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§1 ‘ Lec 1: Mar 29, 2021

§1.1 Vector Spaces

Notation: if x : A x B — B is a map (= function) write axb for x(a,b), e.g., + : ZXZ — Z
where Z = the integer.

(Definition 1.1 (Field) — A set F is called a FIELD under A

e Addition: 4+ : F x F = F

e Multiplication: - : F x F' — F
if Va, b,c € F, we have
Al) (a+b)+c=a+(b+¢)
A2) 30€eF>3a+0=a=0+a
A3) A2) holdsand z € Foa+z=0=z+a

Ad) a+b=b+a

)
)
)
)
M1) (a-b)-c=a-(b-c)

M2) A2) holdsand 31 #0 € F's.t. a-1=a=1-a (1 is unique and written 1 or 1)

M3) M2) holds and VO #z € F' Jy € F 5 2y = 1 = yx (y is seen to be unique and
written 1)

M4) z-y=y-x
Dl) a-(b+c¢)=a-b+a-c

D2) (a+b)-c=a-c+b-c

Example 1.2
Q, R, C are fields as is

Fy :={0,1} with + : given by
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Fact 1.1. Let p > 0 be a prime number in Z. Then 3 a field F,» having p" elements write
|Fpn| =p" VneZt.

(Definition 1.3 (Ring) — Let R be a set with A
e +:RXxR—R
e :RxR—R
satisfying A1) — A4), M1), M2), D1), D2), then R is called a RING.
A ring is called
i) a commutative ring if it also satisfies M4).
ii) an (integral) domain if it is a commutative ring and satisfies
M3)a-b=0 = a=0o0rb=0
9 (0 = {0} is also called a ring — the only ring with 1 = 0) y

Example 1.4 (Proof left as exercises) 1. Z is a domain and not a field.
2. Any field is a domain.

3. Let F' be a field
F[t] :== {polys coeffs in F'}

with usual +, - of polys, is a domain but not a field. So if f € F[t]
f=ag+at+...+apt"
where ag,...,a, € F.

4. Q = {%|a,b €Z,b# 0} < C (< means C and #) with usual +, - of fractions.

(when does § = $7?)

5. If Fis a field
F(t) = {f|f, gE Ft], g # 0} (rational function)
g

with usual -+, - of fractions is a field.
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Example 1.5 (Cont’d from above) 6. Q[v/—=1] = {a+ 8v/—-1€ Cla,8 € Q} < C.
Then Q[v/—1] is a field and
QW=1) = {Zla,be QV=1], b # 0}
= Qlv~1]
- {%m,b e Z[V—1], b # o}
where Z[v/—1] := {a+ 8v/-1 € C, o, 8 € Z} < C. How to show this? — ratio-

nalize (Z[v/—1] is a domain not a field, F[t] < F(t) if F is a field so we have to
be careful).

7. F a field
M, F := {n X n matrices entries in F'}

is a ring under +, - of matrices.

1 0
Im, F = In = n X n identity matrix

0 1

0 .0
Om,, 7 = 0 =0, = n X n zero matrix ;

0 0

is not commutative if n > 1.

In the same way, if R is a ring we have
M,,R = {n X n matrices entries in R}
e.g., if R is a field M, F'[t].
8. Let 0 # I C R be a subset, e.g., [a,f],a < 8 € R. Then
C(I) ={f:I— R|f continuous}
is a commutative ring and not a domain where

(f +9)(@) = f(z) + g(x)
0(x)=0
(z) =12z

for all x € I.

Notation: Unless stated otherwise F' is always a field.
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.

(Definition 1.6 (Vector Space) — Let F be a field, V a set. Then V is called a\
VECTOR SPACE OVER F write V is a vector space over F' under

o +:V xV =V - Addition
.
ifVe,y,2€ V. Va,5 € F.
1.

2.

. Tty=y+zx

- ' xV — V — Scalar multiplication

(z+y)+z=z+ (y+2)
30e€V >3 2z+0=2=0+x (0 is seen to be unique and written 0 or Oy)

2) holds and Jv € V' 5 z +v =0 =wv+z (v is seen to be unique and written

lp-xz==x.
(@) z=a-(5-2)
(a+p)-z=a-x+0

a-(z+y)=a-x+a-y
J

Remark 1.7. The usual properties we learned in 115A hold for V' a vector space over F', e.g.,
0V = Oy, general association law,. ..
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§ 2 ‘ Lec 2: Mar 31, 2021

§2.1 Vector Spaces (Cont’d)

Example 2.1

The following are vector space over F

1. F™*™ := {m X n matrices entries in F'}, usual +, scalar multiplication, i.e., if
A€ F™ let A;; = ij*® entry of A. If A, B € F™", then

(A+ B)ij = Aij + Bij
(aA)Z-j =S OéAij Va € F

i.e., component-wise operations.
2. F" = FY>" .= {(ay,...,an) |o; € F}
3. Let V be a vector space over F, ) # S a set. Define
Fen(S, V) ={f:5 = V|f afen}

Then Fen(S,V) is a vector space over F' Vf, g € Fen(S,V), Yo € F. For all
x €S,

ftg:am f(z) +9(z)
af v af(x)

l.e.

(f +9)(z) = f(z) + g(z)
(af)(z) )

I
Q
=
8

with 0 by 0(z) = 0y Va € S.

4. Let R be a ring under +, -, F a field > F C R with +,- on F induced by +,- on
R and OF = OR, 1F = 1R, i.e.

+ | pyp FxF—>Fand - | pyp :FxF—>F
on R restrict dom on R restrict dom

i.e. closed under the restriction of +,- on R to F' and also with 0 = Or and
1p = 1 (we call F a subring of R). Then R is a vector space over F' by
restriction of scalar multiplication, i.e., same + on R but scalar multiplication

-}FxR:FxR—>R

e.g., RC Cand F C FJt].
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Example 2.2 (Cont’d from above)
Note: C is a vector space over R by the above but as a vector space over C is different.
5. In 4) if R is also a field (so F' C R is a subfield). Let V' be a vector space over

R. Then V is also a vector space over F' by restriction of scalars, e.g., M, C is a
vector space over C so is a vector space over R so is a vector space over Q.

§2.2 Subspaces

Definition 2.3 (Subspace) — Let V be a vector space under +,-,0 W CV a subset.\
We call W a subspace of V' if Ywi,ws € W, Va € F,

awy, wy +wy € W

with Oy = Oy is a vector space over F' under +|yww and -|pxw i.e., closed under the
operation on V.

J

Theorem 2.4 A

Let V be a vector space over I, ) # W C V a subset. Then W is a subspace of V iff
VYa € F, Ywy,wy € W, aw; +wy € W.

J

Example 2.5 1. Let ) # 1 C R, C(I) the commutative ring of continuous function

f:I — R. Then C(I) is a vector space over R and a subspace of Fen(I,R).
2. F[t] is a vector space over F and n > 0 in Z.
Fltln = {f[f € F[t], f =0or deg f < d}

is a subspace of F[t] (it is not a ring).

Attached is a review of theorems about vector spaces from math 115A.

§2.3 Direct Sums

Problem 2.1. Can you break down an object into simpler pieces? If yes can you do it
uniquely?

Example 2.6

Let n > 1 in Z. Then n is a product of primes unique up to order.

10


https://tducvu.github.io/assets/lecturenotes/vector_space_theorems.pdf
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Example 2.7

Let V be a finite dimensional inner product space over R (or C) and T : V — V a
hermitian (=self adjoint) operator. Then 3 an ON basis for V' consisting of eigenvectors
for T'. In particular, T is diagonalizable. This means

V=Ep(A) L...LEp()) (*)

Er(\) = {v e V|Tv = \v} # 0 eigenspace of A\;; A1,..., A, the distinct eigenvalues
of T. So
T|gpop t Brd) = Er(h)

ie., Ep()\;) is T-invariant and
T’ET(A,») = Ailgr(n)

and (*) is unique up to order.

Goal: Generalize this to V' any finite dimensional vector space over F'; any F',andT : V — V
linear. We have many problems to overcome in order to get a meaningful result, e.g.,

Problem 2.2. 1. V may not be an inner product space.
2. F #R or C is possible.
3. F ¢ is possible, so cannot even define an inner product.
4. V may not have any eigenvalues for T': V — V.
5. If we prove an existence theorem, we may not have a uniqueness one.

We shall show: given V a finite dimensional vector space over FFand T : V — V a
linear operator. Then V breaks up uniquely up to order into small T-invariant subspace
that we shall show are completely determined by polys in F'[t] arising from 7. Motivation:
Generalize the concept of linear independence, Spectral Theorem Decomposition, to see
how pieces are put together (if possible).

11
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(Definition 2.8 (Span) — Let V be a vector space over F, W; C V', i € I — may not
be finite, subspaces. Let

ZWi:ZW" = {UGVEIwiGWi,iGI, almost allwizoav:Zwi}

icl icl icl
when almost all zero means only finitely many w; # 0. Warning: In a vector space/F
we can only take finite linear combination of vectors. So

Z W; = Span (U WZ) = {ﬁnite linear combos of vectors in U WZ}
iel iel il
e.g., if I is finite, i.e., |I| < 0o, say I ={1,...,n} then

S Wi=Wit...+Wyi={wi+...+wn|w; € W;Viel}
ieT
J

.

[Definition 2.9 (Direct Sum) — Let V be a vector space over F, W; C V, i € I,\

subspace. Let W C V be a subspace. We say that W is the (internal) direct sum of
the Wi, i € I write W = @,.; W; if

Vw € W Al w; € W; almost all 0 > w = Zwi
i€l

e.g., if I ={1,...,n}, then

L weW1®...0W, means Fw; € W; > w=wy + ...+ w, )

Warning: It may not exist.

12
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§3 ‘ Lec 3: Apr 2, 2021

§3.1 Direct Sums (Cont’d)

Definition 3.1 (Independent Subspace) — Let V be a vector space over F,W; C V, i € I
subspaces. We say the W;, ¢ € I, are independent if whenever w; € W;, © € I, almost
all w; = 0, satisfy > w; =0, then w; =0Vi € I.

(Theorem 3.2 A

Let V be a vector space over F, W; C V, i € I subspaces, W C V a subspace. Then
the following are equivalent:

LW =@, Wi

2. W=>,c;W;and Vi

win ) W;=0:={0}
jeI\{i}

3. W =73,c;W; and the W;, i € I, are independent. y

Proof. 1) = 2) Suppose W = @,; W;. Certainly, W = >, _; W;. Fix i and suppose
that
dx e W; N Z Wj
Je{i}
By definition, Jw; € W;, w; € Wy, j € I'\ {i} almost all 0 satisfying
W; =T = Z w;
J#i
So
OV:OW:U)Z‘—Z’LU]'
J#i
But
Ow=> Ow, Ow,=0yVkel
I

By uniqueness of 1), w; = 0 so z = 0.
2) = 3) Let w; € W, i € I, almost all zero satisfy

Z w; = 0
Suppose that wy # 0. Then

W = — Z wiEWkﬂZwi:(),

ieI\{k} i#k

13
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a contradiction. So w; = 0Vi
3) = 1) Suppose v € Y_,.; W; and Jw;, w; € Wy, i € I, almost all 0 3

g w; =v = g w)
el il
/ / .
Then » -, ;(w; — wj) = 0, w; —w; € W; Vi. So
w; —wi =0, i.e., w; =w, Vi

and the ws are unique. O

Warning: 2) DOES NOT SAY W;NW; = 0if ¢ # j. This is too weak. It says VV,ﬂZ#i W; =
0.

KCoroIIary 3.3 A

Let V be a vector space over F,W; C V, i € I subspaces. Suppose I = [; U I, with
LNI=0and V =@,.; W;. Set

W, =W: and W, =W,

1€l JEl2

Then

S V=W &Wy, )

Proof. Left as exercise — Homework.

O

Notation: Let V be a vector space over F', v € V. Set
Fv :={av|a € F} = Span(v)

if v # 0, then Fv is the line containing v, i.e., Fv is the one dimensional vector space over
F with basis {v}.

Example 3.4

Let V be a vector space over F.

1. If ) £ S C V is a subset, then
Z Fv = Span(S)
veES

the span of S. So

Span S = {all finite linear combos of vectors in S}

2. If ) # S is linearly indep. (i.e. meaning every finite nonempty subset of S is
linearly indep.), then

Span(S) = @ Fs

seS

14
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Example 3.5 (Cont’d from above) 3. If S is a basis for V, then V = @, ¢ F's.

4. If 3 a finite set S € V > V = Span(S), then V' =} _o Fs and 3 a subset
% C S that is a basis for V, i.e., V is a finite dimensional vector space over F
and dimV = dimp V = |4| is indep. of basis £ for V.

5. Let V be a vector space over F, Wy, Wy C V finite dimensional subspaces. Then
W1 + Wy, W1 N Wy are finite dimensional vector space over F' and

d1m(W1 + WQ) = dim W7 + dim W5 — d1m(W1 N Wg)

So
Wi+Wo=W, Wy < WiNWy=10

Warning: be very careful if you wish to generalize this.

Definition 3.6 (Complementary Subspace) — Let V be a finite dimensional vector
space over F, W C V a subspace if

V=WaeW, W CV asubspace

\We call W’ a complementary subspace of W in V. y

Example 3.7

Let %y be a basis of W. Extend % to a basis Z for V (even works if V' is not finite
dimensional). Then

W' = EB Fv is a complement of W in V
B\ By

Note: W' is not the unique complement of W in V' — counter-example?

Consequences: Let V' be a finite dimensional vector space over F,W1y,...,W,, C V sub-
spaces, W; # 0Vi. Then the following are equivalent

L. V=W e...6W,.

2. If %, is a basis (resp., ordered basis) for W; Vi, then B = %, U ... U %, is a basis
(resp. ordered) — with obvious order — for V.

Proof. Left as exercise (good one)! O

Notation: Let V' be a vector space over F, & a basis for V, x € V. Then, Jla, € F, v € B,
almost all a,, = 0 (i.e., all but finitely many) s.t. z =) ,a,v. Given z € V,

T = E QU

vER

to mean «, is the unique complement of x on v and hence «,, = 0 for almost all v € 4.

15
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§3.2 Quotient Spaces

Idea: Given a surjective map f: X — Y and “nice”, can we use properties of Y to obtain
properties of X?

Example 3.8

Let V =R3, W = X — Y plane. Let X = plane parallel to W intersecting the z-axis
at .

So

X = {(a,8,7)|la, B € R}
= {(a,8,0) +(0,0,7)|e, B € R}
:W+7 €3

Note: X is a vector space over R <= v =0 <= W = X (need Oy). Let v € X. So
v = (x,y,7) some z,y € R. So

W4v:= (a,ﬁ,0)+($,y,’}/)|a75€R
N N —

arbitrary fixed
={(a+z,8+y,7) |, B ER}
=W + Yeq

It follows if v,v" € V, then

WHov=W+v = v—v eW
Conversely, if v,v' € V with X = W + v, then

veX = v =w+vsomeweW

hence
v—vew

So for arbitrary v,v’ € V, we have the conclusion W +v =W +v < v—v € W.
We can also write W +v as v + W.

16
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84 ‘ Lec 4: Apr 5, 2021

§4.1 Quotient Spaces (Cont’d)
Recall from the last example of the last lecture, we have
V= U W4
veV

If v,v" € V, then
0#£0" € (W+v)n(W+2)

means
WHov-—W4+0"=W+d

This means either W 4+ v =W + v or W +vNW 4+ o = 0, i.e., planes parallel to the
xy-plane partition V into a disjoint unions of planes.
Let
S ={W+vjveV}

the set of these planes. We make S into a vector space over R as follows: Vv,v" € V, Va € R
define

(W+o)+ (W4+0) =W+ (v+1)
a-(W+wv)=W+av
We must check these two operations are well-defined and we set
Og =W

Then (W +v)+ W =W +v =W + (W 4+ v) make S into a vector space over R.
If v €V let 4! = the k*® component of v. Define

S —={(0,0,7)]v R} = R

by
W +wv = (0,0,7) —

both maps are bijection and, in fact, linear isomorphism. So
5={(0,0,7)|yeR} =R
Note: dimV =3, dimW = 2, dim .S = 1 and we also have a linear transformation
V= S by (a,8,7) = W + e,

a surjection.

We can now generalize this.

Construction: Let V' be a vector space over F, W C V a subspace. Define = mod W
called congruent mod W on V as follows: if x,y € V, then

r=y modW <= z—yeW <= weWsr=w+y

Then, for all z,y,z € V, = mod W satisfies

17
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1. z=2 mod W
2.z=y mod W = y=2 mod W
.z=y mod Wandy=2z mod W = z=2 mod W

We can conclude that = mod W is an equivalence relation on V.
Notation: For x € V., W C V| let

T={yeV]ly=xz mod W}

We can also write T as [z]|w if W is not understood. Also, T C V is a subset and not an
element of V' called a coset of V by W. We have

T={yeV]jy=z mod W}
={y € V]y =w + z for some w € W}
={w4zlweW}=W4+z=a+W

Example 4.1
6\/ =W +0y =W.

Note: W + z translates every element of W by x. By 2), 3) of = mod W, we have

yex=W+Hzx <= z€y=W+y

and
z=y modW <= =9 < WH+ax=W+y

and

TNYy=0 < W+z)n(W+y)=0 < 2%y mod W

This means the W + z partition V, i.e.,
V=W +a) with W+a)n(W+y) =0ifT=W+a)#W+y) =7
1%

Let
V=V/W={z|lzeV}={W+az|zeV}

a collection of subsets of V.

18
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§5.1 Quotient Spaces (Cont’d)

Suppose we have W C V' a subspace. For z,y,z,v eV

r=y mod W (+)
z=v mod W
Then
(242 (y+0) = (@ —y)+(: —v) €W
—— =
ew ew
So
r+2z mody+v modW
and if « € F
ar—ay=a(z—y)eW Vrx,yeV
So

ar=ay mod W

Therefore, V = V/W. If (+) holds, then for all z,y,z,v € V and a € F, we have

T+ ytoeV

€
ar=ayeV

w
I

8
I

Notice V = V/W satisfies all the axioms of a vector space with Oiz =0y = {y € V|y =0 mod W} =
W +0y=W.
We call V = V/W the Quotient Space of V by W.
We also have a map
Vs V=V/Whbyz—zT=W+zx

which satisfies
av+v = au+ v = av+ 0

for all v,v' € V and o € F. Then

dimV = dim ker™
dimV = dim W + dim V/W
dimV/W =dimV — dim W

which is called the codimension of W in V.
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Proposition 5.1 A

Let V be a vector space over F', W C V a subspace, V = V/W. Let %, be a basis for
W and
HB ={viliel, vi—v; ¢ Wifi#j}
where v; # v; if i # j or w4 v; # w +v; if i # j.
Let
%:{W:W—F’U@'liEI, ’L)Z'Eﬁl}

If ¢ is a basis for V = V/W, then %y U % is a basis for V (compare with the proof
of the Dimension Theorem).

J

Proof. Hw 2 # 3. O

§5.2 Linear Transformation

A review of linear of linear transformation can be found here.
Now, we consider

GL,F == {A € M,F| det A # 0}

The elements in GL, F in the ring M, F' are those having a multiplicative inverse. If R is a
commutative ring, determinants are still as before but

GL,R = {A € M,R| det A is a unit in R}
={AeM,R|A" exists}

Example 5.2
Let V be a vector space over F,W C V a subspace. Recall

V=V/W={o=W+v|lveV}

a vector space over F' s.t. for all v1,v9 € F and o« € I

Then
—:VsV/W=Vbyv—=o=W+uv

is an epimorphism with ker” = W.

Recall from 115A(H) that the most important theorem about linear transformation is
Universal Property of Vector Spaces. As a result, we can deduce the following corollary

20
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Corollary 5.3

Let V, W be vector space over F' with bases %, % respectively. Suppose there exists a
bijection f : B — €, ie., |B| =|%|. Then V=W.

Proof. There exists a unique T: V — W > T‘ 4 = [- T is monic by the Monomorphism
Theorem (T takes linearly indep. sets to linearly indep. sets iff it’s monic) and is onto as

W = Span(%¢’) = Span (f(£4)). O

21



Duc Vu (Spring 2021) 6 Lec 6: Apr 9, 2021

§6 ‘ Lec 6: Apr 9, 2021

§6.1 Linear Transformation (Cont’d)

Theorem 6.1
Let T : V — W be linear. Then 93X C V a subspace s.t.

V=kerT® X with X Zim T

Proof. Let %y be a basis for kerT. Extend %y to a basis &£ for V by the Extension
Theorem. Let ) = B\ By, s0 B = By N By (B =By U HBy and ByN P =0) and let

X:@FU
0

As ker T = P4, Fv, we have
V=kerT®X

and we have to show
X=mT

Claim 6.1. Tv, v € %, are linearly indep.
In particular, Tv # Tv' if v,v’ € %, and v # v'. Suppose

Z a,Tv =0y, «a,€ F almost all a,, =0
VER
Then

Ow =T Z av |, e Zavv € kerT
vES 5

Hence

Zavv = Zﬁvv € kerT" almost all 5, € F'=0
B Bo
As Zz@l QU — ZE% Byv =0 and B = %y U A is linearly indep., a,, = 0Vv. This proves
the above claim.
Let € = {Tv|v € %;}. By the claim

B —Cbyv—Tvisl—1

and onto as % is linearly indep. Lastly, we must show % spans im 7. Let w € im T'. Then
Jx € V 5Tz =w. Then

w=Tx=T Zavv +T Zavv
Bo Kz

— Z a,Tv + Z a,Tv = Z o, T
%o % %

lies in span € as needed. O
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Remark 6.2. Note that the proof is essentially the same as the proof of the Dimension
Theorem.

Corollary 6.3 (Dimension Theorem)

If V is a finite dimensional vector space over F', T': V — W linear then

dimV =dimkerT + dim im T

Corollary 6.4

If V is a finite dimensional vector space over F', W C V a subspace, then

dimV = dim W + dim V/W

Proof. —:V = V/W by v— v =W + v is an epi. O

Important Construction: Set

T :V — Z be linear
W =kerT
V=V/W
—: V= V/W by v—v=W +v linear

Vz,y € V we have
T=7€V < 2=y modW <= z—ycW <= T(x—y)=0yz

i.e., when W =kerT

Sl

=7y <= Tx =Ty (*)

This means
T:V — Z defined by W +v =7+ Tv

is well-defined, i.e., via function, since if = 3, then T'(Z) := Tx = Ty =: T(¥y). From (*),
T=7 < T(@) =T(x) =T(y) = T()
SO
T :V — Z is also injective

As T is linear, let o € F, z,y € V, then

T(ax+7y)=T (ax+y)=T(az +7y)
=aTz+ Ty =T (T)+T(7)

as needed. Therefore,
T:V—Zbyzw— T(x)
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is a monomorphism, so induces an isomorphism onto im 7" and we recall im 7' = im 7T, so
V2imT=imT

and we have a commutative diagram

T
\%4 - 7
T
V/ikeeT =V
This can also be written as
1% T . 7
_ inclusion map
A T
V/ker T =V >imT

Consequence: Any linear transformation 7' : V' — Z induces an isomorphism
T:V/kerT —imT by v=kerT +v+— Tv
This is called the First Isomorphism Theorem. We also have
V=kerTe X with X CVand X Zim T =V/kerT

This means that all images of linear transformations from V are determined, up to
isomorphism, by V and its subspaces. It also means, if V is a finite dimensional vector
space over I, we can try prove things by induction.

§6.2 Projections
Motivation: Let m < n in Z* and

m:R" - R" by (a1,...,an) — (a1,...,05,0,...,0)

a linear operator onto ;" I'e; where ¢; = (0, R S ,O).
(2

ym

Definition 6.5 (T-invariant) — Let T': V' — V be linear, W C V a subspace. We say
W is T-invariant if T'(W) C V if this is the case, then the restriction T |W of T can be
viewed as a linear operator

T|W:W—>W
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Example 6.6
Let T : V — V be linear.

1. kerT and im T are T-invariant.

2. Let X\ € F be an eigenvalue of T, i.e., 30 £ v € V > T'v = \v, then any subspace
of the eigenspace
Er(A) ={veV|Tv= v}

is T-invariant as T‘ET()\) = Alg.

Remark 6.7. Let V be a finite dimensional vector space over F', T': V — V linear. Suppose
that
V=wie...oW,

with each W; T-invariant, ¢ = 1,...,n and %; an ordered basis for W;, i = 1,...,n. Let
B =% U...UZB, be a basis of V ordered in the obvious way.
Then the matrix representation of T" in the £ basis is

[T‘Wll@l 0
[T = '

v [T‘Wn}@n

Example 6.8

Suppose that T': V' — V is diagonalizable, i.e., there exists a basis & of eigenvectors
of T for V. Then, T : V — V|,

V=P Er(\)
each Ep()\;) is T-invariant.
T‘ET(A,-) = Ailgr (v

Goal: Let V be a finite dimensional vector space over F', n =dimV, T : V — V linear.
Then W1, ..., Wy, CV all T-invariant subspaces with m = m(7T") with each W; being as
small as possible with V =W & ... ® W,,. This is the theory of canonical forms.
Recall: If V is a finite dimensional vector space over F', T : V — V linear, 4 an ordered
basis for V', then the matrix representation [T, is only unique up to similarity, i.e., if €
is an another ordered basis

(T)g = P[], P~

where P = [ly],, € GL,F, the change of basis matrix # — ¢

Definition 6.9 (Projection) — Let V be a vector space over F', P : V — V linear. We
call P a projection if P2 = Po P = P.
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Example 6.10 1. P=0y or 1y : V — V, V is a vector space over F'.
2. An orthogonal projection in 115A.

3. If P is a projection, so is 1y, — P.

If T:V — V is linear, then

V=kerT® X with X =Zim T

/Lemma 6.11
Let P:V — V be a projection. Then

V=kerP®im P

Moreover, if v € im P, then
Pv=vw

l.e.

P‘impzlmP—HmPlslimp

In particular, if V' is a finite dimensional vector space over F, %; an ordered basis for
ker P, %> an ordered basis for im P, then & = %1 U %, is an ordered basis for V' and

0

- J

Proof. Let v € V, then v — Pv € ker P, since
P(v— Pv) = Pv— P?>v=Pv—Pv=0

Hence
v=(v—Pv)+ Pve€ker P+im P

ker PNim P = 0 and P‘im p= lim p. Let v € im P. By definition, Pw = v for some
w € V. Therefore,

Pv=PPw=Pw=v

Hence

If v € ker PNim P, then
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§7.1 Projection (Cont’d)

Lemma 7.1
Let V be a vector space over F, W, X C V subspaces. Suppose

V=WelX
Then 3! P : V — V a projection satisfying

W = ker P *)
X =im P

We say such a P is the projection along W onto X.

Proof. Existence: Let v € V. Then
JweW,zeXd>3v=w+z

Define
P:.Vo>Vbyv—zx

To show P? = P , we suppose v € V satisfies v = w + «, for unique w € W, z € X. Then

Pv=Pw+Pr=Pr=1xz==z

SO
P?y = Px =z = Pu YveV

hence P? = P.

Uniqueness: Any P satisfying (*) takes a basis for W to 0 and fix a basis of X. Therefore,

P is unique by the UPVS. O

Remark 7.2. Compare the above to the case that V' is an inner product space over F, W C V
is a finite dimensional subspace and P : V — V by v — vy, the orthogonal projection of P
onto W.

Proposition 7.3 A

Let V be a vector space over F', W, X C V subspacess.t. V=WoX, P:V — V the
projection along W onto X, and T": V' — V linear. Then the following are equivalent:

1. W and X are both T'—invariant.

\_ 2. PT =TP. y

27
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Proof. 2) = 1): W is T-invariant: We have W = ker P, so if w € W, Pw = 0. Hence
Plw=TPw=T0=0

Tw € ker P =W so W is T-invariant.
X is T-invariant, X =im P, P|x = 1x. Soifz € X

Ter =TPr=Plxrecim P=X

So X is T-invariant.
1) = 2) Let ve V. Then Jlw e W, z € X s.t.

v=w+x
As P|x = 1x and P|lw =0, so Pv = Pz. By 1), W and X are T-invariant, so

PTv = PT(w+xz) = PTw+ PTx
=0+Tx=TPx=TPw+ TPx =TPv

for all v € V and PT =TP. O

Remark 7.4. One can easily generalize from the case
V=W oW,

that we did to the case

by induction on n as

V:Wi@(Wl@...@ w; @---@Wn)
—

omit

Construction: Let
V=We..eW,

as above. Define

to be the projection along W1 & ... & W;®...0W,, ie.
ker Py, =W1 & ... oW, ®...& W,
and onto W; = im Py, as in the above Proposition. Then we have
a) Each Py, is linear (and a projection).

b) ker Py, = Wi @ ... W; @ ...3 W,.

W, = lw,. In particular, im Py, = W;.

1, ifi=y
Oij = e,
0, ifi#j

28
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e) ly =Py, +...+ Pw,.
Moreover, if T': V — V is linear and each W; is T-invariant, then
TPy, =Py, T, i=1,...,n
Hence

TITlV:T(PI/Vl+---PWn):TPW1+---+TPWn
:PwlT—i—...—l—PWnT

i.e., 1yT = T1y. This implies

Ty, : Wi =W,

is given by
T|,y. =TPw,

Wi
or T is determined by what it does to each W;.

I Remark 7.5. Compare this to the case that T is diagonalizable and the W; are the eigenspaces.
Question 7.1. Let V be a real or complex finite dimensional inner product space, T :

V' — V hermitian. What can you replace @ by? What if V is a complex finite dimensional
inner product space and T': V' — V is normal.

Exercise 7.1. Suppose V is a vector space over F', P,..., P, : V — V linear and satisfy
i) P,—Pj=6;FP,i=1,...,n
i) ly=P+...+ P,
i) Wy=im P, i=1,...,n
Then

V=W&e..oW,
P, = Py,

7

1=1,....n

§7.2 Dual Spaces
Question 7.2. Let V = R3, v € V. What is the first question that we should ask about v?

Motivation/Construction: Let V' be a vector space over F', # a basis for V. Fix vy € 4.
By the UPVS, 3! f,, : V — F linear satisfying

1 ifyyg=
fog@) =4~ "7V 5 WweB
0 ifwvg#wv
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Example 7.6
Let &, = {e1,...,en} be the standard basis for R” and in the above e; = vy ... Then

fey : R™ — R satisfies

Ifv=(a1,...,0p) in R"
n
v = E (6717
i=1

SO

fer (V) = fe, <Z ai€i>
=1
= Zaifel(ei) = Zaiﬁsii =
=il =il

this first coordinate of v.

Notation: If A C B are sets, we write A < B if A # B.
As vy # 0,
0 <im f,, € F is a subspace

Notice dimp F' =1, so dimim f,, < dim F' =1 and
dimim f,, =1, ie. im fo=F

So fu, : V — F'is a surjective linear transformation. Since this is true for all vy € £, for
eachve A, Af,: V= Fst.

1 ifo=2
fol) = b =4 0T e
' 0 ifv#£d

Now suppose that x € V', then

Ha, € F,ve B, almost all 0 s.t. x = Zavv
»

Hence

foo(2) = fuo (Z avv) = Zavao(v)
B

vER

= E avdv,vg = Oy,
B
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Example 7.7
B = &, standard basis for R”

1 ife; =e;

(@) = o = O35 = ! J

fez( .7) €i,€j ,J {0 lfez#e]
Then if v = (v, ...,a,) € R" =V. Then

fei(v) = fei (041,... 7an) = 04

So we observe in the above that if x € V', then
7 = Z fo(z)v
B

We call f, the coordinate function on v relative to .

Example 7.8

Let V be a finite dimensional inner product space over R, & = {v1,...,v,} an
orthonormal basis. Then if z =), o;v;, then

a; = (@, v;)
Take
<‘T7 vi) = <Z a5, vi) = Z aj <vj7 v’i>
=D adilluill* =) a6 =

i.e. the linear map
fo, = (vi): V=R by z— (x,v)

is the coordinate function on vectors relative to 4.

Definition 7.9 (Dual Space) — Let V be a vector space over F'. A linear transformation
f:V — Fis called a linear functional. Set

V*=L(V,F):={f:V — F|f is linear}

is called the dual space of V.
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(Proposition 7.10 A
Let V, W be a vector space over F'. Then
L(V,W) ={T:V — WI|T linear}
is a vector space over F'. Moreover, if V, W are finite dimensional vector spaces over F'
dim L(V, W) = dim V dim W
In particular, if V' is a finite dimensional vector space over F', then so is V* and
dimV = dim V*

SO

_ [ Y,

Proof. 115A. O

Example 7.11

Let V' be a vector space over F. Then the following are linear functionals
1. 0: V> F

2. Let 0 # vp € V then {vp} is a basis for Fvg. Therefore, {vp} extends to a basis
P for V. Let fvg € V* be the coordinate function for V on vg relative to 4.
Then fvyg € B* = {fv|v € #}.
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§8.1 Dual Spaces (Cont’d)

Example 8.1 (Cont’d from Lec 7) 3. trace: M, F — F by
n
=1

4. a < B € R, then
B
I:C[a,ﬁ]—HRbny/ f

5. Fix v € [a, 8], @ < f € R. Then the evaluation map at ~y

ey: Cla,B] = Rby f— f(v)

Lemma 8.2 A
Let V' be a vector space over F, % a basis for V,
B ={fvy: V — F| coordinate function on vy relative to %}
SO
foo(v) = dyp,v Yv € B
the set of coordinate functions relative to . Then %* C V* is linearly indep. )
Proof. Suppose
0=0y~ = Z Bvfv, pv e F almost all 0
vER
We need to show fv = 0Vv € Z. Evaluation at vy € £ yields
0= 0y+(vo) = (Z ﬁva> (vo) = Bufo(vg)
B
= Zﬁva,vo = B'UO
B
So fv =0Vv € & and the lemma follows. O
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/Corollary 8.3 A

Let V' be a vector space over F' with basis . Then the linear transformation
Dy :V — V* induced by & — %* by v — fv

is a monomorphism.
In particular, if V' is a finite dimensional vector space over F', then %* is a basis for
V* and

Dy :V — V* is an isomorphism

- J

Proof. By the Monomorphism Theorem, D4 is monic in view of he lemma if V' is a finite
dimensional vectors space over F', then

dimV =dim V*

so V 2 V* by the Isomorphism Theorem. O

Remark 8.4. L IIV=Ry:= {(a1,a3,...)|a; € R almost all 0}, then by HW1 # 4,

D&, : V — V* is not an isomorphism

2. Dg : V — V* in the corollary depends on . There exists no monomorphism V' — V*
that does not depend on a choice of basis. However, there exists a “nice” monomorphism,
i.e., defined independent of basis.

L:V o (V) = V*

V** is called the double dual of V. We now construct it.

Lemma 8.5 A
Let V be a vector space over F', v € V. Then
L,:V* = Fby f— L,(f) = f(v)
the evaluation map at v is linear, i.e.
L,eV*™
- J
Proof. For all f,ge V*, ae F
Ly(af +g) = (af +g)(v) = af(v) + g(v) = aLvf + Lug O
Theorem 8.6

The “natural” map
L:V - V*™ by v~ L(v) =L,

is a monomorphism.
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Proof. L is linear: Let v,w € V, « € F. Then for all f € V* as V** = (V*)*

L(av +w)(f) = Lavt+w(f) = flav +w)
= ozf(U) + f(w) =alyf+ Lyf = (aLv + Lw) (f)
= (aL(v) + L(w)) (f)

So
L(awv +w) = aL(v) + L(w)

L is monic. Suppose v # 0. To show L, = L(v) # 0. By example 2,
0#£feV s fv)#0

So
Lof = f(v) #0
so L, = L(v) # 0 and L is monic. O

Corollary 8.7

If V is a finite dimensional vector space over F, then L : V — V** is a natural
isomorphism.

Proof. dimV = dim V* = dim V** and the Isomorphism Theorem. O
Identification: Let V be a finite dimensional vector space over F. Then Vv, w € V
l.v=w <= L,= 1L,
2.Vf eV f(v) = f(w) <= Luf = Luf

Moreover, if W' is also a finite dimensional vector space over F, then if T': V' — W is linear,
ATV — W** linear and if T : V** — W** AT : V — W linear. In other words, V'
and V** can be identified by

v Ly,
because
L,(f) = f(v) YVoeV VYfeV*
Construction: Let V be a finite dimensional vector space over F' with basis 8 = {v1,...,v,}.
Then
B ={fr,.... fn}
defined by

fi(vj) = 0i5 Vi, j
i.e., f; is the coordinate function on v; relative to 4. Since
Ly, (f) = fi(vi) = dij Vi, j
L’Ui 6 V**
B ={Ly,..., Ly, }
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is the dual basis of #* for V**. So we have if . = > """ jav; € V, g=> 1" | Bifi € V™.
T = Zaivi = Z fi(x)v;
i=1 i=1
g=> Bifi=Y Lu(9)fi=Y_ g(w)f;
i=1 i=1 i=1
i.e.
x = Z fi(x)v; Ve eV
i=1
g9=>_gw)fi VgeV*
i=1

Motivation: Let V be an inner product space over R, } # S C V a subset. What is S+?
Note: Yv € V, (,v) : V — R by x + (x,v) is a linear functional. To generalize this to an
arbitrary vector space over F', we define the following.

Definition 8.8 (Annihilator) — Let V be a vector space over F, ) #S C V a subset.
Define the annihilator of S to be

S ={feV* f(z) =0Vz € S}
={feVifls=0rcv”

I Remark 8.9. Many people write (v, f) for f(v) in the above even though f ¢ v.
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§9.1 Dual Spaces (Cont’d)

Lemma 9.1
Let V be a vector space over F, ) #.S C V a subset. Then

1. §° C V* is a subspace.

2. If V is a finite dimensional vector space over F' and we identify V as V** (by
v 4> Ly), then S C §°° := (5°)°.

J
Proof. 1. For all f,g € §°, a € F, we have
(af +9)(@) = af(z) + g(z) =0 VzeS
Hence af + g € S° and S° C V* is a subspace.
2. Let x € S. Then Vf € S5°, we have
0= f(z) =Lyf, solL,e(S°)° =5 O

Theorem 9.2

Let V be a finite dimensional vector space over F'; S C V a subspace. Then

dimV =dim S + dim S°

Proof. Let By = {v1,...,ux} be a basis for S. Extend this to

#B = {vi,...,v,} a basis for V
PBo={f1,-.., fn} the dual basis of A

Claim 9.1. € = {fx+1,..., fn} is a basis for S°.
If we show this, the theorem follows. Let f € S°. Then

F=Y"Lo(Nfi=>_ fwifi
=1 =1

k n n
=> ffi+ > ffi= Y fw)fi
=1

i=k+1 i=k+1

lies in span % so € spans. As ¥ C %* which is linearly indep., so is . This proves the
claim. 0
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Corollary 9.3

Let V be a finite dimensional vector space over F'; S C V a subspace. Then S = 5°°.

Proof. As S C 5°°, it suffices to show dim S = dim §°°. By the theorem, we have
dimV = dim S + dim S°
dim V* = dim S° + dim S°°
where dim V' = dim V*. So dim .S = dim S°°. O

Remark 9.4. If V is an inner product space over R, compare all this to ) # S C V a subset
and S+, S++.

§9.2 The Transpose

Construction: Fix T': V' — W linear. For every S : W — X, we have a composition
SoT:V — X is linear

So T :— W linear induces a map
T : L(W,X) = L(V, X)

by
S—SoT

Proposition 9.5 b
Let V, W, X be vector spaces over F', T : V — W linear. Then
T : LW, X) — L(V, X)
\is linear. )
Proof. Let S1,S52 € L(W,X), a € F. Then
T*(a51 + SQ) = (0451 + 52) oT
=aS10T +Se0T =aT*S, +T*Ss ]

/Corollary 9.6 A

Let T : V — W be linear. Then

T W* = V*by f foT

\is linear. )
Proof. Let X = F in the proposition. ]
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Definition 9.7 (Transpose) — Let T': V' — W be linear. The linear map 7% : W* —
V* in the corollary is called the transpose of T and denoted by 7.

Note: The transpose “turns thing around”
v oow

.
Ve Low

Lemma 9.8
Let T : V — W be linear. Then

kerT' = (im T)° € W*

Proof. g € kerT' = Tlg=0 <= (TTg)(v) =0V €V <= (goT)(v) =0
YVoeV < g(Tv)=0YWw eV < g€ (imT)°. O
Theorem 9.9
Let V, W be finite dimensional vector space over F', T': V — W linear. Then
dimim 7 = dimim 7"
Proof. Consider:
dim W* = dimker 7" + dimim 7"
dimW = dimim T + dim(im 7')°
Notice that dim W* = dim W. By the lemma, dimim 7 = dimim 7. O

Computation: Let V, W be finite dimensional vector space over F.

B, B* ordered dual bases for V, V*
¢, € ordered dual bases for W, W*

Suppose

B={vi,...;v}, Z ={fi,....fn}
fi(v) = 6ij Vi, j
So

C ={w,...,wn}, € ={g1,...,9n}
gi(w;) =6 Vi, j
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Let
A=[Tye, B= [TT]%*,%*

be the matrix representation of T, 7" in the ordered bases %, % and €*, €* respectively.
By definition of A and B, we have

m
Tvk:ZAikwi kzl,...,n
=1
n
Tng:ZBijfi jzl,...,m
=1
So
Byj = Aji, Vi, k

So we just proved...

(Theorem 9.10 A

Let V, W be finite dimensional vector space over F', T : V — W linear, £, %" ordered
dual bases for V, V* and €, %™* ordered dual bases for W, W*. Then

g [TT] o ([T]%%) ' y

Definition 9.11 (Row/Column Rank) — Let A € F™*". The row (column) rank of A
is the dimension of the span of the rows (columns) of A.

We know if A € F™*" we can view
A: FL 5 Froxlipg s Ao
a linear transformation and the matrix representation of A is

A= [A]g

n,1,6m,1

where &, 1, &1 are the standard bases for Fr<1and F™*! respectively.

Corollary 9.12

Let A € F™*"_ Then
row rank A = column rank A

and we call this common number the rank of A.

§9.3 Polynomials
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Definition 9.13 (Polynomial Division) — Let f,g € F[t], f # 0. We say that f divides
g € F[t] write f|g if 3h € F[t] s.t. g = fh, i.e. g is multiple of f, e.g. t + 1|t? — 1.

Lemma 9.14
If flg and f|h in F[t], then f|gk + hl in F[t] for all k,1 € F[t].

Proof. By definition,
g=fg, h=fh, g,h €F[t]

So
gk + hl = fgik + fhil = f (g1k + h1l)

in Ft]. O

I Remark 9.15. If f|g € F[t] and 0 # a € F, then af|g and f|ag.

/Definition 9.16 (Polynomial Degree and Leading Coefficient) — Let
0# f=at"+a, 1" 1 4... +art +ag € Ft]

with a,ag,...,an—1 € F and a # 0. We call n the degree of f write deg f =n and a
the leading coefficient of F' write lead f = a. If a = 1, we say f is monic. )

We can define the degree of 0 € F[t] to be the symbol —oco or just do not define it at
all.

Remark 9.17. Let f,g € F[t] \ {0}. Then
lead(fg) = lead(f) - lead(g) #0 € F

So

deg(fg) = deg f + degg
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§10.1 Polynomials (Cont’d)
Division Algorithm: Let 0 # f € F|[t], g € F[t]. Then

al g, r € Ft]

satisfying
g=fq+r with r=0 or degr<degf

/Definition 10.1 (Greatest Common Divisor) — Let f,g € F[t] \ {0}. We say d in F[t]\
is a ged (greatest common divisor) of f, g if

i) d is monic.

ii) d|f and d|g in Ft].

iii) if e|f and e|g in F[t], then e|d in F[t].

I Remark 10.2. If a ged of f, g exists, then it is unique.

I Remark 10.3. If d =1 is a ged of f, g € F[t], we say that f, g are relatively bear.

I Remark 10.4. Compare the above with analogous in Z.

Theorem 10.5

Let f,g € F[t] \ {0}. Then a gcd of f, g exists and is unique write ged(f,g) for the ged
of f,g. Moreover, we have an equation

d = fk+ gl € F[t] for some k,l € F|[t] (%)

Proof. The existence and (x) follow from the Euclidean Algorithm. Let f,g € F[t] \ {0}.
Then iteration of the Division Algorithm produces equations in F'[t], if f + g € F[t],

g=qf+nr degry < deg f
f=qri+1me degry < degry

Tn—3 = qn—1Tn—2 + Tn—1 degr,_1 < degr,_o
Tn—2 = GnTn—1 +Tn degry_1 < degry

Tn—1 = Qqn+1 + Tn

42



Duc Vu (Spring 2021) 10 Lec 10: Apr 19, 2021

where 7, is the remainder of least degree (r,, # 0).
This must stop in < deg f steps. Plugging from the bottom up and using the lemma shows

rn = fk+ gl € F[t]
and if e[r; — e|ry — ... — e|r,, then (lead r,,) 7y, is the ged of f and g in F[t] if a = lead f

alrp=atfk+a gl O

(Definition 10.6 (Irreducible Polynomial) — f € F[t] \ F is called irreducible if there\
does not exist g, h € F[t] 5 f = gh with degg,degh < deg f. Equivalently, if

9 f=gheFjt], then0#ge For0#heF y

Example 10.7
If f € F[t], deg f = 1, then f is irreducible.

Remark 10.8. If f, g € F[t] \ F with f irreducible, then either f and g are relatively prime
or f|g since only a,af,0# a € F can divide f.

Lemma 10.9 (Euclid)
Let f € F[t] be irreducible and f|gh in F[t]. Then f|g or f|h.

Proof. Suppose f x g where x means does not divide. Then f and g are relatively prime.
By the Euclidean Algorithm, there exists an equation

1= fk+gleF[t]

Hence
h = fhk + ghl € Ft]

As f|fhk and f|ghl in F[t], f|h by the lemma. O

I Remark 10.10. In Z the analog of an irreducible element is called a prime element.

Remark 10.11. Euclid’s lemma is the key idea. The “correct” generalization of “prime” is the
conclusion of Euclid’s lemma. This generalization is profound as, in general, there is difference
between the two conditions “irreducible” and “prime”, although not for Z or F[t].

We know that any positive integer is a product of positive primes unique up to order n. If
we allow n < 0 such is unique up to +1.
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4 )
Theorem 10.12 (Fundamental Theorem of Arithmetic (Polynomial Case))

Let g € F[t] \ F. Then there exists uniquely a € F, r € Z*, p1,...,p, € F[t] distinct
monic irreducible polynomial, eq,...,e, € ZT s.t. we have a factorization

g=api'...p;"

unique up to order.

J

Proof. (Sketch) Existence: We induct on n = deg g > 1. If g is irreducible, a, (lead g)~'g, a =
lead g work. If g is reducible,

g = fh e F[t], 1 <degf, degh<degg

By induction, f,h have factorization hence we're done as g = fh.
Uniqueness: We induct on n =degg > 1. If

ap...pr =g =bql'...qf"

with p;, ¢; monic irreducible, a,b € F, ¢;, f; € Z™ for all 4, j, deg g1 > 1, so degq1 X a. By
Euclid’s lemma
qi|p; for some j

Changing notation, we may assume that j = 1. As p; is irreducible p; = ¢; and by (M3')

—1 r o o__ -1 s
g0 = ap~'p . pfr =bg{' gl . qf
As deg gg < deg g, induction yields
r=s,e1—1=fi—1,¢e=fi,i>1, a=b=lead go, p; = q; Vi, e; = f; Vi O

Remark 10.13. Applying the Euclidean Algorithm is relatively fast to compute, (for f|g
takes < deg f steps to get a ged). Factoring into the irreducible is not.
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§11.1 Minimal Polynomials

We use the following theorem from 115A, Matrix Theory Theorem.

Remark 11.1. Let T : V — V be linear. If f = a,t" + ...+ a1t + ap € F[t], we can plug T
in for ¢ to get
f(T) =a, "+ ...+ aiT +aogly € L(V,V)

More precisely
er: Flt] - L(V,V) by t—T

ie. f=> ait'— f(T)=>_a;T?is a ring homomorphism. Since we have

TV =To...oT, n>0
——

n

Can we use the remark if V is a finite dimensional vector space over F'?

/Lemma 11.2 A

Let V be a finite dimensional vector space over F, f, g, h € F[t|, & an ordered basis
for V, T : V — V linear. Then

L [9(T)]z =9 ([T]5)

2. If f = gh € FJt], then
. J

Proof. e By MTT, if g = Y1 ja;t’ € F[t], then

n

[9(T)], = [Z aT'| =Y a[17,
i=0 B i=0

= ailTly = g([T]y)

o Left as exercise.

Lemma 11.3

Let V be a finite dimensional vector space over F', T : V. — V linear. Then dq €
F[t]\{0} 2 ¢(T) = 0 and if @ = lead ¢, then gy := a~'q is moinc and satisfies go(T) = 0

q € kerer == {f € F[t]| f(T) =0}

Proof. Let n=dimV. By MTT

dim L(V, V) = dim M, F = n? < oo
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So ,
ly, T, T%...,T" € L(V,V)

are linearly dependent. So dag,...,a,2 € F not all 0 s.t.

n2
Z aiTi =0
=0

Then q = E;io a;t" works. O

/Theorem 11.4 A

Let V be a finite dimensional vector space over F', T : V' — V linear. Then 3!0 #
gr € F[t] monic called the minimal polynomial of T" having the following properties:

L qr(T) =0

2. If g € F[t] satisfies g(T') = 0, then gr|g € F[t]. In particular, if 0 # g € F[t]
satisfies g(T") = 0, then deg g > deg gr and if deg g = deg g, then g = (lead g)qT/

Proof. By the lemma, 30 # ¢ € F[t] monic s.t. ¢(T) = 0. Among all such ¢, choose one
with deg ¢ minimal.

Claim 11.1. g works.
Let g # 0 in F'[t] satisfy g(T') = 0. To show q¢|g € F[t]. Write g = gh + r in F[t] with
r =0 or degr < deggq. Then
0=g(T) = ¢(T)hW(T) + r(T) = r(T)

If » # 0, then 79 = (lead 7)~!r is a monic poly satisfying ro(T) = 0, degrg < degq,
contradicting the minimality of deggq. So 79 = 0 and ¢|g € F[t]. If ¢ also satisfies 1) and
2), then

ql¢ and ¢'|q € F[t] both monic so q = ¢

The last statement follows as if

h,g € F[t], glh, h # 0, then degh > degq O

/Corollary 11.5 A

Let V be a finite dimensional vector space over F', # an ordered basis for V7 and
T :V — V linear. Then

ar = 4T,

In particular, if A, B € M, F are similar write A ~ B. Then

dA = 4B

- J

Proof. qr = qi71, by MTT and the first lemma. O
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Note:By the theorem, if V' is a finite dimensional vector space over F' g € F[t] g # 0, and
deg g < degqr, then ¢(T') # 0.
Goal: Let V be a finite dimensional vector space over F', & an ordered basisof V, T : V — V
linear. Call

tI — [T], the characteristics matrix of T" relative to %

Recall the characteristics polynomial fr of T' is defined to be
fr = fir, = det (tI —[T)4) € Ft]

We want to show fr satisfies the

( )
Theorem 11.6 (Cayley-Hamilton)
If V is a finite dimensional vector space over F, T : V — V linear, then
qr|fr, hence fr(T) =0
In particular, deg qgr < deg fr. )

Remark 11.7. 1. There exists a determinant proof of this — essentially Cramer’s rule.
2. A priori we only know deg ¢y < n?, where n = dim V.
3. fr is independent of & depends on properties of det : M, F'[t] — F[t]
det (tI — A) = det (P (tI — A) P~ ")
=det (t] — PAP™)

for each P € GL, F

Proposition 11.8

Let V be a finite dimensional vector space over F', T : V — V linear. Then g and fr
have the same roots in F', the eigenvalues of T'.

Proof. Let X be a root of gp. To show A is an eigenvalue of T, i.e., a root of fr. As A is a
root of gp, using the Division Algorithm that

qr = (t = A\)h € F[t]
So
0=qr(T) = (T — Aly)h(T)

As
0 < degh < degqr, we have h(T)#0

Since h(T) # 030 # v € V s.t.
w=h(T)v#0

Then
0=qr(T)v= (T —My)WT)v = (T — A\y)w
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So 0 # w € Ep(\) and A is an eigenvalue of T'.

Conversely, suppose A is a root of fr so an eigenvalue of T. Let 0 # v € Ep(A). Then
t — A € FJt] satisfies (' — M)w = 0 for all w € Fv, ie. it is the minimal poly of
T|py: Fv — Fv. But qp(T) = 0on V so t — Algr by the definition that ¢ — A is the minimal
poly of T'|py. O

§11.2 Algebraic Aside

Let V be a finite dimensional vector space over F', T : V — V linear. Te minimality poly
gr of T is algebraically more interesting than fr. Recall we have a ring homomorphism

er: F[t] - L(V,V)
given by
Z aiti — Z aiTi
so e is not only a linear transformation but a ring homomorphism, i.e., it also follows that
(fo)(T) = f(T)g(T)  VfgeF[t]

‘We know that
dimF F[t] = 0

which has {1,¢,...,t",...} is a basis for F[t] and
dimp L(V,V) = (dim V)? < oo
by MTT. So
0 < kerep = {f € Fltllerf = f(T) =0}

is a vector space over F' and a subspace of F[t]. This induces a linear transformation
er : V/kerer — im er = F[T]

which is an isomorphism. If V = V/ker T, we have

er <ZCW) =ep (Z aiti) = Z@Ti

== Zalfl = ZCLZTZ

Check that e is also a ring isomorphism onto im ep. By definition, if f(T) =0, f € F[t],
then
qr|f € F[t]

It follows that
kerer = {qglg € F[t]} C FJt]

called an ideal in the ring F'[t].
The first isomorphism of rings gives rise to ker ez whit quotient isomorphic to F[t] C L(V, V).
So we are at a higher level of algebra. Then this allows us to view F'[t] as acting on V| i.e.
there exists a map

FltjxV -V (*)
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by

This turns V' into what is called an F[t]-module, i.e., V via (*) satisfies the axioms of a
vector space over F' but the scalars F'[t] are now a ring rather than only a field.
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§12.1 Triangularizability

Proposition 12.1 )

Let V be a finite dimensional vector space over F', T : V. — V linear, W C V a
T-invariant subspace. Then T induces a linear transformation

T:V/W — V/W by T(v) :=T(v)

where v = W + v, V = V/W and

e F|t
9 gplar € Fli] p

Proof. By the hw, we need only to prove that
arlar € F[t]

But also by the hw,

As qr(T) =0, B
0=gr(T) = qr(T)
SO
arlar
by the defining property of gz. O

Definition 12.2 (Triangularizability) — Let V be a finite dimensional vector space
over F, T :V — V linear. We say T is triangularizable if 9 an ordered basis % for V'
s.t. A= [T], satisfies A;; =0 Vi < j, i.e.

* 0
A= is lower triangular (*)

* *
Note: If B ={v1,...,v,} in (*) and € = {vp,vp_1,...,v1}, then

* *
Ty = is upper triangular
0 *

Hence, by Change of Basis Theorem,

\_ [T]gg ~ [T]% )
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Remark 12.3. Suppose V is a finite dimensional vector space over F, dimV =n, T :V — V
linear, # an ordered basis for V, A = [T], is triangular (upper or lower). Then

fr=(t—Apn)...(t— A, € F[t]

and Ay, ..., Ay, are all the eigenvalues of T' (not necessarily distinct) and hence roots of gr.

[Definition 12.4 (Splits) — We say g € F'[t] \ F splits in F[t] if g is a product of linear\
polys in F[t], i.e.,

g=(lead g)(t —a1)...(t — ay) € FJt]
- J

Example 12.5

If V is a finite dimensional vector space over F', T : V — V linear and 7T is triangular-
izable, then fr splits in F[t].

Note: (_01 (1)> € M3R is not triangularizable as it has no eigenvalues.

/Theorem 12.6 A

Let V be a finite dimensional vector space over F', T : V. — V linear. Then T is
triangularizable if and only if ¢p splits in F'[t]. )

Proof. * = 7 We induct on n = dim V.

n = 1: It’s obvious.

n > 1: We proceed by induction: let A be a root of gr in F' (g7 splits in F[t]). Then A is a
root of g7 hence an eigenvalue of T'. Let 0 # v, € Ep(\), so W = Fuv,, is T-invariant. By
the Proposition, T induces a linear map

T:V/W = V/W by v+ T(v)
and
arlar € F[t]
We also know that
W =ker(—:V—=V/W)byv—7

and

dimV/W =dimV —dimW =n—1
as — : v — U is epic. Since gr splits in F[t] and gplgr in F[t], ¢ also splits in F[t] by
Fundamental Theorem of Algebra. Thus, by induction,

El’Ul,...,'Un_i eV > (g: {717"'7671—1}

is an ordered basis for V = V/W with A = [T
1 <j<n-—1. Thus

o 18 lower triangular, ie., A;; = 0 if
n—1

Tﬁj:ZAijﬁzﬁ 1<j<n—-1
i=j
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hence

n—1 n—1
0= T@j — Z Aijﬁi = T’Uj — Z Al-jvi
=3 1=j

1<j<n-—1inV =V/W. Therefore,

n—1
TU]' — ZAijUi e ker- =W = Fu,

i=j
by definition as W =ker™ : V — V/W.
In particular, 3A,; € F, 1 < j <n — 1 satisfying

n—1
T’Uj — E Aijvi = Anjvn
=7

So .
ij:ZAijvn 1<j<n-1
i=j
By choice, 4;; =0,7 < j<n—1and
Tv, = v,

By hw 2 # 3, = {v1,...,v,} is an ordered basis for V' and
T, o

0
Apt . App1 A

[T]yp =

which is lower triangular, as needed. “ = ” Let & = {v1,...,v,} be an ordered basis
for V. A =[T], is lower triangular. Then

n

fr =[]t - As) splits in F[t]

=1

A11, ..., Apy are the (not necessarily distinct) eigenvalues of T and hence roots of gr.
Let \; = A;,i=1,...,n. We have

n n
Tv; = ZAij'Ui = Ajv; + Z Aij'Uia I<j<n-1
i=1 i=j+1

Tv, = A\Un

So

n
(T = Nly)vy = Z Ajjv; € Span (vjq1,...,vp) V1<j<n-—1 (*)
i=j+1
Now
(T = A1y )vp = 0
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So
(T — M ly)vp—1 € Span(vy,) by ()

This implies
(T — /\nlv)(T — /\n_llv)vn_l =0

By induction, we may assume that
(T - )\nlv) e (T - )\jlv)vj =0
So by (),
(T - )\n]-V) ce (T - )\le)(T - )\j—llV)'Uj—l =0

Therefore,
fT(T)Ui = (T — >\an) oo (T — )\Z‘lv)vi =0

fori=1,...,n. As #is a basis for V, fr (T) = 0. Thus ¢r|fr € F[t]. In particular, ¢r
splits in F[t]. O

(Corollary 12.7 A

Let V be a finite dimensional vector space over F', T': V' — V a triangularizable linear
operator. Then

qr|fr € F[t]

In particular,

T)=20
9 fr(T) )

Definition 12.8 (Algebraically Closed) — A field F' is called algebraically closed if
every f € F[t]\ F splits in F[t]. Equivalently, f € F[t] \ F has a root in F.

/Corollary 12.9 (Cayley-Hamilton — Special Case) b

Let F' be algebraically closed, V' a finite dimensional vector space over F', T : V — V
linear. Then

1. T is triangularizable.

2. gr|fr
3. f2(T) =0
J
Theorem 12.10 (Fundamental Theorem of Algebra)
(FTA) C is algebraically closed.
Proof. 1t’s assumed (proven in 132 — Complex Analysis or 110C — Algebra). O
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§13.1 Triangularizability (Cont’d)

Remark 13.1. Let V be a finite dimensional vector space over F, T : V — V linear, £ an
ordered basis for V, A = [T],. So g4 = qr and fa = fr.

Let n = dim V. Given a field F, 3F an algebraically closed field satisfying F C F is a
subfield. Then )
AeM,FCM,F

So by the corollary, _
faA=0 Vo P!

where we view A : F"*1 — FnX1 Jinear. Then
fa(Av=0  Voe Fvtc pmd
viewing
A F™E 5 P Jinear

Thus,
fa(A) =0

Hence fr(T) = 0 and qr = qa|fa = fr. So qr|fr in F[t]. Thus, if we knew such an F
exists in general, we would have proven the Cayley-Hamilton Theorem in general, i.e., if V'
is a finite dimensional vector space over F and T : V — V linear, then

qr|fr € F[t]
fr(T)=0

This is, in fact, true (and proven in Math 110C). Of course, assuming FTA, this proves
Cayley-Hamilton for all fields F' C C.

Remark 13.2. The symmetric matrices

0 1 2 1
<1 0) € MFy and <1 3> € MsF5

are both triangularizable, but not diagonalizable.

§13.2 Primary Decomposition
Algebraic Motivation: Let f € F[t] \ F' be monic. Write

f=p{...0{, p1,...,pr distinct monic
irreducible polys in F[t], e; > 0Vi. Set

f 1 T
q:p?_ =pi'...p; .. Dy
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Then p;, g; are relatively prime so there exists an equation

1=pki+qg € F[t], i=1,...,n (*)
if we plug a linear operator T : V' — V into (*), we get

ly = pi"(T)ky(T) + @i(T)gi(T) Vi

Linear Algebra Motivation: Let V be a finite dimensional vector space over F, T : V — V
linear. Suppose

V=W & Wy, W;, Wy CV subspaces

with Wy, W5 both T-invariant.
Let 4; be an ordered basis for W;, i = 1,2 and & = %1 U %5 an ordered basis for V. Then

) = <[T|VEJ% 0 )

[Twa)z,

Let Py, : V — V be the projection onto W; along W;, j # i. Then we know

ly = Pw, + Pw,
Pw, Py, = dij Pw,
Py, T =TPy, i=1,2
T = TPy, + TPy, = Tlw, + T|w,

By hw 4 # 6
qr = lem (qT|W17 QT|W2)

This easily extends to more blocks.

Lemma 13.3
Let f € F[t], T : V — V linear. Then ker f(T) is T-invariant.

Proof. 1If v € ker f(T), to show Tv € ker f(T'). But
f(M)Tv=Tf(T)v=0

so this is immediate. O

/Lemma 13.4 A

Let g,h € F[t] \ F be relatively prime. Set f = gh € F[t]. Suppose T': V — V is
linear and f(7') = 0. Then

ker g(T') and ker h(T') are T-invariant
subspaces of V' and

N V =ker g(T) & ker h(T') (—1—)/
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Proof. By the lemma we just proved, we need only show (+). Since g, h are relatively
prime, there exists equation
1=gk+hleF[t]

Hence
ly = g(T)k(T) = h(T)U(T)

as linear operators on V i.e. Yo € V
v =g(T)k(T)v + h(T)I(T)v (*)

Since f(T') = 0 we have

Therefore,
g(T)k(T)v € ker h(T)

and
0= f(T)UT)v = g(T)L(T)U(T)v

h(T)I(T)v € ker g(T)

It follows by (*), Vv € V
v=g(T)k(T)v + h(T)|(T)v € ker h(T") + ker g(T")

where
V = ker g(T') + ker h(T)

By (%), if v € ker g(T") Nker h(T'), then
v=g(T)k(T)v+ h(T)(T)v =0

Hence
V =ker g(T) @ ker h(T)

as needed. O
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§14.1 Primary Decomposition (Cont’d)

Proposition 14.1 b

Let V be a finite dimensional vector space over F', T': V' — V linear, g,h € F[t] \ F
monic and relatively prime. Suppose that

qr = gh € F[t]
Then ker g(T') and ker h(T") are T-invariant.
V =ker g(T') @ ker h(T)

and

g = qT‘kerg(T) and h = QT‘kerh(T)

- J

Proof. By the last lemma in last lecture, we need only prove the last statement. By
definition, we have

9(T)|xer g(ry = 0 and A(T =0

) ‘ker h(T)
So by definition,
QT‘kerq(T)Lq and QT}ker h(T)’h = F[t]
As g and h are relatively prime, by the FTA, so are
qr }ker g9(T) and gr ’ker h(T)

Therefore, we have

f=lem (qT’ker g(T)’ qT’ker h(T))
= QT‘

kerq(T)QT ker h(T')
Since
V =ker g(T') @ ker h(T)
f(Mv=0 YveV

Hence

qr|f € F[t]
By (+) and FTA

flgh = ar
As both f and ¢r are monic,

f=ar

Applying FTA again, we conclude that

and h = O

g= qT‘kerg(T) qT‘kerh(T)

We now generalize the proposition to an important result that decomposes a finite dimen-
sional vector space over F' relative to a linear operator T : V — V.
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\
Theorem 14.2 (Primary Decomposition)
Let V be a finite dimensional vector space over F, T : V — V linear, and qr =
pi'...pS, with p1,...,p, distinct monic irreducible polys in F[t], e1,...,e, € Z™.
Then there exists a direct sum decomposition of V' into subspaces W1,..., W,
V=we..aWw, *)

satisfying all of the following:

i) Each W; is T-invariant, ¢ = 1,...,r

e -
i) gr =Ly v = 11ie 47w,

)

i) grlw, =p',i=1,...,r
)
)

iv) If &; is an ordered basis for W;, i =1,...,r, Z= %1 U...U %, is an ordered
basis for V' with
[T‘Wl]ggl 0
[Ty =
0 [T'lw, ]

Moreover, any direct sum decomposition (*) of V' satisfying i), i), i) is uniquely
determined by 7" and the pq,...,p, up to order. If in addition, this is the case, then

W; = ker pi*(T') i=1,...,r
\_ J

Proof. We induct on 7.
e r = 1 is immediate

e r > 1By TFA, p{* and g = p5*...pS" are relatively prime, so by the Proposition

V=wroeW
where
Wi = kerp*(T') and W; is T-invariant
Vi = ker g(T) and V; is T-invariant
qr|w, = Pi 4Ty, —pS2 .. plr
Let

T1=Ty, Vi -W

By induction on r, we may assume all of the following:

Vi=We...oW,
W; = ker p{*(T1) and is Tj-invariant

e; .
QT1|W~L :piZ for ¢ = 27...,7'
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Note:

.
ker pS'(T1) N Y kerp;(Ty) =0 Vi>0
j=2
J#i

Claim 14.1. Let 2 <7 <r. Then
ker pi*(T') = ker p5* (1)

Let v € kerpi*(T), i > 1. So

Py (T)v =0
Hence ,
0=T]v% @) =g(T)e,

j=2
ie.,

vekerg(T)=W
So

Tv = T‘Vl'U = Tlv
and

0= p;"(T)v = p; (T1)v

as needed.

Let v € ker pi*(T1),4 > 1. By definition, v € Vi, so

0 =pi"(T)v = pi* (Tl v
= ;' (D)o = pi(T)v

This proves the claim.

The existence of (*), i),4),417) nad W; = kerp;*(T), i = 1,...,r, now follow. More-
over, i) and (*) yield iv).

Uniqueness: Suppose that
V=W&e..eW,

satisfies 1), ii), iii). If we show
W; = kerp*(T), i=1,...,r
the result will follow. It suffices to do the case i = 1. Let

Vi=Wea...0W,
V=wWaoWn

As each W; is T-invariant and V; is T-invariant. As before

pit and g = p5? ... pir
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and relatively prime by FTA. So by hw 4 # 6

qr = lem <QT\V1 ; QT|V1>

It follows that

€2 Cr

arpy, =P Py =g
Moreover, we have an equation
1=p{"k+gl € F[t]

So
ly = pi" (T)K(T) + g(T)UT)

Claim 14.2. W; = kerp7* (T') and hence we are done.

Since
arly, = D7’
‘We have
p{"(T)v =0 Vv e Wy
Hence

Wi C kerp*(T)

To finish, we must know
ker pi*(T') C W,
Let
vekerp'(T)CV =WV

So dlwy € Wy, v1 € V7 s.t.
v =w1 + V1

Since Wy C ker pi* (7)),
Py (T)W1 =0

By assumption, p{*(T)v = 0, so
P (T =0

ASV1:W2@...€BWT

p?:qﬂwy i=2,...,r by (i)

‘We have
P2 (T) ... p (Thor = 0
Hence by (+)

v, = lyv; = pil (T)k(T)Ul —l—p§2 (T) .. .p? (T)Z(T)Ul =0

Therefore,
v=wi +v1 =w; €W

and it follows that ker p{* (T') C W as needed.
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Recall: Let V be a finite dimensional vector space over F, T : V — V linear is called
diagonalizable if there exists an ordered basis Z for V consisting of eigenvectors of T'. By

hw 2 # 2, this is equivalent to
V=ErM
A
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§15 ‘ Lec 15: Apr 30, 2021

§15.1 Primary Decomposition (Cont’d)

Recall: Let V be a finite dimensional vector space over F', T : V — V linear is called
diagonalizable if there exists an ordered basis # for V consisting of eigenvectors of T'. By

hw 2 # 2, this is equivalent to
V=Er(
A

KTheorem 15.1 A

Let V be a finite dimensional vector space over F', T : V' — V linear. Then T is
diagonalizable iff ¢p splits in F[t] and has no repeated roots in F'. If this is the case,

then .
qr = H(t —Ai),  At,..., A\ the distinct roots of gr
- - J
Proof. “ <= 7 qr = [[;_1(t = Xi), A1,..., A\ the distinct roots of gp. Let V; =

ker(T — A\;1y) = Ep(N;), i =1,...,r. Then by the Primary Decomposition Theorem,
V=Vie...eV,

SO T is diagonalizable.
“ = 7 Let = {v1,...,v,} be an ordered basis for V' consisting of eigenvectors of T
with A; the eigenvalue of v; and ordered s.t.

A1, ..., A are the distinct eigenvalues of T’
For each j, 1 < 7 < n, we have
(T—Ailv)vj:ij—)\ivj:(/\j—)\i)vj, jzl,...,n

So

T

H(T—)\ilv)z}j:() forj=1,...,n
=1

i.e.,
T

H(T — Aily) vanishes on a basis for V'
i=1

hence vanishes on all of V. It follows that
qr| H(t —\;) € F'lt]
i=1

In particular, g7 splits in F'[¢] and has no multiple roots in F' by FTA. As every eigenvalue
of T'is a root of fr, we have

t—)\i]qT, i=1,...,r
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using fr and gr have the same roots. Therefore,

T

ar =[]t - N) € F[] H
=1

§15.2 Jordan Blocks

(Definition 15.2 (Jordan Block Matrix) — J € M, F' is called a Jordan block matrix\
of eigenvalue A of size n if
A 0
1 A
J=Jn(N) = 1 €M, F
S
0 1
- J

Note: fj,(X) =det (tI — J,(X)) = (t — \)™ € Ft], so splits with just one root of multiplic-
ity.

Definition 15.3 (Nilpotent) — T : V — V linear is called nilpotent if ¢p = t™, some

m,ie,3IM e ZT >3TM =0.
J

Example 15.4

J = J, (0) is nilpotent and has gy = t™ for some m. In fact, ¢; = t" — why?
In fact, let A € M, F, A: F™*! — [»*1 linear with A ~ N with

N = J, (A, = J,,(0)
Then as N is nilpotent and
A=PNP~ ! someP e GL,F,
we have
A" = (PNP™Y)"= PNP'PNP™!...PNP' = PN"P 1 =0

So A is nilpotent. Now N is nilpotent.
If . ={e1,...,e,} is the standard basis for F"*!

Ne;=¢€e;41, 1<n—1
Ne, =0
N2€Z'=N—N6Z'=€i+2, ifn—z
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Example 15.5 (Cont’d from above)

In any case, we have

dimker N" =r
dimim N" =0

dimim ker N" =n

dimim N"=n—r|
ifr<n
}ifr>n

[Lemma 15.6 b
Let J = J,(\) € M, F. Then
1. X is the only eigenvalue of J.
2. dmE;(\) =1
3. tJZQJ:(t—)\)n
4. fi(J) =
. J
Proof. Let
N=J-XeM,F
the characteristics matrix of J
0 ... 0
anl — c MnF
0 0
10 0
is not the zero matrix, but
N"=0
So
qr|(t = N)™ and q; J(t — N1
It follows that gy = (t — A\)™ = f;. This shows 3) and 4). By the computation,
dimker N =1
and
ker N = Ep(\)
This gives 2) as fr = (t — )™, 1) is clear. O

Remark 15.7. J,()A) has only a line as an eigenspace, so among triangulariazable operator
away from being diagonalizable when n > 1.
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Proposition 15.8

Let A € M,,F' be triangularizable. Suppose fg4 = (t — \)" for some A € F'. Then A is

diagonalizable iff g4 = (t — ) iff A = AL

Proof. If ga =t — A, then A = Al as
Fb — ker (A — M)

The converse is immediate.

O

Computation: Let V' be a finite dimensional vector space over F', dimV =n, T :V =V

linear. Suppose there exists # = {v1,...,v,} an ordered basis for V satisfying
[T = Jn(N)
Then by definition

Tvi = vy + vy e (T — )\11/)1)1 = V9
Tvy = Mg +v3  ie. (T — )\1\/)1}2 = V3

Tvp—1 = Ap—1+v, ie. (T—Aly)v,—1 =1vy,

Tv, = v,
So
E)\()\) = F’Un
v1,...,Un—1 are not eigenvectors, but do satisfy
(T — My )v; = vi41 1=1,...,n—1
(T — A\y)" oy = v, , an eigenvector
So we can compute vy, ...,v,_1 from the eigenvalue v,,.
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§16 ‘ Lec 16: May 3, 2021

§16.1 Jordan Blocks (Cont’d)

[Definition 16.1 (Sequence of Generalized Eigenvectors) — Let T': V — V be linear,
0 # v, € Ep(\). We say v, ...,v, is an (ordered) sequence of generalized eigenvectors

of eigenvalue X of length n if (4+) above holds, i.e.,
(T—)\lv)vi:viﬂ, izl,...,n—l
(T — Alv)vn =0

We let

In(A) = gn(vp, A) = {v1,..., 0}
= {Ul, (T — Alv)n_lvl}

be an ordered sequence of generalized eigenvectors for T' of length n relative to A.

Note: We should really write

gn(vna >‘7 V1,... ,’Un,]_)

KLemma 16.2 A
Let V be a vector space over F, T : V' — V linear, 0 # v, € Er(}), v1,...,v, an
ordered sequence of generalized eigenvectors of T of length n, g,(A\) = {v1,...,v,}.
Then

1. gn(A) is linearly independent.
2. If V is a finite dimensional vector space over F', dim V' = n, then
i) gn(A) is an ordered basis for V'
i) [Ty, x) = Jn(A)
- J

Proof. 1. We have seen that (x) implies
(T — A\1y)" v = v, i<n
(T - M~ V), =0

So
(T —My)v; =0  Vk>n—i

Suppose
ai1v) + ...+ apv, =0, a; € F not all 0

Choose the least k s.t. ai # 0. Then

0=(T- )\lv)”_k (v + ... + apvy) = agvy,
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As v, # 0, a, = 0, a contradiction.
So 1) follows and 1) — 2). O

/Definition 16.3 (Jordan Canonical Form) — A € M, F' is called a matrix in Jordan\
canonical form (JCF) if A has the block form

Ir (A1) 0
A= :

v (Am)

Al, ..., A\m Dot necessarily distinct.

J

Definition 16.4 (Jordan Basis) — Let V be a finite dimensional vector space over F,
T :V — V linear. An ordered basis % for V is called a Jordan basis (if it exists) for
V relative to T if 4 is the union

9ry (Ul,rla >\1) U...Ugr, (vm,rm7 Am) (*)

where g, (vjr;,A;) is an ordered sequence of generalized eigenvectors of T' relative to
Aj ending at eigenvector vj .. The A1,...,; Ay need not be distinct.

J

Proposition 16.5

Let V be a finite dimensional vector space over F', T : V' — V linear. Then V has a

Jordan basis relative to 7' <= T has a matrix representation in Jordan canonical
form (JCF).

Proof. Let w; = g, (Viy;, Ai) in (x). The only thing to show is: Wj is T-invariant, but this
follows from our computation. ]

Conclusion: Let T': V — V be linear with V having a Jordan basis relative to T'. Gathering
all the Jordan blocks with the same eigenvalues together and ordering these into increasing
size, we can write such a Jordan basis as follows:

Al, ..., A\p the distinct eigenvalues of T

B = g7‘11(vllv /\1) U...UGgrnm (Ul,nw )‘1)
U Groy (V21,A2) U... U Gr2.nq (V2,n5, A2)

U grm,l(vm,h )\m) u...u grm,nm (Um,’rma )\m)

with
it < rip < ..o <mng, 1<i:<m
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e.g.
1 0
0 1
10 Ji(1)
Ji(1)
[T]%_ 11 = J(l)
020 0 2
1 2 0 J3(2)
01 2
Let

Wi; = Span gy, (Uij, i) V1, ]

These are all T-invariant. We have

fr=TI¢-x)

.J
and
gr = [Jlem ((t = X)) [j =1,....n;)
=TT 2o
So
qT|fT and fT(T) =0
Also

T’L]

arywy; = friwy,; = (E—N)
for all 1 <j < nj, 1 <i¢ < m. There are called the elementary divisors of T'

V:WH@...@WLnl@...@Wml@...@Wmnm

Now let P;; be the projection onto W;; along

Wll@...@@@.--@wm,nm
~
omit

Then

Py ifi=kandj=1
PZ]P/i‘l = 5zk‘6]l})ﬂ = {OJOthGI'WiSe
ly=Pi+...+ Pup,,

T=TPu+...+TPun, =Ty, +...+T[,

Abusing notation
Al,..., A\ are the distinct eigenvalues of T'

Let
Wi:Wil@---@Wini 1=1,....m
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AS Ti1 S S Ting
(T — )\ilv)rmi
(T = Xy)™ My, #0

w, =0 l<j<m

showing
qr|Wi = (t — Ai)"™

So
V=Wia...eaW,

is the unique primary decomposition of V' relative to T'.
Note: The Jordan canonical form of T" above is completely determined by the elementary
divisors of T'.

§16.2 Jordan Canonical Form

Theorem 16.6

Let V be a finite dimensional vector space over ', T': V' — V linear. Suppose that
gr splits in F[t]. Then there exists a Jordan basis 2 for V relative to T. Moreover,
[T'] 4 is unique up to the order of the Jordan blocks. In addition, all such matrix
representations are similar.

Proof. Reduction 1: We may assume that
qr = (t - )\)T

Suppose that
gr=(t—X)"...(t = A\p)™ € Ft]

A,y ..., Ay distinct. Set
Wi =ker (T — N1y)", i=1,....m
By the Primary Decomposition Theorem,

V=mao...eaW,

W; is T-invariant, it = 1,...,n
quWi = (t - A’i)nv 1= 17 , M
So we need only find a Jordan basis for each W;. 0
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§17‘ Lec 17: May 5, 2021

§17.1 Jordan Canonical Form (Cont’d)

Proof. (Cont’d from Lec 16) Reduction 2: We may assume that ¢gr = t", i.e., A = 0.
Suppose that we have proven the case for A = 0. Let S =T — Aly, T as in Reduction 1.
Then

ST =(T—Aly) =0and "' = (T — Ay) 1 #£0

Therefore,
gs =t
if £ is a Jordan basis for V relative to S, then

[Slg =Tz -
is a JCF with diagonal entries 0. Hence
(T] = [S] + A

is a JCF with diagonal entries A and 4 is also a Jordan basis for V relative to 7. Reduction 2
now follows easily. We turn to
Existence: We have reduced to the case

qgr=1t", ie, T =0 T'1+40
In particular, T is nilpotent. We induct on dim V.
e dimV =1 is immediate.

e dimV > 1: T is singular, so 0 < ker T', as A = 0 is an eigenvalue. Since V is a finite
dimensional vector space over F, by the Dimension Theorem, 7" is not onto, i.e.,

imT <V
As im T is T-invariant, we can (and do) view

T!im P im 7T — im 7 linear

As T" =0, certainly (T'|im )" =0, so

T‘im + is also nilpotent

and
qT‘im T‘QT € Ft]

since
qr (Tlim T) =0=qr(T)

So qr},,, » splits in F[t] and

=1t°, for some s <7
im T

Ir
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by FTA. By induction on dim V', im 7" has a Jordan basis relative to T|;m 7. So
mT=W1®...5W,,, somem

with each W; being T'|;m 7— (hence T'—) invariant and W; has a basis of an ordered
sequence of generalized eigenvectors for T'|yy,, hence for T'|i, 7 and T,

gri(()) = {wi,Twi,...,T”_lwi}, r; > 1
Thus we have

e .
T w; =0, 1=1,...,m

a, =", i=1,...,m
w;

Since w; € W; C im T,
Jv, eVosTyy=w;, i=1,....,m

So we also have
'ty = T Tw; = T"iw; = 0

and
Ty =T Ty = T w; # 0
Therefore, v;, Tv;, ..., T v; is an ordered sequence of generalized eigenvalues for T'
in V, and, in particular, linearly independent. For each i =1,...,m, let
Vi = Span {v;, Tv;, ..., T"v;}
So

Since each V; is spanned by an ordered sequence of generalized eigenvectors for T,
each V; is T-invariant, i = 1,...,m.

Note: If f € F[t] and f(T)w; =0, then f(T) = 0 in W; and similarly if f € F[t] and
f(T)v; =0, then f(T)=0onV; as f(T)w; = 0 implies

0="Tf(Tw; = f(T)T’w; =0 Vi

Set
Vi=Vi+...+V,

Each V; is T-invariant, so V' is T-invariant.
Claim 17.1. V' =V & ... &V,
In particular,
By ={v1,Tv,...,T"v1,..., 0, TOm, ..., T vp }
is a basis for V. ]

71



Duc Vu (Spring 2021) 18 Lec 18: May 7, 2021

§18 ‘ Lec 18: May 7, 2021

§18.1 Jordan Canonical Form (Cont’d)
Proof. (Cont’d) Suppose u; € V;, i = 1,...,m satisfies

Ul +...+u, =0
To show u; =0,i=1,...,m. Aswu; € V;, 3f; € F[t]

ui = fi(T)v;
where we let f; = 0 if u; = 0. So (1) becomes
fiT)vi+ ...+ fo(T)vy =0
Since Tf(T) = f(T)T Vf € Ft] and
w; = T, 1=1,....m

taking T of (2) yields

As the T-invariant W; satisfying

Wi+...+ W, =W1®...oW,

‘We have
fi(T)w; =0, i1=1,...,m
Hence
fi(T) =0 on W, i=1,...,m
Thus

Ty
t =4,

fi € FIt], i=1,...,m
W;
In particular, since r; > 1 Vi, we can write
fi =tgi € F[t], 1=1,....,m
degg; <degf;, i=1,....mif fi#0

Since
fi(T) =Tgi(T) = g:(T)T

and
wi:Tvl-, izl,...,m

(2) now becomes
g (Twr + ... + gm(T)wpy, =0

Since each W; is T-invariant, by (*)

9i(T)w; =0, hence g;(T) =0 on W;
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for ¢ = 1,...,m by the definition of W;. Therefore, for each i, i =1,...,m

" =q, " |9 € Ft]
In particular, we can write
gi =t""h; € Ft], i=1,....m
So
fi=t""h; € FJt, i=1,...,m

Thus we have
U; = fz(T)UZ == hi(T)Tri+1’Ul’ == 0, 1= 1, oo,

This establishes claim 1. As
w; = Tv; € Wy, i=1,....,m
We have

TV =TVi® ... TV,
=We..oW, =TV (%)

since each W;, V; is T-invariant and

Therefore,

Claim 18.1. V =kerT + V'

Let v € V. Since
TV =TV

by (%), we have Vv € V
I eV s>Tv =T,

S0
v—2v €kerT
and
v =1 4w some w € ker T
ie.
veV +kerT
as needed.

Now by construction, we have a Jordan basis % for the T-invariant subspace V' relative
to T'|y. Let
¢ = {u1,...,ur} be a basis for kerT'= E7(0)

Modifying the Toss In Theorem, we get a basis for V as follows. If u; ¢ Span %, let
KB = BoU{u1}. Otherwise, let B = By. If ug ¢ Span %y, let By = B1U{uz}. Otherwise,
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let By = H1. In either case, X is a linearly independent set. Continuing in this way, since
PBoy U € spans V', we get a spanning set of V/

%zﬁou{uh,...,uﬁ}gv
with

T,, =0

(3

for some u;, constructed above, 1 <¢ <s.
Using claim 1, we have

V =V'®Span {uj,,...,u;,}
:Vl@@vm@F’u]l@@F’qu

and [T 4 is in Jordan canonical form. This proves existence.

Note: Fuj, are the g1 (uj;,0) and the wuj, are eigenvectors that cannot be extended to
9i(v;,0) of longer length.

Uniqueness: By reduction 1) and 2), we have

qgr=t", T"=0, T t#0
Let % be an ordered basis for V. Then by MTT
m; = dimim 77 = rank [Tj]cg = rank [T]Zg (*)
Let £ be any Jordan basis for V relative to T, say

Jr, (0) 0

[T]@ = "
0 Jr.. (0)

the corresponding Jordan canonical form. Prior computation showed for each 7, 1 < i < m,

rank JI, (0)=r;i —j . .
. if j <y
dimker J7,(0) = j
and ,
7 (0) —
rz‘mk Jr, (O) =0 7>
dimker J7, (0) = r;
Clearly, for each 1, .
J7,(0)
Y, - |
J7,,(0)
as [T, is in block form. So by (*),
m; = rank [T]J%, = Z rank Jgi (0)
i=1
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It follows that we have
mj_1 —m; = rank [T]jg;l — rank [T]f%
= # of | x [ Jordan blocks J;(0) in (+) with [ > j

We also have, in the same way,

mj —mjq1 = rank [T]?%, — rank [T]];l
= # of | x [ Jordan blocks J;(0) in (+) with l > j+1
Consequently, there are precisely
(mj—1 —mj) = (mj —mjy1) = mj1 —2m; +mjp

which equals the number of | x [ Jordan blocks J;(0) in (4) with { = j. This number is
independent of Z as it is

rank 7971 — 2 rank 77 + rank 791!

Thus, [T], is unique up to order of the Jordan blocks. This proves uniqueness.
If %’ is another Jordan basis, then

(7] » "~ [T] B

by the Change of Basis Theorem. This finishes the proof (phewww...such a long
proof!) O

Corollary 18.1

Let A € M, F. If g4 € F[t] splits in F[t], then A is similar to a matrix in JCF unique
up to the order of the Jordan blocks.

/Corollary 18.2

Let F be an algebraically closed field, e.g., F' = C. Then every A € M, F' is similar
to a matrix in JCF unique up to the order of the Jordan blocks and for every V, a
finite dimensional vector space over F', and T : V — V linear, V has a Jordan basis
relative to T'. Moreover, the Jordan blocks of [T] , are completely determined by the
elementary divisors (minimal polys) that correspond to the Jordan blocks. y

(Theorem 18.3 A

Let F be an algebraically closed field, e.g., F' = C, A, B € M, F. Then, the following
are equivalent

1. A~B
2. A and B have the same JCF (up to block order)

3. A and B have the same elementary divisors counted with multiplicities.

J
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Corollary 18.4
Let F be an algebraically closed field. Then A ~ AT.

Proof. For any B € M, F', gqp = qgT. O

§18.2 Companion Matrix

/Definition 18.5 (Companion Matrix) — Let g = t" + ap_1t" "' +... + a1t +ag € F[t],
n > 1. The matrix

00 ... 0 — agp

1 0 0 — aj

0 1 : :
Clo)=|. . .
0 — apo

00 ... 1 — apq

is called the companion matrix of g.

Example 18.6
C (t") = Jn(0).

Note: If f,g € F[t] are monic, then

f=g9 < C(f)=C(g)

Lemma 18.7
Let g € F[t] \ F be moinc. Then
fewy =9

Proof. Let g =t"+a,_1t" 1 +...+ag € F[t]\ F. We induct on n, using properties about
determinants.

e n =1 is immediate

e n > 1 Expanding on the determinant

t o ... 0 ap
-1t :
foy =det(tI —=C(g)) =det | o —1
0 :
0 -1 t4+ap—1
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along the top row and induction yields

t (tn_l + an_ltn_2 + ...+ al) + (—1)”_1a0(—1)"_1 =g O

/Lemma 18.8
Let g € F[t] \ F' be monic. Then

qc(g) = feg) =9

In particular,

g feg) (Clg) =0 y
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§19.1 Companion Matrix (Cont’d)

Remark 19.1. If C is a companion matrix in M, F', viewing
C : F™*t — F™ ! linear,

then
B = {61, 061, 000 Cn_lel}
is a basis for F™*! and
1

FTLXl = {Z aiCiei|ai & F}
i=0
F

[Cler == {f(C)ealf € F[t]}

Definition 19.2 (T-Cyclic) — Let V be a vector space over F', T : V — V linear. We

say v € V is a T-cyclic vector for V and V is T-cyclic if

V = Span{v,Tv,...,T"v,...} = F[T|v

Warning: Let T : V — V be linear. It is rare that V is T-cyclic. However, if v € V, then
Fltlv CV is a T-invariant subspace and F'[T]v is T-cyclic. So T-cyclic subspace generalize

the notion of a line in V.

(Proposition 19.3

following are true
i) B = {U,TU, e ,T”_lv} is an ordered basis for V'
ii) [T]4 = C(fr)

iii) fr=qr

Let V be a finite dimensional vector space over F, n = dimV, T : V — V linear.
Suppose there exists a T-cyclic vector v for V, i.e., V. = F[T]v. Then all of the

~

J

Proof.
7 < n be the first positive integer s.t.

T’v € Span {’U,TU, . ,Tj_lv}

say

Tiy = aj_lijlv + ozj_sz’Zv + ...+ ao1Tv + v

for ag,...,aj_1 € F. Take T of (*), to get

i) As dimV = n, the set {v,Tv,...,T"v} must be linearly independent. Let

Tty = aj,lij + aj,QTj_lv + ...+ a1T2v + apTv
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which lies in Span(v, Tv,...,T7~'v) by (*). Iterating this process shows
TNveSpan{v,Tv,...,ijlv} VYN > j

It follows that '
v = F[T]v = Span {v,Tv, . ,ijlv}

So
n=dimV <j, hence n = j

This proves 1).
ii) The computation proving i) shows
B = {v,Tv,...,T"_lv}

is an ordered basis for V. As

[Ty = (Tvlg [T?0], ... [T"%], [T7],)
0 0 0 x*
|1 0 *
0 1 :
0 0 . 1 =%
it is a companion matrix, hence must be C(fr) and by the lemma, we have proven
111) fT = f[TL%’ = Q[T]@ = qrT as [T]%’ = C(fT) O

Example 19.4

Let V be a finite dimensional vector space over F, dimV =mn, T : V — V linear s.t.
there exists an ordered basis % with

Set S =T — Ay : V — V linear. Then dv € V' 3
B = {v,5,...,5" v}

So v s an S-cyclic vector and
V = F[S]v

Fact 19.1. If A € M, F[t], C € M,F[t], B € F[t]"**, then

A B
det (O C) =det Adet C

where
det D = Z sgn UDlo(l) e Dng(n)
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§19.2 Smith Normal Form

We say that A € F[t]™*" is in Smith Normal Form (SNF) if A is the zero matrix or if A is
the matrix of the form

@ 0
0 ¢
dr
0
0
with q1|g2|qs| . .- |g- in F[t] and all monic, i.e., there exists a positive integer r satisfying

r < min(m,n) and qi/g2|g3|...|g¢- monic in F[t] s.t. A; =g for 1 <i <rand 4;; =0
otherwise.

We generalize Gaussian elimination, i.e., row (and column) reduction for matrices with
entries in F' to matrices with entries in F[t]. The only difference arises because most
elements of F'[t] do not have multiplicative inverses.

Let A € M,,(F[t]). We say that A is an elementary matrix of

i) Type L if there exists A € F[t] and | # k s.t.
1 ifi=j
A=A if (4,7) = (k1)
0 otherwise
ii) Type II: If there exists k # [ s.t.
ifi=j#lori=j#k
ifi=j=lori=j=k

1
0
1 if (k1) = (4,7) or (k,1) = (4,49)
0 otherwise

Aij =

iii) Type III: If there exists a 0 # v € F and [ s.t.
1 ifi=j5+#1
Ajj=<Ru ifi=j=1

0 otherwise

Remark 19.5. Let A € F[t]™*™. Multiplying A on the left (respectively right) by a suitable
size elementary matrix of

a) Type I is equivalent to adding a multiple of a row (respectively column) of A to another
row (respectively column) of A.

b) Type II is equivalent to interchanging two rows (respectively columns) of A.

c) Type III is equivalent to multiplying a row (respectively column) of A by an element in
F[t] having a multiplicative inverse.
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Remark 19.6. 1. All elementary matrices are invertible.

2. The definition of elementary matrices of Types I and II is exactly the same as that given
when defined over a field.

3. The elementary matrices of Type III have a restriction. The u’s appearing in the
definition are precisely the elements in F[t] having a multiplicative inverse. The reason
for this is so that the elementary matrices of Type III are invertible.

Let
GL, (Ft]) = {A]A is invertible}

Warning: A matrix in M, (F[t]) having det(A) # 0 may no longer be invertible, i.e.,
have an inverse. What is true is that GL,(F[t]) = {A|0 # det(A) € F'}, equivalently
GL,(Ft]) consists of those matrices whose determinant have a multiplicative inverse in
Ft].

Definition 19.7 (Equivalent Matrix) — Let A, B € F[t|™*". We say that A is
equivalent to B and write A ~ B if there exist matrices P € GL,,(F[t]) and Q €
GL,(Ft]) st. B= PAQ.

Theorem 19.8

Let A € F[t]™*™. Then A is equivalent to a matrix in Smith Normal Form. Moreover,
there exist matrices P € GL,,(F[t]) and @ € GL,(F[t]), each a product of matrices
of Type I, Type II, Type III, s.t. PAQ is in SNF.

Remark 19.9. The SNF derived by this algorithm is, in fact, unique. In particular, the monic
polynomials q1]g2|gs| .. .|¢r arising in the SNF of a matrix A are unique and are called the
invariant factor of A. This is proven using results about determinant.
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§20.1 Rational Canonical Form

If A,B € F[t]™*™ then A =~ B if and only if they have the same SNF if and only if they
have the same invariant factors. So what good is the NSF relative to linear operators on
finite dimensional vector spaces?

Let A, B € M,,(F'). Then A ~ B if and only if tI — A~ tI — B in M, (F[t]) and this is
completely determined by the SNF hence the invariant factors of tI — A and tI — B. Now
the SNF of tI — A may have some of its invariant factors 1, and we shall drop these.

Let V be a finite dimensional vector space over F' with % an ordered basis. Let T : V — V
be a linear operator. If one computes the SNF of tI — [T, it will have the form

1 0 e e 0
0 1 0
T
q2
0 cee e qr
with ¢i|q1]. .. |gr are all the monic polynomials in F[t] \ F. These are called the invariant

factors of T'. They are uniquely determined by 7". The main theorem is that there exists
an ordered basis Z for V s.t.

C(Ql) 0 0

0 C 0

7], = | (q2) o
0 ... Clgr)

and this matrix representation is unique. This is called the rational canonical form or RCF
of T. Moreover, the minimal polynomial ¢; of T is g,.. The algorithm computes this as
well as all invariant factors of T'. The characteristic polynomial fr of T' is the product
of q1...q-. This works over any field F', even if ¢r does not split. The basis % gives a
decomposition of V' into T-invariant subspaces V. = W1 &...® W, where frw, = qrw, = ¢
and if dim(W;) = n; then %; = {vi,Tvi, e ,T”i_lvi} is a basis for W;.

Let V be a finite dimensional vector space over F' with % an ordered basis. Let T : V — V
be a linear operator. Suppose that gp splits over F'. Then we know that there exists a
Jordan canonical form of T'.

Question 20.1. How do we compute it?

We use the Smith Normal Form of ¢t —[T", to compute the invariant factors qi|q1] .. .|gr
of T just as one does to compute the RCF of T'. We then factor each ¢;. Suppose this
factorization is

gG={t—=A)"... (t— /\m)rm
in F[t] with A\j,..., A\, distinct. Note that g;+1 has this as a factor so it has the form

IR (25 V) LN (7 W L N (T W L
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with s; > r; foreach 1 <i <mand m+1,...,m+k > 0 with A,..., A4 distinct. Then
the totality of all the (f — A;)"7, including repetition if they occur in different ¢;’s give all
the elementary divisors of T'. So to get the JCF of T' we take for each ¢; as factored above

the block matrix
J(A) 0 ... 0

0 o Ty ()

and replace C(g;) by it in the RCF, i.e., we take all the Jordan blocks J,.(\) associated to
each and every factor of the form (¢ — \)" in each and every invariant factor ¢; determined
by the SNF and form a matrix out of all such blocks. This is the JCF which is unique only
up to block order.
Let V be a finite dimensional vector space over F', T': V — V linear, v € V. Then as
before, if v € V

Fltlo ={f(T)v|f e Ft]} €V

the T-cyclic subspace of V generated by v and satisfies
Ny = dim F[T]v < dim V'

and has ordered basis

By = {v,Tv, e ,T””_lv}
As F[T]v is T-invariant,

[T|F[T]U] Do c <fT|F[T]v)

and
4T\ pirye = fT\F[T]v

We want to show that V' can be decomposed as a direct sum of T-cyclic subspaces of V.
The SNF of the characteristic matrix

tl —[T],
% is an ordered basis for V', which gives rise to invariants of T’
ql ... |g € Flt] (*)

q1 # 1, ¢; monic for all 4.
Note: The SNF of (+) has no 0’s on the diagonal asfr # 0. We want to show there exists
an ordered basis & for V with all the following properties

V=wee..eoW.,n=dmW,;,i=1,...,r
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vil) By, = {vi,Tvi, e ,T”i_lvi} is an ordered basis for W;, i =1,...,r
viii) B =% U...UZH, is an ordered basis for V satisfying

Clq1) 0

[T]ﬂ = .
0 Clqr)

called the rational canonical form of T and it is unique.

The uniqueness follows from the uniqueness of SNF. From the definition of equivalent
matrix, we have the following remark

Remark 20.1. If A € M, F[{] is in SNF, then

Ae€GL,Ft] <= A=1I

since

means 0...0-¢;...q, € F\ {0} if there are any 0’s on the diagonal, which is inseparable.

/Lemma 20.2 b
Let g € F[t] \ F' be monic of degree n. Then
1 0
It —C(q) =
(9) .

0 q
- J
\

/Corollary 20.3
Let V be a finite dimensional vector space over F', T': V' — V linear q1]...|q, the
invariants of 7" in F[t]. Then

where dimV =37 degg; )

Certainly, if there exists an ordered basis Z for V a finite dimensional vector space over F',
T :V — V linear s.t. [T, is in RCF, then everything in goal falls out. So by the above,
the goal will follow if we prove the following
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(Theorem 20.4 A

Let Ag,By € M,F, A = tI — Ay and B = tI — By in M, Ft], the corresponding
characteristic matrices. Then the following are equivalent

i) Ag ~ By (i.e. Ap and By are similar)

ii) A~ B (i.e.,, A and B are equivalent)

iii) A and B have the same SNF.

We need two preliminary lemmas.

Lemma 20.5

Let A~ B in M, F[t]. Then 3P, Q € GL,,F[t] each products of elementary matrices
s.t. A= PBQ.

Proof. P € GL,F[t] iff its SNF = I which we get using elementary matrices. O

For the second lemma, we need the “division algorithm” by “linear polys” in M, F'[t]. If we
were in F[t], we know if f,g € F[t], f # 0,

g=fq+r e F[t] with r =0 or degr < deg f
Soif f=t—a,r € F,ie.,r=g(a) by plugging in a into (*). But for matrices,
AQ+R#QA+R

but the same argument to get (*) for polys, will give a right and left remainder.
Notation: Let A; € M[,F,i=0,...,n and let

At + A, "+ A

denote
Ap(t"I) + ... 4+ Agl € M, Ft]
So if
A = (aij)
then

At" = (Oéijtn)
i.e., two matrix polynomials are the same iff all their corresponding entries are equal, i.e.,

(ML, F)[t] = M, (F[t])
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/Lemma 20.6
Let Ag € M, F', A=1tI — Ay € M,,F[t] and

0# P = P(t) € M, F[t]
Then there exist matrices M, N € M,,F[t| and R, S € M, F' satisfying
i) P=AM + R

i) P=NA+S

\
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§21.1 Rational Canonical Form (Cont’d)

Recall from last lecture,

[Lemma 21.1 A
Let Ag € Ml,F, A=1tI — Ag € M, F[t] and
0+# P = P(t) € M, Ft]
Then there exist matrices M, N € M, F[t] and R, S € M, F satisfying
i) P=AM + R
i) P=NA+S
J

Proof. i) Let
m = H}%Xdeg Py, Py #0

and Vi, j let
o lead Pz’j if deg Pij =m
Y10 if Pj=0o0r degPy <m

So
Pij = a;t™ + lower terms in t € F'[t]

Let a;; € M, F' and let
Pp1 = (aij)t™ = (aijtm_l)
Every entry in
APy = (tT — Ag) (ayy)t™
= (i )t"™ — Ao(ai)t™

has deg = m or is zero and the t"-coeflicient of (AP,,—1); is a;j. Thus, P — APy,
has polynomial entries of degree at most m — 1 (or = 0). Apply the same argument
to P — AP, (replacing m by m — 1 in (*)) to produce a matrix P,,_o in M, F[t]
s.t. all the polynomial entries in (P — AP,,_1) — AP,,_2 have degree at most m — 2
(or = 0). Continuing this way, we construct matrices P,,_s, ..., Py satisfying if

M=PFP, 1+P,o+...+F

then
R=P—AM

has only constant entries, i.e., R € M, F". So
P=AM+R

as needed.
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ii) This can be proven in an analogous way. O

Theorem 21.2
Let Ao,Bo e M, F, A=1tl— Ao, B =1tl — By in MnF[t] Then

A~ BeM,F[t] <= Ao~ By € M, F

Proof. “ «— 7 If
By = PAyP~!, PeGL,F,

then
P(tI—Ag) P '=PtP~' —PAP ' =tI—-By=B

So B=PAP~! and B ~ A.
“ = 7 Suppose there exist P, Q1 € GL,Ft], hence each a product of elementary matrices
by Lemma 20.5, satisfying

B=1tB— By=PlAQ1 =P (tI — Ag) @1
Applying Lemma 21.1, we can write
i) P, =BP>+ R, P, € M,F[t], R € M,,F

i) Q1 = Q2B+ S, Q2 € M, F[t], S € M, F
Since B = PLAQ1, P1,Q1 € GL, F[t], we also have

iii) P,A=BQ™!

iv) AQ; = P;'B
Thus, we have

B = PAQ 2 (BP, + R)AQ1 = BP,AQ1 + RAQ:

)

Y) BP,P 1B + RAQ: 2 BPP'B + RA(QsB + 5)
= BP,P['B+ RAQ,B + RAS

i.e., we have
v) B = BP,P;'B+ RAQ>B + RAS

By i)
R=P, — BP,

Plugging this into RAQ, B, yields
RAQ2B 2 (P — BP)AQo2B = PLAQsB — BPAQsB
Y BQ Q2B — BPAQ:B = B [Q7'Qa — PAQs] B

i.e.
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vi) RAQ2B = B [Q7'Q2 — P,AQ:| B
Plug vi) into v) to get
B Y BP,P{ B + RAQ.B + RAS
Y BP,P B + B [Q7 Qs — PyAQ] B+ RAS
=B [PRP[ '+ Q7'Qs — P2AQ>] B + RAS

Let
T=PP ' +Q7'Qs — PAQ>

Then
vii) B = BTB+ RAS € M, F'[t]
We next look at the degree of the poly entries of these matrices.

viii) Every entry of B = tI — By is zero or has deg < 1 and every entry of RAS =
R(tI — Ap)S has is zero or has deg < 1.

Question 21.1. What about BT B?
Let T = Typt™ + Ty t™ L + ... + Ty with Tp, ..., T, € M,F. Then

BTB = (tI — Bg) (Tint™ + Trn1t™ ' + ...+ Tp) (tI — By)

= T,t™ 2 4+ lower terms in ¢
Comparing coefficients of the matrix of polys BI'B = B — RAS using vii), viii) shows
Tn=0

Hence
T=0

So vii) becomes

tI — By = B = BTB + RAS = RAS = R(tI — 4¢)S
— RST + RAyS (*)

comparing coefficients of the poly matrices in (*) shows

I=RS
By = RAyS

ie., By = RAyS = RAyR™ . O
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/Theorem 21.3 A

Let Ao, By € M, F', A =tl — Ay, B =tl — By in M, F[t]. Then the following are

equivalent
AO ~ BO

1

i

i)
i) A

iii) A and B have the same SNF.
)

iv) A and By have the same invariant factors.

- J

In particular, if V' is a finite dimensional vector space over F', T : V' — V linear, ¢1]...|q,
the invariants of T', then

V=kerq:(T)®...Dkerg,(T)

qr = 4qr

fr=q...q

Note: If ¢; = []}_;(t — \;)* is an invariant factor, then
Jer (A1) 0

C(qi) ~ ..
0 Je, (Ar)

Corollary 21.4
Let A,B e M,F, FF C K asubfield. Then A ~ B in M,F iff A ~ B in M, K.
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§22.1 Inner Product Spaces

Notation: — : C — C by a+ fv—1 — a — v/—1 Vo, € R is called the complex
conjugation. If F C C, set -
F={alacF}

is a field, e.g., F = F if F C R.

Definition 22.1 (Inner Product Space) — Let F' C C satisfy F = F, V a vector space
over F'. Then V is called an inner product space over F' relative to

<,>:<,>VZVXV—>F
satisfies
1. py : V= F by py(w) == (w,v) is linear for all v € V, i.e., p, € V*

2. (v,w) = (v,w) for all v,w € V

S 3. v = (v,v) e RN F for all v € V and |[v||? > 0 in R and = 0 iff v = 0 (*) y

Let V be an inner product space over F. Then,
1. If v € V satisfies (w,v) =0 for all w € V, then v = 0.

2. Let v1,vp € V' \ {0},
— <U27 U;) vy
[[o]]
is called the orthogonal projection of vo on v; and v = v9 — w is orthogonal to w, i.e.
(v,w) =0, write v L w.

Definition 22.2 (Sesquilinear Map) — A map f: V — W of inner product space over
F' is called sesquilinear if v1,v3 € V, a € F

f(v1 +avz) = f(v1) +af(ve)

Let V= {f:V — F| f sesquilinear} a vector space over F.

Example 22.3
If F C R, then any sesquilinear map is linear and V1 = V*,
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Remark 22.4. Let V be an inner product space over F.
1. p: V = V* by v — p, is sesquilinear.
plavy + va)(w) = (w, avy + va)
= a(w, v2) + (w,v1) = ap(v1) + p(vz2)
for all @ € F, v1,v9,w € V. Also, we can deduce that p is an injection and if V' is finite
dimensional, then p is a bijection.

2. ffveV,let A, : V= F by w— (v,w), i.e.,, \y(w) = (v,w). Then A, is sesquilinear.
Moreover,
AV Vibyves

is linear. As (v,w) = 0 for all w — v = 0, A is injective hence monic. If V is finite
dimensional then A is an isomorphism.

3. If f:V — W is sesquilinear, it is called a sesquilinear isomorphism if it is bijective and
f~! is sesquilinear. Then f is a sesquilinear isomorphism iff f is bijective.

Let V' be an inner product space over F.
1. If v e V, ||v]| == \/||v]|*> > 0 is called the length of v.

2. Length and Z make sense in V' by the Cauchy — Schwarz inequality

(v, w)| < [ollflw]l Vo,weV

and V is a metric space by distances from v, w = d(v,w) := ||v — w|| as the triangle
inequality
[[o 4wl < fJvf| + [lwl]

holds for all v,w € W.

3. Gram — Schmidt: If W C V is a finite dimensional subspaces, then 39 an orthogonal
basis for W

B =A{wi,...,w}, ie (wj,w;)=0ifi#j

and if ||w;|| € F Vi, then 3 an orthonormal basis

%:{ w1 Wn }
Jwil|” 7 lwall

4. In 3),if v € V let B = {w1,...,w,} be an orthogonal basis for W. Set

" (v, wy) = w;
v ::Z 4 lw:ZviZ wj
W= 2 g T 2 [

=1 i=1

Then, the w;-coordinate of v, is ﬁi;;”nlg € F'. Hence

fi=p wi V= F

is the corresponding coordinate function, so B* = {f1,..., fn} is the dual basis of A.
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5. Let ) £ .S C V be a subset. The orthogonal complement S+ of S is defined by
St={zcV|lzLlsVsecSICV
a subspace.

Note: The sesquilinear map
p:V = V*by v p,

induces an injective sesquilinear map
p‘ gL St 8°
and we have
§c sl = (sht
If S is a subspace, SN S+ =0 so
S+8t=S8as5*

write
S+8t=815"
called an orthogonal direct sum and if V is finite dimensional then
S =5+t
e.g.,if v € V, then
ker p, = (Fv)*t

SO
V =Fv L (Fv)*

More generally, we have the following crucial result.

Theorem 22.5 (Orthogonal Decomposition)

Let V be an inner product space over F', S C V a finite dimensional subspace. Then
V=S158"

ie,ifveV
Jse s, steStsv=s+s"

In particular, s = vg. If V' is finite dimensional, then

N dimV = dim S + dim S+

~

Theorem 22.6 (Best Approximation)

Let V' be an inner product space over F, S C V a finite dimensional subspace, v € V.

Then vg € Sis the best approximation to v in S, i.e., for all s € S

|lv —vs|| < ||v — s|| with equality iff s = vg
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Remark 22.7. More generally, if V' is an inner product space over F,
V=wa..eW,

with
wiJ_wj VwiGWi,ijWj,i;éj

We call V' an orthogonal direct sum or orthogonal decomposition of V.

By the Orthogonal Decomposition Theorem,
V=W, LWt

and
Wh=WiL...W; L...LW,
\,.J
omit

Let P;: V — V be the projection along
Wh=wiL...LW;, L... LW,
onto W;. Then we have

ker P; = Wit
im P, =W,
PP, =06;P; Vi,
ly =P +...+ P,
The P; are called orthogonal projections. As W; C V is finite dimensional in the above,
Pi(v) = Uw;
So
v=vw,; +...+ 0w,

is a unique decomposition of v relative to (*).

Definition 22.8 (Adjoint) — Let V, W be inner product spaces over F', T : V — W
linear. A linear transformation 7% : W — V is called the adjoint of T if

(Tv,w)yw = (v, T*w)y YoeVVweW

Theorem 22.9

Let V, W be finite dimensional inner product space over F', T : V' — W linear. Then
the adjoint 7% : W — V exists.

94



Duc Vu (Spring 2021) 23 Lec 23: May 19, 2021

§23 ‘ Lec 23: May 19, 2021

§23.1 Inner Product Spaces (Cont’d)

/Corollary 23.1 A

Let V, W be finite dimensional inner product space over F', T : V' — W linear. Then

and

(T*w,v)y = (w, Tv)w YweW VVveV
- J

Proof. We have

(Tv,w)yw = (v, T*w)y = (T*w,v)y

= (w, T*v)yw = (T™ v, w)w

which completes the proof. O

/Definition 23.2 (Isometry) — Let V, W be inner product space over F', T : V — W\
linear. Then T is called an isometry (or isomorphism of inner product space over F) if

1. T is an isomorphism of vector space over F'

2. T preserves inner products, i.e.,

(T, TV )w = (v,v)y Yo, o' e V
\ J

Remark 23.3. Let T : V — W linear of inner product space over F. If T preserves inner
products, then T is monic.

Tv=0 <= ||Tv|]| =0 <= (Tv,Tv) =0 < (v,v) =0
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(Theorem 23.4 A

Let V, W be finite dimensional inner product space over F' with dimV = dim W and
T :V — W linear. Then the following are equivalent

1. T preserves inner product.
2. T is an isometry.

3. If B={v1,...,v,} is an orthogonal basis for V, then € = {Tvy,...,Tv,} is an
orthogonal basis for W and

[Tvill = flosll - i=1,...,n

4. 3 an orthogonal basis # = {vi,...,v,} for V st. € = {Tvy,...,Tv,} is an

orthogonal basis for W with || Tv;|| = |lvi|| i =1,...,n.
- J

Proof. 1) = 2) T is monic by the remark above, so an isomorphism by the Isomorphism
theorem.

2) = 3) By the Isomorphism theorem, % is a basis for W and % is orthogonal with
|vill = || Tv;|| for all i.

3) = 4) is immediate.

4) = 1) By the Isomorphism theorem, 7" is an isomorphism of vector space over F. If
zyyeV,letx=>" av;, y = iy Bivi, then

(2,y) = ciBjlvi,v5) = > iy il
i

07
= if;0i;||Tvil|> = B8 (T, Tw;)
i3 i,J
= (Tz,Ty) O

Corollary 23.5

Let V, W be finite dimensional inner product space over F' both having orthonormal
basis. Then V is isometric to W if and only if dim V' = dim W.

Proof. Apply UPVS and the theorem above. O

Theorem 23.6

Let V, W be inner product space over F', T : V — W linear. Then T preserves inner
products iff T" preserves lengths, i.e., ||[Tv|w = ||[v||y for all v € V.

Proof. “ = 7 The result is immediate.
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“ «— ” Let z,y € V and

<33,y>V =a+ B\/jl
(Tz, Ty)w =7+ 6v/—1

for a, 8,7, € R. We notice that
20=2y = a=v

So we are done if F C R. Suppose F ¢ R, then there exists 0 # pu € R s.t. uy/—1 € F.
Then

(z,V=1py)y = —V=1plz, y)v = —pv/—la + Bp
(Tx,V=1puTy)w = —vV 1Tz, Ty)w = —pv/ =1y + dp

Analogous to (*),
Bu=0p, sofB=0
Hence (z,y)v = (Tx, Ty)w. O
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§24.1 Inner Product Spaces (Cont’d)

Definition 24.1 (Unitary Operator) — Let V be an inner product space over F,
T :V — V linear. We call T a unitary operator if 7" is an isometry. If ' C R, such a
T is called an orthogonal operator.

Proposition 24.2

Let V be an inner product space over F, T : V — V linear. Suppose that T exists.
Then, T is an isometry if and only if T* = T, ie.,, TT* = 1y, = T*T.

Proof. “ = ” As T is an isomorphism of vector space over F', T~ : V — V exists and is
linear. As T preserves inner products, for all z,y € V

(Tx,y) = Tz, lyy) = (Ta:,TT_ly> = (x,T_1y>

It follows that 7% = T~! by uniqueness.
“ = 7 As T*T = 1y = TT*, T is invertible with T-! = T so T is an isomorphism.
Since

(Tz,Ty) = (2, T"Ty) = (z,y)

for all x,y € V. T preserves inner products. O

Remark 24.3. Let V be a finite dimensional inner product space over F', T : V — V linear.
1. T is monic iff T is epic iff T' is an iso of vector space over F'.

2. Tis unitary <= T"'T =1y < TT* =1y

3. T is unitary <= T is unitary as T** =T

- _ D
Definition 24.4 (Unitary Matrix) — Let F C C, F = F. We say A € M, F is unitary
if A*A = 1. Equivalently, AA* = I. Let

UnF = {A € GL,F| AA* = I}

If F C R, we say A € M, F is orthogonal if AT A = I. Equivalently, AAT = I. Let

OnF :={AecGL,F|AAT =
L F {eLF I} )
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Remark 24.5. 1. Let F C C, F=F, F**!, F™*" inner product space over F via the
dot product. If A € M, F', then

A=4], ;:F»t -

Sn,
linear and s, 1 the ordered standard basis. Then A is unitary iff

i) The columns of A form an ordered orthonormal basis for F"*!

ii) The rows of A form an ordered orthonormal basis for F1*"

2. If T:V — V is linear, V' an inner product space over F' with dimV = n, &, % ordered
orthonormal bases for V', then T is unitary iff [T . is unitary.

§24.2 Spectral Theory

Lemma 24.6

Let V be an inner product space over F', T' : V. — V linear, W C V a subspace.
Suppose that T* exists. Then the following is true: If W is T-invariant, then W is
T*-invariant.

Proof. Let v € W', w € W, then

(w, T*v) = (Tw,v) =0 O

Lemma 24.7

Let V be a finite dimensional inner product space over F, T : V — V linear. Then
the following is true: If A is an eigenvalue of 7', then A is an eigenvalue of 7.

Proof. Let S =T — Aly : V — V linear. Then
S*=T*— Ay :V — V linear

Then Yw € V,
0= (0,w) = (Sv,w) = (v, S*w)

Hence v L im S* and v ¢ im S* as v # 0. By the Dimension Theorem,

0<kerS*, Ep(\)#0 O

Theorem 24.8 (Schur)

Let V be a finite dimensional inner product space over F with /' = R or C and
T :V — V linear. Suppose that fr splits in F[t]. Then, there exists an ordered
orthonormal basis # for V s.t. [T], is upper triangular.
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Proof. We induct on n = dim V.
n = 1 is immediate.
n > 1. By the 2nd lemma, 3\ € F and 0 # v € Ep+(\). By the Orthogonal Decomposition
Theorem,
V =Fv L (Fv)*

and
dim(Fv)t = dimV — dim Fv =n — 1

Fv is T*-invariant, hence (Fv)t is T** = T-invariant. Let %y be an ordered basis for
(Fv)*t. Then € = %y U {vo} is an ordered basis for V and we have

[T|(FU)L} % *

[Tle =
*
0 [Twole
By expansion,
f fr € Flt]
T’(F'U)J- ’
hence fT} € F1Jt] splits. By induction, there exists an orthonormal basis %, =

(Fo)L
{v1,...,vp_1} for (Fov)t s.t. [T‘(Fv)i}%,o is upper triangular. Then & = %y U {ﬁ} is

an orthonormal basis for V' s.t. [T, is upper triangular. O
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§25.1 Spectral Theory (Cont’d)

[Definition 25.1 (Hermitian(Self-Adjoint)) — Let V' be an inner product space over F,
T :V — V linear. Suppose that T™* exists. We say that 7" is normal

TT* =TT

and is Hermitian if 7' =T, i.e.

L (Tv,w) = (v, Tw) Yo, w eV )

Note: If T is Hermitian, T* exists automatically and 7 is normal.

Lemma 25.2

Let V be an inner product space over F;, A € F, 0 v €V, T :V — V a normal

operator. Then _
v € Er(\) <= ve Er(\)

Proof. Let S =T — Aly, then S* = T* — Xly.. It follows that
SS*=8*S, ie S isnormal

Then
1Sv]|? = (Sv, Sv) = (v, 5*Sv)
= (v, 85*v) = (S*v, S*v)
= [|5*|?
So
vEEBr(\) &= Sv=0 < Sv=0 < veEpr()\) O

/Corollary 25.3 A

Let V be an inner product space over F', T : V — V normal, A # u eigenvalue of T'.
Then, Er(X) and E7(u) are orthogonal. In particular,

S Br(N) = £ Er()
N ’ J
Proof. Let 0 # v € Ep()\), 0 # w € Ep(p). Then by the lemma, w € Ep« () and
Mo, w) = (A, w) = (Tv,w) = (v, T*w)
= (v, iw) = pfv, w)
As X\ # u, we obtain (v, w) = 0. O
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Proposition 25.4

Let V be a finite dimensional inner product space over F';, F =Ror C, T :V —V
linear, # an ordered orthonormal basis for V' s.t. [T], is upper triangular. Then, T'
is normal if and only if [T, is diagonal.

Proof. “ <= "It

A1 0
[Ty =
0 An
then -
A1 0
[T*) g =T =
0 An
So
A1 f? 0
[TT"] 5 =151 5 =
0 Anl?
=[1"] 4 [T] 4
=[T7T],

Hence, TT* = T*T by the Matrix Theory Theorem.
“ = 7 Let # = {v1,...,v,} be an orthonormal basis for V s.t. A = [T], is upper
triangular. By the lemma,

Tvl = A11U1 and T*Ul = AHUl

By definition,

n

T v = Z(A*)ilvi = Z/Tlivi
i—1

i=1
So
A;; =0 Vi > 1

Hence,
AM‘ =0 Vi>1

In particular,

By the lemma,
Tvy = Aoovg, hence T v9 = Ao

The same argument shows Ay; = 0, 7 # 2, i.e.,
Ay =0, i#£2

Continuing this process, we conclude A is diagonal. O
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Theorem 25.5 (Spectral Theorem for Normal Operators)

Let V be a finite dimensional inner product space over C, T': V' — V linear. Then
T is normal if and only if there exists an orthonormal basis % for V consisting of
eigenvectors of T'. In particular, if 7" is normal, then T is diagonalizable.

Proof. This follows immediately by Schur’s theorem, FTA, and the above proposition. [

Remark 25.6. Let V' be a finite dimensional inner product space over R, T': V' — V linear.
Suppose that fr € R[t] splits. Then T is normal iff 3 an orthonormal basis % for V consisting
of eigenvectors for 7.

By Schur’s theorem, T is triangularizable via an orthonormal basis for V. The same result
follows by the proposition in the case F' = R.

Spectral Decomposition and Resolution for Normal Operators:

Let V be a finite dimensional inner product space over F', F =R or C, T :V — V
linear s.t. fr splits. So T is normal. Let Aq,..., A, be all the distinct eigenvalues of T in
F, € an orthonormal basis for V. We know

ve Ep(\) < veEpr(N) Vi (+)

Let P, : V — V be the orthogonal projection along Er(\;)* for i = 1,...,r omit at i
onto Ep(\;).

By (+), P;: V — V is also the orthogonal projection along Ez=(\;)* onto Ep«(\;).

This is a unique decomposition

Pp.o) = Pi=Pgz(Ni) Vi
TP,=PT and T*P,=PT" Vi
ly=P+...+ F;
PP; = 6;; P, Vi
T=MPi+...+ NP,
T* :)\71P1+...+/\7¢Pr
Let %; be an ordered orthonormal basis for Ep()\;), so B = %1 U...U %, is an ordered
orthonormal basis for V' with [T], and [T™], is diagonal.
Let 2 = [1y] #%- Then 2 is unitary as it takes an orthonormal basis to an orthonormal
basis, hence
9-1_ o
[T]g=2" [Ty 2
Mg =2"[T"4 2

Theorem 25.7

Let V be a finite dimensional inner product space over F, F =R or C,T:V — V
linear with fr € F'[t] splits. Then, T is normal if and only if 3g € F[t] s.t. T* = g(T).

103



Duc Vu (Spring 2021) 26 Lec 26: May 26, 2021

§26 ‘ Lec 26: May 26, 2021

§26.1 Spectral Theory (Cont’d)

Remark 26.1. A rotation Ty : R — R2 by £, 0 < 0 < 27, § # 7 has no eigenvalues, but is
normal (with R? an inner product space over R via the dot product) as it is unitary.

Lemma 26.2

Let V' be an inner product space over F', T': V' — V hermitian. If A is an eigenvalue
of T, then A € FFNR.

Proof. Let 0 # v € Ep(\). Then
Mv|? = Mo, v) = v, v) = (T, v)
= (v, T*v) = (v, Tv) = (v, \v)
= Mo, v) = A|Jv|?
As |[v]| # 0, A = A, so it’s real. O

Lemma 26.3

Let V be a finite dimensional inner product space over F with F =R or C,T:V =V
hermitian. Then fr € Ft] splits in F[t].

Proof. By previous result, we can assume that F' = R. Let % be an orthonormal basis for
V. Then

A=y ="y =T]%=A"
in M[,R C M,,C, n =dim V. As

A C™t — €™ is Hermitian
fa splits with real roots by Lemma 26.2. (and FTA), i.e.,

fa=TJt-x)ecCl, MeR Vi

So fr = fa=1]](— X\i) € R[t] splits. O

Theorem 26.4 (Spectral Theorem for Hermitian Operators)

Let V be a finite dimensional inner product space over F';, F =Ror C, T :V —V
hermitian. Then, there exists an orthonormal basis for V' of eigenvectors of T and all
all eigenvalues are real.

Proof. If F = C, the result follows by Lemma 26.2 as T' is normal. So we may assume
F =R. As fr € R[t] splits by Lemma 26.3, there exists an orthonormal basis % for V s.t.
[T'], is upper triangular by Schur’s Theorem. As T is normal, it is diagonalizable. The
result follows by Lemma 26.2. O
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§26.2 Hermitian Addendum

Theorem 26.5

If 0 £ V is a finite dimensional inner product space over R, T": V' — V hermitian,
then T has an eigenvalue.

The proof in Axler’s book is very nice, and he does not use determinant theory. He uses
the following arguments

1. If V is a finite dimensional vector space over F', T : V — V linear, then there exists
q € F[t] monic s.t. ¢(T) =0

2. If 0 # ¢ € RJt], then there exists a factorization
=Bt = )" (t=\)ql . gl
in R[t] with ¢; monic irreducible quadratic polynomials in R[¢].

This follows by the FTA.

Lemma 26.6

Let ¢ = t2 4 bt + c in R[t], b? < 4c, i.e., ¢ is an irreducible monic quadratic polynomial
in R[¢]. If V is a finite dimensional inner product space over R and 7' : V — V is
Hermitian, then ¢(7") is an isomorphism.

Proof. Tt suffices to show ¢(7T') is a monomorphism by the Isomorphism Theorem. So it
suffices to show if 0 # v € V, then ¢(T)v # 0. We have

(q(T)v,v) = (T?v,v) + b(Tv,v) + c(v,v)
= (Tv, Tv) + b(Tv,v) + c(v,v)
= |ITv]|* + b{Tv, v} + c|jv||?
> ||Tv))? — [l Tlllv]l + cllvl®

b 2 b
= (e = PENY o (= ) e >0

So q(T)v # 0. O
Proof. (of Theorem) Let ¢ € R[t] in 2) satisfy ¢(T") = 0. So
0=q(T) = (T —M1y)" ... (T = M1y)"q(T)" ... qs(T)

As all the ¢;(T") are isomorphism, at least one of the (7" — A;1y) is not injective, i.e., \; is
an eigenvalue. 0
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§27.1 Positive (Semi-)Definite Operators

Let V be a finite dimensional inner product space over F', where F =R orC, T:V —V
hermitian, & = {v1,...,v,} an orthonormal basis of eigenvectors of T, i.e.,

Tv; = A\, i=1,...,n

SoM eR,i=1,...,n. Suppose v € V. Then
n
’U:Zaiviv OéieF V’L
i=1

and

(Tv,v) = (Z T(aivi), Z a;vj)
i=1 Jj=1
= <Z )\iawi, Z ajvj>
i=1 Jj=1

= Niaid; (v, v5) (*)

3,j=1

= i )\ZCKZOTJ(L j

4,j=1

n
-3 Mo
i=1

/Definition 27.1 (Positive/Negative (Semi-) Definite) — Let V' be a finite dimensional
inner product space over F, FF =R or C, T : V — V hermitian. We say that T is

positive or positive definite if
(Tw,v) >0 VO#£veV
and positive semi-definite if

(Tv,v)y >0 VO#£veV

We can define T' as negative (semi-) definite similarly. y

It follows from (*) that we have

Proposition 27.2

Let V be a finite dimensional inner product space over F';, F =Ror C, T :V —V
hermitian. Then T is positive semi-definite (respectively positive) if and only if all
eigenvalues of T are non-negative (respectively positive).
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Question 27.1. What does this say about the 2°4 derivative test for C? function, f : S — R
at a critical point in the interior of S?

KTheorem 27.3 b

Let V be a finite dimensional inner product space over F';, F =Ror C, T :V —V
hermitian. Then 7" is non-negative (respectively positive) iff 35 : V' — V non-negative
s.t.

g g
i.e., T has a square root (respectively, and S is invertible). y
Proof. ¢ = 7 Let 8 = {v1,...,v,} be an ordered orthonormal basis for V of eigenvectors

of T
Tv; = A\, AN>0eR, 1=1,...,n

Then dp; € R, p; > 0 s.t. )\i:uf,izl,...,n. Let
VAL 0 141 0

0 Vn 0 fin

So
B*=[T],

By MTT, 35 : V — V linear s.t. [S], = B. So
[Ty = B* = [S]i? = [52](@
Hence T = S? by MTT. As % is orthonormal, y; € R for all i
(9] =[S = B" =B =1[5]4

Thus, S = 5* by MTT; so hermitian if \; > 0Vi, det B # 0, so B € GL,F.
“ <= "7 Let % be an ordered orthonormal basis for V' of eigenvectors for S. Then

H1 0
[S]g = , i >0€Rand
0 U,
i 0
2 )
[T]5 = [S ]gg = .
0 I

is diagonal. Therefore, 4 is also an orthonormal basis for V of eigenvectors of T'. As u? > 0
(> 0 if S is invertible), T' is non-negative (respectively positive if S is invertible). O
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Theorem 27.4

Let V be a finite dimensional inner product space over F';, F=RorCand T :V —V
hermitian. Suppose that T is non-negative. Then T has a unique square root S, i.e.,
S :V — V non-negative s.t. S? =T.

Proof. Let S> = T, S : V. — V non-negative. The Spectral Theorem gives unique
orthogonal decompositions
V=Er(A\1)L...LEp(\)
T=MNP\, +...+ NPy,
P\, Py, = 0ij Py, Py, Vi, g
ly =P\, +...+ P,

and we also have

V=FEs(u)L...LEg(us), i >0, i=1,...,s
S=p Py + ...+ ps Py,

PPy, = 6P,  Vij
ly =Py +...+ P,

In particular,

52:(Nlpul+"'+N8Pus)(,“1pﬂ1+'--+Mspus)
:N%Pm‘{'-““‘ﬂzpus

As T = S?,
PIP, + o+ 2Py, = M Py e Ay

So by uniqueness, we must have s = r and changing the order if necessary

2=\, P, =P, Vi O

Lemma 27.5

Let V, W be finite dimensional inner product space over F', F=Ror C,T:V - W
linear. Then T*T : V — V is hermitian and non-negative.

Remark 27.6. If in the definition of positive operator, etc, we omit V' being finite dimensional
but assume T™ exists, then we would still have T*T hermitian.

Proof. Let z,y € V. Then
(x (T°T)y)y = (T"Tz,y)v = Tz, Ty)w = (z, T"Ty)v
Since this is true for all z,y
(T*T)* = (T*T*™)" = T*T
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is hermitian, hence has real eigenvalues. Let A be an eigenvalue of T*T, 0 # v € V s.t.
T*Tv = Av. Then

)‘HUH%/ = >\<'U,"U>V = <>‘U7U>V = <T*TU=U>V
= (Tw, Tv)w = |Tv|f =0
So )
el
[oll3

as [[v]|Z # 0. O

>0

Corollary 27.7

Let V be a finite dimensional inner product space over F', ' =Ror C, T : V — V linear.
Then T is non-negative (respectively positive) iff 35 : V' — V linear (respectively an
isomorphism) s.t. 7' = S*S.

Proof. Use the theorem and lemma presented above. O
Notation:

e F=RorC, Aec Fmxn

o AW = the i*" column of A

o« A=[AD) . AtW]

(,) = the dot product on F¥ for any N > 1

e Un(F)={U e GLyF|U* =U1}

Definition 27.8 (Pseudodiagonal) — Let D € F™*™. We call D pseudodiagonal if
D;; =0 Vi # j, i.e., only D;; can have non-zero entries.
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( )
Theorem 27.9 (Singular Value)
Let F=Ror C, Ae F™*". Then 3U € U,(F), X € Up(F) s.t.
H1 0
X*AU =D = o e Fmxm
0
0
is a pseudodiagonal matrix satisfying
w1 > ... 2 e >0
and
r = rank(A)
- J

Proof. By the lemma, A*A € M, F' is hermitian and has non-negative eigenvalues. Let
A1, ..., A\ be the positive eigenvalues ordered s.t.

M2 2A>0
By the Spectral Theorem for Hermitian Operators, 3U € U, F s.t.

A1 0

(AU)*(AU) = U*A* AU =

in M,F. Let C = AU € F™*", Then

C*C = (AU)*(AU) € M, F

Write
)\i:ﬁ%27 wi >0, 1<i<r
So
p1 > ... > up >0
Set
151 0
B= Hr 0 €M, F
0 0
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If i > r1 let A\; = 0. Then, we have

Xidij = (C*C)ij = Y _(CT)aCly = > CyiCyy
l l

= 30, = (0, )
l

Hence

c=[c®H ... ¢ o ... 0

We continue with the proof in the next lecture. O
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§28.1 Positive (Semi-)Definite Operators (Cont’d)

Proof. (Cont’d) Recall, we have proven so far

C=[c®H ... ¢t o ... 0
and thus {C(l),...,C(’")} is an orthogonal set in F™*1. As C) £ 0, i = 1,...,r,
cW, ..., C") are linearly independent. In particular,
rank C' =r

We also have A A ‘
ICW|? = (@, 0W) = X = i

fori=1,...,m. As U is invertible,

rank A =rank AU =rank C =71

So rank A = r as needed.
Now let

X0 = ic@, i=1,...,r
Mg

Then {X W X (7")} is an orthonormal set. Extend this to an orthonormal basis % =
{x® .., XM} Then

X=[xO . XM ={lpmaly | g
Since both .7, 1 and # are orthonormal bases, X € Up,(F'). Let D be the pseudo-diagonal
matrix
H1 0
D — ,UJT c Fan
0
0
as in the statement of the theorem. Then
M1
XD=[xM .. xm)] fir
0
= [ulX(l) ERNTAD. ¢ CORN 1 0]
=C =AU
Hence
X*AU =D
as needed. O
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/Definition 28.1 (Singular Value Decomposition) — Let A € F™*" F =R or C. A
A=XDU* UcecUF, XecU,F
M1 0
D= o g Frmxm *)
0
0
w1 >...>ur>0€eR
Then (*) is called a singular value decomposition (SVD) of A, u,...,p, are the
singular values of A, D is the pseudo-diagonal matrix of A.

J

Note: Let A= XDU* be an SVD of A. Then

1. The singular values of A are the (positive) square roots of the positive eigenvalues of
A*A.

2. The columns of X form an orthonormal basis for F*1 of eigenvectors of AA*.

3. The columns of U form an orthonormal basis for F™*! of eigenvectors of A*A.

Corollary 28.2

The singular values of A € F"*" F =R or C are unique (including multiplicity) up
to order.

Proof. Let A= XDU* bea SVD of A, X € U,F, U € U,F. Then
A*A = (XDU""(XDU*)=UD*X*XDU* =UD*DU*

as X*X =1. So

2
a7y

A*A~ D*D = e M, F

have the same eigenvalues a2, ..., as A*A. O

I Remark 28.3. An SVD of A € F™*" F =R or C may not be unique.

Corollary 28.4

The singular values of A € F™*" F =R or C are the same as the singular values of
A* € Fnxm,

Proof. (XDU*)* = UD*X* and D, D* have the same non-zero diagonal eigenvalues. [

The abstract version of the singular value theorem is
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~

Theorem 28.5 (Singluar Value - Linear Transformation Form)

Let F =R or C, V a finite dimensional inner product space over F'and T : V — W
linear of rank . Then there exists orthonormal basis

B =A{vi,...,v,} for V
€ ={wi,...,wp} for W
wr>...>u>0eR

satisfying
w;, 1=1,...,1r
To; = Hi W5 .
0, 1>
o J
Conversely, suppose the above conditions are all satisfied. Then v; is an eigenvector for
T*T with eigenvalue ,ulz for:=1,...,r and eigenvalue 0 for i =7+ 1,...,n. In particular,
Ui, -., up are uniquely determined.
Proof. Left as exercise. O

Remark 28.6. So we see for an arbitrary linear transformation 7' : V' — W of finite dimensional
inner product space over F', F = R or C, singular values can be viewed as a substitute for
eigenvalues.

When F=R or C and A € M, F, we get a generalization of the polar representation of

eigenvalues z € C where z = revV=10.
» )
Theorem 28.7 (Polar Decomposition)
Let F=Ror C, A € M,,F. Then there exists U € U,F, N € M, F hermitian with all
its eigenvalues real and non-negative satisfying
A=UN
hereN<—>r,U(—>e\/j19forn:1. )

Proof. In the singular value theorem, we have m = n. Let A = XDU* be an SVD,
X, U € U,F. We have D = D* is hermitian with non-negative eigenvalues. So

A= XDU* = X(U*U)DU* = (XU*)(UDU*)

Since
(XUHXU") =UX*XU*"=UU"=1

XU* € U,F also. Let U = XU* € U,F, N = UDU* which completes the proof. O

§28.2 Least Squares
We give an application of SVD
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Problem 28.1. Let FF = R or C, V a finite dimensional inner product space over F|,
W C V a subspace. Let
Py :V -V byve— vy

be the orthogonal projection of V' onto W. By the Approximation Theorem, vy is the best
approximation of v € V onto W. Now let X be another finite dimensional inner product
space over F' and T': X — V linear with W =T(X) =im 7. Let v € V and z € X. We
call

i) x a best approximation to v via T if

Tr = W = PV[/(U)

ii) = an optimal approximation to v via T if it is a best approximation to v via 7" and
||z|| is minimal among all best approximation to v via 7.

Find an optimal approximation.

Solution:
<l’, T*y>X = <T$7 y)V?
we have
W+ = (im T)* = ker T*
Since
v—oy € WH = (im T)* (by the OR Decomposition Theorem)
and

T v = T oy
So if z is a best approximation of v via T', then
T*Tx =T (*)
i.e., x is also a solution to T*T'xz = T*v. Conversely, if (*) holds, then
Tz —v€kerT* = (im T)* = W+
In particular,

vw = Pwv = Py (Tx — (Tx —v))
= Py(Tz) — Py (Tx —v)
=Ter+0=Tx

Conclusion: x is a best approximation to v via T if and only if T*Tx = T™v.
Claim 28.1. Suppose that T is monic. Then
T*T : X — X is an isomorphism

and
Py =T(T*T) 'T*:V -V (+)
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Suppose that x € X satisfies T*Tx = 0. Then
0= (T"Tz,z)x = (Tz,Tx)y = ||Tz|} (%)

Therefore, Tx = 0. But T is monic, so x = 0. Hence T*T : V — V is monic hence an
isomorphism. We now show (+) holds.
Let v € V.. Since T*T is an isomorphism, there exists z € X s.t.

T*Tx =T (%x)
and

T(T*T) 'T*y = T(T*T) 'T*Tx
=Tz = vw = Py (v)

showing (+). This proves the claim and also shows that the z in (*) is a best approximation
tov viaT.
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§29.1 Least Squares (Cont’d)

Claim 29.1. Let v € V. Then dlx € X an optimal approximation to v via T. Moreover,
this = is characterized by

Py (x) =0 where Y = ker T"T
Let x, 2’ be two best approximation to v via T'. Then,
T*Tx =T*v =T*Ta’

Therefore,
x—a ekerT*T =Y

It follows if x is a best approximation to v via T', then any other is of the form z+y, y € Y.
We also have for such = + y

Py(z+y) = Py(z) + Py(y) = Py(z) +y
Let 2" = 2 — Py(x). Then
Py(z") = Py(z) — P2(z) =0, ie,2’ LY

So
2" +ylI*> = =" + |ylI* > "> VyeY

by the Pythagorean Theorem. Hence, 2/ = Py-1 () is the unique optimal approximation.
This proves the claim above.
Let A=T:Ft o prxl g ¢ Fmxn g e FX1 with F =R or C. Let

M1

A=XDU* D= Lo c Fmxn

and

be an SVD. Let’s define
DT — . M;l € Frxm

Then
AT = UDtx* ¢ Frxm

is called the Moore-Penrose generalized pseudoinverse of A. Then the following are true
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i)
i)

iii)

rank(A) = rank(AT)
ATv is an optimal approximation in F™*! to v via A and is unique.

If rank(A) = n, then
Al = (A*A) 1A

Proof. i) rank(A) = rank(D) = rank(D') = rank(Af) as X, U are invertible.

ii)

iii)

Case 1: A = D, i.e., X,U are the appropriate identity matrices. Let W = im A,
U =ker DID, W = span {e; € .#,,1|Dii # 0}

If v € F™*! then
o = Py (v) = DD'o = D (D%)

So D'v is a best approximation to v relative to D. As
U = ker DTD = Span {ej S yn’1|Djj = 0}

and we have
D'v € Span {e; € #,1|Dj; # 0} =Y+,

and Py (DTv) =0.
D'v is optimal approximation to v relative to D

Case 2: A = XDU* in general. X, U are unitary, so they preserve dot products, so
z is an optimal approximation to v relative to A = AUU™ if and only if U*z is an
optimal approximation to v relative to AU (*). We also have
|Az —v|| = || XDU*z — | = || X" (XDU*z — ) ||
= || DUz — X™0||

So (*) is true iff U*z is an optimal approximation to X *v relative to D. By case 1,
D' X*v is an optimal approximation to X *v relative to D. As AT = UDTX*

D (DT X*U) SYD(x* AU (DTX*U) = X*A (A%)

Therefore, Afv is the optimal approximation to X*v relative to X*A. Thus, as X* is
an isometry, Afv is the optimal approximation to v relative to A.

This follows as in (ii) for if rank(A) = n, then (4*A)~!A*v is the unique optimal
best approximation to Az = v. O

Warning: In general, (AB)" # BTAT.
Let Ae F™" F =R or C. Solve

AX = B for X € p"*!

for X € F™1. As A can be inconsistent, we want an optimal approximation to a

solution.
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Example 29.1

Let F =R or C. Given data (z1,¥1),-- -, (%n,ys) in F?, find the best line relative to
this data, i.e., find
y=Ar+b A= slope

Let

ZTn 1 Yn

Let W = im A. To find the optimal approximation to AX = Yy, X = A'Y works.
But rank(A) = 2 is most probable

X = (A*A)~tary

§29.2 Rayleigh Quotient
Let F=Ror C, A € M, F. The euclidean norm of A is defined by

| Av]]
ogvermt o]

[A[] =
If A € M,,F is hermitian, then the Rayleigh Quotient of A
R(v) = Ra(v) : F™1\ {0} = R
is defined by

(Av, v)
]2

Rayleigh quotients are used to approximate eigenvalues of hermitian A € M, F'.

R(v) ==

KTheorem 29.2 A
Let F =R or C, A € M, FF hermitian. Then,
i) max,.o R(v) is the largest eigenvalue of A.
ii) min,o R(v) is the smallest eigenvalue of A. )
Proof. By the Spectral Theorem, 3 an orthonormal basis {v1,...,v,} of eigenvectors for A

with Av; = A, i = 1,...,n. We may assume

AM>...2 M ER
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i) Let v € Fnx! and v =73 1" ov;, oy € F,i=1,...,n. Then

(Av,v)
R(U) - ||U||2 Zal)‘ U“ZQJU] /HUH

_ ZZ] 1)\ 041,06‘752]<’U27’U‘7> _ Zl 1 |C¥Z’2
[[v]|? HUH2

By the Pythagorean Theorem

n
> laif” = |lolf?
i=1

So

i Alaal*  Aoll?
R(v) < == = =M
[[v]2 [[v]|2

ii) Prove similarly. O

Corollary 29.3

Let F=Ror C, A€ M,F. Then ||A|| < co. Moreover, if u is the largest singular
value of A, then
[All = p

Proof. Consider:
|Av|*  (Av, Av)  (A*Av,v)
[[o]|? o] [[v]|?

for all v # 0. Since A*A is non-negative, the result follows. O

0<

We know that the singular value of A € F™*" are the same as for A* € F"*™ if ' =R or
C. Therefore,

Corollary 29.4
Let A€ GL,F,F =R or C, u the smallest singular value of A. Then

) 1
A7 = —

VI

Proof. If B € GL,F has an eigenvalue A # 0, 0 # v € Eg()\), then
1
Bv = Mv, so XU =Bl

Hence if
w1 > ... 2y >0

are the singular values of A,
Hn = oo 2 1 >0

are the singular values of A=! as (A™1)*A~! = (4A4*)~L, O

120



Duc Vu (Spring 2021) 30 Additional Materials: Jun 04, 2021

§30 ‘ Additional Materials: Jun 04, 2021

§30.1 Conditional Number
Let F=RorC, Ac GL,F,b#0in F™*!. Suppose Az = b.

Problem 30.1. What happens if we modify x a bit, i.e., by éx € F™!. Then we get a
new equation

A(x + 6x) = b+ 6b, ob € !

and we would like to understand the variance in b.

Since A is linear,
A(z + dz) = b+ A(ox)

ie.

A(5x) = b or dx = A1(6b)
and we know, therefore, that

1ol = [lAz|[ < L]l - ]
6] = LA~ (ab) ]| = [IA™]] - [|ab]

Therefore,
L _ (4]
Lot szl £0 b £0)
=l = lloll
oz _ [[AZ"|[[|sbl [lAl _1y lloo]
e e L[k
] [b]] [b]]
Similarly,
1 flobf _ [lox]]
1 =
[ANFA=H 1l = [l

We call the number ||Al||A7!|| the Conditional Number of A and denote it cond(A).

(Theorem 30.1 A
Let F=RorC, A€ GL,F,b#0in F™!. Then
1 [lobll  loz]] lisoll
L a1 < e < cond(4) g
2. Let py > ... > p, > 0 be the singular values of A. Then
cond(4) = =l
1
- ! y
Proof. 1. from the computation above.
2. follows over computation on the Rayleigh function.
O
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Remark 30.2. From the theorem,

1. If cond(A) is close to one, then a small relative error in b forces a small relative error in
e

2. If cond(A) is large, even a small relative error in « may cause a relatively large error in
b.

Remark 30.3. If there is an error SA of A, things would get more complicated. For example,
A+ §A may no longer be invertible.

There exist conditions that can control this. For example, if A+ SA € GL,F, F=Ror C,

it is true that

62 15A]
———— < cond(A)+—+
o+ oa] AN

One almost never computes cond(A), as error arises trying to compute it as we need to
compute the singular values. However, in some cases, remarkable estimates can be found.

§30.2 Mini-Max

Let F=Ror C, A€ M,F. We want a method to compute its eigenvalues if A is hermitian.
Since A is hermitian, by the Spectral Theorem,

A1 0
U*AU = , , UelUnF
0 An
where A = [4], .
% = {v1,...,v,} is an ordered orthonormal basis of eigenvectors for V' = F™*! satisfying
A’Ui = )\ﬂ]i

So
v; = the i column of U*

We let the order be s.t.
AL> >\,

As (Fuvp)t is A-invariant, A‘ (Foy)t has maximum eigenvalue Ao obtained from wvs, i.e.,

max Ra(r) = A1
x€(Fv1)t

is obtained from x = v9. The constraint is
(x,v1) =0

We can obtain \,_; without knowing v; or A;. Let x € V' be constrained by (z,z) = 0,
some z # 0. Let y = U*z. Then (x,z) = 0 is equivalent to (y,w) = 0 where w = Uz.
Computation shows the Rayleigh quotient Ry for U satisfies

max Ry (y) < A
(y,w)=0

m;x RU(y) > )\n—l
(y,w)=0
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So

i >
min. max Ry(y) > A1
(y,w)=0

gives an upper and lower bound for Ry (y). Let

Y1

n Y2
y=|:1], g=|"
Yn :

0

with (g, w) = 0. In addition, computation shows,

Ry(g) = A2

Let w = e7. Then
max Ry (y) = A2
(y,e1)
So
115171&% max Ry (y) = Ao
(y,w)=0
and
min max Ry(y) = A3

w1, w270
<y7w1>:0

(y,w2)=0

Proceed inductively.

4 . )
Theorem 30.4 (Minimax Principle)
Let F =R or C, A € M, F hermitian with eigenvalues
AL> >N
Then
min  max Ra(z) = A\
215,270 (x,21)=0
(%,21)=0
- J
Remark 30.5. The minimax principle is also formulated by
i = Np—s ) =1,...
H‘%Hgéa‘;:RA(x) P j=L...,n
where V; denotes an arbitrary subspace of dim j.

§30.3 Uniqueness of Smith Normal Form

Consult Professor Elman’s notes.
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