a field M, F'[t].
8. Let @ # I C R be a subset, e.g., [a,8],a < 8 € R. Then
C(I)=A{f:1I— R|f continuous}
is a commutative ring and not a domain where

(f +9)(x) = f(z) + g(x)
0(x)=0
1(z) =2

for all z € I.

Notation: Unless stated otherwise F' is always a field.
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[Definition 30.6 (Vector Space) — Let F be a field, V a set. Then V is called a\
VECTOR SPACE OVER F write V is a vector space over F' under

o +:V xV =V — Addition
o - : F XV — V — Scalar multiplication
if Ve,y, €V Va,5 € F.
l. (z4+y)+z=z+(y+2)
2.30€V >3 2x4+0=2=0+z (0 is seen to be unique and written 0 or Oy)

3. 2) holdsand v € V3 v+ v =0=wv+x (v is seen to be unique and written
—.%')

4. r+y=y+=zx

5. lp-x ==x.

6. (a-8)-c=a-(8-a)

7. (a+B) z=a-xz+p x

9 8. a-(z+y)=a-x+a-y y

Remark 30.7. The usual properties we learned in 115A hold for V' a vector space over F',
e.g., 0pV = Oy, general association law,. ..
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§31 ‘ Lec 2: Mar 31, 2021

§31.1 Vector Spaces (Cont’d)

Example 31.1

The following are vector space over F'

1. F™*™ := {m x n matrices entries in F'}, usual +, scalar multiplication, i.e.,
if A€ F™n let A;; = ij'h entry of A. If A, B € F™", then

(A+ B)ij = Aij + By;
(aA)ij = ady; YaeF
i.e., component-wise operations.
2. F" = FY>" .= {(ay,...,an) |o; € F}
3. Let V be a vector space over F, () # S a set. Define
Fen(S,V)={f:S = V| f afen}

Then Fen(S,V) is a vector space over F' Vf, g € Fen(S,V), Va € F. For all
x €S,

f+g:z— f(z)+g(x)
af : z— af(z)

(f +9)(x) = fz) + g(z)
(af)(z) = af(z)
with 0 by 0(z) =0y Vz € S.

4. Let R be a ring under +, -, F' a field 5 F' C R with +, - on F' induced by +, -
on R and Op =0p, 1p = 1R, i.e.

+ | pxp :FxF—>Fand - | pyp :FxF—F
on R g on R

restrict dom restrict dom

i.e. closed under the restriction of +,- on R to F' and also with O = O and
1p = 1g (we call F' a subring of R). Then R is a vector space over F' by
restriction of scalar multiplication, i.e., same + on R but scalar multiplication

-‘FxR:FXR—>R

e.g., RC Cand F C FJt].
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Example 31.2 (Cont’d from above)

Note: C is a vector space over R by the above but as a vector space over C is
different.

5. In 4) if R is also a field (so F' C R is a subfield). Let V' be a vector space over
R. Then V is also a vector space over F' by restriction of scalars, e.g., M,,C is
a vector space over C so is a vector space over R so is a vector space over Q.

§31.2 Subspaces

(Definition 31.3 (Subspace) — Let V be a vector space under +,-,0 #W CV a\

subset. We call W a subspace of V if Vwy,ws € W, Va € F,
awy, w; +wy € W

with Oy = Oy is a vector space over F under + |y xw and -|pxywy i.e., closed under
the operation on V.
J

/Theorem 31.4 A

Let V be a vector space over F, () # W C V a subset. Then W is a subspace of V/
iff Vao € F, Ywyi,wy € W, awy +we € W. y

Example 31.5 1. Let ) # I C R, C(I) the commutative ring of continuous
function f : I — R. Then C(I) is a vector space over R and a subspace of
Fen(I,R).

2. Ft] is a vector space over F and n > 0 in Z.

Ftln == {f[f € F[t], f =0or deg f < d}

is a subspace of F[t] (it is not a ring).

Attached is a review of theorems about vector spaces from math 115A.

§31.3 Direct Sums

Problem 31.1. Can you break down an object into simpler pieces? If yes can you do it
uniquely?

Example 31.6

Let n > 1 in Z. Then n is a product of primes unique up to order.
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Example 31.7

Let V be a finite dimensional inner product space over R (or C) and T: V — V
a hermitian (=self adjoint) operator. Then 3 an ON basis for V consisting of
eigenvectors for T'. In particular, T is diagonalizable. This means

V=Er(\)L...LEp(\) (*)
Er(\i) = {v € V|Tv = \jv} # 0 eigenspace of \j; A1,..., A, the distinct eigenval-
ues of T'. So

T‘ET(Az’) 3 ET()\Z) — ET()\z)
i.e., Ep(\;) is T-invariant and

T‘ET(Ai) = Ailpr(n)

and (*) is unique up to order.

Goal: Generalize this to V any finite dimensional vector space over F', any F', and
T :V — V linear. We have many problems to overcome in order to get a meaningful
result, e.g.,

Problem 31.2. 1. V may not be an inner product space.
2. F # R or C is possible.
3. F ¢ is possible, so cannot even define an inner product.
4. V may not have any eigenvalues for T': V — V.

5. If we prove an existence theorem, we may not have a uniqueness one.

We shall show: given V a finite dimensional vector space over F'and T : V — V a
linear operator. Then V breaks up uniquely up to order into small T-invariant subspace
that we shall show are completely determined by polys in F'[t] arising from T". Motivation:
Generalize the concept of linear independence, Spectral Theorem Decomposition, to see
how pieces are put together (if possible).

(Definition 31.8 (Span) — Let V be a vector space over F', W; CV, i € I — may
not be finite, subspaces. Let

ZVVZ- :ZWi = {v € V|Fw; € W, i € I, almost all w; :Oav:Zwi}

el el el

when almost all zero means only finitely many w; # 0. Warning: In a vector
space/F we can only take finite linear combination of vectors. So

Z W; = Span <U I/V,) = {ﬁnite linear combos of vectors in U WZ}
il il iel
e.g., if I is finite, i.e., |I| < 0o, say I = {1,...,n} then

ZWi:W1+...+Wn ={wi + ...+ wy|w; € W;Vi € I'}
iel
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[Definition 31.9 (Direct Sum) — Let V be a vector space over F, W; CV i€ I,
subspace. Let W C V be a subspace. We say that W is the (internal) direct sum

of the W;, i € I write W = @@,.; W; if

Vw € W Alw; € W; almost all 0 > w = Zwi
i€l

e.g., if I ={1,...,n}, then

Y weWL@...oW, means Nw,;, € W; > w=wy +...+w, )

Warning: It may not exist.
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§32 ‘ Lec 3: Apr 2, 2021

§32.1 Direct Sums (Cont’d)

Definition 32.1 (Independent Subspace) — Let V' be a vector space over F, W; C
V, i € I subspaces. We say the W;, i € I, are independent if whenever w; € W;, i €
I, almost all w; = 0, satisfy Y w; = 0, then w; = 0Vi € I.

/Theorem 32.2 A

Let V be a vector space over F, W; C V, i € I subspaces, W C V a subspace. Then
the following are equivalent:

2. W=>,c;W;and Vi

W, N Z WjZOZZ{O}
Jel\{i}

3. W =73 ,c; Wi and the W;, i € I, are independent. )

Proof. 1) = 2) Suppose W = @@,.; W;. Certainly, W = >, _; W;. Fix i and suppose
that
JeeWin > W
jen{i}
By definition, Jw; € W;, w; € Wj, j € I'\ {i} almost all 0 satisfying
W; =T = Z LUj
JFi
So
OV:()W:wi—ij
J#i
But
Ow = Ow,  Ow,=0yVkel
I

By uniqueness of 1), w; =0 so z = 0.
2) = 3) Let w; € W, i € I, almost all zero satisfy

el

Suppose that wyg # 0. Then

W = — Z wiEWkﬁZwi:O,

icI\{k} i#k

a contradiction. So w; = 0V3
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3) = 1) Suppose v € Y _,.; W; and Jw;, w; € Wy, i € I, almost all 0 >
DTN, ¥
i€l el

Then Y, ;(w; — w;) = 0, w; —wj € W;Vi. So

7

/ . / .
w; —w; =0, ie, w; =w; Vi

and the wis are unique. O

Warning: 2) DOES NOT SAY W; N W; = 0 if i # j. This is too weak. It says
Wiﬂz#iwj =0.

KCorollary 32.3 A
Let V' be a vector space over F,W; C V, ¢ € I subspaces. Suppose I = I1 U Iy with
LN =0and V =@,.; W;. Set

W, =W, and W, =W,
i€lq Jj€El>
Then
N V=W & Wy, )
Proof. Left as exercise — Homework. O

Notation: Let V be a vector space over F', v € V. Set
Fv :={av|a € F} = Span(v)

if v # 0, then Fwv is the line containing v, i.e., Fv is the one dimensional vector space
over F' with basis {v}.

Example 32.4

Let V be a vector space over F.

1. If  # S C V is a subset, then
ZF’U = Span(5)
veS

the span of S. So

Span S = {all finite linear combos of vectors in S}

2. If 0 # S is linearly indep. (i.e. meaning every finite nonempty subset of S is
linearly indep.), then

Span(S) = EB F's

seS
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Example 32.5 (Cont’d from above) 3. If S is a basis for V, then V = @, g F's.

4. If 3 a finite set S €V > V = Span(S), then V =3 _¢ Fs and 3 a subset
% C S that is a basis for V, i.e., V is a finite dimensional vector space over
F and dimV = dimp V = || is indep. of basis Z for V.

5. Let V be a vector space over F, Wy, Wy C V finite dimensional subspaces.
Then W7 + Wy, W1 N Wy are finite dimensional vector space over F' and

dim(Wl + Wg) = dim W7 + dim Wy — dim(W1 N WQ)

So
Wi+Wo=W10Wy < WiNnWy =10

Warning: be very careful if you wish to generalize this.

Definition 32.6 (Complementary Subspace) — Let V be a finite dimensional vector
space over F,W C V a subspace if

V=WaeW, W' CV asubspace

We call W’ a complementary subspace of W in V.

Example 32.7

Let Ay be a basis of W. Extend % to a basis £ for V' (even works if V' is not
finite dimensional). Then

W' = @ Fv is a complement of W in V'
B\ By

Note: W' is not the unique complement of W in V' — counter-example?

Consequences: Let V be a finite dimensional vector space over F,Wy,..., W, C V
subspaces, W; # 0Vi. Then the following are equivalent

1. V=W a...6W,.

2. If #; is a basis (resp., ordered basis) for W; Vi, then Z = %, U...U A, is a basis
(resp. ordered) — with obvious order — for V.

Proof. Left as exercise (good one)! O

Notation: Let V' be a vector space over F, % a basis for V, z € V. Then, dla, € F, v €
A, almost all a, = 0 (i.e., all but finitely many) s.t. z =) ,v. Givenz € V,

T = E Qv

vVEA

to mean «,, is the unique complement of x on v and hence «,, = 0 for almost all v € A.
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§32.2 Quotient Spaces

Idea: Given a surjective map f : X — Y and “nice”, can we use properties of Y to
obtain properties of X?

Example 32.8

Let V =R3, W = X — Y plane. Let X = plane parallel to W intersecting the
z-axis at 7.

w

So

X = {(a,8,7)]e, B € R}
= {(@,8,0) +(0,0,7)|e, B € R}
= W+’Y €3
(0,0,1)

Note: X is a vector space over R <= 7=0 <= W = X (need Oy). Let v € X.
So v = (z,y,7) some z,y € R. So

W+vi=4(ap0)+(y7)|aBeR
—_—— —
arbitrary fixed
={(a+z,8+y,7) |, B R}
:W+763

It follows if v,v’ € V, then

WHov=W+v = v—-2v eW
Conversely, if v,v" € V with X = W + v, then

vVeX = vV =w+vsomewecW

hence
vV—vew

So for arbitrary v,v’ € V, we have the conclusion W +v =W +v < v—v' € W.
We can also write W +wv as v + W.
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8§33 ‘ Lec 4: Apr 5, 2021

§33.1 Quotient Spaces (Cont’d)

Recall from the last example of the last lecture, we have

V= U W+
veV

If v,v" € V, then
00" e (W+o)n(W+2)

means

WHo—W4+0"=W4+

This means either W +v =W +v or W +vNW + v =0, i.e., planes parallel to the
xy-plane partition V into a disjoint unions of planes.
Let
S={W +vjveV}

the set of these planes. We make S into a vector space over R as follows: Vv,v €
V, Va € R define

(W 4v) + (W +0) =W + (v+0)
a- (W+v) =W+ av

We must check these two operations are well-defined and we set
Og =W

Then (W +v)+W =W +v =W + (W + v) make S into a vector space over R.
If v € V let 4! = the k*® component of v. Define

S = {0,0,7)[veR} = R

by
W +v e (0,0,7) — v

both maps are bijection and, in fact, linear isomorphism. So
§={(0,0,7)[yeR} =R
Note: dimV =3, dimW = 2, dim .S = 1 and we also have a linear transformation
V= S by (a,5,7) = W + e,

a surjection.

We can now generalize this.

Construction: Let V' be a vector space over F, W C V a subspace. Define = mod W
called congruent mod W on V as follows: if x,y € V, then

z=y modW <= z—yeW << JweWsz=w+y

Then, for all z,y,z € V, = mod W satisfies

1. x=2 mod W
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2.z2=y modW = y=2 mod W
3. z=y mod Wandy=z mod W = z=2z mod W

We can conclude that = mod W is an equivalence relation on V.
Notation: For x € V, W C V, let

T:={yeV]jy=z mod W}

We can also write T as [z]y if W is not understood. Also, Z C V' is a subset and not an
element of V called a coset of V by W. We have

T={yeV]jy=z mod W}
={y € V|y=w+ x for some w € W}
={w+zlweW}=W+z=x+W

Example 33.1
6\/ =W +0y=W.

Note: W + x translates every element of W by x. By 2), 3) of = mod W, we have

yex=W+Hzr << zey=W+y

and
r=y modW «—= 2=y < WH+az=W-+y

TNy=0 << WH+a)n(W+y)=0 < x#y mod W

This means the W + z partition V| i.e.,

V=U(W+x) with (W+z)Nn(W+y)=0ifz=W+az)£(W+y) =7
14

Let
V=V/W={zlzeV}={W+z|lzeV}

a collection of subsets of V.
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8§34 ‘ Lec 5: Apr 7, 2021

§34.1 Quotient Spaces (Cont’d)

Suppose we have W C V' a subspace. For z,y,z,v € V

r=y mod W (+)
z=v mod W
Then
(z4+2)—(y+v)=(x—y) +(z—v)eW
— =
ew ew
So
r+2z mody+v mod W
and if « € F
ar—ay=alr—y)eW Vz,yeV
So

ar=ay mod W
Therefore, V = V/W. If (+) holds, then for all z,y,z,v € V and a € F, we have

Notice V = V/W satisfies all the axioms of a vector space with Oiz =0y = {y € V|y =0 mod W} =
W+0y=W.

We call V = V/W the Quotient Space of V by W.
We also have a map

—:V=sV=V/Whbyz—z=W+x
which satisfies B
av+ v = au+v = av+ v
for all v,v’ € V and o € F. Then
dim V' = dim ker™
dimV = dim W + dim V/W
dimV/W =dimV — dim W

which is called the codimension of W in V.

Proposition 34.1 A
Let V be a vector space over F, W C V a subspace, V = V/W. Let %, be a basis
for W and
P :{Ui|i€I, Vi — Uy ¢W1f7j7é]}
where v; # v; if i # j or w+v; # w +v; if i # j.
Let
Cf:{v_i:W—l-UﬂiGI, V; 6%1}

If € is a basis for V = V/W, then %, U % is a basis for V (compare with the
proof of the Dimension Theorem). )

Proof. Hw 2 # 3. O
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§34.2 Linear Transformation

A review of linear of linear transformation can be found here.
Now, we consider

GL.F == {A € M,F| det A # 0}

The elements in GL,F in the ring M, F' are those having a multiplicative inverse. If R
is a commutative ring, determinants are still as before but

GL,R = {A € M,R| det A is a unit in R}
={AeM,R|A™! exists}

Example 34.2
Let V be a vector space over F,W C V a subspace. Recall

V=V/W={v=W+uv|veV}
a vector space over F' s.t. for all v1,v9 € F and o« € F
OV:W: w

V1 + U3 =v1 + U2

QU1 = QU

Then
—VosV/W=Vbyv—o=W+v

is an epimorphism with ker” = W.

Recall from 115A(H) that the most important theorem about linear transformation
is Universal Property of Vector Spaces. As a result, we can deduce the following
corollary

Corollary 34.3

Let V, W be vector space over F' with bases %, % respectively. Suppose there exists
a bijection f: B — €, i.e., |#B| =|%|. Then V=W.

Proof. There exists a unique T': V — W > T} 5 = - T is monic by the Monomorphism
Theorem (T takes linearly indep. sets to linearly indep. sets iff it’s monic) and is onto

as W = Span(%) = Span (f(4)). O

157


https://tducvu.github.io/assets/lecturenotes/la1.pdf#page=38
https://tducvu.github.io/assets/lecturenotes/la1.pdf#page=42

Duc Vu (Fall 2020 — Spring 2021) 115B Lectures

8§35 ‘ Lec 6: Apr 9, 2021

§35.1 Linear Transformation (Cont’d)

Theorem 35.1
Let T : V — W be linear. Then 34X C V a subspace s.t.

V=kerT® X with X Zim T

Proof. Let %y be a basis for ker T'. Extend %, to a basis & for V by the Extension
Theorem. Let %1 = B\ By, so B = By By (B = ByU P and BN Ay =) and let

X = @FU
P

As kerT = P, Fv, we have
V=kerToX

and we have to show
X=2imT

Claim 35.1. Tv, v € % are linearly indep.
In particular, Tv # Tv' if v,v" € %, and v # v'. Suppose
Z a,Tv =0y, «ap € F almost all o, =0
vEH
Then
Ow =T Z auv |, e Zavv € kerT
vEH 0

Hence

D = By e kerT almost all B, € F =0
PB1 B

As Y g awv =2 5 Byv=0and & = %ByU % is linearly indep., o, = 0Vv. This proves
the above claim.
Let € = {Tv|v € %;}. By the claim

Py —Cbyv—Tvisl—1

and onto as ¥ is linearly indep. Lastly, we must show % spans im T. Let w € im T.
Then dz € V 3 Tx = w. Then

w=Tzr=T Zavv +T Zavv
Jo Agl

= Z a,Tv + Z a,Tv = Z T
By K73 Z5

lies in span % as needed. O
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Remark 35.2. Note that the proof is essentially the same as the proof of the Dimension
Theorem.

Corollary 35.3 (Dimension Theorem)

If V is a finite dimensional vector space over F', T': V — W linear then

dimV =dimkerT + dim im T

Corollary 35.4

If V is a finite dimensional vector space over F';, W C V a subspace, then

dimV =dim W + dim V/W

Proof. —:V = V/W by v— v =W +wv is an epi. O

Important Construction: Set

T :V — Z be linear
W =kerT
V=V/W
—:V = V/W by v—v=W + v linear

Vz,y € V we have
T=7€V < 2=y modW <= z2—ycW <= T(z—y) =0z

i.e., when W = kerT'
=y <= Te=Ty (*)

g

This means
T:V — Z defined by W +v =0+ Tv

is well-defined, i.e., via function, since if T = 3, then T(%) := Tx = Ty =: T(y). From

(),

T=7y < T@ =Tx)=Ty)=T

—

)
SO

T :V — Z is also injective

As T is linear, let « € F, z,y € V, then

T(az+y)=T(azx+y)=T(ax+vy)
=aTz+Ty=dT(T)+T(Y)
as needed. Therefore,
T:V = Zbyzw— T(x)

is a monomorphism, so induces an isomorphism onto im 7" and we recall im T =im 7T,
SO
V2imT=imT

and we have a commutative diagram
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T
\% - 7
T
V/ker T =V
This can also be written as
1% T 7
_ inclusion map
v T
V/kee T =V > imT

Consequence: Any linear transformation 7" : V' — Z induces an isomorphism
T:V/kerT —imTbyv=kerT + v+ Tv
This is called the First Isomorphism Theorem. We also have
V=kerT@®X with X CV and X Zim T = V/ker T

This means that all images of linear transformations from V are determined, up to
isomorphism, by V' and its subspaces. It also means, if V is a finite dimensional vector
space over I, we can try prove things by induction.

§35.2 Projections

Motivation: Let m < n in Z* and

m:R" = R" by (a1,...,a,) — (a1,...,0p,0,...,0)

a linear operator onto ;" I'e; where ¢; = (O, R ,O).

Definition 35.5 (T-invariant) — Let T': V' — V be linear, W C V a subspace. We
say W is T-invariant if 7'(W) C V if this is the case, then the restriction 7' }W of T
can be viewed as a linear operator

T’W:W—>W
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Example 35.6
Let T : V — V be linear.

1. kerT and im T are T-invariant.

2. Let A € F be an eigenvalue of T, i.e., 30 # v € V > Twv = Av, then any
subspace of the eigenspace

Er(A) ={veV|Tv= v}

is T-invariant as T, ) = Mg

Remark 35.7. Let V be a finite dimensional vector space over F', T : V — V linear.
Suppose that

with each W; T-invariant, ¢ = 1,...,n and %; an ordered basis for W;, i = 1,...,n. Let
B =B U...UPB, be a basis of V ordered in the obvious way.
Then the matrix representation of 7" in the % basis is

[T|W1]@1 0
[T) = :

Example 35.8

Suppose that T : V' — V is diagonalizable, i.e., there exists a basis A of eigenvectors
of T for V. Then, T : V — V|,

V= Er(n)

each Er();) is T-invariant.

T‘ET(Ai) = Ailpr(n)

Goal: Let V be a finite dimensional vector space over F', n =dimV, T : V — V linear.
Then W7, ..., W,, C V all T-invariant subspaces with m = m(T') with each W; being
as small as possible with V = W; & ... ® W,,. This is the theory of canonical forms.
Recall: If V is a finite dimensional vector space over F', T : V — V linear, % an ordered
basis for V', then the matrix representation [T, is only unique up to similarity, i.e., if
% is an another ordered basis

[Ty =PI, P~

where P = [ly], ¢, € GL,F, the change of basis matrix # — ¢

Definition 35.9 (Projection) — Let V be a vector space over F', P : V — V linear.
We call P a projection if P> = Po P = P.
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Example 35.10 1. P=0y or 1y : V — V, V is a vector space over F.

2. An orthogonal projection in 115A.

3. If P is a projection, so is 1y, — P.

If T:V — V is linear, then

V=kerT®dX with X =im T

[Lemma 35.11
Let P:V — V be a projection. Then

V =kerP®im P

Moreover, if v € im P, then
Pv=vw

i.e.
P

In particular, if V' is a finite dimensional vector space over F, %; an ordered basis
for ker P, %5 an ordered basis for im P, then & = %, U % is an ordered basis for
V and

imP:imP—)imPislimp

0

- J

Proof. Let v € V, then v — Pv € ker P, since
P(v— Pv)=Pv— P?v=Pv—Pv=0

Hence
v=(v— Pv)+ Pv € ker P+im P

ker PNim P = 0 and P‘im p = lim P Let v € im P. By definition, Pw = v for some
w € V. Therefore,
Pv=PPw=Pw=v

Hence

If v € ker PNim P, then
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§36 ‘ Lec 7: Apr 12, 2021

§36.1 Projection (Cont’d)

KLemma 36.1
Let V be a vector space over F, W, X C V subspaces. Suppose

V=WelX
Then 4! P : V — V a projection satisfying

W =ker P (*)
X =im P

We say such a P is the projection along W onto X.

Proof. Existence: Let v € V. Then
dweW,zeXd3v=w+zx

Define
P:VsVbyv—z

To show P2 = P, we suppose v € V satisfies v = w + z, for unique w € W, x € X. | check P is
Then linear and

Pv=Pw+ Px = Px = 1X$ = well defined

SO
P?v=Px=x=Pv YoeV

hence P? = P.

Uniqueness: Any P satisfying (*) takes a basis for W to 0 and fix a basis of X. Therefore,

P is unique by the UPVS. O

Remark 36.2. Compare the above to the case that V is an inner product space over
F, W CV is a finite dimensional subspace and P : V — V by v — vy, the orthogonal
projection of P onto W.

(Proposition 36.3 A

Let V' be a vector space over F', W, X C V subspacess.t. V=Wa X, P:V >V
the projection along W onto X, and T : V — V linear. Then the following are
equivalent:

1. W and X are both T'—invariant.

\_ 2. PT =TP. y

Proof. 2) = 1): W is T-invariant: We have W = ker P, so if w € W, Pw = 0. Hence

PTw=TPw=T0=0

Tw € ker P =W so W is T-invariant.
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X is T-invariant, X =im P, P|x = 1x. Soifz € X
Tx=TPxr=Plzreim P=X

So X is T-invariant.
1) = 2)Let ve V. Then lw e W, z € X s.t.

v=w+x
As P|x = 1x and P|lw =0, so Pv = Pz. By 1), W and X are T-invariant, so

PTv=PTI'(w+z) = PTw+ PTx
=0+Tx=TPx=TPw+TPx=TPv

for all v € V and PT =TP. O

Remark 36.4. One can easily generalize from the case
V=W, & W,

that we did to the case
V=Ww&..aoW,

by induction on n as

V=W (Wl@...@ w; @---@Wn)
—

omit

Construction: Let
V=We...eW,

as above. Define
PWi V-V

to be the projection along W1 & ... & W; & ... ® Wy, ie.

ker Py, = Wi ... 0 W; & ... B W,
and onto W; = im Py, as in the above Proposition. Then we have
a) Each Py, is linear (and a projection).

)
b) ker Py, = W1 @ ... W; @ ... W,.
)
)

c) Wi is Py,-invariant and Py, |, = lw,. In particular, im Py, = W;.
K3

1, ifi=j
0ij = e
0, ifi#j

Moreover, if T': V — V is linear and each W; is T-invariant, then

d) Pw,Pw,; = d;jPw, where

e) 1V:PW1+-'-+PWn-

TPy, =Py T, i=1,....n
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Hence

i.e., 1yT = T1y. This implies

Tly, : Wi =W,

is given by
ﬂm:ﬂmm

or T is determined by what it does to each W;.

Remark 36.5. Compare this to the case that T is diagonalizable and the W, are the
eigenspaces.

Question 36.1. Let V be a real or complex finite dimensional inner product space,
T :V — V hermitian. What can you replace @& by? What if V' is a complex finite
dimensional inner product space and T': V' — V is normal.

Exercise 36.1. Suppose V is a vector space over F', P;,..., P, : V — V linear and
satisfy

i) B~ P =6,;P,i=1,....n
i) 1y =P +...+ P,
i) W =im P i=1,...,n
Then
V=Wwa..eaW,
P, = Py, 1=1,...,n
§36.2 Dual Spaces

Question 36.2. Let V = R3?, v € V. What is the first question that we should ask
about v?

Motivation/Construction: Let V' be a vector space over F, & a basis for V. Fix
vg € B. By the UPVS, 3! f,,, : V — F linear satisfying

1 ifyg=
Fog) =4 TV 5 Ywe B
0 ifvg#w
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Example 36.6

Let &, = {e1,...,e,} be the standard basis for R and in the above e; = vy...

Then
fer 1 R™ — R satisfies

Ifv=(aj,...,a,) in R"
n
vV = Zaiei
i=1

SO

fer (V) = fe, (Z Oéﬁi)
i=1

n n
=Y aife(e) =) wbs=om
=1 i=1

this first coordinate of v.

Notation: If A C B are sets, we write A < B if A # B.
As Vo 75 0,
0 <im f,, € F is a subspace

Notice dimp F' =1, so dimim f,, < dim F' =1 and
dimim f,, =1, ie. im fo=F

So fu, : V — F'is a surjective linear transformation. Since this is true for all vy € 4,
foreachve £, 3 f,:V — F s.t.

1 ifo=7
o) =0y =4""""" wex
’ 0 ifv#

Now suppose that € V', then

Ha, € F,ve B, almost all 0 s.t. = = Zavv
B

Hence

foo(2) = fuy (Z av”) = Zavao(v)
B

vER
- § avév,vo = Qg
B
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Example 36.7
P = &, standard basis for R™

1 ife =¢e;
6-6‘256-6-:52": ’ !
fz( ]) i,€5 ) {0 if ei?éej
Then if v = (v, ...,a,) € R" = V. Then

fei(v) = fei (0417- . -;an) = Oy

So we observe in the above that if x € V, then
i3 — Z fo(z)v
B

We call f, the coordinate function on v relative to 4.

Example 36.8

Let V be a finite dimensional inner product space over R, Z = {v1,...,v,} an
orthonormal basis. Then if z =) , o;v;, then

a; = (T, v;)
Take
<$7’Ui> = <Z ajvjvvi> = Zaj<vjavi>
=D adylluill® =) @iy = ai

i.e. the linear map
fo, = (vi): V> Rby z+— (z,v;)

is the coordinate function on vectors relative to 4.

(Definition 36.9 (Dual Space) — Let V be a vector space over F. A linear\
transformation f : V' — F'is called a linear functional. Set

V*=L(V,F)={f:V — F|f is linear}

is called the dual space of V.
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/Proposition 36.10 b

Let V, W be a vector space over F. Then
L(V,W)={T:V — W|T linear}

is a vector space over F. Moreover, if V, W are finite dimensional vector spaces

over F
dim L(V, W) = dim V dim W

In particular, if V' is a finite dimensional vector space over F', then so is V* and
dimV = dim V*

SO

\_ Vv )

Proof. 115A. O

Example 36.11

Let V' be a vector space over F. Then the following are linear functionals
1. 0: V> F

2. Let 0 # vy € V then {vg} is a basis for Fvg. Therefore, {vg} extends to a
basis A for V. Let fvy € V* be the coordinate function for V' on vy relative
to . Then fvy € B* = {fv|v € A}.
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§37‘ Lec 8: Apr 14, 2021

§37.1 Dual Spaces (Cont’d)

Example 37.1 (Cont’d from Lec 7) 3. trace: M, — F by
n
i=1

4. a < B € R, then
B
I:C[a,ﬁ]—ﬂRbny/ f
(0%
5. Fix v € [a, ], @ < € R. Then the evaluation map at ~y

ey: Cla, Bl = Rby f = f(v)

/Lemma 37.2 b
Let V' be a vector space over F', & a basis for V,
RB* = {fvg : V — F| coordinate function on vy relative to A}
SO
foo(v) = dyp v Yv € B
the set of coordinate functions relative to Z. Then %* C V* is linearly indep.
Proof. Suppose
0=0y+= Y pufv, Bv€F almostall 0
vER
We need to show fv = 0Vv € . Evaluation at vy € A yields
0 = Oy«(vg) = <Z 5va> (vo) =) _ Bufu(vo)
B
= Bvfow = Bro
Z,
So fv =0Vv € & and the lemma follows. O
\

/Corollary 37.3
Let V' be a vector space over F' with basis . Then the linear transformation

Dy :V — V* induced by & — 8" by v — fv

is a monomorphism.
In particular, if V is a finite dimensional vector space over F', then %* is a basis

for V* and

Dy :V — V* is an isomorphism

- J

169



Duc Vu (Fall 2020 — Spring 2021) 115B Lectures

Proof. By the Monomorphism Theorem, Dy is monic in view of he lemma if V is a
finite dimensional vectors space over F', then

dimV = dim V*
so V 2 V* by the Isomorphism Theorem. O

Remark 37.4. 1. If V = R¥ = {(a1,a2,...) [o; € R almost all 0}, then by HW1 #
4,
D&, : V — V™ is not an isomorphism

2. Dg : V — V* in the corollary depends on 4. There exists no monomorphism
V — V* that does not depend on a choice of basis. However, there exists a “nice”
monomorphism, i.e., defined independent of basis.

L:V—> VY =V

V** is called the double dual of V. We now construct it.

/Lemma 37.5 A
Let V be a vector space over F', v € V. Then
L,:V*— Fby f— L,(f) = f(v)
the evaluation map at v is linear, i.e.
L,eV*
. J
Proof. For all f,ge V*, ac F
Lo(af+9) = (af + g9)(v) = af(v) + g(v) = aLyf + Lug O
Theorem 37.6
The “natural” map
L:V V™ byvw— L(v) =L,
is a monomorphism.
Proof. L is linear: Let v,w € V, a € F. Then for all f € V* as V** = (V*)*
L(aw +w)(f) = Lavtw(f) = flav +w)
=af(v) + f(w) = alyf + Ly f = (aLy + Ly) (f)
= (aL(v) + L(w)) (f)
So
L(av +w) = aL(v) + L(w)
L is monic. Suppose v # 0. To show L, = L(v) # 0. By example 2,
HAfeV s f(v)#0
So
Lyf = f(v) #0
so L, = L(v) # 0 and L is monic. O
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Corollary 37.7

If V is a finite dimensional vector space over F, then L : V — V** is a natural
isomorphism.

Proof. dimV = dim V* = dim V** and the Isomorphism Theorem. O
Identification: Let V be a finite dimensional vector space over F. Then Vv, w € V'
l.v=w < L, =L,
2. Vf € V* f(v) = f(w) <= Lof = Luf

Moreover, if W' is also a finite dimensional vector space over F', then it T': V. — W is
linear, T : V** — W** linear and if T : V** — W** 31T : V — W linear. In other
words, V and V** can be identified by

v+ Ly

because
L,(f) = f(v) YVoeV VfeV*

Construction: Let V be a finite dimensional vector space over I with basis & =
{v1,...,v,}. Then
B ={fr,.... fa}

defined by
filvj) =65 Vi,j
i.e., f; is the coordinate function on v; relative to %. Since
Ly (fj) = fi(vi) = di5 Vi, j

L, eV**
B ={Ly,,..., Ly, }

is the dual basis of #* for V**. So we have if x = > """ jav; € V, g=> 1" | Bifi € V™.
T = Zaivi = Z fi(x)v;
i=1 i=1
9= _Bifi= Lu(9)fi = g(vi)fi
i=1 i=1 i=1
i.e.
n
x = Z fi(z)v; Ve eV
i=1

g=>Y gl)fi VgeV*
=1

Motivation: Let V' be an inner product space over R, ) # S C V a subset. What is S+?
Note: Yo € V, (,v) : V — R by x — (z,v) is a linear functional. To generalize this to
an arbitrary vector space over F', we define the following.
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Definition 37.8 (Annihilator) — Let V be a vector space over F', § # S CV a
subset. Define the annihilator of S to be

S ={feV* f(z)=0Vx € S}
={feV'|fls=0tCcV"

I Remark 37.9. Many people write (v, f) for f(v) in the above even though f ¢ v.
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§38 ‘ Lec 9: Apr 16, 2021

§38.1 Dual Spaces (Cont’d)

KLemma 38.1
Let V be a vector space over F', ) #S C V a subset. Then

1. §° C V* is a subspace.

2. If V is a finite dimensional vector space over F' and we identify V' as V** (by
v > L,), then § C §°° = (5°)°.

J
Proof. 1. For all f,g € 5°, a € F, we have
(af +9)(@) = af(z) + g(x) =0 Ve €S
Hence af + g € §° and §° C V* is a subspace.
2. Let x € S. Then Vf € S°, we have
0= f(z)=Lof, soLye (S°)° =S O

Theorem 38.2

Let V be a finite dimensional vector space over F, S C V a subspace. Then

dimV =dim S + dim S°

Proof. Let By = {v1,...,ux} be a basis for S. Extend this to

B ={v1,...,v,} a basis for V
PBo=A{f1,...,fn} the dual basis of £

Claim 38.1. € = {fx41,..., fn} is a basis for S°.
If we show this, the theorem follows. Let f € S°. Then

F=Y Lu(Nfi=>_ fi)fi
=1 =1

k n n
=S Fwfi+ Y fwfi= Y Fwif
=1

i=k+1 i=k+1

lies in span € so € spans. As € C %* which is linearly indep., so is . This proves the
claim. O
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Corollary 38.3

Let V be a finite dimensional vector space over F', S C V a subspace. Then

S =5°°.

Proof. As S C 5°°, it suffices to show dim S = dim §°°. By the theorem, we have

dimV =dim S + dim S°
dim V* = dim S° + dim S°°

where dim V = dim V*. So dim S = dim S°°. O

Remark 38.4. If V is an inner product space over R, compare all thisto @ #S CV a
subset and S+, S+L.

§38.2 The Transpose

Construction: Fix T': V' — W linear. For every S : W — X, we have a composition
SoT:V — X is linear

So T :— W linear induces a map
T : L(W,X) = L(V, X)

by
Sr—SoT

(Proposition 38.5 A

Let V., W, X be vector spaces over F', T : V — W linear. Then

T : L(W,X) = L(V, X)
\is linear. )
Proof. Let S1,S2 € L(W,X), o € F. Then
T*(a51 + SQ) = (aS1 + SQ) oT
=CMS1OT+SQOT=O¢T*51+T*SQ ]

/Corollary 38.6 b

Let T : V — W be linear. Then

T - W* = V*by frs foT

\is linear. y
Proof. Let X = F in the proposition. ]
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Definition 38.7 (Transpose) — Let T' : V. — W be linear. The linear map
T* : W* — V* in the corollary is called the transpose of T and denoted by T'.

Note: The transpose “turns thing around”
v oW

ve & e

Lemma 38.8
Let T : V — W be linear. Then

ker 7" = (im T)° € W*

Proof. g € kerTT = Tlg=0 <= (T'g)v) =0Ww eV <= (goT)(v) =0
VoeV <= g(Tv)=0YWw eV < ge (imT)°. O

Theorem 38.9
Let V, W be finite dimensional vector space over ', T : V — W linear. Then

dimim 7 = dimim T'"

Proof. Consider:

dim W* = dimker " + dimim 7"
dim W = dimim T + dim(im T)°

Notice that dim W* = dim W. By the lemma, dimim 7 = dimim T'". O
Computation: Let V, W be finite dimensional vector space over F.

B, B* ordered dual bases for V, V*
%, € ordered dual bases for W, W*

Suppose
B ={v1,...,0n}, B ={f1,--., [n}
filvj) =6ij Vi, j
So
€ =A{w,...,wn}, € ={91,...,9n}
gi(w;) = 6;5 Vi, j
Let

R S
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be the matrix representation of T, T T in the ordered bases %, € and €*, €* respectively.
By definition of A and B, we have

m
TUkZZAikwi k=1,...,n
i=1

n
Tng:ZBijfi j:]_,...,m
=1

So
By = Ajx Vi, k

So we just proved...

(Theorem 38.10 b

Let V, W be finite dimensional vector space over F', T' : V. — W linear, £, $*
ordered dual bases for V,V* and ¥, %" ordered dual bases for W, W*. Then

[TT} ¢ B <[T]$7%) T
- J

Definition 38.11 (Row/Column Rank) — Let A € F"™*". The row (column) rank
of A is the dimension of the span of the rows (columns) of A.

We know if A € F™*" we can view
A:F 5 prxlipy s Ao
a linear transformation and the matrix representation of A is
A= [A]gn,l,gm,l

where &1, &y,.1 are the standard bases for F™*1 and F™*! respectively.

Corollary 38.12

Let A € F™*"™ Then
row rank A = column rank A

and we call this common number the rank of A.

§38.3 Polynomials

Definition 38.13 (Polynomial Division) — Let f,g € F[t], f # 0. We say that
f divides g € F[t] write f|g if 3h € F[t] s.t. ¢ = fh, i.e. g is multiple of f, e.g.
t+1t2 — 1.

Lemma 38.14
If flg and f|h in F[t], then f|gk + hl in F[t] for all k,1 € F[t].
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Proof. By definition,
g=1fg, h=fh, g1, €F[t

So
gk +hl = fgik + fhil = f (g1k + h1l)

in F[t]. O

I Remark 38.15. If f|g € F[t] and 0 # a € F, then af|g and f]|ag.

(Definition 38.16 (Polynomial Degree and Leading Coefficient) — Let
0# f=at"+an_1t" 1 +... +ait +ap € F[t]

with a,ag,...,an—1 € F and a # 0. We call n the degree of f write deg f = n and
a the leading coefficient of F' write lead f = a. If a = 1, we say f is monic.

J

We can define the degree of 0 € F[t] to be the symbol —oo or just do not define it at
all.

Remark 38.17. Let f,g € F[t] \ {0}. Then
lead(fg) = lead(f) -lead(g) #0 € F

So
deg(fg) = deg f +degg
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8§39 ‘ Lec 10: Apr 19, 2021

§39.1 Polynomials (Cont’d)

Division Algorithm: Let 0 # f € F[t], g € F[t]. Then

dl ¢, r € Ft]

satisfying
g=fq+r with r=0 or degr<degf

(Definition 39.1 (Greatest Common Divisor) — Let f,g € F[t] \ {0}. We say d in\
F[t] is a ged (greatest common divisor) of f, g if

i) d is monic.

ii) d|f and d|g in Ft].

iii) if e|f and e|g in F[t], then e|d in F[t].

I Remark 39.2. If a ged of f, g exists, then it is unique.

I Remark 39.3. If d =1 is a ged of f, g € F[t], we say that f, g are relatively bear.

I Remark 39.4. Compare the above with analogous in Z.

Theorem 39.5

Let f,g € F[t] \ {0}. Then a ged of f, g exists and is unique write ged(f,g) for the
gcd of f,g. Moreover, we have an equation

d = fk+ gl € F[t] for some k,l € F|[t] (%)

Proof. The existence and (%) follow from the Euclidean Algorithm. Let f, g € F[t]\ {0}.
Then iteration of the Division Algorithm produces equations in F'[t], if f + g € F|[t],

g=qf+n degr) < deg f
f=qri+r degry < degry

Th—3 = qn—1Tn—2 + Tn—1 degr,_1 < degr,_2
Th—2 = GnTn—1 1+ Tn degr,_1 < degry
Th—1 = Qn+1 +Tn
where r,, is the remainder of least degree (r,, # 0).
This must stop in < deg f steps. Plugging from the bottom up and using the lemma

shows
rn = fk+ gl € F[t]
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and if e|r; — e|ry — ... — e|r, then (lead 7,)7!r, is the ged of f and g in F[t] if
a =lead f
alrp=alfk+a gl O

Definition 39.6 (Irreducible Polynomial) — f € F[t]\ F is called irreducible if there
does not exist g,h € F[t] > f = gh with degg,degh < deg f. Equivalently, if

f=gheF[t], then0#AgecFor0#heF

Example 39.7
If f € Ft], deg f = 1, then f is irreducible.

Remark 39.8. If f, g € F[t]\ F with f irreducible, then either f and g are relatively prime
or f|g since only a,af,0# a € F can divide f.

Lemma 39.9 (Euclid)
Let f € F[t] be irreducible and f|gh in F[t]. Then f|g or f|h.

Proof. Suppose f x g where x means does not divide. Then f and g are relatively prime.
By the Euclidean Algorithm, there exists an equation

1= fk+gl e F[]

Hence
h = fhk + ghl € F[t]

As f|fhk and f|ghl in F[t], f|h by the lemma. O

I Remark 39.10. In Z the analog of an irreducible element is called a prime element.

Remark 39.11. Euclid’s lemma is the key idea. The “correct” generalization of “prime”
is the conclusion of Euclid’s lemma. This generalization is profound as, in general, there is
difference between the two conditions “irreducible” and “prime”, although not for Z or
Ft].

We know that any positive integer is a product of positive primes unique up to order n.
If we allow n < 0 such is unique up to £1.

4 )
Theorem 39.12 (Fundamental Theorem of Arithmetic (Polynomial Case))

Let g € F[t] \ F. Then there exists uniquely a € F, r € Z", p1,...,p. € F|[t]
distinct monic irreducible polynomial, eq, ..., e, € ZT s.t. we have a factorization

g=api'...pir

unique up to order.
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Proof. (Sketch) Existence: We induct on n = degg > 1. If g is irreducible, a, (lead g)~'g, a =
lead g work. If g is reducible,

g= fh € Ft], 1 <degf, degh<degg

By induction, f,h have factorization hence we’re done as g = fh.
Uniqueness: We induct on n = degg > 1. If
€1 er __ — b 1 fs
apl'...py" =g =>bqy'...q]
with p;, ¢; monic irreducible, a,b € F, ¢;, f; € Z* for all i, 7, degqy > 1, so degqq X a.
By Euclid’s lemma
gi|pj for some j

Changing notation, we may assume that j = 1. As p; is irreducible p; = ¢; and by
(M3')

e1—1_eo er 3 f1—1 _fa2
= .

go = apiy'” py’...Dp; bq; . .qgs

As deg gg < deg g, induction yields

r=s,e1—1=fi—1,¢e=Ffi,i>1,a=b=lead go, p; = q;: Vi, e; = f; Vi O

Remark 39.13. Applying the Euclidean Algorithm is relatively fast to compute, (for fl|g
takes < deg f steps to get a ged). Factoring into the irreducible is not.
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8§40 ‘ Lec 11: Apr 21, 2021

§40.1 Minimal Polynomials

We use the following theorem from 115A, Matrix Theory Theorem.

Remark 40.1. Let T: V — V be linear. If f = a,t" + ...+ a1t + a9 € F[t], we can plug
T in for ¢ to get
f(T) =a T+ ...+ a1T + agly € L(V, V)

More precisely
er: Flt] = L(V,V) by t = T

ie. f=> ait'— f(T)=>_a;T?is a ring homomorphism. Since we have

TP =To...oT, n >0
——

n

Can we use the remark if V is a finite dimensional vector space over F'?

/Lemma 40.2 A

Let V be a finite dimensional vector space over F, f,g,h € F[t], # an ordered
basis for V', T : V — V linear. Then

L [9(T)]g = 9([T])
2. If f = gh € F[t], then
- J

Proof. e By MTT, if g= > ;a;t' € F[t], then

n

a; [Tl] B

9(T)]. = [Z oiT'
i=0 2 =0
=Y ai[Tly =g ([T])

o Left as exercise.

Lemma 40.3
Let V be a finite dimensional vector space over F, T' : V. — V linear. Then
Jq € F[t]\ {0} 2 ¢(T) = 0 and if a = lead ¢, then ¢ := a~!q is moinc and satisfies
q(T) =0

q € kerer == {f € F[t]| f(T) =0}

Proof. Let n =dimV. By MTT
dim L(V, V) = dimM, F = n* < oo

So ,
ly, T, T? ..., T" € L(V,V)

181


https://tducvu.github.io/assets/lecturenotes/la1.pdf#page=49
https://tducvu.github.io/assets/lecturenotes/la1.pdf#page=49
https://tducvu.github.io/assets/lecturenotes/la1.pdf#page=49

Duc Vu (Fall 2020 — Spring 2021) 115B Lectures

are linearly dependent. So Jag,...,a,2 € F not all 0 s.t.
712
Z aiTi =0
i=0
Then g = Z?:ZO a;t' works. O

/Theorem 40.4 A

Let V be a finite dimensional vector space over F, T' : V. — V linear. Then
310 # gr € F[t] monic called the minimal polynomial of T having the following
properties:

L qr(T)=0

2. If g € Ft] satisfies g(T') = 0, then ¢r|g € F[t]. In particular, if 0 # g € F|[t]
satisfies g(T') = 0, then degg > degqr and if degg = degqr, then g =
(lead g)gr

J

Proof. By the lemma, 30 # ¢ € F'[t] monic s.t. ¢(T') = 0. Among all such ¢, choose one
with deg ¢ minimal.

Claim 40.1. g works.
Let g # 0 in F[t] satisfy g(T") = 0. To show ¢|g € F[t]. Write g = gh + r in F[t] with
r =0 or degr < deggq. Then
0=g(T) = q(T)hW(T) + r(T) = r(T)

If r # 0, then ry = (lead 7)~!7 is a monic poly satisfying ro(T) = 0, degry < degq,
contradicting the minimality of deggq. So ro = 0 and ¢|g € F[t]. If ¢’ also satisfies 1)
and 2), then

q|¢’ and ¢'|q € F[t] both monic so q = ¢’

The last statement follows as if

h,g € F[t], glh, h # 0, then degh > degq O

/Corollary 40.5 A

Let V be a finite dimensional vector space over F', Z an ordered basis for V7 and
T :V — V linear. Then

ar = 41,
In particular, if A, B € M, F are similar write A ~ B. Then

dA = 4B

- J

Proof. qr = q[71, by MTT and the first lemma. O

Note:By the theorem, if V' is a finite dimensional vector space over F' g € F[t] g # 0,
and deg g < deg qp, then ¢(T") # 0.
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Goal: Let V be a finite dimensional vector space over F', % an ordered basis of V,
T:V — V linear. Call

tI — [T, the characteristics matrix of T" relative to %
Recall the characteristics polynomial fr of T is defined to be
fr = fir), = det (tI —[T)y,) € Ft]

We want to show fr satisfies the

( )
Theorem 40.6 (Cayley-Hamilton)
If V is a finite dimensional vector space over F', T : V — V linear, then
gr|fr, hence fp(T) =0
In particular, deg qr < deg fr. )
Remark 40.7. 1. There exists a determinant proof of this — essentially Cramer’s rule.

2. A priori we only know deg gy < n?, where n = dim V.

3. fr is independent of % depends on properties of det : M, F'[t] — F[t]

det (tI — A) = det (P (tI — A) P™1)
=det (tI — PAP™)

for each P € GL, F

Proposition 40.8

Let V' be a finite dimensional vector space over F, T": V' — V linear. Then g7 and
fr have the same roots in F, the eigenvalues of T'.

Proof. Let A be a root of gp. To show A is an eigenvalue of T, i.e., a root of fp. As A is
a root of gp, using the Division Algorithm that

qr = (t — A)h € F[t]
So
0=gqr(T) = (T — Aly)R(T)
As
0 < degh < degqr, we have h(T) #0
Since h(T) # 030 # v € V s.t.
w=h(T)v#0
Then
O0=qgr(Tv=(T—-Aly)h(T)v=(T - Aly)w

So 0 # w € Ep(A) and A is an eigenvalue of 7T'.

Conversely, suppose A is a root of fr so an eigenvalue of T'. Let 0 # v € Ep(A). Then
t — A € FJt] satisfies (T' — A\)w = 0 for all w € Fuv, i.e. it is the minimal poly of
T|py : Fv — Fv. But gr(T) = 0 on V so t — Algr by the definition that ¢ — X is the
minimal poly of T'|p,. O
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§40.2 Algebraic Aside

Let V be a finite dimensional vector space over F', T': V — V linear. Te minimality poly
gr of T is algebraically more interesting than fr. Recall we have a ring homomorphism

er: F[t] - L(V,V)

given by
Z aiti — Z aiTi

so e is not only a linear transformation but a ring homomorphism, i.e., it also follows
that

(fo)(T) = f(T)g(T)  Vf, g€ Flt]

We know that
dimp Ft] = o0

which has {1,¢,...,t",...} is a basis for F[t] and
dimp L(V,V) = (dim V)? < oo

by MTT. So
0 <kerer ={f € Fltllerf = f(T) =0}

is a vector space over F' and a subspace of F[t]. This induces a linear transformation
er : V/kerer — im ep = F[T]

which is an isomorphism. If V = V/ker T, we have

er (M) =er (Z aiti) = Z@Ti
=N aT =Y aT

Check that e is also a ring isomorphism onto im er. By definition, if f(7") =0, f € F[t],
then
ar|f € Ft]

It follows that
kerepr = {q:g|lg € Ft|} C F[t]

called an ideal in the ring F'[t].

The first isomorphism of rings gives rise to ker ey whit quotient isomorphic to F[t] C
L(V,V). So we are at a higher level of algebra. Then this allows us to view F'[t] as
acting on V i.e. there exists a map

Fit]xV =V (*)

by

This turns V' into what is called an F[t]-module, i.e., V via (*) satisfies the axioms of a
vector space over F' but the scalars F[t] are now a ring rather than only a field.
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8§41 ‘ Lec 12: Apr 23, 2021

§41.1 Triangularizability

Proposition 41.1 A

Let V be a finite dimensional vector space over F', T : V — V linear, W C V a
T-invariant subspace. Then T induces a linear transformation

T:V/W = V/W by T(v) == T(v)

where =W +wv, V = V/W and

e Flt
9 arler € Ft] )

Proof. By the hw, we need only to prove that
arlar € F[t]

But also by the hw,

As qp(T) =0, B
0=qr(T) = qr(T)
SO
qrlar
by the defining property of gz. O

Definition 41.2 (Triangularizability) — Let V' be a finite dimensional vector space
over F', T : V — V linear. We say T is triangularizable if 3 an ordered basis £ for
V s.t. A = [T], satisfies A;; =0 Vi < j, i.e.

* 0
A= is lower triangular (*)

* *

Note: If  ={v1,...,v,} in (*) and € = {v,,vp_1,...,v1}, then

* *
[T], = is upper triangular
0 *

Hence, by Change of Basis Theorem,

[T]g ~ [T]%
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Remark 41.3. Suppose V is a finite dimensional vector space over F', dimV =n, T :V —
V linear, % an ordered basis for V', A = [T, is triangular (upper or lower). Then

fT:(t—All)(t—Ann)EF[ﬂ

and Ajq,..., A,y are all the eigenvalues of T' (not necessarily distinct) and hence roots of
qr-

Definition 41.4 (Splits) — We say g € F[t] \ F splits in F[t] if g is a product of
linear polys in F[t], i.e.,

g=(lead g)(t —a1)...(t —ay) € Ft]

Example 41.5

If V is a finite dimensional vector space over F, T : V — V linear and T is
triangularizable, then fr splits in F[t].

Note: (_01 (1)> € M;R is not triangularizable as it has no eigenvalues.

Theorem 41.6 A

Let V be a finite dimensional vector space over F, T : V — V linear. Then T is
triangularizable if and only if g7 splits in F[t]. )

Proof. * = 7 We induct on n = dim V.

n = 1: It’s obvious.

n > 1 : We proceed by induction: let A be a root of gr in F' (gp splits in F'[t]). Then \ is
a root of gr hence an eigenvalue of T'. Let 0 # v, € Ep(\), so W = Fv,, is T-invariant.
By the Proposition, T induces a linear map

T:V/W = V/W by v T(v)

and
qrlar € Ft]

We also know that
W =ker(—:V = V/W) by v—7v

and
dimV/W =dimV —dimW =n —1

as — : v — U is epic. Since gr splits in F[t] and gp|qr in F[t], g7 also splits in F[t] by
Fundamental Theorem of Algebra. Thus, by induction,

H/Ulv'--yvnfiev > (g:{vilv"'yﬁnfl}

is an ordered basis for V = V/W with A = [ﬂ%} is lower triangular, i.e., A4;; = 0 if
i1 <j<n-—1. Thus

n—1
Tﬂj:ZAijEia 1<j<n—-1
=]
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hence
n—1 n—1
0= TUJ’ — E AijUZ' = ij — E Aij’l)z'
1= =7

1<j<n-—1inV =V/W. Therefore,
n—1
TUj — ZAij'Ui cker” =W = Fu,,
i=j
by definition as W =ker™ : V — V/W.
In particular, 3A,; € F', 1 < j <n — 1 satisfying
n—1
TUJ' — Z Aijvi = Anjvn
i=j

So .
ij:ZAijvn léjén—l
i=j
By choice, 4;; =0,7 < j<n—1and
Tv, = vy,

By hw 2 # 3, 8 = {v1,...,v,} is an ordered basis for V' and

Tle 0

[Ty = ;
7 0
Api. App—1 A
which is lower triangular, as needed. “ = ” Let & = {v1,...,v,} be an ordered basis

for V. A =[T], is lower triangular. Then

n

fr= H(t — A;;) splits in F[t]
i=1

A11, ..., Apy are the (not necessarily distinct) eigenvalues of 7" and hence roots of gr.
Let \; = A, 1 =1,...,n. We have

n n
T’Uj = ZAijUi = )\j’Uj + Z Aijviy 1< .] <n-1
i=1

i=j+1
Tv, = A\yup,
So
n
(T — )\jlv)vj = Z Aij’Ui S Span (1)j+1, . ,'Un) V1l < j<n-—1 (*)
i=j+1
Now
(T — M\ 1ly)v, =0
So

(T — M1y )vn—1 € Span(vy,) by (%)
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This implies
(T — M\ y) (T — Ap—1ly)vp—1 =0

By induction, we may assume that
(T — )\nl\/) e (T — )\jlv)vj =0
So by (*),
(T - )‘an) “e (T - )\le)(T - )\j_llv)vj_l =0

Therefore,
fT(T)Ui = (T — )\an) N (T - )\ilv)’vi =0

fori=1,...,n. As %A is a basis for V, fr (T') = 0. Thus ¢r|fr € F[t]. In particular, ¢p
splits in F[t]. O

/Corollary 41.7 A

Let V be a finite dimensional vector space over F', T': V' — V a triangularizable
linear operator. Then
qrl|fr € Flt]

In particular,

T)=0
9 fr(T) )

Definition 41.8 (Algebraically Closed) — A field F is called algebraically closed if
every f € F[t]\ F splits in F'[t|. Equivalently, f € F[t] \ F has a root in F.

/Corollary 41.9 (Cayley-Hamilton — Special Case) b

Let F be algebraically closed, V' a finite dimensional vector space over F', T : V — V
linear. Then

1. T is triangularizable.

2. qr|fT
3. f2(T) =0
J
Theorem 41.10 (Fundamental Theorem of Algebra)
(FTA) C is algebraically closed.
Proof. Tt’s assumed (proven in 132 — Complex Analysis or 110C — Algebra). O
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8§42 ‘ Lec 13: Apr 26, 2021

§42.1 Triangularizability (Cont’d)

Remark 42.1. Let V be a finite dimensional vector space over F, T': V — V linear, &
an ordered basis for V, A = [T],. So g4 = qr and fa = fr.

Let n = dim V. Given a field F, 3F an algebraically closed field satisfying F C F is a
subfield. Then )
AeM,FCM,F

So by the corollary, .
fa(Ap =0 Voe P!

where we view A : F"*! — FnX1 Jinear. Then
fa(Av=0  VYoeFtc it
viewing
A F™1 5 P Jinear

Thus,
fa(A)=0

Hence fr(T) =0 and qr = qa|fa = fr. So qr|fr in F[t]. Thus, if we knew such an F
exists in general, we would have proven the Cayley-Hamilton Theorem in general, i.e., if
V' is a finite dimensional vector space over F' and T : V — V linear, then

qr|fr € FIt]
fr(T) =0

This is, in fact, true (and proven in Math 110C). Of course, assuming FTA, this proves
Cayley-Hamilton for all fields F' C C.

Remark 42.2. The symmetric matrices

0 1 2 1
(1 0) € MF, and (1 3) € MsF5

are both triangularizable, but not diagonalizable.

§42.2 Primary Decomposition

Algebraic Motivation: Let f € F[t] \ F' be monic. Write

f=np7...0, p1,...,pr distinct monic
irreducible polys in F[t], e; > 0Vi. Set

f % T
q:p?_ =pi'...p; ... pf

Then p;, q; are relatively prime so there exists an equation

lzpfi/ﬂ—i-qigiEF[t], 1=1,....n (*)
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if we plug a linear operator T': V' — V into (*), we get
ly =pi (T)k(T) + @:(T)gs(T) Vi

Linear Algebra Motivation: Let V' be a finite dimensional vector space over F', T : V —
V linear. Suppose

V=W, & Wy, Wi, Wy CV subspaces

with Wy, W5 both T-invariant.
Let %, be an ordered basis for W;, i = 1,2 and & = %, U %- an ordered basis for V.

Then Tl 0
_ Wila,
o= (""" )

Let Py, : V — V be the projection onto W; along Wj, j # ¢. Then we know

1y = PW1 + PW2
Py, Py, = 0ij Pw,
Pw,T =TPy, i=1,2
T =TPw, +TPw, =T|\w, + T|w,
By hw 4 # 6
qr = lem (qr|wy, qr|ws)

This easily extends to more blocks.

Lemma 42.3
Let f € F[t], T:V — V linear. Then ker f(T') is T-invariant.

Proof. If v € ker f(T), to show Tv € ker f(T). But
F(T)Tv=Tf(Tyw =0

so this is immediate. O

KLemma 42.4 A

Let g,h € F[t] \ F be relatively prime. Set f = gh € F[t]. Suppose T': V — V is
linear and f(7') = 0. Then

ker g(T') and ker h(T') are T-invariant

subspaces of V' and

L V =ker g(T) @ ker h(T') (4‘)/

Proof. By the lemma we just proved, we need only show (+). Since g, h are relatively
prime, there exists equation
1 =gk+hl e F[t]

Hence
Ly = g(T)k(T) = h(T)I(T)

as linear operators on V i.e. Yo € V

v = g(T)K(T)o + h(T)I(T)w *)
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Since f(T') = 0 we have

Therefore,

and

h(T)I(T)v € ker g(T)

It follows by (*), Vv € V
v=g(M)k(T)v+ h(T)I(T)v € ker h(T') + ker g(T")

where

V =ker g(T) + ker h(T)
By (%), if v € ker g(T") N ker h(T'), then

v=g(T)k(T)v+ h(T)(T)v =0

Hence
V =ker g(T) & ker h(T)

as needed. O
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8§43 ‘ Lec 14: Apr 28, 2021

§43.1 Primary Decomposition (Cont’d)

Proposition 43.1 )

Let V be a finite dimensional vector space over F, T : V' — V linear, g, h € F[t]\ F’
monic and relatively prime. Suppose that

qr = gh € F[i]
Then ker g(7) and ker h(7T") are T-invariant.
V =ker g(T) @ ker h(T)

and

9= qT‘kerg(T) and h = QT|ker h(T)

- J

Proof. By the last lemma in last lecture, we need only prove the last statement. By
definition, we have

g(T)‘kerg(T) = 0 and h(T)‘ker h(T) =0
So by definition,
Qleerq(T)Lq and QT’ker h(T)|h € F[t]
As g and h are relatively prime, by the FTA, so are
qT’kerg(T) and QT‘kerh(T)
Therefore, we have
f=lem (qT‘kerg(T)’ qT‘ker h(T))
B QT‘ker AT |
Since
V =ker g(T) @ ker h(T)
f(Mv=0 YveV
Hence
ar|f € Flt]
By (+) and FTA
flgh = qr
As both f and ¢p are monic,
f=ar
Applying FTA again, we conclude that
9= qT‘kerg(T) and o = qT|kerh(T) -

We now generalize the proposition to an important result that decomposes a finite
dimensional vector space over F' relative to a linear operator T : V — V.
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\
Theorem 43.2 (Primary Decomposition)
Let V be a finite dimensional vector space over F', T : V — V linear, and qr =
pSt...pSr, with pi,...,p, distinct monic irreducible polys in F[t], e1,...,e, € ZT.
Then there exists a direct sum decomposition of V' into subspaces Wy, ..., W,
V=wWe..eWw, (*)

satisfying all of the following:

i) Each W; is T-invariant, ¢ =1,...,r

T €; T
m) qr = Hi:l P = Hi:l 4qT|w;,

)

i) grlw, =p',i=1,...,r
)
)

iv) If %; is an ordered basis for W;, i =1,...,r, B = %1 U...UZA, is an ordered
basis for V' with
[T|W1]%1 0
[T)e =
0 [Tw, ]

Moreover, any direct sum decomposition (*) of V' satisfying i), i), 4i7) is uniquely
determined by 7" and the p1, ..., p, up to order. If in addition, this is the case, then

Wi = kerp;*(T') i=1,...,7
- J

Proof. We induct on 7.
e r =1 is immediate

e r > 1By TFA, p{* and g = p5*...pS" are relatively prime, so by the Proposition

V=wiew
where
Wi = ker pi*(T') and W is T-invariant
Vi = ker g(T) and V; is T-invariant
ATly, = D147y, =py .0
Let

T1 :T|V1 : Vl — V1
By induction on r, we may assume all of the following:
Vi=Weo...0W,
W; = kerp;*(T1) and is T}-invariant
ary |, =piifori=2,...,r
Note:
,
ker p5i(T7) N Zkerpj(Tl) =0 Vi>0

Jj=2
J#i
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Claim 43.1. Let 2 < ¢ <. Then
ker p'(T') = ker p5* (11)

Let v € kerpi(T), i > 1. So

pi(T)v=0
Hence .
0= [[»% ()0 = g,

j=2
ie.,

vekerg(T) =V
So

Tv="T|yv="Tw
and

0= p;* (T)v = p;* (T1)v

as needed.

Let v € ker pi*(T1),4 > 1. By definition, v € Vi, so
0 = pE4(Ta)o = p (Tha )
=p;' (D)o =pi(T)v
This proves the claim.

The existence of (*), 4),ii),4i1) nad W; = kerp;*(T), i = 1,...,r, now follow.
Moreover, i) and (*) yield iv).

Uniqueness: Suppose that
V=W&..eoW,

satisfies 1), ii), iii). If we show
W; = kerp;*(T), i=1,...,7
the result will follow. It suffices to do the case i = 1. Let

Vi=We...eW,
V=waeW

As each W; is T-invariant and Vj is T-invariant. As before
pi' and g = ps* ... pir

and relatively prime by FTA. So by hw 4 # 6
qr = lem (qmv1 ; q:r|v1)

It follows that
aryy, = P53 - Py =g
Moreover, we have an equation
1 =p{'k + gl € Ft]

So
Ly = pi"(T)K(T) + g(T)UT) (+)
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Claim 43.2. W; = kerp{*(T") and hence we are done.

Since
qTlw, = p?
We have
P (T)v =0 Yv e W
Hence

Wy C ker p(T')

To finish, we must know
ker p*(T') C W

Let
vekerpl'(T)CV=WeW

So dlwy € W, v1 € V] s.t.
v=w + v

Since W C ker pi* (7)),
P (W1 =0

By assumption, p*(T)v = 0, so
P (T)vr =0

AsVi=Wrd...0W,
pfi:qﬂwiv i=2,...,r by (i)

‘We have
P (T)...pr (T)vr =0

Hence by (+)
v = lyvr = py (Tk(T)vr + p3*(T) . .. pir (T)U(T)v1 = 0

Therefore,
v=wi+v1 =w €W

and it follows that ker p{* (7') € W as needed. O

Recall: Let V' be a finite dimensional vector space over F, T : V — V linear is called
diagonalizable if there exists an ordered basis # for V consisting of eigenvectors of T'.
By hw 2 # 2, this is equivalent to

V= Er
A
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8§44 ‘ Lec 15: Apr 30, 2021

§44.1 Primary Decomposition (Cont’d)

Recall: Let V' be a finite dimensional vector space over F, T : V — V linear is called
diagonalizable if there exists an ordered basis # for V consisting of eigenvectors of T'.
By hw 2 # 2, this is equivalent to

V= Er(
A

KTheorem 44.1 A

Let V be a finite dimensional vector space over F, T': V — V linear. Then T is
diagonalizable iff ¢p splits in F[t] and has no repeated roots in F. If this is the

case, then
-

qr = H(t —Ai), AL,..., A\ the distinct roots of gp
=1
- ’ J
Proof. “ <= 7 qp = [[;_;(t = N\), A1,..., A\ the distinct roots of gp. Let V; =
ker(T'— M\ly) = Ep(N\;), i =1,...,r. Then by the Primary Decomposition Theorem,

V=Vo..oV

SO T is diagonalizable.
“ = 7 Let & ={v1,...,v,} be an ordered basis for V' consisting of eigenvectors of T’
with A; the eigenvalue of v; and ordered s.t.

A, ..., A\ are the distinct eigenvalues of T’
For each j, 1 < 5 < n, we have
(T = XNily)v; =Tvj—Nvj =N —N)vj, j=1,...,n
So

T

H(T—)\ilv)vj:() forj=1,....,n
=1

ie.,
,

H(T — A\ily) vanishes on a basis for V'
i=1
hence vanishes on all of V. It follows that

-
qr| H(t —A;) € Ft]
i=1
In particular, ¢r splits in F'[t] and has no multiple roots in F' by FTA. As every eigenvalue
of T'is a root of fr, we have
t—/\i|qT, iZl,...,T’

using fr and gr have the same roots. Therefore,

T

gr = [t =) € FI =
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§44.2 Jordan Blocks

(Definition 44.2 (Jordan Block Matrix) — J € M, F' is called a Jordan block rnatrix\
of eigenvalue A of size n if
A 0
1 A
J = J,(A) = 1 e M,F
oA
0 1
- J

Note: fj, (N = det (tI — J,(X)) = (t — \)™ € F[t], so splits with just one root of
multiplicity.

Definition 44.3 (Nilpotent) — T : V — V linear is called nilpotent if ¢p = ™,
some m, i.e., IM € ZT 5 TM = 0.

Example 44.4

J = J,, (0) is nilpotent and has ¢; = ™ for some m. In fact, ¢; = t" — why?
In fact, let A € M, F, A: F**! — F»*1 linear with A ~ N with

N = Jp(A_AIL, = Jp(0)
Then as N is nilpotent and
A=PNP~ ! someP e GL,F,
we have
A" = (PNP™ )" = PNP'PNP™'...PNP ' =PN"P~ 1 =0

So A is nilpotent. Now N is nilpotent.
If . ={e1,...,en} is the standard basis for F™*!

N6¢:€i+1, iSn—l
Ne, =0
NZBiZN—NeiZGi_’_Q, ’iSn—?
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Example 44.5 (Cont’d from above)

In any case, we have
dimim N"=n —r
dimker N" =r
dimim N” =0 }

dimim ker N" =n

ifr<n

ifr>n

/Lemma 44.6 A
Let J = J,(X) € M, . Then
1. X is the only eigenvalue of J.
2. dimEj;(A\) =1
3. tJZQJZ(t—)\)n
4. fs(J)=0
- J
Proof. Let
N=J-)\ eM,F
the characteristics matrix of J
0 0
Nt | | em,F
0 0
10 0
is not the zero matrix, but
N"=0
So
qr|(t = N)™ and q; J(t —\)"?
It follows that q; = (t — A\)™ = f;. This shows 3) and 4). By the computation,
dimker N =1
and
ker N = ET()\)
This gives 2) as fr = (t — )", 1) is clear. O

Remark 44.7. J,(\) has only a line as an eigenspace, so among triangulariazable operator
away from being diagonalizable when n > 1.

Proposition 44.8

Let A € M, F be triangularizable. Suppose f4 = (t — \)" for some A € F. Then A
is diagonalizable iff g4 = (t — \) iff A = AI.
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Proof. 1If g4 =t — A, then A = A as
F™ 1 = ker (A — \I)

The converse is immediate.

O]

Computation: Let V be a finite dimensional vector space over F, dimV =n,T:V —V

linear. Suppose there exists & = {vy,...,v,} an ordered basis for V' satisfying

[T] = Jn(A)
Then by definition

Tvy = Mg +ve de (T — Aly)vy = vg
Tvy = Avg +v3  i.e. (T — )\11/')1}2 =3

Tvp—1 = Ap_1+v, ie. (T —Aly)v,_1="1vy,

Tv, = Avy,
So
E\(X\) = Fuy,
V1,...,Un—1 are not eigenvectors, but do satisfy
(T—)\lv)vi:viﬂ i=1,...,n—1
(T — )\lv)"*ivi = v, , an eigenvector
So we can compute v1,...,v,_1 from the eigenvalue v,.
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8§45 ‘ Lec 16: May 3, 2021

§45.1 Jordan Blocks (Cont’d)

/Definition 45.1 (Sequence of Generalized Eigenvectors) — Let T': V — V be\

linear, 0 # v, € Er(\). We say vy,...,v, is an (ordered) sequence of generalized
eigenvectors of eigenvalue A of length n if (4) above holds, i.e.,

(T — A\ly)v; = vi41, i=1,....n—1

(T — Ay )v, =0

We let

gn()‘) = gn(vm >‘) o= {U17 coog Un}
= {’Ul, (T — )\1\/)”71’01}

be an ordered sequence of generalized eigenvectors for 1" of length n relative to A.

Note: We should really write

gn(”ny )‘a U1y a/Un—l)

/Lemma 45.2 A
Let V be a vector space over F, T : V — V linear, 0 # v, € Er(\), v1,...,v, an
ordered sequence of generalized eigenvectors of T of length n, g,(\) = {v1,..., v, }.
Then

1. gn(A) is linearly independent.
2. If V is a finite dimensional vector space over F', dim V = n, then
i) gn(\) is an ordered basis for V'
i) [T]y, = JIn(X)
J

Proof. 1. We have seen that (%) implies

(T — \y)" vy = vy, i<n

(T = A1l —V)v, =0
So

(T —My)v; =0  Vk>n—i
Suppose

a1vy + ...+ ayv, =0, a; € Fnot all 0
Choose the least k s.t. ag # 0. Then
0= (T —My)" " (vp + ... + anvy) = vy

As v, # 0, a, = 0, a contradiction.

So 1) follows and 1) — 2).
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Definition 45.3 (Jordan Canonical Form) — A € M, F is called a matrix in Jordan
canonical form (JCF) if A has the block form

Jr (A1) 0
A = o
o (Am)

Al, ..., A\m Dot necessarily distinct.

J

Definition 45.4 (Jordan Basis) — Let V be a finite dimensional vector space over
F,T:V — V linear. An ordered basis & for V is called a Jordan basis (if it exists)
for V relative to T if % is the union

9ry (vl,ﬁ’ )‘1) U...Ugr, (Umﬂ”rm )\m) (*)

where g, (vj,rj ,A;) is an ordered sequence of generalized eigenvectors of T' relative
to A; ending at eigenvector Vjr;- The Aq,..., A\, need not be distinct. y

Proposition 45.5

Let V be a finite dimensional vector space over F', T': V — V linear. Then V has a

Jordan basis relative to 1I' <= T has a matrix representation in Jordan canonical
form (JCF).

Proof. Let w; = gy, (Vir,;, Ai) in (%). The only thing to show is: W; is T-invariant, but
this follows from our computation. O

Conclusion: Let T : V. — V be linear with V having a Jordan basis relative to T.
Gathering all the Jordan blocks with the same eigenvalues together and ordering these
into increasing size, we can write such a Jordan basis as follows:

AL, -, Am the distinct eigenvalues of T

B = Griq (’UH, )\1) U...Ugrm (Ul,nla /\1)
U 9roy (v217 >‘2) U...u grz,nQ (U2,n27 >‘2)

U grm,l(vm,lv )\m) u...u 9rmmm (vm,rm; Am)

with
i Srig << Tiny, I<i<m
e.g.
10
0 1
10 N(1)
Ji(1)
Ure 11 - :
T(1)
02 00 Ja(2)
120 s
01 2
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Let
Wi; = Span g, ;j(vij, \) Vi, j

These are all T-invariant. We have

fr= H(t — Ay)"

,J
and
gr = [Jlem ((t = X)" )5 =1,..., )
— (t _ )\i>7’zn1
So
qT|fT and fT(T) =0
Also

arywy,; = fryw,; = (= N)"
for all 1 <j < nj, 1 <7< m. There are called the elementary divisors of T'
VZWU@...@WLnI@...@Wml@...@Wmnm

Now let P;; be the projection onto W;; along

Wid...0W;d...0 Wi,
—

omit
Then
Py Py = 6,10, Pj = {g’aétﬁ;‘;i:eand j=1
ly =Py +...+ Pun,,
TPy = PyT
T=TP1+...+TPyu,,, = T‘WH I T‘Wmnm

Abusing notation
A1, ..., Am are the distinct eigenvalues of T'

Let
Wi:Wil@u-@Wmi 1=1,...,m

Asryp < ... <7ip,,
(T — Mly)'m
(T = Nily)" ™1y #0

showing

qr|Wi = (t — A\y)"im

So
V=W &...oW,,

is the unique primary decomposition of V' relative to T'.
Note: The Jordan canonical form of T" above is completely determined by the elementary
divisors of T
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§45.2 Jordan Canonical Form

Theorem 45.6

Let V be a finite dimensional vector space over F', T : V — V linear. Suppose that
gr splits in F'[t]. Then there exists a Jordan basis # for V relative to T'. Moreover,
[T] 4 is unique up to the order of the Jordan blocks. In addition, all such matrix
representations are similar.

Proof. Reduction 1: We may assume that
qr = (t—A\)"

Suppose that
gr=(t =)™ ... (t = A\p)'™ € Ft]

ALy ..., Ay distinct. Set
Wi:ker(T—)\ilv)”, izl,...,m
By the Primary Decomposition Theorem,

V=wW&..eW,

W; is T-invariant, i = 1,...,n
QT\Wi:(t_)\i)riy izl,...,m
So we need only find a Jordan basis for each W;. O
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8§46 ‘ Lec 17: May 5, 2021

§46.1 Jordan Canonical Form (Cont’d)

Proof. (Cont’d from Lec 16) Reduction 2: We may assume that ¢gp = t", i.e., A = 0.
Suppose that we have proven the case for A = 0. Let S =T — Aly, T as in Reduction 1.
Then

ST=(T—Aly) =0and "' = (T = Aly) "t £0

Therefore,
qs =1t"
if & is a Jordan basis for V relative to .S, then

is a JCF with diagonal entries 0. Hence
[Tl =[Sl + M

is a JCF with diagonal entries A and £ is also a Jordan basis for V relative to T
Reduction 2 now follows easily. We turn to
Existence: We have reduced to the case

qr=t", ie, T' =0, T 1#0
In particular, T' is nilpotent. We induct on dim V.
e dimV =1 is immediate.

e dimV > 1: T is singular, so 0 < ker T, as A = 0 is an eigenvalue. Since V is a
finite dimensional vector space over F', by the Dimension Theorem, T is not onto,
i.e.,

imT <V

As im T is T-invariant, we can (and do) view

T|. . :imT — im T linear
im T

As T" =0, certainly (T'|im )" =0, so
Tl;

. 7 1s also nilpotent

and
qrl,,, plar € F[t]

since
ar (T‘im T) =0=qr(T)

So qry,,, o splits in F[t] and

qu =1t% for some s <r
im T

by FTA. By induction on dim V', im 7" has a Jordan basis relative to T|im 7. So

mT=W;&...6W,,, somem
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with each W; being T'|iy, 7— (hence T—) invariant and W; has a basis of an ordered
sequence of generalized eigenvectors for T'|y,, hence for T'|ip, 7 and T,

9r,(0) = {w;, Tw;, ... ,T”_lwi}, r; > 1
Thus we have

— .
T w; =0, i=1,....m

a4 =" i=1,...,m
Wi

Since w; € W; € im T,
Jv, eVoaTvy,=w;, i=1,...,m

So we also have
Ty = T Tv; = Thiw; = 0

and
Triv; = T" " Tv; = T w; #0
Therefore, v;, Tv;, ..., T v; is an ordered sequence of generalized eigenvalues for
T in V, and, in particular, linearly independent. For each i = 1,...,m, let
Vi = Span {v;, Tv;, ..., T"v;}
So

Since each V; is spanned by an ordered sequence of generalized eigenvectors for T,
each V; is T-invariant, ¢ = 1,...,m.

Note: If f € F[t] and f(T)w; =0, then f(T) = 0 in W; and similarly if f € F]t]
and f(T)v; =0, then f(T) =0 on V; as f(T)w; = 0 implies

0="Tf(T)w; = f(T)T?w; =0 Vi

Set,
Vi=Vi+...+V,

Each V; is T-invariant, so V' is T-invariant.
Claim 46.1. V' =V, @& ... &V,

In particular,
By = {v1,Tvr,...., T 01, ..., 0, TOmy o, T 0, }

is a basis for V. O
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§47‘ Lec 18: May 7, 2021

§47.1 Jordan Canonical Form (Cont’d)
Proof. (Cont’d) Suppose u; € V;, i = 1,...,m satisfies
U+ ...+ Uy, =0 (1)
To show w; =0,i=1,...,m. Aswu; € V;, 3f; € F[t]
up = fi(T)v;

where we let f; = 0 if u; = 0. So (1) becomes

fil@vr+ ..o+ fn(T)om =0 (2)
Since Tf(T) = f(T)T Vf € FJt] and

w; = T, 1=1,....m

taking T" of (2) yields
f(T)wr + .o+ fn(T)wy, =0

As the T-invariant W; satisfying

Wi+...4Wo=W1&...0W, (*)
We have
fi(T)w; =0, i=1,...,m
Hence
fi(T) =0 on W;, i=1,...,m
Thus

Ty
t =4,

\fieFt], i=1,...,m
Wi
In particular, since r; > 1 Vi, we can write

fi =tg; € F[t], it=1,...,m
deg g; < deg f;, i=1,...,mif f; #0

Since
fi(T) =Tgi(T) = g:(T)T
and
w; = Tv;, i=1,....,m
(2) now becomes
g (Twi + ...+ gm(T)wy, =0 (3)

Since each W; is T-invariant, by (*)
gi(T)w; =0, hence g;(T) =0 on W;
for i = 1,...,m by the definition of W;. Therefore, for each i, i =1,...,m

t" = a }gi € Ft]

K3
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In particular, we can write
gizt”hiGF[t], 1=1,....m

So
fi=t"thi e FlY],  i=1,...,m

Thus we have
w = f;(T)v; = hiy(T)T" o, =0, i=1,....,m

This establishes claim 1. As
w; = Tv; € W, 1=1,....m
We have

TV =TVi®...aTV,,
=Wie...oW, =TV (%)

since each W;, V; is T-invariant and
TV, = W;, i=1,....,m

Therefore,
Tl =T, +...+T|,

Claim 47.1. V =ker T + V'

Let v € V. Since
TV =TV

by (%), we have Vv € V
' eV 5TV =Tv,

SO
v—1v €kerT
and
v =1 4w some w € ker T
ie.
veV +kerT
as needed.

Now by construction, we have a Jordan basis %, for the T-invariant subspace V' relative
to T'|y. Let
¢ = {u1,...,ur} be a basis for ker T = Ep(0)

Modifying the Toss In Theorem, we get a basis for V' as follows. If u; ¢ Span %, let
HBy = By U {u1}. Otherwise, let B1 = HBy. If ug ¢ Span B, let By = HB1 U {ua}.
Otherwise, let By = %AB. In either case, A5 is a linearly independent set. Continuing in
this way, since %y U % spans V', we get a spanning set of V'

%:@()U{Ujl,...,u%}gv

with
Tuji =0
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for some uj, constructed above, 1 <¢ < s.
Using claim 1, we have

V =V'®Span {u;,...,uj,}

and [T 4 is in Jordan canonical form. This proves existence.

Note: Fuy;, are the g1 (u;;,0) and the u;, are eigenvectors that cannot be extended to
9i(v;,0) of longer length.

Uniqueness: By reduction 1) and 2), we have

qr = tra Tr == 07 TT?l 7é 0
Let & be an ordered basis for V. Then by MTT
m; = dimim 7Y = rank [Tj](g = rank [T]fg (*)

Let % be any Jordan basis for V relative to T, say

Jr, (0) 0
[Ty = .
the corresponding Jordan canonical form. Prior computation showed for each ¢, 1 < i <
m?
k J% (0)=ri—j
ran JZ(Q) r; —j ifj <
dimker J7,(0) = j
and .
j _
rank Jm(Q) =0 >
dim ker J,(0) = r;
Clearly, for each 1, A
J7,(0)
7)), = |
I, (0)
as [T'] 4 is in block form. So by (*),
m; = rank [T]?E = Zrank Jﬂi(O)
i=1

It follows that we have

mj_1 —m; = rank [T]g1 — rank [T]]&B
= # of [ x [ Jordan blocks J;(0) in (+) with [ > j

We also have, in the same way,

mj —mjq1 = rank [T]f@ —rank [T]gl
= # of | x [ Jordan blocks J;(0) in (+) with [ > j + 1

Consequently, there are precisely

(mj—1 —myj) = (mj —mjp1) = mj1 — 2m; + mjp
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which equals the number of [ x [ Jordan blocks J;(0) in (4) with [ = j. This number is
independent of 4 as it is

rank 7971 — 2 rank 77 + rank 771!

Thus, [T], is unique up to order of the Jordan blocks. This proves uniqueness.
If %' is another Jordan basis, then

[T]gr ~ [T

by the Change of Basis Theorem. This finishes the proof (phewww...such a long
proof!) O

Corollary 47.1

Let A € M, F. If g4 € FJt] splits in F[t], then A is similar to a matrix in JCF
unique up to the order of the Jordan blocks.

/Corollary 47.2 A

Let F' be an algebraically closed field, e.g., FF = C. Then every A € M, F is similar
to a matrix in JCF unique up to the order of the Jordan blocks and for every V,
a finite dimensional vector space over F', and T : V' — V linear, V has a Jordan
basis relative to T'. Moreover, the Jordan blocks of [T], are completely determined
by the elementary divisors (minimal polys) that correspond to the Jordan blocks.

/Theorem 47.3 A

Let F be an algebraically closed field, e.g., ' = C, A,B € M,F. Then, the
following are equivalent

1. A~ B

2. A and B have the same JCF (up to block order)

3. A and B have the same elementary divisors counted with multiplicities.

Corollary 47.4
Let F be an algebraically closed field. Then A ~ AT,

O

Proof. For any B € M, F, qp = qpT.

§47.2 Companion Matrix
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[Definition 47.5 (Companion Matrix) — Let g = t"+a,_1t" 1 +...+a1t+ag € FJt],
n > 1. The matrix

0 0 . 0 — ap
1 0 0 — um
01
C(g) = ,
0 — apo
00 ... 1 — ap_1

is called the companion matrix of g.

Example 47.6
C (t") = Jn(0).

Note: If f,g € F[t] are monic, then
f=g9 < C(f)=C(9)

Lemma 47.7
Let g € F[t] \ F' be moinc. Then

fegy =9

Proof. Let g = t" 4+ a,_1t"" ' + ...+ ag € F[t]\ F. We induct on n, using properties
about determinants.

e n = 1 is immediate

e n > 1 Expanding on the determinant

t 0 0 aq
-1 t :
feig) = det (tI—C(g))=det| o _—1
: 0 :
0 eer oo —1 t—i—an_l
along the top row and induction yields
t (t”_l a1 t" L+ a1) + (1) ag(-1)" =y O
/Lemma 47.8 )
Let g € F[t] \ F' be monic. Then
dcg) = fog) =9
In particular,
feg) (Clg) =0
o J
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8§48 ‘ Lec 19: May 10, 2021

§48.1 Companion Matrix (Cont’d)

Remark 48.1. If C is a companion matrix in M, F', viewing
C : F™Y — ™ linear,

then
B = {61,061,. .. ,C"_lel}

is a basis for F™*! and

.Fn><1 = {Zaicieﬂai € F}
F .

Definition 48.2 (T-Cyclic) — Let V be a vector space over F', T': V — V linear.
We say v € V is a T-cyclic vector for V and V is T-cyclic if

V =Span{v,Tv,...,T"v,...} = F[T|v

Warning: Let T': V — V be linear. It is rare that V is T-cyclic. However, if v € V|
then F[tjv CV is a T-invariant subspace and F[T|v is T-cyclic. So T-cyclic subspace
generalize the notion of a line in V.

/Proposition 48.3 A

Let V be a finite dimensional vector space over F', n =dimV, T : V — V linear.
Suppose there exists a T-cyclic vector v for V, i.e., V.= F[T|v. Then all of the
following are true

i) B = {U,TU, e ,T”_lv} is an ordered basis for V'
ii) [T]4 = C(fr)

iii) fr=qr

J

Proof. i) As dimV = n, the set {v,Tv,...,T™v} must be linearly independent. Let
j < n be the first positive integer s.t.

T’v € Span {v,TU, . ,Tj_lv}

say . . .
Ty = aj_lTJ_lv + aj_gTJ_zv + ...+ aTv+ agu (*)

for ag,...,aj_1 € F. Take T of (*), to get
Titly = aj_lij + aj_gijlv +...+ a1T21) + apTv
which lies in Span(v, Tv,...,T7~!v) by (*). Iterating this process shows

TNy e Span{v,TU, e ,ijlv} VYN > j
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It follows that

So

This proves 1).

v = F[T]v = Span {U,Tv, e ,ijlv}

n=dmV <j, hence n = j

ii) The computation proving i) shows

B = {v, To,... ,T”_IU}

is an ordered basis for V. As

[Tz

= ([Tv]y  [T%]

[T 2] [T"0] )

B
0 0 0 =*
1 0 *
0 1 :
0o 0 . 1

it is a companion matrix, hence must be C(fr) and by the lemma, we have proven

i7).

i) fr = fir, = am, = v as [T)y = C(fr). -

Example 48.4

where

Let V be a finite dimensional vector space over F, dimV =n, T : V — V linear
s.t. there exists an ordered basis % with

Set S=T — Ay :V — V linear. Then v €V >

So v s an S-cyclic vector and

Fact 48.1. If A € M, F[t], C € M F[t], B € F[t]|"**, then

det D = Z sgn JDlJ(l) 500 Dna(n)

[T]gg = Jn(/\)

B = {v,Sv, .. .,S”flv}
V = F[S]v
B
o C

det (A ) =det Adet C
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§48.2 Smith Normal Form

We say that A € F[t]™*" is in Smith Normal Form (SNF) if A is the zero matrix or if
A is the matrix of the form

a 0
0 @
qr
0
0
with q1|g2|gs| - .. |g- in F[t] and all monic, i.e., there exists a positive integer r satisfying

r < min(m,n) and qi|g2|g3]| . .. |¢gr monic in F[t] s.t. A;; =¢; for 1 <i<rand A;; =0
otherwise.

We generalize Gaussian elimination, i.e., row (and column) reduction for matrices with
entries in F' to matrices with entries in F'[t]. The only difference arises because most
elements of F'[t] do not have multiplicative inverses.

Let A € M,,(F[t]). We say that A is an elementary matrix of

i) Type I: if there exists A € F[t] and [ # k s.t.

1 ifi=j
Ay =N i (0,7) = (k1)
0

otherwise
ii) Type II: If there exists k # [ s.t.

1 ifi=j#lori=j#k

o Jo dti=j=lori=j=1k
TN kD) = (i,5) or (1) = (1)
0

otherwise

iii) Type III: If there exists a 0 # u € F and [ s.t.
1 ifi=j5#1
Aij=<Su ifi=j=1

0 otherwise

Remark 48.5. Let A € F[t]™*". Multiplying A on the left (respectively right) by a
suitable size elementary matrix of

a) Type I is equivalent to adding a multiple of a row (respectively column) of A to
another row (respectively column) of A.

b) Type II is equivalent to interchanging two rows (respectively columns) of A.

c) Type III is equivalent to multiplying a row (respectively column) of A by an element
in F[t] having a multiplicative inverse.
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Remark 48.6. 1. All elementary matrices are invertible.

2. The definition of elementary matrices of Types I and II is exactly the same as that
given when defined over a field.

3. The elementary matrices of Type III have a restriction. The u’s appearing in the
definition are precisely the elements in F'[t] having a multiplicative inverse. The
reason for this is so that the elementary matrices of Type III are invertible.

Let
GL, (F[t]) = {A|A is invertible}

Warning: A matrix in M, (F[t]) having det(A) # 0 may no longer be invertible, i.e.,
have an inverse. What is true is that GL,(F[t]) = {A|0 # det(A) € F}, equivalently
GL,(Ft]) consists of those matrices whose determinant have a multiplicative inverse in
Ft].

Definition 48.7 (Equivalent Matrix) — Let A, B € F[t]™*". We say that A is
equivalent to B and write A ~ B if there exist matrices P € GL,,(F[t]) and
Q € GL,(F[t]) st. B= PAQ.

Theorem 48.8

Let A € F[t|™ ™. Then A is equivalent to a matrix in Smith Normal Form.
Moreover, there exist matrices P € GL,,(F[t]) and Q € GL,(Ft]), each a product
of matrices of Type I, Type II, Type III, s.t. PAQ is in SNF.

Remark 48.9. The SNF derived by this algorithm is, in fact, unique. In particular, the
monic polynomials gi|gz2|gs] . .. |g- arising in the SNF of a matrix A are unique and are
called the invariant factor of A. This is proven using results about determinant.
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8§49 ‘ Lec 20: May 12, 2021

§49.1 Rational Canonical Form

If A,B € F[t]™*" then A ~ B if and only if they have the same SNF if and only if they
have the same invariant factors. So what good is the NSF relative to linear operators
on finite dimensional vector spaces?

Let A, B € M,,(F). Then A ~ B if and only if tI — A ~ ¢tI — B in M, (F[t]) and this
is completely determined by the SNF hence the invariant factors of tI — A and ¢ — B.
Now the SNF of tI — A may have some of its invariant factors 1, and we shall drop these.
Let V be a finite dimensional vector space over F' with % an ordered basis. Let
T :V — V be a linear operator. If one computes the SNF of tI — [T, it will have the

form
1 0 e e 0
0 1 0
a1
q2
0 e e Gr
with g1]q1] . . . |g- are all the monic polynomials in F[t]\ F'. These are called the invariant

factors of T. They are uniquely determined by 7. The main theorem is that there
exists an ordered basis & for V s.t.

Cla) 0 0
[T = O cle) N 0
0 . Clgr)

and this matrix representation is unique. This is called the rational canonical form or
RCF of T. Moreover, the minimal polynomial ¢; of T is ¢.. The algorithm computes
this as well as all invariant factors of 7. The characteristic polynomial fr of T is the
product of q; ...q,. This works over any field F, even if ¢r does not split. The basis
A gives a decomposition of V into T-invariant subspaces V = W1 & ... & W, where
Iriw: = aryw, = ¢ and if dim(W;) = n; then %; = {vi,Tvi, e ,T"Flvi} is a basis for
Wi;.

Let V be a finite dimensional vector space over F with %4 an ordered basis. Let
T :V — V be a linear operator. Suppose that gr splits over F. Then we know that
there exists a Jordan canonical form of 7.

Question 49.1. How do we compute it?

We use the Smith Normal Form of ¢t/ — [T], to compute the invariant factors
q1lq1] ... |g- of T just as one does to compute the RCF of T. We then factor each g;.
Suppose this factorization is

G == )" (t— )™
in F[t] with Aq,..., A, distinct. Note that ¢; 41 has this as a factor so it has the form
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with s; > r; foreach 1 <i <mand m+1,...,m+k > 0 with Ay,..., \,+x distinct.
Then the totality of all the (¢ — \;)"7, including repetition if they occur in different ¢;’s
give all the elementary divisors of T'. So to get the JCF of T we take for each ¢; as
factored above the block matrix

Jo(M) 0 ... 0

0 oo dry Ovm)

and replace C(g;) by it in the RCF, i.e., we take all the Jordan blocks J,.(\) associated
to each and every factor of the form (¢ — A)" in each and every invariant factor g;
determined by the SNF and form a matrix out of all such blocks. This is the JCF which
is unique only up to block order.
Let V be a finite dimensional vector space over F, T : V — V linear, v € V. Then as
before, if v € V'

Fltjo = {f(T)lf € FIl]} €V

the T-cyclic subspace of V' generated by v and satisfies
ny = dim F[T]v < dim V/

and has ordered basis
By = {v, To,... ,T”“_lv}

As F[T)v is T-invariant,
[T‘F[T]U] B c (fT|F[T]v)

and
47| pirye = fT|F[T]v

We want to show that V' can be decomposed as a direct sum of T-cyclic subspaces of V.
The SNF of the characteristic matrix

tI — [Ty
% is an ordered basis for V', which gives rise to invariants of T
ql - |gr € F[t] (*)

q1 # 1, ¢; monic for all 4.
Note: The SNF of (+) has no 0’s on the diagonal asfr # 0. We want to show there
exists an ordered basis 4 for V with all the following properties

V=we..eW.,n=dmW;,i=1,...,r

fT:qqu:(JT|W1qT‘WT

vil) Ay, = {vi,Tvi, e ,T"i_lvi} is an ordered basis for W;, i =1,...,r
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viil) B =% U...U%B, is an ordered basis for V satisfying

Clq1) 0

[T = "
0 Clqr)

called the rational canonical form of T and it is unique.

The uniqueness follows from the uniqueness of SNF. From the definition of equivalent
matrix, we have the following remark

Remark 49.1. If A € M, F[{] is in SNF, then
AeGL,Flt] < A=1

since

means 0...0-¢1...q € F\ {0} if there are any 0’s on the diagonal, which is inseparable.

/Lemma 49.2 b
Let g € F[t] \ F' be monic of degree n. Then
1 0
It —C(q) =
(9) .

0 q
- J
\

/Corollary 49.3
Let V be a finite dimensional vector space over F', T : V — V linear qi|...|q, the
invariants of 7" in F'[t]. Then

where dimV =37 degg;

J

Certainly, if there exists an ordered basis # for V a finite dimensional vector space over
F,T:V =V linear s.t. [T], is in RCF, then everything in goal falls out. So by the
above, the goal will follow if we prove the following
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/Theorem 49.4 A

Let Ay, By € M, ', A =tI — Ap and B = tI — By in M, F[t], the corresponding
characteristic matrices. Then the following are equivalent

i) Ag ~ By (i.e. Ap and By are similar)
ii) A~ B (i.e.,, A and B are equivalent)

iii) A and B have the same SNF.

We need two preliminary lemmas.

Lemma 49.5

Let A ~ B in M, F'[t]. Then 3P, Q € GL,,F|t] each products of elementary matrices
s.t. A= PBQ.

Proof. P € GL,F[t] iff its SNF = I which we get using elementary matrices. O

For the second lemma, we need the “division algorithm” by “linear polys” in M, F'[t]. If
we were in F[t], we know if f,g € Ft], f #0,

g=fq+r € F[t] withr =0 or degr < deg f
Soif f=t—a,r € F,ie.,r=g(a) by plugging in a into (*). But for matrices,
AQ+R#QA+R

but the same argument to get (*) for polys, will give a right and left remainder.
Notation: Let A; € Ml.F, i =0,...,n and let

At + A, 1"+ A

denote
An(t"T) + ... 4+ Apl € M, F[t]
So if
A = (ay)
then

Atn = (Oéijtn)
i.e., two matrix polynomials are the same iff all their corresponding entries are equal,
ie.,

(MnF) [t] =M, (F[t])

/Lemma 49.6 A
Let Ag € Ml,F, A=tI — Ay € M, F[t] and
0 # P = P(t) € M, F[t]
Then there exist matrices M, N € M, F[t| and R, S € M, F' satisfying
i) P=AM + R
i) P=NA+S
J
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8§50 ‘ Lec 21: May 14, 2021

§50.1 Rational Canonical Form (Cont’d)

Recall from last lecture,

/Lemma 50.1 A
Let Ag € M,F', A =tI — Ay € M, F[t] and
0# P = P(t) € M,Ft]
Then there exist matrices M, N € M, F[t] and R, S € M, F satisfying
i) P=AM +R
i) P=NA+S
J

Proof. i) Let
m = Hll%XdegPlka Py #0

and Vi, j let
o lead P;; if deg P;jj = m
Y10 if Pj=0o0r degPy <m

So
P;j = a;t™ + lower terms in t € F'[t]

Let o;; € M, F' and let
Py = (ai)t" ™ = (agt™ )
Every entry in
APy = (tI — Ap) (aij)t™
= (i )t™ — Ag (o )t" !

has deg = m or is zero and the t"-coefficient of (AP, —1);; is a;j. Thus, P— AP,
has polynomial entries of degree at most m —1 (or = 0). Apply the same argument
to P — AP,,_1 (replacing m by m — 1 in (*)) to produce a matrix P,,_s in M, F'[t]
s.t. all the polynomial entries in (P — AP,,,—1) — AP,,—2 have degree at most m — 2
(or = 0). Continuing this way, we construct matrices P,,_s, ..., Py satisfying if

M=P, 1+P,o+...+F

then
R=P—AM

has only constant entries, i.e., R € M, F". So
P=AM+R
as needed.

ii) This can be proven in an analogous way. O
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Theorem 50.2
Let Ay, By € M, F, A=1tl— Ao, B =1tl — By in MnF[t] Then

A~ BeM,F[t] <= Ao~ By € M,F

Proof. “ < 7 If
By = PAyP~ ', PeGL,F,

then
P(tI — Ay) P! = PtP~! — PAP'=tI -By=B

So B=PAP~! and B ~ A.
“ = 7 Suppose there exist P;,Q1 € GL,F[t], hence each a product of elementary
matrices by Lemma 49.5, satisfying

B=tB— By=PAQ1 = P (tI — Ay) Q1
Applying Lemma 50.1, we can write
i) Pp=BP>+ R, P» € M,F[t], R € M,F

i) Q1 =Q2B+ S, Q2 € M,F[t], S € M,/
Since B = PiAQ1, P1, Q1 € GL, F[t], we also have

iii) PLA=BQ!

iv) AQ; = P'B
Thus, we have

B =PAQ, 2 (BP; + R)AQ, = BRAQ, + RAQ,

)

Y BP,PT' B + RAQy 2 BPyPT'B + RA(Q2B + S)
= BP,P;'B+ RAQ2B + RAS

i.e., we have
v) B = BP,P;'B+ RAQ>B + RAS

By i)
R=P —BP,

Plugging this into RAQ2 B, yields

RAQ2B 2 (P — BPy)AQ2B = PLAQ>B — BPyAQsB
Y BO'QaB ~ BPAQYB = B [Q7' Qs — P2AQ,] B
ie.

vi) RAQ2B = B [Q7'Q2 — P2AQ»] B
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Plug vi) into v) to get

Y BP,P7'B + RAQ,B + RAS

i)

= BP,P;'B + B [Q7'Q2 — P,AQs] B + RAS
=B [PP[ '+ Q7'Q2 — P2AQ>] B+ RAS

B

Let
T=PP ' +Q1'Qs — PAQ>

Then
vii) B = BTB+ RAS € M, F'[t]
We next look at the degree of the poly entries of these matrices.

viii) Every entry of B = tI — By is zero or has deg < 1 and every entry of RAS =
R(tI — Ap)S has is zero or has deg < 1.

Question 50.1. What about BT B?
Let T = Typt™ + Ty t™ ' + ... + Ty with Tp, ..., Ty, € M, F. Then

BTB = (tI — By) (Tipt™ + Trnat™ ' + ...+ Tp) (tI — Bo)

= T,t™ "2 4+ lower terms in ¢
Comparing coefficients of the matrix of polys BT'B = B — RAS using vii), viii) shows
Tn=0

Hence

So vii) becomes

tI — By = B = BTB + RAS = RAS = R(t] — Ay)S
= RST + RAyS (%)

comparing coefficients of the poly matrices in (*) shows

I=RS
By = RApS
i.e., By = RAyS = RAyR™. O
/Theorem 50.3 h
Let Ao, By € Ml,F';, A=tl — Ay, B=1tI — By in M, F[t]. Then the following are
equivalent
1) A() ~ B()
i) A
iii) A and B have the same SNF.
9 iv) Ap and By have the same invariant factors. )
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In particular, if V' is a finite dimensional vector space over F', T : V' — V linear, ¢i| ... |g,
the invariants of T, then

V=kerqi(T)&... P kerg,(T)

4r = 4qr
fr=a...q
Note: If ¢; = [, (t — \;)* is an invariant factor, then
Jey (A1) 0
Clai) ~ .
0 Je, (Ar)

Corollary 50.4
Let A,BeM,F, FFC K asubfield. Then A ~ B in M,,F iff A ~ B in M, K.
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§51 ‘ Lec 22: May 17, 2021

§51.1 Inner Product Spaces

Notation: —: C - C by a+ v—1 — a — 8v/—1 Va, 8 € R is called the complex
conjugation. If F' C C, set o
F={alaecF}

is a field, e.g., F = F if F CR.

4 —
Definition 51.1 (Inner Product Space) — Let F C C satisfy F' = F', V a vector
space over F'. Then V is called an inner product space over F' relative to

(HV=()v:VxV=F
satisfies
1. py : V = F by py(w) == (w, v) is linear for all v € V, i.e., p, € V*

2. (v,w) = (v,w) for all v,w € V

N 3. |[v)|?> = (v,v) e RN F for all v € V and |[v||? > 0 in R and = 0 iff v = 0 (*)

Let V be an inner product space over F. Then,
1. If v € V satisfies (w,v) =0 for all w € V, then v = 0.

2. Let v1,vp € V' \ {0},
w = 2
[

is called the orthogonal projection of v on v and v = v9 — w is orthogonal to w,
ie. (v,w) =0, write v L w.

Definition 51.2 (Sesquilinear Map) — A map f: V — W of inner product space
over F'is called sesquilinear if vi,v0 € V, o € F

f(v1+av) = f(v1) +af(v2)

Let V1 :={f:V — F| f sesquilinear} a vector space over F.

Example 51.3
If F C R, then any sesquilinear map is linear and V1 = V*,
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Remark 51.4. Let V be an inner product space over F.
1. p: V= V* by v~ p, is sesquilinear.
plavy + va)(w) = (w, avy + va)
= a(w,v2) + (w,v1) = ap(v1) + p(va)

for all « € F', v1,v9,w € V. Also, we can deduce that p is an injection and if V is
finite dimensional, then p is a bijection.

2. fveV,let A, : V= F by w (v,w), i.e., Ay(w) = (v,w). Then A, is sesquilinear.
Moreover,
ANV o Vibyos

is linear. As (v, w) =0 for all w — v = 0, A is injective hence monic. If V is finite
dimensional then A is an isomorphism.

3. If f:V — W is sesquilinear, it is called a sesquilinear isomorphism if it is bijective
and f~! is sesquilinear. Then f is a sesquilinear isomorphism iff f is bijective.

Let V' be an inner product space over F.
1. Ifv eV, ||v]| = +/|[v]|? > 0 is called the length of v.

2. Length and Z make sense in V' by the Cauchy — Schwarz inequality

(v, w)| < ollllw] Vo,w eV

and V' is a metric space by distances from v, w = d(v,w) = ||[v —w]| as the triangle
inequality
[o 4wl < o]l + [|lw]

holds for all v,w € W.

3. Gram — Schmidt: If W C V is a finite dimensional subspaces, then 3 an orthogonal
basis for W

B =A{wi,...,wy}, ie (w,w;)=0ifi#j

and if ||w;|| € F Vi, then 3 an orthonormal basis

i)
Jwt]]”7 [Jwal|

4. In 3),if v € V let B = {w1,...,w,} be an orthogonal basis for W. Set

" (v, w;) - w;
Uy = E L = E v, ———Vw;
b Jwi > < 7HU%H2> '

=1 i=1

Then, the w;-coordinate of vy, is ﬁfﬂ“ﬁz € F. Hence

;= w, V> F
Ji Pt

is the corresponding coordinate function, so * = {f1,..., fn} is the dual basis of

B.
5. Let ) £ .S C V be a subset. The orthogonal complement S+ of S is defined by
St ={zecV|zLlsVseS}CV

a subspace.
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Note: The sesquilinear map
p:V = V*by v p,
induces an injective sesquilinear map
plg. : ST —8°

and we have
S C SLL — (SL)L

If S is a subspace, SN S+ =0 so
S+S8t=5d5*

write
S+S8t=8515"
called an orthogonal direct sum and if V is finite dimensional then
S =5+t
e.g.,if v € V, then
ker p, = (Fv)*

SO
V =Fv L (Fv)t

More generally, we have the following crucial result.

\
Theorem 51.5 (Orthogonal Decomposition)

Let V be an inner product space over F', S C V a finite dimensional subspace.
Then
V=515"
ie,ifveV
JPse b, steStsv=s+s"

In particular, s = vg. If V' is finite dimensional, then

9 dimV = dim S + dim S+ )

/
Theorem 51.6 (Best Approximation)

Let V be an inner product space over F', S C V a finite dimensional subspace,
v € V. Then vg € Sis the best approximation to v in S, i.e., for all s € S

llv — vg|| < ||lv — s|| with equality iff s = vg

.

Remark 51.7. More generally, if V' is an inner product space over F,

with
wiJ_wj VwiEWi,ijWj,i;éj

We call V' an orthogonal direct sum or orthogonal decomposition of V.
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By the Orthogonal Decomposition Theorem,
V=W, LWt
and
Wh=wy L...W; L...1LW,
~~

omit

Let P;: V — V be the projection along
Wh=wiL...LW; L...LW,
onto W;. Then we have

ker P = Wi+
im P, =W,;
P P; = 6;; P; Vi, j
ly =P +...+ P,
The P; are called orthogonal projections. As W; C V is finite dimensional in the
above,
Pi(v) = vw,
So
v=vw,; +...+ 0w,

is a unique decomposition of v relative to (*).

Definition 51.8 (Adjoint) — Let V, W be inner product spaces over F, T : V — W
linear. A linear transformation 7% : W — V is called the adjoint of T if

(Tv,wyw = (v, T*w)y YoeVVYweW

Theorem 51.9

Let V,W be finite dimensional inner product space over F, T : V — W linear.
Then the adjoint T : W — V exists.
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§52 ‘ Lec 23: May 19, 2021

§52.1 Inner Product Spaces (Cont’d)

/Corollary 52.1 A

Let V,W be finite dimensional inner product space over F', T : V. — W linear.
Then
T=T"=(T")"

and

(T*w,v)y = (w, Tv)w YweW YweV
- J

Proof. We have

(Tv,w)yw = (v, T*w)y = (T*w,v)y
= (w, T**v)w = (T v, w)w

which completes the proof. ]

/Definition 52.2 (Isometry) — Let V, W be inner product space over F, T : V — W\

linear. Then T is called an isometry (or isomorphism of inner product space over
F) if

1. T is an isomorphism of vector space over F

2. T preserves inner products, i.e.,

<TU,T’U’>W = <’l),1)/>v Yo, v eV
- J

Remark 52.3. Let T : V — W linear of inner product space over F. If T' preserves inner
products, then T is monic.

Tv=0 <= ||Tv|]| =0 <= (Tw,Tv) =0 < (v,v) =0

/Theorem 52.4 A

Let V, W be finite dimensional inner product space over F with dimV = dim W
and T : V — W linear. Then the following are equivalent

1. T preserves inner product.
2. T is an isometry.

3. If Z={v1,...,v,} is an orthogonal basis for V, then € = {Tv1,...,Tv,} is
an orthogonal basis for W and

| Tvi|| = ||| i=1,...,n

4. 3 an orthogonal basis = {v1,...,v,} for V sit. € = {Twv1,...,Tv,} is an

orthogonal basis for W with ||Tv;|| = ||vs|| i = 1,...,n.
- J
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Proof. 1) = 2) T is monic by the remark above, so an isomorphism by the Isomorphism
theorem.
2) = 3) By the Isomorphism theorem, % is a basis for W and % is orthogonal with
|vill = || Tv;|| for all q.
3) = 4) is immediate.
4) = 1) By the Isomorphism theorem, 7" is an isomorphism of vector space over F. If
zoyeV, let x=3" vy, y = > Bivi, then
(@,y) =Y aiBj(vi,v5) = Y aiBdij|uil?
0. 0.
=Y @iBibi|Tuill®> = ) iB6ii(Twi, Tvj)
1,) 4,7
= (Tx,Ty) O

Corollary 52.5

Let V, W be finite dimensional inner product space over F' both having orthonormal
basis. Then V is isometric to W if and only if dim V' = dim W.

Proof. Apply UPVS and the theorem above. O

Theorem 52.6

Let V, W be inner product space over F', T : V. — W linear. Then T preserves
inner products iff T' preserves lengths, i.e., || Tv||w = ||v|y for all v € V.

Proof. “ = 7 The result is immediate.
“ <« 7 Let x,y € V and

<$7y>V = +B\/j1
(Tz, Ty)yw =+ 0vV—1

for a, 8,7, € R. We notice that
20=2y = a=vy

So we are done if ' C R. Suppose F' ¢ R, then there exists 0 # u € R s.t. uy/—1 € F.
Then

(z,V—=1py)y = —V=1plz, y)v = —pv/—la + B
(T, =1uTy)w = —/=1u({Tx, Ty)w = —pv/=1y + op

Analogous to (*),
B =op, soB=3
Hence (z,y)v = (Tz, Ty)w. O
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§53 ‘ Lec 24: May 21, 2021

§53.1 Inner Product Spaces (Cont’d)

Definition 53.1 (Unitary Operator) — Let V be an inner product space over F,
T :V — V linear. We call T' a unitary operator if 7" is an isometry. If F' C R, such
a T is called an orthogonal operator.

Proposition 53.2

Let V' be an inner product space over F, T : V' — V linear. Suppose that T* exists.
Then, T is an isometry if and only if 7% = T, ie.,, TT* = 1y, = T*T.

“ — 7 As T is an isomorphism of vector space over F', T™! : V — V exists

and is linear. As T preserves inner products, for all z,y € V

Proof.

(Tz,y) = (Tx,1yy) = (Tz, TT 'y) = (x, T~ 'y)

It follows that 7% = T~! by uniqueness.
“ &= " AsT*T = 1y = TT*, T is invertible with T—! = T*, so T is an isomorphism.
Since

(T'z,Ty) = (z,T"Ty) = (z,y)

for all x,y € V. T preserves inner products. O

Remark 53.3. Let V be a finite dimensional inner product space over F, T : V — V
linear.

1. T is monic iff T is epic iff T is an iso of vector space over F.
2. Tis unitary <= T"'T =1y < TT*" =1y

3. T is unitary <= T is unitary as T** =T

- — D
Definition 53.4 (Unitary Matrix) — Let F C C, F = F. We say A € M, F is
unitary if A*A = I. Equivalently, AA* = I. Let

UnF = {A € GL,F| AA* = I}

If F C R, we say A € M,F is orthogonal if AT A = I. Equivalently, AAT = 1. Let

O, F =3AcGL, |AAT:
L F {eLF I} )
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Remark 53.5. 1. Let F CC, F=F, F™*', F'*" inner product space over F via the
dot product. If A € M, F', then

AZ[A] 1:FnX1—>FnX1

Sny

linear and s, 1 the ordered standard basis. Then A is unitary iff
i) The columns of A form an ordered orthonormal basis for F*!
ii) The rows of A form an ordered orthonormal basis for F1*"

2. If T:V — V is linear, V an inner product space over F' with dimV = n, 8,%
ordered orthonormal bases for V, then 7" is unitary iff [T'] 5 ., is unitary.

§53.2 Spectral Theory

Lemma 53.6

Let V be an inner product space over ', T : V — V linear, W C V a subspace.
Suppose that T* exists. Then the following is true: If W is T-invariant, then W+
is T*-invariant.

Proof. Let v € W+, w € W, then

(w, T*v) = (Tw,v) =0 O

Lemma 53.7

Let V be a finite dimensional inner product space over F, T : V' — V linear. Then
the following is true: If A is an eigenvalue of 7', then A is an eigenvalue of T™*.

Proof. Let S=T — Aly : V — V linear. Then
S*=T*—Xly : V — V linear

Then Yw € V,
0= (0,w) = (Sv,w) = (v, S*w)

Hence v L im S* and v ¢ im S* as v # 0. By the Dimension Theorem,

0<kerS* Ep(\)#0 O

Theorem 53.8 (Schur)

Let V be a finite dimensional inner product space over F with FF = R or C and
T :V — V linear. Suppose that fr splits in F[t]. Then, there exists an ordered
orthonormal basis # for V' s.t. [T], is upper triangular.

Proof. We induct on n = dim V.
n =1 is immediate.
n > 1. By the 2nd lemma, I\ € F and 0 # v € Ep«<()\). By the Orthogonal
Decomposition Theorem,
V =Fv L (Fv)*
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and
dim(Fv)t =dimV — dim Fo =n — 1

Fuv is T*-invariant, hence (Fv)* is T** = T-invariant. Let %, be an ordered basis for
(Fv)*t. Then € = %y U {vo} is an ordered basis for V and we have

[T‘(FU)L}%

[Tle =
*
By expansion,
f Jr € Flt]
T‘ (Fo)L ‘

hence fT‘ € F[t] splits. By induction, there exists an orthonormal basis %y =

(Fo)t
{v1,...,vn_1} for (Fv)* s.t. [T‘(FU)LL? is upper triangular. Then Z = %, U {ﬁ}

Ho

is an orthonormal basis for V' s.t. [T, is upper triangular. O
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8§54 ‘ Lec 25: May 24, 2021

§54.1 Spectral Theory (Cont’d)

/Definition 54.1 (Hermitian(Self-Adjoint)) — Let V' be an inner product space over
F,T:V — V linear. Suppose that T* exists. We say that T' is normal

TT* =T*T

and is Hermitian if T' = T, i.e.

\ (Tv,w) = (v, Tw) Yo, w eV )

Note: If T is Hermitian, T% exists automatically and T is normal.

Lemma 54.2

Let V be an inner product space over F, A€ F,0#4Av eV, T:V — V anormal

operator. Then 3
v E ET()\) <~ v € Ep« ()\)

Proof. Let S =T — Aly, then S* = T* — Xly.. It follows that

S§S*=8*S, ie. S isnormal

Then
1Sv]|* = (Sv, Sv) = (v, $*Sv)
= (v, SS*v) = (§"v, S*v)
= |5*v|?
So B
veEEr(\) <= Sv=0 <= S'v=0 <= veEr(\) O

/Corollary 54.3 A

Let V be an inner product space over F, T : V — V normal, A\ # p eigenvalue of
T. Then, Er(\) and E7(p) are orthogonal. In particular,

> Br(¥) = 3Br(Y
N ’ J

Proof. Let 0 # v € Er()N), 0# w € Er(p). Then by the lemma, w € Ep« () and

Mo, w) = (A, w) = (Tv,w) = (v, T*w)
= (v, pw) = p{v, w)

As X\ # u, we obtain (v, w) = 0. O

232



Duc Vu (Fall 2020 — Spring 2021) 115B Lectures

Proposition 54.4

Let V be a finite dimensional inner product space over £, F =R or C,T:V — V
linear, % an ordered orthonormal basis for V' s.t. [T], is upper triangular. Then,
T is normal if and only if [T], is diagonal.

Proof. “ <= " If

A1 0
[T)yp =
0 An
then L
A1 0
[T*)5 =T =
0 An
So
|A1]? 0
[TT*],% = [T]gz [T*]ga =
0 Anl?
=[T"%[T]4
=[T7T),

Hence, TT* = T*T by the Matrix Theory Theorem.
“ = " Let # = {v1,...,v,} be an orthonormal basis for V' s.t. A = [T, is upper
triangular. By the lemma,

TUl = A11U1 and T*Ul = A11U1

By definition,

n

T vy = Z(A*)ilvi = ZT]JLUZ
i=1

i=1
So
A;; =0 Vi >1

Hence,
A; =0 Vi > 1

In particular,
A12 =0

By the lemma,
Tvy = Agove, hence T* vy = Agovo

The same argument shows Ag; = 0, 7 # 2, i.e.,
Ay =0, i#£2

Continuing this process, we conclude A is diagonal. O
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Theorem 54.5 (Spectral Theorem for Normal Operators)

Let V be a finite dimensional inner product space over C, T : V' — V linear. Then
T is normal if and only if there exists an orthonormal basis £ for V' consisting of
eigenvectors of T'. In particular, if 7" is normal, then 7" is diagonalizable.

Proof. This follows immediately by Schur’s theorem, FTA, and the above proposition.
O

Remark 54.6. Let V be a finite dimensional inner product space over R, T : V — V
linear. Suppose that fr € R[t] splits. Then T is normal iff 3 an orthonormal basis % for V
consisting of eigenvectors for 7.

By Schur’s theorem, T' is triangularizable via an orthonormal basis for V. The same result
follows by the proposition in the case F' = R.

Spectral Decomposition and Resolution for Normal Operators:

Let V be a finite dimensional inner product space over F, F =R or C,T:V =V
linear s.t. fp splits. So T is normal. Let A1,..., A be all the distinct eigenvalues of T
in F', ¥ an orthonormal basis for V. We know

ve Ep(\) < veBEr(XN) Vi (+)

Let P;: V — V be the orthogonal projection along Er(\;)* for i = 1,...,r omit at i
onto Ep(A\;).

By (+), P;: V — V is also the orthogonal projection along Ezx(\;)* onto Ep«(\;).
This is a unique decomposition

Pp,on) = Pi=Pp(N) Vi
TP,=PT and T'P,=PT* Vi
ly=P +...+ P,
PiPj=6,;P Vi
T=MP+...4+ MNP,
T"=MPi+...4+\P,

Let %; be an ordered orthonormal basis for E7()\;), so = %, U...U %, is an ordered
orthonormal basis for V' with [T, and [T™*], is diagonal.

Let 2 = [1y] 4. Then 2 is unitary as it takes an orthonormal basis to an orthonormal
basis, hence ’

e@—l _ Q*
[Ty =2"T], 2
[T")p =27 [1T"]y 2

Theorem 54.7
Let V be a finite dimensional inner product space over £, F =R or C,T:V — V

linear with fr € F[t] splits. Then, T is normal if and only if 39 € Ft] s.t.
T = g(7T).
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§55 ‘ Lec 26: May 26, 2021

§55.1 Spectral Theory (Cont’d)

Remark 55.1. A rotation Ty : R2 — R? by £6, 0 < § < 27, 6 # 7 has no eigenvalues, but
is normal (with R? an inner product space over R via the dot product) as it is unitary.

Lemma 55.2

Let V' be an inner product space over F', T : V — V hermitian. If X is an eigenvalue
of T, then A € FFNR.

Proof. Let 0 # v € Ep(A). Then

Mv]|2 = Mo, v) = (W, v) = (Tv, v)
= (v, T*v) = (v, Tv) = (v, \v)
= Mv,v) = Allv||?

As ||v]| # 0, A = ), so it’s real. O

Lemma 55.3

Let V be a finite dimensional inner product space over F with FF = R or C,
T :V — V hermitian. Then fr € F[t] splits in F'[t].

Proof. By previous result, we can assume that F' = R. Let &£ be an orthonormal basis
for V. Then
A=[Ty=[T"4=T1y=A"

in M,RCM,C, n=dimV. As
A Ct - €™ is Hermitian
fa splits with real roots by Lemma 26.2. (and FTA), i.e.,
fa= H(t —X)ECH, MER Vi

So fr = fa =]t — X\i) € R[t] splits. O

Theorem 55.4 (Spectral Theorem for Hermitian Operators)

Let V be a finite dimensional inner product space over F, F =R or C,T:V =V
hermitian. Then, there exists an orthonormal basis for V' of eigenvectors of T and
all all eigenvalues are real.

Proof. If ' = C, the result follows by Lemma 26.2 as T is normal. So we may assume
F =TR. As fr € R[t] splits by Lemma 26.3, there exists an orthonormal basis % for V/
s.t. [T, is upper triangular by Schur’s Theorem. As T is normal, it is diagonalizable.
The result follows by Lemma 26.2. O
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§55.2 Hermitian Addendum

Theorem 55.5

If 0 # V is a finite dimensional inner product space over R, T': V' — V hermitian,
then T has an eigenvalue.

The proof in Axler’s book is very nice, and he does not use determinant theory. He uses
the following arguments

1. If V is a finite dimensional vector space over F', T': V — V linear, then there
exists ¢ € F[t] monic s.t. ¢(T) =0

2. If 0 # ¢ € RJt], then there exists a factorization
g=0t— ) ... (t— )\,,)equl gl
in R[t] with ¢; monic irreducible quadratic polynomials in R[¢].

This follows by the FTA.

Lemma 55.6

Let ¢ = t24-bt+c in R[t], b < 4c, i.e., q is an irreducible monic quadratic polynomial
in R[t]. If V is a finite dimensional inner product space over R and T': V — V' is
Hermitian, then ¢(7") is an isomorphism.

Proof. Tt suffices to show ¢(T") is a monomorphism by the Isomorphism Theorem. So it
suffices to show if 0 # v € V, then ¢(T")v # 0. We have

(q(T)v,v) = (T?v,v) + b(Tv,v) + c(v,v)
= (Tv,Tv) + b(Tv,v) + c(v,v)
= ||Tv]|* + b{Tv,v) + c|lo]|?
> ||Tv)|* = [l | Tl + cllv]®

2 2
_ <||Tv|| - 'b@“") + <c— Z) Jol? > 0

So q(T)v # 0. O

Proof. (of Theorem) Let ¢ € R[t] in 2) satisfy ¢(T) = 0. So
0=q(T) = (T — M1p) .. (T = \1y)qu (7)1 ... qo(T)7:

As all the ¢;(T") are isomorphism, at least one of the (I" — A\;1y) is not injective, i.e., A;
is an eigenvalue. O
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8§56 ‘ Lec 27: May 28, 2021

§56.1 Positive (Semi-)Definite Operators

Let V be a finite dimensional inner product space over F', where F =RorC,T:V —» V
hermitian, & = {v1,...,v,} an orthonormal basis of eigenvectors of T, i.e.,

TUiZAivi, i=1,...,n

So\ €R,i=1,...,n. Suppose v € V. Then
n
U:Zaivia O[lEF Vi
i=1

and

(Tv,v) = (Z T (a;v;), Z a;v;)
i=1 j=1
= (Z iU, Z a;vj)
i=1 Jj=1

= > Nia(vi, vj) (*)

ij=1

= i Ai 04107]51 j

1,j=1

n
DRV
i=1

(Definition 56.1 (Positive/Negative (Semi-) Definite) — Let V be a finite dimensional
inner product space over F, F =R or C, T : V — V hermitian. We say that T is
positive or positive definite if

(Tv,v) >0 VO£veV
and positive semi-definite if

(Tv,v) >0 YO£veV

We can define T' as negative (semi-) definite similarly.

It follows from (*) that we have

Proposition 56.2

Let V be a finite dimensional inner product space over F, F =R or C,T:V =V
hermitian. Then T is positive semi-definite (respectively positive) if and only if all
eigenvalues of T' are non-negative (respectively positive).

Question 56.1. What does this say about the 2" derivative test for C? function,
f 8 — R at a critical point in the interior of S?
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/Theorem 56.3 b

Let V be a finite dimensional inner product space over £, F =R or C,T:V — V
hermitian. Then T is non-negative (respectively positive) iff 35 : V. — V non-
negative s.t.

T = §°
i.e., T has a square root (respectively, and S is invertible). )
Proof. ¢« = 7 Let 8 = {v1,...,v,} be an ordered orthonormal basis for V of

eigenvectors of T’
Tv; = A\, AN>0eR, i=1,...,n

Then du; € R, p; > 0 s.t. )\i:u?,izl,...,n. Let

VAL 0 H1 0

So

By MTT, 35 : V — V linear s.t. [S], = B. So
(Tl = B% = []5 = [5°]
Hence T' = S? by MTT. As % is orthonormal, y; € R for all i
(5", =[S =B*=B =154

Thus, S = 5* by MTT; so hermitian if \; > 0V¢, det B # 0, so B € GL,F'.
“ <= 7 Let % be an ordered orthonormal basis for V of eigenvectors for S. Then

11 0
[S]gg: , W > 0€R and
0 L,
It 0
2 .
[T]% = [S ]93 = .
0 T

is diagonal. Therefore, # is also an orthonormal basis for V of eigenvectors of T.
As p? > 0 (> 0 if S is invertible), T' is non-negative (respectively positive if S is
invertible). O

Theorem 56.4

Let V be a finite dimensional inner product space over F, FF = R or C and
T :V — V hermitian. Suppose that T is non-negative. Then T has a unique square
root S, i.e., S: V — V non-negative s.t. $% =T.
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Proof. Let S? = T, S : V — V non-negative. The Spectral Theorem gives unique
orthogonal decompositions

V=Ep(\)L...LEp(\)
T = )\1P>\1 4+ ...+ >\TP/\,-
Py, Py, = 6i Py, Py, Vi, j
1V:P)\1+"'+P)\r
and we also have
V=FEs(u)Ll...LEg(us), i >0, i=1,...,s
S=pmwPy + ...+ psPy,
PP, = 6ij P, Vi, j
1V:Pu1+---+P5

In particular,

S? = (u1 Py + o+ s Py ) (1 Py + .. + P,
:M%Pm +"'+/’L3PNS

As T = S?,
PIP, o A 2Py, = MNPy e A

So by uniqueness, we must have s = r and changing the order if necessary

12 =\, P, =P, Vi O

Lemma 56.5

Let V, W be finite dimensional inner product space over F', F =RorC,T:V — W
linear. Then T*T : V — V is hermitian and non-negative.

Remark 56.6. If in the definition of positive operator, etc, we omit V being finite
dimensional but assume T* exists, then we would still have T*T hermitian.

Proof. Let z,y € V. Then
(2, (T"T) y)v = (T"Tz,y)v = (T, Ty)w = (z, T"Ty)v
Since this is true for all =,y
(T*T)* = (T*T**)" = T*T

is hermitian, hence has real eigenvalues. Let A be an eigenvalue of T*T', 0 # v € V s.t.
T*Tv = Av. Then

Ally = Mo, v)y = (A, v)y = (T*Tv, v)y
= (Tw, To)w = |Tv[f >0
So
5= T3 >0
[ol13
as [|v]|{ # 0. O
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Corollary 56.7

Let V be a finite dimensional inner product space over £, F =R or C,T:V — V
linear. Then T is non-negative (respectively positive) iff 35 : V' — V linear
(respectively an isomorphism) s.t. T'= S*S.

Proof. Use the theorem and lemma presented above. O

Notation:

e F=RorC, Aec Fmxn
o A = the it" column of A

A=[AL . A

(,) = the dot product on FV for any N > 1

Un(F) = {U € GLyF|U* = U1}

Definition 56.8 (Pseudodiagonal) — Let D € F™*". We call D pseudodiagonal if
D;; =0 Vi # j, i.e., only D;; can have non-zero entries.

Theorem 56.9 (Singular Value)
Let F=Ror C, A€ F™*" Then U € U,(F), X € Up,(F) s.t.

1 0
X*AU = D = iy e Frxn
0

is a pseudodiagonal matrix satisfying

p> > >0

and
r = rank(A)
o J
Proof. By the lemma, A*A € M, F' is hermitian and has non-negative eigenvalues. Let
A1, ..., A be the positive eigenvalues ordered s.t.

AM>...>2A>0
By the Spectral Theorem for Hermitian Operators, 3U € U, F’ s.t.
A1 0

(AU)*(AU) = U* A* AU =
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in M,F. Let C = AU € F™*", Then

C*C = (AU)*(AU) € M, F

Write
Ni=pi, pi>0,  1<i<r
So
Wi > ...>up >0
Set
1 0
B= W() € M, F
0 0

If i > ry let A\; = 0. Then, we have

Aidij = (C*C)ij =Y (CHaCly = CuCy
; ;

=3 0Ty = (€9, )
l
Hence

c=[cH ... c o ... 0

We continue with the proof in the next lecture. ]
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§57‘ Lec 28: Jun 2, 2021

§57.1 Positive (Semi-)Definite Operators (Cont’d)

Proof. (Cont’d) Recall, we have proven so far

c=[cH ... c o ... 0
and thus {C’(l),...,C’(T)} is an orthogonal set in F™*1. As C) £ 0, i =1,...,r,
cW, ..., C") are linearly independent. In particular,
rank C' =r

We also have ‘ ‘ ‘
[COI =(CD,CO) =N =}

fori=1,...,m. As U is invertible,
rank A = rank AU =rank C =1r

So rank A = r as needed.

Now let
X0 = Lo o1,
Hi
Then {X(l), . ,X(’")} is an orthonormal set. Extend this to an orthonormal basis
#={XW . XM} Then
X=[xXO . XM ={lpmaly | 4

Since both .7, 1 and £ are orthonormal bases, X € U,,(F'). Let D be the pseudo-
diagonal matrix
H1 0

_D — . c Fan

as in the statement of the theorem. Then

M1
XD=[xM ... Xm)] i
0
= [,u,lX(l) X0 O]
=C =AU
Hence
X*AU =D
as needed. O
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[Definition 57.1 (Singular Value Decomposition) — Let A € F™*" F =R or C.
A=XDU* UeU,F, XeU,F
1 0
D= fir € Fme (*)
0
1> ...>2u>0eR

Then (*) is called a singular value decomposition (SVD) of A, p1, ..., u, are the
singular values of A, D is the pseudo-diagonal matrix of A.

J

Note: Let A = XDU* be an SVD of A. Then

1. The singular values of A are the (positive) square roots of the positive eigenvalues
of A*A.

2. The columns of X form an orthonormal basis for F"*! of eigenvectors of AA*.

3. The columns of U form an orthonormal basis for F™*! of eigenvectors of A*A.

Corollary 57.2

The singular values of A € F"*" F =R or C are unique (including multiplicity)
up to order.

Proof. Let A= XDU" be aSVD of A, X € U, F, U € U,F. Then
A*A = (XDUH(XDU*)=UD*X*XDU* =UD*DU*
as X*X =1. So )
o7

A*A~ D*D = e M, F

have the same eigenvalues a2, ..., as A*A. O

I Remark 57.3. An SVD of A € F™*" F =R or C may not be unique.

Corollary 57.4

The singular values of A € F™*" F =R or C are the same as the singular values
of A* € <™,

Proof. (XDU*)* = UD*X* and D, D* have the same non-zero diagonal eigenvalues. [

The abstract version of the singular value theorem is
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\

Theorem 57.5 (Singluar Value - Linear Transformation Form)

Let F =R or C, V a finite dimensional inner product space over F and T : V. — W
linear of rank r. Then there exists orthonormal basis

B =A{vi,...,v,} for V
€ ={w,...,wy} for W
,lLlZ---Z,Ur>O€R

satisfying
T’Uz' _ Hi Wi, 'Z' = 1,...,7‘
0, P>
- J
Conversely, suppose the above conditions are all satisfied. Then v; is an eigenvector
for T*T with eigenvalue ,u? for : = 1,...,r and eigenvalue O for i =r +1,...,n. In
particular, ui, ..., u, are uniquely determined.
Proof. Left as exercise. O

Remark 57.6. So we see for an arbitrary linear transformation 7' : V. — W of finite
dimensional inner product space over F', F' =R or C, singular values can be viewed as a
substitute for eigenvalues.

When FF =R or C and A € M, F, we get a generalization of the polar representation of
eigenvalues z € C where z = revV =10,

~

Theorem 57.7 (Polar Decomposition)

Let F =R or C, A € M,,F. Then there exists U € U,F, N € M,,F hermitian with
all its eigenvalues real and non-negative satisfying

A=UN

hereN<—>r,[~]<—>e‘/j19forn:1. )

Proof. In the singular value theorem, we have m = n. Let A = XDU* be an SVD,
X, U € U,F. We have D = D* is hermitian with non-negative eigenvalues. So

A= XDU* = X(U*U)DU* = (XU*)(UDU*)

Since
(XUH(XU") =UX*XU*=UU"=1

XU* € U,F also. Let U = XU* € U,F, N = UDU* which completes the proof. ]
§57.2 Least Squares

We give an application of SVD

Problem 57.1. Let FF =R or C, V a finite dimensional inner product space over F,
W C V a subspace. Let
Py :V —-V byv— oy
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be the orthogonal projection of V onto W. By the Approximation Theorem, vy is the
best approximation of v € V onto W. Now let X be another finite dimensional inner
product space over F' and T': X — V linear with W =T'(X) =im 7. Let v € V and
xz € X. We call

i) x a best approximation to v via T if
Tz = vy = Py (v)

ii) x an optimal approximation to v via T if it is a best approximation to v via T’
and ||z|| is minimal among all best approximation to v via T'.

Find an optimal approximation.

Solution:
(z, T y)x = (Tz,y)v,
we have
W = (im T)* = ker T*
Since

v—vwy € WH = (im T)* (by the OR Decomposition Theorem)
and
T = T oy
So if x is a best approximation of v via 7', then
T"Tx =T (*)
i.e., x is also a solution to T*T'xz = T*v. Conversely, if (*) holds, then
Tz —vekerT* = (im T)* = W+
In particular,
vw = Pwv = Py (Tz — (T'z —v))
= Py (Tx) — Pw(Tz —v)
=Te+0=Tx
Conclusion: zx is a best approximation to v via T if and only if T*Tx = T*v.
Claim 57.1. Suppose that 7" is monic. Then

T*T : X — X is an isomorphism

and
Py =T (T*T)'T":V >V (+)
Suppose that z € X satisfies T*Tx = 0. Then
0= (T"Tz,z)x = (T, Tx)y = |Tz|? (%)

Therefore, Tx = 0. But T is monic, so x = 0. Hence T*T : V — V is monic hence an
isomorphism. We now show (+) holds.
Let v € V. Since T*T is an isomorphism, there exists x € X s.t.

T*Tz =T (%)
and
T(T*T) ' T* = T(T*T)'T*Tx
=Tx =vw = Py (v)

showing (+). This proves the claim and also shows that the x in (x%) is a best
approximation to v via T
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8§58 ‘ Lec 29: Jun 4, 2021

§58.1 Least Squares (Cont’d)

Claim 58.1. Let v € V. Then d!lx € X an optimal approximation to v via T. Moreover,
this x is characterized by

Py (z) =0 where Y = ker T*T
Let x, 2’ be two best approximation to v via T'. Then,
T*Tx =T*v =T*Tx'

Therefore,
x—a ekerT*T = Y

It follows if = is a best approximation to v via T, then any other is of the form = + y,
y € Y. We also have for such « + y

Py(z+y)=Pr(z)+ Pr(y) =Py(z)+y
Let 2" = x — Py (z). Then
Py(z") = Py(z) — P2(z) =0, ie,2” LY

So
2" +yll* = 2" + [y* > |l2"|]>  VyeY

by the Pythagorean Theorem. Hence, 2" = Py-1 (x) is the unique optimal approximation.
This proves the claim above.
Let A=T:Fmt 5 pmxl A c pmxn g c F™*1 with F =R or C. Let

M1

A=XDU* D= 1y e prmxn

and
w1 > ...>ur>0eR

be an SVD. Let’s define

Hq

Df = it c Frxm

Then
At .= UDtX* ¢ prxm

is called the Moore-Penrose generalized pseudoinverse of A. Then the following are true

i) rank(A) = rank(AT)
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ii) ATv is an optimal approximation in F™*! to v via A and is unique.

iii) If rank(A) = n, then
Al = (A*A)1 A

Proof. i) rank(A) = rank(D) = rank(D') = rank(Af) as X, U are invertible.

ii) Case 1: A= D, i.e., X,U are the appropriate identity matrices. Let W = im A,
U = ker DID, W = span {e; € .,,1|Dyi # 0}

If v € F™*1 then
ww = Pw(v) = DDTv =D (D%)

So D'v is a best approximation to v relative to D. As
U = ker D'D = Span {¢; € .%,,1|Dj; = 0}

and we have

D'y € Span {ej € Snal|Dj; # 0} = Y+,
and Py (DTU) =0.

D'y is optimal approximation to v relative to D

Case 2: A= XDU" in general. X, U are unitary, so they preserve dot products,
so z is an optimal approximation to v relative to A = AUU™ if and only if U*z is
an optimal approximation to v relative to AU (*). We also have

|Az —v|| = | XDU*z —v|| = | X* (XDU*z — v) ||
= |[|[DU*z — X™v||

So (*) is true iff U*z is an optimal approximation to X *v relative to D. By case
1, D' X*v is an optimal approximation to X*v relative to D. As A" = UDIX*

D (DTX*’U) SYD (x* AU) (DTX*U> — X*A (A%)
Therefore, Afv is the optimal approximation to X*v relative to X*A. Thus, as
X* is an isometry, Afv is the optimal approximation to v relative to A.

iii) This follows as in (ii) for if rank(A) = n, then (A*A)~!A*v is the unique optimal
best approximation to Az = v. ]

Warning: In general, (AB)" # BYAT.
Let Ae F™" F =R or C. Solve

AX = B for X € F**!

for X € F™1  As A can be inconsistent, we want an optimal approximation to a
solution.
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Example 58.1

Let F =R or C. Given data (x1,%1), ..., (Tn,ys) in F2, find the best line relative
to this data, i.e., find
y=Ar+b, \= slope

Let

To solve AX =Y, we want the optimal solution
1 Y1
N
y ) =
Ty 1 Un

Let W = im A. To find the optimal approximation to AX = Yiy, X = ATY works.
But rank(A) = 2 is most probable

X =(4*A) 1Ay

§58.2 Rayleigh Quotient

Let F=Ror C, A € M,F. The euclidean norm of A is defined by

A
|A] = max Aol
overm=t ]|

If A € M, F is hermitian, then the Rayleigh Quotient of A
R(v) = Ra(v) : F1\ {0} - R

is defined by
(Av,v)

]|

Rayleigh quotients are used to approximate eigenvalues of hermitian A € M, F.

R(v) =

KTheorem 58.2 A
Let F =R or C, A € M,,FF hermitian. Then,
i) max,xo R(v) is the largest eigenvalue of A.
ii) min,xo R(v) is the smallest eigenvalue of A. y
Proof. By the Spectral Theorem, 3 an orthonormal basis {v1,...,v,} of eigenvectors

for A with Av; = Av;, i =1,...,n. We may assume

M>...> A eR
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i) Let v e F™1and v =31, a;v;, a; € F,i=1,...,n. Then

(Av,v)
R(U) - HUH2 Zal)‘ UZ&ZOZ]UJ /HUH

_ PONIPY azajéw(vz,v]) _ S A — |a)?
o] HUH2

By the Pythagorean Theorem

n

> laa” = Jlolf?

i=1

So

R(w) < Sy Alag? A l]?

< = =\
[l [l

ii) Prove similarly. O

Corollary 58.3

Let F=Ror C, A€ M,F. Then ||A]| < co. Moreover, if u is the largest singular
value of A, then

[l = p

Proof. Consider:
JAvl? (A, Av) (A" Av,0)
]2 o] ]2

for all v # 0. Since A*A is non-negative, the result follows. O

0<

We know that the singular value of A € F™*™ are the same as for A* € F"*™ if F =R
or C. Therefore,

Corollary 58.4
Let A€ GL,F,F =R or C, u the smallest singular value of A. Then

1

NG

lA=HI =

Proof. If B € GL,F has an eigenvalue A # 0, 0 # v € Eg()\), then

1
Bv = MAv, so XU =Bl

Hence if
1> ... > pup >0

are the singular values of A,

are the singular values of A=! as (A~ )*A L= (4451, O
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§59 ‘ Additional Materials: Jun 04, 2021

§59.1
Let F=RorC, Ac GL,F,b+#0in F™*!. Suppose Az = b.

Conditional Number

Problem 59.1. What happens if we modify z a bit, i.e., by éx € F™ ! Then we get a

new equation

Az + dz) = b+ db, §b € Fxl

and we would like to understand the variance in b.

Since A is linear,
A(z + dz) = b+ A(dx)

i.e.

A(6z) = 6b or dz = A71(6b)

and we know, therefore, that

1]l = [[Az[| < [[A]l - |||
81} = [|A= (@) = |A™*] - || b
Therefore,
A<l 2o 020
[l = (1ol
ox A~Y[||6b A 0b
loz]] | 1|||| I HbH 1Al A 1||||b||
] il i
Similarly,
1 [jbl] _ [lo]|
LAIAH] ol = [l

We call the number || Al|||A~Y]| the Conditional Number of A and denote it cond(A4).

/Theorem 59.1 b
Let F=RorC, A€ GL,F, b#0in F™*!. Then
1 [lobll  [1=]] llody|
L Gdm o < T < cond(4)
2. Let py > ... > puy > 0 be the singular values of A. Then
cond(A) = L
I
- : J
Proof. 1. from the computation above.
2. follows over computation on the Rayleigh function.
O
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Remark 59.2. From the theorem,

1. If cond(A) is close to one, then a small relative error in b forces a small relative error
in x.

2. If cond(A) is large, even a small relative error in # may cause a relatively large error
in b.

Remark 59.3. If there is an error SA of A, things would get more complicated. For
example, A + A may no longer be invertible.

There exist conditions that can control this. For example, if A+ SA € GL,F, F =R
or C, it is true that
[[0]]

_lloz]| [[oA]l
<c
|z + ox||

IA]
One almost never computes cond(A), as error arises trying to compute it as we need

to compute the singular values. However, in some cases, remarkable estimates can be
found.

ond(A)

§59.2 Mini-Max

Let F =R or C, A e M,F. We want a method to compute its eigenvalues if A is
hermitian. Since A is hermitian, by the Spectral Theorem,

A1 0
U*AU = , UeU,F
0 An
where A = [A],, .
% = {v1,...,v,} is an ordered orthonormal basis of eigenvectors for V = F"*! satisfying
AUZ‘ = )\Z‘Ui

So
v; = the ™ column of U*

We let the order be s.t.
AL > > A,

As (Fup)t is A-invariant, A‘( Fo)t has maximum eigenvalue Ay obtained from wvo, i.e.,

ax R = Ap—
met&y}f)L A(T) 1

is obtained from = = vy. The constraint is
<J}, U1> =0

We can obtain \,_; without knowing v1 or A;. Let x € V be constrained by (x, z) = 0,
some z # 0. Let y = U*z. Then (z,z) = 0 is equivalent to (y,w) = 0 where w = Uz.
Computation shows the Rayleigh quotient Ry for U satisfies

max Ru(y) <A
(y,w)=0
In;%X RU(y) > )\nfl
(y,w)=0
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So

i >\,
min max Ru(y) > An—1
(y,w)=0

gives an upper and lower bound for Ry (y). Let

Y1

1 Y2
y=|:1, g=|0
Un 5

0

with (g, w) = 0. In addition, computation shows,

Ry (g) = A2

Let w = e;. Then
max Ry (y) = A2
(y,e1)

So
min max Ru(y) = A2
<y7w>:0
and
i R =\
pmin, - max v(y) = A3
(y,w1)=0
(y,w2)=0

Proceed inductively.

KTheorem 59.4 (Minimax Principle) b

Let F =R or C, A € M, F hermitian with eigenvalues

AL> . >
Then
o (28, Rale) = X
(w10

- J

Remark 59.5. The minimax principle is also formulated by

Ir‘l/ingg%RA(x):)\n,j, ji=1,...,n
where V; denotes an arbitrary subspace of dim j.

§59.3 Uniqueness of Smith Normal Form

Consult Professor Elman’s notes.
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