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Duc Vu (Fall 2020 – Spring 2021) About the Notes

This is math 115AH & 115B – Undergraduate (Honors) Linear Algebra sequence at
UCLA. We meet weekly on MWF from 2:00pm – 2:50pm for lectures. There are two
textbooks for the classes, Linear Algebra by Hoffman & Kunze used in 115AH and
Linear Algebra by Friedberg, Incel & Spence which is optional for 115B. Keep in mind
that there are a total of 57 official lectures; the first 28 are for 115AH, and the rest
of them is from 115B with a few extra lectures provided by Professor Elman. Thus,
the lecture number would be adjusted accordingly for each class. In addition, there are
some overlaps in the definition and theorem listed above since a few materials covered
in 115AH are supposed to be taught in 115B. All the typos/errors in the notes are
my responsibility, and please let me know through my email if you spot any of them.
Additional details with regard to note taking in live lecture and other course notes can
also be found at my blog site.
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§1 Lec 1: Oct 2, 2020

Remark 1.1. To know a definition, theorem, lemma, proposition, corollary,etc., you must

1. Know its precise statement and what it means without any mistake

2. Know explicit example of the statement and specific examples that do not satisfy it

3. Know consequences of the statement

4. Know how to compute using the statement

5. At least have an idea why you need the hypotheses – e.g., know counter-examples,. . .

6. Know the proof of the statement

7. Know the important (key) steps of in the proof, separate from the formal part of the
proof – i.e., the main idea(s) of the proof

THIS IS NOT EASY AND TAKES TIME – EVEN WHEN YOU THINK
THAT YOU HAVE MASTERED THINGS.

§1.1 Field

What are the properties of the REAL NUMBERS?

R := {x|x is a real no.}

– at least algebraically?
There are two FUNCTIONS (or MAPS)

• + : R× R→ R called ADDITION write a+ b := +(a, b)

• · : R× R→ R called MULTIPLICATION write a · b := ·(a, b)

that satisfy certain rule e.g., associativity, commutativity,. . .
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Definition 1.2 (Field) — A set F is called a FIELD if there are two functions

• Addition: + : F × F → F , write a+ b := +(a, b)

• Multiplication: · : F × F → F , write a · b := ·(a, b)

satisfying the following AXIOMS(A: addition, M: multiplication, D: distributive)

A1 (a+ b) + c = a+ (b+ c) Associativity

A2 ∃ an element 0 ∈ F 3 a+ 0 = a = 0 + a Existence of a Zero

A3 ∀x ∈ F∃y ∈ F 3 x+ y = 0 = y + x Existence of an Additive Inverse

A4 a+ b = b+ a Commutativity

M1 (a · b) · c = a · (b · c)

M2 (A2) holds and ∃ an element ∈ F with 1 6= 0 3 a · 1 = a = 1 · a Existence of a
One

M3 (M2) holds and ∀0 6= x ∈ F ∃y ∈ F 3 xy = 1 = yx Existence of a
Multiplicative Inverse

M4 x · y = y · x

D1 a · (b+ c) = a · b+ a · c Distributive Law

D2 (a+ b) · c = a · c+ b · c

Comments: Let F be a field, a, b ∈ F . Then the following are true

1. F 6= ∅ (F at least has 2 elements)

2. 0 and 1 are unique

3. If a+ b = 0, then b is unique write b as −a :

if a+ b = a+ c, then

b = b+ 0

= b+ (a+ c)

= (b+ a) + c

= (a+ b) + c

= 0 + c

= c

4. if a+ b = a+ c, then b = c

5. if a 6= 0 and ab = 1 = ba, then b is unique write a−1 for b.

6. 0 · a = 0∀a ∈ F
0 · a+ 0 · a = (0 + 0) · a = 0 · a = 0 · a+ 0

so 0 · a = 0 by 3.

7. if a · b = 0, then a = 0 or b = 0. If a 6= 0, then 0 = a−1(ab) = (a−1a)b = 1b = b
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8. if a · b = a · c, a 6= 0, then b = c

9. (−a)(−b) = ab

10. −(−a) = a

11. if a 6= 0, then a−1 6= 0 and (a−1)−1 = a

Example 1.3

Q :=
{a
b
|a, b ∈ Z, b 6= 0

}
R := set of real no.

C := {a+ bi|a, b ∈ R}with

(a+ b
√
−1 + (c+ d

√
−1) = (a+ c) + (b+ d)

√
−1

(a+ b
√
−1) · (c+ d

√
−1) = (ac− bd) + (ad+ bc)

√
−1

∀a, b, c, d ∈ R
Under usual +, · of C

Q ⊂ R ⊂ C

are all field and we say Q is a subfield of R, Q,R subfield of C, i.e., they have the
same +, ·, 0, 1.
Z is not a field as 6 ∃n ∈ Z 3 2n = 1, so Z do not satisfy (M3).

Note:To show something is FALSE, we need only one COUNTER-EXAMPLE. To show
something is TRUE, one needs to show true for all elements – not just example.
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§2 Lec 2: Oct 5, 2020

§2.1 Field(Cont’d)

Note: Z does satisfy the weaker properly if a, b ∈ Z then
(M3’) if ab = 0 in Z, then a = 0 or b = 0 and all other axioms except M3 hold

1. Let F = {0, 1} , 0 6= 1. Define +, · by following table Then F is a field.

Table 0.1.: ADDITION

+ 0 1

0 0 1

1 1 0

Table 0.2.: MULTIPLICATION

· 0 1

0 0 0

1 0 1

2. ∃ fields with n elements for

n = 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, . . .

[conjecture?]

3. Let F be a field

F [t] := {(formal polynomial in one variable}

with t, given by

(a0 + a1t+ a2t
2 + . . .) + (b0 + b1t+ b2t

2 + . . .) := (a0 + a1) + (a1 + b1)t+ (a2 + b2)t2 + . . .

(a0 + a1t+ a2t
2 + . . .) · (b0 + b1t+ b2t

2 + . . .) := a0b0 + (a0b1 + a1b0)t+ . . .

Note: f, g ∈ F [t] are EQUAL iff they have the same COEFFICIENTS(coeffs) for
each ti (if ti does not occur we assume its coeff is 0.) F [t] is not a field but satisfy
all axioms except (M3) but it does satisfy (M3’) (compare Z ). Let

F (t) :=

{
f

g
|f, g ∈ F [t], g 6= 0

}
with

• f
g = h

k if fk = gh

• f
g + h

k
:= fk+gh

gk ∀f, g, h, k ∈ F [t]

• f
g ·

h
k

:= fh
gk g 6= 0, k 6= 0

is a field, the FIELD of RATIONAL POLYS over F .

Note:the 0 in F [t] is 0
f , f 6= 0, and 1 in F [t] is f

f , f 6= 0.
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4. let F be a field.

MnF := {A|Aann× nmatrix entries inF}

usual +, · of matrices, i.e. for A,B ∈MnF, let

Aij := ijth entry of A, etc

Then

(A+B)ij := Aij +Bij

(AB)ij := Cij :=

n∑
k=1

AikBkj ∀i, j

Note: A = B iff Aij = Bij ∀i, j.
If n = 1, then

F and M1F and the “same” so M1F is a field. If n > 1 then MnF is not a field
nor does it satisfy (M3), (M4), (M3’). It does satisfy other axioms with

I = In :=

1 . . . 0
...

. . .
...

0 . . . 1

 , 0 = 0n :=

0 . . . 0
...

...
0 . . . 0


§2.2 Vector Space

R2 := {(x, y)|x, y ∈ R} = R×R Vector in R2 are added as above and if v ∈ R2 is a vector,

v + w = (x1 + x2, y1 + y2)
w = (x2, y2)

v = (x1, y1)

Figure 0.1.: Geometry in R2

αv makes sense ∀α ∈ F by α(x, y) = (αx, αy) called SCALAR MULTIPLICATION. For
+, scalar mult and (0, 0) is the ZERO VECTOR satisfying various axioms. e.g., assoc,
comm, “distributive law. . . ”. To abstractify this
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Definition 2.1 (Vector Space) — V is a vector space over F , via +, · or (V,+, ·) is
a vector space over F where

+ : V × V → V · : F × V → V

Addition Scalar Multiplication

write:v + w := +(v, w) write:α · v := ·(α, v) or αv

if the following axioms are satisfied

∀v, v1, v2, v3 ∈ V, ∀α, β ∈ F

1. v1 + (v2 + v3) = (v1 + v2) + v3

2. ∃ an element 0 ∈ V 3 v + 0 = v = 0 + v

3. (2) holds and the element (−1)v in V satisfies

v + (−1)v = 0 = (−1)v + v

or (2) holds and ∀v ∈ V ∃w ∈ V 3 v + w = 0 = w + v

4. v1 + v2 = v2 + v1

5. 1 · v = v

6. (α · β) · v = α(β · v)

7. (α+ β)v = αv + βv

8. α(v1 + v2) = αv1 + αv2

Elements of V are called vector, elements of F scalars .

Comments: V : a vector space over F

1. The zero of F is unique and is a scalar. The zero of V is unique and is a vector.
They are different (unless V = F ) even if we write 0 for both – should write
0F , 0V for the zero of F , V respectively.

2. if v, w ∈ V, α ∈ F then

αv + w makes sense

vα, vw do not make sense

3. We usually write

vector using Roman letter

scalar using Greek letter

exception things like (x1, . . . , xn) ∈ Rn, xi ∈ R∀i

4. + : V × V → V says
if v, w ∈ V, then v + w ∈ V

write v, w ∈ V →︸︷︷︸
implies

v + w ∈ V . We say V is CLOSED under +

17



Duc Vu (Fall 2020 – Spring 2021) 115AH Lectures

5. · : F × V → V says α ∈ F, v ∈ V → αv ∈ V . We say V is CLOSED under
SCALAR MULTIPLICATION.

Example 2.2

F a field, e.g., R or C

1. F is a vector space over F with +, · of a field, i.e., the field operation are the
vector space operation with 0F = 0V .

2. Fn := {α1, . . . , αn} |αi ∈ F∀i is a vector space over F under COMPONENT-
WISE OPERATION and

0Fn := (0, . . . , 0)

Even have

F∞finite = {(α1, . . . , αn, . . .} |αi ∈ F∀i with only FINITELY MANY αi 6= 0

3. Let α < β in R
I = [α, β] , (α, β), [α, β), (α, β]

including (α = −∞, β = ∞). Let fxn I := {f : I → R|f a fxn} called the
SET of REAL VALUE FXNS on I.

Define +, · as follows: ∀f, g ∈ Fxn I,

f + g by (f + g)(x) := f(x) + g(x)

αf by (αf)(x) := αf(x) ∀α ∈ R

and 0 by 0(α) = 0∀α ∈ F . Then Fxn I is a vector space over R.
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§3 Lec 3: Oct 7, 2020

§3.1 Vector Space(Cont’d)

Example 3.1

F is a field, e.g. R or C

1. F is a vector space over F with +, · of a field, i.e. the field operation are the
vector space operation with 0F = 0V .

2. Fn := {(α1, . . . , αn)|αi ∈ F∀i} is a vector space over F under COMPONEN-
TWISE OPERATIONS

(α1, . . . , αn) + (β1, . . . , βn) := (α1 + β1, . . . , αn + βn)

β(α1, . . . , αn) := (βα1, . . . ., βαn)

with α1, . . . , αn, β1, . . . , βn ∈ F and 0Fn := (0, . . . , 0).

Even have:

F∞ = F∞this : {(α1, . . . , αn, . . .)|αi ∈ F∀i with only FINITELY MANY αi 6= 0}

3. Let α < β in R
I = [α, β] , (α, β), [α, β), (α, β]

(including α = −∞, β =∞. Let function I := {f : I → R|f a function}
Define +, · as follows: ∀f, g ∈ Fxn I,

f + g by (f + g)(x) := f(x) + g(x)

αf by (αf)(x) := αf(x) ∀α ∈ R

and 0 by 0(α) = 0∀α ∈ F . Then Fxn I is a vector space over R.

Using this, we get subsets which are also vector space over R with same +, ·, 0.

• C(I) := {f ∈ fxn I|f continuous on I}
• Diff (I) := {f ∈ fxn I|f differentiable on I}
• Cn(I) :=

{
f ∈ fxn I|f(n) thenth derivative of f and f exists on I and is cont on I

}
• C∞(I) := {f ∈ fxn I|f(n) exists∀n ≥ 0 on I and is cont}
• Cω(I) := {f ∈ fxn I| f converges to its Taylor Series}

(in a neighborhood of every x ∈ I – be careful at boundary points)

• Int (I) := {f ∈ fxn I|f is integrable on I}

4. F [t] the set of polys, coeffs in F old +, · with scalar mult

α(α0 + α1t+ . . .+ αnt
n) := αα0 + αα1t+ . . .+ ααnt

n

5. F [t]n︸ ︷︷ ︸
truncatingF [t]

:= {0 ∈ F [t]} ∪ {f ∈ F [t]|degf ≤ n} (not closed under · of polys)

where deg f = the highest power of t occurring non-trivially in f if f 6= 0 is a
vector space over F with +, scalar mult,0.
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Example 3.2 1. Fm×n := set of m × n matrices entries in F where A ∈
Fm×n, Aij = ijth entry of A

(A+B)ij := Aij +Bij ∈ F ∀A,B ∈ Fm×n

(αA)ij := αAij ∈ F ∀α ∈ F

0 =

0 . . . 0
...

. . .
...

0 . . . 0

 ( m rows and n columns)

COMPONENTWISE OPERATION! Then Fm×n is a vector space over F ,
e.g. MnF is a vector space over F .

Example to GENERALIZE

Let V be a vector space over F , ∅ 6= S a set. Set W := {f : S → V |f a map}.
Define +, · on W by

f + g (f + g)(s) := f(s) + g(s) ∈ V
αf (αf)(s) := α(f(s)) ∈ V

0W 0(s) = 0V ZERO FUNCTION

∀f, g ∈W ;α ∈ F ; s ∈ S. Then W is a vector space over F .(of componentwise
operation)

2. Let F ⊂ K be a fields under +, · on K. Same 0,1, i.e. F is a SUBFIELD
of k e.g. R ⊂ C. Then K is a vector space over F by RESTRICTION of
SCALARS.

i.e., + = + on K. With scalar mult, F ×K → K by

αv︸︷︷︸
in K as a vector space over F

= αv︸︷︷︸
in K as a field

∀α ∈ F ∀v ∈ V

e.g. R is a vector space over Q by m
n r = mr

n , m, n ∈ Z, n 6= 0, r ∈ R. More
generally, let V be a vector space over K, F ⊂ K subfield, then it is a vector
space over F by RESTRICTION of SCALARS.

·|F×V : F × V → V

e.g., Kn is a vector space over F (e.g. Cn is a vector space over R ).

Properties of Vector Space: Let V be a vector space over F . Then ∀α, β ∈ F, ∀v, w ∈
V , we have

1. The zero vector is unique write 0 or 0V .

2. (−1)v is the unique vector w 3 w + v = 0 = v + w write −v.

3. 0 · v = 0

4. α · 0 = 0

5. (−α)v = −(αv) = α(−v)

6. if αv = 0, then either α = 0 or v = 0
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7. if αv = αw, α 6= 0, then v = w

8. if αv = βv, v 6= 0, then α = β

9. −(v + w) = (−v) + (−w) = −v − w

10. can ignore parentheses in +

§3.2 Subspace

Definition 3.3 (Subspace) — Let V be a vector space over F , W ⊂ V a subset.
We say W is a subspace of V if W is a vector space over F with the operation +, ·
on V , i.e., (V,+, ·) is a vector space over F , via + : V × V → V and · : F × V → V
then W is a vector space over F via

• + = +/W×W : W →W : restrict the domain to W ×W

• · = ·|F×W : F ×W →W : restrict the domain to F ×W
i.e. W is closed under +, · from V , ∀w1

w2
∈ W ∀α ∈ F, w1 + w2 ∈ W and

αw1 ∈W and 0W = 0V .

Theorem 3.4 (Subspace)

Let V be a vector space over F , ∅ 6= W ⊂ V a subset. Then the following are
equivalent:

1. W is a subspace for V

2. W is closed under + and scalar mult from V

3. ∀w1, w2 ∈W , ∀α ∈ F , αw1 + w2 ∈W

Proof. Some of the implication are essentially ??
1)→ 2) : by def. W is a subspace of V under +, · on V (and satisfies the axioms of a
vector space over F ) as 0V = 0W .
2)→ 1) claim: 0V ∈W and 0W = 0V : As ∅ 6= W∃w ∈W
By 2)(−1)w ∈ W, hence 0V = w + (−w) ∈ W . Since 0V + w′ = w′ = w′ + 0V in V
∀w′ ∈W , the claim follows. The other axioms hold for elements of V hence for W ⊂ V .
2)→ 3) : let α ∈ F , w1, w2 ∈W . As 2) holds, αw1 ∈W hence also αw1 + w2 ∈W
3)→ 2) Let α ∈ F , w1, w2 ∈W . As above and 3)

0V = w1 + (−w1) ∈W and 0V = 0W

Therefore,
w1 + w2 = 1 · w1 + w2 ∈W and αw1 + αw1 + 0V ∈W

by 3).

Note:Usually 3) is the easiest condition to check. WARNING: must subsets of a vector
space over F are NOT subspace.
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Example 3.5

V a vector space over F .

1. 0 := {0V } and V are subspace of V

2. Let I ⊂ R be an interval (not a point) then

Cω(I) < C∞(I) < . . . < Cn(I) < . . . < C ′(I)

< Diff I < C(I) < Int I < Fxn I

are subspaces of the vector space containing then. . . where we write

A < B if A ⊂ B and A 6= B

3. Let F be afield, e.g R. Then F = F [t]0 < F [t]1 < . . . < F [tn] < . . . < F [t] are
vector space over F each a subspace of the vector space over F containing it.

4. If W1 ⊂W2 ⊂ V , W1,W2 subspace of V ,then W1 ⊂W2 is a subspaces.

5. If W1 ⊂ W2 is a subspace and W2 ⊂ V is a subspace, then W1 ⊂ V is a
subspace.

6. Let W := {(0, α1, . . . , αn|αi ∈ F, 2 ≤ i ≤ n} ⊂ Fn is a subspace, but

{(1, α2, . . . , αn|αi ∈ F, 2 ≤ i ≤ n} is not. Why?

7. Every line or plane through the origin in R3 is a subspace.
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§4 Lec 4: Oct 9, 2020

§4.1 Span & Subspace

Definition 4.1 (Linear Combination) — Let V be a vector space over F , v1, . . . , vn ∈
V we say v ∈ V is a LINEAR COMBINATION of v1, . . . , vn if ∃α1, . . . , αn ∈ F 3
v = αv1 + . . .+ αnvn.

Let
Span(v1, . . . , vn) := { all linear combos ofv1, . . . , vn}

Let v1, . . . , vn ∈ V . Then

Span(v1, . . . , vn) =

{
n∑
i=1

αivi|α1, . . . , αn ∈ F

}

is a subspace of V (by the Subspace Theorem) called the SPAN of v1, . . . , vn. It is the
(unique) smallest subsapce of V containing v1, . . . , vn.

i.e., if W ⊂ V is a subspace and v1, . . . , vn ∈W then Span(v1, . . . , vn) ⊂W . We also
let Span ∅ := {0V } = 0, the smallest vector space containing no vectors.

V

Span(V) is a line

V2

V1

Span(V1, V2) = R2

if they are not collinear

Question: If we view C as a vector space over R, then R is a subspace of C, but if we
view C is a vector space over C, then R is not a subspace of C (why? What’s going on?)
– not closed under operation(s).

Definition 4.2 (Span) — Let V be a vector space over F, ∅ 6= S ⊂ V a subset.
Then, Span S := the set of all FINITE linear combos of vectors in S. i.e., if V ∈
Span S, then

∃v1, . . . , vn ∈ S, α1, . . . , αn ∈ F 3 v = α1v1 + . . .+ αnvn

Span S ⊂ V is a subspace. What is Span V?
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Example 4.3 1. Let V = R3.

Span(i+ j, i− j, k) = SpanV = Span(i, j, i+ j, k) = Span(i+ j, i− j, k + i)

2. Define
SymmnF :=

{
A ∈MnF |A = A>

}
Recall: A> is the transpose of A, i.e.,

(A>)ij := Aji ∀i, j

is a subspace of MnF

3.

V =

{(
a c+ di

c− di b

)
|a, b, c, d ∈ R

}
⊂M2C

is NOT a subspace as a vector space over C ,eg,

i

(
a c+ di

c− di b

)
=

(
ai −d+ ci

d+ ci bi

)
does not lie in V if either a 6= 0 or b 6= 0 (cannot be imaginary). Also V is
not a subspace of M2R as a vector space over R as V 6⊂M2R. V ⊂M2C is a
subspace as a vector space over R.

4. (Important computational example) Fix A ∈ Fm×n. Let

kerA :=

x ∈ Fn×1|Ax =

0
...
0

 in Fm×1


called the KERNEL or NULL SPACE of A. Ker A ⊂ Fn×1 is a subspace
and it is the SOLUTION SPACE of the system of m linear equations in n
unknowns. – which we can compute by Gaussian elimination.

5. Let Wi ⊂ Vi, i ∈ I︸︷︷︸
indexing set

be subspaces. Then
⋂
IW =

⋂
i∈IWi :=

{x ∈ V |x ∈Wi ∀i ∈ I} is a subspaces of V (why?)

6. In general, if W1,W2 ⊂ V are subspaces, W1 ∪W2 is NOT a subspace.

e.g., Span(i) ∪ Span(j) = {(x, 0)|x ∈ R} ∪ {(0, y)|y ∈ R} is not a subspace

(x, y) = (x, 0) + (0, y) /∈ Span(i) ∪ Span(j)

if x 6= 0 and y 6= 0
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Definition 4.4 (Subspace & Span) — Let W1,W2 ⊂ V be subspaces. Define

W1 +W2 := {w1 + w2|w1 ∈W1, w2 ∈W2}
= Span(W1 ∪W2)

So w1 + w2 ⊂ V is a subspace and the smallest subsapce of V containing W1 and
W2.

More generally, if Wi ∈ V is a subspace ∀i ∈ I let∑
I

Wi =
∑
i∈I

Wi := +Wi := Span(
⋃
I

Wi)

the smallest subspace of V containing Wi∀i ∈ I. What do elements in
∑

IWi look like?
Determine the span of vector v1, . . . , vn in Rn

Suppose vi = (ai1 , . . . , ani, i = 1, . . . , n. To determine when w ∈ Rn lies in
Span(u1, . . . , un ) i.e., if w = (b1, . . . , bn) ∈ Rn when does

w = α1v1 + . . .+ αnvn, α1, . . . , αn ∈ R

What vi is an n× 1 column matrix

α1i
...
ani



A = (aij), B =

b1...
bn



view w as

b1...
bn

. To solve

Ax = B, X =

α1
...
αn


is equivalent to finding all the n× 1 matrices B (actually B> ) s.t.

Ax = B

when the columns of A are the vi(v
>
i ).

Note: If m = n an A is invertible then all B work.

§4.2 Linear Independence

We know that Rn is an n-dimensional vector space over R. Since we need n coordinates
(axes) to describe all vector in Rn but no fewer will do.
We want something like the following:

Let V be a vector space over F with V 6= ∅. Can we find distinct vectors v1 . . . , vn ∈ V ,
some n with following properties

1. V = Span(v1, . . . , vn )

2. No vi is a linear combos of v1, . . . , vi−1, vi+1, . . . , vn (i.e. we need them all)

Then we want to call V an n-DIMENSIONAL VECTOR SPACE OVER F .
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Lemma 4.5

Let V be a vector space over F , n > 1. Suppose v1, . . . , vn are distinct. Then (2) is
equivalent to

If α1v1 + . . .+ αnvn = β1v1 + . . .+ βnvn, αi, βi ∈ F∀i, j

i.e. the “coordinates” are unique.

Proof. (− >) If not, relabelling the v′is, we may assume that α1 6= β2 in(*), then

(α1 − β1)v1 =
n∑
i=2

(βi − αi)vi

As α1 − β1 6= 0 in F , a field, (α1 − β1)−1 exists, so

v1 =
n∑
i=2

(α1 − β1)−1(βi − αi)vi ∈ Span(v1, . . . , vn)

a contradiction.
(< −) Relabelling, we may assume that

v1 = α2v2 + . . .+ αnvn, some αi ∈ F

Then,
1 · v1 + 0v2 + . . .+ 0vn = v1 = 0 · v1 + α2v2 + . . .+ αnvn

so 1 = 0, a contradiction.

Remark 4.6. The case n = 1 is special because there are two possibilities
Case 1: v 6= 0 : then αv = βv → α = β
Case 2: v = 0 : then αv = βv∀α, β ∈ F

So the only time the above lemma is false is when n = 1 and v = 0. We do not want to
say this, so we use another definition.
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§5 Lec 5: Oct 12, 2020

§5.1 Linear Independence(Cont’d)

Definition 5.1 (Linear Independence & Dependence) — Let V be a vector space over
F , v1, . . . , vn in V all distinct. We say {v1, . . . , vn} is LINEARLY DEPENDENT
if ∃α1, . . . , αn ∈ F not all zero 3

α1v1 + . . .+ αnvn = 0

and {v1, . . . , vn} is LINEARLY INDEPENDENT if it is NOT linearly dependent,
i.e., if for any eqn

0 = αv1 + . . .+ αnvn, α1, . . . , αn ∈ F,

then αi = 0∀i, i.e., the only linear comb of v1, . . . , vn – the zero vector is the
TRIVIAL linear combo (we shall also say that distinct v1, . . . , vn are linearly
independent if {v1, . . . , vn} is. More generally, a set ∅ 6= S ⊂ V is called LINEARLY
DEPENDENT if for some FINITE subset (of distinct elements of S ) of S is linearly
dependent and it is called LINEARLY INDEPENDENT if every FINITE subset of
S (of distinct elements) is linearly independent.
We say vi, i ∈ F , all distinct are LINEARLY INDEPENDENT if {vi}i∈I is linearly
independent and vi 6= vj∀i, j ∈ I, i 6= j.

Remark 5.2. Let V be a vector space over F , ∅ 6= S ⊂ V a subset

1. If 0 ∈ S, then S is linearly dependent as l · 0 = 0

2. distinct: v1, . . . , vn in V are linearly independent iff

• no vi = 0

• α1v1 + . . .+ αnvn = β1v1 + . . .+ βnvn, αi, βi ∈ F implies αi = βi∀i
Note: v, v are linearly dependent if we allow repetitions – and {v, v} = {v}.

For homework, make sure to show this:
Suppose v1, . . . , vn are distinct, n > 2, no vi = 0. Suppose no vi is a scalar multiple

of another vj , j 6= i. It does not follow that v1, . . . , vn are linearly independent (in
general).

Example 5.3 (counter-example)

(1, 0), (0, 1), (1, 1) in V = R2

(1, 0), (0, 1) are linearly indep. but not (1, 0), (0, 1), and (1, 1).

Remark 5.4. Let ∅ 6= T ⊂ S be a subset. If T is linearly dependent, so is S. Then the
contraposition is also true: if S is linearly indep., so is T .

More remarks:

1. Let 0 6= v ∈ V . Then {v} is linearly independent and

Fv := Span(v)
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is called a LINE in V:
αv = 0→ α = 0

2. u, v, w ∈ V \ {0} and v /∈ Span(w ) (equivalently, w /∈ Span(v ), then {v, w} is
linearly indep. and span( v, w ) is called a PLANE in V .

3. (1, 1), (−2,−2) are linearly dep. in R2.

4. (1, 1), (2,−2) are linearly indep. in R2 (show coefficients are equal to each other
and to 0).

5. More generally,

vi = (ai1 , . . . , ain) in Rn, i = 1, . . . ,m (distinct)

Then
∃α1, . . . , αm ∈ R not all 0 3 α1v1 + . . .+ αmvm = 0

iff v1, . . . , vm are linearly dep – iff ∃α1, . . . , αm ∈ R not all 0 s.t.

α1(a11, . . . , a1m) + . . .+ αm(am1, . . . , amn) = 0

iff the matrix

A =

a11 . . . a1m
...

am1 . . . amn


with rows vi row reduced to echelon form with a zero row. Also,

B = A> =

a11 . . . am1
...

a1m amn


i.e., write the vectors vi as columns then

B︸︷︷︸
n×m

X︸︷︷︸
m×1

= 0

has a NON-TRIVIAL solution, i.e.,

kerB 6= 0

where
kerB :=

{
X ∈ Fm×1|BX = 0

}
the kernel of B.

6. Let f1, . . . , fn ∈ Cn−1(I), I = (α, β), α < β in R and

α1f1 + . . .+ αnfn = 0︸︷︷︸
the zero func

i.e., (α1f1 + . . .+ αnfn)(x) = 0 ∀x ∈ (α, β). Taking the derivatives (n− 1) times
and put them in matrix form, we have

f1 . . . fn
f ′1 . . . f ′n
... . . .

...

fn−1
1 . . . fn−1

n



α1
...
...
αn

 =


0
...
...
0


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In particular, the Wronskian of f1, . . . , fn is not the zero func, i.e., ∃x ∈ (α, β) 3
W (f1, . . . , fn)(x) 6= 0. This means that the matrix above is invertible for some
x ∈ (α, β). Then, α1 = 0, . . . , αn = 0 by Cramer’s rule – only the trivial soln.

Conclusion: W (f1, . . . , fn) 6= 0→ {f1, . . . , fn} is linearly indep.

WARNING: the converse is false.

Example 5.5 (of the conclusion)

Let α < β in R.

1. sinx, cosx are linearly indep. on (α, β).

2. We need some (sub) defns for this example.

For x ∈ R, define the map
ex : R[t]→ R by

g =
∑
ait

i 7→ g(x) :=
∑
aix

i called EVALUATION at x.

We call a map f : R→ R (or some f : I → R(I ⊂ R) ) a POLYNOMIAL FUNCTION if

∃Pf =

n∑
i=1

ait
i ∈ R[t]

and

f(x) = exPf = Pf (x) =
n∑
i=1

aix
i ∀x ∈ R

i.e., the function arising from a (formal) polynomial by evaluation at each x. We let

R[x] := {f : R→ R|f a poly fcn }

Note:Polynomial fcns are defined on all of R. R[x] is a vector space over R.
Warning: if we replace R by F , F [t] may be “very different” from F [x], e.g., let

F = {0, 1}. Then
t, t2 ∈ F [t], t 6= t2 but Pt = Pt2

Now we can give our example using Wronskians

{1, x, . . . , xn}

is linearly indep. on (α, β) assuming α < β.
HOMEWORK: Let α1, . . . , αn ∈ R be distinct, then

eα1t, . . . , eαnt

are linearly indep. on (α, β). THINK OVER IT!

Theorem 5.6 (Toss In)

Let V be a vector space over F , ∅ 6= S ⊂ V a linearly indep. subset. Suppose that
v ∈ V \ Span S. Then S ∪ {v} is linearly indep.
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Proof. Suppose this is false which is S ∪ {v} is linearly dep. Then ∃v1, . . . , vn ∈ S and
α, α1, . . . , αn ∈ F some n not all zero s.t.

αv + α1v1 + . . .+ αnvn = 0

Case 1: α = 0
Then α1v1 + . . .+ αnvn = 0 not all α1, . . . , αn zero so {v1, . . . , vn} is linearly dep., a

contradiction.
Case 2: α 6= 0

Then α−1 exists.
v = −α−1α1v1 − . . .− α−1αnvn

is a linear combo of v1, . . . , vn, i.e., v ∈ Span (v1, . . . , vn) – a contradiction. Therefore,
S ∪ {v} is linearly indep.

Corollary 5.7

Let V be a vector space over F and v1, . . . , vn ∈ V linearly indep. if

Span(v1, . . . , vn) < V

then ∃vn+1 ∈ V 3 v1, . . . , vn, vn+1 are linearly indep. and

Span(v1, . . . , vn) < Span(v1, . . . , vn+1) ⊂ V

Question 5.1. Why can’t we get a linearly indep. set spanning any vector space over
F using this theorem?

Ans: Certainly we may not get a finite set. We shall only be interested in the case,
much of the time, when such a finite linearly indep. set spans our vector space over
F .

Example 5.8

(1, 3, 1) ∈ R3 is linearly indep. but Span (1, 3, 1) < R3.
(1, 1, 0) /∈ Span (1, 3, 1) so (1, 3, 1), (1, 1, 0) are linearly indep. Similarly for (0, 0, 1).
R3 = Span((1, 3, 1), (1, 1, 0), (0, 0, 1))
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§6 Lec 6: Oct 14, 2020

§6.1 Bases

Definition 6.1 (Basis) — Let ∅ 6= V be a vector space over F . A BASIS B for V
is a linearly indep. set in V and spans V . i.e.,

1. V = Span B.

2. B is linearly indep.

We say V is a FINITE DIMENSIONAL VECTOR SPACE OVER F if there exists
B for V with finitely many elements, i.e., |B| <∞.

Notation: If V = 0, we say V is a finite dimensional vector sapce over F of DIMENSION
ZERO.
Goal: To show if V is finite dimensional vector space over F with bases B and b then
|B| = |b| <∞. This common integer is called the DIMENSION of V .

Example 6.2

Let V be a vector space over F , S ⊂ V a linearly indep. set. Then S is a basis for
Span S.
Warning: S is not a subspace just a subset.

Definition 6.3 (Ordered Basis) — If V is a finite dimensional vector space over F
with a basis B = {v1, . . . , vn} we called it an ORDERED BASIS if the given order
of v1, . . . , vn is to be used, i.e., the ith vector in B is the ith in the written list, e.g.,
{v1, v2, v4, v3, . . .} then v4 is the 3rd element in the ordered list if we want B to be
ordered in this way.

Theorem 6.4 (Coordinate)

Let V be a finite dimensional vector space over F with basis B = {v1, . . . , vn} and
v ∈ V . Then ∃!α1, . . . , αn ∈ F 3 v = α1v1 + . . . + αnvn. We call α1, . . . , αn the
COORDINATE of v relative to the basis B and call αi the ith coordinate relative
to B.

Proof. Existence: By defn, V = Span B, so if v ∈ V

∃α1, . . . , αn ∈ F 3 v = α1v1 + . . .+ αnvn

Uniqueness: Let v ∈ V and suppose that α1v1 + . . . + αnvn = β1v1 + . . . + βnvn, for
some α1, . . . , αn, β1, . . . , βn ∈ F . Then

(α1 − β1)v1 + . . .+ (αn − βn)vn = 0

Since B is linearly indep,

αi = βi = 0 for i = 1, . . . , n
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Question 6.1. Does the above theorem hold if the basis B is not necessarily finite? If
so prove it!

Exercise 6.1. Let V be a vector space over F , v1, . . . , vn ∈ V then

Span(v1, . . . , vn) = Span(v2, . . . , vn) ⇐⇒ v1 ∈ Span(v2, . . . , vn)

Make sure to PROVE THIS

Note:For induction, you CAN’T assume n in the induction hypothesis is special in any
way except it is greater than 1. Also, you can start induction at n = 0,i.e., show P (0)
true (or at any n ∈ Z).

Theorem 6.5 (Toss Out)

Let V be a vector space over F . If V can be spanned by finitely many vector then
V is a finite dimensional vector space over F . More precisely, if

V = Span(v1, . . . , vn)

then a subset of {v1, . . . , vn} is a basis for V .

Proof. If V = 0, there is nothing to prove. So we may assume that V 6= 0. Suppose that
V = Span(v1, . . . , vn). We can use induction on n and show a subset of {v1, . . . , vn} is a
basis.

• n = 1 : V = Span(v1) 6= 0 as V 6= 0, so v1 6= 0. Hence {v1} is linearly indep and
it is the basis.

• Assume V = Span(w1, . . . , wn ) – the induction hypothesis – to be true. Then a
subset of w1, . . . , wn is a basis for V . Now suppose that v = Span(v1, . . . , vn+1). To
show a subset of {v1, . . . , vn+1} is a basis for V , we need to show if {v1, . . . , vn+1}
is linearly indep., then it is a basis for V and it spans V and we are done. So let
us assume that {v1, . . . , vn+1} is linearly dep. Hence,

∃α1, . . . , αn+1 ∈ F not all zero 3

α1v1 + . . .+ αn+1vn+1 = 0

Assume αn+1 6= 0, then

vn+1 = −α−1
n+1α1v1 − . . .− α−1

n+1αnvn

lies in Span(v1, . . . , vn). By the Exercise above,

V = Span(v1, . . . , vn+1) = Span(v1, . . . , vn)

By the induction hypo, a subset of {v1, . . . , vn} is a basis for V .
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Example 6.6 1. Let ei = {(0, . . . , 0, 1, 0, . . .)} ∈ Fn

s = sn := {e1, . . . , en} ⊂ Fn

If v ∈ Fn, then

v = (α1, . . . , αn) = α1e1 + . . .+ αnen

since αi ∈ F , so Fn = Span s. If 0 = α1e1 + . . . + αnen = (α1, . . . , αn) =
(0, . . . , 0), then αi = 0∀i. So s is linearly indep. Hence s is a basis for Fn

called the standard basis. More generally, let

eij ∈ Fm×n be the m× n matrix with all entries 0 except in the ith place.

Then smn := {eij |1 ≤ i ≤ m, 1 ≤ j ≤ n} is a basis for Fm×n called the STAN-
DARD BASIS for Fm×n – same proof – everything is done componentwise.

2. V = F [t] := { polys in t, coeffs in F.} (F = R ). Let f ∈ V . Then, there
exists n ≥ 0 in Z and α0, . . . , αn in F s.t.

f = α0 + α1t+ . . .+ αnt
n

So B = {tn|n ≥ 0} =
{

1, t, t2, . . .
}

spans V and by defn if

α0 + α1t+ . . .+ αnt
n = 0︸︷︷︸

zero poly

then αi = 0 for all i so B is linearly indep. Hence B is a basis for F [t]. B is
not a finite set. We shall see that F [t] is not a finite dimensional vector space
over F .

How?

3. F [t]n := {f ∈ F [t]|f = 0or degf ≤ n} ⊂ F [t] is spanned by
{

1, t, t2, . . . , tn
}

.
It is a subset of linearly indep. set.

{
1, t, t2, . . .

}
= {tn|n ≥ 0} so also linearly

indep. and therefore a basis.

4.
{

1,
√
−1
}

is a basis for C as a vector space over R. {1} is a basis for C as a
vector space over C(indeed, if F is a field, F is a vector space over F and if
0 6= α ∈ F , then α−1 exists and x = xα−1α ∈ Span F so {α} is a basis. e.g.,
{π} is a basis for R as a vector space over R ).

5.
{
e−x, e3x

}
is a basis for

V :=
{
f ∈ C2(−∞,∞)|f ′′ − 2f ′ − 3f = 0

}
a vector space over R.

6. Given v1, . . . , vn ∈ Fn, you know how to find W = Span(v1, . . . , vn ). Note:If
m > n then rows reducing A> must lead to a zero row so v1, . . . , vm cannot
be linearly indep. If m = n we can see if

detA> = 0 (or det A = 0)

then linearly dep. And if

detA> 6= 0 (or det A 6= 0)

then linearly indep.
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§7 Lec 7: Oct 16, 2020

§7.1 Replacement Theorem

Theorem 7.1 (Replacement)

Let V be a vector space over F , {v1, . . . , vn} a basis for V . Suppose that v ∈ V
satisfies

v = α1v1 + . . .+ αnvn, α1, . . . , αn ∈ F, αi 6= 0

Then
{v1, . . . , vi−1, v, vi+1, . . . , vn}

is also a basis for V .

Proof. Changing notation, we may assume α1 6= 0. To show {v1, v2, . . . , vn} is a basis
for V , we have to show {v, v2, . . . , vn} spans V . Since

v = α1v1 + . . .+ αnvn, α1 6= 0

α−1
1 exists, so

v1 = α−1
1 v − α−1

1 α2v2 − . . .− α−1
1 αnvn

lies in Span(v, v2, . . . , vn ). By Exercise . . . ,

V = Span(v, v1, . . . , vn) = Span(v, v2, . . . , vn)

So {v, v2, . . . , vn} spans V . Thus, {v, v2, . . . , vn} is linearly indep.
Suppose ∃β1, β2, . . . , βn ∈ F not all 0 3

βv + β2v2 + . . .+ βnvn = 0

Case 1: β = 0
Then β2v2 + . . . + βnvn = 0 not all βi = 0. So {v2, . . . , vn} is linearly dep., a

contradiction.
Case 2: β 6= 0, so β−1 exists.

Then using (*), we see

v = 0 · v1 − β−1β2v2 − . . .− β−1βnvn = α1v1 + . . .+ αnvn

As {v2, . . . , vn} is a basis, by the Coordinate Theorem, we have

α1 = 0 and α1 = β−1βi

a contradiction.

Question 7.1. In the Replacement Theorem, do we need the basis to be finite?

Ans: I think it can be infinite . . .

§7.2 Main Theorem
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Theorem 7.2 (Main)

Suppose V is a vector space over F with V = Span(v1, . . . , vn). Then any linearly
indep. subset of V has at most n elements.

Proof. We know that a subset of B = {v1, . . . , vn} is a basis for V by Toss Out Theorem.
So we may assume B is a basis for V . It suffices to show any linearly indep. set in V
has at most |B| = n elements where B is a basis. Let {w1, . . . , wm} ⊂ V be linearly
indep. where no wi = 0. To show m ≤ n, the idea is to use Toss In and Toss out in
conjunction with the Replacement Theorem.

Claim 7.1. After changing notation, if necessary, for each k ≤ n

{w1, . . . , wk, vk+1, . . . , vn}

is a basis for V .

Suppose we have shown the above claim for k = n. Apply the claim to k = n if
m > k, then {w1, . . . , wn+1} is linearly dep., a contradiction as {w1, . . . , wn} is a basis.
Thus, we prove the claim for m ≤ n as needed. We prove it by induction on k. BY the
argument above, we may assume k ≤ n.

• k = 1 : As w1 ∈ Span B = Span (v1, . . . , vn) and w1 6= 0, ∃α1, . . . , αn ∈ F not
all 0 3

w1 = α1v1 + . . .+ αnvn

Changing notation, we may assume α1 6= 0. By the Replacement Theorem,

{w1, v2, . . . , vn} is a basis for V

• Assume the claim hold for k(k < n).

• We must show the claim holds for k + 1,

{w1, . . . , wk, vk+1, . . . , vn} is a basis for V

We can write

0 6= wk+1 = β1w1 + . . .+ βkwk + αk+1vk+1 + . . .+ αnvn

for some (new) β1, . . . , βk, αk+1, . . . , αn ∈ F not all 0

Case 1: αk+1 = αk+2 = . . . = αn = 0

Then wk+1 ∈ Span(w1, . . . , wk), hence {w1, . . . , wk+1} is linearly dep., a contradic-
tion.

Case 2: ∃i 3 αi 6= 0 :

Changing notation, we may assume αk+1 6= 0. By the Replacement Theorem

{w1, . . . , wk+1, vk+2, . . . , vn}

is a basis for V . This completes the induction step thus prove the claim and
establish the theorem.
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§7.3 A Glance at Dimension

Corollary 7.3

Let V be a finite dimensional vector space over F , B1, B2 two bases for V . Then
|B1| = |B2| <∞. We call |B1| the dimension of V , write dimV = dimF V = |B1|
(dropping F if F is clear).

Proof. By defn of finite dimensional vector space over F , ∃ a basis b for V with |b| <∞.
By the Main Theorem, |B| ≤ |b|, if B is a basis for V , so B is finite. Again by the Main
Theorem, |b| ≤ |B| if B is a basis for V , so |b| = |B| for any basis B of V .

The corollary above says dimV is well-defined for all finite dimensional vector space
over F , i.e., “dim” : {finite dimensional vector space over F → Z+ ∪ {0}} is a function.
Warning: F makes a difference.
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Example 7.4

dimCC = 1 basis {1}
dimRC = 2 basis

{
1,
√
−1
}

dimQC =?

Corollary 7.5

dimF F
n = n.

Corollary 7.6

dimF F
m×n = mn.

Corollary 7.7

dimF F [t]n = 1 + n.

Note: If V is a finite dimensional vector space over F with bases B, then the Replacement
Theorem allows us to find many other bases.

Corollary 7.8

Let V be a finite dimensional vector space over F , n = dimV , ∅ 6= S ⊂ V a subset.
Then

• If |S| > n, then S is linearly dep.

• If |S| < n, then Span S < V .

Proof. • First bullet point: The Main Theorem says:

A maximal linearly indep. set in V is a basis and can have at most n elements by
Toss In Theorem.

• Second bullet point: By Toss Out Theorem, we can assume that S is linearly
indep., so it cannot be a basis by Corollary ?.

Question 7.2. What is dimRMn(C)?
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§8 Lec 8: Oct 19, 2020

§8.1 Extension and Counting Theorem

Theorem 8.1 (Extension)

Let V be a finite dimensional vector space over F , W ⊂ V a subspace. Then every
linearly independent subset S in W is finite and part of a basis for W which is a
finite dimensional vector space over F .

Proof. Any linearly indep. set in W is linearly indep. subset S in V so |S| ≤ dimV <∞
by the Main Theorem. In particular,

dim SpanS ≤ dimV

if W = Span S, we are done.
If not, ∃w1 ∈ W \ Span S, and hence S1 = S ∪ {w1} is linearly indep. by Toss In
Theorem and

|S1| = |S ∪ {w1} | = |S|+ 1 ≤ dimV

if Span S1 < W , then ∃w2 ∈W \ Span S1, so S2 = S ∪ {w1, w2} ⊂W is linearly indep.,
hence

|S2| = |S|+ 2 ≤ dimV

Continuing in this manner, we must stop when n ≤ dimV − dim Span S as dimV <∞.
So S is a part of a basis for W and W is a finite dimensional vector space over F . Think

about the
proof for
this

Corollary 8.2

Let V be a finite dimensional vector space over F . Then any linearly indep. set in
V can be EXTENDED to a basis for V , i.e., is part of a basis for V . We often call
this special case the Extension Theorem.

Corollary 8.3

Let V be a finite dimensional vector space over F , W ⊂ V a subspace. Then W
is a finite dimensional vector space over F and dimW ≤ dimV with equality iff
W = V .

Proof. Left as exercise.

Theorem 8.4 (Counting)

Let V be a finite dimensional vector space over F , W1,W2 ⊂ V subspaces. Suppose
that both W1 and W2 are finite dimensional vector space over F . Then

1. W1 ∩W2 is a finite dimensional vector space over F .

2. W1 +W2 is a finite dimensional vector space over F .

3. dimW1 + dimW2 = dim(W1 +W2) + dim(W1 ∩W2).

39



Duc Vu (Fall 2020 – Spring 2021) 115AH Lectures

Proof. 1. W1 ∩W2 ⊂Wi, i = 1, 2, so it is a finite dimensional vector space over F by
corollary 8.2.

2. Let Bi be a basis for Wi, i = 1, 2, . . .. Then W1 +W2 = Span (B1 ∪B2) and

|B1 ∪B2| ≤ |B1|+ |B2| <∞

So W1 +W2 is a finite dimensional vector space over F by Toss Out.

3. Let B = {v1, . . . , vn} be a basis for W1 ∩W2. Extend B to a basis

b1 = {v1, . . . , vn, y1, . . . , yr} for W1

b2 = {v1, . . . , vn, z1, . . . , zs} for W2

using the Extension Theorem.

Claim 8.1. b1 ∪ b2 = {v1, . . . , vn, y1, . . . , yr, z1, . . . , zs} is a basis for W1 +W2 and
has n+ r + s elements. So if we show the claim, the result will follow.

Certainly,
Span(b1 ∪ b2) = Span b1 + Span b2 = W1 +W2

So we need only to show b1 ∪ b2 is linearly indep. Suppose this is false. Then

0 = α1v1 + . . .+ αnvn + β1y1 + . . .+ βryr + γ1z1 + . . .+ γszs (*)

for some α1, . . . , αn, β1, . . . , βn, γ1, . . . , γs in F not all zero.

Case 1: All the γi = 0. Since b1 is linearly indep., this is a contradiction.

Case 2: Some γi 6= 0.

Changing notation, we may assume γ1 6= 0. Since b2 is a basis, (*) leads to an
equation

0 6= z = γ1z1 + . . .+ γszs = −α1v1 − . . .− αnvn − β1y1 − . . .− βryr

Therefore, 0 6= z lies in Span b2∩Span b1 = W2∩W1. So we can write zi ∈W1∩W2

using basis B as

0 6= z = δ1v1 + . . .+ δnvn some δ1, . . . , δn ∈ F

Thus W2 = Span b2, we have

δ1v1 + . . .+ δnvn − 0z1 + . . .+ 0zs = z = 0v1 + . . .+ 0vn + γ1z1 + . . .+ γszs

By the Coordinate Theorem, γ1 = 0, a contradiction.

Corollary 8.5

Let V be a vector space over F , W1,W2 ⊂ V finite dimensional subspaces of V .
Then

dim(W1 +W2) = dimW1 + dimW2

iff
W1 ∩W2 = ∅

In this case, we write W1 +W2 = W1 ⊕W2 called the DIRECT SUM.
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§8.2 Linear Transformation

In mathematics, whenever you have a collection of objects, one studies maps between
them that preserves any special properties of the objects in the collection and tries to
see what information can be gained from such maps.

Definition 8.6 (Linear Transformation) — Let V,W be a vector space over F . A
map T : V → W is called a Linear Transformation, write T : V → W is linear if
∀v1, v2 ∈ V,∀α ∈ F

• T (v1 + v2) = T (v1) + T (v2).

• T (αv1) = αT (v1).

• T (0V ) = 0W .

Notation: We write Tv for T (v).

Remark 8.7. Let V,W be a vector space over F , T : V →W a map.

1. If T satisfies 1) and 2), then it satisfies 3):

0W + T (0V ) = T (0V ) = T (0V + 0V ) = T (0V ) + T (0V )

so 0W = T (0V ).

2. T is linear iff T (αv1 + v2) = αTv1 + Tv2 ∀v1, v2 ∈ V,∀α ∈ F .

3. If T is linear, α1, . . . , αn ∈ F, v1, . . . , vn ∈ V , then

T

(
n∑
i=1

αivi

)
=

n∑
i=1

αiTvi

We leave a proof of 2) and 3) as exercises.
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Example 8.8

Let V,W be a vector space over F . The followings are linear transformations

1. 0V,W : V →W by v 7→ 0W .

2. V = W , 1V : V → V by v 7→ v.

A linear transformation T : V → V is called a Linear Operator.

3. If ∅ 6= Z ⊂W is a subset, then we have a map

inc : Z →W

given by z 7→ z called the Inclusion Map. Then, Z is a subspace of V iff inc:
Z ↪→W is linear.

Note: inc = 1W

∣∣∣
Z︸ ︷︷ ︸

Restriction map

.

This is the Subspace Theorem.

4. T : Fn → Fn−1 by (α1, . . . , αn) 7→ (α1, . . . ,

omit︷︸︸︷
i , . . . , αn for a fixed i.

5. T : Fn → F by (α1, . . . , αn) 7→ αi for a fixed i.

6. T : Rn−1 → Rn by (α1, . . . , αn−1 7→ (α1, . . . , αi−1, 0, αi, . . . , αn) for fixed i.

7. T : R→ Rn by α 7→ (0, 0, . . . , α, 0, . . . , 0) for fixed i.

8. If α < β in R, D : C ′(α, β)→ C(α, β) by f 7→ f ′.

9. If α < β in R, Int: C(α, β) → C ′(α, β) by f 7→
∫
f where

∫
f is the

antiderivative – constant of integration 0.

10. Fix α ∈ F , then λα : V → V by v 7→ αv. Left translation by α.

11. Let A ∈ Fm×n. Define

T : Fn×1 → Fm×1 by T ·X = A ·X

i.e.

α1
...
αn

 7→ A

α1
...
αn


Matrices can be viewed as linear transformation. We should see the converse
is true IF V is a finite dimensional vector space over F . It is not true in
general.
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§9 Lec 9: Oct 21, 2020

§9.1 Kernel, Image, and Dimension Theorem

Definition 9.1 (Kernel(Nullspace)) — Let V,W be a vector space over F , T : V →
W linear set

N(T ) = ker T := {v ∈ V |Tv = 0W }

called the nullspace or kernel of T .

Definition 9.2 (Range(Image)) — Let V,W be a vector space over F , T : V →W
linear set

im T = T (V ) := {w ∈W |∃v ∈ V 3 Tv = w}
= {Tv|v ∈ V }

called the range or image of T .

Proposition 9.3

Let T : V →W be linear. Then

1. kerT ⊂ V is a subspace.

2. imT ⊂W is a subspace.

Proof. Left as exercise.

Theorem 9.4 (Dimension)

Let T : V →W be linear with V is a finite dimensional vector space over F . Then

1. im T and kerT are finite dimensional vector space over F .

2. dimV = dim kerT + dim imT .

Note: dim kerT is also called the NULLITY of T and dim imT is also called the RANK
of T .

Proof. Let n = dimV .
kerT ⊂ V is a subspace, V is a finite dimensional vector space over F so kerT is a

finite dimensional vector space over F and dim kerT ≤ dimV = n. Say m = dim kerT .
Let B0 = {v1, . . . , vm} be a basis for kerT . By the Extension Theorem ∃B =
{v1, . . . , vm, . . . , vn} a basis for V .

Claim 9.1. Tvm+1, . . . , T vn are linearly indep. (in particular, distinct) and

C = {Tvm+1, . . . , T vn}

is a basis for imT .
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If we prove the claim above, then imT is a finite dimensional vector space over F of
dimension n−m and we are done.
Step 1: C spans imT :

Let w ∈ imT . By definition, ∃v ∈ V 3 Tv = w. As B is a basis for V ∃α1, . . . , αn ∈
F 3

v = α1v1 + . . .+ αnvn

Hence

w = T (v) = T (α1v1 + . . .+ αnvn) = α1Tv1 + . . .+ αnTvn

= α10W + . . .+ αm0W + αm+1Tvm+1 + . . .+ αnTvn

lies w Span(C ) (as v1, . . . , vm ∈ kerT ). need
recheckCase 2: C is linearly indep.

Suppose αm+1, . . . , αn ∈ F and

αm+1Tvm+1 + . . .+ αnTvn = 0W

Then
0W = T (αm+1vm+1 + . . .+ αnvn

So αm+1vm+1+. . .+αnvn ∈ kerT . By defn, B0 is a basis for kerT . So ∃β1, . . . , βm ∈ F 3

αm+1vm+1 + . . .+ αnvn = β1v1 + . . .+ βmvn

Hence
0 = −β1v1 − . . .− βmvm + αm+1vm+1 + . . .+ αnvn

As B is a basis for V , it is linearly indep, so β1 = 0, . . . , βm = 0, αm+1 = 0, . . . , αn = 0
(Coordinate Theorem) and the claim follows.

Note: Let V be a finite dimensional vector space over F , W ⊂ V a subspace, V/W the
quotient space, then − : V → V/W , v 7→ v = v +W and dimV/W = dimV − dimW .

§9.2 Algebra of Linear Transformation

We want to study the set of all linear transformation from a vector space over F V to a
vector space over F W . Let V,W be a vector space over F . Set

L(V,W ) := {T : V →W |T is linear}

Check: if T, S ∈ L(V,W ), α ∈ F , then αT + S ∈ L(V,W ). Since we know F (V,W ) =
{f : V →W |f a map} is a vector space over F , by the Subspace Theorem, L(V,W ) ⊂
F (V,W ) is a subspace.

Proposition 9.5

Let V,W be a vector space over F , then L(V,W ) ⊂ F (V,W ) is a subspace.

Now we know if we have maps

f : X → Y and g : y → Z,

we have the COMPOSITE MAP

g ◦ f : X → Z by (g ◦ f)(x) = g (f(x))∀x ∈ X

where ◦ is called the COMPOSITION (and often omitted when clear). Then we
have
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Proposition 9.6

Let V,W,X,U be vector space over F , T, T ′ : V →W, S, S′ : W → X, R : X →
U all be linear. Then,

1. S ◦ T : V →W is linear.(the composition of linear transformations is linear).

2. R ◦ (S ◦ T ) = (R ◦ S) ◦ T and linear.

3. S ◦ (T + T ′) = S ◦ T + S ◦ T ′ and linear.

4. (S + S′) ◦ T = S ◦ T + S′ ◦ T and linear.

Proof.

(S ◦ T )(αv1 + v2) = S (T (αv1 + v2)) = S(αTv1 + Tv2)

= αS ◦ T (v1) + S ◦ T (v2)

∀v1, v2 ∈ V, α ∈ F .
The rest are left as exercises.

Definition 9.7 (Linear Operator) — Let V be a vector space over F , T : V → V
linear, so a linear operator is defined as

Tn := T ◦ . . . ◦ T︸ ︷︷ ︸
n

if n ∈ Z+

T 0 = 1V

Proposition 9.8

Let V be a vector space over F . Then L(V, V ) under + and ◦ of functions V → V
satisfies all the axioms of a field except possibly (M3) and (M4) with

one = 1V : V → V by v 7→ v

zero = 0V : v → v by v 7→ 0

We say L(V, V ) is a (non-commutative) ring of MnF .

§9.3 Linear Transformation Theorems

Definition 9.9 (Properties/Consequences of Linear Transformation) — Let T : V →
W be linear. We say that T is

1. a MONOMORPHISM (write mono or monic) or NONSINGULAR if T is
1− 1. (i.e., injective).

2. an EPIMORPHISM (write epi or epic) if T is onto (i.e., surjective).

3. an ISOMORPHISM (write iso) or INVERTIBLE if T is bijective and T−1 :
W → V is linear. We say V,W vector spaces over F are ISOMORPHIC
(write V ∼= W if ∃ an isomorphism S : V →W , we also write an isomorphism
S : V →W as S : V

∼→W
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Remark 9.10. V ∼= W vector space over F means that we cannot take V and W apart
algebraically.

Example 9.11

Fn+1 ∼= F [t]n as Fn+1 → F [t]n by (α0, . . . , αn) 7→ α0 + α1t1 + . . . + αnt
n is an

isomorphism with inverse F [t]n → Fn+1 by α0 + α1t+ . . .+ αnt
n 7→ (α0, . . . , αn)

T−1(αw1 + w2) = T−1(αTv1 + Tv2) = T−1 (T (αv1 + v2))

= T−1T (αv1 + v2)

= αv1 + v2

= αT−1w1 + T−1w2

Corollary 9.12

Let T : V →W be a monomorphism. Then V ∼= imT via T .

Remark 9.13. If V,W,X are vector space over F , then

1. V ∼= V

2. V ∼= W →W ∼= V

3. V ∼= W and W ∼= X then V ∼= X

In algebra, isomorphisms are usually easier to check than are one might assume, because
the following result is often true.

Proposition 9.14

Let T : V →W be linear. Then T is an isomorphism iff T is bijective.

Proof. (→) immediate.
(←) Let T−1 : W → V be the set inverse of T : V →W , so

T ◦ T−1 = 1W and T−1 ◦ T = 1V

In particular, if v ∈ V and w ∈W ,

w = Tv iff T−1w = v

Let w1, w2 ∈W , α ∈ F . To show

T−1(αw1 + w2) = αT−1w1 + T−1w2

T is onto so
∃vi ∈ V 3 Tvi = wi, i = 1, . . .

Hence, we have

T−1(αw1 + w2) = T−1(αTv1 + Tv2) = T−1(T (αv1 + v2))

= T−1T (αv1 + v2) = αv1 + v2

= αT−1w1 + T−1w2
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§10 Lec 10: Oct 23, 2020

§10.1 Monomorphism, Epimorphism, and Isomorphism

Corollary 10.1

Let T : V →W be a monomorphism. Then V ∼= im T via T .

Definition 10.2 (Linear Map) — Let T : V →W be linear. We say T takes linearly
independent sets to linearly independent sets if vi, i ∈ I are linearly independent in
V (in particular, distinct). Then, Tvi, i ∈ I are linearly indep. in W . (Tvi 6= Tvj if
i 6= j in I )

Theorem 10.3 (Monomorphism)

Let T : V →W be linear. Then the followings are true

1. T is 1− 1, so it’s monomorphism.

2. T takes linearly indep. sets in V to linearly indep. sets in W .

3. kerT = 0 := {0V }.

4. dim kerT = 0.

Proof. • 3) iff 4) is the defn of the 0-space.

• 1) → 2) It suffices to show that T takes finite linearly indep. sets in V to linearly
indep. sets in W .

Suppose that v1, . . . , vn ∈ V are linearly indep. and α1, . . . , αn ∈ F satisfy

0W = α1Tv1 + . . .+ αnTvn

Then
T (0V ) = 0W = T (α1v1 + . . .+ αnvn)

As T is 1− 1
0V = α1v1 + . . .+ αnvn

Since v1, . . . , vn are linearly indep. αi = 0, i = 1, . . . , n as needed.

• 2) → 3) Let v ∈ kerT . Then Tv = 0W . If v 6= 0, then {v} is linearly indep. By 2)
Tv 6= 0W as then {Tv} is linearly indep. So v 6= 0.

• 3) → 1) If Tv1 = Tv2, v1, v2 ∈ V , then

0W = Tv1 − Tv2 = T (v1 − v2)

So v1 − v2 = 0V by 3), i.e., v1 = v2
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Remark 10.4. The Monomorphism Theorem says kerT measures the deviation of T from
being 1− 1.

Note: In the Monomorphism Theorem, we do not assume that V orW is a finite dimensional
vector space over F .

Theorem 10.5 (Isomorphism)

Suppose T : V → W is linear with dimV = dimW < ∞,i.e., V,W are finite
dimensional vector space over F of the same dimension. Then the followings are
true

1. T is an isomorphism.

2. T is a monomorphism.

3. T is an epimorphism.

4. If B = {v1, . . . , vn} is a basis for V , then {Tv1, . . . , T vn} is a basis for W (so
Tv1, . . . , T vn are distinct), i.e., T takes basis of V to basis of W .

5. There exists a basis B of V that maps to a basis of W .

Remark 10.6. 1. The condition that dimV = dimW <∞ is crucial

Come up with a counter example

2. Let V ∼= W with V,W be finite dimensional vector space over F . So dimV = dimW .
Let S : V →W be linear. Then S may or may not be an isomorphism, e.g., if S is
the zero map then it is not an isomorphism unless V = 0. The theorem only says
that ∃ an isomorphism and any such satisfies the theorem.

3. Let f : A→ B be a map of finite sets with |A| = |B|. Then f is a bijection iff f is
an injection iff f is a surjection.

Proof. (of Theorem)

• 1) → 2) follows by defn.

• 2) → 3) By the Dimension Theorem

dimW = dimV = dim kerT + dim im T

Thus, T is onto iff im T = W iff dimW = dim im T (by the Corollary to the
Existence Theorem) iff dim kerT = 0 iff T is 1− 1.

• 3) → 1) as 3) → 2) and 1) = 2) + 3) by the Proposition ?

• 2) → 4) Let {v1, . . . , vn} be a basis for V . By the Monomorphism Theorem,
Tv1, . . . , T vn are linearly indep. in W , so

n ≤ dimW = dimV = n

Hence {Tv1, . . . , T vn} also spans as dimW = dimV .

• 4) → 5) → 3) are clear.
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§10.2 Existence of Linear Transformation

The next result is really the defining property of finite dimensional vector space and
linear transformation.

Theorem 10.7 (Existence of Linear Transformation (UPVS))

– (Universal Property of Vector Space) Let V be a finite dimensional vector space
over F , B = {v1, . . . , vn} a basis for V and W an arbitrary vector space over F .
Let w1, . . . , wn ∈W , not necessarily distinct. Then

∃! T : V →W linear 3 Tvi = wi∀i

We can write this in an other way as follows:
Let B ↪→ V be a basis for V , V a finite dimensional vector space over F and W a
vector space over F . Given a diagram,

B ↪→ V

W

f
of sets and
set maps

then ∃!T : V →W linear 3
B ↪→ V

inc
T

f

W

commutes , i.e., T ◦ inc = f .

Proof. Define T : V → W as follows: let V ∈ V . The ∃!α1, . . . , αn ∈ F 3 v =
α1v1 + . . .+ αnvn by the Coordinate Theorem. Define

Tv = T (α1v1 + . . .+ αnvn) := α1w1 + . . .+ αnwn

Since the αi ARE UNIQUE, this defines a map – we say T : V → W is WELL –
DEFINED. Certainly, Tvi = wi, i = 1, . . . , n. To show T is linear, let v =

∑n
i=1 αivi, v

′ =∑n
i=1 βivi, α, αi, βj ∈ F∀i, j. Then

T (αv + v′) = T

(
α

n∑
i=1

αivi +
n∑
i=1

βivi

)

= T

(
n∑
i=1

(ααi + βi)vi

)
=

n∑
i=1

(ααi + βi)wi

= α

n∑
i=1

αiwi +

n∑
i=1

βiwi = αTv + Tv′

as needed. This shows existence.
Uniqueness: Let T : V →W by (*) and S : V →W linear s.t. Svi = wi∀i. To show S =
T , let v =

∑n
i=1 αivi, αi ∈ F unique, i = 1, . . . , n. Then Tv =

∑n
i=1 αiTvi =

∑n
i=1 αiwi

which is equivalent to

=

n∑
i=1

αiSvi = S

(
n∑
i=1

αivi

)
= Sv

So S is T and we have proven uniqueness.
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Remark 10.8. The theorem says a linear transformation from a finite dimensional vector
space over F is completely determined by what it does to a fixed basis. i.e., as there are no
non – trivial RELATIONS on linear combos of elements in B, the only relation in im T
will arise from the kernel of T .
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§11 Lec 11: Oct 26, 2020

§11.1 Lec 10 (Cont’d)

Remark 11.1. 1. In the above, given fvi = wi∀i, we say that T : V →W by
∑
αivi 7→

αiwi EXTENDS f linearly.

2. Let V be any vector space over F (not necessarily finite dimensional). Suppose V
has a basis B, then every v ∈ V is a finite linear combo elements in B. Using the
same proof of UPVS, shows

if W is a vector space over F , then given a diagram

B ↪→ V

W

f
of sets and
set maps

of set and set maps. ∃!T : V →W linear s.t.

B ↪→ V
inc

T
f

W
commutes. I.E., if B = {vi}I is a basis for V , wi ∈W , i ∈ I (not necessarily distinct),
f : V → W by vi 7→ wi∀i ∈ I. Then ∃!T : V → W linear s.t. Tvi = wi∀i ∈ I. So
any linear transformation from a vector space over F V having a basis is completely
determined by what it does to that basis.

3. Axiom: Every vector space over F has a basis. This is equivalent to the Axiom of
Choice.

Theorem 11.2 (Classification of Finite Dimensional Vector Space)

Let V,W be finite dimensional vector space over F . Then

V ∼= W ⇐⇒ dimV = dimW

Proof. (→)Let T : V → W be an isomorphism, B = {v1, . . . , vn} a basis for V (so
dimV = n ). By the Monomorphism Theorem,

C = {Tv1, . . . , T vn}

is linearly indep. in W . Since |C | = n and span(C ) = w (as T is onto), C is a basis for
W and dimW = dimV .
(←) Suppose n = dimV = dimW . Let B = {v1, . . . , vn} be a basis for V , C =
{w1, . . . , wn} a basis for W . By the UPVS, ∃!T : V → W linear vi 7→ wi∀i, i.e., T
takes the basis B of V to the basis C of W . By the Isomorphism Theorem, T is an
isomorphism.

Example 11.3 1. Fn×m ∼= Fm×n ∼= Fmn

2. MnF ∼= Fn
2

3. F [t]n ∼= Fn+1

51



Duc Vu (Fall 2020 – Spring 2021) 115AH Lectures

Let T : V → W be linear with V,W arbitrary. Since T only tells us about im T , we
replace the target W by im T = T (V ), i.e., view T : V →W surjective linear. Let B0

be a basis for kerT ⊂ V subspace. Then Extension. Theorem holds even when V is not
finite dimensional. Extend B0 to a basis B = B0 ∪ C so C ∩B0 = ∅ and V = span B.
By the argument proving the Dimension Theorem,

T (C ) = {T (y)|y ∈ C }

is linearly indep. and since T is onto T (C ) is a basis for W . The new relation in
W = im T comes from

Tx = 0, x ∈ B0

In the extra section (3), we showed

V/ kerT = {v|v ∈ V }

where
v = v + kerT = {v + z|z ∈ kerT}

is a vector space over F . In fact, {y|y ∈ C } is a basis for V/ kerT . By the UPVS, ∃!
linear transformation

T : V/ kerT →W

given by 0 = x 7→ 0, x ∈ B0, y 7→ Ty, y ∈ C . T is clearly onto and T is 1− 1,

T (v) = T (v) ∀v ∈ V

So
T : V/ kerT →W = im T

is an isomorphism.
As − : V → V/ kerT by v 7→ v is a surjective linear transformation, by definition,

αv + v′ = αv + v′

Note: ker− = kerT .
We have a commutative diagram

V
T

im T

-

V/ kerT
T

commutes

with - an epimorphism

T an isomorphism

Notiece if W 6= im T, T is only a monomorphism.
We shall show that all of this is true without using bases (or the Extension Theorem in
the Extra Lecture). In particular,

V/ kerT ∼= im T
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§11.2 Matrices and Linear Transformations

Goal: Let V,W be finite dimensional vector spaces over F . Reduce the study of
linear transformations T : V → W to matrix theory, hence often to computation
(Deabstractify).

Remark 11.4. In this section, all bases are ORDERED.

Set up and Notation: Let V,W be finite dimensional vector space over F . B =
{v1, . . . , vn} an ordered basis for V , so dimV = n. C = {w1, . . . , wm} an ordered basis
for W , so dimW = m.
Step 1: If v ∈ V , write

v = α1v1 + . . .+ αnvn

i.e., α1, . . . , αn are the unique coordinate of v relative to B. Then let

[v]B :=

α1
...
αn

 ∈ Fn×1

the coordinate matrix of v relative to the ordered basis B. E.g.,

[vi]B =


0
...
1
...
1

 ith

and set
vB := {[v]B|v ∈ V } = Fn×1

Then
v → vB by v 7→ [v]B isomorphism

as

vi 7→ ei :=


0
...
1
...
0

 ith, fn,1 = {e1, . . . , en}

the standard basis for Fn×1.
Step 2: Let T : V →W be linear, then

Tvi ∈W = Span C = Span(w1, . . . , wm)

as C is a basis for W . Therefore,

∃!αij ∈ F, 1 ≤ i ≤ m, 1 ≤ j ≤ n 3

Tvj =

m∑
i=1

αijwi, j = 1, . . . , n
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Let A = (αij ∈ Fm×n), i.e., Aij = αij∀i, j. Then the jth COLUMN of A isα1j
...

αmj

 = [Tvj ]C ∈WC = Fm×1

Step 3: Let
A : VB →WC by A ([v]B) = A · [v]B

This is a linear transformation.

A : Fn×1 → Fm×1

Since
A
(
[vj ]B

)
= [Tvj ]C , j = 1, . . . , n

A is the unique linear transformation s.t.

A[vj ]B = [Tvj ]C

So by UPVS,
A[v]B = [Tv]C ∀v ∈ V (*)

Definition 11.5 (Matrix Representation) — The unique matrix A ∈ Fm×n in (*)
is called the matrix representation of T relative to the ordered bases, B,C . We
denote A by [T ]B,C .

Notation: if V = W , B = C , we usually write [T ]B for [T ]B,B.
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§12.1 Lec 11 (Cont’d)

Summary: Let T : V →W be linear with V,W finite dimensional vector space over F

B = {v1, . . . , vn} an ordered basis for V,dimV = n

C = {w1, . . . , wn} an ordered basis for W, dimW = m

Then ∃! A = [T ]B,C ∈ Fm×n satisfying

A[v]B = [T ]B,C [v]B = [Tv]C ∀v ∈ V

Moreover, if

Tvj =

m∑
i=1

αijwi, j = 1, . . . , n

then the jth column of A = [T ]B,C is precisely

[Tvj ]C =

α1j
...

αmj

 ∈ Fm×1

i.e.,

[T ]B,C =

[Tv1]C . . . [Tvn]C︸ ︷︷ ︸
columns


Warning: If B′,C ′ are two other ordered bases for V,W respectively (even the same
vectors in B,C written in a different order), then in general

[T ]B,C 6= [T ]B′,C ′
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Example 12.1 1. Let B = {v1, . . . , vn} ,C = {w1, . . . , wn} be two ordered bases
for V . Let

T : V → V linear by vi 7→ wi, i = 1, . . . , n

Then [T ]B,C = I, the identity matrix. Moreover, if

Tvj = wj =

n∑
i=1

αijvi

then

[T ]B = [T ]B,B = (αij) =

α11 . . . α1n
...

...
αn1 αnn


2. T : R2 → R2 by (α, β) 7→ (β, α), S = S2 = {e1, e2}, the standard ordered

basis for R2. Then

[T ]S = ([Te1]S , [Te2]S ) =

(
0 1
1 0

)
and if B is the ordered bases B = {e2, e1} then

[T ]S ,B = ([Te1]B, [Te2]B) =

(
1 0
0 1

)

3. Let B =
{

1, x, x2, x3
}

be a basis for R[x]3, the polynomial functions of degree
≤ 3 (and 0), and

D : R[x]3 → R[x]3 differentiation

Find [D]B

D · 1 = 0 so [D · 1]B =


0
0
0
0



Dx = 1 so [Dx]B =


1
0
0
0



Dx2 = 2x so [Dx2]B =


0
2
0
0



Dx3 = 3x2 so [Dx3]B =


0
0
3
0


Hence,

[D]B =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0


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Some more examples

Example 12.2 1. Let Tθ : R2 → R2 be counterclockwise rotation by an ∠θ

Tθe1 = cos θe1 + sin θe2

Tθe2 = (− sin θ)e1 + cos θe2

So

[Tθ]S = ([Tθe1]S [Tθe2]S ) =

(
cos θ − sin θ
sin θ cos θ

)
2. Let B = {v1, v2} be an ordered basis for V and C = {w1, w2, w3} an ordered

basis for W . Suppose

T : V →W by

{
Tv1 = 3w1 + w3

Tv2 = w1 + 6w2 + w3

then [T ]B,C =

3 1
0 6
1 1


3. Let T : R3 → R3 be the reflection about the e1, e2 plane. What is [T ]S ?

e1 7→ e1

e2 7→ e2

e3 7→ −e3

So [T ]S =

1 0 0
0 1 0
0 0 −1



Theorem 12.3 (Matrix Theory)

(MTT) Let V,W be finite dimensional vector space F , dimV = n, dimW = m,
and B,C ordered bases for V,W . Then the map

φ : L(V,W )→ Fm×n by T 7→ [T ]B,C

is an isomorphism. In particular

dimL(V,W ) = mn

Proof. Left as exercise (Homework).

Using the fact that W →WC is an isomorphism if w 7→ [w]C show that

1. φ is linear

2. φ is onto

3. φ is 1− 1

4. dimL(V,W ) = mn
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Theorem 12.4

Let V,W,U be finite dimensional vector space over F with ordered bases B,C ,D
respectively, T : V →W , S : W → U linear. Then

[S ◦ T ]B,D = [S]C ,D · [T ]B,C

Proof.

[S]C ,D [T ]B,C [v]B = [S]C ,D [Tv]C

= [S(Tv)]D

= [(S ◦ T )(v)]D
= [S ◦ T ]B,D [v]B

Exercise: Let V,W be finite dimensional vector space over F with dimV = dimW ,
B,C ordered bases of V,W respectively, T : V →W linear. Then, T is an isomorphism
iff [T ]B,C is invertible.
Let V be a finite dimensional vector space over F , dimV = n, B an ordered basis for
V . Then

φ : L(V, V )→MnF by T 7→ [T ]B

satisfies all of the following: ∀T, S ∈ L(V, V )

(i) φ(T + S) = φ(T ) + φ(S)

(ii) φ(T ◦ S) = φ(T )φ(S)

(iii) φ(0V ) = 0Fn×1

(iv) φ(1V ) = 1Fn×1

By the exercise, φ is bijection linear transformation. Both L(V, V ) and MnF satisfy all
the axioms of a field except (M3) and (M4). We call them (NON COMMUTATIVE)
rings and since φ preserves all the structure i) – iv) as does its inverse(?), we say φ is an
ISOMORPHISM of rings

Definition 12.5 (Change of Basis Matrix) — Let V be a finite dimensional vector
space over F with ordered bases B,C . Then the invertible matrix [1V ]B,C is called
a CHANGE OF BASIS MATRIX.
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Example 12.6 1. S = {e1, e2} ,B = {(1, 1), (2, 1)} ,C = {(3, 4), (6, 1)} ordered
bases for R2.

[1R2 ]B,S =

(
1 2
1 1

)
, [1R2 ]S =

(
1 0
0 1

)
[1R2 ]C ,S =

(
3 6
4 1

)
, [1R2 ]B =

(
1 0
0 1

)
2. B an ordered basis for V , a finite dimensional vector space over F , dimV = n,

then [1V ]B = I ∈MnF

3. V a finite dimensional vector space over F , B,C ordered bases for V , then
[1V ]B,C is invertible and

[1V ]−1
B,C = [1V ]C ,B

[1V ]B,C [1V ]C ,B = [1V ]C

= I

= [1V ]C ,B[1V ]B,C

4. Apply 3) to 1)

[1V ]S ,C = [1V ]−1
C ,S =

(
3 6
4 1

)−1

= − 1

21

(
1 −6
−4 3

)
[1V ]B,C = [1V ]S ,C [1]B,S

= − 1

21

(
1 −6
−4 3

)(
1 2
1 1

)
= − 1

21

(
−5 −4
−1 −5

)

Some more examples
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Example 12.7 1. Any invertible matrix A ∈ MnF is a change of basis matrix
for some ordered bases B,C for Fn : if A = (αij) is invertible, define

vj =
n∑
i=1

αijei, B = {v1, . . . , vn}

Then A = [A]B,S since A is invertible, so B is linearly indep., hence a basis
by counting and A = [Fv]B,S .

2. The jth column of [1v]B,C , V a finite dimensional vector space over F is the
jth vector of B expressed as a linear combo of vectors in C .

3. Generalizing (1), (3) from above example, we get the following crucial compu-
tational device: if V = Fn,B,C ordered bases for V , then

[1v]B,C = [1v]S ,C [1v]B,S = [1v]
−1
C ,S [1v]B,S

if we only have V ∼= Fn, then we have to use an isomorphism V → Fn – how?

Since [1v]B,S and [1v]C ,S are usually (often?) easy to write down, this is
quite useful. What if V = Fm×n?

Theorem 12.8 (Change of Basis)

Let V,W be finite dimensional vector space over F with ordered bases B,B′ for V
and C ,C ′ for W . Let T : V →W be linear. Then

[T ]B,C = [1W ]C ′,C [T ]B′,C ′ [1V ]B,B′

= [1W ]−1
C ,C ′ [T ]B′,C ′ [1V ]B,B′

= [1W ]C ′,C [T ]B′,C ′ [1V ]−1
B′,B

Proof. We have
[1W ]−1

C ,C ′ = [1W ]C ′,C and [1V ]B,B′ = [1V ]−1
B′,B

Since

[1W ]C ′,C [T ]B′,C ′ [1V ]B,B′ = [1W ◦ T ]B′,C [1V ]B,B′

= [1W ◦ T ◦ 1V ]B,C

= [T ]B,C

the result follows.

To use (and remember) this, do it as follows – to let the notation help you:

T : V →W

WC

WC′

[1W ]C,C′[1W ]−1
C′,C

VB

[1V ]B,C

[1V ]B′,B

[1V ]−1
B,B′

‖

VB′

[T ]B,C

[T ]B′,C′

[T ]B,C′

[T ]B′,C
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COMMUTES, i.e., can compose along any allowable arrows in the correct direction if
we arrive at the same place in different way starting at the same place we get the same
answer.
Warning: You can only reverse direction if the arrow is an isomorphism and then you
can take the inverse. To remember the theorem, we write

T : V →W

WC

WC′

VB

VB′

[T ]B,C

[1V ]B,B′ [1W ]C,C′

and fill in arrows you can find in the diagram before.
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§13 Lec 13: Oct 30, 2020

§13.1 Some Examples of Change of Basis

If V,W are finite dimensional vector space over F with ordered bases B,C respectively
and if T : V →W is linear

[Tv]C = [T ]B,C [v]B∀v ∈ V

Note: There is nothing about the bases in which v was written.

1. V = R2, S = {e1, e2} ,B = {v1 = (1, 1), v2 = (2, 1)} ordered bases. Find [T ]S in

the following (equivalently, [T ]S

[
α
β

]
S

↔ T (α, β))

(i) T (1, 1) = (2, 1) and T (2, 1) = (1, 1)

VB VB

VS

[T ]B

[1V ]B,S

VS[T ]S

[1V ]B,S =
1 2

1 1

So

[T ]S = [1V ]B,S [T ]B[1V ]−1
B,S

=

(
1 2
1 1

)(
0 1
1 0

)(
1 2
1 1

)−1

=

(
−1 3
0 1

)
So T (α, β) = (−α+ 3β, β)

(ii) T (1, 1) = 6(1, 1) + (2, 1) and T (2, 1) = −2(1, 1) + (2, 1)

VB VB

VS

[T ]B

[1V ]B,S

VS[T ]S

[1V ]B,S =
1 2

1 1

So

[T ]S =

(
1 2
1 1

)(
6 −2
1 1

)(
1 2
1 1

)−1

=

(
−8 16
−8 15

)
(iii) T (1, 1) = (3, 1) and T (2, 1) = (5, 1)

VB VB

VS VS

[T ]B,S [1]B,S

[T ]B,S = ([T (1, 1)]S [T (2, 1)]S ) = ([(3, 1)][(5, 1)]S )

So [T ]S = [T ]B,S [1V ]−1
B,S which is equal to

(
3 5
1 1

) (
1 2
1 1

)−1
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2. Let T be a rotation about the axis (1, 1, 1) ∈ V = R3 of an ∠θ in the counter-
clockwise direction with (1, 1, 1) up. We will use stuff from 33A – dot product.
Normalize (1, 1, 1) to

v1 =

(
1√
3
,

1√
3
,

1√
3

)
=

(1, 1, 1)

‖(1, 1, 1)‖

a unit vector in the DIRECTION of v1. Find a vector ⊥ to v1, say

v′2 = (0, 1,−1)

and normalize it to

v2 =

(
0,

1√
2
,− 1√

2

)
Let v3 = v1 × v2 the cross product of v1, v2. It is orthogonal to v1 and v2 and by
the right hand rule in the correct orientation

v3 =

 i j k
1√
3

1√
3

1√
3

0 1√
2
− 1√

2

 =

(
− 2√

6
,

1√
6
,

1√
6

)

a unit vector (or use Gram – Schmidt and check you have v3 = v1 × v2 and not
−(v1 × v2)

§13.2 Orthonormal Basis

Definition 13.1 (Orthonormal Basis) — Let B = {v1, v2, v3} an ordered bases of
vectors of length 1 and each ⊥ to the others, called an ORTHONORMAL BASIS.

Tv1 = v1

Tv2 = cos θv2 + sin θv3

Tv3 = − sin θv2 + cos θv3

[T ]B =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ


[1V ]B,S =


1√
3

0 − 2√
6

1√
3

1√
2

1√
6

1√
3
− 1√

2
1√
6


VB VB

VS

[T ]B

[1V ]B,S

VS[T ]S

[1V ]B,S

[T ]S = [1V ]B,S [T ]B[1V ]−1
B,S = [1V ]B,S [T ]B[1V ]S ,B

Since both S and B are orthonormal bases and F = R, it turns out that

[1V ]−1
B,S = [1V ]>B,S

This is, however, not true in general.
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3. V = R3, T : V → V as in 2) and S : V → V a reflection about the plane ⊥ (1, 2, 3).
Find [S]S and [S ◦ T ]S .

Find an orthonormal basis with (1, 2, 3) direction of the first vector

(1, 2, 3), (0, 3,−2), (−13, 2, 3)

then normalize as follows:

w1 =

(
1√
14
,

2√
14
,

3√
14

)
w2 =

(
0,

3√
13
,− 2√

13

)
w3 =

(
−13√
182

,
2√
182

,
3√
182

)

So C = {w1, w2, w3} is an orthonormal basis and

[S]C =

−1 0 0
0 1 0
0 0 1



VB VB

VS

[T ]B

[1V ]B,S

VS[T ]S
VS

VC

[S]S

VC[S]C

[1V ]C,S

[1V ]C ,S =


1√
14

0 13√
182

2√
14

3√
13

2√
182

3√
14
− 2√

13
3√
182


[S]S = [1V ]C ,S [S]C [1V ]−1

C ,S

[S ◦ T ]S = [1V ]C ,S [S]C [1V ]B,S [T ]B[1V ]−1
B,S

The only reason to normalize C to an orthonormal basis is

[1V ]))C ,S −1 = [1V ]>C ,S

§13.3 Similarity

Definition 13.2 (Similar Matrices) — Let A,B ∈MnF . We say A is SIMILAR to
B write A ∼ B if ∃C ∈MnF invertible 3

A = C−1BC
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Remark 13.3. A,B ∈MnF :

1. A ∼ B → B ∼ A :

A = C−1BC,C invertible → B = (C−1)−1AC−1 as CC−1 = I = C−1C

2. If A ∼ B, then detA = detB. If A = C−1BC, invertible, then

detA = det
(
C−1BC

)
= det(C−1) detB detC

= (detC)−1 detB detC = detB

3. ∼ is an equivalence relation.

Theorem 13.4 (Similar Matrices)

Let A,B ∈MnF . Then A ∼ B iff ∃V a vector space over F , dimV = n, T : V → V
linear and ordered bases B,C for V s.t

A = [T ]B and B = [T ]C

i.e., A ∼ B iff they represent the same linear transformation relative to (possibly)
different ordered bases.
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§14 Lec 14: Nov 2, 2020

§14.1 Lec 13 (Cont’d)

Proof. (Of Similar Matrices Theorem) (←) If A = [T ]B, B = [T ]C , then C = [1V ]B,C ∈
MnF is invertible with A = C−1BC by the Change of Basis Theorem.
(→) Suppose C ∈MnF is invertible, A = C−1BC. Define V = Fn, T : V → V by

Tij =

n∑
i=1

Aijei

with S = {e1, . . . , en} the standard basis

[T ]S = A = C−1BC

Let wj :=
∑n

i=1(C−1)ijei, i.e., (C−1)ij is the ijth entry of C−1. As C is invertible, C−1

exists and is invertible. Then
B = {w1, . . . , wn}

is a basis for V and [1V ]B,S = C−1 figure here so A = C−1[T ]BC and B = [T ]B
works.

§14.2 Eigenvalues and Eigenvectors

Definition 14.1 (Eigenvalues, Eigenvectors & Eigenspace) — Let 0 6= V be a vector
space over F , T : V → V a linear operator and λ ∈ F . Set

Sλ := T − λ1V : V → V,

a linear operator, so
Sλ(v) = Tv − λv∀v ∈ V

We say λ is an EIGENVALUE of T if Sλ is not 1− 1, i.e., kerSλ 6= 0. Let

ET (λ) := kerSλ = {v ∈ V |Tv − λv = 0}
= {v ∈ V |Tv = λv}

if ET (λ) 6= 0, we call ET (λ) an EIGENSPACE of V relative T, λ and any v ∈ ET (λ)
an EIGENVECTOR of T relative to λ. So if T : V → V is linear, λ ∈ F is an
eigenvalue of T iff

∃0 6= v ∈ V 3 Tv = λv
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Remark 14.2. Let 0 6= V be a vector space over F and T : V → V linear

1. Eigenvalues occur as measured quantities in science and engineering, e.g., resonance,
quantum number – measurable values.

2. If λ ∈ F is an eigenvalue of T , then

0 6= ET (λ) ⊂ V is a subspace

3. If λ ∈ F an eigenvalue, any v ∈ ET (λ) is an eigenvector. In particular, any basis for
ET (λ) consists of eigenvectors of T relative to λ. Hence

T
∣∣∣
ET (λ)

= λ1ET (λ)

(the notation above means we restrict the domain to ET (λ). In particular, if
V = ET (λ), then T = λ1V .

4. If T = 0, then V = ET (λ) with eigenvalue λ = 0(λ = 1).
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Example 14.3 5. Let V = R3, T : V → V a counterclockwise rotation by an
∠θ, 0 < θ < 2π around the axis determined by 0 6= v ∈ V . Then

T (αv) = αTv = αv∀α ∈ F

So Span(v) ⊂ ET (1). Note if 0 6= v is an eigenvector with eigenvalue µ of
linear S : V → V , then

Sv ∈ Span(v) = Fv so Span(v) ⊂ ES(µ)

Do there exist other eigenvalues of T? Ever? So the only other possibilities
would be

θ = π, λ = −1

In that case
ET (−1) = Span(w1, w2)

where w1, w2 are linearly indep. with wi ⊥ v, i = 1, 2. (of course, if one allows
θ = 0, T = 1V .)

6. Let 0 6= v ∈ V . Suppose that

µv = Tv = λv, λ, µ ∈ F

Then µ = λ so 0 6= v ∈ V is an eigenvector of at most one eigenvalue of T –
usually none. In particular,

ET (λ) ∩ ET (µ) = 0 if λ 6= µ

and we write
ET (λ)⊕ ET (µ) = ET (λ) + ET (µ)

and call it the DIRECT SUM of the subspace ET (λ) and ET (µ).

What do you think is W1

⊕
W2

⊕
W3?

7. Suppose dimV = n, B = {v1, . . . , vn} is an ordered basis for V . Suppose
that that

Tvi = αivi, i = 0, . . . , n

λ1, . . . , λn ∈ F not necessarily distinct. Then

[T ]B =

(
λ1 0
0 λn

)
is a DIAGONAL MATRIX, i.e., all non-diagonal entries 0. We say T is
DIAGONALIZABLE if ∃ an ordered bases C for V 3 [T ]C is diagonal.

8. Suppose dimV = n(< ∞) and T is diagonalizable, i.e., ∃ an ordered basis
C = {w1, . . . , wn} for V s.t.

[T ]C =

µ1 . . . 0
...

. . .
...

0 . . . µn


Then Twi = µiwi, i = 1, . . . , n and C is an ordered basis for V consisting of
eigengenvalues for T .
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Conclusion: Let V be a finite dimensional vector space over F , T : V → V linear. Then
T is diagonalizable iff ∃ a basis for V consisting of eigenvectors of T .
Note: If T is diagonalizable, T : V → V linear, V a finite dimensional vector space
over F , ordered basis B for V . Then ∃C ∈MnF , invertible, n = dimV 3 C−1[T ]BC is
diagonal by the Change of Basis Theorem.

Example 14.4 9. Let V be a finite dimensional vector space over F , n = dimV ,
B an ordered basis for V , S : V → V linear. Then by the Isomorphism
Theorem, S is 1-1 iff S is onto. Apply this to

Sλ = T − λ1V : V → V

to conclude:

λ is an eigenvalue of T iff Sλ = T − λ1V is singular (i.e., Sλ is not 1-1)

iff
[Sλ]B = [T − λ1V ]B is not invertible

iff
det[T − λ1V ]B = 0 (by properties of det)

iff
det ([T ]B − λ[1V ]B) = 0

iff
det ([T ]B − λI) = 0

iff
det (λI − [T ]B) = 0

Summary: Let V be a finite dimensional vector space over F , dimV = n, T : V → V
linear, B an ordered basis for V , λ ∈ F . Then, λ is an eigenvalue of T iff det(λI−[T ]B) =
0.

Definition 14.5 (Characteristics Polynomial) — Let A ∈MnF . Define

fA := det(tI −A) ∈ F [t]

called the Characteristics Polynomial of A.

The properties of the determinant on F [t] is the same as on F except that A ∈MnF [t]
is invertible iff detA ∈ F \ {0} and we assume these properties.

Proposition 14.6

If A,B ∈MnF are similar, then fA = fB

Proof. If A = C−1BC, C ∈MnF in

fA = det(C−1(tI −B)C) = detC−1 det(tI −B) detC

= det(tI −B) = fB

Warning: Let A =

(
1 0
0 1

)
and B =

(
1 0
1 1

)
. Then, A and B are not similar, but

fA = fB, i.e., the converse is false.
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Corollary 14.7

Let V be a finite dimensional vector space over F , T : V → V linear, B,C ordered
bases for V . Then

f[T ]B = f[T ]C

Proof. Change of Basis Theorem.

Definition 14.8 (Characteristics Polynomial) — Let V be a finite dimensional
vector space over F , T : V → V linear, B ordered basis for V . We call f [t]B the
characteristics polynomial of T . By the corollary, it is independent of B, so we
denote it by fT (= f[T ]B) and write fT = det(t1V − T ) := det(tI − [T ]B)

Theorem 14.9

Let V be a finite dimensional vector space over F , T : V → V linear. Then, the
eigenvalues of T are precisely, the roots of fT , i.e., those α ∈ F 3 fT (α) = 0.

Proof. detλ ∈ F,B an ordered basis for V . Set A = [T ]B, so fT = det(tI −A). Then
λ is a root of fT iff evaluating fT at λ, i.e., fT (λ), we have

fT (λ) = det(tI −A)
∣∣∣
t=λ

= 0 ⇐⇒ λ is an eigenvalue of T

i.e., expanding the polynomial det(tI −A) and plugging λ for t gives 0.

We cannot use the following theorem if we fully prove it.

Theorem 14.10 (Cayley – Hamilton)

Let A ∈MnF . Then
fA(A) = 0

plugging A into the expansion of the determinant fA, you get 0.

Remark 14.11. By HW, we have
{
I, A,A2, . . . , An

2
}
⊂ MnF is linearly dep., i.e.,{

I, A, . . . , AN
}

is linearly dep. for some N > 0. This means ∃0 6= g ∈ F [t] with deg
g ≤ N and g(A) = 0 – why?

So Cayley – Hamilton’s Theorem says {I, A, . . . , An} in MnF is always linearly dep. in
MnF with fA(A) giving a dependence relation.
Note: If you know Cramer’s Rule in determinant theory, one can prove Cayley – Hamilton
follows from it. In fact, it is essentially Cramer’s Rule.
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Remark 14.12. Let V be a finite dimensional vector space over F , T : V → V linear. You
will show in your Take home Exam. There exists a polynomial q ∈ F [t] satisfying

1. q 6= 0

2. q(A) = 0

3. deg q is the minimal degree for a poly g 6= 0 in F [t] to satisfy g(A) = 0

4. q is MONIC, i.e., leading coeff is 1.

Moreover, q is unique and called the MINIMAL POLYNOMIAL of A and denoted qT .
Using it we shows a stronger form of the Cayley – Hamilton Theorem.
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§15 Lec 15: Nov 4, 2020

§15.1 Lec 14 (Cont’d)

Cayley – Hamilton (Stronger Form): Let V be a finite dimensional vector space over F ,
T : V → V linear, then

qT |fT in F [t]

(where qT = q[T ]B, B an ordered basis and qT is indep. of B ). Why does this show
the other form?
Computation: Let V be a finite dimensional vector space over F , T : V → V linear. To
find eigenvalues and eigenvectors of T , you must solve

Tv = αv

By Matrix Theory Theorem, this is equivalent to

[T ]B[v]B = λ[v]B (*)

B an ordered basis for V . To find eigenvalues, we find the roots of fT . To find the
eigenvectors, we solve (*).

Theorem 15.1

Let T : V → V be linear and λ1, . . . , λn in F distinct eigenvalues of T, 0 6= vi ∈
ET (λi), i = 1, . . . , n. Then {v1, . . . , vn} is linearly indep.

Proof. We induct on n.

• n = 1 : v1 6= 0 so {v} is linearly indep.

• n > 1 – Induction Hypothesis (IH) : If λ1, . . . , λn−1 are distinct eigenvalues of
T, 0 6= vi ∈ ET (λi), i = 1, . . . , n− 1 then {v1, . . . , vn−1} is linearly indep. Suppose
that

0 = α1v1 + . . .+ αnvn, α1, . . . , αn ∈ F (*)

Apply the linear operator Sλn = T − λn1V to (*). As

Sλn(vi) = Tvi − λnvi = λivi − λnvi = (λi − λn)vi

We get

Sλn(α1v1 + . . .+ λnvn) = α1Sλvnv1 + . . .+ αnSλvnvn

0 = α1(α1 − αn)v1 + . . .+ αn−1(λn−1 − λn)vn−1

By the IH, αi(λi − λn) = 0, i = 1, . . . , n− 1

As λi − λn 6= 0, i = 1, . . . , n− 1, αi = 0, i = 1, . . . , n− 1. So 0 = αnvn. As vn 6= 0,
αn = 0 also.

Proof. (Alternative) Take T of (*) to get an eqn 1). Multiply (*) by λn to get an eqn 2).
Subtract eqn 2) from eqn 1). The proof that if α1, . . . , αn are distinct then eλ1x, . . . , eλnx

are linearly indep.
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Corollary 15.2

Let V be a finite dimensional vector space over F , dimV = n if T : V → V linear
has n distinct eigenvalues, then T is diagonalizable. The converse is false, e.g.,
T = 1V .

Corollary 15.3

If V is a finite dimensional space over F , dimV = n, T : V → V linear, then T has
at most n distinct eigenvalues. This also follows as any 0 6= f ∈ F [t] has at most
deg f roots.

Corollary 15.4

Let V be a vector space over F , T : V → V linear, λ1, . . . , λn distinct eigenvalues
of T . Set

w = ET (λ1) + . . .+ ET (λn)

if vi ∈ ET (λi), i = 1, . . . , n satisfy

v1 + . . .+ vn = 0

then vi = 0, i = 1, . . . n. We write this as

W = ET (λ1)⊕ . . .⊕ ET (λn)

Exercise 15.1. Let V be a vector space over F , W1, . . . ,Wn ⊂ V subspaces. Let
W = W1 + . . .+Wn. Then the followings are equivalent

1. If wi ∈ Wi, i = 1, . . . , n satisfy w1 + . . .+ wn = 0 then wi = 0∀i. We say Wi are
indep.

2. If v ∈W∃!wi ∈Wi 3 v = w1 + . . .+ wn

3. Wi ∩
∑n

j 6=i,j=1Wj = 0∀i = 1, . . . , n

4. If Bi is a basis for Wi, i = 1, . . . , n then B = B1 ∪ . . . ∪Bn is a basis for W .

If these hold for W , we say W is an (internal) direct sum of the Wi and write

W = W1 ⊕ . . .⊕Wn

Remark 15.5. This generalizes to W = ⊕Wi, general I – How. What is the proof?

Exercise 15.2. Let V be a vector space over F , W1, . . . ,Wn ⊂ V subspaces 3 V =
W1 + . . .+Wn. Let

W = W1 × . . .×Wn = {(W1, . . . ,Wn)|wi ⊂Wi∀i}

a vector space over F via component wise operations. Show

v = W1 ⊕ . . .⊕Wn ⇐⇒ T : W1 × . . .×Wn → V

by (w1, . . . , wn) 7→ w1 + . . . wn is an isomorphism. We call W the external direct sum of
the Wi.
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Consequences: Let V be a finite dimensional vector space over F , λ1, . . . , λn distinct
eigenvalues of T : V → V linear, ?i = dimET (λi),Bi ordered basis for ET (λi), i =
1, . . . , n if

V = ET (λ1) + . . .+ ET (λn)

then
V = ET (λ1)⊕ . . .⊕ ET (λn)

and B = B1 ∪ . . . ∪Bn is an ordered basis for V and

[T ]B =


[
λ11ET (λ1)

]
B1

. . . [
λn1ET (λn)

]
Bn


(Block form) is a diagonal matrix. In particular,

fT = det(T1V − T ) = (t− λ1)r1 . . . (t− λn)rn

By determinant theory,

det

(
A 0
0 B

)
= detAdetB

A,B square matrices and T is diagonalizable.

Remark 15.6. T : V → V linear may or may not have eigenvalues

1. V = R2, fT = t2 + 1, then T has not eigenvalues.

2. If V is a finite dimensional vector space over C, then T has an eigenvalue as fT has
a root by the FUNDAMENTAL THEOREM OF ALGEBRA (which we shall always
assume to be true).

§15.2 Inner Product Space

We know that the dot product of vectors in R3 allows us to define ⊥ , ∠, distance,
etc. We want to generalize this to “inner product spaces”. When we talk about inner
product spaces, we shall always assume that OUR FIELD F LIES in C (e.g., Q,R,C )
as a subfield.
Let − : C→ C by α+ β

√
−1 7→ α− β

√
−1∀α, β ∈ R denoted complex conjugation.

Note:Let a = α+ β
√
−1 in C, α, β ∈ R. Then

1. a = a iff a ∈ R

2. a

3. |a|2 := aa ≥ 0 in R as aa = α2 + β2 and = 0 iff a= 0.

As we shall assume F ⊂ C, we define:

F := {z ∈ C|z ∈ F}

and we shall also assume that
F = F

This is true if F ⊂ R or F = C, but does not always hold UNLESS we only
consider those F that do which we will.
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Definition 15.7 (Inner Product Space) — Let F ⊂ C be a subfield satisfying
F = F , V a vector space over F . We call V an inner product space over F , write
V is an ips / F, under the map

〈, 〉 := 〈, 〉V : V × V → F

Write: 〈v, w〉 for 〈, 〉(v, w) if 〈, 〉 satisfies ∀v1, v2, v3, v ∈ V,∀α ∈ F

1. 〈v1 + v2, v3〉 = 〈v1, v3〉+ 〈v2, v3〉

2. 〈v1, v2〉 = 〈v2, v1〉

3. 〈αv1, v2〉 = α〈v1, v2〉 = 〈v1, αv2〉

4. 〈v, v〉 ∈ R and 〈v, v〉 ≥ 0 with 〈v, v〉 = 0 iff v = 0.

If V is an inner product space over F (under 〈, 〉, the LENGTH (or NORM or MAGNI-
TUDE) of v ∈ V is given by

‖v‖ :=
√
〈v, v〉 ≥ 0 ∈ R

Note: If F < C, ‖v‖2 ∈ F , but it is possible that ‖v‖ /∈ F, e.g., if V = Q2 a vector space
over Q and an inner product space over Q under the dot product ‖(1, 1)‖ =

√
2 /∈ Q.

This is a reason to work only with F = R or C.
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§16 Lec 16: Nov 6, 2020

§16.1 Lec 15 (Cont’d)

Properties: Let V be an inner product space over F , α ∈ F, v1, v2, v3 ∈ V .

1. 〈0, v〉 = 0 = 〈w, 0〉,∀v, w ∈ V .

2. • 〈αv1 + v2, v3〉 = α〈v1, v3〉+ 〈v2, v3〉
• 〈v1, αv2 + v3〉 = α〈v1, v2〉+ 〈v1, v3〉

3. If F ⊂ R define the ANGLE θ, 0 ≤ θ ≤ 2π between v1 6= 0 and v2 6= 0 in V by

cos θ :=
〈v1, v2〉
‖v1‖‖v2‖

and if F 6⊂ R define θ by

cos θ :=
|〈v1, v2〉|
‖v1‖‖v2‖

Note: This does not make sense yet, and will not until we show

|〈v1, v2〉|
‖v1‖‖v2‖

≤ 1 for v1 6= 0, v2 6= 0

4. (very useful prop) Let v ∈ V . If 〈v, w〉 = 0, ∀w ∈ V (or 〈w, v〉 = 0∀w ∈W ), then
v = 0.

5. Let 0 6= x ∈ V . Then
〈, x〉 : V → F by v 7→ 〈v, x〉

is a linear transformation, i.e., linear functional, i.e., 〈, x〉 ∈ V ∗. However,

〈x, 〉 : V → F by v 7→ 〈x, v〉

is linear iff F ⊂ R. In general, we say that 〈x, 〉 is SESQUILINEAR as ∀α ∈
F,∀v1, v2 ∈ V

〈x, αv1 + v2〉 = α〈x, v1〉+ 〈x, v2〉

Of course if x = 0, 〈0, 〉〈, 0〉 ∈ V ∗.

76



Duc Vu (Fall 2020 – Spring 2021) 115AH Lectures

Example 16.1

Let F ⊂ C, F = F = {α|α ∈ F}. The following V vector space over F are inner
product space over F under the given 〈, 〉 :

1. V = Fn and 〈, 〉 = ·︸︷︷︸
dot product

, i.e., if

v = (α1, . . . , αn) , w = (β1, . . . , βn) , αi, βi ∈ F,∀i, j

Then,

〈v, w〉 =
n∑
i=1

αiβi

Note: If F ⊂ R, then

〈v, w〉 =

n∑
i=1

αiβi

2. Let I = [α, β] , α < β in R, V = C(I) with C (I) = {f : I → R|f cont} then

〈f, g〉 :=

∫ β

α
fg

Think about what if CC := {f : I → C|f cont}.

3. In 2), let h ∈ C(I) satisfy h(x) > 0∀x ∈ I. Then

〈f, g〉h :=

∫ β

α
hfg

the WEIGHTED INNER PRODUCT SPACE via h.

4. Let A ∈MnF . Define the adjoint of A to be A∗ where

(A∗)ij := Aji, ∀i, j

the conjugate transpose of A., i.e., A∗ = A
>

. So if F ⊂ R, A∗ = A>.

Remark 16.2. If A = Fm×n, then A∗ defined by (A∗)ij = Aji still makes sense and is
called the ADJOINT of A. What can you say about AA∗ and A∗A?

Let V = MnF under
〈A,B〉 := tr(AB∗)

where tr C =
∑n

i=1Cii. So if F ⊂ R, 〈A,B〉 = tr(AB>). tr=trace
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Example 16.3 5. Let F = R

l2 :=
{

(a0, a1, . . . , an, . . .) |ai ∈ R∀i – infinite seq with
∑

a2
i <∞

}
a vector space over F by component wise operation ( a subspace of R∞inf – see
below) and an inner product space over R via

〈v, w〉 :=
∞∑
i=0

aibi ∈ R

if v = (a0, a1, . . .), w = (b0, b1, . . .)

0 ≤ (ai ± bi)2 = a2
i ± 2aibi + b2i ,∀i so

∓2
∞∑
i=0

aibi ≤
∞∑
i=0

a2
i +

∞∑
i=0

b2i <∞

Theorem 16.4

Let V be an inner product space over F . Then ∀v1, v2 ∈ V,∀α ∈ F , we have

1. ‖v1‖ ∈ R with ‖v1‖ ≥ 0 and ‖v1‖ = 0 iff v1 = 0.

2. ‖αv1‖ = |α|‖v1‖.

3. Cauchy – Schwarz Inequality

|〈v1, v2〉| ≤ ‖v1‖‖v2‖

4. Minkowski Inequality(special case)

‖v1 + v2‖ ≤ ‖v1‖+ ‖v2‖

Proof. 1) and 2) are left as exercise.
3) If v1 = 0 or v2 = 0, the result is immediate, so we may assume that v1 6= 0, v2 6= 0.
We use the following important trick. Take the orthogonal projection. Let

v = v2 −
〈v2, v1〉
‖v1‖2

v1︸ ︷︷ ︸
orthogonal projection on v1

Claim 16.1. 〈v, αv1〉 = 0∀α ∈ F (i.e., v ⊥ αv1)

〈v, αv1〉 = 〈v2 −
〈v2, v1〉
‖v1‖2

v1, αv1〉

= 〈v2, αv1〉+ 〈−〈v2, v1〉
‖v1‖2

v1, αv1〉

= α〈v2, v1〉 −
〈v2, v1〉
‖v1‖2

〈v1, αv1〉

= α〈v2, v1〉 −
〈v2, v1〉
‖v1‖2

α‖v1‖2 = 0
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establishing the claim. Therefore, we have

0 ≤ 〈v, v〉 = 〈v, v2 −
〈v2, v1〉
‖v1‖2

v1〉

= 〈v, v2〉+ 〈v1 −
〈v2, v1〉
‖v1‖2

v1〉 = 〈v, v2〉

= 〈v2 −
〈v2, v1〉
‖v1‖2

v1, v2〉 = 〈v2, v2〉 −
〈v2, v1〉
‖v1‖2

〈v1, v2〉

= ‖v2‖2 −
〈v1, v2〉
‖v1‖2

〈v1, v2〉 = ‖v2‖2 −
|〈v1, v2〉|2

‖v1‖2

So
|〈v1, v2〉|2 ≤ ‖v1‖2‖v2‖2

or
|〈v1, v2〉| ≤ ‖v1‖‖v2‖

as required.

Proof. 4.

‖v1 + v2‖2 = 〈v1 + v2, v1 + v2〉
= ‖v1‖2 + 〈v1, v2〉+ 〈v2, v1〉+ ‖v2‖2

= ‖v1‖2 + 〈v1, v2〉+ 〈v1, v2〉+ ‖v2‖2

Let 〈v1, v2〉 = α+ β
√
−1, α, β ∈ R. Then

‖v1 + v2‖2 = ‖v1‖2 + 2α+ ‖v2‖2

≤ ‖v1‖2 + 2
√
α2 + β2 + ‖v2‖2

= ‖v1‖2 + 2 |〈v1, v2〉|+ ‖v2‖2

≤ (‖v1‖+ ‖v2‖)2

So, ‖v1 + v2‖ ≤ ‖v1‖+ ‖v2‖.
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§17 Lec 17: Nov 9, 2020

§17.1 Lec 16 (Cont’d)

Example 17.1

Let V be an inner product space over F

1. |α1β1 + . . .+ αnβn| ≤
√∑n

i=1 α
2
i

√∑n
i=1 β

2
i , ∀αi, βi ∈ R.

2.
∫ β
α fg ≤

√∫ β
α f

2

√∫ β
α g

2, ∀f, g ∈ C[α, β].

3. ∠ between nonzero vectors in V makes sense.

4. Distance between (end pts) vectors makes sense by the following:

If V is an inner product space over F , define the distance between v1, v2 ∈ V
by

d(v1, v2) := ‖v1 − v2‖ ≥ 0 ∈ R

Then d satisfies ∀v, w, x ∈ V
• d(v, w) ≥ 0 ∈ R and d(v, w) = 0 iff v = w.

• d(v, w) = d(w, v)

• Triangle inequality

d(v, x) ≤ d(v, w) + d(w, x)

We call V a METRIC SPACE under d.

Example 17.2 (Metric Space)

If v = (α1, . . . , αn), w = (β1, . . . , βn) ∈ Rn under the dot product, then

d(v, w) =
√

(α1 − β1)2 + . . .+ (αn − βn)2

§17.2 Orthogonal Bases

Motivation: in Rn (or Cn), S = Sn = {e1, . . . , en} the standard basis satisfies

ei · ej = δij :=

{
1, if i = j,∀i, j
0, if i 6= j

Goal: Let V be a finite dimensional inner product space over F , F = R or C. Find a
basis B = {v1, . . . , vn} for V 3

〈vi, vj〉 = δij , ∀i, j (*)

if we only want bases C = {w1, . . . , wn} for V 3

〈wi, wj〉 = 0∀i 6= j,

we can work with any subfield F ⊂ C with F = F , since we do not need ‖wi‖ ∈ F for
such a C .
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Example 17.3

In R2, let 0 ≤ θ < 2π be fixed. Then

Cθ = {(cos θ, sin θ) , (− sin θ, cos θ)}

satisfies (*)

Definition 17.4 (Orthonormal/Orthogonal) — Let V be an inner product space
over F , ∅ 6= S ⊂ V a subset. We say

1. S is ORTHOGONAL (or OR) if

〈v, w〉 = 0∀v 6= w ∈ S

2. If S is an OR set, we call it ORTHONORMAL (or ON) if, in addition
‖v‖ = 1∀v ∈ S.

3. An OR set is called an OR basis if, in addition, it is a basis for V .

4. If v, w ∈ V , we say v, w are orthogonal or perpendicular if 〈v, w〉 = 0 write
v ⊥ w. (equivalently 〈w, v〉 = 0)

Goal: If F ⊂ C is a subfield (and F = F ), V a finite dimensional inner product space
over F , then V has an OR bases and an ON bases if F = R or C.

Remark 17.5. Let V be an inner product space over F , x, y ∈ V .

1. 0 ⊥ x

2. x ⊥ y iff y ⊥ x

3. 0 is the only vector perpendicular to all z ∈ V .

Theorem 17.6

Let V be an inner product space over F, S ⊂ V an OR set. Suppose that 0 6= S,
then S is linearly indep. If, in addition, V is a finite dimensional inner product
space over F and |S| = dimV, then S is an OR basis for V .

Proof. Let v ∈ Span(S). Then ∃ (distinct) v1, . . . , vn ∈ S, α1, . . . , αn ∈ F 3

v = α1v1 + . . .+ αnvn

We have

〈v, vj〉 = 〈α1v1 + . . .+ αnvn〉

=

n∑
i=1

αi〈vi, vj〉

=

n∑
i=1

αiδij‖vj‖2 = αj‖vj‖2
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This is so useful, we record it as
Crucial Equation: If {v1, . . . , vn} , α1, . . . , αn ∈ F then

αj =
〈v, vj〉
‖vj‖2

, j = 1, . . . , n

Note: If V is not necessarily finite dimensional and S is an OR set not containing O,
the same holds.
Now, suppose that v = 0, i.e.,

0 = α1v1 + . . .+ αnvn

so

αj =
〈v, vj〉
‖vi‖2

=
〈0, vj〉
‖vi‖2

= 0, j = 1, . . . , n

and the result follows.

Note: If B = {v1, . . . , vn} is an OR set, vi 6= 0∀i, V = SpanB, hence a basis for V then

〈v, vj〉
‖vj‖2

is the jth coordinate of v on vj and

v =
n∑
j=1

〈v, vj〉
‖vj‖2

If, in addition, ‖vj‖ ∈ F∀j, then

C =

{
v1

‖v1‖
, . . . ,

vn
‖vn‖

}
is an ON basis and ∀v ∈ V .

v =

n∑
j=1

〈v, vj〉
‖vj‖2

vj =

n∑
j=1

〈v, vj
‖vj‖
〉 vj
‖vj‖

Hence if wi = vi
‖vi‖ , i = 1, . . . , n,C = {w1, . . . , wn} is an ON basis and

v =

n∑
i=1

〈v, wi〉wi

i.e., 〈v, wi〉 is the coordinate of v and wi for each i.
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Remark 17.7. Does this look familiar?

1. Look at the proof of the Cauchy – Schwarz Inequality

2. Let B = {v1, . . . , vn} be an OR basis for V a finite dimensional inner product space
over F and

B∗ = {f1, . . . , fn}

the dual basis for V ∗ = L(V, F ). So, fi(vj) = δij ,∀i, j. Then fi : V → F is

fi(v) = 〈v,vi〉
‖vi‖2 , i = 1, . . . , n by Crucial Equation:

fi = 〈−, vi
‖vi‖2

〉 : V → F

and if C = {w1, . . . , wn} is an ON basis then

fi = 〈, wi〉 ∈ C ∗

fi (v) = 〈v, wi〉

i.e., we can associate a vector in V to a linear functional.

Theorem 17.8

Let V be an inner product space over F , B an OR basis for V , v ∈ V . Then
〈v, w〉 = 0 for all but finitely many w ∈ B and

v =
∑
B

〈v, w〉
‖w‖2

w

is a finite sum. If, in addition, B is ON, then this becomes

v =
∑
B

〈v, w〉w

Corollary 17.9 (Parseval’s Equation)

Let V be a finite dimensional inner product space over F with ON basis {v1, . . . , vn}
and v, w ∈ V . Then

〈v, w〉 =

n∑
i=1

〈v, vi〉〈w, vi〉

In particular,

‖v‖2 =

n∑
i=1

|〈v, vi〉|2 , (Pythagorean Theorem)

Proof. Hw – Take home.
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§18 Lec 18: Nov 16, 2020

§18.1 Lec 17 (Cont’d)

Example 18.1

Let V = C[0, 2π] an inner product space over R via

〈f, g〉 :=

∫ 2π

0
fg

Let u0 = 1√
2π
, u2n = 1√

π
sinnx, u2n+1 = 1√

π
cosnx for all n ∈ Z+ and set

S = {ui|i ≥ 0}

By calculus

〈ui, uj〉 =

∫ 2π

0
uiuj = δij ,∀i, j

So S is ON hence linearly indep (0 /∈ S) and a ON basis for Span S.

Note: Vectors in span S are finite linear combos of vectors in S. In particular, C[0, 2π]
is infinite dimensional (and Span S < C[0, 2π] is a subspace). In calculus, you studied
convergent series, a convergent series

∞∑
i=0

αiui (*)

is called a FOURIER SERIES, the αi Fourier coefficients.
Warning: S = B = ∪Bn,Bn = {ui|i = 0, . . . , 2n+ 1} is ON but not a basis for C[0, 2π]
or even

V = {f ∈ C[0, 2π]|f converges to its Fourier series}

It can be shown that C ′[0, 2π] ⊂ V .
Note: No one knows a precise basis for C[0, 2π] although it exists by axioms.

Remark 18.2. 1. One can modify the interval [0, 2π] in the above with appropriate
changes to the ui.

2. Infinite ON sets are very useful.

To solve our goal about finite dimensional inner product space over F , we know
show:

Theorem 18.3 (Gram-Schmidt)

Let V be an inner product space over F and ∅ 6= Sn = {v1, . . . , vn} ⊂ V a linearly
indep. set. Then ∃y1, . . . , yn ∈ V 3

• y1 = v1

• Tn = {y1, . . . , yN} is an OR set and linearly indep.

• Span Tn = Span Sn
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Proof. We construct Tn from Sn. This construction is called the Gram – Schmidt process.
n = 1 is clear. We proceed by induction. We may assume we have done the Sn case, i.e.,

1. y1, . . . , yn ∈ V, y1 = v1, yi 6= 0, i = 1, . . . , n

2. Tn = {y1, . . . , yn} is OR. (hence linearly indep. as 0 /∈ Tn)

3. Span Sn = Span{y1, . . . , yn}

4. Must extend this to the case of n+ 1.

As in the proof of GS (where we threw away one orthogonal complement), we subtract
an ORTHOGONAL PROJECTION figure here Define:

yn+1 = vn+1 −
n∑
k=1

〈vn+1, yk〉
‖yk‖2

yk (*)

Claim 18.1. yn+1 6= 0 : if yn+1 = 0, then vn+1 ∈ Span Tn = Span(v1, . . . , vn) contra-
dicting S?, is linearly indep. So yn+1 6= 0

Claim 18.2. 〈yn+1, yj〉 = 0, j = 1, . . . , n

〈yn+1, yj〉 = 〈vn+1 −
n∑
k=1

〈vn+1, yk〉
‖yk‖2

yk, yj〉

= 〈vn+1, yj〉 −
n∑
k=1

〈vn+1, yk〉
‖yk‖2

〈yk, yj〉

= 〈vn+1, yj〉 −
n∑
k=1

〈vn+1, yk〉
‖yk‖2

δkj‖yj‖2

= 〈vn+1, yj〉 − 〈vn+1, yj〉 = 0

This prove the above claim.
Since 0 /∈ Tn+1 = {y1, . . . , yn+1} and Tn+1 is OR, it is linearly indep. As Span Tn =
Span{v1, . . . , vn} and {v1, . . . , vn+1} is linearly indep.

Span Tn+1 = Span(vn+1, y1, . . . , yn) = Span(v1, . . . , vn+1)

by the Replacement Theorem and (∗). The theorem follows by induction.

Theorem 18.4 (Orthogonal)

Let V be a finite dimensional inner product space over F . Then V has an OR basis.
If F = R or C, then V has an ON basis.

Proof. Any basis for V can be converted to an OR basis C for V by the GS process

if V is finite dimensional if F = R or C, then
{

v
‖v‖ |v ∈ C

}
is an ON basis for V as

‖v‖ ∈ R∀v ∈ C

Remark 18.5. Let V = Q2 a finite dimensional inner product space over Q with inner
product defined by

〈(α1, α2), (β1, β2)〉 1
3

:=
1

3
(α1β1 + α2β2)

i.e., WEIGHTED DOT PRODUCT by 1
3 . Then V has an OR basis but not any ON basis

‖
(
a1
b1
, a2b2

)
‖ 1

3
/∈ Q as 3b21b

2
2 = a2

1b
2
2 + b21a

2
2 has no solution in Z.
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§18.2 Examples – Computation

Example 18.6 1. V = R3 under 〈, 〉 = dot product with v1 = (1, 1, 1), v2 =
(1, 1, 0), v3 = (1, 0, 1). GS v1, v2, v3 to an OR basis and then to an ON basis:

y1 = (1, 1, 1)

y2 = v2 −
v2 · y1

‖y1‖2
y1

. . . some boring calculation – can refer online notes/textbook

Note:

1. It is easier to guess.

2. If instead of F = R, we had F = Q, we could not get an ON basis after GS-ing.

Example 18.7

V = R[x] (polynomial function) via

〈f, g〉 :=

∫ 1

−1
fg

Bn =
{
xi|0 ≤ i ≤ n

}
is a basis for R[x]n. GS, Bn to an OR basis, at least start

g0 = 1

g1 = x− 〈x, 1〉
‖1‖2

1 = x−
∫ 1
−1 x∫ 1
−1 1

= x

g2 = x2 − 〈x
2, 1〉
‖1‖2

1− 〈x
2, x〉
‖x‖2

x

= x2 −
∫ 1
−1 x

2∫ 1
−1 1

−
∫ 1
−1 x

3∫ 1
−1 x

2
x = x2 − 1

3

...

The gi are called LEGENDRE POLYNOMIALS. You can normalize them, i.e., form
gi
‖gi‖ to get an ON set.

These are important polynomials, gn satisfies the ODE

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0

These occur in physics, e.g., converting Laplace’s Equation ∇2g = 0 into spherical
coordinates in some cases in quantum mechanics in the solution of Schrodinger’s Eqn
for the hydrogen atom.
Flow of an (ideal fluid) past a sphere. Determination of the electric fluid due to a
charged sphere. Determination of the temperature distribution in a sphere given its
surface temperature. Computing g′ns by GS is too difficult. There are many formulas to
determine the g′ns. Many arise by proving the following recurrence relation:
Rodriguez Representation:

gn =
1

2nn!

dn

dxn
(x2 − 1)n
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Some of these are, using the appropriate ? of the binomial coefficient(
n

m

)
:=

n!

m!(m− n)!
, 0 ≤ m ≤ n :

let M = n
2 or n−1

2 whichever one is an integer, i.e.,
[
n
2

]
= greatest integer ≤ n

2 .

gn = 2
1
n

M∑
m=0

(−1)m
(2n− 2m)!

m!(n−m)!(n− 2m)!
xn−2m

= 2n
n∑
k=0

(
n

k

)2

(x− 1)n−k(x+ 1)k

=
n∑
k=0

(
n

k

)(
−n− 1

k

)(
1− x

2

)k
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§19 Lec 19: Nov 18, 2020

§19.1 Lec 18(Cont’d)

Note:Gamma function:

Γ(z) =

∫ ∞
0

xz−1e−xdx

where z is complex and Re (z) > 0 and Γ(n) = (n− 1)!,∀n > 1,.

3. GS

(
1 1
0 1

)
,

(
0 2
1 1

)
in M2(R) under

〈A,B〉 = tr AB∗

y1 =

(
1 1
0 1

)

y2 =

(
0 2
1 1

)
−

tr

((
0 2
1 1

)(
1 1
0 1

)∗)
tr

((
1 1
0 1

)(
1 1
0 1

)∗) (1 1
0 1

)

y2 =

(
0 2
1 1

)
−

tr

((
0 2
1 1

)(
1 0
1 1

))
tr

((
1 1
0 1

)(
1 0
1 1

)) (1 1
0 1

)

=

(
−1 1
1 0

)

4. T : R3 → R3 rotation counterclockwise by ∠θ about a vector 0 6= v1 as axis. Find
T (α, β, γ) i.e., [T ]S complete v1 to a basis {v1, v2, v3} for R3. GS it to an OR
basis, then an ON basis C . Compute [T ]C . Then use Change of Basis to compute
[T ]l or guess v2, normalize v1, v2 to v′1, v

′
2 then v3 ⊂ v′1 × v′2.

Note: If you have a basis with vectors of different lengths, it is hard to compute in
this basis. If each vector in your OR basis has the same length r, you can compute.

§19.2 Orthogonal Polynomials

There are many interesting infinite sets of orthogonal polys {fn}n∈Z+ . They often arise
as relate α to the HYPERGEOMETRIC ODE

z(1− z)d
2y

dz2
+ [γ − (α+ β + 1)z]

dy

dz
− αβy = 0

where z is a complex variable, y = y(z), α, β, γ ∈ C. They arise as OR sets or weighted
inner product space over R ( or C on an interval [a, b] (or variant).∫ b

a
fgw = 〈f, g〉w

where w > 0 in [a, b].
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• A very general such is the OR set of JACOBI POLYNOMIALS
{
Pα,βn

}
under the

weighted inner product space

〈f, g〉w =

∫ 1

−1
fgw

and

w =
(1− x)α(1 + x)β

〈α, β〉 − 1

Often such OR sets are not orthonormalized but rather normalized “by dividing
by Pα,βn (1). In this case, Pα,βn (1) =

(
n+α
n

)
. The Pα,βn are solutions to the ODE.

0 = (1− x2)y′′ + (β − α− (α+ β + 2)x)y′ + n(n+ α+ β − 1)y

used in Wigner d-matrix theory in quantum mechanics. There are many special
cases of Jacobi polys.

1. Gegenbauer polys (ultra-symmetric) polynomials, C
(α)
n where

w = (1− x2)α−
1
2

C(α)
n = P

(α− 1
2
,α− 1

2
)

n

(1− x2)y′′ − (2α+ 1)xy′ + n(n+ 2α)y = 0

potential theory, harmonics analysis, Newtonian’s potential.

2. Legendre polys. There are a special case of Gegenbauer polys, namely

w = 1

C
1
2
n(

(1− x2)y′
)′

+ n(n+ 1)y = 0

3. Chebychev polys come in two kinds: Tn, Un

w =
1√

1− x2

Tn = P
(− 1

2
,− 1

2
)

n

Un = P
( 1
2
, 1
2

)
n

(1− x2)y′′ − xy′ + n2y = 0

(1− x2)y′′ − 3xy′ + n(n+ 2)y = 0

Least square fit, optimal control, numerical analysis.

• Laguerre polys L
(α)
n OR set with wα(x) = xαe−x, α > −1 in R on [0,∞)

xy′′ + (α+ 1− x)y′ + ny = 0, 0 6= n ∈ Z

quantum mechanics, plasma physics.

• HERMITE polys. Hn, Hen

w = e−x
2
, for Hn on (−∞,∞)

= e−
x2

2 , for Hen on (−∞,∞)

(Hn is called physicist Hermite polys and Hen probabilists Hermite polys).

0 = (e−
1
2
x2y′)′ + ne−

1
2
x2y = 0

probability, numerical analysis, physics.
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Remark 19.1. Let

D = diff =
d

dx
, p, q functions, w > 0

L = − 1

w
(D(pD) + q) , a linear operator

Then one wants to solve
Lf = λf

The solutions are called eigenfunctions in the above they are the eigenfunctions for the
given ODEs.

§19.3 Orthogonal Complement

Notation: F ⊂ C a field satisfying F = F .

Definition 19.2 (Distance from a Vector to a Set) — Let V be an inner product
space over F, v1, v2 ∈ V . We know that the DISTANCE between v1, v2 is defined
to be

d(v1, v2) := ‖v1 − v2‖ ≥ 0

More generally, let ∅ 6= S ⊂ V be a subset and v ∈ V . Define the DISTANCE of v
to S by

d(v, S) := inf {d(v, w)|w ∈ S}

if it exists and hence finite.

Problem 19.1. Let V be an inner product space over F, S ⊂ V a finite dimensional
subspaces, v ∈ V . Determine

z

x

v

y

w

d(v, S)

Solution take the orthogonal projection of v to w in S
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Definition 19.3 (Orthogonal Complement) — Let V be an inner product space over
F, ∅ 6= S ⊂ V a subset of, v ∈ V . We say v is ORTHOGONAL to S, write v ⊥ S, if

〈s, v〉 = 0,∀s ∈ S

Set:
S⊥ := {v ∈ V |v ⊥ S}

called the ORTHOGONAL COMPLEMENT of S in V .

Remark 19.4. 1. Compare S⊥ to S◦ ⊂ V ∗, if V is an arbitrary vector space over F .

2. In R3(under the dot product)

(Spane1)⊥ = Span(e2, e3)

3. Let V be an inner product space over F, ∅ 6= S ⊂ V a subset, not necessarily a
subspace. Then S⊥ ⊂ V is a subspace (if ∅ 6= S ⊂ V a subset with V a vector space
over F, F arbitrary, then S◦ ⊂ V ∗ is a subspace).

Proof. Hw.

4. In 3), S ⊂ S⊥⊥ :=
(
S⊥
)
⊥: S⊥ ⊂ S⊥⊥ so S ⊂ S⊥⊥. If, in addition, S ⊂ V is a

subspace and V is a finite dimensional inner product space over F , then S = S⊥⊥ (if
V is a finite dimensional vector space over F, F arbitrary W ⊂ V a subspace, then
W = W ◦◦ = (W ◦)◦).

5. Let V be a finite dimensional inner product space over F, S = {v1, . . . , vn} an OR
basis for V . Then

(Span(v1, . . . , vr))
⊥

= Span(vr+1, . . . , vn)

6. Let V be an inner product space over F, S ⊂ V a subspace. Then

S ∩ S⊥ = 0

if v ∈ S ∩ S⊥, then 〈v, v〉 = ‖v‖2 = 0, so v = 0. In particular,

S + S⊥ = S ⊕ S⊥

We write: S ⊕ S⊥ as S ⊥ S⊥ to show it is also orthogonal. The key result ( and
most important result for use about general inner product space over F ) is:
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Theorem 19.5 (Orthogonal Decomposition)

Let V be an inner product space over F, S ⊂ V a finite dimensional subspace,
v ∈ V . Then

∃!s ∈ S, s⊥ ∈ S⊥ 3 v = s+ s⊥ (*)

In particular, V = S + S⊥, S ∩ S⊥ = 0, so V = S ⊥ S⊥. Moreover, if

v = s+ s⊥, s ∈ S, s⊥ ∈ S⊥

then
‖v‖2 = ‖s‖2 + ‖s⊥‖2, (Pythagorean Theorem)

In addition, if V is a finite dimensional inner product space over F , then

dimV = dimS + dimS⊥
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§20 Lec 20: Nov 20, 2020

§20.1 Lec 19 (Cont’d)

Proof. By the OR Theorem, ∃ an OR basis B = {v1, . . . , vn} for the finite dimensional
inner product space over F S.
Existence: Let v ∈ V . Define s ∈ S = Span B by

s =

n∑
i=1

〈v, vi〉
‖vi‖2

vi

and set
s⊥ = v − s

Suppose we have shown s⊥ ∈ S⊥. Then v = s+s⊥ giving existence as well as V = S+S⊥

and S ∩ S⊥ = 0, i.e., V = S ⊕ S⊥. Repeating the previous computation, we have if
j = 1, . . . , n then

〈s⊥, vj〉 = 〈v − s, vj〉 = 〈v, vj〉 − 〈s, vj〉

= 〈v, vj〉 −
n∑
i=1

〈v, vi〉
‖vi‖2

〈vi, vj〉

= 〈v, vj〉 −
n∑
i=1

〈v, vi〉
‖vi‖2

δij‖vj‖2 = 0

Since s⊥ ⊥ vj , j = 1, . . . , n i.e., ∀vj ∈ B, if
∑n

i=1 αivi ∈ S, then

〈s⊥,
n∑
i=1

αivi〉 =

n∑
i=1

αi〈s⊥, vi〉 = 0

Thus, s⊥ ∈ S⊥ as needed.
Uniqueness: If

s+ s⊥ = v = r + r⊥, r ∈ S, r⊥ ∈ S⊥

(s ∈ S, s⊥ ∈ S⊥) as both S, S⊥ are subspaces

s− r = r⊥ − s⊥ ∈ S ∩ S⊥ = 0

So s = r and s⊥ = r⊥.

Theorem 20.1 (Pythagorean)

Let v = s+ s⊥, s ∈ S, s⊥ ∈ S⊥. Then

‖v‖2 = 〈s+ s⊥, s+ s⊥〉 = 〈s, s〉+ 〈s, s⊥〉+ 〈s⊥, s〉+ 〈s⊥, s⊥〉
= ‖s‖2 + ‖s⊥‖2
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Corollary 20.2 (Bessel’s Inequality)

Let V be an inner product space over F,B = {v1, . . . , vn} an OR set in V with
0 /∈ B. Let v ∈ V . Then

n∑
i=1

|〈v, vj〉|2

‖vi‖2
≤ ‖v‖2

with equality iff

v =
n∑
i=1

〈v, vj〉
‖vi‖2

vi

Proof. Hw.

Remark 20.3. Let V be an inner product space over F, S ⊂ V a finite subspace. Then by
the OR Decomposition Theorem, ∀v ∈ V ∃!s ∈ S, s⊥ ∈ S⊥ =⇒ v = s+ s⊥. We call s the
orthogonal projection of v on S and denote it by vS . By the proof of the OR Decomposition
Theorem, if B = {v1, . . . , vn} is ANY OR basis for S, then the uniqueness of vS means

vS =

n∑
i=1

〈v, vi〉
‖vi‖2

vi

i.e.,is INDEPENDENT of OR basis. So the ORTHOGONAL PROJECTION of v onto S.

Theorem 20.4 (Approximation)

Let V be an inner product space over F, S ⊂ V a finite dimensional subspace, and
v ∈ V . Then vS is closer to v than any other vector in S, i.e.,

d(v, vS) = ‖v − vS‖ ≤ ‖v − r‖ = d(v, r)

in R, ∀r ∈ S. Equivalently,
d(v, S) = d(v, vS)

Moreover, if r ∈ S, then

‖v − vS‖ = ‖v − r‖ ∈ R ⇐⇒ r = vS

We say vS gives the BEST APPROXIMATION.

Proof. By the OR Decomposition Theorem (and its proof), v = s+s⊥ with s = vS , s
⊥ =

v − s = v − vS , s⊥ ∈ S⊥. Let r ∈ S. Then

v − r = (v − vS) + (vS − r) = s⊥ + (vS − r)

S ⊂ V is a subspace, so vS − r ∈ S, hence s⊥ ⊥ vS − r, i.e.,

0 = 〈s⊥, vS − r〉 = 〈v − vS , vS − r〉

By the Pythagorean Theorem,

‖v − r‖2 = ‖v − vS‖2 + ‖vs − r‖2 ≥ ‖v − vS‖2

with equality iff
‖vS − r‖ = 0 ⇐⇒ vs = r
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Definition 20.5 (Error) — Let V be an inner product space over F, S ⊂ V a finite
dimensional subspace and v ∈ S. Then, ‖v − vS‖ is called the error of v not being
vS .

Problem 20.1. Let V,X be inner product space over F , S ⊂ V a finite dimensional
subspace v ∈ V, and T : X → V linear. Find x ∈ X with ‖x‖ minimal s.t. Tx is the
best approximation to v ∈ V in S, i.e., find x ∈ X, ‖x‖ minimal 3 Tx = vS .

§20.2 Examples of Best Approximation
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Example 20.6 (Fourier Coefficient)

Let V = C[0, π] an inner product space over R via 〈f, g〉 =
∫ 2π

0 fg, u0 = 1√
2π
, u2n−1 =

cosnx√
π
, u2n = sinnx√

π
, n > 0. Set

S = {u0, . . . , un, . . .}

an ON set (as we have seen) and let

Bn := {u0, . . . , u2n+1}
Vn := Span(Bn)

if f ∈ V , then
fn := fvn = fspan Bn ,

the function in Vn closest to f , i.e., the orthogonal projection of f onto Vn. So

fn =
2n+1∑
i=0

〈f, ui〉ui

where

〈f, ui〉 =

∫ 2π

0
fui, ∀i ≤ 2n

called the ith FOURIER COEFFICIENT. The ERROR to the actual f is

d(f, fn) = ‖f − fn‖ =

√∫ 2π

0
(f − fn)2

One checks:

fn =
1

2
00 +

n∑
k=1

(ak cos kx+ bk sin kx)

with

a0 =
1

π

∫ 2π

0
f(x)dx

ak =
1

π

∫ 2π

0
f(x) sin kxdx

bk =
1

π

∫ 2π

0
f(x) sin kxdx

is the BEST APPROXIMATION of f by such functions. If limn→∞ ‖f − fn‖ = 0,
i.e., f =

∑∞
i=0〈f, ui〉ui converges, we say f converges to its Fourier expansion

(similar results with modest change work for ([0, L]).
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Example 20.7

Let V = C[−1, 1] with 〈f, g〉 =
∫ 1
−1 fg. Let f(x) = ex. Find a linear polynomial

nearest f and compute d(f, g) (=error) for such a g and we let W = span(1, x) ⊂ V
a finite dimensional subspace. We want fW . To do this, we compute ON (or OR)
basis for W i.e., GS {1, x} and normalize. GS yields 1, x (as before) and ON it to

1
‖1‖ ,

x
‖x‖ , i.e., 1√∫ 1

−1 1
, x√∫ 1

−1 x
2

which is

1√
2
,

√
3

2
x

Let f = ex. Then

fW = 〈f, 1√
2
〉 1√

2
+ 〈f,

√
3

2
x〉
√

3

2
x

=
1

2

∫ 1

−1
ezdz +

3

2
x

∫ 1

−1
zezdz

= . . .

=
1

2
(e− 1

e
) +

3

e
x

So, fW = 1
2(e− 1

e ) + 3
ex. Let α = 1

2(e− 1
e ), β = 3

ex. So g = fW = α+ βx and

‖f − fW ‖2 = ‖f − g‖2 =

∫ 1

−1
(f − g)2 dz

=

∫ 1

−1
(f2 − 2fg + g2) dz

=

∫ 1

−1

[
(e2x − 2ex(α+ βx) + α2 + 2αβx+ β2x2

]
dx

= . . . (boring algebra)

= 1− 7

e2

So

d(f, g) = d(f, fW ) =

√
1− 7

e2
≈ .05625

§20.3 Hermitian Operators

Definition 20.8 (Hermitian/Self-Adjoint) — Let V be an inner product space over
F , T : V → V linear. We say T is HERMITIAN or SELF-ADJOINT if

〈Tv,w〉 = 〈v, Tw〉, ∀v, w ∈ V

if F ⊂ R is an hermitian operator, it is also called a SYMMETRIC OPERATOR.
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Example 20.9 1. Let V = Fn×1 be an inner product space over F via the dot
product, i.e.,

〈

α1
...
αn

 ,

β1
...
βn

〉 :=
n∑
i=1

αiβi

remember we always assume F = F ⊂ C. Note that some people write the
dot product v ∗ w – they do not like columns.

Let A ∈Mn(F ). As usual, we view A as a linear operator,

A : Fn×1 → Fn×1 by X 7→ A ·X

By HW, A is hermitian iff A = A∗ (so if F ⊂ R ⇐⇒ A = At). In fact, you
will prove on the takehome the following theorem

Theorem 20.10

Let V,W be finite dimensional inner product space over F with ON bases, T : V →
W linear. Then, ∃!T ∗ : W → V linear s.t.

〈Tv,w〉W = 〈v, T ∗w〉V , ∀v ∈ V,∀w ∈W

T ∗ is called the ADJOINT of T . Hence if T : V → V is a linear operator, then T is
hermitian iff T = T ∗ and T ∗ exists.

Example 20.11

Let α < β in R and V = C[α, β] := {f : [α, β]→ R/cont} an inner product space
over R by

〈f, g〉 :=

∫ β

α
fg

If T : V → V linear, then T is hermitian iff∫ β

α
(fTg − gTf) = 0,∀f, g ∈ V (*)

Note: V is not finite dimensional and (*) is a commutativity type of condition.
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Example 20.12 (fancy)

V = C∞[α, β], α < β in R. (often C∞[α, β] vector space of convergent power series
in some neighborhood of every point of (α, β) and ? open neighborhood at α, β).
Again V is not finite dimensional and is an inner product space over R as in the
above example.
Let p ∈ V be fixed, p(x) > 0, and

W = {f ∈ V |p(α)f(α) = 0 = p(β)f(β)}

an inner product space as in the above example (e.g., p(α) = 0p(β). Fix q ∈W and
let

Tp,q = T : W →W the linear operator

defined by
Tf := (pf ′)′ + qf

called a STURM LIOUVILLE operator. Then T is hermitian. Check T satisfies (*)
in the above example using integration by parts.

Example 20.13

More generally, let V = C∞[α, β], α < β ∈ R an inner product space over R as in
the above. Let p, q, w ∈ V, p(x) > 0, w(x) > 0, ∀x ∈ [α, β]. Fix a, b, c, d ∈ R 3 both
a = 0 = b and c = 0 = d are excluded. Let

w =
{
f ∈ V |af(α) + bf ′(α) = 0 = cf(β) + df ′(β)

}
where f satisfies the boundary condition. Let W be an inner product space over R
by the weighted inner product

〈f, g〉w =

∫ β

α
wfg

Define the STURM LIOUVILLE OPERATOR:

T = Tp,q,w : W →W by

f 7→ − 1
w ((pf ′)′ + qf). Then T is hermitian. This arises from finding eigenvalues of

Tp,q,w, i.e., solutions to the ODE

d

dx

(
p
dy

dx

)
+ q(x)y = −λwy

which have as special cases – Legendre ODE

(1− x2)y′′ + 2xy′ + n(n+ 1) = 0

arising in spherical harmonic problems. Bessel’s ODE:

x2y′′ + xy′ + (x2 − a2)y = 0

α ∈ C (often in Z or 2α ∈ Z), i.e., one wants to find the eigenvalues of f = y, λ in
(*) for which there is a solution and f ∈ ET (λ). Eigenvectors in function spaces are
called EIGENFUNCTIONS.
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§21 Lec 21: Nov 23, 2020

§21.1 Lec 20 (Cont’d)

Goal: Spectral Theorem for Hermitian Operator: Let V be a finite dimensional inner
product space over F, F = R or C, T : V → V hermitian. Then T is diagonalizable, i.e.,
∃ a basis B for V consisting of eigenvectors of T , and in fact, such a B is ON.
Calculus Application: Let S ⊂ Rn be “nice” (open + nice boundary + . . . ), x1, . . . , xn
the rectilinear coordinate functions relative to the standard basis and

(+)f : S → R a C2 − a function

Calculus Theorem if f satisfies (+), then

∂2f

∂xi∂xj
(a) =

∂2f

∂xj∂xi
(a), ∀ij ,∀a ∈ S

For each a ∈ S, associate the symmetric matrix

Hf(a) :=:=

(
∂2f

∂xi∂xj
(a)

)
called the HESSIAN at f at a. Suppose a ∈ S is a critical point of f , i.e.,

Df(a) :=

(
∂f

∂x1
(a), . . . ,

∂f

∂xn
(a)

)
= (0, . . . , 0)

Equivalently, ∇f(a) = 0. Recall the TOTAL DERIVATIVE of f at a is the linear
transformation

f ′(a, ) : Rn → R given by

f ′(a, v) = Df(a) · v. Now, let α1, . . . , αn ∈ R be the eigenvalues of Hf(a), so the roots
of fHf(a) counted with multiplicity. Since Hf(a) is symmetric, by the Spectral Theorem,
m = n and

Hf(a) ∼

λ1 0
. . .

0 λn

 in MnR

λ1, . . . , λn not necessarily distinct. Then, we have the 2nd Derivative Test under the
above conditions at the critical point a.

1. a is a relative minimum for f at a if λi > 0∀i.

2. a is a relative maximum for f at a if λi < 0∀i.

3. a is a saddle point for f at a if ∃i, j 3 λi > 0, λj < 0.

4. No info if λi = 0∀i or ∃i 3 λi = 0.

The total derivative f ′(a,−) : Rn → R can be defined at a ∈ S if it exists as the
following: it is a linear transformation

Ta : Rn → R 3

∃ a scalar valued function satisfying

f(a+ v) = f(a) + ‖v‖E(a, v)

for some r,3 if ‖v‖ < r then

E(a, v)→ 0 as ‖v‖ → 0
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Question 21.1. What is the total derivative

f ′(a, ·) : Rn → Rm if f : S → Rm?

Theorem 21.1

Let V be an inner product space over F, T : V → V linear, λ an eigenvalue of
T, 0 6= v ∈ ET (λ). Then

λ =
〈Tv, v〉
‖v‖2

and λ =
〈v, Tv〉
‖v‖2

In particular, λ ∈ R iff
〈Tv, v〉 = 〈v, Tv〉

Proof. By assumption, Tv = λv, ‖v‖ 6= 0.So 〈Tv, v〉 = 〈λv, v〉 = λ〈v, v〉 = λ‖v‖2 and
〈v, Tv〉 = 〈v, λv〉 = λ〈v, v〉 = λ = ‖v‖2. As ‖v‖ 6= 0, the first statement follows. Hence,

λ = λ ⇐⇒ 〈Tv, v〉 = 〈v, Tv〉

Corollary 21.2 (Hermitian)

Let V be an inner product space over F, T : V → V linear. Suppose that T is
hermitian. Then any eigenvalues of T is real, i.e., lies in F ∩ R.

Theorem 21.3 (Fundatemental Theorem of Algebra)

Let f ∈ C[t] \ C. Then f has a root in C, i.e., ∃α ∈ C 3 f(α) = 0

Addendum: Let f ∈ R[t] \ R. As R ⊂ C,R[t] ⊂ C[t]. So we can view f ∈ C[t]. Then f
has a root β ∈ C. Of course, β may not lie in R.
Suppose β is real, i.e., β ∈ R. As β is a root of f ∈ C

f = (t− β)g, g ∈ C[t], β ∈ R

Then
f = (t− β)(h), h ∈ R[t](if β ∈ R)

Proof. 1. If f =
∑n

i=0 αit
i, αi ∈ R∀i and

∑n
i=1 αiβ

i = 0 in C with β ∈ R, then every
term in

∑
αiβ

i lies in R, so β is a root of f when viewed in R[t].

2. (Generalization) Let F ⊂ K, K a field, F a subfield of K so same +, ·, 0, 1 as in
K (e.g., R ⊂ C). Let f ∈ F [t], α ∈ F . By the DIVISION ALGORITHM,

f = f(t− α)g + r, r, g ∈ F [t] unique with r = 0 or deg r < deg(t− α) (*)

But deg(t−α) = 1, so r ∈ F (a constant). Evaluate (*) at t = α, so (eα : F [t]→ F
by h 7→ h(α) a ring homomorphism)

f(α) = (α− α)g(α) + r = r
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i.e.,
(+)f = (t− α)g + f(α)

So
α ∈ F is a root in F ⇐⇒

(?)f = (t− α)g in F [t] some g ∈ F [t]. So we have, viewing F [t] ⊂ K[t]. If β ∈ K,
then

f = (t− β)h+ f(β), h ∈ K[t]

and if β ∈ K is a root of f in K, then

f = (t− β)h ∈ K[t]

So if β ∈ K is a root of f with β ∈ F , then

f(β) = 0K = 0F ,

so (?) holds.

Remark 21.4. 1. By the Addendum and induction, FTA says if f ∈ C[t] \ C, says
n = deg f ≥ 1, then ∃!α1, . . . , αn ∈ C, not necessarily distinct and β ∈ C 3

f = β(t− α1) . . . (t− αn)

i.e., f factors into a product of linear polys. We say f splits in C and α1, . . . , αn are
the unique roots (up to multiplicity) of f in C.

2. FTA is proven in Math 132 and math 110C. The essential analysis fact used in math
132 is if f ∈ C[t] \ C, then |f(z)| → ∞ as |z| → ∞ and the essential analysis fact
used in math 110C is the Intermediate Value Theorem in the special case that says
if f ∈ R[t] is of odd degree, then f has a real root.

3. The following fact is true: If V is a finite dimensional vector space over F, F an
arbitrary field, T : V → V linear, then ∃ an ordered basis B for V 3 [T ]B is UPPER
TRIANGULAR (i.e. ([T ]B)ij = 0∀i > 1) iff fT ∈ F [t] splits, i.e., factors into a
product of linear terms. If this occurs, we say T is TRIANGULARIZABLE. Can
you prove that if F = C, then every such T is triangularizable? (T is diagonalizable
iff qT of the HW7/Midterm splits and has no multiple roots)
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§22 Lec 22: Nov 25, 2020

§22.1 Lec 21 (Cont’d)

Definition 22.1 (T-invariant) — Let F be an arbitrary field, V a vector space
over F,W ⊂ V a subspace, T : V → V linear. We say W is T-INVARIANT (or
INVARIANT under T ) if

Tw ∈W, ∀w ∈W, i.e., T (W ) ⊂W

if W is T-invariant, then we can (and do) view

T
∣∣∣
W

: W →W linear

Example 22.2 1. Any subspace of an eigenspace of T (if any) is T-invariant.

2. kerT ⊂ V is T-invariant.

3. im T ⊂ V is T-invariant.

Lemma 22.3 (Hermitian Operator (Key Lemma))

Let V be an inner product space over F, T : V → V hermitian, S ⊂ V a T-invariant
subspaces. Then

1. S⊥ is T-invariant, i.e., T (S⊥) ⊂ S⊥.

2. T
∣∣∣
S⊥

: S⊥ → S⊥ is hermitian.

Proof. 1. Let w ∈ S⊥. To show Tw ∈ S⊥, if v ∈ S, then Tv ∈ S as S is T-invariant.
So

〈v, Tw〉 = 〈Tv,w〉 = 0

So, Tw ∈ S⊥.

2. By 1), T
∣∣∣
S⊥

: S⊥ → S⊥ is linear. As 〈Tv,w〉 = 〈v, Tw〉, ∀v, w ∈ V , this is certainly

true ∀v, w ∈ S⊥.

Remark 22.4. Let F = R or C, V a finite dimensional inner product space over F, T :
V → V hermitian. By the Hermitian Corollary, if T has an eigenvalue, it is real and α ∈ F
is a roof of fT in F iff eigenvalue of T . We know fT has a root in C[t] by the FTA. The
key lemma should allow us to induct on dimV .

Subtle Difficulty: Let V be a finite dimensional inner product space over R, T : V → V
hermitian. We know fT ∈ R[t] has a root in C, but we do not know a priori that fT
is the characteristics polynomial of an hermitian operator over an inner product space
over C, so we do not know that the roots of fT are real.
Unfortunately, to over come this, we have use bases. There is an abstract way to do it
but we cannot do it.
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Theorem 22.5 (Spectral – First Version)

(for Hermitian Operator) Let F = R or C, V a finite dimensional inner product
space over F, T : V → V hermitian. Then ∃ an ON basis B = {v1, . . . , vn} for V
with each vi, i = 1, . . . , n, an eigenvector for some eigenvalues αi ∈ R, i = 1, . . . , n
(not necessarily distinct). In particular, T is diagonalizable.

Proof. We prove B exists by induction on dimV = n.
n = 1 : V = Span(v), any 0 6= u ∈ V . As Tv ∈ Span(v),∃α ∈ F 3 Tv = αv ,so
v ∈ ET (α). As T is hermitian, α ∈ R is real by Hermitian Corollary even if F = C. So

B =
{

v
‖v‖

}
.

n > 1 : Induction Hypothesis (IH): Let F = R or C, W a finite dimensional inner
product space over F,dimW = n− 1, T0 : W →W hermitian. Then ∃ an ON basis for
W of eigenvectors of T0 and every eigenvalues of T0 is real.
Let C be an ON basis for n−dimensional V, which exists as F = R or C. Let A =
[T ]C ∈MnF ⊂MnC.

A = A∗ and Ax · y = x ·Ay,∀x, y ∈ Cn×1

since T is hermitian, i.e.,

A : Cn×1 → Cn×1 is hermitian

where Cn×1 is an inner product space over C via the dot product. By the FTA, fA has
a root α ∈ C, hence α is an eigenvalue of hermitian A : Cn×1 → Cn×1. Thus, α ∈ R by
the Hermitian Corollary. But

fT = f[T ]C = fA

So fT has a root α ∈ R, if F = R or F = C by the Addendum. Thus, ∃0 6= u ∈ ET (λ) ⊂
V an eigenvector of T . Let Fv = Span(v) ⊂ ET (λ). Then Fv is T-invariant. By the
OR Decomposition Theorem,

V = Fv ⊥ (Fv)⊥

and
dimV = dimFv + dim (Fv)⊥ = 1 + dim (Fv)⊥

hence
dim (Fv)⊥ = n− 1

By the Key Lemma, since Fv is T-invariant and T : V → V is hermitian. (Fv)⊥ is
T-invariant and

T
∣∣∣
(Fv)⊥

: (Fv)⊥ → (Fv)⊥ is hermitian

By the IH, (Fv)⊥ has an ON basis, say {v2, . . . , vn} of eigenvectors for T
∣∣∣
(Fv)⊥

: (Fv)⊥ →

(Fv)⊥. But

T
∣∣∣
(Fv)⊥

(vi) = Tvi, i = 2, . . . , n

So, v2, . . . , vn are eigenvectors of T : V → V and all the eigenvalues of the vi, i = 2, . . . , n
are real by IH. Since v ⊥ vi, i = 2, . . . , n, 0 6= ‖v‖ ∈ R ⊂ F,

B = {‖v‖, v2, . . . , vn}

is an ON basis for V of eigenvalues for T and all the eigenvalues are real and T is
diagonalizable.

By the HW/Takehome, we know
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Theorem 22.6

Let V be a finite dimensional inner product space over F, F = R or C. Let B,C
be ordered ON basis for V . Then

[1V ]B,C : Fn×1 → Fn×1

n = dimV , is an ISOMETRY. In particular,

[1V ]−1
B,C = [1V ]∗B,C

T : V →W linear is called an ISOMETRY if

• T is an isomorphism.

• 〈Tv1, T v2〉W = 〈v1, v2〉V ,∀v1, v2 ∈ V .

Theorem 22.7 (Spectral Theorem for Hermitian Operator (refined))

Let F = R or C, V a finite dimensional inner product space over F, T : V → V
hermitian. Then ∃ an ordered ON basis C of eigenvectors for V of T and every set
of T if real. Moreover, if B is any ordered ON basis for V , then

[T ]C = C[T ]BC
∗

for some invertible matrix C ∈MnF , i.e., C = [1V ]B,C .

Remark 22.8. The Spectral Theorem says, if V is a finite dimensional inner product space
over F, F = R or C, T : V → V hermitian, B an ordered ON basis for V , then

[T ]B ∼

λ1 0
. . .

0 λn

 , n = dimV, αi ∈ R,∀i

if V = Rn, this is often called the PRINCIPAL AXIS THEOREM.

e.g., It means if

f =
∑

aijtitj ∈ R[t1, . . . , tn]

with
aij = aji,∀i, j

This can always be arranged as titj = tjti and we replace aij , aji with
aij+aji

2 if necessary.
Then we can change variables to make it look like

λ1I
2
1 + . . .+ λnI

2
n

(How? – Confer completing the square and TAT ∗, A = (aij), T
∗ =

t1...
tn

. We want

even more
Let F = R or C, V a finite dimensional inner product space over F,dimV = n, T : V → V
hermitian, B an ordered ON basis of eigenvectors of T for V . Reordering B if necessary,
we may assume λ1, . . . , λk are all the distinct eigenvalues of T , i.e., if j > k then
∃i < k 3 λj = λi.
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Claim 22.1. Let v ∈ ET (λi), w ∈ ET (λj), 1 ≤ i, j ≤ k, i 6= j. Then v ⊥ w: We may
assume that v 6= 0, w 6= 0. So

λi〈v, w〉 = 〈λiv, w〉 = 〈Tv,w〉 = 〈v, Tw〉
= 〈v, λjw〉 = λj〈v, w〉 = λj〈v, w〉

as λl ∈ R∀l. Thus,
(λi − λj) 〈v, w〉 = 0 ∈ F, λi 6= λj

so
〈v, w〉 = 0

Claim 22.2. We have

W := ET (λ1) + . . .+ ET (λk) (*)

= ET (λ1)⊕ . . .⊕ ET (λk)

if wi ∈ ET (λi), i = 1, . . . , k and

0 = w1 + . . .+ wk,

then
0 = 〈w1 + . . .+ wk, wj〉 = 〈wj , wj〉 = ‖wj‖2

by the previous claim, so wj = 0 and (*) holds.
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§23 Lec 23: Nov 30, 2020

§23.1 Lec 22 (Cont’d)

Note: Of course we already know this claim, but this proof is nice. Recall this is
equivalent to w = ET (λ1) + . . .+ ET (λk) and

ET (λi) ∩
k∑
j=1

ET (λj) = 0, i = 1, . . . , k

Also by the first claim, the DIRECT SUM DECOMPOSITION (*) of w is an ORTHOG-
ONAL DIRECT SUM. Since B is a bases for V of eigenvectors for T and B ⊂W , we
have

V = ET (λ1) ⊥ . . . ⊥ ET (λk) (?)

Genral Problem: Let V be a vector space over F, T : V → V linear operator. Can we
DECOMPOSE V as

V = W1 ⊕W2 ⊕ . . .⊕Wr ⊕ . . .

with each subspace Wi T-invariant, i.e., decomposition reflects the action T . This can
be done if V is finite dimensional vector space over F . Then V is a finite direct sum. If
F = C, the solution is called JORDAN CANONICAL FORM.
F arbitrary is called RATIONAL CANONICAL FORM (done in 115B or 110BH).
By the OR Decomposition Theorem,

V = ET (λi) ⊥ ET (λi)
⊥, i = 1, . . . , k (**)

So
ET (λi)

⊥ = ET (λi) ⊥ . . . ⊥ ET (λi) ⊥ . . . ⊥ ET (λk)

i = 1, . . . , k by uniqueness and, also by the OR Decomposition Theorem, as

V = ET (λi) ⊥ ET (λi)
⊥

means that (?) implies if v ∈ V , then

v = vET (λ1) + . . .+ vET (λk)

where vET (λi) is the ORTHOGONAL PROJECTION of v onto ET (λi), i = 1, . . . , k.
Define:

Pλi : V → V by v 7→ vET (λi), i = 1, . . . , k

As Pλi is the composition

V → ET (λi) ↪→ V,

v 7→ vET (λi)

It is a linear operator, i = 1, . . . , k. Moreover, by (**),

im Pλi = ET (λi)

kerPλi = ET (λi)
⊥

Since
Pλj (vET (λi) = δijvET (λi), i = 1, . . . , k

We see that
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1. PλiPλj = 0 if i 6= j.

2. PλiPλi = Pλi .

So
PλiPλj = δijPλi : V → V linear

The Pλ1 , . . . , Pλk are called ORTHOGONAL IDEMPOTENTS. We now see what we
have done: Let v ∈ V . Then

1V v = v = vET (λ1) + . . .+ vET (λk)

= Pλ1(v) + . . .+ Pλk(v) = (Pλ1 + . . .+ Pλk) (v)

So
1V = Pλ1 + . . .+ Pλk

We also have

T = T ◦ 1V = T ◦ (Pλ1 + . . .+ Pλk)

= TPλ1 + . . .+ TPλk
= λ1Pλ1 + . . .+ λkPλk

as

im Pλi = ET (λi)

T
∣∣∣
ET (λi)

= λi1ET (λi), i = 1, . . . , k

We also have

1V ◦ T = (Pλ1 + . . .+ Pλk)T

= Pλ1T + . . .+ PλkT

and
PλiT = TPλi , i = 1, . . . , k

This is called the SPECTRAL RESOLUTION of the Hermitian operator T : V → V .
Now, appropriately reordering B to B′, we have, with

ni = dimET (λi), i = 1, . . . , k

[T ]B′ =



λ1

. . . 0
λ1

. . .

λk
. . .

0 λk


Summary(Spectral Theorem for Hermitian Operator – Full version):
Let F = R or C, V a finite dimensional inner product space over F, T : V → V hermitian,
λ1, . . . , λk all distinct eigenvalues of T . Then T is diagonalizable and

1. λi ∈ R, i = 1, . . . , k
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2. Let Bi be an ordered ON basis for ET (λi), i = 1, . . . , k. Then B = B1 ∪ . . . ∪Bn

is an ordered ON bases for V consisting of eigenvectors of T .

3.

[T ]B =


λ1 0

. . . λ1

. . .

0 λk


ni = dimET (λi)

dimV = n = n1 + . . .+ nk

4. fT = (t− λ1)n1 . . . (t− λk)nk

5. V = ET (λ1) ⊥ . . . ⊥ ET (λk)

6. 1V = Pλ1 + . . .+ Pλk : V → V where Pλi : V → V linear by v 7→ v

7. PλiPλj = δijPλi , i, j = 1, . . . , k

8. T = λ1Pλ1 + . . .+ λkPλk

9. TPλi = PλiT, i = 1, . . . , k

10. If C is an ON basis for V , then

[T ]B = [1V ]C ,B[T ]C [1V ]B,C

= [1V ]C ,B[T ]C [1V ]−1
C ,B

= [1V ]C ,B[T ]C [1V ]∗C ,B

i.e., [1V ]−1
B,C = [1V ]∗B,C

Remark 23.1. One can also show that the MINIMAL POLYNOMIAL qT of the HW/Takehome
in the above is

qT = (t− λ1) . . . (t− λk)

In fact this is a necessary and sufficient condition ⇐⇒ to be diagonalizable.

Remark 23.2. The Spectral Theorem for hermitian operator for F = R, e.g., symmetric
matrices, has a nice generalization:
Let F be a field with 2 6= 0 in F and A ∈MnF a symmetric matrix, i.e., A = At. Then, ∃
an invertible matrix P in MnF 3 ptAp is diagonal.

Note: in the above, we are not saying pt = p−1

Computation: To compute: let V be a finite dimensional vector space over F , F = R or
C, T : V → V hermitian. Find all the above:
Step 1: Find a basis for V and GS it to an OR bases, then normalize to an ON bases C .
Step 2: Compute:

fT = f[T ]C = det (tI − [T ]C )

Step 3: Factor fT , i.e., find all the roots of fT . There are the eigenvalues of T . Since T
is hermitian fT splits and all the roots are real.
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Step 4: For each eigenvalue of T , compute ET (λ) by solving

[T ]C [v]C = λ[v]C

(equivalently row reduce [T ]C − λI to row echelon form and solve).
Step 5: For each eigenvalue λ, find a basis for ET (λi) and GS to an ordered ON basis
and normalize to an ordered ON basis Bλ. Let B = ∪Bλ an ordered ON basis of
eigenvectors of T . As C is ON

[1V ]C ,B[T ]C [1V ]∗C ,B is diagonal
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§24 Lec 24: Dec 2, 2020

§24.1 Normal Operators

We now need the following part of the Takehome

Theorem 24.1

Let V be a finite dimensional inner product space over F having an ordered ON
basis B, T : V → V linear. Then ∃!T ∗ : V → V linear s.t.

〈Tv,w〉 = 〈v, T ∗w〉, ∀v, w ∈ V (*)

called the ADJOINT of T . Moreover,

[T ]∗B = [T ∗]B

Remark 24.2. Actually, to prove (*), you do not need ∃ an ON basis, only an OR basis
(which you know exist) if you prove it using dual bases.

Properties: Let V be a finite dimensional inner product space over F with an ON basis
B, S, T : V → V linear, λ ∈ F . Then ∀v, w ∈ V

(i) 〈T ∗v, w〉 = 〈v, Tw〉

(ii) T ∗∗ := (T ∗)∗ = T

(iii) 〈v, T ∗Tv〉 = 〈Tv, Tv〉 = ‖Tv‖2

(iv) 〈v, TT ∗v〉 = 〈T ∗v, T ∗v〉 = ‖T ∗v‖2

(v) (T ◦ S)∗ = S∗ ◦ T ∗

(vi) (S + T )∗ = S∗ + T ∗

(vii) (λT )∗ = λT ∗, ∀λ ∈ F .

Proof. Left as exercise.

Remark 24.3. The above means: Let V be a finite dimensional inner product space over
F with an ON basis. Then

φ : L(V, V )→ L(V, V ) by T → T ∗

is a SESQUILINEAR transformation, i.e.,

φ(λT + S) = λT ∗ + S∗,∀T, S ∈ L(V, V ), λ ∈ F

and hence linear if F ⊂ R and is also bijection with inverse sesquilinear so a sesquilinear
isomorphism.
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Lemma 24.4 (New Key)

Let V be a finite dimensional inner product space over F, T : V → V linear. Suppose
that V has an ON basis and W ⊂ V is a T-invariant subspace. Then W⊥ ⊂ V is
T ∗-invariant. In particular,

T ∗
∣∣
W⊥

: W⊥ →W⊥ is linear

Proof. Let w⊥ ∈W⊥ and x ∈W be arbitrary. Then

〈x, T ∗w⊥〉 = 〈Tx,w⊥〉 = 0,

as Tx ∈W by hypothesis. So T ∗w⊥ ∈W⊥ as needed.

Definition 24.5 (Triangularizability) — Let V be a finite dimensional vector space
over F, T : V → V linear. We say T is TRIANGULARIZABLE if ∃ an ordered
basis B for V 3 [T ]B is upper triangular, i.e.,

[T ]B =

∗ ∗
. . .

0 ∗


i.e., ([T ]B)ij = 0 if i > j.

Remark 24.6. In the above, [T ]B is upper triangular iff [T ]B is lower triangular where
B′ is an ordered basis with vectors in B in reverse ordered.

Theorem 24.7 (Schur)

Let V be a finite dimensional inner product space over C, T : V → V linear. Then
T is triangularizable. Moreover, ∃ an ordered ON basis B for T 3 [T ]B is upper
triangular.

Proof. We induct on n = dimV .

• n = 1 : is immediate: if {v} is a basis
{

v
‖v‖

}
works.

• n > 1 : By the FTA, the characteristics poly fT ∗ for T ∗ has a root λ ∈ C, hence λ
is an eigenvalue of T ∗. Let 0 6= v ∈ ET ∗(λ). By the OR Decomposition Theorem,

V = Cv ⊥ (Cv)⊥

and

n = dimV = dimCv + dim(Cv)⊥

= 1 + dim(Cv)⊥

i.e., dim(Cv)⊥ = n− 1. Cv is T ∗-invariant as v ∈ ET ∗(λ), so (Cv)⊥ is (T ∗)∗ = T -
invariant by New Key Lemma. So may view

T
∣∣
(Cv)⊥

(Cv)⊥ → (Cv)⊥ linear (*)
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By induction, ∃ an ordered ON basis B0 = {v1, . . . , vn−1} for (Cv)⊥ 3
[
T
∣∣
(Cv)⊥

]
B0

is upper triangular. Let B =
{
v1, . . . , vn−1,

v
‖v‖

}
an ordered ON basis for V . Then

by (*), we have 
[
T
∣∣
(Cv)⊥

]
B0

∗
...
∗

0 . . . ∗

 ∈MnC

Remark 24.8. As mentioned before, if F is arbitrary, V a finite dimensional vector space
over F , then T is triangularizable ⇐⇒ fT , T : V → V linear satisfies fT splits, i.e., factors
into a product of linear polys in F [t].

Proof. ( =⇒ ) is clear as fT is independent of a matrix representation.
(⇐= ) is not clear and we not prove it.

Corollary 24.9

Let V be a finite dimensional inner product space over C, T : V → V linear, C an
ordered ON basis for V . Then ∃ an ordered ON basis B for V 3 [T ]B is upper
triangular and

[T ]B = [1V ]C ,B[T ]C [1V ]∗C ,B

with [1V ]−1
C ,B = [1V ]∗C ,B.

Proof. Theorem and HW as C ,B are ON.

Definition 24.10 (Normal Operator) — Let V be an inner product space over
F, T : V → V linear. Suppose that T ∗ : V → V exists, i.e.,

〈Tv,w〉 = 〈v, T ∗w〉, ∀v, w ∈ V

with T ∗ : V → V linear. Then we say T is a NORMAL OPERATOR, if TT ∗ = T ∗T .
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§25 Lec 25: Nov 4, 2020

§25.1 Lec 24(Cont’d)

Example 25.1 1. Every hermitian operator is normal as T = T ∗

2. Let Tθ : R2 → R2 be a rotation counterclockwise by ∠θ with 0 < θ < 2π and
θ 6= π. Then Tθ has no eigenvalues in R. Viewing R2 as an inner product
space over R via the dot product.

T−θ = T−1
θ = T tθ = T ∗θ

So
TθT

∗
θ = T ∗θ Tθ

and Tθ is normal. However, Tθ is not diagonalizable (is not even triangularzi-
able). We shall show that this does not happen if F = C, we start with (a
replacement for the Hermitian Corollary)

Lemma 25.2 (Crucial Property of Normal Operators)

Let V be an inner product space over F, T : V → V normal, λ ∈ F . Let 0 6= v ∈ V .
Then

v ∈ ET (λ) ⇐⇒ v ∈ ET ∗(λ)

i.e., λ is an eigenvalue of T with eigenvector v ⇐⇒ λ is an eigenvalue of T ∗ with
(the same) eigenvector v. So

Tv = λv ⇐⇒ T ∗v = λv

if T is normal.

Proof. Suppose S : V → V is normal, v ∈ V . Then

‖Sv‖2 = 〈Sv, Sv〉 = 〈v, S∗Sv〉
= 〈v, SS∗v〉 = 〈S∗v, S∗v〉 = ‖S∗v‖2

Hence
Sv = 0 ⇐⇒ S∗v = 0 when S is normal (*)

Let S = T − λ1V : V → V linear. So λ is an eigenvalue of T iff kerS 6= 0. But

S∗ = (T − λ1V )∗ = T ∗ − λ1V

by properties of ()∗. It follows that

S∗S = SS∗ as T ∗T = TT ∗

i.e., S is also normal. The result follows by (*).
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Theorem 25.3 (Spectral Theorem for Normal Operator)

Let V be a finite dimensional inner product space over C, T : V → V normal. Then
∃ an ordered ON basis C for V consisting of eigenvectors of T . In particular, T is
diagonalizable. Moreover, if B is an ordered ON basis for V , then

[T ]C = [1V ]B,C [T ]B[1V ]∗B,C

Proof. We induct on n = dimV .

• n = 1 is immediate.

• n > 1 : By the FTA, ∃λ ∈ C a root of fT ∗ ∈ C[t], hence an eigenvalue of T ∗. Let
0 6= v ∈ ET ∗(λ). By the lemma, v ∈ ET (λ). Thus, Cv is both T- and T ∗-invariant.
Hence, by New Key Lemma,

(Cv)⊥ is both T ∗ and T-invariant

In particular,
〈x, T ∗y〉 = 〈Tx, y〉 ∀x, y ∈ (Cv)⊥

and
(
T
∣∣
(Cv)⊥

)∗
is the unique linear map(

T
∣∣
(Cv)⊥

)∗
: (Cv)⊥ → (Cv)⊥

satisfying ∀x, y ∈ (Cv)⊥

〈x,
(
T
∣∣
(Cv)⊥

|∗y
)
〉(Cv)⊥ = 〈T

∣∣
(Cv)⊥

x, y〉(Cv)⊥

= 〈Tx, y〉V
= 〈x, T ∗y〉V

It follows by the uniqueness of the adjoint that

T ∗
∣∣
(Cv)⊥

=
(
T
∣∣
(Cv)⊥

)∗
Hence, we have

T
∣∣
(Cv)⊥

: (Cv)⊥ → (Cv)⊥

is also normal. Since

dimV = dimCv + dim(Cv)⊥ = 1 + dim(Cv)⊥

by the OR Decomposition Theorem, by induction ∃ an ON basis C0 = {v2, . . . , vn}
for (Cv)+ of eigenvectors of T

∣∣
(Cv)⊥

hence of eigenvectors of T . It follows that

C =

{
v

‖v‖
, v2, . . . , vn

}
is an ON basis for V consisting of eigenvectors of T . If B is an ON basis for V ,
then [1V ]∗B,C = [1V ]−1

B,C by Hw, so

[T ]C = [1V ]B,C [T ]B[1V ]∗B,C

by the change of basis theorem.

In fact, the converse is also true.
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Theorem 25.4

Let V be a finite dimensional inner product space over C, T : V → V linear. Then
T is normal iff ∃ an ON basis B for V consisting of eigenvectors of T . In particular,
T is diagonalizable if either holds.

Proof. ( =⇒ ) Has been done.
(⇐= ) Let B has an ordered ON basis for V of eigenvectors of T . Then

[T ]B =

λ1 0
. . .

0 λn

 , n = dimV

As B is ON, by HW

[T ∗]B = [T ]∗B =

λ1 0
. . .

0 λn


in MnC. So

[T ∗T ]B = [T ∗]B[T ]B =

|λ1|2 0
. . .

0 |λn|2


= [T ]B[T ∗]B = [TT ∗]B

(as |λi|2 = λiλi = λiλi ∈ C) By the Matrix Theory Theorem,

φ : L(V, V )→MnC by S 7→ [S]B

is an isomorphism, so
T ∗T = TT ∗

Remark 25.5. The result needs F = C. Indeed if V = Rn, n > 1, is an inner product
space over R via the dot product and T : V → V is a rotation by an ∠θ, 0 < θ < 2π, θ 6= π
in some plane through the origin in Rn, then T is normal and not diagonalizable.

What is true is: Let F = R or C, V a finite dimensional inner product space over
F, T : V → V linear ∃ an ON basis for V 3 [T ]B is triangularizable, then T is normal iff
T is diagonalizable.

Remark 25.6. As in the Hermitian case, we can do more.

Extension: Let V be a finite dimensional inner product space over C, dimV = n, T : V →
V normal, C an ordered basis of V of eigenvalues for normal T . After relabeling, we may
assume λ1, . . . , λk are the distinct eigenvalues of T , i.e., if j > k∃i, 1 ≤ i ≤ k 3 λi = λj .

Claim 25.1. Let v ∈ ET (λi), w ∈ ET (λi), i 6= j, i ≤ 1, j ≤ k. Then v ⊥ w.

Proof. We may assume that v 6= 0 and w 6= 0. As w ∈ ET (λj), w ∈ ET ∗(λj) by the
lemma, as T is normal. Hence

λi〈v, w〉 = 〈λiv, w〉 = 〈Tv,w〉 = 〈v, T ∗w〉
= 〈v, λjw〉 = λj〈v, w〉

Since λi 6= λj , 〈v, w〉 = 0.
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§26 Lec 26: Dec 7, 2020

§26.1 Lec 25 (Cont’d)

Let V be a vector space over F , Wi ⊂ V, i ∈ I subspace. Suppose that V =
∑

IWi.
Then V is a DIRECT SUM of the Wi, i ∈ I write V =

⊕
IWi if one of the following

equivalent condition hold

1. ∀v ∈ V ∃!wi ∈Wi 3 wi = 0 almost all i and v =
∑

I wi

2. If wi ∈Wi, almost all wi = 0, and 0 =
∑

I wi, then wi = 0∀i ∈ I

3. ∀i ∈ I
Wi ∩

∑
j∈I,j 6=i

Wj = 0

4. If Bi is a basis for Wi, i ∈ I, then B = ∪Bi is a basis for V .

If V is also an inner product space over F , and V =
⊕

IWi with 〈wi, wj〉 = 0∀i 6= j in
I, we call V an orthogonal direct sum and write V = 1

IWi.
Since λi 6= λj , 〈v, w〉 = 0. Let

W = ET (λ1) + . . .+ ET (λk)

It is a direct OR sum for if

0 = w1 + . . .+ wk, wi ∈ ET (λi), i = 1, . . . , k

then

0 = 〈0, wj〉 = 〈w1 + . . .+ wk, wj〉 = 〈wj , wj〉
= ‖wj‖2

j = 1, . . . , k. Hence wj = 0∀i and

W = ET (λ1| ⊕ . . .⊕ ET (λk))

(why – uniqueness follows immediately) and C is a basis for V , so

V = ET (λ1) ⊥ . . . ⊥ ET (λk)

By the OR Decomposition Theorem,

ET (λi)
⊥ = ET (λ1) ⊥ . . . ⊥ ET (λi) ⊥ . . . ⊥ ET (λk)

and if v ∈ V
v = w1 + . . .+ wk, wi ∈Wi unique

So
wi = vET (λi)

the OR properties of v an ET (λi) for i = 1, . . . , k by the OR Decomposition Theorem,
as

V = ET (λi) ⊥ ET (λi)
⊥

Let
Pλi : V → V by v 7→ vET (λi), i = 1, . . . , k
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be the composition

V → ET (λi) ↪→ V

v 7→ vET (λi)

a linear operator

im Pλi = ET (λi)

kerPλi = ET (λi)
⊥

PλiPλj = δijPλj , ∀i, j

i.e., Pλ1 , . . . , Pλk are ORTHOGONAL IDEMPOTENTS and we see ∀v ∈ V

v = Pλ1v + . . .+ Pλkv

1V = Pλ1 + . . .+ Pλk

So

T = T ◦ 1V = T ◦ Pλ1 + . . .+ T ◦ Pλk = λ1Pλ1 + . . .+ λkPλk
T = 1V T = Pλ1T + . . .+ PλkT

TPλi = PλiT, ∀i

as
T
∣∣
ET (λi)

= λi1ET (λi), i = 1, . . . , k

This is the SPECTRAL RESOLUTION of T if ni = dimET (λi),Bi an ordered ON basis
for ET (λi), Bi an ordered ON basis for ET (λi), i = 1, . . . , k. Then B = B1 ∪ . . . ∪Bk

is an ordered ON basis for V consisting of eigenvectors of T

n = dimV = n1 + . . . nk

fT = (t− λ1)n1 . . . (t− λk)nk

[T ]B =



λ1 0
. . .

λ1

. . .

λk
. . .

0 λk



Theorem 26.1 (Spectral Theorem for Normal Operator - Full Version)

Let F = C, V a finite dimensional inner product space over C, T : V → V normal,
λ1, . . . , λk all the distinct eigenvalues of T . Then T is diagonalizable and

1. Let Bi be an ordered ON basis for ET (λi), i = 1, . . . , k. Then B = B1 ∪ . . .∪Bn

is an ordered ON basis for V (obvious order) consisting of eigenvectors of T .
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2.

[T ]B =



λ1 0
. . .

λ1

. . .

λk
. . .

0 λk


where

ni = dimET (λi), i = 1, . . . , k

dimV = n = n1 + . . .+ nk

3. fT = (t− λ1)n1 . . . (t− λk)nk

4. V = ET (λ1) ⊥ . . . ⊥ ET (λk)

5. 1V = Pλ1 + . . . + Pλk : V → V where Pλi : v → v linear by v 7→ vET (λi),i=1,...,k

(viewed in V ).

6. PλiPλj = δijPλi , i, j = 1, . . . , k

7. T = λ1Pλ1 + . . .+ λkPλk

8. TPλi = PλiT, i = 1, . . . , k

9. If C is an ON basis for V then

[T ]B = [1V ]C ,B[T ]C [1V ]B,C

= [1V ]C ,B[T ]C [1V ]−1
C ,B

= [1V ]C ,B[T ]C [1V ]∗C ,B

i.e., [1V ]−1
B,C = [1V ]∗B,C

10. qT = (t− λ1) . . . (t− λk)

Now T is normal so T ∗ is also normal with distinct eigenvalues λ1, . . . , λk and

ET (λi) = ET ∗(λi), i = 1, . . . , k

In fact, as
Tv = λiv ⇐⇒ T ∗v = λiv

the orthogonal projection
Pλ1 , . . . , Pλk

for T ∗ satisfy
Pλi = Pλi , i = 1, . . . , k

as
vET (λi) = vE∗T (λi)

Hence the spectral resolution for T ∗ is

T ∗ = λ1Pλ1 + . . .+ λkPλk

= λ1Pλ1 + . . .+ λkPλk
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§27 Lec 27: Dec 9, 2020

§27.1 Lec 26 (Cont’d)

We make a further computation using the Spectral Resolution of normal T : V → V, V a
finite dimensional inner product space over C. This also holds for hermitian T : V → V, V
a finite dimensional inner product space over R with distinct eigenvalues λ1, . . . , λk,
orthogonal idempotents Pλ1 , . . . , Pλk i.e, spectral resolution.

T = λ1Pλ1 + . . .+ λkPλk

As PλiPλj = δijPλi , we have

T 2 = (λ1Pλ1 + . . .+ λkPλk) (λ1Pλ1 + . . .+ λkPλk) = λ2
1Pλ1 + . . .+ λ2

kPλk

An easy induction shows

Tm = λm1 Pλ1 + . . .+ λmk Pλk ,m ∈ Z+

Since
1V = Pλ1 + . . .+ Pλk

we see that if for any

f = amt
m + am−1t

m−1 + . . . a0 ∈ F [t]

a poly (with F = C if T normal, F = R or C if T is hermitian) that

f(T ) = amT
m + . . .+ a01V

f(T ∗) = amT
∗m + . . .+ a01V

and as f(T ) is also normal (resp hermitian)

f(T ) =

k∑
i=1

f(λi)Pλi

f(T ∗) =
k∑
i=1

fi(λi)Pλi∀f ∈ C[t]

Now let m = k − 1. Set

fi =

k∏
j=1,j 6=i

(t− λj)
λi − λj

∈ C[t], j = 1, . . . , k

the LAGRANGE POLY associated to λ1, . . . , λk. By the LAGRANGE INTERPOLA-
TION THEOREM, ∃!g ∈ C[t], deg g ¡ k, λ 3 g(λi) = λi, i = 1, . . . , k. Thus by the above,
we have

g(T ) = g(λ1)Pλ1 + . . .+ g(λk)Pλk = λ1Pλ1 + . . .+ λkPλk = T ∗ (?)

i.e., T ∗ is a polynomial in T .
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Proposition 27.1

Let F = C, V a finite dimensional inner product space over C, T : V → V linear.
Then the following are true

1. T is normal iff ∃g ∈ C[t] 3 T ∗ = g(T ).

2. T is isometry iff T is normal and |λ| = 1 for every eigenvalue λ of T.

3. If T is normal, then T is hermitian iff every eigenvalue of T is real.

Proof. 1. → is (?),
Tg(T ) = g(T )T

T ∗ is normal.

2. → If T is an isometry, then T ∗ = T−1. Let B be an ON basis for V , the cols of
[T ]B corresponds to an ON basis for V and we are done via the φ : L(V, V ) →
MnC, T 7→ [T ]B, i.e. MTT. In particular, 1V = TT ∗ = T ∗T , so T is normal if
v ∈ V then we know

v ∈ ET (λ) ⇐⇒ v ∈ ET ∗(λ)

i.e.,
Tv = λv ⇐⇒ T ∗v = λv

So if v ∈ ET (λ), . . .

We have
TT ∗ = |λ1|2Pλ1 + . . .+ |λk|2Pλk

Since |λi| = 1∀i,
TT ∗ = Pλ1 + . . .+ Pλk = 1V = T ∗T

Therefore,
‖v‖2 = 〈T ∗Tv, v〉 = 〈Tv, Tv〉 = ‖Tv‖2

i.e., ‖v‖ = ‖Tv‖∀v ∈ V . By Hw, T is an isometry.

3. → is the Hermitian Corollary.

←)λi ∈ R eigenvalues of normal T implies T = T ∗ by (?).

§27.2 Singular Value Theorem
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Theorem 27.2 (Singular Value)

Let F = R or C, A ∈ Fm×n. Then

∃u ∈ Un(F ) := {B ∈MnF |BB∗ = I} , X ∈ UnF 3

X∗AU = D :=



u1 0
. . .

ur
0

. . .

0 0


∈ Fm×n

diagonal, i.e. Dij = 0∀i 6= j with Dii = 0∀i > r,Dii = µi, i ≤ r with

µi � . . .� µr > 0

and r = rank A

Proof. A∗A ∈MnF is hermitian with non-negative real eigenvalues using problem 9 of
the Take home. Let λ1, . . . , λr be the positive eigenvalues ordered such that

λ1 � . . . λr > 0

(there can be repetitions). By the Spectral Theorem for Hermitian Operators, ∃U ∈
UnF 3

(AU)∗(AU) = U∗(A∗A)U =



λ1 0
. . .

λr
0

. . .

0 0


∈MnF

(as A = [A]Sn,Sm). Let
C = AU ∈ Fm×n

So
C∗C = (AU)∗(AU) ∈MnF

Write
λi = µ2

i , µi > 0, 1 ≤ i ≤ r

(which we can do as λi > 0 ∈ R ) and let

λi = 0 for i > r

Set

B =



µ1 0
. . .

µr
0

. . .

0 0


∈MnF
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if E is a matrix let E(k) denote the kth column of E. Then we have

λiδij = (C∗C)ij =

n∑
l=1

(C∗)ilClj =

n∑
i=1

CliClj

=

n∑
l=1

CljCli = 〈C(j), C(i)〉

Hence
C =

[
C(1) . . . C(r) 0 0

]
∈ Fm×n

satisfies C0 =
{
C(1), . . . , C(r)

}
is an OR set in Fm×1. As C(i) 6= 0, 1 ≤ i ≤ r,C0 is

linearly independent. Therefore,
Rank C = r

with
‖C(i)‖2 = 〈C(i), C(i)〉 = λi = µ2

i

for i = 1, . . . , r. As U is invertible

Rank A = Rank AU = Rank C = r,

i.e.,
Rank A = r

as required. Now define

X(i) :=
1

µi
C(i) ∈ Fm×1, i = 1, . . . , r

Then B0 =
{
X(1), . . . , X(r)

}
is an ON set in Fm×1. Extend this to an ordered ON basis

B =
{
X(1), . . . , X(m)

}
for Fm×1

Then the matrix

X =
[
X(1) . . . X(m)

]
= [1Fm×1 ]B,Sm,1

∈MmF

Since B,Sm,1 are ON bases
X ∈ Um(F )

Set

D =



µ1 0
. . .

µr
0

. . .

0 0


∈ Fm×n

as in the statement of the theorem.

XD =
[
X(1) . . . X(m)

]


µ1 0
. . .

µr
0

. . .

0 0


[
µ1X

(1) . . . µrX
(r)0 . . . 0

]
= C = AU
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Hence
X∗AU = D

as needed.
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§28 Lec 28: Dec 11, 2020

§28.1 Lec 27 (Cont’d)

Definition 28.1 (Singular Value Decomposition) — Let A ∈ Fm×n, F = R or C

(i) A = XDU∗, U ∈ UnF,X ∈ UmF (so D = X∗AU as X−1 = X∗, U−1 = U∗)

(ii) µ1 ≥ . . . ≥ µr > 0 ∈ R where

(iii)

D =



µ1

. . .

µr
0

. . .

0


Then i), ii), iii) is called a SINGULAR VALUE DECOMPOSITION (SVD) for A,
µ1, . . . , µr the singular values of A,D the pseudo diagonal matrix of A.

Note: Let A = XDU∗ be an SVD of A. Then

1. The singular values of A are the positive square roots of the positive eigenvalues
of A∗A

2. The columns of X forms an ON basis for Fm×1 of eigenvectors of AA∗

3. The rows of U form an ON basis for F 1×n of eigenvectors of A∗A

Corollary 28.2

The singular values of A ∈ Fm×n, F = R or C, are unique (including multiplicity)
up to order.

Proof. Let A = XDU∗ be an SVD of A,X ∈ UmF,U ∈ UnF . Then

A∗A = (XDU∗)∗(XDU∗) = UD∗X∗XDU∗ = UD∗DU∗

as X∗X = I, so

A∗A ∼ D∗D =

d
2
11

. . .


have the same eigenvalues, d2

11, . . . , i.e., these are the eigenvalues of AA∗.

Remark 28.3. An SVD of A ∈ Fm×n, F = R or C may not be unique.
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Corollary 28.4

The singular values of A ∈ Fm×n, F = R or C are the same as the singular values
of A∗ ∈ Fn×m.

Proof. (XDU∗) = UD∗X∗ and D,D∗ have the same non-zero diagonal eigenvalues.

Theorem 28.5 (Polar Decomposition)

Let F = R or C, A ∈MnF . Then ∃U∼ ∈ UnF,N ∈MNF hermitian (i.e., N = N∗

) with all its (real) eigenvalues non-negative s.t.

A = U∼N

cf. polar form of a complex number U∼ ↔ e
√
−1θ, N ↔ r.

Proof. In the Singular Value Theorem, we have m = n, so if

A = XDU∗ is an SVD X,U ∈ UuF,

We have D = D∗ is hermitian with non-negative eigenvalues AU = XD. So

A = XDU∗ = X(U∗U)DU∗ = (XU∗)(UDU∗)

Since
(XU∗)∗(XU∗) = UX∗XU∗ = UU∗ = I,

we have XU∗ ∈ UnF .
So letting U∼ = XU∗ ∈ UnF,N = UDU∗ work.

Exercise 28.1. In the above theorem, N is unique and U is unique if A invertible in
MnF . (as it has positive eigenvalues).

§28.2 Application of SVD

Problem 28.1. Let F = R or C, V a finite dimensional inner product space over
F,W ⊂ V a subspace

PW : V →W by v 7→ vW

the orthogonal projection of V onto W . We know vW is the BEST APPROXIMATION
of v ∈ V onto W . Now let X be another finite dimensional inner product space over
F, T : X → V linear, W = T (X) = im T, v ∈ V, x ∈ X. We call

(i) X a best approximation to v via T if

Tx = vW = PW (v)

(ii) X an optimal approximation to v via T if it is a best approximation to v via T
and ‖v‖ is minimal among all best approximations to v via T .

In the above, find an optimal approximation of x.
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Ans: Let A = T : Fn×1 → Fm×1, A ∈ Fm×n, v ∈ Fm×1 (F = R or C ). Let
A = XDU∗ be an SVD

D =



µ1

. . .

µr
0

. . .

0


∈ Fm×n

µ1 ≥ . . . ≥ µr > 0 ∈ R. Define

D† =



µ−1
1

. . .

µ−1
r

0
. . .

0


∈ Fn×m

A† := UD†X∗ ∈ Fn×m

called the Moore-Penrose generalized pseudo-inverse of A. Then

(i) rank A = rank A†

(ii) A†v is an optimal approximation in Fn×1 to v via A and is unique. (Hence A† is
well-defined, i.e., independent of SVD)

(iii) If rank A = n, then
A† = (A∗A)−1A∗

Application (Least square): F = R or C. Given date (x1, y1), . . . , (xn, yn) ∈ F 2. Find
the best line relative to this data, i.e., find

y = λx+ b, λ = slope

Let

A =

x1 1
...

...
xn 1

 , X =

(
λ
b

)
, Y =

y1
...
yn


Solve AX = Y . The solution is probably inconsistent, so want optimal soln. Solvex1 1

...
...

xn 1

(λ
b

)
=

y1
...
yn


(Least squares approximation) Let W = im A. To find optimal approximation to

AX = YW

Then X = A†y works. If rank A = 2, then

X = (A∗A)−1A∗Y
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§28.3 Smith Normal Form

Polynomials are important in analyzing linear operator T : V → V , V a finite dimensional
vector space over F , e.g., fT , qT . Algebraically, this arises from the generalization of a
vector space over F .
Let R be a ring, i.e., axioms of a field except M3, M4 (inverse and commutativity).
Let M be a set satisfying A1 − A4, i.e., axiom for + in Z. Then M is called a (left)
R−Module via

· : R×M →M (r,m) 7→ rm

if (M,+., ·) satisfies the axioms of a vector space over F with R replacing a field.
For linear algebra, this arises as follows: Let V be a vector space over F , a set T : V → V
a linear operator. Make V into a F [t]-module by ∀v ∈ V ∀g ∈ F [t]

g · v :7→ g(T )v

We let t in F [t] act on V by
tv := T (v)

Then use module theory to break V into v = w1 ⊕ . . .⊕wr, wi T-invariant ∀i (and nice)
if V is a finite dimensional vector space over F .
We say that A ∈ F [t]m×n is in Smith Normal Form (or SNF) if A is the zero matrix
or if A is a matrix of the form

q1 0 . . .
0 q2
...

. . .

qr
0

. . .

0


with q1|q2|q3| . . . |qr ∈ F [t] and all monic, i.e., there exists a positive integer r satisfying
r ≤ min(m,n) and q1|q2|q3| . . . |qr monic in F [t] s.t. Aii = qi for 1 ≤ i ≤ r and Aij = 0
otherwise.
We generalize Gaussian elimination, i.e., row(and column) reduction for matrices with
entries in F to matrices with entries in F [t]. The only difference arises because most
element of F [t] do not have multiplicative inverses.
Let A ∈Mn(F [t]). We say that A is an elementary matrix of

(i) Type I: If there exists λ ∈ F [t] and l 6= k s.t.

Aij =


1, if i = j

λ, if (i, j) = (k, l)

0, otherwise

(ii) Type II: If there exists k 6= l s.t.

Aij =


1, if i = j 6= l or i = j 6= k

0, if i = j = l or i = j = k

1, if (k, l) = (i, j) or (k, l) = (j, i)

0, otherwise
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(iii) Type III: If there exists a 0 6= u ∈ F and l s.t

Aij =


1, if i = j 6= l

u, if i = j = l

0, otherwise

Remark 28.6. Let A ∈ F [t]m×n. Multiplying A on the left (respectively right) by a
suitable size elementary matrix of

(a) Type I is equivalent to adding a multiple of a row (respectively column) of A to
another row (respectively column) of A.

(b) Type II is equivalent to interchanging two rows (respectively columns) of A.

(c) Type III is equivalent to multiplying a row (respectively column) of A by an element
in F [t] having a multiplicative inverse.

Remark 28.7. 1. All elementary matrices are invertible.

2. The definition of elementary matrices of Types I and II is exactly the same as that
given when define over a field.

3. The elementary matrices of Type III have a restriction. The u’s appearing in the
definition are precisely the element in F [t] having a multiplicative inverse TBA

Notation: We let

GLn(F [t]) := {A ∈Mn(F [t])|A is invertible}

Warning: A matrix in Mn(F [t]) having det(A) 6= 0 may no longer be invertible, i.e.,
have an inverse. What is true is that GLn(F [t]) = {A ∈Mn(F [t])|0 6= det(A) ∈ F},
equivalently GLn(F [t]) consist of those matrices whose determinant have a multiplicative
inverse in F [t].

Definition 28.8 (Equivalent Matrix) — Let A,B ∈ F [t]m×n. We say that A is
equivalent to B and write A ≈ B if there exists matrices P ∈ GLm(F [t]) and
Q ∈ GLn(F [t]) s.t. B = PAQ.

Theorem 28.9

Let A ∈ F [t]m×n. Then A is equivalent to a matrix in Smith Normal Form (SNF).
Moreover, there exists matrices P ∈ GLm(F [t]) and Q ∈ GLn(F [t]), each a product
of matrices of Type I, Type II, and Type III, such that PAQ is in SNF.

Proof. The proof will, in fact, be an algorithm to find a SNF of A. Refer to www.math.

ucla.edu/~rse/115ah.1.20f/L28.pdf – Pg. 9-10.

Remark 28.10. The SNF derived by this algorithm is, in fact, unique. In particular,
the monic polynomial q1|q2|q3| . . . |qr arising in the Smith Normal Form of a matrix A are
unique and are called the invariant factors of A. This is proven using results about
determinants. It follows if A,B ∈ F [t]m×n then A ∼ B if and only if they have the same
SNF if and only if they have the same invariant factors.
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So what good is the SNF relative to linear operators on finite dimensional vector spaces?
It tells us a great deal, because the following is true: Let A,B ∈Mn(F ). Then A ∼ B if
and only if tI −A ≈ tI −B ∈Mn(F [t]) and this is completely determined by the SNF
hence the invariant factors of tI − A and tI − B. Now the SNF of tI − A may have
some of its invariant factors of 1, and we shall drop these.

§28.4 Some definit ions

Definition 28.11 (Companion Matrix) — Let q = tn + an−1t
n−1 + . . .+ a1t+ a0 be

a monic polynomial in F [t]. The companion matrix C(q) is defined to be the
n× n matrix: 

0 0 . . . 0 −a0

1 0 . . . 0 −a1
...

. . .
...

0 0 . . . 1 −an−1



Definition 28.12 (Invariant Factors) — Let V be a finite dimensional vector space
over F with B an ordered basis. Let T : V → V be a linear operator. If one
computes the Smith Normal Form of tI − [T ]B, it will have the form

1 0 . . . . . . 0
0 1 0
...

. . .
...

q1

q2
...

. . .
...

0 . . . . . . qr


with q1|q1| . . . |qr are all the monic polynomials in F [t] \ F . These are called the
invariant factors of T . They are uniquely determined by T .

Definition 28.13 (Rational Canonical Form) — The main theorem is that there
exists an ordered basis B for V such that

[T ]B =


C(q1) 0 . . . 0

0 C(q2) . . . 0
...

. . .
...

0 . . . C(qr)


and this matrix representation is unique. This is called the rational canonical
form or RCF of T . Moreover, the minimal polynomial of T is qr. The algorithm
computes this as well as all invariant factors of T . The characteristics polynomial fT
of T is the product of q1 . . . qr. This works over any field F , even if qT does not split.
The basis B gives a decomposition of V into T-invariant subspaces V = W1⊕. . .⊕Wr

where fT |Wi
= qT |Wi

= qi and if dim(Wi) = ni, then Bi =
{
vi, T vi, . . . , T

ni−1vi
}

is
a basis for Wi ( we say that the Wi are T-cyclic subspaces).
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Definition 28.14 (Jordan Block/Size – Jordan Canonical Form) — Let V be a finite
dimensional vector space over F with B an ordered basis. Let T : V → V be a
linear operator. Suppose that qT splits over F . Say

qi = (t− λ1)r1 . . . (t− λm)rm , i = 1, . . . ,m

in F [t], with λ1, . . . , λm distinct. A matrix in Mr(F ) of the form

Jr(λ) =


λ 0 . . . 0 0
1 λ 0 . . . 0
0 1 λ . . .
...

...
. . .

. . .
...

0 0 . . . 1 λ


is called a Jordan block or size r × r with eigenvalue λ. The one can show that
C(qi), i = 1, . . . ,m is similar to the following matrix in block form:

Jr1(λ1) 0 . . . 0
0 Jr2(λ2) . . . 0
...

...
. . .

...
0 0 . . . Jrm(λm)


Replacing each C(qi) in the rational canonical form by its Jordan blocks give what
is called Jordan Canonical Form or JCF of T . It is unique up to the order of
the blocks (blocks with the same eigenvalues are usually put together).
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§29 Extra Lec: Nov 2/9, 2020

§29.1 Dual Bases – Dual Spaces

Let 0 6= V be a vector space over F with basis B. For each v0 ∈ B, we define a map

fv0 : V → F linear

as follows: by the UPVS (which also holds if the basis is infinite, let fv0 be the unique
linear transformation) s.t.

v0 7→ 1

v 7→ 0 ∀v0 6= v ∈ B

We have
0 < im fv0 ⊂ F a subspace

(im fv0 6= 0 as v0 6= 0 ). As dimF F = 1, we must have dim fv0 = 1, so fv0 : V → F is
an epimorphism and

ker fv0 = {w ∈ V |w has v0 coordinate = 0}
= Span(B \ {v0})

So if w ∈ V , w =
∑
αvv, αv ∈ F almost all 0 with αv unique.

fv0(w) = αv0

the coordinate of w on v0. We can do this for each v ∈ B. If v′ ∈ B, fV : V → F is the
linear transformation determined by

fv′(v) = δvv′ =

{
i, if v = v′

0, if v 6= v′, v ∈ B
, the Kronecker δ

Set
B∗ := {fv|v ∈ B} fv is the coordinate functionfv on v

The vector space
V ∗ := L(V, F )

is called the DUAL SPACE of V . So by the above if w ∈ V

w =
∑
v∈B

αvv, αv ∈ F almost all 0

then
αv = fv(w) the coordinate w, v ∈ B

so

w =
∑
B

αvv =
∑
B

fv(w)v

Now by the UPVS, we have a unique linear transformation

DB : V → V ×

determined by v ∈ B 7→ fv. So
∑

B αvv 7→
∑

B αvfv almost all αv = 0
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Claim 29.1. DB is 1-1.

Suppose w =
∑

B αvv 7→ 0 almost all αv = 0 i.e.,
∑

B αvfv = 0 ← in v∗

Let v0 ∈ B, then

0 =

(∑
B

αvfv

)
(v0) =

∑
B

αvfv(v0) =
∑
B

αvSvv0 = αv0

Hence
∑
αvfv = 0→ αv = 0∀v ∈ B, so w = 0. DB is therefore 1-1 as claimed.

Warning: If V is not finite dimensional, then DB is not onto, i.e., B∗ does not span V ∗.(
|V ∗| = |F ||B| and |F | = |V | by UPVS if F is infinite

)
Note: DB : V → V ∗ depends on the choice of basis B.

Definition 29.1 (Linear Functionals) — If V is a vector space over F , elements in
V ∗ = L(V, F ) are called LINEAR FUNCTIONALS.

Fact 29.1. If S is a linearly indep. set in a vector space over F (even infinite) then S
is part of a basis for V , i.e., the Extension Theorem holds (This needs the Axiom of
Choice).
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Example 29.2

V a vector space over F . Then followings are linear functionals

1. If 0 6= v ∈ V , then {v} extend to a basis B for V and B∗ satisfies B∗ is
linearly indep.

fv(x) = Svx∀x ∈ B

Let w =
∑

x∈B αxx, αx = 0 almost all x ∈ B. Then fx(w) = αx ∈ F∀x ∈ B,
w =

∑
fx(w)x

2. πi : Fn → F by (α1, . . . , αn) 7→ αi∀i

3. Let Int : C[α, β]→ R, α < β be given by

Int f 7→
∫ β

α
f

4. trace: MnF → F by

A 7→
n∑
i=1

Aii

The sum of the diagonal entries of A called the TRACE of A.

We can iterate our constructions as follows:

Let C be a basis for V ∗ = L(V, F ) a vector space over F , where V is a vector
space over F . Then

DC : V ∗ → (V ∗)∗ := V ∗∗

V ∗∗ is called the DOUBLE DUAL of V , is induced by

f0 ∈ C 7→ Gf0 ∈ C ∗

the coordinate function on f0, i.e.,∑
C

αff 7→
∑
C ∗

αfGf

with

Gf0(f) = δtf0 =

{
1 if f = f0∀f, f0 ∈ C

0 if f 6= f0

So we have
V

DB→ V ∗
DC→ V ∗∗

and the composition is a monomorphism.

Wonderful Result: ∃ a monomorphism

L : V → V ∗∗

INDEPENDENT OF CHOICE OF BASES. We know want to show this:
For each v ∈ V define the following linear functionals on V ∗

Lv : V ∗ → F by Lv(f) := f(v)

EVALUATION at v.
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Check. Lv : V ∗ → F is linear, i.e., Lv ∈ V ∗∗ = (V ∗)∗ :

Lv(αf + g) = (αf + g)(v) = αf(v) + g(v)

= αLvf + Lvg

∀t, g ∈ V ∗∀α ∈ F as needed. Now define

L : V → V ∗∗ by v 7→ Lv

i.e., L(v) = Lv

Claim 29.2. L is linear.

∀f ∈ V ∗, v, v′ ∈ V, α ∈ F, we have

L(αv + v′)(f) = Lαv+v′(f) = f(αv + v′)

= αf(v) + f(v′) = αLvf + Lv′f

= (αLv + Lv′)(f)

as needed.

Claim 29.3. L : V → V ∗∗ is monic.

Suppose v 6= 0. By Example TBA, ∃f ∈ V ∗ 3 Lv(f) = f(v) 6= 0. As L is linear, L is
a monomorphism. Hence

L : V → V ∗∗

is a NATURAL or CANONICAL MONOMORPHISM, i.e., no basis is needed to define
it. We now assume that V is a finite dimensional vector space over F , let

B = {v1, . . . , vn} be a basis for V

B∗ = {f1, . . . , fn} ⊂ V ∗ defined by fi(vj) = δij∀i, j

i.e., the fi are the coordinate functions relative to B. Then, as before, we have a
monomorphism

DB : V → V ∗ induced by vi 7→ fi

But we also have

dimV ∗ = dimL(V, F ) = dimV dimF = dimV

by the Matrix Theory Theorem, so DB is an isomorphism by the Isomorphism Theorem
with B∗ a basis for V ∗ called the DUAL BASIS of B. We also have

V ∼= V ∗ ∼= V ∗∗, so V ∼= V ∗∗

and
B∗∗ := {Lv1 , . . . , Lvn}

with
Lvi := Lfi , fi ∈ B∗

Lfi(fj) = Lvi(fj) = fj(vi) = δij

So B∗∗ is the DUAL BASIS of B∗. We also now L : V → V ∗∗ is now a natural
isomorphism by the Isomorphism Theorem and even better that

f(v) = Lv(f) ∀v ∈ V ∀f ∈ V ∗
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EVALUATION at v. So when V is a finite dimensional vector space over F , we can and
do identify Lv and v ∀v ∈ V .
Any v ∈ V is determined by the t ∈ V ∗ and every f ∈ V ∗ is determined by the Lv ∈ V ××
and

f(v) = Lv(f)

So now we have: if V is a finite dimensional vector space over F

B = {v1, . . . , vn} a basis for V

B∗ = {f1, . . . , fn} : {fv1 , . . . , fvn} the dual basis of B

B∗∗ =
{
Lfv1 , . . . , Lfvn

}
= {Lv1, . . . , Lvn} the dual basis of B∗

i.e.,

fi = fvi

Lfvi = Lvi

and these satisfy
f∣∣(vi) = tvj(vi) = δij = Lfvi (vj) = Lvi(f

∣∣)
If v ∈ V , then

v = α1v1 + . . .+ αnvn unique α1, . . . , αn ∈ F
fj(v) = fj(α1v1 + . . .+ αnvn)

= αj

So

v =
n∑
i=1

fi(v)vi

where fi(v) is the coordinate function relative to B and if f ∈ V ∗, then

f = β1f1 + . . .+ βnfn unique β1, . . . , βn ∈ F

As

Lv1(f) = (β1f1 + . . .+ βnfn) (vj)

= β1f1(v1) + . . .+ βnfn(vj) = β∣∣
And

f = β1f1 + . . .+ βnfn

= Lv1(f)f1 + . . .+ Lvn(f)fn

= f(v1)f1 + . . .+ f(vn)fn

So,

f =
∑

f(vi)fi

where f(vi) is the coordinate function.
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§29.2 The Transpose

Let V,W be vector space over F , T : V → W linear if g ∈ W ∗ = L(W,F ), i.e.,
g : W → F linear, then the composition

V
T→W

g→

is a linear functional, i.e., g ◦ T ∈ V ∗.

Definition 29.3 (Transpose) — Let V,W be vector space over F, T : V →W linear.
Define the transpose of T by

T> : W ∗ → V ∗ by g 7→ g ◦ T

i.e.,
T>g := g ◦ T ∀g ∈W ∗

i.e.,

V W
T

p

g

T tg := g ◦ T
commutes

So

V
T→W

V ∗
T>← W ∗

Claim 29.4. T> : W ∗ → V ∗ is linear if g, g′ ∈W ∗, α ∈ F , then

T>(αg + g′) = (αg + g′) ◦ T = αgT + g′T = αT>g + T>g′

T> is called the transpose because of the followings

Theorem 29.4

Let V,W be finite dimensional vector space over F , B,C ordered bases for V,W
respectively, T : V →W linear. Then

[T ]>B,C = [T>]C ∗,B∗

Proof. Let

B = {v1, . . . , vn} , B∗ = {f1, . . . , fn}
C = {w1, . . . , wm} , C ∗ = {g1, . . . , gm}

with B∗,C ∗ the ordered dual bases of ordered bases B,C of V,W respectively.
Let

[T ]B,C = (αij) and [T>]C ∗,B∗ = (βij)
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i.e.,

Tvk =

m∑
i=1

αikwi ∈W, k = 1, . . . , n

T>gj =

n∑
i=1

βijfi ∈ V ∗, j = 1, . . . ,m

Then computation gives(
T>gj

)
(vk) = gj(Tvk) = gj

(
m∑
i=1

αikwi

)

=

m∑
i=1

αikgj(wi) =

m∑
i=1

αikδij = αjk

and (
T>g

)
(vk) =

(
n∑
i=1

βijfi

)
(vk) =

n∑
i=1

βijfi(vk)

=

n∑
i=1

βijδik = βkj

Hence, αjk = βkj∀j, k as needed.

Definition 29.5 (Annihilator) — Let V be a vector space over F, ∅ 6= S ⊂ V a
subset. The set

S◦ :=
{
f ∈ V ∗|f

∣∣
S

= 0
}

= {f ∈ V ∗|f(s) = 0∀s ∈ S}

is called the annihilator of S.

Question 29.1. If V is an inner product space over F , can you find something analogous?

Claim 29.5. S◦ ⊂ V ∗ is a subspaces (even if S is not).

Proof. Let f, g ∈ S◦, α ∈ F . To show (αf + g)
∣∣
S

= 0, let s ∈ S, then

(αf + g)(s) = αf(s) + g(s) = 0

so αf + g ∈ S◦.

Observation: Let T : V →W be linear. Then

kerT> = (im T )◦

g ∈ kerT> iff T>g = 0 iff (T>g)(v) = 0∀v ∈ V iff g (Tv) = 0∀v ∈ V iff g ∈
(im T )◦.

Proposition 29.6

Let V be a finite dimensional vector space over F , W ⊂ V a subspace. Then

dimV = dimW + dimW ◦
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Question 29.2. If V is a finite dimensional inner product space over F , can you find
something similar?

Proof. Let {v1, . . . , vk} be a basis for W . Extend it to B = {v1, . . . , vn} a basis for V .
Let B∗ = {f1, . . . , fn} be the dual basis of B, i.e.,

fi(vj) = δij∀i, j

Claim 29.6. C = {fk+1, . . . , fn} is a basis for W ◦. Let f ∈ W ◦. Then ∃β1, . . . , βn ∈
F 3

f =
n∑
i=1

βifi =
n∑
i=1

f(vi)︸ ︷︷ ︸
βi

fi =
k+1∑
i=1

f(vi)fi ∈ Span C

As C ⊂ B∗ and B∗ is linearly indep., so is C . This proves the claim and the result
follows.

Corollary 29.7

Let V be a finite dimensional vector space over F , W ⊂ V a subspace. Identifying
V and V ∗∗ via v ↔ Lv, we have

W = (W ◦)◦ := W ◦◦

If V is a inner product space over F , can you find something similar?

Proof. We have W ◦ ⊂ V ∗ and W ◦◦ ⊂ V ∗∗ = V are subspaces and by the last proposition,
we have

dimV = dimW + dimW ◦

dimV ∗ = dimW ◦ + dimW ◦◦

dimW = dimW ◦◦

If w ∈W , then
Lwf = f(w) = 0, ∀f ∈W ◦

So
w = Lw ∈W ◦◦

i.e., W ⊂W ◦◦ is a subspace. As dimW = dimW ◦◦,W = W ◦◦.

Theorem 29.8

Let V,W be finite dimensional vector space over F , T : V →W linear. Then

dim im T = dim im T>

Proof. We have dimW = dimW ∗

dimW = dim im T + dim (im T )◦

dimW ∗ = dim im T> + dim kerT>
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by the previous proposition and the Dimension Theorem. By observation,

(im T )◦ = kerT>

dim(im T )◦ = dim kerT>

Hence,
dim im T = dim im T>

Application: Let A ∈ Fm×n. The row (respectively column) RANK of A is the dimension
of the subspace spanned by the rows (respectively column of A viewed as vectors in Fm

(respectively Fn×1).
Using the theorems and our previous computation, we have

Claim 29.7. row rank A = col rank A.
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§30 Lec 1: Mar 29, 2021

§30.1 Vector Spaces

Notation: if ? : A×B → B is a map (= function) write a?b for ?(a, b), e.g., + : Z×Z→ Z
where Z = the integer.

Definition 30.1 (Field) — A set F is called a FIELD under

• Addition: + : F × F → F

• Multiplication: · : F × F → F

if ∀a, b, c ∈ F , we have

A1) (a+ b) + c = a+ (b+ c)

A2) ∃ 0 ∈ F 3 a+ 0 = a = 0 + a

A3) A2) holds and ∃x ∈ F 3 a+ x = 0 = x+ a

A4) a+ b = b+ a

M1) (a · b) · c = a · (b · c)

M2) A2) holds and ∃1 6= 0 ∈ F s.t. a · 1 = a = 1 · a ( 1 is unique and written 1 or
1F )

M3) M2) holds and ∀0 6= x ∈ F ∃y ∈ F 3 xy = 1 = yx (y is seen to be unique
and written x−1)

M4) x · y = y · x

D1) a · (b+ c) = a · b+ a · c

D2) (a+ b) · c = a · c+ b · c

Example 30.2

Q, R, C are fields as is

F2 := {0, 1} with + : given by

+ 10

0

1

0 1

1 0

10

0

1

0 0

0 1

Fact 30.1. Let p > 0 be a prime number in Z. Then ∃ a field Fpn having pn elements
write |Fpn | = pn ∀n ∈ Z+.
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Definition 30.3 (Ring) — Let R be a set with

• + : R×R→ R

• · : R×R→ R

satisfying A1) – A4), M1), M2), D1), D2), then R is called a RING.
A ring is called

i) a commutative ring if it also satisfies M4).

ii) an (integral) domain if it is a commutative ring and satisfies

M 3’) a · b = 0 =⇒ a = 0 or b = 0

(0 = {0} is also called a ring – the only ring with 1 = 0)

Example 30.4 (Proof left as exercises) 1. Z is a domain and not a field.

2. Any field is a domain.

3. Let F be a field
F [t] := {polys coeffs in F}

with usual +, · of polys, is a domain but not a field. So if f ∈ F [t]

f = a0 + a1t+ . . .+ ant
n

where a0, . . . , an ∈ F .

4. Q :=
{
a
b |a, b ∈ Z, b 6= 0

}
< C (< means ⊂ and 6=) with usual +, · of fractions.

(when does a
b = c

d?)

5. If F is a field

F (t) :=

{
f

g
|f, g ∈ F [t], g 6= 0

}
(rational function)

with usual +, · of fractions is a field.
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Example 30.5 (Cont’d from above) 6. Q[
√
−1] :=

{
α+ β

√
−1 ∈ C|α, β ∈ Q

}
<

C. Then Q[
√
−1] is a field and

Q(
√
−1) :=

{a
b
|a, b ∈ Q[

√
−1], b 6= 0

}
= Q[

√
−1]

=
{a
b
|a, b ∈ Z[

√
−1], b 6= 0

}
where Z[

√
−1] :=

{
α+ β

√
−1 ∈ C, α, β ∈ Z

}
< C. How to show this? –

rationalize (Z[
√
−1] is a domain not a field, F [t] < F (t) if F is a field so we

have to be careful).

7. F a field
MnF := {n× n matrices entries in F}

is a ring under +, · of matrices.

1MnF = In = n× n identity matrix

1 0
. . .

0 1


0MnF = 0 = 0n = n× n zero matrix

0 . . . 0
...

...
0 . . . 0


is not commutative if n > 1.

In the same way, if R is a ring we have

MnR = {n× n matrices entries in R}

e.g., if R is a field MnF [t].

8. Let ∅ 6= I ⊂ R be a subset, e.g., [α, β] , α < β ∈ R. Then

C(I) = {f : I → R|f continuous}

is a commutative ring and not a domain where

(f u g)(x) := f(x) u g(x)

0(x) = 0

1(x) = x

for all x ∈ I.

Notation: Unless stated otherwise F is always a field.
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Definition 30.6 (Vector Space) — Let F be a field, V a set. Then V is called a
VECTOR SPACE OVER F write V is a vector space over F under

• + : V × V → V – Addition

• · : F × V → V – Scalar multiplication

if ∀x, y, z ∈ V ∀α, β ∈ F .

1. (x+ y) + z = x+ (y + z)

2. ∃0 ∈ V 3 x+ 0 = x = 0 + x (0 is seen to be unique and written 0 or 0V )

3. 2) holds and ∃v ∈ V 3 x+ v = 0 = v + x (v is seen to be unique and written
−x)

4. x+ y = y + x

5. 1F · x = x.

6. (α · β) · x = α · (β · x)

7. (α+ β) · x = α · x+ β · x

8. α · (x+ y) = α · x+ α · y

Remark 30.7. The usual properties we learned in 115A hold for V a vector space over F ,
e.g., 0FV = 0V , general association law,. . .
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§31 Lec 2: Mar 31, 2021

§31.1 Vector Spaces (Cont’d)

Example 31.1

The following are vector space over F

1. Fm×n := {m× n matrices entries in F}, usual +, scalar multiplication, i.e.,
if A ∈ Fm×n, let Aij = ijth entry of A. If A,B ∈ Fm×n, then

(A+B)ij := Aij +Bij

(αA)ij := αAij ∀α ∈ F

i.e., component-wise operations.

2. Fn = F 1×n := {(α1, . . . , αn) |αi ∈ F}

3. Let V be a vector space over F , ∅ 6= S a set. Define

Fcn(S, V ) := {f : S → V | f a fcn}

Then Fcn(S, V ) is a vector space over F ∀f, g ∈ Fcn(S, V ), ∀α ∈ F . For all
x ∈ S,

f + g : x 7→ f(x) + g(x)

αf : x 7→ αf(x)

i.e.

(f + g)(x) = f(x) + g(x)

(αf)(x) = αf(x)

with 0 by 0(x) = 0V ∀x ∈ S.

4. Let R be a ring under +, ·, F a field 3 F ⊆ R with +, · on F induced by +, ·
on R and 0F = 0R, 1F = 1R, i.e.

+︸︷︷︸
on R

∣∣
F × F︸ ︷︷ ︸

restrict dom

: F × F → F and ·︸︷︷︸
on R

∣∣
F × F︸ ︷︷ ︸

restrict dom

: F × F → F

i.e. closed under the restriction of +, · on R to F and also with 0F = 0R and
1F = 1R (we call F a subring of R). Then R is a vector space over F by
restriction of scalar multiplication, i.e., same + on R but scalar multiplication

·
∣∣
F×R : F ×R→ R

e.g., R ⊆ C and F ⊆ F [t].
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Example 31.2 (Cont’d from above)

Note: C is a vector space over R by the above but as a vector space over C is
different.

5. In 4) if R is also a field (so F ⊆ R is a subfield). Let V be a vector space over
R. Then V is also a vector space over F by restriction of scalars, e.g., MnC is
a vector space over C so is a vector space over R so is a vector space over Q.

§31.2 Subspaces

Definition 31.3 (Subspace) — Let V be a vector space under +, ·, ∅ 6= W ⊆ V a
subset. We call W a subspace of V if ∀w1, w2 ∈W, ∀α ∈ F ,

αw1, w1 + w2 ∈W

with 0W = 0V is a vector space over F under +|W×W and ·|F×W i.e., closed under
the operation on V .

Theorem 31.4

Let V be a vector space over F, ∅ 6= W ⊆ V a subset. Then W is a subspace of V
iff ∀α ∈ F , ∀w1, w2 ∈W , αw1 + w2 ∈W .

Example 31.5 1. Let ∅ 6= I ⊆ R, C(I) the commutative ring of continuous
function f : I → R. Then C(I) is a vector space over R and a subspace of
Fcn(I,R).

2. F [t] is a vector space over F and n ≥ 0 in Z.

F [t]n := {f | f ∈ F [t], f = 0 or deg f ≤ d}

is a subspace of F [t] (it is not a ring).

Attached is a review of theorems about vector spaces from math 115A.

§31.3 Direct Sums

Problem 31.1. Can you break down an object into simpler pieces? If yes can you do it
uniquely?

Example 31.6

Let n > 1 in Z. Then n is a product of primes unique up to order.
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Example 31.7

Let V be a finite dimensional inner product space over R (or C) and T : V → V
a hermitian (=self adjoint) operator. Then ∃ an ON basis for V consisting of
eigenvectors for T . In particular, T is diagonalizable. This means

V = ET (λ1) ⊥ . . . ⊥ ET (λr) (*)

ET (λi) := {v ∈ V |Tv = λiv} 6= 0 eigenspace of λi; λ1, . . . , λr the distinct eigenval-
ues of T . So

T
∣∣
ET (λi)

: ET (λi)→ ET (λi)

i.e., ET (λi) is T-invariant and

T
∣∣
ET (λi)

= λi1ET (λi)

and (*) is unique up to order.

Goal: Generalize this to V any finite dimensional vector space over F , any F , and
T : V → V linear. We have many problems to overcome in order to get a meaningful
result, e.g.,

Problem 31.2. 1. V may not be an inner product space.

2. F 6= R or C is possible.

3. F * is possible, so cannot even define an inner product.

4. V may not have any eigenvalues for T : V → V .

5. If we prove an existence theorem, we may not have a uniqueness one.

We shall show: given V a finite dimensional vector space over F and T : V → V a
linear operator. Then V breaks up uniquely up to order into small T -invariant subspace
that we shall show are completely determined by polys in F [t] arising from T . Motivation:
Generalize the concept of linear independence, Spectral Theorem Decomposition, to see
how pieces are put together (if possible).

Definition 31.8 (Span) — Let V be a vector space over F , Wi ⊆ V , i ∈ I – may
not be finite, subspaces. Let

∑
i∈I

Wi =
∑
i∈I

Wi :=

{
v ∈ V |∃wi ∈Wi, i ∈ I, almost all wi = 0 3 v =

∑
i∈I

wi

}

when almost all zero means only finitely many wi 6= 0. Warning: In a vector
space/F we can only take finite linear combination of vectors. So

∑
i∈I

Wi = Span

(⋃
i∈I

Wi

)
=

{
finite linear combos of vectors in

⋃
i∈I

Wi

}

e.g., if I is finite, i.e., |I| <∞, say I = {1, . . . , n} then∑
i∈I

Wi = W1 + . . .+Wn := {w1 + . . .+ wn|wi ∈Wi ∀i ∈ I}
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Definition 31.9 (Direct Sum) — Let V be a vector space over F , Wi ⊆ V , i ∈ I,
subspace. Let W ⊆ V be a subspace. We say that W is the (internal) direct sum
of the Wi, i ∈ I write W =

⊕
i∈IWi if

∀w ∈W ∃!wi ∈Wi almost all 0 3 w =
∑
i∈I

wi

e.g., if I = {1, . . . , n}, then

w ∈W1 ⊕ . . .⊕Wn means ∃!wi ∈Wi 3 w = w1 + . . .+ wn

Warning: It may not exist.
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§32 Lec 3: Apr 2, 2021

§32.1 Direct Sums (Cont’d)

Definition 32.1 (Independent Subspace) — Let V be a vector space over F,Wi ⊆
V, i ∈ I subspaces. We say the Wi, i ∈ I, are independent if whenever wi ∈Wi, i ∈
I, almost all wi = 0, satisfy

∑
wi = 0, then wi = 0∀i ∈ I.

Theorem 32.2

Let V be a vector space over F, Wi ⊆ V, i ∈ I subspaces, W ⊆ V a subspace. Then
the following are equivalent:

1. W =
⊕

i∈IWi

2. W =
∑

i∈IWi and ∀i

Wi ∩
∑

j∈I\{i}

Wj = 0 := {0}

3. W =
∑

i∈IWi and the Wi, i ∈ I, are independent.

Proof. 1) =⇒ 2) Suppose W =
⊕

i∈IWi. Certainly, W =
∑

i∈IWi. Fix i and suppose
that

∃x ∈Wi ∩
∑

j∈I\{i}

Wj

By definition, ∃wi ∈Wi, wj ∈Wj , j ∈ I \ {i} almost all 0 satisfying

wi = x =
∑
j 6=i

wj

So
0V = 0W = wi −

∑
j 6=i

wj

But
0W =

∑
I

0Wk
0Wk

= 0V ∀k ∈ I

By uniqueness of 1), wi = 0 so x = 0.
2) =⇒ 3) Let wi ∈Wi, i ∈ I, almost all zero satisfy∑

i∈I
wi = 0

Suppose that wk 6= 0. Then

wk = −
∑

i∈I\{k}

wi ∈Wk ∩
∑
i 6=k

wi = 0,

a contradiction. So wi = 0∀i
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3) =⇒ 1) Suppose v ∈
∑

i∈IWi and ∃wi, w′i ∈Wi, i ∈ I, almost all 0 3∑
i∈I

wi = v =
∑
i∈I

w′i

Then
∑

i∈I(wi − w′i) = 0, wi − w′i ∈Wi ∀i. So

wi − w′i = 0, i.e., wi = w′i ∀i

and the w′is are unique.

Warning: 2) DOES NOT SAY Wi ∩ Wj = 0 if i 6= j. This is too weak. It says
Wi ∩

∑
j 6=iWj = 0.

Corollary 32.3

Let V be a vector space over F,Wi ⊆ V, i ∈ I subspaces. Suppose I = I1 ∪ I2 with
I1 ∩ I2 = ∅ and V =

⊕
i∈IWi. Set

WI1 =
⊕
i∈I1

Wi and WI2 =
⊕
j∈I2

Wj

Then
V = WI1 ⊕WI2

Proof. Left as exercise – Homework.

Notation: Let V be a vector space over F , v ∈ V . Set

Fv := {αv|α ∈ F} = Span(v)

if v 6= 0, then Fv is the line containing v, i.e., Fv is the one dimensional vector space
over F with basis {v}.

Example 32.4

Let V be a vector space over F .

1. If ∅ 6= S ⊆ V is a subset, then∑
v∈S

Fv = Span(S)

the span of S. So

Span S = {all finite linear combos of vectors in S}

2. If ∅ 6= S is linearly indep. (i.e. meaning every finite nonempty subset of S is
linearly indep.), then

Span(S) =
⊕
s∈S

Fs
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Example 32.5 (Cont’d from above) 3. If S is a basis for V , then V =
⊕

s∈S Fs.

4. If ∃ a finite set S ⊆ V 3 V = Span(S), then V =
∑

s∈S Fs and ∃ a subset
B ⊆ S that is a basis for V , i.e., V is a finite dimensional vector space over
F and dimV = dimF V = |B| is indep. of basis B for V .

5. Let V be a vector space over F,W1,W2 ⊆ V finite dimensional subspaces.
Then W1 +W2, W1 ∩W2 are finite dimensional vector space over F and

dim(W1 +W2) = dimW1 + dimW2 − dim(W1 ∩W2)

So
W1 +W2 = W1 ⊕W2 ⇐⇒ W1 ∩W2 = ∅

Warning: be very careful if you wish to generalize this.

Definition 32.6 (Complementary Subspace) — Let V be a finite dimensional vector
space over F,W ⊆ V a subspace if

V = W ⊕W ′, W ′ ⊆ V a subspace

We call W ′ a complementary subspace of W in V .

Example 32.7

Let B0 be a basis of W . Extend B0 to a basis B for V (even works if V is not
finite dimensional). Then

W ′ =
⊕

B\B0

Fv is a complement of W in V

Note: W ′ is not the unique complement of W in V – counter-example?

Consequences: Let V be a finite dimensional vector space over F,W1, . . . ,Wn ⊆ V
subspaces, Wi 6= 0∀i. Then the following are equivalent

1. V = W1 ⊕ . . .⊕Wn.

2. If Bi is a basis (resp., ordered basis) for Wi ∀i, then B = B1 ∪ . . . ∪Bn is a basis
(resp. ordered) – with obvious order – for V .

Proof. Left as exercise (good one)!

Notation: Let V be a vector space over F, B a basis for V , x ∈ V . Then, ∃!αv ∈ F, v ∈
B, almost all αv = 0 (i.e., all but finitely many) s.t. x =

∑
B αvv. Given x ∈ V ,

x =
∑
v∈B

αvv

to mean αv is the unique complement of x on v and hence αv = 0 for almost all v ∈ B.

152



Duc Vu (Fall 2020 – Spring 2021) 115B Lectures

§32.2 Quotient Spaces

Idea: Given a surjective map f : X → Y and “nice”, can we use properties of Y to
obtain properties of X?

Example 32.8

Let V = R3, W = X − Y plane. Let X = plane parallel to W intersecting the
z-axis at γ.

X

γ
v

V = R3

x

y

z

W

So

X = {(α, β, γ)|α, β ∈ R}
= {(α, β, 0) + (0, 0, γ)|α, β ∈ R}
= W + γ e3︸︷︷︸

(0,0,1)

Note: X is a vector space over R ⇐⇒ γ = 0 ⇐⇒ W = X (need 0V ). Let v ∈ X.
So v = (x, y, γ) some x, y ∈ R. So

W + v :=

(α, β, 0)︸ ︷︷ ︸
arbitrary

+ (x, y, γ)︸ ︷︷ ︸
fixed

|α, β ∈ R


= {(α+ x, β + y, γ) |α, β ∈ R}
= W + γe3

It follows if v, v′ ∈ V , then

W + v = W + v′ =⇒ v − v′ ∈W

Conversely, if v, v′ ∈ V with X = W + v, then

v′ ∈ X =⇒ v′ = w + v some w ∈W

hence
v′ − v ∈W

So for arbitrary v, v′ ∈ V , we have the conclusion W +v = W +v′ ⇐⇒ v−v′ ∈W .
We can also write W + v as v +W .
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§33 Lec 4: Apr 5, 2021

§33.1 Quotient Spaces (Cont’d)

Recall from the last example of the last lecture, we have

V =
⋃
v∈V

W + v

If v, v′ ∈ V , then
0 6= v′′ ∈ (W + v) ∩ (W + v′)

means
W + v −W + v′′ = W + v′

This means either W + v = W + v′ or W + v ∩W + v′ = ∅, i.e., planes parallel to the
xy-plane partition V into a disjoint unions of planes.

Let
S := {W + v| v ∈ V }

the set of these planes. We make S into a vector space over R as follows: ∀v, v′ ∈
V, ∀α ∈ R define

(W + v) + (W + v′) := W + (v + v′)

α · (W + v) := W + αv

We must check these two operations are well-defined and we set

0S := W

Then (W + v) +W = W + v = W + (W + v) make S into a vector space over R.
If v ∈ V let γ1

v = the kth component of v. Define

S → {(0, 0, γ)| γ ∈ R} → R

by
W + v 7→ (0, 0, γv) 7→ γ

both maps are bijection and, in fact, linear isomorphism. So

S ∼= {(0, 0, γ)| γ ∈ R} ∼= R

Note: dimV = 3, dimW = 2, dimS = 1 and we also have a linear transformation

V → S by (α, β, γ) 7→W + γe3

a surjection.
We can now generalize this.
Construction: Let V be a vector space over F, W ⊆ V a subspace. Define ≡ mod W
called congruent mod W on V as follows: if x, y ∈ V, then

x ≡ y mod W ⇐⇒ x− y ∈W ⇐⇒ ∃w ∈W 3 x = w + y

Then, for all x, y, z ∈ V , ≡ mod W satisfies

1. x ≡ x mod W
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2. x ≡ y mod W =⇒ y ≡ x mod W

3. x ≡ y mod W and y ≡ z mod W =⇒ x ≡ z mod W

We can conclude that ≡ mod W is an equivalence relation on V .
Notation: For x ∈ V, W ⊆ V , let

x := {y ∈ V | y ≡ x mod W}

We can also write x as [x]W if W is not understood. Also, x ⊆ V is a subset and not an
element of V called a coset of V by W . We have

x = {y ∈ V | y ≡ x mod W}
= {y ∈ V | y = w + x for some w ∈W}
= {w + x|w ∈W} = W + x = x+W

Example 33.1

0V = W + 0V = W .

Note: W + x translates every element of W by x. By 2), 3) of ≡ mod W , we have check

y ∈ x = W + x ⇐⇒ x ∈ y = W + y

and
x ≡ y mod W ⇐⇒ x = y ⇐⇒ W + x = W + y

and check

x ∩ y = ∅ ⇐⇒ (W + x) ∩ (W + y) = ∅ ⇐⇒ x 6≡ y mod W

This means the W + x partition V , i.e.,

V =
⋃
V

(W + x) with (W + x) ∩ (W + y) = ∅ if x = (W + x) 6= (W + y) = y

Let
V := V/W := {x|x ∈ V } = {W + x|x ∈ V }

a collection of subsets of V .
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§34 Lec 5: Apr 7, 2021

§34.1 Quotient Spaces (Cont’d)

Suppose we have W ⊆ V a subspace. For x, y, z, v ∈ V

x ≡ y mod W (+)

z ≡ v mod W

Then
(x+ z)− (y + v) = (x− y)︸ ︷︷ ︸

∈W

+ (z − v)︸ ︷︷ ︸
∈W

∈W

So
x+ z mod y + v mod W

and if α ∈ F
αx− αy = α(x− y) ∈W ∀x, y ∈ V

So
αx ≡ αy mod W

Therefore, V = V/W . If (+) holds, then for all x, y, z, v ∈ V and α ∈ F , we have

x+ z = y + v ∈ V
αx = αy ∈ V

Notice V = V/W satisfies all the axioms of a vector space with 0V = 0V = {y ∈ V | y ≡ 0 mod W} =
W + 0V = W .

We call V = V/W the Quotient Space of V by W .
We also have a map

– : V → V = V/W by x 7→ x = W + x

which satisfies
αv + v′

–7→ αu+ v′ = αv + v′

for all v, v′ ∈ V and α ∈ F . Then

dimV = dim ker–

dimV = dimW + dimV/W

dimV/W = dimV − dimW

which is called the codimension of W in V .

Proposition 34.1

Let V be a vector space over F , W ⊆ V a subspace, V = V/W . Let B0 be a basis
for W and

B1 = {vi| i ∈ I, vi − vj /∈W if i 6= j}

where vi 6= vj if i 6= j or w + vi 6= w + vj if i 6= j.
Let

C = {vi = W + vi| i ∈ I, vi ∈ B1}

If C is a basis for V = V/W , then B0 ∪B1 is a basis for V (compare with the
proof of the Dimension Theorem).

Proof. Hw 2 # 3.
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§34.2 Linear Transformation

A review of linear of linear transformation can be found here.
Now, we consider

GLnF := {A ∈MnF | detA 6= 0}

The elements in GLnF in the ring MnF are those having a multiplicative inverse. If R
is a commutative ring, determinants are still as before but

GLnR := {A ∈MnR| detA is a unit in R}
=
{
A ∈MnR|A−1 exists

}

Example 34.2

Let V be a vector space over F,W ⊆ V a subspace. Recall

V = V/W = {v = W + v| v ∈ V }

a vector space over F s.t. for all v1, v2 ∈ F and α ∈ F

0V = 0V = W

v1 + v2 = v1 + v2

αv1 = αv1

Then
– : V → V/W = V by v 7→ v = W + v

is an epimorphism with ker– = W .

Recall from 115A(H) that the most important theorem about linear transformation
is Universal Property of Vector Spaces. As a result, we can deduce the following
corollary

Corollary 34.3

Let V,W be vector space over F with bases B,C respectively. Suppose there exists
a bijection f : B → C , i.e., |B| = |C |. Then V ∼= W .

Proof. There exists a unique T : V →W 3 T
∣∣
B

= f . T is monic by the Monomorphism
Theorem (T takes linearly indep. sets to linearly indep. sets iff it’s monic) and is onto
as W = Span(C ) = Span (f(B)).
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§35 Lec 6: Apr 9, 2021

§35.1 Linear Transformation (Cont’d)

Theorem 35.1

Let T : V →W be linear. Then ∃X ⊆ V a subspace s.t.

V = kerT ⊕X with X ∼= im T

Proof. Let B0 be a basis for kerT . Extend B0 to a basis B for V by the Extension
Theorem. Let B1 = B \B0, so B = B0 ∨B1 (B = B0 ∪B1 and B0 ∩B1 = ∅) and let

X =
⊕
B1

Fv

As kerT =
⊕

B0
Fv, we have

V = kerT ⊕X

and we have to show
X ∼= im T

Claim 35.1. Tv, v ∈ B1 are linearly indep.

In particular, Tv 6= Tv′ if v, v′ ∈ B1 and v 6= v′. Suppose∑
v∈B

αvTv = 0W , αv ∈ F almost all αv = 0

Then

0W = T

∑
v∈B1

αvv

 , i.e.
∑
B1

αvv ∈ kerT

Hence ∑
B1

αvv =
∑
B0

βvv ∈ kerT almost all βv ∈ F = 0

As
∑

B1
αvv−

∑
B0
βvv = 0 and B = B0∪B1 is linearly indep., αv = 0 ∀v. This proves

the above claim.
Let C = {Tv| v ∈ B1}. By the claim

B1 → C by v 7→ Tv is 1− 1

and onto as C is linearly indep. Lastly, we must show C spans im T . Let w ∈ im T .
Then ∃x ∈ V 3 Tx = w. Then

w = Tx = T

∑
B0

αvv

+ T

∑
B1

αvv


=
∑
B0

αvTv +
∑
B1

αvTv =
∑
B1

αvTv

lies in span C as needed.
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Remark 35.2. Note that the proof is essentially the same as the proof of the Dimension
Theorem.

Corollary 35.3 (Dimension Theorem)

If V is a finite dimensional vector space over F , T : V →W linear then

dimV = dim kerT + dim im T

Corollary 35.4

If V is a finite dimensional vector space over F , W ⊆ V a subspace, then

dimV = dimW + dimV/W

Proof. − : V → V/W by v 7→ v = W + v is an epi.

Important Construction: Set

T : V → Z be linear

W = kerT

V = V/W

− : V → V/W by v 7→ v = W + v linear

∀x, y ∈ V we have

x = y ∈ V ⇐⇒ x ≡ y mod W ⇐⇒ x− y ∈W ⇐⇒ T (x− y) = 0Z

i.e., when W = kerT
x = y ⇐⇒ Tx = Ty (*)

This means
T : V → Z defined by W + v = v 7→ Tv

is well-defined, i.e., via function, since if x = y, then T (x) := Tx = Ty =: T (y). From
(*),

x = y ⇐⇒ T (x) = T (x) = T (y) =: T (y)

so
T : V → Z is also injective

As T is linear, let α ∈ F, x, y ∈ V , then

T (αx+ y) = T (αx+ y) = T (αx+ y)

= αTx+ Ty = αT (x) + T (y)

as needed. Therefore,
T : V → Z by x 7→ T (x)

is a monomorphism, so induces an isomorphism onto im T and we recall im T = im T ,
so

V ∼= im T = im T

and we have a commutative diagram
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V Z

V/ kerT = V

−
T

T

This can also be written as

V Z

V/ kerT = V
T

imT

inclusion map−

T

Consequence: Any linear transformation T : V → Z induces an isomorphism

T : V/ kerT → im T by v = kerT + v 7→ Tv

This is called the First Isomorphism Theorem. We also have

V = kerT ⊕X with X ⊆ V and X ∼= im T ∼= V/ kerT

This means that all images of linear transformations from V are determined, up to
isomorphism, by V and its subspaces. It also means, if V is a finite dimensional vector
space over F , we can try prove things by induction.

§35.2 Pro jections

Motivation: Let m < n in Z+ and

π : Rn → Rn by (α1, . . . , αn) 7→ (α1, . . . , αn, 0, . . . , 0)

a linear operator onto
⊕m

i=1 Γei where ei =

(
0, . . . , 1︸︷︷︸

im

, . . . , 0

)
.

Definition 35.5 (T-invariant) — Let T : V → V be linear, W ⊆ V a subspace. We
say W is T -invariant if T (W ) ⊆ V if this is the case, then the restriction T

∣∣
W

of T
can be viewed as a linear operator

T
∣∣
W

: W →W
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Example 35.6

Let T : V → V be linear.

1. kerT and im T are T -invariant.

2. Let λ ∈ F be an eigenvalue of T , i.e., ∃0 6= v ∈ V 3 Tv = λv, then any
subspace of the eigenspace

ET (λ) := {v ∈ V |Tv = λv}

is T -invariant as T
∣∣
ET (λ)

= λ1ET (λ)

Remark 35.7. Let V be a finite dimensional vector space over F , T : V → V linear.
Suppose that

V = W1 ⊕ . . .⊕Wn

with each Wi T -invariant, i = 1, . . . , n and Bi an ordered basis for Wi, i = 1, . . . , n. Let
B = B1 ∪ . . . ∪Bn be a basis of V ordered in the obvious way.
Then the matrix representation of T in the B basis is

[T ]B =


[
T
∣∣
W1

]
B1

0

. . .

0
[
T
∣∣
Wn

]
Bn



Example 35.8

Suppose that T : V → V is diagonalizable, i.e., there exists a basis B of eigenvectors
of T for V . Then, T : V → V ,

V =
⊕

ET (λi)

each ET (λi) is T -invariant.

T
∣∣
ET (λi)

= λi1ET (λi)

Goal: Let V be a finite dimensional vector space over F , n = dimV , T : V → V linear.
Then ∃W1, . . . ,Wm ⊆ V all T -invariant subspaces with m = m(T ) with each Wi being
as small as possible with V = W1 ⊕ . . .⊕Wm. This is the theory of canonical forms.
Recall: If V is a finite dimensional vector space over F , T : V → V linear, B an ordered
basis for V , then the matrix representation [T ]B is only unique up to similarity, i.e., if
C is an another ordered basis

[T ]C = P [T ]B P−1

where P = [1V ]B,C ∈ GLnF , the change of basis matrix B → C .

Definition 35.9 (Projection) — Let V be a vector space over F , P : V → V linear.
We call P a projection if P 2 = P ◦ P = P .
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Example 35.10 1. P = 0V or 1V : V → V , V is a vector space over F .

2. An orthogonal projection in 115A.

3. If P is a projection, so is 1V − P .

If T : V → V is linear, then

V = kerT ⊕X with X ∼= im T

Lemma 35.11

Let P : V → V be a projection. Then

V = kerP ⊕ im P

Moreover, if v ∈ im P , then
Pv = v

i.e.
P
∣∣
im P

: im P → im P is 1im P

In particular, if V is a finite dimensional vector space over F,B1 an ordered basis
for kerP , B2 an ordered basis for im P , then B = B1 ∪B2 is an ordered basis for
V and

[P ]B =

(
[0]B1

0

0 [1im P ]B2

)
=



0
. . .

0
1

. . .

1



Proof. Let v ∈ V , then v − Pv ∈ kerP , since

P (v − Pv) = Pv − P 2v = Pv − Pv = 0

Hence
v = (v − Pv) + Pv ∈ kerP + im P

kerP ∩ im P = 0 and P
∣∣
im P

= 1im P . Let v ∈ im P. By definition, Pw = v for some
w ∈ V . Therefore,

Pv = PPw = Pw = v

Hence
P
∣∣
im P

= 1im P

If v ∈ kerP ∩ im P , then
v = Pv = 0
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§36 Lec 7: Apr 12, 2021

§36.1 Pro jection (Cont’d)

Lemma 36.1

Let V be a vector space over F , W,X ⊆ V subspaces. Suppose

V = W ⊕X

Then ∃!P : V → V a projection satisfying

W = kerP (*)

X = im P

We say such a P is the projection along W onto X.

Proof. Existence: Let v ∈ V . Then

∃!w ∈W, x ∈ X 3 v = w + x

Define
P : V → V by v 7→ x

To show P 2 = P , we suppose v ∈ V satisfies v = w + x, for unique w ∈ W , x ∈ X. check P is
linear and
well defined

Then
Pv = Pw + Px = Px = 1Xx = x

so
P 2v = Px = x = Pv ∀v ∈ V

hence P 2 = P .
Uniqueness: Any P satisfying (*) takes a basis for W to 0 and fix a basis of X. Therefore,
P is unique by the UPVS.

Remark 36.2. Compare the above to the case that V is an inner product space over
F , W ⊆ V is a finite dimensional subspace and P : V → V by v 7→ vW , the orthogonal
projection of P onto W .

Proposition 36.3

Let V be a vector space over F , W,X ⊆ V subspaces s.t. V = W ⊕X, P : V → V
the projection along W onto X, and T : V → V linear. Then the following are
equivalent:

1. W and X are both T−invariant.

2. PT = TP .

Proof. 2) =⇒ 1) : W is T -invariant: We have W = kerP , so if w ∈W , Pw = 0. Hence

PTw = TPw = T0 = 0

Tw ∈ kerP = W so W is T -invariant.
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X is T -invariant, X = im P , P |X = 1X . So if x ∈ X

Tx = TPx = PTx ∈ im P = X

So X is T -invariant.
1) =⇒ 2) Let v ∈ V . Then ∃!w ∈W , x ∈ X s.t.

v = w + x

As P |X = 1X and P |W = 0, so Pv = Px. By 1), W and X are T -invariant, so

PTv = PT (w + x) = PTw + PTx

= 0 + Tx = TPx = TPw + TPx = TPv

for all v ∈ V and PT = TP .

Remark 36.4. One can easily generalize from the case

V = W1 ⊕W2

that we did to the case
V = W1 ⊕ . . .⊕Wn

by induction on n as

V = Wi ⊕

W1 ⊕ . . .⊕ Ŵi︸︷︷︸
omit

⊕ . . .⊕Wn


Construction: Let

V = W1 ⊕ . . .⊕Wn

as above. Define
PWi : V → V

to be the projection along W1 ⊕ . . .⊕ Ŵi ⊕ . . .⊕Wn, i.e.

kerPWi = W1 ⊕ . . .⊕ Ŵi ⊕ . . .⊕Wn

and onto Wi = im PWi as in the above Proposition. Then we have

a) Each PWi is linear (and a projection).

b) kerPWi = W1 ⊕ . . .⊕ Ŵi ⊕ . . .⊕Wn.

c) Wi is PWi-invariant and PWi

∣∣
Wi

= 1Wi . In particular, im PWi = Wi.

d) PWiPWj = δijPWi where

δij =

{
1, if i = j

0, if i 6= j

e) 1V = PW1 + . . .+ PWn .

Moreover, if T : V → V is linear and each Wi is T -invariant, then

TPWi = PWiT, i = 1, . . . , n
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Hence

T = T1V = T (PW1 + . . . PWn) = TPW1 + . . .+ TPWn

= PW1T + . . .+ PWnT

i.e., 1V T = T1V . This implies
T
∣∣
Wi

: Wi →Wi

is given by
T
∣∣
Wi

= TPWi

∣∣
Wi

or T is determined by what it does to each Wi.

Remark 36.5. Compare this to the case that T is diagonalizable and the Wi are the
eigenspaces.

Question 36.1. Let V be a real or complex finite dimensional inner product space,
T : V → V hermitian. What can you replace ⊕ by? What if V is a complex finite
dimensional inner product space and T : V → V is normal.

Exercise 36.1. Suppose V is a vector space over F , P1, . . . , Pn : V → V linear and
satisfy

i) Pi − Pj = δijPi, i = 1, . . . , n

ii) 1V = P1 + . . .+ Pn

iii) Wi = im Pi, i = 1, . . . , n

Then

V = W1 ⊕ . . .⊕Wn

Pi = PWi i = 1, . . . , n

§36.2 Dual Spaces

Question 36.2. Let V = R3, v ∈ V . What is the first question that we should ask
about v?

Motivation/Construction: Let V be a vector space over F , B a basis for V . Fix
v0 ∈ B. By the UPVS, ∃! fv0 : V → F linear satisfying

fvv0(v) =

{
1 if v0 = v

0 if v0 6= v
= δv,v0 ∀v ∈ B
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Example 36.6

Let En = {e1, . . . , en} be the standard basis for Rn and in the above e1 = v0 . . .
Then

fe1 : Rn → R satisfies

If v = (α1, . . . , αn) in Rn

v =

n∑
i=1

αiei

so

fe1(v) = fe1

(
n∑
i=1

αiei

)

=
n∑
i=1

αife1(ei) =
n∑
i=1

αiδii = α1

this first coordinate of v.

Notation: If A ⊆ B are sets, we write A < B if A 6= B.
As v0 6= 0,

0 < im fv0 ⊆ F is a subspace

Notice dimF F = 1, so dim im fv0 ≤ dimF = 1 and

dim im fv0 = 1, i.e. im f0 = F

So fv0 : V → F is a surjective linear transformation. Since this is true for all v0 ∈ B,
for each v ∈ B, ∃! fv : V → F s.t.

fv(v
′) = δv,v′ =

{
1 if v = v′

0 if v 6= v′
∀v′ ∈ B

Now suppose that x ∈ V , then

∃!αv ∈ F, v ∈ B, almost all 0 s.t. x =
∑
B

αvv

Hence

fv0(x) = fv0

(∑
v∈B

αvv

)
=
∑
B

αvfv0(v)

=
∑
B

αvδv,v0 = αv0
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Example 36.7

B = En standard basis for Rn

fei(ej) = δei,ej = δi,j =

{
1 if ei = ej

0 if ei 6= ej

Then if v = (α1, . . . , αn) ∈ Rn = V . Then

fei(v) = fei (α1, . . . , αn) = αi

So we observe in the above that if x ∈ V , then

x =
∑
B

fv(x)v

We call fv the coordinate function on v relative to B.

Example 36.8

Let V be a finite dimensional inner product space over R, B = {v1, . . . , vn} an
orthonormal basis. Then if x =

∑
B αivi, then

αi = 〈x, vi〉

Take

〈x, vi〉 = 〈
∑

αjvj , vi〉 =
∑

αj〈vj , vi〉

=
∑

αjδij‖vi‖2 =
∑

αjδij = αi

i.e. the linear map
fvi := 〈, vi〉 : V → R by x 7→ 〈x, vi〉

is the coordinate function on vectors relative to B.

Definition 36.9 (Dual Space) — Let V be a vector space over F . A linear
transformation f : V → F is called a linear functional. Set

V ∗ := L(V, F ) := {f : V → F |f is linear}

is called the dual space of V .
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Proposition 36.10

Let V,W be a vector space over F . Then

L(V,W ) := {T : V →W |T linear}

is a vector space over F . Moreover, if V,W are finite dimensional vector spaces
over F

dimL(V,W ) = dimV dimW

In particular, if V is a finite dimensional vector space over F , then so is V ∗ and

dimV = dimV ∗

so
V ∼= V ∗

Proof. 115A.

Example 36.11

Let V be a vector space over F . Then the following are linear functionals

1. 0 : V → F

2. Let 0 6= v0 ∈ V then {v0} is a basis for Fv0. Therefore, {v0} extends to a
basis B for V . Let fv0 ∈ V ∗ be the coordinate function for V on v0 relative
to B. Then fv0 ∈ B∗ := {fv|v ∈ B}.
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§37 Lec 8: Apr 14, 2021

§37.1 Dual Spaces (Cont’d)

Example 37.1 (Cont’d from Lec 7) 3. trace: MnF → F by

A 7→
n∑
i=1

Aii

4. α < β ∈ R, then

I : C [α, β]→ R by f 7→
∫ β

α
f

5. Fix γ ∈ [α, β] , α < β ∈ R. Then the evaluation map at γ

eγ : C [α, β]→ R by f 7→ f(γ)

Lemma 37.2

Let V be a vector space over F , B a basis for V ,

B∗ := {fv0 : V → F | coordinate function on v0 relative to B}

so
fv0(v) = δv0,v ∀v ∈ B

the set of coordinate functions relative to B. Then B∗ ⊆ V ∗ is linearly indep.

Proof. Suppose

0 = 0V ∗ =
∑
v∈B

βvfv, βv ∈ F almost all 0

We need to show βv = 0∀v ∈ B. Evaluation at v0 ∈ B yields

0 = 0V ∗(v0) =

(∑
B

βvfv

)
(v0) =

∑
βvfv(v0)

=
∑
B

βvfv,v0 = βv0

So βv = 0∀v ∈ B and the lemma follows.

Corollary 37.3

Let V be a vector space over F with basis B. Then the linear transformation

DB : V → V ∗ induced by B → B∗ by v 7→ fv

is a monomorphism.
In particular, if V is a finite dimensional vector space over F , then B∗ is a basis
for V ∗ and

DB : V → V ∗ is an isomorphism
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Proof. By the Monomorphism Theorem, DB is monic in view of he lemma if V is a
finite dimensional vectors space over F , then

dimV = dimV ∗

so V ∼= V ∗ by the Isomorphism Theorem.

Remark 37.4. 1. If V = R∞f := {(α1, α2, . . .) |αi ∈ R almost all 0}, then by HW1 #
4,

DE∞ : V → V ∗ is not an isomorphism

2. DB : V → V ∗ in the corollary depends on B. There exists no monomorphism
V → V ∗ that does not depend on a choice of basis. However, there exists a “nice”
monomorphism, i.e., defined independent of basis.

L : V → (V ∗)∗ =: V ∗∗

V ∗∗ is called the double dual of V . We now construct it.

Lemma 37.5

Let V be a vector space over F , v ∈ V . Then

Lv : V ∗ → F by f 7→ Lv(f) := f(v)

the evaluation map at v is linear, i.e.

Lv ∈ V ∗∗

Proof. For all f, g ∈ V ∗, α ∈ F

Lv(αf + g) = (αf + g)(v) = αf(v) + g(v) = αLvf + Lvg

Theorem 37.6

The “natural” map
L : V → V ∗∗ by v 7→ L(v) := Lv

is a monomorphism.

Proof. L is linear: Let v, w ∈ V, α ∈ F . Then for all f ∈ V ∗, as V ∗∗ = (V ∗)∗

L(αv + w)(f) = Lαv+w(f) = f(αv + w)

= αf(v) + f(w) = αLvf + Lwf = (αLv + Lw) (f)

= (αL(v) + L(w)) (f)

So
L(αv + w) = αL(v) + L(w)

L is monic. Suppose v 6= 0. To show Lv = L(v) 6= 0. By example 2,

∃0 6= f ∈ V ∗ 3 f(v) 6= 0

So
Lvf = f(v) 6= 0

so Lv = L(v) 6= 0 and L is monic.
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Corollary 37.7

If V is a finite dimensional vector space over F , then L : V → V ∗∗ is a natural
isomorphism.

Proof. dimV = dimV ∗ = dimV ∗∗ and the Isomorphism Theorem.

Identification: Let V be a finite dimensional vector space over F . Then ∀v, w ∈ V

1. v = w ⇐⇒ Lv = Lw

2. ∀f ∈ V ∗ f(v) = f(w) ⇐⇒ Lvf = Lwf

Moreover, if W is also a finite dimensional vector space over F , then if T : V →W is
linear, ∃! T̃ : V ∗∗ → W ∗∗ linear and if T̃ : V ∗∗ → W ∗∗ ∃!T : V → W linear. In other
words, V and V ∗∗ can be identified by

v ↔ Lv

because
Lv(f) = f(v) ∀v ∈ V ∀f ∈ V ∗

Construction: Let V be a finite dimensional vector space over F with basis B =
{v1, . . . , vn}. Then

B∗ := {f1, . . . , fn}

defined by
fi(vj) = δij ∀i, j

i.e., fi is the coordinate function on vi relative to B. Since

Lvi(fj) = fj(vi) = δij ∀i, j

Lvi ∈ V ∗∗
B∗∗ := {Lv1 , . . . , Lvn}

is the dual basis of B∗ for V ∗∗. So we have if x =
∑n

i=1 αivi ∈ V , g =
∑n

i=1 βifi ∈ V ∗.

x =

n∑
i=1

αivi =

n∑
i=1

fi(x)vi

g =

n∑
i=1

βifi =

n∑
i=1

Lvi(g)fi =

n∑
i=1

g(vi)fi

i.e.

x =

n∑
i=1

fi(x)vi ∀x ∈ V

g =

n∑
i=1

g(vi)fi ∀g ∈ V ∗

Motivation: Let V be an inner product space over R, ∅ 6= S ⊆ V a subset. What is S⊥?
Note: ∀v ∈ V , 〈, v〉 : V → R by x 7→ 〈x, v〉 is a linear functional. To generalize this to
an arbitrary vector space over F , we define the following.
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Definition 37.8 (Annihilator) — Let V be a vector space over F , ∅ 6= S ⊆ V a
subset. Define the annihilator of S to be

S◦ := {f ∈ V ∗| f(x) = 0∀x ∈ S}
= {f ∈ V ∗| f |S = 0} ⊆ V ∗

Remark 37.9. Many people write 〈v, f〉 for f(v) in the above even though f /∈ v.
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§38 Lec 9: Apr 16, 2021

§38.1 Dual Spaces (Cont’d)

Lemma 38.1

Let V be a vector space over F , ∅ 6= S ⊆ V a subset. Then

1. S◦ ⊆ V ∗ is a subspace.

2. If V is a finite dimensional vector space over F and we identify V as V ∗∗ (by
v ↔ Lv), then S ⊆ S◦◦ := (S◦)◦.

Proof. 1. For all f, g ∈ S◦, α ∈ F , we have

(αf + g)(x) = αf(x) + g(x) = 0 ∀x ∈ S

Hence αf + g ∈ S◦ and S◦ ⊆ V ∗ is a subspace.

2. Let x ∈ S. Then ∀f ∈ S◦, we have

0 = f(x) = Lxf, so Lx ∈ (S◦)◦ = S◦◦

Theorem 38.2

Let V be a finite dimensional vector space over F , S ⊆ V a subspace. Then

dimV = dimS + dimS◦

Proof. Let B0 = {v1, . . . , vk} be a basis for S. Extend this to

B = {v1, . . . , vn} a basis for V

B0 = {f1, . . . , fn} the dual basis of B

Claim 38.1. C := {fk+1, . . . , fn} is a basis for S◦.

If we show this, the theorem follows. Let f ∈ S◦. Then

f =

n∑
i=1

Lvi(f)fi =

n∑
i=1

f(vi)fi

=
k∑
i=1

f(vi)fi +
n∑

i=k+1

f(vi)fi =
n∑

i=k+1

f(vi)fi

lies in span C so C spans. As C ⊆ B∗ which is linearly indep., so is C . This proves the
claim.
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Corollary 38.3

Let V be a finite dimensional vector space over F , S ⊆ V a subspace. Then
S = S◦◦.

Proof. As S ⊆ S◦◦, it suffices to show dimS = dimS◦◦. By the theorem, we have

dimV = dimS + dimS◦

dimV ∗ = dimS◦ + dimS◦◦

where dimV = dimV ∗. So dimS = dimS◦◦.

Remark 38.4. If V is an inner product space over R, compare all this to ∅ 6= S ⊆ V a
subset and S⊥, S⊥⊥.

§38.2 The Transpose

Construction: Fix T : V →W linear. For every S : W → X, we have a composition

S ◦ T : V → X is linear

So T :→W linear induces a map

T ? : L(W,X)→ L(V,X)

by
S 7→ S ◦ T

Proposition 38.5

Let V,W,X be vector spaces over F , T : V →W linear. Then

T ? : L(W,X)→ L(V,X)

is linear.

Proof. Let S1, S2 ∈ L(W,X), α ∈ F . Then

T ?(αS1 + S2) = (αS1 + S2) ◦ T
= αS1 ◦ T + S2 ◦ T = αT ?S1 + T ?S2

Corollary 38.6

Let T : V →W be linear. Then

T ∗ : W ∗ → V ∗ by f 7→ f ◦ T

is linear.

Proof. Let X = F in the proposition.
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Definition 38.7 (Transpose) — Let T : V → W be linear. The linear map
T ? : W ∗ → V ∗ in the corollary is called the transpose of T and denoted by T>.

Note: The transpose “turns thing around”

V
T−→W

V ∗
T>←−W ∗

Lemma 38.8

Let T : V →W be linear. Then

kerT> = (im T)◦ ∈W ∗

Proof. g ∈ kerT> ⇐⇒ T>g = 0 ⇐⇒ (T>g)(v) = 0 ∀v ∈ V ⇐⇒ (g ◦ T )(v) = 0
∀v ∈ V ⇐⇒ g(Tv) = 0 ∀v ∈ V ⇐⇒ g ∈ (im T )◦.

Theorem 38.9

Let V,W be finite dimensional vector space over F , T : V →W linear. Then

dim im T = dim im T>

Proof. Consider:

dimW ∗ = dim kerT> + dim im T>

dimW = dim im T + dim(im T )◦

Notice that dimW ∗ = dimW . By the lemma, dim im T = dim im T>.

Computation: Let V,W be finite dimensional vector space over F .

B, B∗ ordered dual bases for V, V ∗

C , C ∗ ordered dual bases for W, W ∗

Suppose

B = {v1, . . . , vn} , B∗ = {f1, . . . , fn}
fi(vj) = δij ∀i, j

So

C = {w1, . . . , wn} , C ∗ = {g1, . . . , gn}
gi(wj) = δij ∀i, j

Let
A = [T ]B,C , B =

[
T>
]
C ∗,B∗
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be the matrix representation of T, T> in the ordered bases B,C and C ∗,C ∗ respectively.
By definition of A and B, we have

Tvk =

m∑
i=1

Aikwi k = 1, . . . , n

T>gj =

n∑
i=1

Bijfi j = 1, . . . ,m

So
Bkj = Ajk ∀j, k

So we just proved. . .

Theorem 38.10

Let V,W be finite dimensional vector space over F , T : V → W linear, B,B∗

ordered dual bases for V, V ∗ and C ,C ∗ ordered dual bases for W,W ∗. Then[
T>
]
C ∗,B∗

=
(

[T ]B,C

)>

Definition 38.11 (Row/Column Rank) — Let A ∈ Fm×n. The row (column) rank
of A is the dimension of the span of the rows (columns) of A.

We know if A ∈ Fm×n, we can view

A : Fn×1 → Fm×1 by v 7→ A · v

a linear transformation and the matrix representation of A is

A = [A]En,1,Em,1

where En,1, Em,1 are the standard bases for Fn×1 and Fm×1 respectively.

Corollary 38.12

Let A ∈ Fm×n. Then
row rank A = column rank A

and we call this common number the rank of A.

§38.3 Polynomials

Definition 38.13 (Polynomial Division) — Let f, g ∈ F [t], f 6= 0. We say that
f divides g ∈ F [t] write f |g if ∃h ∈ F [t] s.t. g = fh, i.e. g is multiple of f , e.g.
t+ 1|t2 − 1.

Lemma 38.14

If f |g and f |h in F [t], then f |gk + hl in F [t] for all k, l ∈ F [t].
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Proof. By definition,
g = fg1, h = fh1, g1, h1 ∈ F [t]

So
gk + hl = fg1k + fh1l = f (g1k + h1l)

in F [t].

Remark 38.15. If f |g ∈ F [t] and 0 6= a ∈ F , then af |g and f |ag.

Definition 38.16 (Polynomial Degree and Leading Coefficient) — Let

0 6= f = atn + an−1t
n−1 + . . .+ a1t+ a0 ∈ F [t]

with a, a0, . . . , an−1 ∈ F and a 6= 0. We call n the degree of f write deg f = n and
a the leading coefficient of F write lead f = a. If a = 1, we say f is monic.

We can define the degree of 0 ∈ F [t] to be the symbol −∞ or just do not define it at
all.

Remark 38.17. Let f, g ∈ F [t] \ {0}. Then

lead(fg) = lead(f) · lead(g) 6= 0 ∈ F

So
deg(fg) = deg f + deg g
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§39 Lec 10: Apr 19, 2021

§39.1 Polynomials (Cont’d)

Division Algorithm: Let 0 6= f ∈ F [t], g ∈ F [t]. Then

∃! q, r ∈ F [t]

satisfying
g = fq + r with r = 0 or deg r < deg f

Definition 39.1 (Greatest Common Divisor) — Let f, g ∈ F [t] \ {0}. We say d in
F [t] is a gcd (greatest common divisor) of f, g if

i) d is monic.

ii) d|f and d|g in F [t].

iii) if e|f and e|g in F [t], then e|d in F [t].

Remark 39.2. If a gcd of f, g exists, then it is unique.

Remark 39.3. If d = 1 is a gcd of f, g ∈ F [t], we say that f, g are relatively bear.

Remark 39.4. Compare the above with analogous in Z.

Theorem 39.5

Let f, g ∈ F [t] \ {0}. Then a gcd of f, g exists and is unique write gcd(f,g) for the
gcd of f, g. Moreover, we have an equation

d = fk + gl ∈ F [t] for some k, l ∈ F [t] (?)

Proof. The existence and (?) follow from the Euclidean Algorithm. Let f, g ∈ F [t] \ {0}.
Then iteration of the Division Algorithm produces equations in F [t], if f + g ∈ F [t],

g = q1f + r1 deg r1 < deg f

f = q2r1 + r2 deg r2 < deg r1

...

rn−3 = qn−1rn−2 + rn−1 deg rn−1 < deg rn−2

rn−2 = qnrn−1 + rn deg rn−1 < deg rn

rn−1 = qn+1 + rn

where rn is the remainder of least degree (rn 6= 0).
This must stop in ≤ deg f steps. Plugging from the bottom up and using the lemma
shows

rn = fk + gl ∈ F [t]
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and if e|r1 → e|r2 → . . . → e|rn then (lead rn)−1rn is the gcd of f and g in F [t] if
a = lead f

a−1rn = a−1fk + a−1gl

Definition 39.6 (Irreducible Polynomial) — f ∈ F [t]\F is called irreducible if there
does not exist g, h ∈ F [t] 3 f = gh with deg g,deg h < deg f . Equivalently, if

f = gh ∈ F [t], then 0 6= g ∈ F or 0 6= h ∈ F

Example 39.7

If f ∈ F [t], deg f = 1, then f is irreducible.

Remark 39.8. If f, g ∈ F [t]\F with f irreducible, then either f and g are relatively prime
or f |g since only a, af, 0 6= a ∈ F can divide f .

Lemma 39.9 (Euclid)

Let f ∈ F [t] be irreducible and f |gh in F [t]. Then f |g or f |h.

Proof. Suppose f ×g where × means does not divide. Then f and g are relatively prime.
By the Euclidean Algorithm, there exists an equation

1 = fk + gl ∈ F [t]

Hence
h = fhk + ghl ∈ F [t]

As f |fhk and f |ghl in F [t], f |h by the lemma.

Remark 39.10. In Z the analog of an irreducible element is called a prime element.

Remark 39.11. Euclid’s lemma is the key idea. The “correct” generalization of “prime”
is the conclusion of Euclid’s lemma. This generalization is profound as, in general, there is
difference between the two conditions “irreducible” and “prime”, although not for Z or
F [t].

We know that any positive integer is a product of positive primes unique up to order n.
If we allow n < 0 such is unique up to ±1.

Theorem 39.12 (Fundamental Theorem of Arithmetic (Polynomial Case))

Let g ∈ F [t] \ F . Then there exists uniquely a ∈ F , r ∈ Z+, p1, . . . , pr ∈ F [t]
distinct monic irreducible polynomial, e1, . . . , er ∈ Z+ s.t. we have a factorization

g = ape11 . . . perr

unique up to order.
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Proof. (Sketch) Existence: We induct on n = deg g ≥ 1. If g is irreducible, a, (lead g)−1g, a =
lead g work. If g is reducible,

g = fh ∈ F [t], 1 < deg f, deg h < deg g

By induction, f, h have factorization hence we’re done as g = fh.
Uniqueness: We induct on n = deg g ≥ 1. If

ape11 . . . perr = g = bqf11 . . . qfss

with pi, qi monic irreducible, a, b ∈ F, ei, fj ∈ Z+ for all i, j, deg q1 ≥ 1, so deg q1 × a.
By Euclid’s lemma

qi|pj for some j

Changing notation, we may assume that j = 1. As p1 is irreducible p1 = q1 and by
(M3′)

g0 := ape1−1
1 pe22 . . . perr = bqf1−1

1 qf22 . . . qfss

As deg g0 < deg g, induction yields

r = s, e1 − 1 = f1 − 1, ei = fi, i > 1, a = b = lead g0, pi = qi ∀i, ei = fi ∀i

Remark 39.13. Applying the Euclidean Algorithm is relatively fast to compute, (for f |g
takes ≤ deg f steps to get a gcd). Factoring into the irreducible is not.
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§40 Lec 11: Apr 21, 2021

§40.1 Minimal Polynomials

We use the following theorem from 115A, Matrix Theory Theorem.

Remark 40.1. Let T : V → V be linear. If f = ant
n + . . .+ a1t+ a0 ∈ F [t], we can plug

T in for t to get
f(T ) = anT

n + . . .+ a1T + a01V ∈ L(V, V )

More precisely
eT : F [t]→ L(V, V ) by t 7→ T

i.e. f =
∑
ait

i 7→ f(T ) =
∑
aiT

i is a ring homomorphism. Since we have

Tn = T ◦ . . . ◦︸ ︷︷ ︸
n

T, n ≥ 0

Can we use the remark if V is a finite dimensional vector space over F?

Lemma 40.2

Let V be a finite dimensional vector space over F , f, g, h ∈ F [t], B an ordered
basis for V , T : V → V linear. Then

1. [g(T )]B = g ([T ]B)

2. If f = gh ∈ F [t], then
f(T ) = g(T )h(T )

Proof. • By MTT, if g =
∑n

i=0 ait
i ∈ F [t], then

[g(T )]B =

[
n∑
i=0

aiT
i

]
B

=
n∑
i=0

ai
[
T i
]
B

=
∑

ai [T ]iB = g ([T ]B)

• Left as exercise.

Lemma 40.3

Let V be a finite dimensional vector space over F , T : V → V linear. Then
∃q ∈ F [t] \ {0} 3 q(T ) = 0 and if a = lead q, then q0 := a−1q is moinc and satisfies
q0(T ) = 0

q ∈ ker eT := {f ∈ F [t]| f(T ) = 0}

Proof. Let n = dimV . By MTT

dimL(V, V ) = dimMnF = n2 <∞

So
1V , T, T

2, . . . , Tn
2 ∈ L(V, V )
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are linearly dependent. So ∃a0, . . . , an2 ∈ F not all 0 s.t.

n2∑
i=0

aiT
i = 0

Then q =
∑n2

i=0 ait
i works.

Theorem 40.4

Let V be a finite dimensional vector space over F , T : V → V linear. Then
∃!0 6= qT ∈ F [t] monic called the minimal polynomial of T having the following
properties:

1. qT (T ) = 0

2. If g ∈ F [t] satisfies g(T ) = 0, then qT |g ∈ F [t]. In particular, if 0 6= g ∈ F [t]
satisfies g(T ) = 0, then deg g ≥ deg qT and if deg g = deg qT , then g =
(lead g)qT

Proof. By the lemma, ∃0 6= q ∈ F [t] monic s.t. q(T ) = 0. Among all such q, choose one
with deg q minimal.

Claim 40.1. q works.

Let g 6= 0 in F [t] satisfy g(T ) = 0. To show q|g ∈ F [t]. Write g = qh+ r in F [t] with
r = 0 or deg r < deg q. Then

0 = g(T ) = q(T )hh(T ) + r(T ) = r(T )

If r 6= 0, then r0 = (lead r)−1r is a monic poly satisfying r0(T ) = 0, deg r0 < deg q,
contradicting the minimality of deg q. So r0 = 0 and q|g ∈ F [t]. If q′ also satisfies 1)
and 2), then

q|q′ and q′|q ∈ F [t] both monic so q = q′

The last statement follows as if

h, g ∈ F [t], g|h, h 6= 0, then deg h ≥ deg q

Corollary 40.5

Let V be a finite dimensional vector space over F , B an ordered basis for V1 and
T : V → V linear. Then

qT = q[T ]B

In particular, if A,B ∈MnF are similar write A ∼ B. Then

qA = qB

Proof. qT = q[T ]B by MTT and the first lemma.

Note:By the theorem, if V is a finite dimensional vector space over F g ∈ F [t] g 6= 0,
and deg g < deg qT , then q(T ) 6= 0.
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Goal: Let V be a finite dimensional vector space over F , B an ordered basis of V ,
T : V → V linear. Call

tI − [T ]B the characteristics matrix of T relative to B

Recall the characteristics polynomial fT of T is defined to be

fT := f[T ]B
= det (tI − [T ]B) ∈ F [t]

We want to show fT satisfies the

Theorem 40.6 (Cayley-Hamilton)

If V is a finite dimensional vector space over F , T : V → V linear, then

qT |fT , hence fT (T ) = 0

In particular, deg qT ≤ deg fT .

Remark 40.7. 1. There exists a determinant proof of this – essentially Cramer’s rule.

2. A priori we only know deg qT ≤ n2, where n = dimV .

3. fT is independent of B depends on properties of det : MnF [t]→ F [t]

det (tI −A) = det
(
P (tI −A)P−1

)
= det

(
tI − PAP−1

)
for each P ∈ GLnF

Proposition 40.8

Let V be a finite dimensional vector space over F , T : V → V linear. Then qT and
fT have the same roots in F , the eigenvalues of T .

Proof. Let λ be a root of qT . To show λ is an eigenvalue of T , i.e., a root of fT . As λ is
a root of qT , using the Division Algorithm that

qT = (t− λ)h ∈ F [t]

So
0 = qT (T ) = (T − λ1V )h(T )

As
0 ≤ deg h < deg qT , we have h(T ) 6= 0

Since h(T ) 6= 0∃0 6= v ∈ V s.t.
w = h(T )v 6= 0

Then
0 = qT (T )v = (T − λ1V )h(T )v = (T − λ1V )w

So 0 6= w ∈ ET (λ) and λ is an eigenvalue of T .
Conversely, suppose λ is a root of fT so an eigenvalue of T . Let 0 6= v ∈ ET (λ). Then
t − λ ∈ F [t] satisfies (T − λ)w = 0 for all w ∈ Fv, i.e. it is the minimal poly of
T |Fv : Fv → Fv. But qT (T ) = 0 on V so t − λ|qT by the definition that t − λ is the
minimal poly of T |Fv.
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§40.2 Algebraic Aside

Let V be a finite dimensional vector space over F , T : V → V linear. Te minimality poly
qT of T is algebraically more interesting than fT . Recall we have a ring homomorphism

eT : F [t]→ L(V, V )

given by ∑
ait

i 7→
∑

aiT
i

so eT is not only a linear transformation but a ring homomorphism, i.e., it also follows
that

(fg)(T ) = f(T )g(T ) ∀f, g ∈ F [t]

We know that
dimF F [t] =∞

which has {1, t, . . . , tn, . . .} is a basis for F [t] and

dimF L(V, V ) = (dimV )2 <∞

by MTT. So
0 < ker eT := {f ∈ F [t]|eT f = f(T ) = 0}

is a vector space over F and a subspace of F [t]. This induces a linear transformation

eT : V/ ker eT → im eT = F [T ]

which is an isomorphism. If V = V/ kerT , we have

eT

(∑
aiti
)

= eT

(∑
aiti
)

=
∑

aiT
i

=
∑

aiT
i

=
∑

aiT
i

Check that eT is also a ring isomorphism onto im eT . By definition, if f(T ) = 0, f ∈ F [t],
then

qT |f ∈ F [t]

It follows that
ker eT = {qtg|g ∈ F [t]} ⊆ F [t]

called an ideal in the ring F [t].
The first isomorphism of rings gives rise to ker eT whit quotient isomorphic to F [t] ⊆
L(V, V ). So we are at a higher level of algebra. Then this allows us to view F [t] as
acting on V , i.e. there exists a map

F [t]× V → V (*)

by

f · v := f(T )v

qT (T ) = 0

This turns V into what is called an F [t]-module, i.e., V via (*) satisfies the axioms of a
vector space over F but the scalars F [t] are now a ring rather than only a field.
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§41 Lec 12: Apr 23, 2021

§41.1 Triangularizabi l ity

Proposition 41.1

Let V be a finite dimensional vector space over F , T : V → V linear, W ⊆ V a
T -invariant subspace. Then T induces a linear transformation

T : V/W → V/W by T (v) := T (v)

where v = W + v, V = V/W and

qT |qT ∈ F [t]

Proof. By the hw, we need only to prove that

qT |qT ∈ F [t]

But also by the hw,
qT (T ) = qT (T )

As qT (T ) = 0,
0 = qT (T ) = qT (T )

so
qT |qT

by the defining property of qT .

Definition 41.2 (Triangularizability) — Let V be a finite dimensional vector space
over F , T : V → V linear. We say T is triangularizable if ∃ an ordered basis B for
V s.t. A = [T ]B satisfies Aij = 0 ∀i < j, i.e.

A =

∗ 0
. . .

∗ ∗

 is lower triangular (*)

Note: If B = {v1, . . . , vn} in (*) and C = {vn, vn−1, . . . , v1}, then

[T ]C =

∗ ∗
. . .

0 ∗

 is upper triangular

Hence, by Change of Basis Theorem,

[T ]B ∼ [T ]C
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Remark 41.3. Suppose V is a finite dimensional vector space over F , dimV = n, T : V →
V linear, B an ordered basis for V , A = [T ]B is triangular (upper or lower). Then

fT = (t−A11) . . . (t−Ann) ∈ F [t]

and A11, . . . , Ann are all the eigenvalues of T (not necessarily distinct) and hence roots of
qT .

Definition 41.4 (Splits) — We say g ∈ F [t] \ F splits in F [t] if g is a product of
linear polys in F [t], i.e.,

g = (lead g)(t− α1) . . . (t− αn) ∈ F [t]

Example 41.5

If V is a finite dimensional vector space over F , T : V → V linear and T is
triangularizable, then fT splits in F [t].

Note:

(
0 1
−1 0

)
∈M2R is not triangularizable as it has no eigenvalues.

Theorem 41.6

Let V be a finite dimensional vector space over F , T : V → V linear. Then T is
triangularizable if and only if qT splits in F [t].

Proof. “ =⇒ ” We induct on n = dimV .
n = 1 : It’s obvious.
n > 1 : We proceed by induction: let λ be a root of qT in F (qT splits in F [t]). Then λ is
a root of qT hence an eigenvalue of T . Let 0 6= vn ∈ ET (λ), so W = Fvn is T -invariant.
By the Proposition, T induces a linear map

T : V/W → V/W by v 7→ T (v)

and
qT |qT ∈ F [t]

We also know that
W = ker(− : V → V/W ) by v 7→ v

and
dimV/W = dimV − dimW = n− 1

as − : v → v is epic. Since qT splits in F [t] and qT |qT in F [t], qT also splits in F [t] by
Fundamental Theorem of Algebra. Thus, by induction,

∃v1, . . . , vn−i ∈ V 3 C = {v1, . . . , vn−1}

is an ordered basis for V = V/W with A =
[
T
]
C

is lower triangular, i.e., Aij = 0 if
i < j ≤ n− 1. Thus

Tvj =

n−1∑
i=j

Aijvi, 1 ≤ j ≤ n− 1
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hence

0 = Tvj −
n−1∑
i=j

Aijvi = Tvj −
n−1∑
i=j

Aijvi

1 ≤ j ≤ n− 1 in V = V/W . Therefore,

Tvj −
n−1∑
i=j

Aijvi ∈ ker− = W = Fvn

by definition as W = ker− : V → V/W .
In particular, ∃Anj ∈ F , 1 ≤ j ≤ n− 1 satisfying

Tvj −
n−1∑
i=j

Aijvi = Anjvn

So

Tvj =
n∑
i=j

Aijvn 1 ≤ j ≤ n− 1

By choice, Aij = 0, i < j ≤ n− 1 and

Tvn = λvn

By hw 2 # 3, B = {v1, . . . , vn} is an ordered basis for V and

[T ]B =


[
T
]
C

0
...
0

An1 . . . An,n−1 λ


which is lower triangular, as needed. “ =⇒ ” Let B = {v1, . . . , vn} be an ordered basis
for V . A = [T ]B is lower triangular. Then

fT =
n∏
i=1

(t−Aii) splits in F [t]

A11, . . . , Ann are the (not necessarily distinct) eigenvalues of T and hence roots of qT .
Let λi = Aii, i = 1, . . . , n. We have

Tvj =
n∑
i=1

Aijvi = λjvj +
n∑

i=j+1

Aijvi, 1 ≤ j ≤ n− 1

Tvn = λnvn

So

(T − λj1V )vj =

n∑
i=j+1

Aijvi ∈ Span (vj+1, . . . , vn) ∀1 ≤ j ≤ n− 1 (*)

Now
(T − λn1V )vn = 0

So
(T − λn1V )vn−1 ∈ Span(vn) by (∗)
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This implies
(T − λn1V )(T − λn−11V )vn−1 = 0

By induction, we may assume that

(T − λn1V ) . . . (T − λj1V )vj = 0

So by (*),
(T − λn1V ) . . . (T − λj1V )(T − λj−11V )vj−1 = 0

Therefore,
fT (T )vi = (T − λn1V ) . . . (T − λi1V )vi = 0

for i = 1, . . . , n. As B is a basis for V , fT (T ) = 0. Thus qT |fT ∈ F [t]. In particular, qT
splits in F [t].

Corollary 41.7

Let V be a finite dimensional vector space over F , T : V → V a triangularizable
linear operator. Then

qT |fT ∈ F [t]

In particular,
fT (T ) = 0

Definition 41.8 (Algebraically Closed) — A field F is called algebraically closed if
every f ∈ F [t] \ F splits in F [t]. Equivalently, f ∈ F [t] \ F has a root in F .

Corollary 41.9 (Cayley-Hamilton – Special Case)

Let F be algebraically closed, V a finite dimensional vector space over F , T : V → V
linear. Then

1. T is triangularizable.

2. qT |fT

3. fT (T ) = 0

Theorem 41.10 (Fundamental Theorem of Algebra)

(FTA) C is algebraically closed.

Proof. It’s assumed (proven in 132 – Complex Analysis or 110C – Algebra).
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§42 Lec 13: Apr 26, 2021

§42.1 Triangularizabi l ity (Cont’d)

Remark 42.1. Let V be a finite dimensional vector space over F , T : V → V linear, B
an ordered basis for V , A = [T ]B. So qA = qT and fA = fT .

Let n = dimV . Given a field F , ∃F̃ an algebraically closed field satisfying F ⊆ F̃ is a
subfield. Then

A ∈MnF ⊆MnF̃

So by the corollary,
fA(A)v = 0 ∀v ∈ F̃n×1

where we view A : F̃n×1 → F̃n×1 linear. Then

fA(A)v = 0 ∀v ∈ Fn×1 ⊆ F̃n×1

viewing
A : Fn×1 → Fn×1 linear

Thus,
fA(A) = 0

Hence fT (T ) = 0 and qT = qA|fA = fT . So qT |fT in F [t]. Thus, if we knew such an F̃
exists in general, we would have proven the Cayley-Hamilton Theorem in general, i.e., if
V is a finite dimensional vector space over F and T : V → V linear, then

qT |fT ∈ F [t]

fT (T ) = 0

This is, in fact, true (and proven in Math 110C). Of course, assuming FTA, this proves
Cayley-Hamilton for all fields F ⊆ C.

Remark 42.2. The symmetric matrices(
0 1
1 0

)
∈M2F2 and

(
2 1
1 3

)
∈M2F5

are both triangularizable, but not diagonalizable.

§42.2 Primary Decomposit ion

Algebraic Motivation: Let f ∈ F [t] \ F be monic. Write

f = pe11 . . . perr , p1, . . . , pr distinct monic

irreducible polys in F [t], ei > 0 ∀i. Set

q =
f

peii
= pe11 . . . peii . . . p

er
r

Then pi, qi are relatively prime so there exists an equation

1 = peii ki + qigi ∈ F [t], i = 1, . . . , n (*)
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if we plug a linear operator T : V → V into (*), we get

1V = peii (T )k1(T ) + qi(T )gi(T ) ∀i

Linear Algebra Motivation: Let V be a finite dimensional vector space over F , T : V →
V linear. Suppose

V = W1 ⊕W2, W1,W2 ⊆ V subspaces

with W1,W2 both T -invariant.
Let Bi be an ordered basis for Wi, i = 1, 2 and B = B1 ∪B2 an ordered basis for V .
Then

[T ]B =

(
[T |W1 ]B1

0

0 [T |W2 ]B2

)
Let PWi : V → V be the projection onto Wi along Wj , j 6= i. Then we know

1V = PW1 + PW2

PWiPWj = δijPWj

PWiT = TPWi , i = 1, 2

T = TPW1 + TPW2 = T |W1 + T |W2

By hw 4 # 6
qT = lcm (qT |W1 , qT |W2)

This easily extends to more blocks.

Lemma 42.3

Let f ∈ F [t], T : V → V linear. Then ker f(T ) is T -invariant.

Proof. If v ∈ ker f(T ), to show Tv ∈ ker f(T ). But

f (T )Tv = Tf(T )v = 0

so this is immediate.

Lemma 42.4

Let g, h ∈ F [t] \ F be relatively prime. Set f = gh ∈ F [t]. Suppose T : V → V is
linear and f(T ) = 0. Then

ker g(T ) and kerh(T ) are T -invariant

subspaces of V and
V = ker g(T )⊕ kerh(T ) (+)

Proof. By the lemma we just proved, we need only show (+). Since g, h are relatively
prime, there exists equation

1 = gk + hl ∈ F [t]

Hence
1V = g(T )k(T ) = h(T )l(T )

as linear operators on V i.e. ∀v ∈ V

v = g(T )k(T )v + h(T )l(T )v (*)

190



Duc Vu (Fall 2020 – Spring 2021) 115B Lectures

Since f(T ) = 0 we have

0 = f(T )k(T )v = h(T )g(T )k(T )v

Therefore,
g(T )k(T )v ∈ kerh(T )

and
0 = f(T )l(T )v = g(T )h(T )l(T )v

so
h(T )l(T )v ∈ ker g(T )

It follows by (*), ∀v ∈ V

v = g(T )k(T )v + h(T )l(T )v ∈ kerh(T ) + ker g(T )

where
V = ker g(T ) + kerh(T )

By (*), if v ∈ ker g(T ) ∩ kerh(T ), then

v = g(T )k(T )v + h(T )l(T )v = 0

Hence
V = ker g(T )⊕ kerh(T )

as needed.
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§43 Lec 14: Apr 28, 2021

§43.1 Primary Decomposit ion (Cont’d)

Proposition 43.1

Let V be a finite dimensional vector space over F , T : V → V linear, g, h ∈ F [t] \F
monic and relatively prime. Suppose that

qT = gh ∈ F [t]

Then ker g(T ) and kerh(T ) are T -invariant.

V = ker g(T )⊕ kerh(T )

and
g = qT

∣∣
ker g(T )

and h = qT
∣∣
kerh(T )

Proof. By the last lemma in last lecture, we need only prove the last statement. By
definition, we have

g(T )
∣∣
ker g(T )

= 0 and h(T )
∣∣
kerh(T )

= 0

So by definition,
qT
∣∣
ker q(T )

|g and qT
∣∣
kerh(T )

|h ∈ F [t]

As g and h are relatively prime, by the FTA, so are

qT
∣∣
ker g(T )

and qT
∣∣
kerh(T )

Therefore, we have

f := lcm
(
qT
∣∣
ker g(T )

, qT
∣∣
kerh(T )

)
= qT

∣∣
ker q(T )qT

∣∣
kerh(T )

Since

V = ker g(T )⊕ kerh(T )

f(T )v = 0 ∀v ∈ V

Hence
qT |f ∈ F [t]

By (+) and FTA
f |gh = qT

As both f and qT are monic,
f = qT

Applying FTA again, we conclude that

g = qT
∣∣
ker g(T )

and h = qT
∣∣
kerh(T )

We now generalize the proposition to an important result that decomposes a finite
dimensional vector space over F relative to a linear operator T : V → V .
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Theorem 43.2 (Primary Decomposition)

Let V be a finite dimensional vector space over F , T : V → V linear, and qT =
pe11 . . . perr , with p1, . . . , pr distinct monic irreducible polys in F [t], e1, . . . , er ∈ Z+.
Then there exists a direct sum decomposition of V into subspaces W1, . . . ,Wr

V = W1 ⊕ . . .⊕Wr (*)

satisfying all of the following:

i) Each Wi is T -invariant, i = 1, . . . , r

ii) qT |Wi = peii , i = 1, . . . , r

iii) qT =
∏r
i=1 p

ei
i =

∏r
i=1 qT |Wi

iv) If Bi is an ordered basis for Wi, i = 1, . . . , r, B = B1 ∪ . . .∪Br is an ordered
basis for V with

[T ]B =

[T |W1 ]B1
0

. . .

0 [T |Wr ]


Moreover, any direct sum decomposition (*) of V satisfying i), ii), iii) is uniquely
determined by T and the p1, . . . , pr up to order. If in addition, this is the case, then

Wi = ker peii (T ) i = 1, . . . , r

Proof. We induct on r.

• r = 1 is immediate

• r > 1 By TFA, pe11 and g = pe22 . . . perr are relatively prime, so by the Proposition

V = W1 ⊕ V1

where

W1 = ker pe11 (T ) and W1 is T -invariant

V1 = ker g(T ) and V1 is T -invariant

qT |W1
= pe11 qT |V1 = pe22 . . . perr

Let
T1 = T |V1 : V1 → V1

By induction on r, we may assume all of the following:

V1 = W2 ⊕ . . .⊕Wr

Wi = ker peii (T1) and is T1-invariant

qT1|Wi
= peii for i = 2, . . . , r

Note:

ker peii (T1) ∩
r∑
j=2
j 6=i

ker pj(T1) = 0 ∀i > 0
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Claim 43.1. Let 2 ≤ i ≤ r. Then

ker peii (T ) = ker peii (T1)

Let v ∈ ker peii (T ), i > 1. So
peii (T )v = 0

Hence

0 =
r∏
j=2

p
ej
j (T )v = g(T )v,

i.e.,
v ∈ ker g(T ) = V1

So
Tv = T |V1v = T1v

and
0 = peii (T )v = peii (T1)v

as needed.

Let v ∈ ker peii (T1), i > 1. By definition, v ∈ V1, so

0 = peii (T1)v = peii (T |V1) v

= peii (T )|V1v = peii (T )v

This proves the claim.

The existence of (*), i), ii), iii) nad Wi = ker peii (T ), i = 1, . . . , r, now follow.
Moreover, i) and (*) yield iv).

Uniqueness: Suppose that
V = W1 ⊕ . . .⊕Wr

satisfies i), ii), iii). If we show

Wi = ker peii (T ), i = 1, . . . , r

the result will follow. It suffices to do the case i = 1. Let

V1 = W2 ⊕ . . .⊕Wr

V = W1 ⊕ V1

As each Wi is T -invariant and V1 is T -invariant. As before

pe11 and g = pe22 . . . perr

and relatively prime by FTA. So by hw 4 # 6

qT = lcm
(
qT |V1 , qT |V1

)
It follows that

qT |V1 = pe22 . . . perr = g

Moreover, we have an equation

1 = pe11 k + gl ∈ F [t]

So
1V = pe11 (T )k(T ) + g(T )l(T ) (+)
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Claim 43.2. W1 = ker pe11 (T ) and hence we are done.

Since
qT |W1

= pe11

We have
pe11 (T )v = 0 ∀v ∈W1

Hence
W1 ⊆ ker pe11 (T )

To finish, we must know
ker pe11 (T ) ⊆W1

Let
v ∈ ker pe11 (T ) ⊆ V = W1 ⊕ V1

So ∃!w1 ∈W1, v1 ∈ V1 s.t.
v = w1 + v1

Since W1 ⊆ ker pe11 (T ),
pe11 (T )W1 = 0

By assumption, pe11 (T )v = 0, so
pe11 (T )v1 = 0

As V1 = W2 ⊕ . . .⊕Wr

peii = qT |Wi
, i = 2, . . . , r by (ii)

We have
pe22 (T ) . . . perr (T )v1 = 0

Hence by (+)

v1 = 1V v1 = pe11 (T )k(T )v1 + pe22 (T ) . . . perr (T )l(T )v1 = 0

Therefore,
v = w1 + v1 = w1 ∈W1

and it follows that ker pe11 (T ) ⊆W1 as needed.

Recall: Let V be a finite dimensional vector space over F , T : V → V linear is called
diagonalizable if there exists an ordered basis B for V consisting of eigenvectors of T .
By hw 2 # 2, this is equivalent to

V =
⊕
λ

ET (λ)
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§44 Lec 15: Apr 30, 2021

§44.1 Primary Decomposit ion (Cont’d)

Recall: Let V be a finite dimensional vector space over F , T : V → V linear is called
diagonalizable if there exists an ordered basis B for V consisting of eigenvectors of T .
By hw 2 # 2, this is equivalent to

V =
⊕
λ

ET (λ)

Theorem 44.1

Let V be a finite dimensional vector space over F , T : V → V linear. Then T is
diagonalizable iff qT splits in F [t] and has no repeated roots in F . If this is the
case, then

qT =
r∏
i=1

(t− λi), λ1, . . . , λr the distinct roots of qT

Proof. “ ⇐= ” qT =
∏r
i=1(t − λi), λ1, . . . , λr the distinct roots of qT . Let Vi =

ker(T − λi1V ) = ET (λi), i = 1, . . . , r. Then by the Primary Decomposition Theorem,

V = V1 ⊕ . . .⊕ Vr

SO T is diagonalizable.
“ =⇒ ” Let B = {v1, . . . , vn} be an ordered basis for V consisting of eigenvectors of T
with λi the eigenvalue of vi and ordered s.t.

λ1, . . . , λr are the distinct eigenvalues of T

For each j, 1 ≤ j ≤ n, we have

(T − λi1V ) vj = Tvj − λivj = (λj − λi) vj , j = 1, . . . , n

So
r∏
i=1

(T − λi1V ) vj = 0 for j = 1, . . . , n

i.e.,
r∏
i=1

(T − λi1V ) vanishes on a basis for V

hence vanishes on all of V . It follows that

qT |
r∏
i=1

(t− λi) ∈ F [t]

In particular, qT splits in F [t] and has no multiple roots in F by FTA. As every eigenvalue
of T is a root of fT , we have

t− λi|qT , i = 1, . . . , r

using fT and qT have the same roots. Therefore,

qT =

r∏
i=1

(t− λi) ∈ F [t]
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§44.2 Jordan Blocks

Definition 44.2 (Jordan Block Matrix) — J ∈MnF is called a Jordan block matrix
of eigenvalue λ of size n if

J = Jn(λ) :=


λ 0
1 λ

1
. . . λ

0 1

 ∈MnF

Note: fJn(λ) = det (tI − Jn(λ)) = (t − λ)n ∈ F [t], so splits with just one root of
multiplicity.

Definition 44.3 (Nilpotent) — T : V → V linear is called nilpotent if qT = tm,

some m, i.e., ∃M ∈ Z+ 3 TM = 0.

Example 44.4

J = Jn (0) is nilpotent and has qJ = tm for some m. In fact, qJ = tn – why?
In fact, let A ∈MnF , A : Fn×1 → Fn×1 linear with A ∼ N with

N = Jn(λ−λIn = Jn(0)

Then as N is nilpotent and

A = PNP−1, some P ∈ GLnF,

we have

An =
(
PNP−1

)n
= PNP−1PNP−1 . . . PNP−1 = PNnP−1 = 0

So A is nilpotent. Now N is nilpotent.
If S = {e1, . . . , en} is the standard basis for Fn×1

Nei = ei+1, i ≤ n− 1

Nen = 0

N2ei = N −Nei = ei+2, i ≤ n− 2

...
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Example 44.5 (Cont’d from above)

In any case, we have

dim im N r = n− r
dim kerN r = r

}
if r ≤ n

dim im N r = 0

dim im kerN r = n

}
if r > n

Lemma 44.6

Let J = Jn(λ) ∈MnF . Then

1. λ is the only eigenvalue of J .

2. dimEJ(λ) = 1

3. tJ = qJ = (t− λ)n

4. fJ(J) = 0

Proof. Let
N = J − λI ∈MnF

the characteristics matrix of J

Nn−1 =


0 . . . 0
...

...
0 0
1 0 . . . 0

 ∈MnF

is not the zero matrix, but
Nn = 0

So
qT |(t− λ)n and qJ 6 |(t− λ)n−1

It follows that qJ = (t− λ)n = fJ . This shows 3) and 4). By the computation,

dim kerN = 1

and
kerN = ET (λ)

This gives 2) as fT = (t− λ)n, 1) is clear.

Remark 44.7. Jn(λ) has only a line as an eigenspace, so among triangulariazable operator
away from being diagonalizable when n ≥ 1.

Proposition 44.8

Let A ∈MnF be triangularizable. Suppose fA = (t− λ)n for some λ ∈ F . Then A
is diagonalizable iff qA = (t− λ) iff A = λI.
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Proof. If qA = t− λ, then A = λI as

Fn×1 = ker (A− λI)

The converse is immediate.

Computation: Let V be a finite dimensional vector space over F , dimV = n, T : V → V
linear. Suppose there exists B = {v1, . . . , vn} an ordered basis for V satisfying

[T ]B = Jn(λ)

Then by definition

Tv1 = λv1 + v2 i.e. (T − λ1V )v1 = v2

Tv2 = λv2 + v3 i.e. (T − λ1V )v2 = v3

... (+)

Tvn−1 = λvn−1 + vn i.e. (T − λ1V ) vn−1 = vn

Tvn = λvn

So
Eλ(λ) = Fvn

v1, . . . , vn−1 are not eigenvectors, but do satisfy

(T − λ1V )vi = vi+1 i = 1, . . . , n− 1

(T − λ1V )n−ivi = vn , an eigenvector

So we can compute v1, . . . , vn−1 from the eigenvalue vn.
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§45 Lec 16: May 3, 2021

§45.1 Jordan Blocks (Cont’d)

Definition 45.1 (Sequence of Generalized Eigenvectors) — Let T : V → V be
linear, 0 6= vn ∈ ET (λ). We say v1, . . . , vn is an (ordered) sequence of generalized
eigenvectors of eigenvalue λ of length n if (+) above holds, i.e.,

(T − λ1V )vi = vi+1, i = 1, . . . , n− 1

(T − λ1V )vn = 0

We let

gn(λ) = gn(vn, λ) := {v1, . . . , vn}
=
{
v1, (T − λ1V )n−1v1

}
be an ordered sequence of generalized eigenvectors for T of length n relative to λ.

Note: We should really write

gn(vn, λ, v1, . . . , vn−1)

Lemma 45.2

Let V be a vector space over F , T : V → V linear, 0 6= vn ∈ ET (λ), v1, . . . , vn an
ordered sequence of generalized eigenvectors of T of length n, gn(λ) = {v1, . . . , vn}.
Then

1. gn(λ) is linearly independent.

2. If V is a finite dimensional vector space over F , dimV = n, then

i) gn(λ) is an ordered basis for V

ii) [T ]gn(λ) = Jn(λ)

Proof. 1. We have seen that (∗) implies

(T − λ1V )n−ivi = vn i < n

(T − λ1− V )vn = 0

So
(T − λ1V )kvi = 0 ∀k > n− i

Suppose
α1v1 + . . .+ αnvn = 0, αi ∈ F not all 0

Choose the least k s.t. αk 6= 0. Then

0 = (T − λ1V )n−k (αkvk + . . .+ αnvn) = αkvn

As vn 6= 0, αk = 0, a contradiction.
So 1) follows and 1)→ 2).
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Definition 45.3 (Jordan Canonical Form) — A ∈MnF is called a matrix in Jordan
canonical form (JCF) if A has the block form

A =

Jr1(λ1) 0
. . .

0 Jrm(λm)


λ1, . . . , λm not necessarily distinct.

Definition 45.4 (Jordan Basis) — Let V be a finite dimensional vector space over
F , T : V → V linear. An ordered basis B for V is called a Jordan basis (if it exists)
for V relative to T if B is the union

gr1(v1,r1 , λ1) ∪ . . . ∪ grm(vm,rm , λm) (?)

where grj (vj,rj , λj) is an ordered sequence of generalized eigenvectors of T relative
to λj ending at eigenvector vj,rj . The λ1, . . . , λm need not be distinct.

Proposition 45.5

Let V be a finite dimensional vector space over F , T : V → V linear. Then V has a
Jordan basis relative to T ⇐⇒ T has a matrix representation in Jordan canonical
form (JCF).

Proof. Let wi = gri (vi,ri , λi) in (?). The only thing to show is: Wi is T -invariant, but
this follows from our computation.

Conclusion: Let T : V → V be linear with V having a Jordan basis relative to T .
Gathering all the Jordan blocks with the same eigenvalues together and ordering these
into increasing size, we can write such a Jordan basis as follows:

λ1, . . . , λm the distinct eigenvalues of T

B = gr11(v11, λ1) ∪ . . . ∪ gr1,n1(v1,n1 , λ1)

∪ gr21(v21, λ2) ∪ . . . ∪ gr2,n2
(v2,n2 , λ2)

...

∪ grm,1(vm,1, λm) ∪ . . . ∪ grm,nm(vm,rm , λm)

with
ri1 ≤ ri2 ≤ . . . ≤ rini, 1 ≤ i ≤ m

e.g.

[T ]B =



1 0
0 1

1 0
1 1

0 2 0 0
1 2 0
0 1 2


=


J1(1)

J1(1)
J2(1)

J3(2)


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Let
Wij = Span gri,j(vij , λi) ∀i, j

These are all T -invariant. We have

fT =
∏
i,j

(t− λi)rij

and

qT =
∏
i

lcm ((t− λi)rij |j = 1, . . . , ni)

=
∏
i

(t− λi)rini

So
qT |fT and fT (T ) = 0

Also
qT |Wij

= fT |Wij
= (t− λi)rij

for all 1 ≤ j ≤ nj , 1 ≤ i ≤ m. There are called the elementary divisors of T

V = W11 ⊕ . . .⊕W1,n1 ⊕ . . .⊕Wm1 ⊕ . . .⊕Wmnm

Now let Pij be the projection onto Wij along

W11 ⊕ . . .⊕ Ŵij︸︷︷︸
omit

⊕ . . .⊕Wm,nm

Then

PijPkl = δikδjlPjl =

{
Pjl if i = k and j = l

0 otherwise

1V = P11 + . . .+ Pmnm

TPij = PijT

T = TP11 + . . .+ TPmnm = T
∣∣
W11

+ . . .+ T
∣∣
Wmnm

Abusing notation

λ1, . . . , λm are the distinct eigenvalues of T

Let
Wi = Wi1 ⊕ . . .⊕Wini i = 1, . . . ,m

As ri1 ≤ . . . ≤ rini ,

(T − λi1V )rini

∣∣
Wij

= 0, 1 ≤ j ≤ ni

(T − λi1V )rini−1
∣∣
Wij
6= 0

showing
qT |Wi = (t− λi)rini

So
V = W1 ⊕ . . .⊕Wm

is the unique primary decomposition of V relative to T .
Note: The Jordan canonical form of T above is completely determined by the elementary
divisors of T .
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§45.2 Jordan Canonical Form

Theorem 45.6

Let V be a finite dimensional vector space over F , T : V → V linear. Suppose that
qT splits in F [t]. Then there exists a Jordan basis B for V relative to T . Moreover,
[T ]B is unique up to the order of the Jordan blocks. In addition, all such matrix
representations are similar.

Proof. Reduction 1: We may assume that

qT = (t− λ)r

Suppose that
qT = (t− λ1)r1 . . . (t− λm)rm ∈ F [t]

λ1, . . . , λm distinct. Set

Wi = ker (T − λi1V )ri , i = 1, . . . ,m

By the Primary Decomposition Theorem,

V = W1 ⊕ . . .⊕Wm

Wi is T -invariant, i = 1, . . . , n

qT |Wi
= (t− λi)ri , i = 1, . . . ,m

So we need only find a Jordan basis for each Wi.
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§46 Lec 17: May 5, 2021

§46.1 Jordan Canonical Form (Cont’d)

Proof. (Cont’d from Lec 16) Reduction 2: We may assume that qT = tr, i.e., λ = 0.
Suppose that we have proven the case for λ = 0. Let S = T − λ1V , T as in Reduction 1.
Then

Sr = (T − λ1V )r = 0 and Sr−1 = (T − λ1V )r−1 6= 0

Therefore,
qS = tr

if B is a Jordan basis for V relative to S, then

[S]B = [T ]B − λI

is a JCF with diagonal entries 0. Hence

[T ]B = [S]B + λI

is a JCF with diagonal entries λ and B is also a Jordan basis for V relative to T .
Reduction 2 now follows easily. We turn to
Existence: We have reduced to the case

qT = tr, i.e., T r = 0, T r−1 6= 0

In particular, T is nilpotent. We induct on dimV .

• dimV = 1 is immediate.

• dimV > 1: T is singular, so 0 < kerT , as λ = 0 is an eigenvalue. Since V is a
finite dimensional vector space over F , by the Dimension Theorem, T is not onto,
i.e.,

im T < V

As im T is T -invariant, we can (and do) view

T
∣∣
im T

: im T → im T linear

As T r = 0, certainly (T |im T )r = 0, so

T
∣∣
im T

is also nilpotent

and
qT
∣∣
im T

∣∣qT ∈ F [t]

since
qT
(
T
∣∣
im T

)
= 0 = qT (T )

So qT |im T
splits in F [t] and

q
T
∣∣
im T

= ts, for some s ≤ r

by FTA. By induction on dimV , im T has a Jordan basis relative to T |im T . So

im T = W1 ⊕ . . .⊕Wm, some m
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with each Wi being T |im T− (hence T−) invariant and Wi has a basis of an ordered
sequence of generalized eigenvectors for T |Wi , hence for T |im T and T ,

gri(0) =
{
wi, Twi, . . . , T

ri−1wi
}
, ri ≥ 1

Thus we have

T riwi = 0, i = 1, . . . ,m

q
T
∣∣
Wi

= tri , i = 1, . . . ,m

Since wi ∈Wi ⊆ im T ,

∃vi ∈ V 3 Tvi = wi, i = 1, . . . ,m

So we also have
T ri+1vi = T riTvi = T riwi = 0

and
T rivi = T ri−1Tvi = T ri−1wi 6= 0

Therefore, vi, T vi, . . . , T
rivi is an ordered sequence of generalized eigenvalues for

T in V , and, in particular, linearly independent. For each i = 1, . . . ,m, let

Vi = Span {vi, T vi, . . . , T rivi}

So

Vi =


ri∑
j=0

αjT
jvi|αj ∈ F


= {f(T )vi|f ∈ F [t], f = 0 or deg f ≤ ri}
= F [T ]Vi

Since each Vi is spanned by an ordered sequence of generalized eigenvectors for T ,
each Vi is T -invariant, i = 1, . . . ,m.

Note: If f ∈ F [t] and f(T )wi = 0, then f(T ) = 0 in Wi and similarly if f ∈ F [t]
and f(T )vi = 0, then f(T ) = 0 on Vi as f(T )wi = 0 implies

0 = T jf(T )wi = f(T )T jwi = 0 ∀i

Set
V ′ = V1 + . . .+ Vm

Each Vi is T -invariant, so V ′ is T -invariant.

Claim 46.1. V ′ = V1 ⊕ . . .⊕ Vm
In particular,

B0 = {v1, T v1, . . . , T
riv1, . . . , vm, T vm, . . . , T

rmvm}

is a basis for V ′.
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§47 Lec 18: May 7, 2021

§47.1 Jordan Canonical Form (Cont’d)

Proof. (Cont’d) Suppose ui ∈ Vi, i = 1, . . . ,m satisfies

u1 + . . .+ um = 0 (1)

To show ui = 0, i = 1, . . . ,m. As ui ∈ Vi, ∃fi ∈ F [t] 3

ui = fi(T )vi

where we let fi = 0 if ui = 0. So (1) becomes

fi(T )v1 + . . .+ fm(T )vm = 0 (2)

Since Tf(T ) = f(T )T ∀f ∈ F [t] and

wi = Tvi i = 1, . . . ,m

taking T of (2) yields
f1(T )w1 + . . .+ fm(T )wm = 0

As the T -invariant Wi satisfying

W1 + . . .+Wm = W1 ⊕ . . .⊕Wm (*)

We have
fi(T )wi = 0, i = 1, . . . ,m

Hence
fi(T ) = 0 on Wi, i = 1, . . . ,m

Thus
tri = q

T
∣∣
Wi

∣∣fi ∈ F [t], i = 1, . . . ,m

In particular, since ri ≥ 1 ∀i, we can write

fi = tgi ∈ F [t], i = 1, . . . ,m

deg gi < deg fi, i = 1, . . . ,m if fi 6= 0

Since
fi(T ) = Tgi(T ) = gi(T )T

and
wi = Tvi, i = 1, . . . ,m

(2) now becomes
g1(T )w1 + . . .+ gm(T )wm = 0 (3)

Since each Wi is T -invariant, by (*)

gi(T )wi = 0, hence gi(T ) = 0 on Wi

for i = 1, . . . ,m by the definition of Wi. Therefore, for each i, i = 1, . . . ,m

tri = q
T
∣∣
Wi

∣∣gi ∈ F [t]
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In particular, we can write

gi = trihi ∈ F [t], i = 1, . . . ,m

So
fi = tri+1hi ∈ F [t], i = 1, . . . ,m

Thus we have
ui = fi(T )vi = hi(T )T ri+1vi = 0, i = 1, . . . ,m

This establishes claim 1. As

wi = Tvi ∈Wi, i = 1, . . . ,m

We have

TV ′ = TV1 ⊕ . . .⊕ TVm
= W1 ⊕ . . .⊕Wm = TV (?)

since each Wi, Vi is T -invariant and

TVi = Wi, i = 1, . . . ,m

Therefore,
T
∣∣
V ′

= T
∣∣
V1

+ . . .+ T
∣∣
Vm

Claim 47.1. V = kerT + V ′

Let v ∈ V . Since
TV ′ = TV

by (?), we have ∀v ∈ V
∃v′ ∈ V ′ 3 Tv′ = Tv,

so
v − v′ ∈ kerT

and
v = v′ + w some w ∈ kerT

i.e.
v ∈ V ′ + kerT

as needed.
Now by construction, we have a Jordan basis B0 for the T -invariant subspace V ′ relative
to T |V ′ . Let

C = {u1, . . . , uk} be a basis for kerT = ET (0)

Modifying the Toss In Theorem, we get a basis for V as follows. If u1 /∈ Span B0, let
B1 = B0 ∪ {u1}. Otherwise, let B1 = B0. If u2 /∈ Span B1, let B2 = B1 ∪ {u2}.
Otherwise, let B2 = B1. In either case, B2 is a linearly independent set. Continuing in
this way, since B0 ∪ C spans V , we get a spanning set of V

B = B0 ∪ {uj1 , . . . , ujr} ⊆ V

with
Tuji = 0
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for some uji constructed above, 1 ≤ i ≤ s.
Using claim 1, we have

V = V ′ ⊕ Span {uj1 , . . . , ujs}
= V1 ⊕ . . .⊕ Vm ⊕ Fuj1 ⊕ . . .⊕ Fujs

and [T ]B is in Jordan canonical form. This proves existence.
Note: Fuji are the g1 (uji , 0) and the uji are eigenvectors that cannot be extended to
gi(vi, 0) of longer length.
Uniqueness: By reduction 1) and 2), we have

qT = tr, T r = 0, T r−1 6= 0

Let C be an ordered basis for V . Then by MTT

mj = dim im T j = rank
[
T j
]
C

= rank [T ]jC (*)

Let B be any Jordan basis for V relative to T , say

[T ]B =

Jr1(0) 0
. . .

0 Jrm(0)


the corresponding Jordan canonical form. Prior computation showed for each i, 1 ≤ i ≤
m, {

rank J jri (0) = ri − j
dim ker J jri(0) = j

if j < ri

and {
rank J jri(0) = 0

dim ker J jri(0) = ri
if j ≥ ri

Clearly, for each i,

[T ]jB =

J
j
r1(0)

. . .

J jrm(0)


as [T ]B is in block form. So by (*),

mj = rank [T ]jB =
m∑
i=1

rank J jri(0)

It follows that we have

mj−1 −mj = rank [T ]j−1
B − rank [T ]jB

= # of l × l Jordan blocks Jl(0) in (+) with l ≥ j

We also have, in the same way,

mj −mj+1 = rank [T ]jB − rank [T ]j+1
B

= # of l × l Jordan blocks Jl(0) in (+) with l ≥ j + 1

Consequently, there are precisely

(mj−1 −mj)− (mj −mj+1) = mj−1 − 2mj +mj+1
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which equals the number of l × l Jordan blocks Jl(0) in (+) with l = j. This number is
independent of B as it is

rank T j−1 − 2 rank T j + rank T j+1

Thus, [T ]B is unique up to order of the Jordan blocks. This proves uniqueness.
If B′ is another Jordan basis, then

[T ]B′ ∼ [T ]B

by the Change of Basis Theorem. This finishes the proof (phewww. . . such a long
proof!)

Corollary 47.1

Let A ∈ MnF . If qA ∈ F [t] splits in F [t], then A is similar to a matrix in JCF
unique up to the order of the Jordan blocks.

Corollary 47.2

Let F be an algebraically closed field, e.g., F = C. Then every A ∈MnF is similar
to a matrix in JCF unique up to the order of the Jordan blocks and for every V ,
a finite dimensional vector space over F , and T : V → V linear, V has a Jordan
basis relative to T . Moreover, the Jordan blocks of [T ]B are completely determined
by the elementary divisors (minimal polys) that correspond to the Jordan blocks.

Theorem 47.3

Let F be an algebraically closed field, e.g., F = C, A,B ∈ MnF . Then, the
following are equivalent

1. A ∼ B

2. A and B have the same JCF (up to block order)

3. A and B have the same elementary divisors counted with multiplicities.

Corollary 47.4

Let F be an algebraically closed field. Then A ∼ A>.

Proof. For any B ∈MnF , qB = qB> .

§47.2 Companion Matrix
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Definition 47.5 (Companion Matrix) — Let g = tn+an−1t
n−1 + . . .+a1t+a0 ∈ F [t],

n ≥ 1. The matrix

C(g) :=



0 0 . . . 0 a0

1 0 0 a1

0 1
...

...
...

...
...

...
0 an−2

0 0 . . . 1 an−1


is called the companion matrix of g.

Example 47.6

C (tn) = Jn(0).

Note: If f, g ∈ F [t] are monic, then

f = g ⇐⇒ C(f) = C(g)

Lemma 47.7

Let g ∈ F [t] \ F be moinc. Then

fC(g) = g

Proof. Let g = tn + an−1t
n−1 + . . .+ a0 ∈ F [t] \ F . We induct on n, using properties

about determinants.

• n = 1 is immediate

• n > 1 Expanding on the determinant

fC(g) = det (tI − C(g)) = det



t 0 . . . 0 a0

−1 t
...

0 −1
...

... 0
...

0 . . . . . . −1 t+ an−1


along the top row and induction yields

t
(
tn−1 + an−1t

n−2 + . . .+ a1

)
+ (−1)n−1a0(−1)n−1 = g

Lemma 47.8

Let g ∈ F [t] \ F be monic. Then

qC(g) = fC(g) = g

In particular,
fC(g) (C(g)) = 0
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§48 Lec 19: May 10, 2021

§48.1 Companion Matrix (Cont’d)

Remark 48.1. If C is a companion matrix in MnF , viewing

C : Fn×1 → Fn×1 linear,

then
B =

{
e1, Ce1, . . . , C

n−1e1
}

is a basis for Fn×1 and

Fn×1 =

{
n−1∑
i=0

αiC
iei|αi ∈ F

}
= F [C]e1 := {f(C)e1|f ∈ F [t]}

Definition 48.2 (T-Cyclic) — Let V be a vector space over F , T : V → V linear.
We say v ∈ V is a T -cyclic vector for V and V is T -cyclic if

V = Span {v, Tv, . . . , Tnv, . . .} = F [T ]v

Warning: Let T : V → V be linear. It is rare that V is T -cyclic. However, if v ∈ V ,
then F [t]v ⊆ V is a T -invariant subspace and F [T ]v is T -cyclic. So T -cyclic subspace
generalize the notion of a line in V .

Proposition 48.3

Let V be a finite dimensional vector space over F , n = dimV , T : V → V linear.
Suppose there exists a T -cyclic vector v for V , i.e., V = F [T ]v. Then all of the
following are true

i) B =
{
v, Tv, . . . , Tn−1v

}
is an ordered basis for V

ii) [T ]B = C(fT )

iii) fT = qT

Proof. i) As dimV = n, the set {v, Tv, . . . , Tnv} must be linearly independent. Let
j ≤ n be the first positive integer s.t.

T jv ∈ Span
{
v, Tv, . . . , T j−1v

}
say

T jv = αj−1T
j−1v + αj−2T

j−2v + . . .+ α1Tv + α0v (*)

for α0, . . . , αj−1 ∈ F . Take T of (*), to get

T j+1v = αj−1T
jv + αj−2T

j−1v + . . .+ α1T
2v + α0Tv

which lies in Span(v, Tv, . . . , T j−1v) by (*). Iterating this process shows

TNv ∈ Span
{
v, Tv, . . . , T j−1v

}
∀N ≥ j
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It follows that
v = F [T ]v = Span

{
v, Tv, . . . , T j−1v

}
So

n = dimV ≤ j, hence n = j

This proves i).

ii) The computation proving i) shows

B =
{
v, Tv, . . . , Tn−1v

}
is an ordered basis for V . As

[T ]B =
(
[Tv]B

[
T 2v

]
B

. . .
[
Tn−2v

]
B

[Tnv]B
)

=


0 0 0 ∗

1 0
... ∗

0 1
...

...
0 0 . . . 1 ∗


it is a companion matrix, hence must be C(fT ) and by the lemma, we have proven
ii).

iii) fT = f[T ]B
= q[T ]B

= qT as [T ]B = C(fT ).

Example 48.4

Let V be a finite dimensional vector space over F , dimV = n, T : V → V linear
s.t. there exists an ordered basis B with

[T ]B = Jn(λ)

Set S = T − λ1V : V → V linear. Then ∃v ∈ V 3

B =
{
v, Sv, . . . , Sn−1v

}
So v s an S-cyclic vector and

V = F [S]v

Fact 48.1. If A ∈MrF [t], C ∈MsF [t], B ∈ F [t]r×s, then

det

(
A B
O C

)
= detAdetC

where
detD =

∑
sgn σD1σ(1) . . . Dnσ(n)
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§48.2 Smith Normal Form

We say that A ∈ F [t]m×n is in Smith Normal Form (SNF) if A is the zero matrix or if
A is the matrix of the form 

q1 0 . . .
0 q2
...

. . .

qr
0

. . .

0


with q1|q2|q3| . . . |qr in F [t] and all monic, i.e., there exists a positive integer r satisfying
r ≤ min(m,n) and q1|q2|q3| . . . |qr monic in F [t] s.t. Aii = qi for 1 ≤ i ≤ r and Aij = 0
otherwise.
We generalize Gaussian elimination, i.e., row (and column) reduction for matrices with
entries in F to matrices with entries in F [t]. The only difference arises because most
elements of F [t] do not have multiplicative inverses.
Let A ∈Mn(F [t]). We say that A is an elementary matrix of

i) Type I: if there exists λ ∈ F [t] and l 6= k s.t.

Aij =


1 if i = j

λ if (i, j) = (k, l)

0 otherwise

ii) Type II: If there exists k 6= l s.t.

Aij =


1 if i = j 6= l or i = j 6= k

0 if i = j = l or i = j = k

1 if (k, l) = (i, j) or (k, l) = (j, i)

0 otherwise

iii) Type III: If there exists a 0 6= u ∈ F and l s.t.

Aij =


1 if i = j 6= l

u if i = j = l

0 otherwise

Remark 48.5. Let A ∈ F [t]m×n. Multiplying A on the left (respectively right) by a
suitable size elementary matrix of

a) Type I is equivalent to adding a multiple of a row (respectively column) of A to
another row (respectively column) of A.

b) Type II is equivalent to interchanging two rows (respectively columns) of A.

c) Type III is equivalent to multiplying a row (respectively column) of A by an element
in F [t] having a multiplicative inverse.
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Remark 48.6. 1. All elementary matrices are invertible.

2. The definition of elementary matrices of Types I and II is exactly the same as that
given when defined over a field.

3. The elementary matrices of Type III have a restriction. The u’s appearing in the
definition are precisely the elements in F [t] having a multiplicative inverse. The
reason for this is so that the elementary matrices of Type III are invertible.

Let
GLn (F [t]) := {A|A is invertible}

Warning: A matrix in Mn(F [t]) having det(A) 6= 0 may no longer be invertible, i.e.,
have an inverse. What is true is that GLn(F [t]) = {A|0 6= det(A) ∈ F}, equivalently
GLn(F [t]) consists of those matrices whose determinant have a multiplicative inverse in
F [t].

Definition 48.7 (Equivalent Matrix) — Let A,B ∈ F [t]m×n. We say that A is
equivalent to B and write A ≈ B if there exist matrices P ∈ GLm(F [t]) and
Q ∈ GLn(F [t]) s.t. B = PAQ.

Theorem 48.8

Let A ∈ F [t]m×n. Then A is equivalent to a matrix in Smith Normal Form.
Moreover, there exist matrices P ∈ GLm(F [t]) and Q ∈ GLn(F [t]), each a product
of matrices of Type I, Type II, Type III, s.t. PAQ is in SNF.

Remark 48.9. The SNF derived by this algorithm is, in fact, unique. In particular, the
monic polynomials q1|q2|q3| . . . |qr arising in the SNF of a matrix A are unique and are
called the invariant factor of A. This is proven using results about determinant.
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§49 Lec 20: May 12, 2021

§49.1 Rational Canonical Form

If A,B ∈ F [t]m×n then A ≈ B if and only if they have the same SNF if and only if they
have the same invariant factors. So what good is the NSF relative to linear operators
on finite dimensional vector spaces?

Let A,B ∈Mn(F ). Then A ∼ B if and only if tI −A ≈ tI −B in Mn(F [t]) and this
is completely determined by the SNF hence the invariant factors of tI −A and tI −B.
Now the SNF of tI −A may have some of its invariant factors 1, and we shall drop these.
Let V be a finite dimensional vector space over F with B an ordered basis. Let
T : V → V be a linear operator. If one computes the SNF of tI − [T ]B, it will have the
form 

1 0 . . . . . . 0
0 1 0
...

. . .
...

q1

q2
...

. . .
...

0 . . . . . . qr


with q1|q1| . . . |qr are all the monic polynomials in F [t]\F . These are called the invariant
factors of T . They are uniquely determined by T . The main theorem is that there
exists an ordered basis B for V s.t.

[T ]B =


C(q1) 0 . . . 0

0 C(q2) . . . 0
...

. . .
...

0 . . . C(qr)


and this matrix representation is unique. This is called the rational canonical form or
RCF of T . Moreover, the minimal polynomial qt of T is qr. The algorithm computes
this as well as all invariant factors of T . The characteristic polynomial fT of T is the
product of q1 . . . qr. This works over any field F , even if qT does not split. The basis
B gives a decomposition of V into T -invariant subspaces V = W1 ⊕ . . . ⊕Wr where
fT |Wi

= qT |Wi
= qi and if dim(Wi) = ni then Bi =

{
vi, T vi, . . . , T

ni−1vi
}

is a basis for
Wi.
Let V be a finite dimensional vector space over F with B an ordered basis. Let
T : V → V be a linear operator. Suppose that qT splits over F . Then we know that
there exists a Jordan canonical form of T .

Question 49.1. How do we compute it?

We use the Smith Normal Form of tI − [T ]B to compute the invariant factors
q1|q1| . . . |qr of T just as one does to compute the RCF of T . We then factor each qi.
Suppose this factorization is

qi = (t− λ1)r1 . . . (t− λm)rm

in F [t] with λ1, . . . , λm distinct. Note that qi+1 has this as a factor so it has the form

qi+1 = (t− λ1)s1 . . . (t− λm)sm . . . (t− λm+k)
sm+k
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with si ≥ ri for each 1 ≤ i ≤ m and m+ 1, . . . ,m+ k ≥ 0 with λ1, . . . , λm+k distinct.
Then the totality of all the (t− λi)rj , including repetition if they occur in different qi’s
give all the elementary divisors of T . So to get the JCF of T we take for each qi as
factored above the block matrixJr1(λ1) 0 . . . 0

...
. . .

...
0 . . . Jrm(λm)


and replace C(qi) by it in the RCF, i.e., we take all the Jordan blocks Jr(λ) associated
to each and every factor of the form (t − λ)r in each and every invariant factor qi
determined by the SNF and form a matrix out of all such blocks. This is the JCF which
is unique only up to block order.
Let V be a finite dimensional vector space over F , T : V → V linear, v ∈ V . Then as
before, if v ∈ V

F [t]v = {f(T )v|f ∈ F [t]} ⊆ V

the T -cyclic subspace of V generated by v and satisfies

nv := dimF [T ]v ≤ dimV

and has ordered basis
Bv :=

{
v, Tv, . . . , Tnv−1v

}
As F [T ]v is T -invariant, [

T |F [T ]v

]
Bv

= C
(
fT |F [T ]v

)
and

qT |F [T ]v
= fT |F [T ]v

We want to show that V can be decomposed as a direct sum of T -cyclic subspaces of V .
The SNF of the characteristic matrix

tI − [T ]C

C is an ordered basis for V , which gives rise to invariants of T

q1| . . . |qr ∈ F [t] (*)

q1 6= 1, qi monic for all i.
Note: The SNF of (+) has no 0’s on the diagonal asfT 6= 0. We want to show there
exists an ordered basis B for V with all the following properties

i) V = W1 ⊕ . . .⊕Wr, ni = dimWi, i = 1, . . . , r

ii) Wi is T -invariant, i = 1, . . . , r

iii) Wi = F [T ]vi are T -cyclic, Wi = ker qT |Wi
(T |Wi)

iv) qi = qT |Wi
= fT |Wi

, i = 1, . . . , r with qi as in (*)

v) qT = qr

vi) fT = q1 . . . qr = qT |W1
. . . qT |Wr

vii) Bvi =
{
vi, T vi, . . . , T

ni−1vi
}

is an ordered basis for Wi, i = 1, . . . , r
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viii) B = B1 ∪ . . . ∪Br is an ordered basis for V satisfying

[T ]B =

C(q1) 0
. . .

0 C(qr)


called the rational canonical form of T and it is unique.

The uniqueness follows from the uniqueness of SNF. From the definition of equivalent
matrix, we have the following remark

Remark 49.1. If A ∈MnF [t] is in SNF, then

A ∈ GLnF [t] ⇐⇒ A = I

since 

q1 0
. . .

qr
0

0
. . .


means 0 . . . 0 · q1 . . . qr ∈ F \ {0} if there are any 0’s on the diagonal, which is inseparable.

Lemma 49.2

Let g ∈ F [t] \ F be monic of degree n. Then

It− C(q) ≈


1 0

. . .

1
0 q



Corollary 49.3

Let V be a finite dimensional vector space over F , T : V → V linear q1| . . . |qr the
invariants of T in F [t]. Then

tI −

C(q1) 0
. . .

0 C(qr)


where dimV =

∑r
i=1 deg qi

Certainly, if there exists an ordered basis B for V a finite dimensional vector space over
F , T : V → V linear s.t. [T ]B is in RCF, then everything in goal falls out. So by the
above, the goal will follow if we prove the following
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Theorem 49.4

Let A0, B0 ∈ MnF , A = tI − A0 and B = tI − B0 in MnF [t], the corresponding
characteristic matrices. Then the following are equivalent

i) A0 ∼ B0 (i.e. A0 and B0 are similar)

ii) A ∼ B (i.e., A and B are equivalent)

iii) A and B have the same SNF.

We need two preliminary lemmas.

Lemma 49.5

Let A ≈ B in MnF [t]. Then ∃P,Q ∈ GLmF [t] each products of elementary matrices
s.t. A = PBQ.

Proof. P ∈ GLnF [t] iff its SNF = I which we get using elementary matrices.

For the second lemma, we need the “division algorithm” by “linear polys” in MnF [t]. If
we were in F [t], we know if f, g ∈ F [t], f 6= 0,

g = fq + r ∈ F [t] with r = 0 or deg r < deg f

So if f = t− a, r ∈ F , i.e., r = g(a) by plugging in a into (*). But for matrices,

AQ+R 6= QA+R

but the same argument to get (*) for polys, will give a right and left remainder.
Notation: Let Ai ∈MrF , i = 0, . . . , n and let

Ant
n +An−1t

n−1 + . . .+A0

denote
An(tnI) + . . .+A0I ∈MnF [t]

So if
A = (αij)

then
Atn = (αijt

n)

i.e., two matrix polynomials are the same iff all their corresponding entries are equal,
i.e.,

(MnF )[t] = Mr (F [t])

Lemma 49.6

Let A0 ∈MnF , A = tI −A0 ∈MnF [t] and

0 6= P = P (t) ∈MnF [t]

Then there exist matrices M,N ∈MnF [t] and R,S ∈MnF satisfying

i) P = AM +R

ii) P = NA+ S

218



Duc Vu (Fall 2020 – Spring 2021) 115B Lectures

§50 Lec 21: May 14, 2021

§50.1 Rational Canonical Form (Cont’d)

Recall from last lecture,

Lemma 50.1

Let A0 ∈MnF , A = tI −A0 ∈MnF [t] and

0 6= P = P (t) ∈MnF [t]

Then there exist matrices M,N ∈MnF [t] and R,S ∈MnF satisfying

i) P = AM +R

ii) P = NA+ S

Proof. i) Let
m = max

l,k
degPlk, Plk 6= 0

and ∀i, j let

αij =

{
lead Pij if degPij = m

0 if Pij = 0 or degPij < m

So
Pij = αijt

m + lower terms in t ∈ F [t]

Let αij ∈MnF and let

Pm−1 = (αij)t
m−1 =

(
αijt

m−1
)

Every entry in

APm−1 = (tI −A0) (αij)t
m−1

= (αij)t
m −A0(αij)t

m−1

has deg = m or is zero and the tm-coefficient of (APm−1)ij is αij . Thus, P−APm−1

has polynomial entries of degree at most m−1 (or = 0). Apply the same argument
to P −APm−1 (replacing m by m− 1 in (*)) to produce a matrix Pm−2 in MnF [t]
s.t. all the polynomial entries in (P −APm−1)−APm−2 have degree at most m−2
(or = 0). Continuing this way, we construct matrices Pm−3, . . . , P0 satisfying if

M := Pm−1 + Pm−2 + . . .+ P0

then
R := P −AM

has only constant entries, i.e., R ∈MnF . So

P = AM +R

as needed.

ii) This can be proven in an analogous way.
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Theorem 50.2

Let A0, B0 ∈MnF , A = tI −A0, B = tI −B0 in MnF [t]. Then

A ≈ B ∈MnF [t] ⇐⇒ A0 ∼ B0 ∈MnF

Proof. “ ⇐= ” If
B0 = PA0P

−1, P ∈ GLnF,

then
P (tI −A0)P−1 = PtP−1 − PA0P

−1 = tI −B0 = B

So B = PAP−1 and B ≈ A.
“ =⇒ ” Suppose there exist P1, Q1 ∈ GLnF [t], hence each a product of elementary
matrices by Lemma 49.5, satisfying

B = tB −B0 = P1AQ1 = P1 (tI −A0)Q1

Applying Lemma 50.1, we can write

i) P1 = BP2 +R, P2 ∈MnF [t], R ∈MnF

ii) Q1 = Q2B + S, Q2 ∈MnF [t], S ∈MnF

Since B = P1AQ1, P1, Q1 ∈ GLnF [t], we also have

iii) P1A = BQ−1

iv) AQ1 = P−1
1 B

Thus, we have

B = P1AQ1
i)
= (BP2 +R)AQ1 = BP2AQ1 +RAQ1

iv)
= BP2P

−1
1 B +RAQ1

ii)
= BP2P

−1
1 B +RA(Q2B + S)

= BP2P
−1
1 B +RAQ2B +RAS

i.e., we have

v) B = BP2P
−1
1 B +RAQ2B +RAS

By i)
R = P1 −BP2

Plugging this into RAQ2B, yields

RAQ2B
i)
= (P1 −BP2)AQ2B = P1AQ2B −BP2AQ2B

iii)
= BQ−1

1 Q2B −BP2AQ2B = B
[
Q−1

1 Q2 − P2AQ2

]
B

i.e.

vi) RAQ2B = B
[
Q−1

1 Q2 − P2AQ2

]
B
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Plug vi) into v) to get

B
v)
= BP2P

−1
1 B +RAQ2B +RAS

vi)
= BP2P

−1
1 B +B

[
Q−1

1 Q2 − P2AQ2

]
B +RAS

= B
[
P2P

−1
1 +Q−1

1 Q2 − P2AQ2

]
B +RAS

Let
T = P2P

−1
1 +Q−1

1 Q2 − P2AQ2

Then

vii) B = BTB +RAS ∈MnF [t]

We next look at the degree of the poly entries of these matrices.

viii) Every entry of B = tI − B0 is zero or has deg ≤ 1 and every entry of RAS =
R(tI −A0)S has is zero or has deg ≤ 1.

Question 50.1. What about BTB?

Let T = Tmt
m + Tm−1t

m−1 + . . .+ T0 with T0, . . . , Tm ∈MnF . Then

BTB = (tI −B0)
(
Tmt

m + Tm−1t
m−1 + . . .+ T0

)
(tI −B0)

= Tmt
m+2 + lower terms in t

Comparing coefficients of the matrix of polys BTB = B −RAS using vii), viii) shows

Tm = 0

Hence
T = 0

So vii) becomes

tI −B0 = B = BTB +RAS = RAS = R(tI −A0)S

= RST +RA0S (*)

comparing coefficients of the poly matrices in (*) shows

I = RS

B0 = RA0S

i.e., B0 = RA0S = RA0R
−1.

Theorem 50.3

Let A0, B0 ∈ MnF , A = tI −A0, B = tI −B0 in MnF [t]. Then the following are
equivalent

i) A0 ∼ B0

ii) A ≈ B

iii) A and B have the same SNF.

iv) A0 and B0 have the same invariant factors.
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In particular, if V is a finite dimensional vector space over F , T : V → V linear, q1| . . . |qr
the invariants of T , then

V = ker q1(T )⊕ . . .⊕ ker qn(T )

qr = qT

fT = q1 . . . qr

Note: If qi =
∏r
j=1(t− λi)ej is an invariant factor, then

C(qi) ∼

Je1(λ1) 0
. . .

0 Jer(λr)



Corollary 50.4

Let A,B ∈MnF , F ⊆ K a subfield. Then A ∼ B in MnF iff A ∼ B in MnK.
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§51 Lec 22: May 17, 2021

§51.1 Inner Product Spaces

Notation: − : C → C by α + β
√
−1 7→ α − β

√
−1 ∀α, β ∈ R is called the complex

conjugation. If F ⊆ C, set
F := {α|α ∈ F}

is a field, e.g., F = F if F ⊆ R.

Definition 51.1 (Inner Product Space) — Let F ⊆ C satisfy F = F , V a vector
space over F . Then V is called an inner product space over F relative to

〈, 〉 = 〈, 〉V : V × V → F

satisfies

1. pv : V → F by pv(w) := 〈w, v〉 is linear for all v ∈ V , i.e., pv ∈ V ∗

2. 〈v, w〉 = 〈v, w〉 for all v, w ∈ V

3. ‖v‖2 := 〈v, v〉 ∈ R ∩ F for all v ∈ V and ‖v‖2 ≥ 0 in R and = 0 iff v = 0 (*)

Let V be an inner product space over F . Then,

1. If v ∈ V satisfies 〈w, v〉 = 0 for all w ∈ V , then v = 0.

2. Let v1, v2 ∈ V \ {0},

w =
〈v2, v1〉
‖v1‖2

v1

is called the orthogonal projection of v2 on v1 and v = v2 − w is orthogonal to w,
i.e. 〈v, w〉 = 0, write v ⊥ w.

Definition 51.2 (Sesquilinear Map) — A map f : V →W of inner product space
over F is called sesquilinear if v1, v2 ∈ V , α ∈ F

f (v1 + αv2) = f(v1) + αf(v2)

Let V † := {f : V → F | f sesquilinear} a vector space over F .

Example 51.3

If F ⊆ R, then any sesquilinear map is linear and V † = V ∗.
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Remark 51.4. Let V be an inner product space over F .

1. p : V → V ∗ by v 7→ pv is sesquilinear.

p(αv1 + v2)(w) = 〈w,αv1 + v2〉
= α〈w, v2〉+ 〈w, v1〉 = αp(v1) + p(v2)

for all α ∈ F , v1, v2, w ∈ V . Also, we can deduce that p is an injection and if V is
finite dimensional, then p is a bijection.

2. If v ∈ V , let λv : V → F by w 7→ 〈v, w〉, i.e., λv(w) = 〈v, w〉. Then λv is sesquilinear.
Moreover,

λ : V → V † by v 7→ λv

is linear. As 〈v, w〉 = 0 for all w → v = 0, λ is injective hence monic. If V is finite
dimensional then λ is an isomorphism.

3. If f : V →W is sesquilinear, it is called a sesquilinear isomorphism if it is bijective
and f−1 is sesquilinear. Then f is a sesquilinear isomorphism iff f is bijective.

Let V be an inner product space over F .

1. If v ∈ V , ‖v‖ :=
√
‖v‖2 ≥ 0 is called the length of v.

2. Length and ∠ make sense in V by the Cauchy – Schwarz inequality

|〈v, w〉| ≤ ‖v‖‖w‖ ∀v, w ∈ V

and V is a metric space by distances from v, w := d(v, w) := ‖v−w‖ as the triangle
inequality

‖v + w‖ ≤ ‖v‖+ ‖w‖

holds for all v, w ∈W .

3. Gram – Schmidt: If W ⊆ V is a finite dimensional subspaces, then ∃ an orthogonal
basis for W

B = {w1, . . . , wn} , i.e. 〈wi, wj〉 = 0 if i 6= j

and if ‖wi‖ ∈ F ∀i, then ∃ an orthonormal basis

C =

{
w1

‖w1‖
, . . . ,

wn
‖wn‖

}
4. In 3), if v ∈ V let B = {w1, . . . , wn} be an orthogonal basis for W . Set

vw :=

n∑
i=1

〈v, wi〉
‖wi‖2

wi =

n∑
i=1

〈v, wi
‖wi‖2

〉wi

Then, the wi-coordinate of vw is 〈v,wi〉
‖wi‖2 ∈ F . Hence

fi = p wi
‖wi‖2

: V → F

is the corresponding coordinate function, so B∗ = {f1, . . . , fn} is the dual basis of
B.

5. Let ∅ 6= S ⊆ V be a subset. The orthogonal complement S⊥ of S is defined by

S⊥ := {x ∈ V |x ⊥ s ∀s ∈ S} ⊆ V

a subspace.
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Note: The sesquilinear map

p : V → V ∗ by v 7→ pv

induces an injective sesquilinear map

p
∣∣
S⊥

: S⊥ → S◦

and we have
S ⊆ S⊥⊥ := (S⊥)⊥

If S is a subspace, S ∩ S⊥ = 0 so

S + S⊥ = S ⊕ S⊥

write
S + S⊥ = S ⊥ S⊥

called an orthogonal direct sum and if V is finite dimensional then

S = S⊥⊥

e.g., if v ∈ V , then
ker pv = (Fv)⊥

so
V = Fv ⊥ (Fv)⊥

More generally, we have the following crucial result.

Theorem 51.5 (Orthogonal Decomposition)

Let V be an inner product space over F , S ⊆ V a finite dimensional subspace.
Then

V = S ⊥ S⊥

i.e., if v ∈ V
∃!s ∈ S, s⊥ ∈ S⊥ 3 v = s+ s⊥

In particular, s = vS . If V is finite dimensional, then

dimV = dimS + dimS⊥

Theorem 51.6 (Best Approximation)

Let V be an inner product space over F , S ⊆ V a finite dimensional subspace,
v ∈ V . Then vS ∈ Sis the best approximation to v in S, i.e., for all s ∈ S

‖v − vS‖ ≤ ‖v − s‖ with equality iff s = vS

Remark 51.7. More generally, if V is an inner product space over F ,

V = W1 ⊕ . . .⊕Wn

with
wi ⊥ wj ∀wi ∈Wi, wj ∈Wj , i 6= j

We call V an orthogonal direct sum or orthogonal decomposition of V .
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By the Orthogonal Decomposition Theorem,

V = Wi ⊥W⊥i

and
W⊥i = W1 ⊥ . . . Ŵi︸︷︷︸

omit

⊥ . . . ⊥Wn

Let Pi : V → V be the projection along

W⊥i = W1 ⊥ . . . ⊥ Ŵi ⊥ . . . ⊥Wn

onto Wi. Then we have

kerPi = W⊥i

im Pi = Wi

PiPj = δijPj ∀i, j
1V = P1 + . . .+ Pn

The Pi are called orthogonal projections. As Wi ⊆ V is finite dimensional in the
above,

Pi(v) = vWi

So
v = vW1 + . . .+ vWn

is a unique decomposition of v relative to (*).

Definition 51.8 (Adjoint) — Let V,W be inner product spaces over F , T : V →W
linear. A linear transformation T ∗ : W → V is called the adjoint of T if

〈Tv,w〉W = 〈v, T ∗w〉V ∀v ∈ V ∀w ∈W

Theorem 51.9

Let V,W be finite dimensional inner product space over F , T : V → W linear.
Then the adjoint T ∗ : W → V exists.
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§52 Lec 23: May 19, 2021

§52.1 Inner Product Spaces (Cont’d)

Corollary 52.1

Let V,W be finite dimensional inner product space over F , T : V → W linear.
Then

T = T ∗∗ := (T ∗)∗

and
〈T ∗w, v〉V = 〈w, Tv〉W ∀w ∈W ∀v ∈ V

Proof. We have

〈Tv,w〉W = 〈v, T ∗w〉V = 〈T ∗w, v〉V
= 〈w, T ∗∗v〉W = 〈T ∗∗v, w〉W

which completes the proof.

Definition 52.2 (Isometry) — Let V,W be inner product space over F , T : V →W
linear. Then T is called an isometry (or isomorphism of inner product space over
F ) if

1. T is an isomorphism of vector space over F

2. T preserves inner products, i.e.,

〈Tv, Tv′〉W = 〈v, v′〉V ∀v, v′ ∈ V

Remark 52.3. Let T : V →W linear of inner product space over F . If T preserves inner
products, then T is monic.

Tv = 0 ⇐⇒ ‖Tv‖ = 0 ⇐⇒ 〈Tv, Tv〉 = 0 ⇐⇒ 〈v, v〉 = 0

Theorem 52.4

Let V,W be finite dimensional inner product space over F with dimV = dimW
and T : V →W linear. Then the following are equivalent

1. T preserves inner product.

2. T is an isometry.

3. If B = {v1, . . . , vn} is an orthogonal basis for V , then C = {Tv1, . . . , T vn} is
an orthogonal basis for W and

‖Tvi‖ = ‖vi‖ i = 1, . . . , n

4. ∃ an orthogonal basis B = {v1, . . . , vn} for V s.t. C = {Tv1, . . . , T vn} is an
orthogonal basis for W with ‖Tvi‖ = ‖vi‖ i = 1, . . . , n.
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Proof. 1) =⇒ 2) T is monic by the remark above, so an isomorphism by the Isomorphism
theorem.
2) =⇒ 3) By the Isomorphism theorem, C is a basis for W and C is orthogonal with
‖vi‖ = ‖Tvi‖ for all i.
3) =⇒ 4) is immediate.
4) =⇒ 1) By the Isomorphism theorem, T is an isomorphism of vector space over F . If
x, y ∈ V , let x =

∑n
i=1 αivi, y =

∑n
i=1 βivi, then

〈x, y〉 =
∑
i,j

αiβj〈vi, vj〉 =
∑
i,j

αiβjδij‖vi‖2

=
∑
i,j

αiβjδij‖Tvi‖2 =
∑
i,j

αiβjδij〈Tvi, T vj〉

= 〈Tx, Ty〉

Corollary 52.5

Let V,W be finite dimensional inner product space over F both having orthonormal
basis. Then V is isometric to W if and only if dimV = dimW .

Proof. Apply UPVS and the theorem above.

Theorem 52.6

Let V,W be inner product space over F , T : V → W linear. Then T preserves
inner products iff T preserves lengths, i.e., ‖Tv‖W = ‖v‖V for all v ∈ V .

Proof. “ =⇒ ” The result is immediate.
“ ⇐= ” Let x, y ∈ V and

〈x, y〉V = α+ β
√
−1

〈Tx, Ty〉W = γ + δ
√
−1

for α, β, γ, δ ∈ R. We notice that

2α = 2γ =⇒ α = γ

So we are done if F ⊆ R. Suppose F * R, then there exists 0 6= µ ∈ R s.t. µ
√
−1 ∈ F .

Then

〈x,
√
−1µy〉V = −

√
−1µ〈x, y〉V = −µ

√
−1α+ βµ

〈Tx,
√
−1µTy〉W = −

√
−1µ〈Tx, Ty〉W = −µ

√
−1γ + δµ

Analogous to (*),
βµ = δµ, so β = δ

Hence 〈x, y〉V = 〈Tx, Ty〉W .
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§53 Lec 24: May 21, 2021

§53.1 Inner Product Spaces (Cont’d)

Definition 53.1 (Unitary Operator) — Let V be an inner product space over F ,
T : V → V linear. We call T a unitary operator if T is an isometry. If F ⊆ R, such
a T is called an orthogonal operator.

Proposition 53.2

Let V be an inner product space over F , T : V → V linear. Suppose that T ∗ exists.
Then, T is an isometry if and only if T ∗ = T−1, i.e., TT ∗ = 1V = T ∗T .

Proof. “ =⇒ ” As T is an isomorphism of vector space over F , T−1 : V → V exists
and is linear. As T preserves inner products, for all x, y ∈ V

〈Tx, y〉 = 〈Tx, 1V y〉 = 〈Tx, TT−1y〉 = 〈x, T−1y〉

It follows that T ∗ = T−1 by uniqueness.
“ ⇐= ” As T ∗T = 1V = TT ∗, T is invertible with T−1 = T ∗, so T is an isomorphism.
Since

〈Tx, Ty〉 = 〈x, T ∗Ty〉 = 〈x, y〉

for all x, y ∈ V . T preserves inner products.

Remark 53.3. Let V be a finite dimensional inner product space over F , T : V → V
linear.

1. T is monic iff T is epic iff T is an iso of vector space over F .

2. T is unitary ⇐⇒ T ∗T = 1V ⇐⇒ TT ∗ = 1V

3. T is unitary ⇐⇒ T ∗ is unitary as T ∗∗ = T

Definition 53.4 (Unitary Matrix) — Let F ⊆ C, F = F . We say A ∈ MnF is
unitary if A∗A = I. Equivalently, AA∗ = I. Let

UnF := {A ∈ GLnF |AA∗ = I}

If F ⊆ R, we say A ∈MnF is orthogonal if A>A = I. Equivalently, AA> = I. Let

OnF :=
{
A ∈ GLnF |AA> = I

}
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Remark 53.5. 1. Let F ⊆ C, F = F , Fn×1, F 1×n inner product space over F via the
dot product. If A ∈MnF , then

A = [A]sn,1 : Fn×1 → Fn×1

linear and sn,1 the ordered standard basis. Then A is unitary iff

i) The columns of A form an ordered orthonormal basis for Fn×1

ii) The rows of A form an ordered orthonormal basis for F 1×n

2. If T : V → V is linear, V an inner product space over F with dimV = n, B,C
ordered orthonormal bases for V , then T is unitary iff [T ]B,C is unitary.

§53.2 Spectral Theory

Lemma 53.6

Let V be an inner product space over F , T : V → V linear, W ⊆ V a subspace.
Suppose that T ∗ exists. Then the following is true: If W is T -invariant, then W⊥

is T ∗-invariant.

Proof. Let v ∈W⊥, w ∈W , then

〈w, T ∗v〉 = 〈Tw, v〉 = 0

Lemma 53.7

Let V be a finite dimensional inner product space over F , T : V → V linear. Then
the following is true: If λ is an eigenvalue of T , then λ is an eigenvalue of T ∗.

Proof. Let S = T − λ1V : V → V linear. Then

S∗ = T ∗ − λ1V : V → V linear

Then ∀w ∈ V ,
0 = 〈0, w〉 = 〈Sv,w〉 = 〈v, S∗w〉

Hence v ⊥ im S∗ and v /∈ im S∗ as v 6= 0. By the Dimension Theorem,

0 < kerS∗, ET ∗(λ) 6= 0

Theorem 53.8 (Schur)

Let V be a finite dimensional inner product space over F with F = R or C and
T : V → V linear. Suppose that fT splits in F [t]. Then, there exists an ordered
orthonormal basis B for V s.t. [T ]B is upper triangular.

Proof. We induct on n = dimV .
n = 1 is immediate.
n > 1. By the 2nd lemma, ∃λ ∈ F and 0 6= v ∈ ET ∗(λ). By the Orthogonal
Decomposition Theorem,

V = Fv ⊥ (Fv)⊥
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and
dim(Fv)⊥ = dimV − dimFv = n− 1

Fv is T ∗-invariant, hence (Fv)⊥ is T ∗∗ = T -invariant. Let C0 be an ordered basis for
(Fv)⊥. Then C = C0 ∪ {v0} is an ordered basis for V and we have

[T ]C =



[
T
∣∣
(Fv)⊥

]
C0

∗
∗
...
∗

0 [Tv0]C


By expansion,

f
T
∣∣
(Fv)⊥

∣∣fT ∈ F [t]

hence f
T
∣∣
(Fv)⊥

∈ F [t] splits. By induction, there exists an orthonormal basis B0 =

{v1, . . . , vn−1} for (Fv)⊥ s.t.
[
T
∣∣
(Fv)⊥

]
B0

is upper triangular. Then B = B0 ∪
{

v
‖v‖

}
is an orthonormal basis for V s.t. [T ]B is upper triangular.
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§54 Lec 25: May 24, 2021

§54.1 Spectral Theory (Cont’d)

Definition 54.1 (Hermitian(Self-Adjoint)) — Let V be an inner product space over
F , T : V → V linear. Suppose that T ∗ exists. We say that T is normal

TT ∗ = T ∗T

and is Hermitian if T = T ∗, i.e.

〈Tv,w〉 = 〈v, Tw〉 ∀v, w ∈ V

Note: If T is Hermitian, T ∗ exists automatically and T is normal.

Lemma 54.2

Let V be an inner product space over F , λ ∈ F , 0 6= v ∈ V , T : V → V a normal
operator. Then

v ∈ ET (λ) ⇐⇒ v ∈ ET ∗(λ)

Proof. Let S = T − λ1V , then S∗ = T ∗ − λ1V . It follows that

SS∗ = S∗S, i.e. S is normal

Then

‖Sv‖2 = 〈Sv, Sv〉 = 〈v, S∗Sv〉
= 〈v, SS∗v〉 = 〈S∗v, S∗v〉
= ‖S∗v‖2

So
v ∈ ET (λ) ⇐⇒ Sv = 0 ⇐⇒ S∗v = 0 ⇐⇒ v ∈ ET ∗(λ)

Corollary 54.3

Let V be an inner product space over F , T : V → V normal, λ 6= µ eigenvalue of
T . Then, ET (λ) and ET (µ) are orthogonal. In particular,∑

λ

ET (λ) =
1

λ
ET (λ)

Proof. Let 0 6= v ∈ ET (λ), 0 6= w ∈ ET (µ). Then by the lemma, w ∈ ET ∗(µ) and

λ〈v, w〉 = 〈λv,w〉 = 〈Tv,w〉 = 〈v, T ∗w〉
= 〈v, µw〉 = µ〈v, w〉

As λ 6= µ, we obtain 〈v, w〉 = 0.
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Proposition 54.4

Let V be a finite dimensional inner product space over F , F = R or C, T : V → V
linear, B an ordered orthonormal basis for V s.t. [T ]B is upper triangular. Then,
T is normal if and only if [T ]B is diagonal.

Proof. “ ⇐= ” If

[T ]B =

λ1 0
. . .

0 λn


then

[T ∗]B = [T ]∗B =

λ1 0
. . .

0 λn


So

[TT ∗]B = [T ]B [T ∗]B =

|λ1|2 0
. . .

0 |λn|2


= [T ∗]B [T ]B
= [T ∗T ]B

Hence, TT ∗ = T ∗T by the Matrix Theory Theorem.
“ =⇒ ” Let B = {v1, . . . , vn} be an orthonormal basis for V s.t. A = [T ]B is upper
triangular. By the lemma,

Tv1 = A11v1 and T ∗v1 = A11v1

By definition,

T ∗v1 =
n∑
i=1

(A∗)i1vi =
n∑
i=1

A1ivi

So
A1i = 0 ∀i > 1

Hence,
A1i = 0 ∀i > 1

In particular,
A12 = 0

By the lemma,
Tv2 = A22v2, hence T ∗v2 = A22v2

The same argument shows A2i = 0, i 6= 2, i.e.,

A2i = 0, i 6= 2

Continuing this process, we conclude A is diagonal.

233



Duc Vu (Fall 2020 – Spring 2021) 115B Lectures

Theorem 54.5 (Spectral Theorem for Normal Operators)

Let V be a finite dimensional inner product space over C, T : V → V linear. Then
T is normal if and only if there exists an orthonormal basis B for V consisting of
eigenvectors of T . In particular, if T is normal, then T is diagonalizable.

Proof. This follows immediately by Schur’s theorem, FTA, and the above proposition.

Remark 54.6. Let V be a finite dimensional inner product space over R, T : V → V
linear. Suppose that fT ∈ R[t] splits. Then T is normal iff ∃ an orthonormal basis B for V
consisting of eigenvectors for T .
By Schur’s theorem, T is triangularizable via an orthonormal basis for V . The same result
follows by the proposition in the case F = R.

Spectral Decomposition and Resolution for Normal Operators:
Let V be a finite dimensional inner product space over F , F = R or C, T : V → V

linear s.t. fT splits. So T is normal. Let λ1, . . . , λr be all the distinct eigenvalues of T
in F , C an orthonormal basis for V . We know

v ∈ ET (λi) ⇐⇒ v ∈ ET ∗(λi) ∀i (+)

Let Pi : V → V be the orthogonal projection along ET (λi)
⊥ for i = 1, . . . , r omit at ith

onto ET (λi).
By (+), Pi : V → V is also the orthogonal projection along ET ∗(λi)

⊥ onto ET ∗(λi).
This is a unique decomposition

PET (λi) = Pi = PE∗T (λi) ∀i
TPi = PiT and T ∗Pi = PiT

∗ ∀i
1V = P1 + . . .+ Pr

PiPj = δijPi ∀i
T = λ1P1 + . . .+ λrPr

T ∗ = λ1P1 + . . .+ λrPr

Let Bi be an ordered orthonormal basis for ET (λi), so B = B1 ∪ . . .∪Br is an ordered
orthonormal basis for V with [T ]B and [T ∗]B is diagonal.
Let Q = [1V ]B,C . Then Q is unitary as it takes an orthonormal basis to an orthonormal
basis, hence

Q−1 = Q∗

[T ]B = Q∗ [T ]C Q

[T ∗]B = Q∗ [T ∗]C Q

Theorem 54.7

Let V be a finite dimensional inner product space over F , F = R or C, T : V → V
linear with fT ∈ F [t] splits. Then, T is normal if and only if ∃g ∈ F [t] s.t.
T ∗ = g(T ).
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§55 Lec 26: May 26, 2021

§55.1 Spectral Theory (Cont’d)

Remark 55.1. A rotation Tθ : R2 → R2 by ∠θ, 0 < θ < 2π, θ 6= π has no eigenvalues, but
is normal (with R2 an inner product space over R via the dot product) as it is unitary.

Lemma 55.2

Let V be an inner product space over F , T : V → V hermitian. If λ is an eigenvalue
of T , then λ ∈ F ∩ R.

Proof. Let 0 6= v ∈ ET (λ). Then

λ‖v‖2 = λ〈v, v〉 = 〈λv, v〉 = 〈Tv, v〉
= 〈v, T ∗v〉 = 〈v, Tv〉 = 〈v, λv〉
= λ〈v, v〉 = λ‖v‖2

As ‖v‖ 6= 0, λ = λ, so it’s real.

Lemma 55.3

Let V be a finite dimensional inner product space over F with F = R or C,
T : V → V hermitian. Then fT ∈ F [t] splits in F [t].

Proof. By previous result, we can assume that F = R. Let B be an orthonormal basis
for V . Then

A := [T ]B = [T ∗]B = [T ]∗B = A∗

in MnR ⊆MnC, n = dimV . As

A : Cn×1 → Cn×1 is Hermitian

fA splits with real roots by Lemma 26.2. (and FTA), i.e.,

fA =
∏

(t− λi) ∈ C[t], λi ∈ R ∀i

So fT = fA =
∏

(t− λi) ∈ R[t] splits.

Theorem 55.4 (Spectral Theorem for Hermitian Operators)

Let V be a finite dimensional inner product space over F , F = R or C, T : V → V
hermitian. Then, there exists an orthonormal basis for V of eigenvectors of T and
all all eigenvalues are real.

Proof. If F = C, the result follows by Lemma 26.2 as T is normal. So we may assume
F = R. As fT ∈ R[t] splits by Lemma 26.3, there exists an orthonormal basis B for V
s.t. [T ]B is upper triangular by Schur’s Theorem. As T is normal, it is diagonalizable.
The result follows by Lemma 26.2.
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§55.2 Hermitian Addendum

Theorem 55.5

If 0 6= V is a finite dimensional inner product space over R, T : V → V hermitian,
then T has an eigenvalue.

The proof in Axler’s book is very nice, and he does not use determinant theory. He uses
the following arguments

1. If V is a finite dimensional vector space over F , T : V → V linear, then there
exists q ∈ F [t] monic s.t. q(T ) = 0

2. If 0 6= q ∈ R[t], then there exists a factorization

q = β(t− λ1)e1 . . . (t− λr)erqf11 . . . qfss

in R[t] with qi monic irreducible quadratic polynomials in R[t].

This follows by the FTA.

Lemma 55.6

Let q = t2+bt+c in R[t], b2 < 4c, i.e., q is an irreducible monic quadratic polynomial
in R[t]. If V is a finite dimensional inner product space over R and T : V → V is
Hermitian, then q(T ) is an isomorphism.

Proof. It suffices to show q(T ) is a monomorphism by the Isomorphism Theorem. So it
suffices to show if 0 6= v ∈ V , then q(T )v 6= 0. We have

〈q(T )v, v〉 = 〈T 2v, v〉+ b〈Tv, v〉+ c〈v, v〉
= 〈Tv, Tv〉+ b〈Tv, v〉+ c〈v, v〉
= ‖Tv‖2 + b〈Tv, v〉+ c‖v‖2

≥ ‖Tv‖2 − |b|‖Tv‖‖v‖+ c‖v‖2

=

(
‖Tv‖ − |b|‖v‖

2

)2

+

(
c− b2

4

)
‖v‖2 > 0

So q(T )v 6= 0.

Proof. (of Theorem) Let q ∈ R[t] in 2) satisfy q(T ) = 0. So

0 = q(T ) = (T − λ11V )e1 . . . (T − λr1V )erq1(T )f1 . . . qs(T )fs

As all the qi(T ) are isomorphism, at least one of the (T − λi1V ) is not injective, i.e., λi
is an eigenvalue.
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§56 Lec 27: May 28, 2021

§56.1 Positive (Semi-)Definite Operators

Let V be a finite dimensional inner product space over F , where F = R or C, T : V → V
hermitian, B = {v1, . . . , vn} an orthonormal basis of eigenvectors of T , i.e.,

Tvi = λivi, i = 1, . . . , n

So λi ∈ R, i = 1, . . . , n. Suppose v ∈ V . Then

v =

n∑
i=1

αivi, αi ∈ F ∀i

and

〈Tv, v〉 = 〈
n∑
i=1

T (αivi),
n∑
j=1

αjvj〉

= 〈
n∑
i=1

λiαivi,
n∑
j=1

αjvj〉

=
n∑

i,j=1

λiαiαj〈vi, vj〉 (*)

=

n∑
i,j=1

λiαiαjδij

=
n∑
i=1

λi|αi|2

Definition 56.1 (Positive/Negative (Semi-) Definite) — Let V be a finite dimensional
inner product space over F , F = R or C, T : V → V hermitian. We say that T is
positive or positive definite if

〈Tv, v〉 > 0 ∀0 6= v ∈ V

and positive semi-definite if

〈Tv, v〉 ≥ 0 ∀0 6= v ∈ V

We can define T as negative (semi-) definite similarly.

It follows from (*) that we have

Proposition 56.2

Let V be a finite dimensional inner product space over F , F = R or C, T : V → V
hermitian. Then T is positive semi-definite (respectively positive) if and only if all
eigenvalues of T are non-negative (respectively positive).

Question 56.1. What does this say about the 2nd derivative test for C2 function,
f : S → R at a critical point in the interior of S?
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Theorem 56.3

Let V be a finite dimensional inner product space over F , F = R or C, T : V → V
hermitian. Then T is non-negative (respectively positive) iff ∃S : V → V non-
negative s.t.

T = S2

i.e., T has a square root (respectively, and S is invertible).

Proof. “ =⇒ ” Let B = {v1, . . . , vn} be an ordered orthonormal basis for V of
eigenvectors of T

Tvi = λivi, λi ≥ 0 ∈ R, i = 1, . . . , n

Then ∃µi ∈ R, µi ≥ 0 s.t. λi = µ2
i , i = 1, . . . , n. Let

B =


√
λ1 0

. . .

0
√
λn

 =

µ1 0
. . .

0 µn


So

B2 = [T ]B

By MTT, ∃S : V → V linear s.t. [S]B = B. So

[T ]B = B2 = [S]2B =
[
S2
]
B

Hence T = S2 by MTT. As B is orthonormal, µi ∈ R for all i

[S∗]B = [S]∗B = B∗ = B = [S]B

Thus, S = S∗ by MTT; so hermitian if λi > 0∀i, detB 6= 0, so B ∈ GLnF .
“ ⇐= ” Let B be an ordered orthonormal basis for V of eigenvectors for S. Then

[S]B =

µ1 0
. . .

0 µn

 , µi ≥ 0 ∈ R and

[T ]B =
[
S2
]
B

=

µ
2
1 0

. . .

0 µ2
n


is diagonal. Therefore, B is also an orthonormal basis for V of eigenvectors of T .
As µ2

i ≥ 0 (> 0 if S is invertible), T is non-negative (respectively positive if S is
invertible).

Theorem 56.4

Let V be a finite dimensional inner product space over F , F = R or C and
T : V → V hermitian. Suppose that T is non-negative. Then T has a unique square
root S, i.e., S : V → V non-negative s.t. S2 = T .
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Proof. Let S2 = T , S : V → V non-negative. The Spectral Theorem gives unique
orthogonal decompositions

V = ET (λ1) ⊥ . . . ⊥ ET (λr)

T = λ1Pλ1 + . . .+ λrPλr

PλiPλj = δijPλiPλj , ∀i, j
1V = Pλ1 + . . .+ Pλr

and we also have

V = ES(µ1) ⊥ . . . ⊥ ES(µs), µi ≥ 0, i = 1, . . . , s

S = µ1Pµ1 + . . .+ µsPµs

PµiPµj = δijPµi , ∀i, j
1V = Pµ1 + . . .+ Pµs

In particular,

S2 = (µ1Pµ1 + . . .+ µsPµs)(µ1Pµ1 + . . .+ µsPµs)

= µ2
1Pµ1 + . . .+ µ2

sPµs

As T = S2,
µ2

1Pµ1 + . . .+ µ2
sPµs = λ1Pλ1 + . . .+ λrµr

So by uniqueness, we must have s = r and changing the order if necessary

µ2
i = λi, Pµi = Pλi , ∀i

Lemma 56.5

Let V,W be finite dimensional inner product space over F , F = R or C, T : V →W
linear. Then T ∗T : V → V is hermitian and non-negative.

Remark 56.6. If in the definition of positive operator, etc, we omit V being finite
dimensional but assume T ∗ exists, then we would still have T ∗T hermitian.

Proof. Let x, y ∈ V . Then

〈x, (T ∗T )∗y〉V = 〈T ∗Tx, y〉V = 〈Tx, Ty〉W = 〈x, T ∗Ty〉V

Since this is true for all x, y

(T ∗T )∗ = (T ∗T ∗∗)∗ = T ∗T

is hermitian, hence has real eigenvalues. Let λ be an eigenvalue of T ∗T , 0 6= v ∈ V s.t.
T ∗Tv = λv. Then

λ‖v‖2V = λ〈v, v〉V = 〈λv, v〉V = 〈T ∗Tv, v〉V
= 〈Tv, Tv〉W = ‖Tv‖2W ≥ 0

So

λ =
‖Tv‖2W
‖v‖2V

≥ 0

as ‖v‖2V 6= 0.
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Corollary 56.7

Let V be a finite dimensional inner product space over F , F = R or C, T : V → V
linear. Then T is non-negative (respectively positive) iff ∃S : V → V linear
(respectively an isomorphism) s.t. T = S∗S.

Proof. Use the theorem and lemma presented above.

Notation:

• F = R or C, A ∈ Fm×n

• A(i) = the ith column of A

• A =
[
A(1) . . . A(m)

]
• 〈, 〉 = the dot product on FN for any N ≥ 1

• UN (F ) =
{
U ∈ GLNF |U∗ = U−1

}
Definition 56.8 (Pseudodiagonal) — Let D ∈ Fm×n. We call D pseudodiagonal if
Dij = 0 ∀i 6= j, i.e., only Dii can have non-zero entries.

Theorem 56.9 (Singular Value)

Let F = R or C, A ∈ Fm×n. Then ∃U ∈ Un(F ), X ∈ Um(F ) s.t.

X∗AU = D =


µ1 0

. . .

µr
0

0
. . .

 ∈ F
m×n

is a pseudodiagonal matrix satisfying

µ1 ≥ . . . ≥ µr > 0

and
r = rank(A)

Proof. By the lemma, A∗A ∈MnF is hermitian and has non-negative eigenvalues. Let
λ1, . . . , λr be the positive eigenvalues ordered s.t.

λ1 ≥ . . . ≥ λr > 0

By the Spectral Theorem for Hermitian Operators, ∃U ∈ UnF s.t.

(AU)∗(AU) = U∗A∗AU =



λ1 0
. . .

λr
0

. . .

0 0


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in MnF . Let C = AU ∈ Fm×n. Then

C∗C = (AU)∗(AU) ∈MnF

Write
λi = µ2

i , µi > 0, 1 ≤ i ≤ r

So
µ1 ≥ . . . ≥ µr > 0

Set

B =



µ1 0
. . .

µr
0

. . .

0 0


∈MnF

If i > r1 let λi = 0. Then, we have

λiδij = (C∗C)ij =
∑
l

(C∗)ilClj =
∑
l

CliClj

=
∑
l

CljCli = 〈C(j), C(i)〉

Hence
C =

[
C(1) . . . C(r) 0 . . . 0

]
We continue with the proof in the next lecture.
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§57 Lec 28: Jun 2, 2021

§57.1 Positive (Semi-)Definite Operators (Cont’d)

Proof. (Cont’d) Recall, we have proven so far

C =
[
C(1) . . . C(r) 0 . . . 0

]
and thus

{
C(1), . . . , C(r)

}
is an orthogonal set in Fm×1. As C(i) 6= 0, i = 1, . . . , r,

C(1), . . . , C(r) are linearly independent. In particular,

rank C = r

We also have
‖C(i)‖2 = 〈C(i), C(i)〉 = λi = µ2

i

for i = 1, . . . ,m. As U is invertible,

rank A = rank AU = rank C = r

So rank A = r as needed.
Now let

X(i) :=
1

µi
C(i), i = 1, . . . , r

Then
{
X(1), . . . , X(r)

}
is an orthonormal set. Extend this to an orthonormal basis

B =
{
X(1), . . . , X(m)

}
. Then

X =
[
X(1) . . . X(m)

]
= [1Fm×1 ]Sm,1,B

Since both Sm,1 and B are orthonormal bases, X ∈ Um(F ). Let D be the pseudo-
diagonal matrix

D :=


µ1 0

. . .

µr
0

0
. . .

 ∈ F
m×n

as in the statement of the theorem. Then

XD =
[
X(1) . . . X(m)

]

µ1

. . .

µr
0

. . .


=
[
µ1X

(1) . . . µrX
(r) 0 . . . 0

]
= C = AU

Hence
X∗AU = D

as needed.
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Definition 57.1 (Singular Value Decomposition) — Let A ∈ Fm×n, F = R or C.

A = XDU∗, U ∈ UnF, X ∈ UmF

D =


µ1 0

. . .

µr
0

0
. . .

 ∈ F
m×n (*)

µ1 ≥ . . . ≥ µr > 0 ∈ R

Then (*) is called a singular value decomposition (SVD) of A, µ1, . . . , µr are the
singular values of A, D is the pseudo-diagonal matrix of A.

Note: Let A = XDU∗ be an SVD of A. Then

1. The singular values of A are the (positive) square roots of the positive eigenvalues
of A∗A.

2. The columns of X form an orthonormal basis for Fm×1 of eigenvectors of AA∗.

3. The columns of U form an orthonormal basis for Fn×1 of eigenvectors of A∗A.

Corollary 57.2

The singular values of A ∈ Fm×n, F = R or C are unique (including multiplicity)
up to order.

Proof. Let A = XDU∗ be a SVD of A, X ∈ UmF , U ∈ UnF . Then

A∗A = (XDU∗)∗(XDU∗) = UD∗X∗XDU∗ = UD∗DU∗

as X∗X = I. So

A∗A ∼ D∗D =


α2

11
. . .

. . .

 ∈MnF

have the same eigenvalues α2
11, . . . , as A∗A.

Remark 57.3. An SVD of A ∈ Fm×n, F = R or C may not be unique.

Corollary 57.4

The singular values of A ∈ Fm×n, F = R or C are the same as the singular values
of A∗ ∈ Fn×m.

Proof. (XDU∗)∗ = UD∗X∗ and D,D∗ have the same non-zero diagonal eigenvalues.

The abstract version of the singular value theorem is
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Theorem 57.5 (Singluar Value - Linear Transformation Form)

Let F = R or C, V a finite dimensional inner product space over F and T : V →W
linear of rank r. Then there exists orthonormal basis

B = {v1, . . . , vn} for V

C = {w1, . . . , wm} for W

µ1 ≥ . . . ≥ µr > 0 ∈ R

satisfying

Tvi =

{
µiwi, i = 1, . . . , r

0, i > r

Conversely, suppose the above conditions are all satisfied. Then vi is an eigenvector
for T ∗T with eigenvalue µ2

i for i = 1, . . . , r and eigenvalue 0 for i = r + 1, . . . , n. In
particular, µ1, . . . , µr are uniquely determined.

Proof. Left as exercise.

Remark 57.6. So we see for an arbitrary linear transformation T : V → W of finite
dimensional inner product space over F , F = R or C, singular values can be viewed as a
substitute for eigenvalues.

When F = R or C and A ∈MnF , we get a generalization of the polar representation of
eigenvalues z ∈ C where z = re

√
−1θ.

Theorem 57.7 (Polar Decomposition)

Let F = R or C, A ∈MnF . Then there exists Ũ ∈ UnF , N ∈MnF hermitian with
all its eigenvalues real and non-negative satisfying

A = ŨN

here N ↔ r, Ũ ↔ e
√
−1θ for n = 1.

Proof. In the singular value theorem, we have m = n. Let A = XDU∗ be an SVD,
X,U ∈ UnF . We have D = D∗ is hermitian with non-negative eigenvalues. So

A = XDU∗ = X(U∗U)DU∗ = (XU∗)(UDU∗)

Since
(XU∗)∗(XU∗) = UX∗XU∗ = UU∗ = I

XU∗ ∈ UnF also. Let Ũ = XU∗ ∈ UnF , N = UDU∗ which completes the proof.

§57.2 Least Squares

We give an application of SVD

Problem 57.1. Let F = R or C, V a finite dimensional inner product space over F ,
W ⊆ V a subspace. Let

PW : V → V by v 7→ vW
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be the orthogonal projection of V onto W . By the Approximation Theorem, vW is the
best approximation of v ∈ V onto W . Now let X be another finite dimensional inner
product space over F and T : X → V linear with W = T (X) = im T . Let v ∈ V and
x ∈ X. We call

i) x a best approximation to v via T if

Tx = vW = PW (v)

ii) x an optimal approximation to v via T if it is a best approximation to v via T
and ‖x‖ is minimal among all best approximation to v via T .

Find an optimal approximation.

Solution:
〈x, T ∗y〉X = 〈Tx, y〉V ,

we have
W⊥ = (im T )⊥ = kerT ∗

Since

v − vW ∈W⊥ = (im T )⊥ (by the OR Decomposition Theorem)

and
T ∗v = T ∗vW

So if x is a best approximation of v via T , then

T ∗Tx = T ∗v (*)

i.e., x is also a solution to T ∗Tx = T ∗v. Conversely, if (*) holds, then

Tx− v ∈ kerT ∗ = (im T )⊥ = W⊥

In particular,

vW = PW v = PW (Tx− (Tx− v))

= PW (Tx)− PW (Tx− v)

= Tx+ 0 = Tx

Conclusion: x is a best approximation to v via T if and only if T ∗Tx = T ∗v.

Claim 57.1. Suppose that T is monic. Then

T ∗T : X → X is an isomorphism

and
PW = T (T ∗T )−1 T ∗ : V → V (+)

Suppose that x ∈ X satisfies T ∗Tx = 0. Then

0 = 〈T ∗Tx, x〉X = 〈Tx, Tx〉V = ‖Tx‖2V (?)

Therefore, Tx = 0. But T is monic, so x = 0. Hence T ∗T : V → V is monic hence an
isomorphism. We now show (+) holds.
Let v ∈ V . Since T ∗T is an isomorphism, there exists x ∈ X s.t.

T ∗Tx = T ∗v (??)

and

T (T ∗T )−1T ∗v = T (T ∗T )−1T ∗Tx

= Tx = vW = PW (v)

showing (+). This proves the claim and also shows that the x in (??) is a best
approximation to v via T .
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§58 Lec 29: Jun 4, 2021

§58.1 Least Squares (Cont’d)

Claim 58.1. Let v ∈ V . Then ∃!x ∈ X an optimal approximation to v via T . Moreover,
this x is characterized by

PY (x) = 0 where Y = kerT ∗T

Let x, x′ be two best approximation to v via T . Then,

T ∗Tx = T ∗v = T ∗Tx′

Therefore,
x− x′ ∈ kerT ∗T =: Y

It follows if x is a best approximation to v via T , then any other is of the form x+ y,
y ∈ Y . We also have for such x+ y

PY (x+ y) = PY (x) + PY (y) = PY (x) + y

Let x′′ = x− PY (x). Then

PY (x′′) = PY (x)− P 2
Y (x) = 0, i.e., x′′ ⊥ Y

So
‖x′′ + y‖2 = ‖x′′‖2 + ‖y‖2 ≥ ‖x′′‖2 ∀y ∈ Y

by the Pythagorean Theorem. Hence, x′′ = PY ⊥(x) is the unique optimal approximation.
This proves the claim above.
Let A = T : Fn×1 → Fm×1, A ∈ Fm×n, v ∈ Fm×1 with F = R or C. Let

A = XDU∗, D =


µ1

. . .

µr
0

. . .

 ∈ F
m×n

and
µ1 ≥ . . . ≥ µr > 0 ∈ R

be an SVD. Let’s define

D† :=


µ−1

1
. . .

µ−1
r

0
. . .

 ∈ F
n×m

Then
A† := UD†X∗ ∈ Fn×m

is called the Moore-Penrose generalized pseudoinverse of A. Then the following are true

i) rank(A) = rank(A†)
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ii) A>v is an optimal approximation in Fn×1 to v via A and is unique.

iii) If rank(A) = n, then
A† = (A∗A)−1A∗

Proof. i) rank(A) = rank(D) = rank(D†) = rank(A†) as X,U are invertible.

ii) Case 1: A = D, i.e., X,U are the appropriate identity matrices. Let W = im A,
U = kerD†D, W = span {ei ∈ Sm,1|Dii 6= 0}
If v ∈ Fm×1, then

vW = PW (v) = DD†v = D
(
D†v

)
So D†v is a best approximation to v relative to D. As

U = kerD†D = Span {ej ∈ Sn,1|Djj = 0}

and we have
D†v ∈ Span {ej ∈ Sn,1|Djj 6= 0} = Y ⊥,

and PY
(
D†v

)
= 0.

D†v is optimal approximation to v relative to D

Case 2: A = XDU∗ in general. X,U are unitary, so they preserve dot products,
so z is an optimal approximation to v relative to A = AUU∗ if and only if U∗z is
an optimal approximation to v relative to AU (*). We also have

‖Az − v‖ = ‖XDU∗z − v‖ = ‖X∗ (XDU∗z − v) ‖
= ‖DU∗z −X∗v‖

So (*) is true iff U∗z is an optimal approximation to X∗v relative to D. By case
1, D†X∗v is an optimal approximation to X∗v relative to D. As A† = UD†X∗

D
(
D†X∗v

)
SVD
= (X∗AU)

(
D†X∗v

)
= X∗A

(
A†v

)
Therefore, A†v is the optimal approximation to X∗v relative to X∗A. Thus, as
X∗ is an isometry, A†v is the optimal approximation to v relative to A.

iii) This follows as in (ii) for if rank(A) = n, then (A∗A)−1A∗v is the unique optimal
best approximation to Az = v.

Warning: In general, (AB)† 6= B†A†.
Let A ∈ Fm×n, F = R or C. Solve

AX = B for X ∈ Fn×1

for X ∈ Fn×1. As A can be inconsistent, we want an optimal approximation to a
solution.
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Example 58.1

Let F = R or C. Given data (x1, y1), . . . , (xn, yn) in F 2, find the best line relative
to this data, i.e., find

y = λx+ b, λ = slope

Let

A =

x1 1
...

...
xn 1

 , X =

(
λ
b

)
, Y =

y1
...
yn


To solve AX = Y , we want the optimal solutionx1 1

...
...

xn 1

(λ
b

)
=

y1
...
yn


Let W = im A. To find the optimal approximation to AX = YW , X = A†Y works.
But rank(A) = 2 is most probable

X = (A∗A)−1A∗Y

§58.2 Rayleigh Quotient

Let F = R or C, A ∈MnF . The euclidean norm of A is defined by

‖A‖ := max
0 6=v∈Fn×1

‖Av‖
‖v‖

If A ∈MnF is hermitian, then the Rayleigh Quotient of A

R(v) = RA(v) : Fn×1 \ {0} → R

is defined by

R(v) :=
〈Av, v〉
‖v‖2

Rayleigh quotients are used to approximate eigenvalues of hermitianA ∈MnF .

Theorem 58.2

Let F = R or C, A ∈MnF hermitian. Then,

i) maxv 6=0R(v) is the largest eigenvalue of A.

ii) minv 6=0R(v) is the smallest eigenvalue of A.

Proof. By the Spectral Theorem, ∃ an orthonormal basis {v1, . . . , vn} of eigenvectors
for A with Avi = λvi, i = 1, . . . , n. We may assume

λ1 ≥ . . . ≥ λn ∈ R
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i) Let v ∈ Fn×1 and v =
∑n

i=1 αivi, αi ∈ F , i = 1, . . . , n. Then

R(v) =
〈Av, v〉
‖v‖2

= 〈
n∑
i=1

αiλivi,

n∑
j=1

αjvj〉/‖v‖2

=

∑n
i,j=1 λiαiαjδij〈vi, vj〉

‖v‖2
=

∑n
i=1 λi − |αi|2

‖v‖2

By the Pythagorean Theorem

n∑
i=1

|αi|2 = ‖v‖2

So

R(v) ≤
∑n

i=1 λ1|αi|2

‖v‖2
=
λ1‖v‖2

‖v‖2
= λ1

ii) Prove similarly.

Corollary 58.3

Let F = R or C, A ∈MnF . Then ‖A‖ <∞. Moreover, if µ is the largest singular
value of A, then

‖A‖ = µ

Proof. Consider:

0 ≤ ‖Av‖
2

‖v‖2
=
〈Av,Av〉
‖v‖2

=
〈A∗Av, v〉
‖v‖2

for all v 6= 0. Since A∗A is non-negative, the result follows.

We know that the singular value of A ∈ Fm×n are the same as for A∗ ∈ Fn×m if F = R
or C. Therefore,

Corollary 58.4

Let A ∈ GLnF, F = R or C, µ the smallest singular value of A. Then

‖A−1‖ =
1
√
µ

Proof. If B ∈ GLnF has an eigenvalue λ 6= 0, 0 6= v ∈ EB(λ), then

Bv = λv, so
1

λ
v = B−1v

Hence if
µ1 ≥ . . . ≥ µn > 0

are the singular values of A,
µn ≥ . . . ≥ µ1 > 0

are the singular values of A−1 as (A−1)∗A−1 = (AA∗)−1.
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§59 Additional Materials : Jun 04, 2021

§59.1 Conditional Number

Let F = R or C, A ∈ GLnF , b 6= 0 in Fn×1. Suppose Ax = b.

Problem 59.1. What happens if we modify x a bit, i.e., by δx ∈ Fn×1. Then we get a
new equation

A(x+ δx) = b+ δb, δb ∈ Fn×1

and we would like to understand the variance in b.

Since A is linear,
A(x+ δx) = b+A(δx)

i.e.
A(δx) = δb or δx = A−1(δb)

and we know, therefore, that

‖b‖ = ‖Ax‖ ≤ ‖A‖ · ‖x‖
‖δ‖ = ‖A−1(δb)‖ = ‖A−1‖ · ‖δb‖

Therefore,

1

‖x‖
≤ ‖A‖
‖b‖

as ‖x‖ 6= 0 (b 6= 0)

=⇒ ‖δx‖
‖x‖

≤ ‖A
−1‖‖δb‖

1
· ‖A‖
‖b‖

= ‖A‖‖A−1‖‖δb‖
‖b‖

Similarly,
1

‖A‖‖A−1‖
‖δb‖
‖b‖

≤ ‖δx‖
‖x‖

We call the number ‖A‖‖A−1‖ the Conditional Number of A and denote it cond(A).

Theorem 59.1

Let F = R or C, A ∈ GLnF , b 6= 0 in Fn×1. Then

1. 1
cond(A)

‖δb‖
‖b‖ ≤

‖δx‖
‖x‖ ≤ cond(A)‖δb‖‖b‖

2. Let µ1 ≥ . . . ≥ µr > 0 be the singular values of A. Then

cond(A) =
µ1

µn

Proof. 1. from the computation above.

2. follows over computation on the Rayleigh function.
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Remark 59.2. From the theorem,

1. If cond(A) is close to one, then a small relative error in b forces a small relative error
in x.

2. If cond(A) is large, even a small relative error in x may cause a relatively large error
in b.

Remark 59.3. If there is an error SA of A, things would get more complicated. For
example, A+ δA may no longer be invertible.

There exist conditions that can control this. For example, if A+ SA ∈ GLnF , F = R
or C, it is true that

‖δx‖
‖x+ δx‖

≤ cond(A)
‖δA‖
‖A‖

One almost never computes cond(A), as error arises trying to compute it as we need
to compute the singular values. However, in some cases, remarkable estimates can be
found.

§59.2 Mini-Max

Let F = R or C, A ∈ MnF . We want a method to compute its eigenvalues if A is
hermitian. Since A is hermitian, by the Spectral Theorem,

U∗AU =

λ1 0
. . .

0 λn

 , U ∈ UnF

where A = [A]Sn,1
.

B = {v1, . . . , vn} is an ordered orthonormal basis of eigenvectors for V = Fn×1 satisfying

Avi = λivi

So
vi = the ith column of U∗

We let the order be s.t.
λ1 ≥ . . . ≥ λn

As (Fv1)⊥ is A-invariant, A
∣∣
(Fv1)⊥

has maximum eigenvalue λ2 obtained from v2, i.e.,

max
x∈(Fv1)⊥

RA(x) = λn−1

is obtained from x = v2. The constraint is

〈x, v1〉 = 0

We can obtain λn−1 without knowing v1 or λ1. Let x ∈ V be constrained by 〈x, z〉 = 0,
some z 6= 0. Let y = U∗x. Then 〈x, z〉 = 0 is equivalent to 〈y, w〉 = 0 where w = Uz.
Computation shows the Rayleigh quotient RU for U satisfies

max
y

〈y,w〉=0

RU (y) ≤ λn

max
y

〈y,w〉=0

RU (y) ≥ λn−1
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So
min
w 6=0

max
y

〈y,w〉=0

RU (y) ≥ λn−1

gives an upper and lower bound for RU (y). Let

y =

y1
...
yn

 , ỹ =


y1

y2

0
...
0


with 〈ỹ, w〉 = 0. In addition, computation shows,

RU (ỹ) = λ2

Let w = e1. Then
max
y

〈y,e1〉

RU (y) = λ2

So
min
w 6=0

max
y

〈y,w〉=0

RU (y) = λ2

and
min

w1,w2 6=0
max
y

〈y,w1〉=0
〈y,w2〉=0

RU (y) = λ3

Proceed inductively.

Theorem 59.4 (Minimax Principle)

Let F = R or C, A ∈MnF hermitian with eigenvalues

λ1 ≥ . . . ≥ λn

Then
min

z1,...,zk 6=0
max
〈x,z1〉=0

...
〈x,zk〉=0

RA(x) = λk

Remark 59.5. The minimax principle is also formulated by

min
Vj

max
x∈Vj

RA(x) = λn−j , j = 1, . . . , n

where Vj denotes an arbitrary subspace of dim j.

§59.3 Uniqueness of Smith Normal Form

Consult Professor Elman’s notes.
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