115B - Linear Algebra University of California, Los Angeles

Duc Vu

Spring 2021

This is math 115B - Linear Algebra which is the second course of the undergrad linear algebra at UCLA - continuation of $115 \mathrm{~A}(\mathrm{H})$. Similar to 115 AH , this class is instructed by Professor Elman, and we meet weekly on MWF from 2:00 pm to 2:50 pm . There is no official textbook used for the class. You can find the previous linear algebra notes $(115 \mathrm{AH})$ with other course notes through my github. Any error in this note is my responsibility and please email me if you happen to notice it.

Contents

1 Lec 1: Mar 29, 2021 5
1.1 Vector Spaces . 5

2 Lec 2: Mar 31, 2021 9
2.1 Vector Spaces (Cont'd) . 9
2.2 Subspaces . 10
2.3 Direct Sums . 10

3 Lec 3: Apr 2, $2021 \quad 13$
3.1 Direct Sums (Cont'd) . 13
3.2 Quotient Spaces . 16

4 Lec 4: Apr 5, $2021 \quad 17$
4.1 Quotient Spaces (Cont'd) . 17

5 Lec 5: Apr 7, $2021 \quad 19$
5.1 Quotient Spaces (Cont'd) . 19
5.2 Linear Transformation . 20

6 Lec 6: Apr 9, $2021 \quad 22$
6.1 Linear Transformation (Cont'd) . 22
6.2 Projections . 24

7 Lec 7: Apr 12, $2021 \quad 27$
7.1 Projection (Cont'd) . 27
7.2 Dual Spaces . 29
8 Lec 8: Apr 14, 2021 33
8.1 Dual Spaces (Cont'd) 33
9 Lec 9: Apr 16, 2021 37
9.1 Dual Spaces (Cont'd) 37
9.2 The Transpose 38
9.3 Polynomials 40
10 Lec 10: Apr 19, 2021 42
10.1 Polynomials (Cont'd) 42
11 Lec 11: Apr 21, 2021 45
11.1 Minimal Polynomials 45
11.2 Algebraic Aside 48
12 Lec 12: Apr 23, 2021 50
12.1 Triangularizability 50
13 Lec 13: Apr 26, 2021 54
13.1 Triangularizability (Cont'd) 54
13.2 Primary Decomposition 54
14 Lec 14: Apr 28, 2021 57
14.1 Primary Decomposition (Cont'd) 57
15 Lec 15: Apr 30, 2021 62
15.1 Primary Decomposition (Cont'd) 62
15.2 Jordan Blocks 63
16 Lec 16: May 3, 2021 66
16.1 Jordan Blocks (Cont'd) 66
16.2 Jordan Canonical Form 69
17 Lec 17: May 5, 2021 70
17.1 Jordan Canonical Form (Cont'd) 70
18 Lec 18: May 7, 2021 72
18.1 Jordan Canonical Form (Cont'd) 72
18.2 Companion Matrix 76
19 Lec 19: May 10, 2021 78
19.1 Companion Matrix (Cont'd) 78
19.2 Smith Normal Form 80
20 Lec 20: May 12, 2021 82
20.1 Rational Canonical Form 82
21 Lec 21: May 14, 2021 87
21.1 Rational Canonical Form (Cont'd) 87
22 Lec 22: May 17, 2021 91
22.1 Inner Product Spaces 91
23 Lec 23: May 19, 2021 95
23.1 Inner Product Spaces (Cont'd) 95
24 Lec 24: May 21, 2021 98
24.1 Inner Product Spaces (Cont'd) 98
24.2 Spectral Theory 99
25 Lec 25: May 24, 2021 101
25.1 Spectral Theory (Cont'd) 101
26 Lec 26: May 26, 2021 104
26.1 Spectral Theory (Cont'd) 104
26.2 Hermitian Addendum 105
27 Lec 27: May 28, 2021 106
27.1 Positive (Semi-)Definite Operators 106
28 Lec 28: Jun 2, 2021 112
28.1 Positive (Semi-)Definite Operators (Cont'd) 112
28.2 Least Squares 114
29 Lec 29: Jun 4, 2021 117
29.1 Least Squares (Cont'd) 117
29.2 Rayleigh Quotient 119
30 Additional Materials: Jun 04, 2021 121
30.1 Conditional Number 121
30.2 Mini-Max 122
30.3 Uniqueness of Smith Normal Form 123
List of Theorems
10.12Fundamental Theorem of Arithmetic (Polynomial Case) 44
11.6 Cayley-Hamilton 47
12.10Fundamental Theorem of Algebra 53
14.2 Primary Decomposition 58
22.5 Orthogonal Decomposition 93
22.6 Best Approximation 93
24.8 Schur 99
25.5 Spectral Theorem for Normal Operators 103
26.4 Spectral Theorem for Hermitian Operators 104
27.9 Singular Value 110
28.5 Singluar Value - Linear Transformation Form 114
28.7 Polar Decomposition 114
30.4 Minimax Principle 123

List of Definitions

1.1 Field 5
1.3 Ring 6
1.6 Vector Space 8
2.3 Subspace 10
2.8 Span 12
2.9 Direct Sum 12
3.1 Independent Subspace 13
3.6 Complementary Subspace 15
6.5 T-invariant 24
6.9 Projection 25
7.9 Dual Space 31
8.8 Annihilator 36
9.7 Transpose 39
9.11 Row/Column Rank 40
9.13 Polynomial Division 41
9.16 Polynomial Degree and Leading Coefficient 41
10.1 Greatest Common Divisor 42
10.6 Irreducible Polynomial 43
12.2 Triangularizability 50
12.4 Splits 51
12.8 Algebraically Closed 53
15.2 Jordan Block Matrix 63
15.3 Nilpotent 63
16.1 Sequence of Generalized Eigenvectors 66
16.3 Jordan Canonical Form 67
16.4 Jordan Basis 67
18.5 Companion Matrix 76
19.2 T-Cyclic 78
19.7 Equivalent Matrix 81
22.1 Inner Product Space 91
22.2 Sesquilinear Map 91
22.8 Adjoint 94
23.2 Isometry 95
24.1 Unitary Operator 98
24.4 Unitary Matrix 98
25.1 Hermitian(Self-Adjoint) 101
27.1 Positive/Negative (Semi-) Definite 106
27.8 Pseudodiagonal 109
28.1 Singular Value Decomposition 113

§1 Lec 1: Mar 29, 2021

§1.1 Vector Spaces

Notation: if $\star: A \times B \rightarrow B$ is a map (= function) write $a \star b$ for $\star(a, b)$, e.g., $+: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ where $\mathbb{Z}=$ the integer.

Definition 1.1 (Field) — A set F is called a FIELD under

- Addition: $+: F \times F \rightarrow F$
- Multiplication: • : $F \times F \rightarrow F$
if $\forall a, b, c \in F$, we have
A1) $(a+b)+c=a+(b+c)$
A2) $\exists 0 \in F \ni a+0=a=0+a$
A3) A2) holds and $\exists x \in F \ni a+x=0=x+a$
A4) $a+b=b+a$
M1) $(a \cdot b) \cdot c=a \cdot(b \cdot c)$
M2) A2) holds and $\exists 1 \neq 0 \in F$ s.t. $a \cdot 1=a=1 \cdot a$ (1 is unique and written 1 or 1_{F})
M3) M2) holds and $\forall 0 \neq x \in F \quad \exists y \in F \ni x y=1=y x$ (y is seen to be unique and written x^{-1})

M4) $x \cdot y=y \cdot x$
D1) $a \cdot(b+c)=a \cdot b+a \cdot c$
D2) $(a+b) \cdot c=a \cdot c+b \cdot c$

Example 1.2

$\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are fields as is

$$
\mathbb{F}_{2}:=\{0,1\} \text { with }+: \text { given by }
$$

+	0	1
0	0	1
1	1	0

\bullet	0	1
0	0	0
1	0	1

Fact 1.1. Let $p>0$ be a prime number in \mathbb{Z}. Then \exists a field $\mathbb{F}_{p^{n}}$ having p^{n} elements write $\left|\mathbb{F}_{p^{n}}\right|=p^{n} \quad \forall n \in \mathbb{Z}^{+}$.

Definition 1.3 (Ring) — Let R be a set with

- $+: R \times R \rightarrow R$
- . $: R \times R \rightarrow R$
satisfying A1) - A4), M1), M2), D1), D2), then R is called a RING.
A ring is called
i) a commutative ring if it also satisfies M4).
ii) an (integral) domain if it is a commutative ring and satisfies

$$
\text { M } \left.3^{\prime}\right) a \cdot b=0 \Longrightarrow a=0 \text { or } b=0
$$

$(0=\{0\}$ is also called a ring - the only ring with $1=0)$

Example 1.4 (Proof left as exercises) $1 . \mathbb{Z}$ is a domain and not a field.

2. Any field is a domain.
3. Let F be a field

$$
F[t]:=\{\text { polys coeffs in } F\}
$$

with usual + , of polys, is a domain but not a field. So if $f \in F[t]$

$$
f=a_{0}+a_{1} t+\ldots+a_{n} t^{n}
$$

where $a_{0}, \ldots, a_{n} \in F$.
4. $\mathbb{Q}:=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}, b \neq 0\right\}<\mathbb{C}(<$ means \subset and $\neq)$ with usual,+ of fractions. (when does $\frac{a}{b}=\frac{c}{d}$?)
5. If F is a field

$$
F(t):=\left\{\left.\frac{f}{g} \right\rvert\, f, g \in F[t], g \neq 0\right\} \text { (rational function) }
$$

with usual + , of fractions is a field.

Example 1.5 (Cont'd from above) 6. $\mathbb{Q}[\sqrt{-1}]:=\{\alpha+\beta \sqrt{-1} \in \mathbb{C} \mid \alpha, \beta \in \mathbb{Q}\}<\mathbb{C}$. Then $\mathbb{Q}[\sqrt{-1}]$ is a field and

$$
\begin{aligned}
\mathbb{Q}(\sqrt{-1}) & :=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Q}[\sqrt{-1}], b \neq 0\right\} \\
& =\mathbb{Q}[\sqrt{-1}] \\
& =\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}[\sqrt{-1}], b \neq 0\right\}
\end{aligned}
$$

where $\mathbb{Z}[\sqrt{-1}]:=\{\alpha+\beta \sqrt{-1} \in \mathbb{C}, \alpha, \beta \in \mathbb{Z}\}<\mathbb{C}$. How to show this? - rationalize $(\mathbb{Z}[\sqrt{-1}]$ is a domain not a field, $F[t]<F(t)$ if F is a field so we have to be careful).
7. F a field

$$
\mathbb{M}_{n} F:=\{n \times n \text { matrices entries in } F\}
$$

is a ring under + , of matrices.

$$
\begin{aligned}
& 1_{\mathbb{M}_{n} F}=I_{n}=n \times n \text { identity matrix }\left(\begin{array}{ccc}
1 & & 0 \\
& \ddots & \\
0 & & 1
\end{array}\right) \\
& 0_{\mathbb{M}_{n} F}=0=0_{n}=n \times n \text { zero matrix }\left(\begin{array}{ccc}
0 & \ldots & 0 \\
\vdots & & \vdots \\
0 & \ldots & 0
\end{array}\right)
\end{aligned}
$$

is not commutative if $n>1$.
In the same way, if R is a ring we have

$$
\mathbb{M}_{n} R=\{n \times n \text { matrices entries in } R\}
$$

e.g., if R is a field $\mathbb{M}_{n} F[t]$.
8. Let $\emptyset \neq I \subset \mathbb{R}$ be a subset, e.g., $[\alpha, \beta], \alpha<\beta \in \mathbb{R}$. Then

$$
C(I)=\{f: I \rightarrow \mathbb{R} \mid f \text { continuous }\}
$$

is a commutative ring and not a domain where

$$
\begin{aligned}
(f \dot{+} g)(x) & :=f(x) \dot{+} g(x) \\
0(x) & =0 \\
1(x) & =x
\end{aligned}
$$

for all $x \in I$.

Notation: Unless stated otherwise F is always a field.

Definition 1.6 (Vector Space) - Let F be a field, V a set. Then V is called a VECTOR SPACE OVER F write V is a vector space over F under

- $+: V \times V \rightarrow V$ - Addition
- . : $F \times V \rightarrow V$ - Scalar multiplication
if $\forall x, y, z \in V \quad \forall \alpha, \beta \in F$.

1. $(x+y)+z=x+(y+z)$
2. $\exists 0 \in V \ni x+0=x=0+x$ (0 is seen to be unique and written 0 or 0_{V})
3. 2) holds and $\exists v \in V \ni x+v=0=v+x$ (v is seen to be unique and written $-x)$
1. $x+y=y+x$
2. $1_{F} \cdot x=x$.
3. $(\alpha \cdot \beta) \cdot x=\alpha \cdot(\beta \cdot x)$
4. $(\alpha+\beta) \cdot x=\alpha \cdot x+\beta \cdot x$
5. $\alpha \cdot(x+y)=\alpha \cdot x+\alpha \cdot y$

Remark 1.7. The usual properties we learned in 115 A hold for V a vector space over F, e.g., $0_{F} V=0_{V}$, general association law,...

§2 Lec 2: Mar 31, 2021

§2.1 Vector Spaces (Cont'd)

Example 2.1

The following are vector space over F

1. $F^{m \times n}:=\{m \times n$ matrices entries in $F\}$, usual + , scalar multiplication, i.e., if $A \in F^{m \times n}$, let $A_{i j}=i j^{\text {th }}$ entry of A. If $A, B \in F^{m \times n}$, then

$$
\begin{aligned}
(A+B)_{i j} & :=A_{i j}+B_{i j} \\
(\alpha A)_{i j} & :=\alpha A_{i j} \quad \forall \alpha \in F
\end{aligned}
$$

i.e., component-wise operations.
2. $F^{n}=F^{1 \times n}:=\left\{\left(\alpha_{1}, \ldots, \alpha_{n}\right) \mid \alpha_{i} \in F\right\}$
3. Let V be a vector space over $F, \emptyset \neq S$ a set. Define

$$
\mathcal{F} c n(S, V):=\{f: S \rightarrow V \mid f \text { a fcn }\}
$$

Then $\mathcal{F} c n(S, V)$ is a vector space over $F \forall f, g \in \mathcal{F} c n(S, V), \forall \alpha \in F$. For all $x \in S$,

$$
\begin{aligned}
f+g & : x \mapsto f(x)+g(x) \\
\alpha f & : x \mapsto \alpha f(x)
\end{aligned}
$$

i.e.

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) \\
(\alpha f)(x) & =\alpha f(x)
\end{aligned}
$$

with 0 by $0(x)=0_{V} \forall x \in S$.
4. Let R be a ring under $+, \cdot, F$ a field $\ni F \subseteq R$ with,$+ \cdot$ on F induced by,$+ \cdot$ on R and $0_{F}=0_{R}, 1_{F}=1_{R}$, i.e.

$$
\underbrace{+}_{\text {on } R} \mid \underbrace{F \times F}_{\text {restrict dom }}: F \times F \rightarrow F \text { and } \underbrace{\dot{~}}_{\text {on } R} \underbrace{F \times F}_{\text {restrict dom }}: F \times F \rightarrow F
$$

i.e. closed under the restriction of,$+ \cdot$ on R to F and also with $0_{F}=0_{R}$ and $1_{F}=1_{R}$ (we call F a subring of R). Then R is a vector space over F by restriction of scalar multiplication, i.e., same + on R but scalar multiplication

$$
\left.\cdot\right|_{F \times R}: F \times R \rightarrow R
$$

e.g., $\mathbb{R} \subseteq \mathbb{C}$ and $F \subseteq F[t]$.

Example 2.2 (Cont'd from above)

Note: \mathbb{C} is a vector space over \mathbb{R} by the above but as a vector space over \mathbb{C} is different.
5. In 4) if R is also a field (so $F \subseteq R$ is a subfield). Let V be a vector space over R. Then V is also a vector space over F by restriction of scalars, e.g., $M_{n} \mathbb{C}$ is a vector space over \mathbb{C} so is a vector space over \mathbb{R} so is a vector space over \mathbb{Q}.

§2.2 Subspaces

Definition 2.3 (Subspace) - Let V be a vector space under $+, \cdot, \emptyset \neq W \subseteq V$ a subset. We call W a subspace of V if $\forall w_{1}, w_{2} \in W, \forall \alpha \in F$,

$$
\alpha w_{1}, w_{1}+w_{2} \in W
$$

with $0_{W}=0_{V}$ is a vector space over F under $+\left.\right|_{W \times W}$ and $\left.\cdot\right|_{F \times W}$ i.e., closed under the operation on V.

Theorem 2.4

Let V be a vector space over $F, \emptyset \neq W \subseteq V$ a subset. Then W is a subspace of V iff $\forall \alpha \in F, \forall w_{1}, w_{2} \in W, \alpha w_{1}+w_{2} \in W$.

Example 2.5 1. Let $\emptyset \neq I \subseteq \mathbb{R}, C(I)$ the commutative ring of continuous function $f: I \rightarrow \mathbb{R}$. Then $C(I)$ is a vector space over \mathbb{R} and a subspace of $\mathcal{F} c n(I, \mathbb{R})$.
2. $F[t]$ is a vector space over F and $n \geq 0$ in \mathbb{Z}.

$$
F[t]_{n}:=\{f \mid f \in F[t], f=0 \text { or } \operatorname{deg} f \leq d\}
$$

is a subspace of $F[t]$ (it is not a ring).

Attached is a review of theorems about vector spaces from math 115A.

§2.3 Direct Sums

Problem 2.1. Can you break down an object into simpler pieces? If yes can you do it uniquely?

Example 2.6

Let $n>1$ in \mathbb{Z}. Then n is a product of primes unique up to order.

Example 2.7

Let V be a finite dimensional inner product space over $\mathbb{R}($ or $\mathbb{C})$ and $T: V \rightarrow V$ a hermitian (=self adjoint) operator. Then \exists an ON basis for V consisting of eigenvectors for T. In particular, T is diagonalizable. This means

$$
\begin{equation*}
V=E_{T}\left(\lambda_{1}\right) \perp \ldots \perp E_{T}\left(\lambda_{r}\right) \tag{}
\end{equation*}
$$

$E_{T}\left(\lambda_{i}\right):=\left\{v \in V \mid T v=\lambda_{i} v\right\} \neq 0$ eigenspace of $\lambda_{i} ; \lambda_{1}, \ldots, \lambda_{r}$ the distinct eigenvalues of T. So

$$
\left.T\right|_{E_{T}\left(\lambda_{i}\right)}: E_{T}\left(\lambda_{i}\right) \rightarrow E_{T}\left(\lambda_{i}\right)
$$

i.e., $E_{T}\left(\lambda_{i}\right)$ is T-invariant and

$$
\left.T\right|_{E_{T}\left(\lambda_{i}\right)}=\lambda_{i} 1_{E_{T}\left(\lambda_{i}\right)}
$$

and $\left({ }^{*}\right)$ is unique up to order.

Goal: Generalize this to V any finite dimensional vector space over F, any F, and $T: V \rightarrow V$ linear. We have many problems to overcome in order to get a meaningful result, e.g.,

Problem 2.2. 1. V may not be an inner product space.
2. $F \neq \mathbb{R}$ or \mathbb{C} is possible.
3. $F \nsubseteq$ is possible, so cannot even define an inner product.
4. V may not have any eigenvalues for $T: V \rightarrow V$.
5. If we prove an existence theorem, we may not have a uniqueness one.

We shall show: given V a finite dimensional vector space over F and $T: V \rightarrow V$ a linear operator. Then V breaks up uniquely up to order into small T-invariant subspace that we shall show are completely determined by polys in $F[t]$ arising from T. Motivation: Generalize the concept of linear independence, Spectral Theorem Decomposition, to see how pieces are put together (if possible).

Definition 2.8 (Span) - Let V be a vector space over $F, W_{i} \subseteq V, i \in I$ - may not be finite, subspaces. Let

$$
\sum_{i \in I} W_{i}=\sum_{i \in I} W_{i}:=\left\{v \in V \mid \exists w_{i} \in W_{i}, i \in I, \text { almost all } w_{i}=0 \ni v=\sum_{i \in I} w_{i}\right\}
$$

when almost all zero means only finitely many $w_{i} \neq 0$. Warning: In a vector space/F we can only take finite linear combination of vectors. So

$$
\sum_{i \in I} W_{i}=\operatorname{Span}\left(\bigcup_{i \in I} W_{i}\right)=\left\{\text { finite linear combos of vectors in } \bigcup_{i \in I} W_{i}\right\}
$$

e.g., if I is finite, i.e., $|I|<\infty$, say $I=\{1, \ldots, n\}$ then

$$
\sum_{i \in I} W_{i}=W_{1}+\ldots+W_{n}:=\left\{w_{1}+\ldots+w_{n} \mid w_{i} \in W_{i} \forall i \in I\right\}
$$

Definition 2.9 (Direct Sum) - Let V be a vector space over $F, W_{i} \subseteq V, i \in I$, subspace. Let $W \subseteq V$ be a subspace. We say that W is the (internal) direct sum of the $W_{i}, i \in I$ write $W=\bigoplus_{i \in I} W_{i}$ if

$$
\forall w \in W \exists!w_{i} \in W_{i} \text { almost all } 0 \ni w=\sum_{i \in I} w_{i}
$$

e.g., if $I=\{1, \ldots, n\}$, then

$$
w \in W_{1} \oplus \ldots \oplus W_{n} \text { means } \exists!w_{i} \in W_{i} \ni w=w_{1}+\ldots+w_{n}
$$

Warning: It may not exist.

$\S 3$ Lec 3: Apr 2, 2021

§3.1 Direct Sums (Cont'd)

Definition 3.1 (Independent Subspace) - Let V be a vector space over $F, W_{i} \subseteq V, i \in I$ subspaces. We say the $W_{i}, i \in I$, are independent if whenever $w_{i} \in W_{i}, i \in I$, almost all $w_{i}=0$, satisfy $\sum w_{i}=0$, then $w_{i}=0 \forall i \in I$.

Theorem 3.2

Let V be a vector space over $F, W_{i} \subseteq V, i \in I$ subspaces, $W \subseteq V$ a subspace. Then the following are equivalent:

1. $W=\bigoplus_{i \in I} W_{i}$
2. $W=\sum_{i \in I} W_{i}$ and $\forall i$

$$
W_{i} \cap \sum_{j \in I \backslash\{i\}} W_{j}=0:=\{0\}
$$

3. $W=\sum_{i \in I} W_{i}$ and the $W_{i}, i \in I$, are independent.

Proof. 1) $\Longrightarrow 2)$ Suppose $W=\bigoplus_{i \in I} W_{i}$. Certainly, $W=\sum_{i \in I} W_{i}$. Fix i and suppose that

$$
\exists x \in W_{i} \cap \sum_{j \in I \backslash\{i\}} W_{j}
$$

By definition, $\exists w_{i} \in W_{i}, w_{j} \in W_{j}, j \in I \backslash\{i\}$ almost all 0 satisfying

$$
w_{i}=x=\sum_{j \neq i} w_{j}
$$

So

$$
0_{V}=0_{W}=w_{i}-\sum_{j \neq i} w_{j}
$$

But

$$
0_{W}=\sum_{I} 0_{W_{k}} \quad 0_{W_{k}}=0_{V} \forall k \in I
$$

By uniqueness of 1), $w_{i}=0$ so $x=0$.
$2) \Longrightarrow 3)$ Let $w_{i} \in W_{i}, i \in I$, almost all zero satisfy

$$
\sum_{i \in I} w_{i}=0
$$

Suppose that $w_{k} \neq 0$. Then

$$
w_{k}=-\sum_{i \in I \backslash\{k\}} w_{i} \in W_{k} \cap \sum_{i \neq k} w_{i}=0,
$$

a contradiction. So $w_{i}=0 \forall i$
3) $\Longrightarrow 1)$ Suppose $v \in \sum_{i \in I} W_{i}$ and $\exists w_{i}, w_{i}^{\prime} \in W_{i}, i \in I$, almost all $0 \ni$

$$
\sum_{i \in I} w_{i}=v=\sum_{i \in I} w_{i}^{\prime}
$$

Then $\sum_{i \in I}\left(w_{i}-w_{i}^{\prime}\right)=0, w_{i}-w_{i}^{\prime} \in W_{i} \forall i$. So

$$
w_{i}-w_{i}^{\prime}=0 \text {, i.e., } w_{i}=w_{i}^{\prime} \quad \forall i
$$

and the $w_{i}^{\prime} s$ are unique.
Warning: 2) DOES NOT SAY $W_{i} \cap W_{j}=0$ if $i \neq j$. This is too weak. It says $W_{i} \cap \sum_{j \neq i} W_{j}=$ 0 .

Corollary 3.3

Let V be a vector space over $F, W_{i} \subseteq V, i \in I$ subspaces. Suppose $I=I_{1} \cup I_{2}$ with $I_{1} \cap I_{2}=\emptyset$ and $V=\bigoplus_{i \in I} W_{i}$. Set

$$
W_{I_{1}}=\bigoplus_{i \in I_{1}} W_{i} \quad \text { and } \quad W_{I_{2}}=\bigoplus_{j \in I_{2}} W_{j}
$$

Then

$$
V=W_{I_{1}} \oplus W_{I_{2}}
$$

Proof. Left as exercise - Homework.
Notation: Let V be a vector space over $F, v \in V$. Set

$$
F v:=\{\alpha v \mid \alpha \in F\}=\operatorname{Span}(v)
$$

if $v \neq 0$, then $F v$ is the line containing v, i.e., $F v$ is the one dimensional vector space over F with basis $\{v\}$.

Example 3.4

Let V be a vector space over F.

1. If $\emptyset \neq S \subseteq V$ is a subset, then

$$
\sum_{v \in S} F v=\operatorname{Span}(S)
$$

the span of S. So

$$
\text { Span } S=\{\text { all finite linear combos of vectors in } S\}
$$

2. If $\emptyset \neq S$ is linearly indep. (i.e. meaning every finite nonempty subset of S is linearly indep.), then

$$
\operatorname{Span}(S)=\bigoplus_{s \in S} F s
$$

Example 3.5 (Cont'd from above) 3. If S is a basis for V, then $V=\bigoplus_{s \in S} F s$.

4. If \exists a finite set $S \subseteq V \ni V=\operatorname{Span}(S)$, then $V=\sum_{s \in S} F s$ and \exists a subset $\mathscr{B} \subseteq S$ that is a basis for V, i.e., V is a finite dimensional vector space over F and $\operatorname{dim} V=\operatorname{dim}_{F} V=|\mathscr{B}|$ is indep. of basis \mathscr{B} for V.
5. Let V be a vector space over $F, W_{1}, W_{2} \subseteq V$ finite dimensional subspaces. Then $W_{1}+W_{2}, W_{1} \cap W_{2}$ are finite dimensional vector space over F and

$$
\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}-\operatorname{dim}\left(W_{1} \cap W_{2}\right)
$$

So

$$
W_{1}+W_{2}=W_{1} \oplus W_{2} \Longleftrightarrow W_{1} \cap W_{2}=\emptyset
$$

Warning: be very careful if you wish to generalize this.

Definition 3.6 (Complementary Subspace) - Let V be a finite dimensional vector space over $F, W \subseteq V$ a subspace if

$$
V=W \oplus W^{\prime}, \quad W^{\prime} \subseteq V \text { a subspace }
$$

We call W^{\prime} a complementary subspace of W in V.

Example 3.7

Let \mathscr{B}_{0} be a basis of W. Extend \mathscr{B}_{0} to a basis \mathscr{B} for V (even works if V is not finite dimensional). Then

$$
W^{\prime}=\bigoplus_{\mathscr{B} \backslash \mathscr{B}_{0}} F v \text { is a complement of } W \text { in } V
$$

Note: W^{\prime} is not the unique complement of W in V - counter-example?

Consequences: Let V be a finite dimensional vector space over $F, W_{1}, \ldots, W_{n} \subseteq V$ subspaces, $W_{i} \neq 0 \forall i$. Then the following are equivalent

1. $V=W_{1} \oplus \ldots \oplus W_{n}$.
2. If \mathscr{B}_{i} is a basis (resp., ordered basis) for $W_{i} \forall i$, then $\mathscr{B}=\mathscr{B}_{1} \cup \ldots \cup \mathscr{B}_{n}$ is a basis (resp. ordered) - with obvious order - for V.
Proof. Left as exercise (good one)!
Notation: Let V be a vector space over F, \mathscr{B} a basis for $V, x \in V$. Then, $\exists!\alpha_{v} \in F, v \in \mathscr{B}$, almost all $\alpha_{v}=0$ (i.e., all but finitely many) s.t. $x=\sum_{\mathscr{B}} \alpha_{v} v$. Given $x \in V$,

$$
x=\sum_{v \in \mathscr{B}} \alpha_{v} v
$$

to mean α_{v} is the unique complement of x on v and hence $\alpha_{v}=0$ for almost all $v \in \mathscr{B}$.

§3.2 Quotient Spaces

Idea: Given a surjective map $f: X \rightarrow Y$ and "nice", can we use properties of Y to obtain properties of X ?

Example 3.8

Let $V=\mathbb{R}^{3}, W=X-Y$ plane. Let $X=$ plane parallel to W intersecting the z-axis at γ.

So

$$
\begin{aligned}
X & =\{(\alpha, \beta, \gamma) \mid \alpha, \beta \in \mathbb{R}\} \\
& =\{(\alpha, \beta, 0)+(0,0, \gamma) \mid \alpha, \beta \in \mathbb{R}\} \\
& =W+\gamma \underbrace{e_{3}}_{(0,0,1)}
\end{aligned}
$$

Note: X is a vector space over $\mathbb{R} \Longleftrightarrow \gamma=0 \Longleftrightarrow W=X$ (need 0_{V}). Let $v \in X$. So $v=(x, y, \gamma)$ some $x, y \in \mathbb{R}$. So

$$
\begin{aligned}
W+v & :=\{\underbrace{(\alpha, \beta, 0)}_{\text {arbitrary }}+\underbrace{(x, y, \gamma)}_{\text {fixed }} \mid \alpha, \beta \in \mathbb{R}\} \\
& =\{(\alpha+x, \beta+y, \gamma) \mid \alpha, \beta \in \mathbb{R}\} \\
& =W+\gamma_{e_{3}}
\end{aligned}
$$

It follows if $v, v^{\prime} \in V$, then

$$
W+v=W+v^{\prime} \Longrightarrow v-v^{\prime} \in W
$$

Conversely, if $v, v^{\prime} \in V$ with $X=W+v$, then

$$
v^{\prime} \in X \Longrightarrow v^{\prime}=w+v \text { some } w \in W
$$

hence

$$
v^{\prime}-v \in W
$$

So for arbitrary $v, v^{\prime} \in V$, we have the conclusion $W+v=W+v^{\prime} \Longleftrightarrow v-v^{\prime} \in W$. We can also write $W+v$ as $v+W$.

§4 Lec 4: Apr 5, 2021

§4.1 Quotient Spaces (Cont'd)

Recall from the last example of the last lecture, we have

$$
V=\bigcup_{v \in V} W+v
$$

If $v, v^{\prime} \in V$, then

$$
0 \neq v^{\prime \prime} \in(W+v) \cap\left(W+v^{\prime}\right)
$$

means

$$
W+v-W+v^{\prime \prime}=W+v^{\prime}
$$

This means either $W+v=W+v^{\prime}$ or $W+v \cap W+v^{\prime}=\emptyset$, i.e., planes parallel to the xy-plane partition V into a disjoint unions of planes.

Let

$$
S:=\{W+v \mid v \in V\}
$$

the set of these planes. We make S into a vector space over \mathbb{R} as follows: $\forall v, v^{\prime} \in V, \forall \alpha \in \mathbb{R}$ define

$$
\begin{aligned}
(W+v)+\left(W+v^{\prime}\right) & :=W+\left(v+v^{\prime}\right) \\
\alpha \cdot(W+v) & :=W+\alpha v
\end{aligned}
$$

We must check these two operations are well-defined and we set

$$
0_{S}:=W
$$

Then $(W+v)+W=W+v=W+(W+v)$ make S into a vector space over \mathbb{R}.
If $v \in V$ let $\gamma_{v}^{1}=$ the $k^{\text {th }}$ component of v. Define

$$
S \rightarrow\{(0,0, \gamma) \mid \gamma \in \mathbb{R}\} \rightarrow \mathbb{R}
$$

by

$$
W+v \mapsto\left(0,0, \gamma_{v}\right) \mapsto \gamma
$$

both maps are bijection and, in fact, linear isomorphism. So

$$
S \cong\{(0,0, \gamma) \mid \gamma \in \mathbb{R}\} \cong \mathbb{R}
$$

Note: $\operatorname{dim} V=3, \operatorname{dim} W=2, \operatorname{dim} S=1$ and we also have a linear transformation

$$
V \rightarrow S \text { by }(\alpha, \beta, \gamma) \mapsto W+\gamma_{e_{3}}
$$

a surjection.
We can now generalize this.
Construction: Let V be a vector space over $F, W \subseteq V$ a subspace. Define $\equiv \bmod W$ called congruent $\bmod W$ on V as follows: if $x, y \in V$, then

$$
x \equiv y \quad \bmod W \Longleftrightarrow x-y \in W \Longleftrightarrow \exists w \in W \ni x=w+y
$$

Then, for all $x, y, z \in V, \equiv \bmod W$ satisfies

1. $x \equiv x \bmod W$
2. $x \equiv y \bmod W \Longrightarrow y \equiv x \bmod W$
3. $x \equiv y \bmod W$ and $y \equiv z \bmod W \Longrightarrow x \equiv z \bmod W$

We can conclude that $\equiv \bmod W$ is an equivalence relation on V.
Notation: For $x \in V, W \subseteq V$, let

$$
\bar{x}:=\{y \in V \mid y \equiv x \quad \bmod W\}
$$

We can also write \bar{x} as $[x]_{W}$ if W is not understood. Also, $\bar{x} \subseteq V$ is a subset and not an element of V called a coset of V by W. We have

$$
\begin{aligned}
\bar{x} & =\{y \in V \mid y \equiv x \quad \bmod W\} \\
& =\{y \in V \mid y=w+x \text { for some } w \in W\} \\
& =\{w+x \mid w \in W\}=W+x=x+W
\end{aligned}
$$

Example 4.1
 $\overline{0}_{V}=W+0_{V}=W$.

Note: $W+x$ translates every element of W by x. By 2$), 3)$ of $\equiv \bmod W$, we have \qquad check

$$
y \in \bar{x}=W+x \Longleftrightarrow x \in \bar{y}=W+y
$$

and

$$
x \equiv y \quad \bmod W \Longleftrightarrow \bar{x}=\bar{y} \Longleftrightarrow W+x=W+y
$$

and

$$
\bar{x} \cap \bar{y}=\emptyset \Longleftrightarrow(W+x) \cap(W+y)=\emptyset \Longleftrightarrow x \not \equiv y \bmod W
$$

This means the $W+x$ partition V, i.e.,

$$
V=\bigcup_{V}(W+x) \text { with }(W+x) \cap(W+y)=\emptyset \text { if } \bar{x}=(W+x) \neq(W+y)=\bar{y}
$$

Let

$$
\bar{V}:=V / W:=\{\bar{x} \mid x \in V\}=\{W+x \mid x \in V\}
$$

a collection of subsets of V.

$\S 5$ Lec 5: Apr 7, 2021

§5.1 Quotient Spaces (Cont'd)

Suppose we have $W \subseteq V$ a subspace. For $x, y, z, v \in V$

$$
\begin{array}{ll}
x \equiv y & \bmod W \tag{+}\\
z \equiv v & \bmod W
\end{array}
$$

Then

$$
(x+z)-(y+v)=\underbrace{(x-y)}_{\in W}+\underbrace{(z-v)}_{\in W} \in W
$$

So

$$
x+z \bmod y+v \quad \bmod W
$$

and if $\alpha \in F$

$$
\alpha x-\alpha y=\alpha(x-y) \in W \quad \forall x, y \in V
$$

So

$$
\alpha x \equiv \alpha y \quad \bmod W
$$

Therefore, $\bar{V}=V / W$. If (+) holds, then for all $x, y, z, v \in V$ and $\alpha \in F$, we have

$$
\begin{aligned}
\overline{x+z} & =\overline{y+v} \in \bar{V} \\
\overline{\alpha x} & =\overline{\alpha y} \in \bar{V}
\end{aligned}
$$

Notice $\bar{V}=V / W$ satisfies all the axioms of a vector space with $0_{\bar{V}}=\overline{0_{V}}=\{y \in V \mid y \equiv 0 \bmod W\}=$ $W+0_{V}=W$.

We call $\bar{V}=V / W$ the Quotient Space of V by W.
We also have a map

$$
-: V \rightarrow \bar{V}=V / W \text { by } x \mapsto \bar{x}=W+x
$$

which satisfies

$$
\alpha v+v^{\prime} \stackrel{-}{\mapsto u+v^{\prime}}=\alpha \bar{v}+\overline{v^{\prime}}
$$

for all $v, v^{\prime} \in V$ and $\alpha \in F$. Then

$$
\begin{aligned}
\operatorname{dim} V & =\operatorname{dim} \operatorname{ker}^{-} \\
\operatorname{dim} V & =\operatorname{dim} W+\operatorname{dim} V / W \\
\operatorname{dim} V / W & =\operatorname{dim} V-\operatorname{dim} W
\end{aligned}
$$

which is called the codimension of W in V.

Proposition 5.1

Let V be a vector space over $F, W \subseteq V$ a subspace, $\bar{V}=V / W$. Let \mathscr{B}_{0} be a basis for W and

$$
\mathscr{B}_{1}=\left\{v_{i} \mid i \in I, v_{i}-v_{j} \notin W \text { if } i \neq j\right\}
$$

where $\overline{v_{i}} \neq \overline{v_{j}}$ if $i \neq j$ or $w+v_{i} \neq w+v_{j}$ if $i \neq j$.
Let

$$
\mathscr{C}=\left\{\bar{v}_{i}=W+v_{i} \mid i \in I, v_{i} \in \mathscr{B}_{1}\right\}
$$

If \mathscr{C} is a basis for $\bar{V}=V / W$, then $\mathscr{B}_{0} \cup \mathscr{B}_{1}$ is a basis for V (compare with the proof of the Dimension Theorem).

Proof. Hw 2 \# 3.

§5.2 Linear Transformation

A review of linear of linear transformation can be found here.
Now, we consider

$$
G L_{n} F:=\left\{A \in \mathbb{M}_{n} F \mid \operatorname{det} A \neq 0\right\}
$$

The elements in $G L_{n} F$ in the ring $\mathbb{M}_{n} F$ are those having a multiplicative inverse. If R is a commutative ring, determinants are still as before but

$$
\begin{aligned}
G L_{n} R & :=\left\{A \in \mathbb{M}_{n} R \mid \operatorname{det} A \text { is a unit in } R\right\} \\
& =\left\{A \in \mathbb{M}_{n} R \mid A^{-1} \text { exists }\right\}
\end{aligned}
$$

Example 5.2

Let V be a vector space over $F, W \subseteq V$ a subspace. Recall

$$
\bar{V}=V / W=\{\bar{v}=W+v \mid v \in V\}
$$

a vector space over F s.t. for all $v_{1}, v_{2} \in F$ and $\alpha \in F$

$$
\begin{aligned}
0_{\bar{V}} & =\overline{0_{V}}=W \\
\overline{v_{1}}+\overline{v_{2}} & =\overline{v_{1}+v_{2}} \\
\alpha \overline{v_{1}} & =\overline{\alpha v_{1}}
\end{aligned}
$$

Then

$$
-: V \rightarrow V / W=\bar{V} \text { by } v \mapsto \bar{v}=W+v
$$

is an epimorphism with $\operatorname{ker}^{-}=W$.

Recall from $115 \mathrm{~A}(\mathrm{H})$ that the most important theorem about linear transformation is Universal Property of Vector Spaces. As a result, we can deduce the following corollary

Corollary 5.3

Let V, W be vector space over F with bases \mathscr{B}, \mathscr{C} respectively. Suppose there exists a bijection $f: \mathscr{B} \rightarrow \mathscr{C}$, i.e., $|\mathscr{B}|=|\mathscr{C}|$. Then $V \cong W$.

Proof. There exists a unique $T:\left.V \rightarrow W \ni T\right|_{\mathscr{B}}=f . T$ is monic by the Monomorphism Theorem (T takes linearly indep. sets to linearly indep. sets iff it's monic) and is onto as $W=\operatorname{Span}(\mathscr{C})=\operatorname{Span}(f(\mathscr{B}))$.

§6 Lec 6: Apr 9, 2021

§6.1 Linear Transformation (Cont'd)

Theorem 6.1

Let $T: V \rightarrow W$ be linear. Then $\exists X \subseteq V$ a subspace s.t.

$$
V=\operatorname{ker} T \oplus X \text { with } X \cong \operatorname{im} T
$$

Proof. Let \mathscr{B}_{0} be a basis for $\operatorname{ker} T$. Extend \mathscr{B}_{0} to a basis \mathscr{B} for V by the Extension Theorem. Let $\mathscr{B}_{1}=\mathscr{B} \backslash \mathscr{B}_{0}$, so $\mathscr{B}=\mathscr{B}_{0} \vee \mathscr{B}_{1}\left(\mathscr{B}=\mathscr{B}_{0} \cup \mathscr{B}_{1}\right.$ and $\left.\mathscr{B}_{0} \cap \mathscr{B}_{1}=\emptyset\right)$ and let

$$
X=\bigoplus_{\mathscr{B}_{1}} F v
$$

As $\operatorname{ker} T=\bigoplus_{\mathscr{B}_{0}} F v$, we have

$$
V=\operatorname{ker} T \oplus X
$$

and we have to show

$$
X \cong \operatorname{im} T
$$

Claim 6.1. $T v, v \in \mathscr{B}_{1}$ are linearly indep.
In particular, $T v \neq T v^{\prime}$ if $v, v^{\prime} \in \mathscr{B}_{1}$ and $v \neq v^{\prime}$. Suppose

$$
\sum_{v \in \mathscr{B}} \alpha_{v} T v=0_{W}, \quad \alpha_{v} \in F \text { almost all } \alpha_{v}=0
$$

Then

$$
0_{W}=T\left(\sum_{v \in \mathscr{B}_{1}} \alpha_{v} v\right), \quad \text { i.e. } \sum_{\mathscr{B}_{1}} \alpha_{v} v \in \operatorname{ker} T
$$

Hence

$$
\sum_{\mathscr{B}_{1}} \alpha_{v} v=\sum_{\mathscr{B}_{0}} \beta_{v} v \in \operatorname{ker} T \text { almost all } \beta_{v} \in F=0
$$

As $\sum_{\mathscr{B}_{1}} \alpha_{v} v-\sum_{\mathscr{B}_{0}} \beta_{v} v=0$ and $\mathscr{B}=\mathscr{B}_{0} \cup \mathscr{B}_{1}$ is linearly indep., $\alpha_{v}=0 \forall v$. This proves the above claim.

Let $\mathscr{C}=\left\{T v \mid v \in \mathscr{B}_{1}\right\}$. By the claim

$$
\mathscr{B}_{1} \rightarrow \mathscr{C} \text { by } v \mapsto T v \text { is } 1-1
$$

and onto as \mathscr{C} is linearly indep. Lastly, we must show \mathscr{C} spans im T. Let $w \in \operatorname{im} T$. Then $\exists x \in V \ni T x=w$. Then

$$
\begin{aligned}
w=T x & =T\left(\sum_{\mathscr{B}_{0}} \alpha_{v} v\right)+T\left(\sum_{\mathscr{B}_{1}} \alpha_{v} v\right) \\
& =\sum_{\mathscr{B}_{0}} \alpha_{v} T v+\sum_{\mathscr{B}_{1}} \alpha_{v} T v=\sum_{\mathscr{B}_{1}} \alpha_{v} T v
\end{aligned}
$$

lies in span \mathscr{C} as needed.

Remark 6.2. Note that the proof is essentially the same as the proof of the Dimension Theorem.

Corollary 6.3 (Dimension Theorem)

If V is a finite dimensional vector space over $F, T: V \rightarrow W$ linear then

$$
\operatorname{dim} V=\operatorname{dim} \operatorname{ker} T+\operatorname{dim} \operatorname{im} T
$$

Corollary 6.4

If V is a finite dimensional vector space over $F, W \subseteq V$ a subspace, then

$$
\operatorname{dim} V=\operatorname{dim} W+\operatorname{dim} V / W
$$

Proof. $-: V \rightarrow V / W$ by $v \mapsto \bar{v}=W+v$ is an epi.
Important Construction: Set

$$
\begin{gathered}
T: V \rightarrow Z \text { be linear } \\
W=\operatorname{ker} T \\
\bar{V}=V / W \\
-: V \rightarrow V / W \text { by } v \mapsto \bar{v}=W+v \text { linear }
\end{gathered}
$$

$\forall x, y \in V$ we have

$$
\bar{x}=\bar{y} \in \bar{V} \Longleftrightarrow x \equiv y \quad \bmod W \Longleftrightarrow x-y \in W \Longleftrightarrow T(x-y)=0_{Z}
$$

i.e., when $W=\operatorname{ker} T$

$$
\begin{equation*}
\bar{x}=\bar{y} \Longleftrightarrow T x=T y \tag{*}
\end{equation*}
$$

This means

$$
\bar{T}: \bar{V} \rightarrow Z \text { defined by } W+v=\bar{v} \mapsto T v
$$

is well-defined, i.e., via function, since if $\bar{x}=\bar{y}$, then $\bar{T}(\bar{x}):=T x=T y=: \bar{T}(\bar{y})$. From (${ }^{*}$),

$$
\bar{x}=\bar{y} \Longleftrightarrow \bar{T}(\bar{x})=T(x)=T(y)=: \bar{T}(\bar{y})
$$

so

$$
\bar{T}: \bar{V} \rightarrow Z \text { is also injective }
$$

As \bar{T} is linear, let $\alpha \in F, x, y \in V$, then

$$
\begin{aligned}
\bar{T}(\alpha \bar{x}+\bar{y}) & =\bar{T}(\overline{\alpha x+y})=T(\alpha x+y) \\
& =\alpha T x+T y=\alpha \bar{T}(\bar{x})+\bar{T}(\bar{y})
\end{aligned}
$$

as needed. Therefore,

$$
\bar{T}: \bar{V} \rightarrow Z \text { by } \bar{x} \mapsto T(x)
$$

is a monomorphism, so induces an isomorphism onto im \bar{T} and we recall $\operatorname{im} \bar{T}=\operatorname{im} T$, so

$$
\bar{V} \cong \operatorname{im} \bar{T}=\operatorname{im} T
$$

and we have a commutative diagram

This can also be written as

Consequence: Any linear transformation $T: V \rightarrow Z$ induces an isomorphism

$$
\bar{T}: V / \operatorname{ker} T \rightarrow \operatorname{im} T \text { by } \bar{v}=\operatorname{ker} T+v \mapsto T v
$$

This is called the First Isomorphism Theorem. We also have

$$
V=\operatorname{ker} T \oplus X \text { with } X \subseteq V \text { and } X \cong \operatorname{im} T \cong V / \operatorname{ker} T
$$

This means that all images of linear transformations from V are determined, up to isomorphism, by V and its subspaces. It also means, if V is a finite dimensional vector space over F, we can try prove things by induction.

§6.2 Projections

Motivation: Let $m<n$ in \mathbb{Z}^{+}and

$$
\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \text { by }\left(\alpha_{1}, \ldots, \alpha_{n}\right) \mapsto\left(\alpha_{1}, \ldots, \alpha_{n}, 0, \ldots, 0\right)
$$

a linear operator onto $\bigoplus_{i=1}^{m} \Gamma e_{i}$ where $e_{i}=(0, \ldots, \underbrace{1}_{i^{m}}, \ldots, 0)$.

Definition 6.5 (T-invariant) - Let $T: V \rightarrow V$ be linear, $W \subseteq V$ a subspace. We say W is T-invariant if $T(W) \subseteq V$ if this is the case, then the restriction $\left.T\right|_{W}$ of T can be viewed as a linear operator

$$
\left.T\right|_{W}: W \rightarrow W
$$

Example 6.6

Let $T: V \rightarrow V$ be linear.

1. $\operatorname{ker} T$ and $\operatorname{im} T$ are T-invariant.
2. Let $\lambda \in F$ be an eigenvalue of T, i.e., $\exists 0 \neq v \in V \ni T v=\lambda v$, then any subspace of the eigenspace

$$
E_{T}(\lambda):=\{v \in V \mid T v=\lambda v\}
$$

is T-invariant as $\left.T\right|_{E_{T}(\lambda)}=\lambda 1_{E_{T}(\lambda)}$

Remark 6.7. Let V be a finite dimensional vector space over $F, T: V \rightarrow V$ linear. Suppose that

$$
V=W_{1} \oplus \ldots \oplus W_{n}
$$

with each $W_{i} T$-invariant, $i=1, \ldots, n$ and \mathscr{B}_{i} an ordered basis for $W_{i}, i=1, \ldots, n$. Let $\mathscr{B}=\mathscr{B}_{1} \cup \ldots \cup \mathscr{B}_{n}$ be a basis of V ordered in the obvious way. Then the matrix representation of T in the \mathscr{B} basis is

$$
[T]_{\mathscr{B}}=\left(\begin{array}{ccc}
{\left[\left.T\right|_{W_{1}}\right]_{\mathscr{B}_{1}}} & & 0 \\
& \ddots & \\
0 & & {\left[\left.T\right|_{W_{n}}\right]_{\mathscr{B}_{n}}}
\end{array}\right)
$$

Example 6.8

Suppose that $T: V \rightarrow V$ is diagonalizable, i.e., there exists a basis \mathscr{B} of eigenvectors of T for V. Then, $T: V \rightarrow V$,

$$
V=\bigoplus E_{T}\left(\lambda_{i}\right)
$$

each $E_{T}\left(\lambda_{i}\right)$ is T-invariant.

$$
\left.T\right|_{E_{T}\left(\lambda_{i}\right)}=\lambda_{i} 1_{E_{T}\left(\lambda_{i}\right)}
$$

Goal: Let V be a finite dimensional vector space over $F, n=\operatorname{dim} V, T: V \rightarrow V$ linear. Then $\exists W_{1}, \ldots, W_{m} \subseteq V$ all T-invariant subspaces with $m=m(T)$ with each W_{i} being as small as possible with $V=W_{1} \oplus \ldots \oplus W_{m}$. This is the theory of canonical forms.
Recall: If V is a finite dimensional vector space over $F, T: V \rightarrow V$ linear, \mathscr{B} an ordered basis for V, then the matrix representation $[T]_{\mathscr{B}}$ is only unique up to similarity, i.e., if \mathscr{C} is an another ordered basis

$$
[T]_{\mathscr{C}}=P[T]_{\mathscr{B}} P^{-1}
$$

where $P=\left[1_{V}\right]_{\mathscr{B}, \mathscr{C}} \in G L_{n} F$, the change of basis matrix $\mathscr{B} \rightarrow \mathscr{C}$.

Definition 6.9 (Projection) - Let V be a vector space over $F, P: V \rightarrow V$ linear. We call P a projection if $P^{2}=P \circ P=P$.

Example 6.10 1. $P=0_{V}$ or $1_{V}: V \rightarrow V, V$ is a vector space over F.
2. An orthogonal projection in 115A.
3. If P is a projection, so is $1_{V}-P$.

If $T: V \rightarrow V$ is linear, then

$$
V=\operatorname{ker} T \oplus X \text { with } X \cong \operatorname{im} T
$$

Lemma 6.11

Let $P: V \rightarrow V$ be a projection. Then

$$
V=\operatorname{ker} P \oplus \operatorname{im} P
$$

Moreover, if $v \in \operatorname{im} P$, then

$$
P v=v
$$

i.e.

$$
\left.P\right|_{\mathrm{im} P}: \operatorname{im} P \rightarrow \operatorname{im} P \text { is } 1_{\mathrm{im} P}
$$

In particular, if V is a finite dimensional vector space over F, \mathscr{B}_{1} an ordered basis for ker P, \mathscr{B}_{2} an ordered basis for im P, then $\mathscr{B}=\mathscr{B}_{1} \cup \mathscr{B}_{2}$ is an ordered basis for V and

$$
[P]_{\mathscr{B}}=\left(\begin{array}{cc}
{[0]_{\mathscr{B}_{1}}} & 0 \\
0 & {\left[1_{\mathrm{im} P}\right]_{\mathscr{B}_{2}}}
\end{array}\right)=\left(\begin{array}{cccccc}
0 & & & & & \\
& \ddots & & & & \\
& & 0 & & & \\
& & & 1 & & \\
& & & & \ddots & \\
& & & & & 1
\end{array}\right)
$$

Proof. Let $v \in V$, then $v-P v \in \operatorname{ker} P$, since

$$
P(v-P v)=P v-P^{2} v=P v-P v=0
$$

Hence

$$
v=(v-P v)+P v \in \operatorname{ker} P+\operatorname{im} P
$$

ker $P \cap \operatorname{im} P=0$ and $\left.P\right|_{\text {im } P}=1_{\text {im } P}$. Let $v \in \operatorname{imP}$. By definition, $P w=v$ for some $w \in V$. Therefore,

$$
P v=P P w=P w=v
$$

Hence

$$
\left.P\right|_{\mathrm{im} P}=1_{\mathrm{im} P}
$$

If $v \in \operatorname{ker} P \cap \operatorname{im} P$, then

$$
v=P v=0
$$

$\S 7 \mid \operatorname{Lec} 7:$ Apr 12, 2021

§7.1 Projection (Cont'd)

Lemma 7.1

Let V be a vector space over $F, W, X \subseteq V$ subspaces. Suppose

$$
V=W \oplus X
$$

Then $\exists!P: V \rightarrow V$ a projection satisfying

$$
\begin{align*}
W & =\operatorname{ker} P \tag{*}\\
X & =\operatorname{im} P
\end{align*}
$$

We say such a P is the projection along W onto X.

Proof. Existence: Let $v \in V$. Then

$$
\exists!w \in W, x \in X \ni v=w+x
$$

Define

$$
P: V \rightarrow V \text { by } v \mapsto x
$$

To show $P^{2}=P$, we suppose $v \in V$ satisfies $v=w+x$, for unique $w \in W, x \in X$. Then

$$
P v=P w+P x=P x=1_{X} x=x
$$

so

$$
P^{2} v=P x=x=P v \quad \forall v \in V
$$

hence $P^{2}=P$.
Uniqueness: Any P satisfying $\left(^{*}\right)$ takes a basis for W to 0 and fix a basis of X. Therefore, \bar{P} is unique by the UPVS.

Remark 7.2. Compare the above to the case that V is an inner product space over $F, W \subseteq V$ is a finite dimensional subspace and $P: V \rightarrow V$ by $v \mapsto v_{W}$, the orthogonal projection of P onto W.

Proposition 7.3

Let V be a vector space over $F, W, X \subseteq V$ subspaces s.t. $V=W \oplus X, P: V \rightarrow V$ the projection along W onto X, and $T: V \rightarrow V$ linear. Then the following are equivalent:

1. W and X are both T-invariant.
2. $P T=T P$.

Proof. 2) $\Longrightarrow 1): W$ is T-invariant: We have $W=\operatorname{ker} P$, so if $w \in W, P w=0$. Hence

$$
P T w=T P w=T 0=0
$$

$T w \in \operatorname{ker} P=W$ so W is T-invariant.
X is T-invariant, $X=\operatorname{im} P,\left.P\right|_{X}=1_{X}$. So if $x \in X$

$$
T x=T P x=P T x \in \operatorname{im} P=X
$$

So X is T-invariant.

1) $\Longrightarrow 2)$ Let $v \in V$. Then $\exists!w \in W, x \in X$ s.t.

$$
v=w+x
$$

As $\left.P\right|_{X}=1_{X}$ and $\left.P\right|_{W}=0$, so $P v=P x$. By 1), W and X are T-invariant, so

$$
\begin{aligned}
P T v & =P T(w+x)=P T w+P T x \\
& =0+T x=T P x=T P w+T P x=T P v
\end{aligned}
$$

for all $v \in V$ and $P T=T P$.
Remark 7.4. One can easily generalize from the case

$$
V=W_{1} \oplus W_{2}
$$

that we did to the case

$$
V=W_{1} \oplus \ldots \oplus W_{n}
$$

by induction on n as

$$
V=W_{i} \oplus(W_{1} \oplus \ldots \oplus \underbrace{\hat{W}_{i}}_{\text {omit }} \oplus \ldots \oplus W_{n})
$$

Construction: Let

$$
V=W_{1} \oplus \ldots \oplus W_{n}
$$

as above. Define

$$
P_{W_{i}}: V \rightarrow V
$$

to be the projection along $W_{1} \oplus \ldots \oplus \hat{W}_{i} \oplus \ldots \oplus W_{n}$, i.e.

$$
\operatorname{ker} P_{W_{i}}=W_{1} \oplus \ldots \oplus \hat{W}_{i} \oplus \ldots \oplus W_{n}
$$

and onto $W_{i}=\operatorname{im} P_{W_{i}}$ as in the above Proposition. Then we have
a) Each $P_{W_{i}}$ is linear (and a projection).
b) $\operatorname{ker} P_{W_{i}}=W_{1} \oplus \ldots \oplus \hat{W}_{i} \oplus \ldots \oplus W_{n}$.
c) W_{i} is $P_{W_{i}}$-invariant and $\left.P_{W_{i}}\right|_{W_{i}}=1_{W_{i}}$. In particular, im $P_{W_{i}}=W_{i}$.
d) $P_{W_{i}} P_{W_{j}}=\delta_{i j} P_{W_{i}}$ where

$$
\delta_{i j}= \begin{cases}1, & \text { if } i=j \\ 0, & \text { if } i \neq j\end{cases}
$$

e) $1_{V}=P_{W_{1}}+\ldots+P_{W_{n}}$.

Moreover, if $T: V \rightarrow V$ is linear and each W_{i} is T-invariant, then

$$
T P_{W_{i}}=P_{W_{i}} T, \quad i=1, \ldots, n
$$

Hence

$$
\begin{aligned}
T=T 1_{V} & =T\left(P_{W_{1}}+\ldots P_{W_{n}}\right)=T P_{W_{1}}+\ldots+T P_{W_{n}} \\
& =P_{W_{1}} T+\ldots+P_{W_{n}} T
\end{aligned}
$$

i.e., $1_{V} T=T 1_{V}$. This implies

$$
\left.T\right|_{W_{i}}: W_{i} \rightarrow W_{i}
$$

is given by

$$
\left.T\right|_{W_{i}}=\left.T P_{W_{i}}\right|_{W_{i}}
$$

or T is determined by what it does to each W_{i}.
Remark 7.5. Compare this to the case that T is diagonalizable and the W_{i} are the eigenspaces.
Question 7.1. Let V be a real or complex finite dimensional inner product space, T : $V \rightarrow V$ hermitian. What can you replace \oplus by? What if V is a complex finite dimensional inner product space and $T: V \rightarrow V$ is normal.

Exercise 7.1. Suppose V is a vector space over $F, P_{1}, \ldots, P_{n}: V \rightarrow V$ linear and satisfy
i) $P_{i}-P_{j}=\delta_{i j} P_{i}, i=1, \ldots, n$
ii) $1_{V}=P_{1}+\ldots+P_{n}$
iii) $W_{i}=\operatorname{im} P_{i}, i=1, \ldots, n$

Then

$$
\begin{aligned}
V & =W_{1} \oplus \ldots \oplus W_{n} \\
P_{i} & =P_{W_{i}} \quad i=1, \ldots, n
\end{aligned}
$$

§7.2 Dual Spaces

Question 7.2. Let $V=\mathbb{R}^{3}, v \in V$. What is the first question that we should ask about v ?
Motivation/Construction: Let V be a vector space over F, \mathscr{B} a basis for V. Fix $v_{0} \in \mathscr{B}$. By the UPVS, \exists ! $f_{v_{0}}: V \rightarrow F$ linear satisfying

$$
f_{v v_{0}}(v)=\left\{\begin{array}{ll}
1 & \text { if } v_{0}=v \\
0 & \text { if } v_{0} \neq v
\end{array} \quad=\delta_{v, v_{0}} \quad \forall v \in \mathscr{B}\right.
$$

Example 7.6

Let $\mathscr{E}_{n}=\left\{e_{1}, \ldots, e_{n}\right\}$ be the standard basis for \mathbb{R}^{n} and in the above $e_{1}=v_{0} \ldots$ Then

$$
f_{e_{1}}: \mathbb{R}^{n} \rightarrow \mathbb{R} \text { satisfies }
$$

If $v=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ in \mathbb{R}^{n}

$$
v=\sum_{i=1}^{n} \alpha_{i} e_{i}
$$

so

$$
\begin{aligned}
f_{e_{1}}(v) & =f_{e_{1}}\left(\sum_{i=1}^{n} \alpha_{i} e_{i}\right) \\
& =\sum_{i=1}^{n} \alpha_{i} f_{e_{1}}\left(e_{i}\right)=\sum_{i=1}^{n} \alpha_{i} \delta_{i i}=\alpha_{1}
\end{aligned}
$$

this first coordinate of v.

Notation: If $A \subseteq B$ are sets, we write $A<B$ if $A \neq B$.
As $v_{0} \neq 0$,

$$
0<\operatorname{im} f_{v_{0}} \subseteq F \text { is a subspace }
$$

Notice $\operatorname{dim}_{F} F=1$, so $\operatorname{dimim} f_{v_{0}} \leq \operatorname{dim} F=1$ and

$$
\operatorname{dimim} f_{v_{0}}=1, \quad \text { i.e. } \operatorname{im} f_{0}=F
$$

So $f_{v_{0}}: V \rightarrow F$ is a surjective linear transformation. Since this is true for all $v_{0} \in \mathscr{B}$, for each $v \in \mathscr{B}, \exists!f_{v}: V \rightarrow F$ s.t.

$$
f_{v}\left(v^{\prime}\right)=\delta_{v, v^{\prime}}=\left\{\begin{array}{ll}
1 & \text { if } v=v^{\prime} \\
0 & \text { if } v \neq v^{\prime}
\end{array} \quad \forall v^{\prime} \in \mathscr{B}\right.
$$

Now suppose that $x \in V$, then

$$
\exists!\alpha_{v} \in F, v \in \mathscr{B}, \text { almost all } 0 \text { s.t. } x=\sum_{\mathscr{B}} \alpha_{v} v
$$

Hence

$$
\begin{aligned}
f_{v_{0}}(x) & =f_{v_{0}}\left(\sum_{v \in \mathscr{B}} \alpha_{v} v\right)=\sum_{\mathscr{B}} \alpha_{v} f_{v_{0}}(v) \\
& =\sum_{\mathscr{B}} \alpha_{v} \delta_{v, v_{0}}=\alpha_{v_{0}}
\end{aligned}
$$

Example 7.7

$\mathscr{B}=\mathscr{E}_{n}$ standard basis for \mathbb{R}^{n}

$$
f_{e_{i}}\left(e_{j}\right)=\delta_{e_{i}, e_{j}}=\delta_{i, j}= \begin{cases}1 & \text { if } e_{i}=e_{j} \\ 0 & \text { if } e_{i} \neq e_{j}\end{cases}
$$

Then if $v=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}^{n}=V$. Then

$$
f_{e_{i}}(v)=f_{e_{i}}\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\alpha_{i}
$$

So we observe in the above that if $x \in V$, then

$$
x=\sum_{\mathscr{B}} f_{v}(x) v
$$

We call f_{v} the coordinate function on v relative to \mathscr{B}.

Example 7.8

Let V be a finite dimensional inner product space over $\mathbb{R}, \mathscr{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ an orthonormal basis. Then if $x=\sum_{\mathscr{B}} \alpha_{i} v_{i}$, then

$$
\alpha_{i}=\left\langle x, v_{i}\right\rangle
$$

Take

$$
\begin{aligned}
\left\langle x, v_{i}\right\rangle & =\left\langle\sum \alpha_{j} v_{j}, v_{i}\right\rangle=\sum \alpha_{j}\left\langle v_{j}, v_{i}\right\rangle \\
& =\sum \alpha_{j} \delta_{i j}\left\|v_{i}\right\|^{2}=\sum \alpha_{j} \delta_{i j}=\alpha_{i}
\end{aligned}
$$

i.e. the linear map

$$
f_{v_{i}}:=\left\langle, v_{i}\right\rangle: V \rightarrow \mathbb{R} \text { by } x \mapsto\left\langle x, v_{i}\right\rangle
$$

is the coordinate function on vectors relative to \mathscr{B}.

Definition 7.9 (Dual Space) - Let V be a vector space over F. A linear transformation $f: V \rightarrow F$ is called a linear functional. Set

$$
V^{*}:=L(V, F):=\{f: V \rightarrow F \mid f \text { is linear }\}
$$

is called the dual space of V.

Proposition 7.10

Let V, W be a vector space over F. Then

$$
L(V, W):=\{T: V \rightarrow W \mid T \text { linear }\}
$$

is a vector space over F. Moreover, if V, W are finite dimensional vector spaces over F

$$
\operatorname{dim} L(V, W)=\operatorname{dim} V \operatorname{dim} W
$$

In particular, if V is a finite dimensional vector space over F, then so is V^{*} and

```
    dim}V=\operatorname{dim}\mp@subsup{V}{}{*
SO
    V\cong V*
```

Proof. 115A.

Example 7.11

Let V be a vector space over F. Then the following are linear functionals

1. $0: V \rightarrow F$
2. Let $0 \neq v_{0} \in V$ then $\left\{v_{0}\right\}$ is a basis for $F v_{0}$. Therefore, $\left\{v_{0}\right\}$ extends to a basis \mathscr{B} for V. Let $f v_{0} \in V^{*}$ be the coordinate function for V on v_{0} relative to \mathscr{B}. Then $f v_{0} \in \mathscr{B}^{*}:=\{f v \mid v \in \mathscr{B}\}$.

§8| Lec 8: Apr 14, 2021

§8.1 Dual Spaces (Cont'd)

Example 8.1 (Cont'd from Lec 7) 3. trace: $\mathbb{M}_{n} F \rightarrow F$ by

$$
A \mapsto \sum_{i=1}^{n} A_{i i}
$$

4. $\alpha<\beta \in \mathbb{R}$, then

$$
I: C[\alpha, \beta] \rightarrow \mathbb{R} \text { by } f \mapsto \int_{\alpha}^{\beta} f
$$

5. Fix $\gamma \in[\alpha, \beta], \alpha<\beta \in \mathbb{R}$. Then the evaluation map at γ

$$
e_{\gamma}: C[\alpha, \beta] \rightarrow \mathbb{R} \text { by } f \mapsto f(\gamma)
$$

Lemma 8.2

Let V be a vector space over F, \mathscr{B} a basis for V,

$$
\mathscr{B}^{*}:=\left\{f v_{0}: V \rightarrow F \mid \text { coordinate function on } v_{0} \text { relative to } \mathscr{B}\right\}
$$

so

$$
f v_{0}(v)=\delta_{v_{0}, v} \quad \forall v \in \mathscr{B}
$$

the set of coordinate functions relative to \mathscr{B}. Then $\mathscr{B}^{*} \subseteq V^{*}$ is linearly indep.

Proof. Suppose

$$
0=0_{V^{*}}=\sum_{v \in \mathscr{B}} \beta v f v, \quad \beta v \in F \text { almost all } 0
$$

We need to show $\beta v=0 \forall v \in \mathscr{B}$. Evaluation at $v_{0} \in \mathscr{B}$ yields

$$
\begin{aligned}
0 & =0_{V^{*}}\left(v_{0}\right)=\left(\sum_{\mathscr{B}} \beta v f v\right)\left(v_{0}\right)=\sum \beta v f v\left(v_{0}\right) \\
& =\sum_{\mathscr{B}} \beta v f_{v, v_{0}}=\beta v_{0}
\end{aligned}
$$

So $\beta v=0 \forall v \in \mathscr{B}$ and the lemma follows.

Corollary 8.3

Let V be a vector space over F with basis \mathscr{B}. Then the linear transformation

$$
D_{\mathscr{B}}: V \rightarrow V^{*} \text { induced by } \mathscr{B} \rightarrow \mathscr{B}^{*} \text { by } v \mapsto f v
$$

is a monomorphism.
In particular, if V is a finite dimensional vector space over F, then \mathscr{B}^{*} is a basis for V^{*} and

$$
D_{\mathscr{B}}: V \rightarrow V^{*} \text { is an isomorphism }
$$

Proof. By the Monomorphism Theorem, $D_{\mathscr{B}}$ is monic in view of he lemma if V is a finite dimensional vectors space over F, then

$$
\operatorname{dim} V=\operatorname{dim} V^{*}
$$

so $V \cong V^{*}$ by the Isomorphism Theorem.

Remark 8.4. 1. If $V=\mathbb{R}_{f}^{\infty}:=\left\{\left(\alpha_{1}, \alpha_{2}, \ldots\right) \mid \alpha_{i} \in \mathbb{R}\right.$ almost all 0$\}$, then by HW1 \# 4,

$$
D \mathscr{E}_{\infty}: V \rightarrow V^{*} \text { is not an isomorphism }
$$

2. $D_{\mathscr{B}}: V \rightarrow V^{*}$ in the corollary depends on \mathscr{B}. There exists no monomorphism $V \rightarrow V^{*}$ that does not depend on a choice of basis. However, there exists a "nice" monomorphism, i.e., defined independent of basis.

$$
L: V \rightarrow\left(V^{*}\right)^{*}=: V^{* *}
$$

$V^{* *}$ is called the double dual of V. We now construct it.

Lemma 8.5

Let V be a vector space over $F, v \in V$. Then

$$
L_{v}: V^{*} \rightarrow F \text { by } f \mapsto L_{v}(f):=f(v)
$$

the evaluation map at v is linear, i.e.

$$
L_{v} \in V^{* *}
$$

Proof. For all $f, g \in V^{*}, \alpha \in F$

$$
L_{v}(\alpha f+g)=(\alpha f+g)(v)=\alpha f(v)+g(v)=\alpha L_{v} f+L_{v} g
$$

Theorem 8.6

The "natural" map

$$
L: V \rightarrow V^{* *} \text { by } v \mapsto L(v):=L_{v}
$$

is a monomorphism.

Proof. L is linear: Let $v, w \in V, \alpha \in F$. Then for all $f \in V^{*}$, as $V^{* *}=\left(V^{*}\right)^{*}$

$$
\begin{aligned}
L(\alpha v+w)(f) & =L_{\alpha v+w}(f)=f(\alpha v+w) \\
& =\alpha f(v)+f(w)=\alpha L_{v} f+L_{w} f=\left(\alpha L_{v}+L_{w}\right)(f) \\
& =(\alpha L(v)+L(w))(f)
\end{aligned}
$$

So

$$
L(\alpha v+w)=\alpha L(v)+L(w)
$$

L is monic. Suppose $v \neq 0$. To show $L_{v}=L(v) \neq 0$. By example 2,

$$
\exists 0 \neq f \in V^{*} \ni f(v) \neq 0
$$

So

$$
L_{v} f=f(v) \neq 0
$$

so $L_{v}=L(v) \neq 0$ and L is monic.

Corollary 8.7

If V is a finite dimensional vector space over F, then $L: V \rightarrow V^{* *}$ is a natural isomorphism.

Proof. $\operatorname{dim} V=\operatorname{dim} V^{*}=\operatorname{dim} V^{* *}$ and the Isomorphism Theorem.
Identification: Let V be a finite dimensional vector space over F. Then $\forall v, w \in V$

1. $v=w \Longleftrightarrow L_{v}=L_{w}$
2. $\forall f \in V^{*} f(v)=f(w) \Longleftrightarrow L_{v} f=L_{w} f$

Moreover, if W is also a finite dimensional vector space over F, then if $T: V \rightarrow W$ is linear, $\exists!\tilde{T}: V^{* *} \rightarrow W^{* *}$ linear and if $\tilde{T}: V^{* *} \rightarrow W^{* *} \exists!T: V \rightarrow W$ linear. In other words, V and $V^{* *}$ can be identified by

$$
v \leftrightarrow L_{v}
$$

because

$$
L_{v}(f)=f(v) \quad \forall v \in V \quad \forall f \in V^{*}
$$

Construction: Let V be a finite dimensional vector space over F with basis $\mathscr{B}=\left\{v_{1}, \ldots, v_{n}\right\}$. Then

$$
\mathscr{B}^{*}:=\left\{f_{1}, \ldots, f_{n}\right\}
$$

defined by

$$
f_{i}\left(v_{j}\right)=\delta_{i j} \quad \forall i, j
$$

i.e., f_{i} is the coordinate function on v_{i} relative to \mathscr{B}. Since

$$
L_{v_{i}}\left(f_{j}\right)=f_{j}\left(v_{i}\right)=\delta_{i j} \quad \forall i, j
$$

$L_{v_{i}} \in V^{* *}$

$$
\mathscr{B}^{* *}:=\left\{L_{v_{1}}, \ldots, L_{v_{n}}\right\}
$$

is the dual basis of \mathscr{B}^{*} for $V^{* *}$. So we have if $x=\sum_{i=1}^{n} \alpha_{i} v_{i} \in V, g=\sum_{i=1}^{n} \beta_{i} f_{i} \in V^{*}$.

$$
\begin{aligned}
& x=\sum_{i=1}^{n} \alpha_{i} v_{i}=\sum_{i=1}^{n} f_{i}(x) v_{i} \\
& g=\sum_{i=1}^{n} \beta_{i} f_{i}=\sum_{i=1}^{n} L_{v_{i}}(g) f_{i}=\sum_{i=1}^{n} g\left(v_{i}\right) f_{i}
\end{aligned}
$$

i.e.

$$
\begin{array}{ll}
x=\sum_{i=1}^{n} f_{i}(x) v_{i} & \forall x \in V \\
g=\sum_{i=1}^{n} g\left(v_{i}\right) f_{i} & \forall g \in V^{*}
\end{array}
$$

Motivation: Let V be an inner product space over $\mathbb{R}, \emptyset \neq S \subseteq V$ a subset. What is S^{\perp} ? Note: $\forall v \in V,\langle, v\rangle: V \rightarrow \mathbb{R}$ by $x \mapsto\langle x, v\rangle$ is a linear functional. To generalize this to an arbitrary vector space over F, we define the following.

Definition 8.8 (Annihilator) - Let V be a vector space over $F, \emptyset \neq S \subseteq V$ a subset. Define the annihilator of S to be

$$
\begin{aligned}
S^{\circ} & :=\left\{f \in V^{*} \mid f(x)=0 \forall x \in S\right\} \\
& =\left\{f \in V^{*}|f|_{S}=0\right\} \subseteq V^{*}
\end{aligned}
$$

Remark 8.9. Many people write $\langle v, f\rangle$ for $f(v)$ in the above even though $f \notin v$.

$\S 9 \mid \operatorname{Lec} 9:$ Apr 16, 2021

§9.1 Dual Spaces (Cont'd)

Lemma 9.1

Let V be a vector space over $F, \emptyset \neq S \subseteq V$ a subset. Then

1. $S^{\circ} \subseteq V^{*}$ is a subspace.
2. If V is a finite dimensional vector space over F and we identify V as $V^{* *}$ (by $\left.v \leftrightarrow L_{v}\right)$, then $S \subseteq S^{\circ \circ}:=\left(S^{\circ}\right)^{\circ}$.

Proof. 1. For all $f, g \in S^{\circ}, \alpha \in F$, we have

$$
(\alpha f+g)(x)=\alpha f(x)+g(x)=0 \quad \forall x \in S
$$

Hence $\alpha f+g \in S^{\circ}$ and $S^{\circ} \subseteq V^{*}$ is a subspace.
2. Let $x \in S$. Then $\forall f \in S^{\circ}$, we have

$$
0=f(x)=L_{x} f, \quad \text { so } L_{x} \in\left(S^{\circ}\right)^{\circ}=S^{\circ \circ}
$$

Theorem 9.2

Let V be a finite dimensional vector space over $F, S \subseteq V$ a subspace. Then

$$
\operatorname{dim} V=\operatorname{dim} S+\operatorname{dim} S^{\circ}
$$

Proof. Let $\mathscr{B}_{0}=\left\{v_{1}, \ldots, v_{k}\right\}$ be a basis for S. Extend this to

$$
\begin{aligned}
\mathscr{B} & =\left\{v_{1}, \ldots, v_{n}\right\} \text { a basis for } V \\
\mathscr{B}_{0} & =\left\{f_{1}, \ldots, f_{n}\right\} \text { the dual basis of } \mathscr{B}
\end{aligned}
$$

Claim 9.1. $\mathscr{C}:=\left\{f_{k+1}, \ldots, f_{n}\right\}$ is a basis for S°.
If we show this, the theorem follows. Let $f \in S^{\circ}$. Then

$$
\begin{aligned}
f & =\sum_{i=1}^{n} L_{v_{i}}(f) f_{i}=\sum_{i=1}^{n} f\left(v_{i}\right) f_{i} \\
& =\sum_{i=1}^{k} f\left(v_{i}\right) f_{i}+\sum_{i=k+1}^{n} f\left(v_{i}\right) f_{i}=\sum_{i=k+1}^{n} f\left(v_{i}\right) f_{i}
\end{aligned}
$$

lies in span \mathscr{C} so \mathscr{C} spans. As $\mathscr{C} \subseteq \mathscr{B}^{*}$ which is linearly indep., so is \mathscr{C}. This proves the claim.

Corollary 9.3

Let V be a finite dimensional vector space over $F, S \subseteq V$ a subspace. Then $S=S^{\circ \circ}$.

Proof. As $S \subseteq S^{\circ 0}$, it suffices to show $\operatorname{dim} S=\operatorname{dim} S^{\circ 0}$. By the theorem, we have

$$
\begin{aligned}
\operatorname{dim} V & =\operatorname{dim} S+\operatorname{dim} S^{\circ} \\
\operatorname{dim} V^{*} & =\operatorname{dim} S^{\circ}+\operatorname{dim} S^{\circ \circ}
\end{aligned}
$$

where $\operatorname{dim} V=\operatorname{dim} V^{*}$. So $\operatorname{dim} S=\operatorname{dim} S^{\circ 0}$.

Remark 9.4. If V is an inner product space over \mathbb{R}, compare all this to $\emptyset \neq S \subseteq V$ a subset and $S^{\perp}, S^{\perp \perp}$.

§9.2 The Transpose

Construction: Fix $T: V \rightarrow W$ linear. For every $S: W \rightarrow X$, we have a composition

$$
S \circ T: V \rightarrow X \text { is linear }
$$

So $T: \rightarrow W$ linear induces a map

$$
T^{\star}: L(W, X) \rightarrow L(V, X)
$$

by

$$
S \mapsto S \circ T
$$

Proposition 9.5

Let V, W, X be vector spaces over $F, T: V \rightarrow W$ linear. Then

$$
T^{\star}: L(W, X) \rightarrow L(V, X)
$$

is linear.
Proof. Let $S_{1}, S_{2} \in L(W, X), \alpha \in F$. Then

$$
\begin{aligned}
T^{\star}\left(\alpha S_{1}+S_{2}\right) & =\left(\alpha S_{1}+S_{2}\right) \circ T \\
& =\alpha S_{1} \circ T+S_{2} \circ T=\alpha T^{\star} S_{1}+T^{\star} S_{2}
\end{aligned}
$$

Corollary 9.6

Let $T: V \rightarrow W$ be linear. Then

$$
T^{*}: W^{*} \rightarrow V^{*} \text { by } f \mapsto f \circ T
$$

is linear.
Proof. Let $X=F$ in the proposition.

Definition 9.7 (Transpose) - Let $T: V \rightarrow W$ be linear. The linear map $T^{\star}: W^{*} \rightarrow$ V^{*} in the corollary is called the transpose of T and denoted by T^{\top}.

Note: The transpose "turns thing around"

$$
\begin{gathered}
V \stackrel{T}{\longrightarrow} W \\
V^{*} \stackrel{T^{\top}}{\longleftarrow} W^{*}
\end{gathered}
$$

Lemma 9.8

Let $T: V \rightarrow W$ be linear. Then

$$
\operatorname{ker} T^{\top}=(\operatorname{imT})^{\circ} \in W^{*}
$$

Proof. $g \in \operatorname{ker} T^{\top} \Longleftrightarrow T^{\top} g=0 \Longleftrightarrow\left(T^{\top} g\right)(v)=0 \forall v \in V \Longleftrightarrow(g \circ T)(v)=0$ $\forall v \in V \Longleftrightarrow g(T v)=0 \forall v \in V \Longleftrightarrow g \in(\mathrm{im} T)^{\circ}$.

Theorem 9.9

Let V, W be finite dimensional vector space over $F, T: V \rightarrow W$ linear. Then

$$
\operatorname{dimim} T=\operatorname{dim} \operatorname{im} T^{\top}
$$

Proof. Consider:

$$
\begin{aligned}
\operatorname{dim} W^{*} & =\operatorname{dim} \operatorname{ker} T^{\top}+\operatorname{dimim} T^{\top} \\
\operatorname{dim} W & =\operatorname{dimim} T+\operatorname{dim}(\operatorname{im} T)^{\circ}
\end{aligned}
$$

Notice that $\operatorname{dim} W^{*}=\operatorname{dim} W$. By the lemma, $\operatorname{dimim} T=\operatorname{dim} \operatorname{im} T^{\top}$.
Computation: Let V, W be finite dimensional vector space over F.

$$
\mathscr{B}, \mathscr{B}^{*} \text { ordered dual bases for } V, V^{*}
$$

$\mathscr{C}, \mathscr{C}^{*}$ ordered dual bases for W, W^{*}
Suppose

$$
\begin{gathered}
\mathscr{B}=\left\{v_{1}, \ldots, v_{n}\right\}, \quad \mathscr{B}^{*}=\left\{f_{1}, \ldots, f_{n}\right\} \\
f_{i}\left(v_{j}\right)=\delta_{i j} \quad \forall i, j
\end{gathered}
$$

So

$$
\begin{gathered}
\mathscr{C}=\left\{w_{1}, \ldots, w_{n}\right\}, \quad \mathscr{C}^{*}=\left\{g_{1}, \ldots, g_{n}\right\} \\
g_{i}\left(w_{j}\right)=\delta_{i j} \quad \forall i, j
\end{gathered}
$$

Let

$$
A=[T]_{\mathscr{B}, \mathscr{C}}, \quad B=\left[T^{\top}\right]_{\mathscr{C}^{*}, \mathscr{B}^{*}}
$$

be the matrix representation of T, T^{\top} in the ordered bases \mathscr{B}, \mathscr{C} and $\mathscr{C}^{*}, \mathscr{C}^{*}$ respectively. By definition of A and B, we have

$$
\begin{gathered}
t v_{k}=\sum_{i=1}^{m} A_{i k} w_{i} \quad k=1, \ldots, n \\
T^{\top} g_{j}=\sum_{i=1}^{n} B_{i j} f_{i} \quad j=1, \ldots, m
\end{gathered}
$$

So

$$
B_{k j}=A_{j k} \quad \forall j, k
$$

So we just proved...

Theorem 9.10

Let V, W be finite dimensional vector space over $F, T: V \rightarrow W$ linear, $\mathscr{B}, \mathscr{B}^{*}$ ordered dual bases for V, V^{*} and $\mathscr{C}, \mathscr{C}^{*}$ ordered dual bases for W, W^{*}. Then

$$
\left[T^{\top}\right]_{\mathscr{C} *, \mathscr{B}^{*}}=\left([T]_{\mathscr{B}, \mathscr{C}}\right)^{\top}
$$

Definition 9.11 (Row/Column Rank) - Let $A \in F^{m \times n}$. The row (column) rank of A is the dimension of the span of the rows (columns) of A.

We know if $A \in F^{m \times n}$, we can view

$$
A: F^{n \times 1} \rightarrow F^{m \times 1} \text { by } v \mapsto A \cdot v
$$

a linear transformation and the matrix representation of A is

$$
A=[A]_{\mathscr{E}_{n, 1}, \mathscr{E}_{m, 1}}
$$

where $\mathscr{E}_{n, 1}, \mathscr{E}_{m, 1}$ are the standard bases for $F^{n \times 1}$ and $F^{m \times 1}$ respectively.

Corollary 9.12

Let $A \in F^{m \times n}$. Then

$$
\text { row } \operatorname{rank} A=\text { column rank } A
$$

and we call this common number the rank of A.

§9.3 Polynomials

Definition 9.13 (Polynomial Division) - Let $f, g \in F[t], f \neq 0$. We say that f divides $g \in F[t]$ write $f \mid g$ if $\exists h \in F[t]$ s.t. $g=f h$, i.e. g is multiple of f, e.g. $t+1 \mid t^{2}-1$.

Lemma 9.14

If $f \mid g$ and $f \mid h$ in $F[t]$, then $f \mid g k+h l$ in $F[t]$ for all $k, l \in F[t]$.

Proof. By definition,

$$
g=f g_{1}, \quad h=f h_{1}, \quad g_{1}, h_{1} \in F[t]
$$

So

$$
g k+h l=f g_{1} k+f h_{1} l=f\left(g_{1} k+h_{1} l\right)
$$

in $F[t]$.

Remark 9.15. If $f \mid g \in F[t]$ and $0 \neq a \in F$, then $a f \mid g$ and $f \mid a g$.

Definition 9.16 (Polynomial Degree and Leading Coefficient) - Let

$$
0 \neq f=a t^{n}+a_{n-1} t^{n-1}+\ldots+a_{1} t+a_{0} \in F[t]
$$

with $a, a_{0}, \ldots, a_{n-1} \in F$ and $a \neq 0$. We call n the degree of f write $\operatorname{deg} f=n$ and a the leading coefficient of F write lead $f=a$. If $a=1$, we say f is monic.

We can define the degree of $0 \in F[t]$ to be the symbol $-\infty$ or just do not define it at all.

Remark 9.17. Let $f, g \in F[t] \backslash\{0\}$. Then

$$
\operatorname{lead}(f g)=\operatorname{lead}(f) \cdot \operatorname{lead}(g) \neq 0 \in F
$$

So

$$
\operatorname{deg}(f g)=\operatorname{deg} f+\operatorname{deg} g
$$

§10| Lec 10: Apr 19, 2021

§10.1 Polynomials (Cont'd)

Division Algorithm: Let $0 \neq f \in F[t], g \in F[t]$. Then

$$
\exists!q, r \in F[t]
$$

satisfying

$$
g=f q+r \quad \text { with } \quad r=0 \quad \text { or } \quad \operatorname{deg} r<\operatorname{deg} f
$$

Definition 10.1 (Greatest Common Divisor) - Let $f, g \in F[t] \backslash\{0\}$. We say d in $F[t]$ is a gcd (greatest common divisor) of f, g if
i) d is monic.
ii) $d \mid f$ and $d \mid g$ in $F[t]$.
iii) if $e \mid f$ and $e \mid g$ in $F[t]$, then $e \mid d$ in $F[t]$.

Remark 10.2. If a gcd of f, g exists, then it is unique.

Remark 10.3. If $d=1$ is a gcd of $f, g \in F[t]$, we say that f, g are relatively bear.

Remark 10.4. Compare the above with analogous in \mathbb{Z}.

Theorem 10.5

Let $f, g \in F[t] \backslash\{0\}$. Then a gcd of f, g exists and is unique write $\operatorname{gcd}(\mathrm{f}, \mathrm{g})$ for the gcd of f, g. Moreover, we have an equation

$$
d=f k+g l \in F[t] \text { for some } k, l \in F[t]
$$

Proof. The existence and (\star) follow from the Euclidean Algorithm. Let $f, g \in F[t] \backslash\{0\}$. Then iteration of the Division Algorithm produces equations in $F[t]$, if $f+g \in F[t]$,

$$
\begin{aligned}
g & =q_{1} f+r_{1} \quad \operatorname{deg} r_{1}<\operatorname{deg} f \\
f & =q_{2} r_{1}+r_{2} \quad \operatorname{deg} r_{2}<\operatorname{deg} r_{1} \\
& \vdots \\
r_{n-3} & =q_{n-1} r_{n-2}+r_{n-1} \quad \operatorname{deg} r_{n-1}<\operatorname{deg} r_{n-2} \\
r_{n-2} & =q_{n} r_{n-1}+r_{n} \quad \operatorname{deg} r_{n-1}<\operatorname{deg} r_{n} \\
r_{n-1} & =q_{n+1}+r_{n}
\end{aligned}
$$

where r_{n} is the remainder of least degree $\left(r_{n} \neq 0\right)$.
This must stop in $\leq \operatorname{deg} f$ steps. Plugging from the bottom up and using the lemma shows

$$
r_{n}=f k+g l \in F[t]
$$

and if $e\left|r_{1} \rightarrow e\right| r_{2} \rightarrow \ldots \rightarrow e \mid r_{n}$ then (lead $\left.r_{n}\right)^{-1} r_{n}$ is the gcd of f and g in $F[t]$ if $a=\operatorname{lead} f$

$$
a^{-1} r_{n}=a^{-1} f k+a^{-1} g l
$$

Definition 10.6 (Irreducible Polynomial) - $f \in F[t] \backslash F$ is called irreducible if there does not exist $g, h \in F[t] \ni f=g h$ with $\operatorname{deg} g, \operatorname{deg} h<\operatorname{deg} f$. Equivalently, if

$$
f=g h \in F[t], \quad \text { then } 0 \neq g \in F \text { or } 0 \neq h \in F
$$

Example 10.7

If $f \in F[t], \operatorname{deg} f=1$, then f is irreducible.

Remark 10.8. If $f, g \in F[t] \backslash F$ with f irreducible, then either f and g are relatively prime or $f \mid g$ since only $a, a f, 0 \neq a \in F$ can divide f.

Lemma 10.9 (Euclid)

Let $f \in F[t]$ be irreducible and $f \mid g h$ in $F[t]$. Then $f \mid g$ or $f \mid h$.

Proof. Suppose $f \times g$ where \times means does not divide. Then f and g are relatively prime. By the Euclidean Algorithm, there exists an equation

$$
1=f k+g l \in F[t]
$$

Hence

$$
h=f h k+g h l \in F[t]
$$

As $f \mid f h k$ and $f \mid g h l$ in $F[t], f \mid h$ by the lemma.

Remark 10.10. In \mathbb{Z} the analog of an irreducible element is called a prime element.

Remark 10.11. Euclid's lemma is the key idea. The "correct" generalization of "prime" is the conclusion of Euclid's lemma. This generalization is profound as, in general, there is difference between the two conditions "irreducible" and "prime", although not for \mathbb{Z} or $F[t]$.

We know that any positive integer is a product of positive primes unique up to order n. If we allow $n<0$ such is unique up to ± 1.

Theorem 10.12 (Fundamental Theorem of Arithmetic (Polynomial Case))
Let $g \in F[t] \backslash F$. Then there exists uniquely $a \in F, r \in \mathbb{Z}^{+}, p_{1}, \ldots, p_{r} \in F[t]$ distinct monic irreducible polynomial, $e_{1}, \ldots, e_{r} \in \mathbb{Z}^{+}$s.t. we have a factorization

$$
g=a p_{1}^{e_{1}} \ldots p_{r}^{e_{r}}
$$

unique up to order.

Proof. (Sketch) Existence: We induct on $n=\operatorname{deg} g \geq 1$. If g is irreducible, a, (lead $g)^{-1} g, a=$ lead g work. If g is reducible,

$$
g=f h \in F[t], \quad 1<\operatorname{deg} f, \quad \operatorname{deg} h<\operatorname{deg} g
$$

By induction, f, h have factorization hence we're done as $g=f h$.
Uniqueness: We induct on $n=\operatorname{deg} g \geq 1$. If

$$
a p_{1}^{e_{1}} \ldots p_{r}^{e_{r}}=g=b q_{1}^{f_{1}} \ldots q_{s}^{f_{s}}
$$

with p_{i}, q_{i} monic irreducible, $a, b \in F, e_{i}, f_{j} \in \mathbb{Z}^{+}$for all $i, j, \operatorname{deg} q_{1} \geq 1$, so $\operatorname{deg} q_{1} \times a$. By Euclid's lemma

$$
q_{i} \mid p_{j} \text { for some } j
$$

Changing notation, we may assume that $j=1$. As p_{1} is irreducible $p_{1}=q_{1}$ and by ($M 3^{\prime}$)

$$
g_{0}:=a p_{1}^{e_{1}-1} p_{2}^{e_{2}} \ldots p_{r}^{e_{r}}=b q_{1}^{f_{1}-1} q_{2}^{f_{2}} \ldots q_{s}^{f_{s}}
$$

As $\operatorname{deg} g_{0}<\operatorname{deg} g$, induction yields

$$
r=s, e_{1}-1=f_{1}-1, e_{i}=f_{i}, i>1, a=b=\operatorname{lead} g_{0}, p_{i}=q_{i} \forall i, e_{i}=f_{i} \forall i
$$

Remark 10.13. Applying the Euclidean Algorithm is relatively fast to compute, (for $f \mid g$ takes $\leq \operatorname{deg} f$ steps to get a gcd). Factoring into the irreducible is not.

§11 Lec 11: Apr 21, 2021

§11.1 Minimal Polynomials

We use the following theorem from 115A, Matrix Theory Theorem.
Remark 11.1. Let $T: V \rightarrow V$ be linear. If $f=a_{n} t^{n}+\ldots+a_{1} t+a_{0} \in F[t]$, we can plug T in for t to get

$$
f(T)=a_{n} T^{n}+\ldots+a_{1} T+a_{0} 1_{V} \in L(V, V)
$$

More precisely

$$
e_{T}: F[t] \rightarrow L(V, V) \text { by } t \mapsto T
$$

i.e. $f=\sum a_{i} t^{i} \mapsto f(T)=\sum a_{i} T^{i}$ is a ring homomorphism. Since we have

$$
T^{n}=T \underbrace{\circ \ldots \varrho}_{n} T, \quad n \geq 0
$$

Can we use the remark if V is a finite dimensional vector space over F ?

Lemma 11.2

Let V be a finite dimensional vector space over $F, f, g, h \in F[t], \mathscr{B}$ an ordered basis for $V, T: V \rightarrow V$ linear. Then

1. $[g(T)]_{\mathscr{A}}=g\left([T]_{\mathscr{B}}\right)$
2. If $f=g h \in F[t]$, then

$$
f(T)=g(T) h(T)
$$

Proof. - By MTT, if $g=\sum_{i=0}^{n} a_{i} t^{i} \in F[t]$, then

$$
\begin{aligned}
{[g(T)]_{\mathscr{B}} } & =\left[\sum_{i=0}^{n} a_{i} T^{i}\right]_{\mathscr{B}}=\sum_{i=0}^{n} a_{i}\left[T^{i}\right]_{\mathscr{B}} \\
& =\sum a_{i}[T]_{\mathscr{B}}^{i}=g\left([T]_{\mathscr{B}}\right)
\end{aligned}
$$

- Left as exercise.

Lemma 11.3

Let V be a finite dimensional vector space over $F, T: V \rightarrow V$ linear. Then $\exists q \in$ $F[t] \backslash\{0\} \ni q(T)=0$ and if $a=$ lead q, then $q_{0}:=a^{-1} q$ is moinc and satisfies $q_{0}(T)=0$

$$
q \in \operatorname{ker} e_{T}:=\{f \in F[t] \mid f(T)=0\}
$$

Proof. Let $n=\operatorname{dim} V$. By MTT

$$
\operatorname{dim} L(V, V)=\operatorname{dim} \mathbb{M}_{n} F=n^{2}<\infty
$$

So

$$
1_{V}, T, T^{2}, \ldots, T^{n^{2}} \in L(V, V)
$$

are linearly dependent. So $\exists a_{0}, \ldots, a_{n^{2}} \in F$ not all 0 s.t.

$$
\sum_{i=0}^{n^{2}} a_{i} T^{i}=0
$$

Then $q=\sum_{i=0}^{n^{2}} a_{i} t^{i}$ works.

Theorem 11.4

Let V be a finite dimensional vector space over $F, T: V \rightarrow V$ linear. Then $\exists!0 \neq$ $q_{T} \in F[t]$ monic called the minimal polynomial of T having the following properties:

1. $q_{T}(T)=0$
2. If $g \in F[t]$ satisfies $g(T)=0$, then $q_{T} \mid g \in F[t]$. In particular, if $0 \neq g \in F[t]$ satisfies $g(T)=0$, then $\operatorname{deg} g \geq \operatorname{deg} q_{T}$ and if $\operatorname{deg} g=\operatorname{deg} q_{T}$, then $g=(\operatorname{lead} g) q_{T}$

Proof. By the lemma, $\exists 0 \neq q \in F[t]$ monic s.t. $q(T)=0$. Among all such q, choose one with $\operatorname{deg} q$ minimal.

Claim 11.1. q works.
Let $g \neq 0$ in $F[t]$ satisfy $g(T)=0$. To show $q \mid g \in F[t]$. Write $g=q h+r$ in $F[t]$ with $r=0$ or $\operatorname{deg} r<\operatorname{deg} q$. Then

$$
0=g(T)=q(T) h h(T)+r(T)=r(T)
$$

If $r \neq 0$, then $r_{0}=(\text { lead } r)^{-1} r$ is a monic poly satisfying $r_{0}(T)=0, \operatorname{deg} r_{0}<\operatorname{deg} q$, contradicting the minimality of $\operatorname{deg} q$. So $r_{0}=0$ and $q \mid g \in F[t]$. If q^{\prime} also satisfies 1) and 2), then

$$
q \mid q^{\prime} \text { and } q^{\prime} \mid q \in F[t] \text { both monic so } q=q^{\prime}
$$

The last statement follows as if

$$
h, g \in F[t], \quad g \mid h, h \neq 0, \text { then } \operatorname{deg} h \geq \operatorname{deg} q
$$

Corollary 11.5

Let V be a finite dimensional vector space over F, \mathscr{B} an ordered basis for V_{1} and $T: V \rightarrow V$ linear. Then

$$
q_{T}=q_{[T]_{\mathscr{B}}}
$$

In particular, if $A, B \in \mathbb{M}_{n} F$ are similar write $A \sim B$. Then

$$
q_{A}=q_{B}
$$

Proof. $q_{T}=q_{[T]_{\mathscr{B}}}$ by MTT and the first lemma.

Note: By the theorem, if V is a finite dimensional vector space over $F g \in F[t] g \neq 0$, and $\operatorname{deg} g<\operatorname{deg} q_{T}$, then $q(T) \neq 0$.
Goal: Let V be a finite dimensional vector space over F, \mathscr{B} an ordered basis of $V, T: V \rightarrow V$ linear. Call

$$
t I-[T]_{\mathscr{B}} \text { the characteristics matrix of } T \text { relative to } \mathscr{B}
$$

Recall the characteristics polynomial f_{T} of T is defined to be

$$
f_{T}:=f_{[T]_{\mathscr{B}}}=\operatorname{det}\left(t I-[T]_{\mathscr{B}}\right) \in F[t]
$$

We want to show f_{T} satisfies the

Theorem 11.6 (Cayley-Hamilton)

If V is a finite dimensional vector space over $F, T: V \rightarrow V$ linear, then

$$
q_{T} \mid f_{T}, \quad \text { hence } f_{T}(T)=0
$$

In particular, $\operatorname{deg} q_{T} \leq \operatorname{deg} f_{T}$.

Remark 11.7. 1. There exists a determinant proof of this - essentially Cramer's rule.
2. A priori we only know $\operatorname{deg} q_{T} \leq n^{2}$, where $n=\operatorname{dim} V$.
3. f_{T} is independent of \mathscr{B} depends on properties of det : $\mathbb{M}_{n} F[t] \rightarrow F[t]$

$$
\begin{aligned}
\operatorname{det}(t I-A) & =\operatorname{det}\left(P(t I-A) P^{-1}\right) \\
& =\operatorname{det}\left(t I-P A P^{-1}\right)
\end{aligned}
$$

for each $P \in G L_{n} F$

Proposition 11.8

Let V be a finite dimensional vector space over $F, T: V \rightarrow V$ linear. Then q_{T} and f_{T} have the same roots in F, the eigenvalues of T.

Proof. Let λ be a root of q_{T}. To show λ is an eigenvalue of T, i.e., a root of f_{T}. As λ is a root of q_{T}, using the Division Algorithm that

$$
q_{T}=(t-\lambda) h \in F[t]
$$

So

$$
0=q_{T}(T)=\left(T-\lambda 1_{V}\right) h(T)
$$

As

$$
0 \leq \operatorname{deg} h<\operatorname{deg} q_{T}, \quad \text { we have } h(T) \neq 0
$$

Since $h(T) \neq 0 \exists 0 \neq v \in V$ s.t.

$$
w=h(T) v \neq 0
$$

Then

$$
0=q_{T}(T) v=\left(T-\lambda 1_{V}\right) h(T) v=\left(T-\lambda 1_{V}\right) w
$$

So $0 \neq w \in E_{T}(\lambda)$ and λ is an eigenvalue of T.
Conversely, suppose λ is a root of f_{T} so an eigenvalue of T. Let $0 \neq v \in E_{T}(\lambda)$. Then $t-\lambda \in F[t]$ satisfies $(T-\lambda) w=0$ for all $w \in F v$, i.e. it is the minimal poly of $\left.T\right|_{F v}: F v \rightarrow F v$. But $q_{T}(T)=0$ on V so $t-\lambda \mid q_{T}$ by the definition that $t-\lambda$ is the minimal poly of $\left.T\right|_{F v}$.

§11.2 Algebraic Aside

Let V be a finite dimensional vector space over $F, T: V \rightarrow V$ linear. Te minimality poly q_{T} of T is algebraically more interesting than f_{T}. Recall we have a ring homomorphism

$$
e_{T}: F[t] \rightarrow L(V, V)
$$

given by

$$
\sum a_{i} t^{i} \mapsto \sum a_{i} T^{i}
$$

so e_{T} is not only a linear transformation but a ring homomorphism, i.e., it also follows that

$$
(f g)(T)=f(T) g(T) \quad \forall f, g \in F[t]
$$

We know that

$$
\operatorname{dim}_{F} F[t]=\infty
$$

which has $\left\{1, t, \ldots, t^{n}, \ldots\right\}$ is a basis for $F[t]$ and

$$
\operatorname{dim}_{F} L(V, V)=(\operatorname{dim} V)^{2}<\infty
$$

by MTT. So

$$
0<\operatorname{ker} e_{T}:=\left\{f \in F[t] \mid e_{T} f=f(T)=0\right\}
$$

is a vector space over F and a subspace of $F[t]$. This induces a linear transformation

$$
\overline{e_{T}}: V / \operatorname{ker} e_{T} \rightarrow \operatorname{im} e_{T}=F[T]
$$

which is an isomorphism. If $\bar{V}=V / \operatorname{ker} T$, we have

$$
\begin{aligned}
\overline{e_{T}}\left(\overline{\sum a_{i} t^{i}}\right) & =\overline{e_{T}\left(\sum a_{i} t^{2}\right)}=\sum \overline{a_{i}} \bar{T}^{i} \\
& =\sum a_{i} \bar{T}^{i}=\sum a_{i} T^{i}
\end{aligned}
$$

Check that \bar{e}_{T} is also a ring isomorphism onto im e_{T}. By definition, if $f(T)=0, f \in F[t]$, then

$$
q_{T} \mid f \in F[t]
$$

It follows that

$$
\operatorname{ker} e_{T}=\left\{q_{t} g \mid g \in F[t]\right\} \subseteq F[t]
$$

called an ideal in the ring $F[t]$.
The first isomorphism of rings gives rise to ker e_{T} whit quotient isomorphic to $F[t] \subseteq L(V, V)$. So we are at a higher level of algebra. Then this allows us to view $F[t]$ as acting on V, i.e. there exists a map

$$
\begin{equation*}
F[t] \times V \rightarrow V \tag{*}
\end{equation*}
$$

by

$$
\begin{gathered}
f \cdot v:=f(T) v \\
q_{T}(T)=0
\end{gathered}
$$

This turns V into what is called an $F[t]$-module, i.e., V via $\left({ }^{*}\right)$ satisfies the axioms of a vector space over F but the scalars $F[t]$ are now a ring rather than only a field.

§ 12 Lec 12: Apr 23, 2021

§12.1 Triangularizability

Proposition 12.1

Let V be a finite dimensional vector space over $F, T: V \rightarrow V$ linear, $W \subseteq V$ a T-invariant subspace. Then T induces a linear transformation

$$
\bar{T}: V / W \rightarrow V / W \text { by } \bar{T}(\bar{v}):=\overline{T(v)}
$$

where $\bar{v}=W+v, \bar{V}=V / W$ and

$$
q_{\bar{T}} \mid q_{T} \in F[t]
$$

Proof. By the hw, we need only to prove that

$$
q_{\bar{T}} \mid q_{T} \in F[t]
$$

But also by the hw,

$$
q_{T}(\bar{T})=\overline{q_{T}(T)}
$$

As $q_{T}(T)=0$,

$$
0=\overline{q_{T}(T)}=q_{T}(\bar{T})
$$

so

$$
q_{\bar{T}} \mid q_{T}
$$

by the defining property of $q_{\bar{T}}$.

Definition 12.2 (Triangularizability) - Let V be a finite dimensional vector space over $F, T: V \rightarrow V$ linear. We say T is triangularizable if \exists an ordered basis \mathscr{B} for V s.t. $A=[T]_{\mathscr{B}}$ satisfies $A_{i j}=0 \forall i<j$, i.e.

$$
A=\left(\begin{array}{lll}
* & & 0 \tag{*}\\
& \ddots & \\
* & & *
\end{array}\right) \text { is lower triangular }
$$

Note: If $\mathscr{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ in $\left(^{*}\right)$ and $\mathscr{C}=\left\{v_{n}, v_{n-1}, \ldots, v_{1}\right\}$, then

$$
[T]_{\mathscr{C}}=\left(\begin{array}{ccc}
* & & * \\
& \ddots & \\
0 & & *
\end{array}\right) \text { is upper triangular }
$$

Hence, by Change of Basis Theorem,

$$
[T]_{\mathscr{B}} \sim[T]_{\mathscr{C}}
$$

Remark 12.3. Suppose V is a finite dimensional vector space over $F, \operatorname{dim} V=n, T: V \rightarrow V$ linear, \mathscr{B} an ordered basis for $V, A=[T]_{\mathscr{B}}$ is triangular (upper or lower). Then

$$
f_{T}=\left(t-A_{11}\right) \ldots\left(t-A_{n n}\right) \in F[t]
$$

and $A_{11}, \ldots, A_{n n}$ are all the eigenvalues of T (not necessarily distinct) and hence roots of q_{T}.

Definition 12.4 (Splits) - We say $g \in F[t] \backslash F$ splits in $F[t]$ if g is a product of linear polys in $F[t]$, i.e.,

$$
g=(\operatorname{lead} g)\left(t-\alpha_{1}\right) \ldots\left(t-\alpha_{n}\right) \in F[t]
$$

Example 12.5

If V is a finite dimensional vector space over $F, T: V \rightarrow V$ linear and T is triangularizable, then f_{T} splits in $F[t]$.
Note: $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) \in \mathbb{M}_{2} \mathbb{R}$ is not triangularizable as it has no eigenvalues.

Theorem 12.6

Let V be a finite dimensional vector space over $F, T: V \rightarrow V$ linear. Then T is triangularizable if and only if q_{T} splits in $F[t]$.

Proof. " \Longrightarrow " We induct on $n=\operatorname{dim} V$.
$n=1$: It's obvious.
$n>1$: We proceed by induction: let λ be a root of q_{T} in $F\left(q_{T}\right.$ splits in $\left.F[t]\right)$. Then λ is a root of q_{T} hence an eigenvalue of T. Let $0 \neq v_{n} \in E_{T}(\lambda)$, so $W=F v_{n}$ is T-invariant. By the Proposition, T induces a linear map

$$
\bar{T}: V / W \rightarrow V / W \text { by } \bar{v} \mapsto \overline{T(v)}
$$

and

$$
q_{\bar{T}} \mid q_{T} \in F[t]
$$

We also know that

$$
W=\operatorname{ker}(-: V \rightarrow V / W) \text { by } v \mapsto \bar{v}
$$

and

$$
\operatorname{dim} V / W=\operatorname{dim} V-\operatorname{dim} W=n-1
$$

as $-: v \rightarrow \bar{v}$ is epic. Since q_{T} splits in $F[t]$ and $q_{\bar{T}} \mid q_{T}$ in $F[t], q_{\bar{T}}$ also splits in $F[t]$ by Fundamental Theorem of Algebra. Thus, by induction,

$$
\exists v_{1}, \ldots, v_{n-i} \in V \ni \mathscr{C}=\left\{\bar{v}_{1}, \ldots, \bar{v}_{n-1}\right\}
$$

is an ordered basis for $\bar{V}=V / W$ with $A=[\bar{T}]_{\mathscr{C}}$ is lower triangular, i.e., $A_{i j}=0$ if $i<j \leq n-1$. Thus

$$
\bar{T} \bar{v}_{j}=\sum_{i=j}^{n-1} A_{i j} \bar{v}_{i}, \quad 1 \leq j \leq n-1
$$

hence

$$
0=\bar{T} \bar{v}_{j}-\sum_{i=j}^{n-1} A_{i j} \bar{v}_{i}=\overline{T v_{j}-\sum_{i=j}^{n-1} A_{i j} v_{i}}
$$

$1 \leq j \leq n-1$ in $\bar{V}=V / W$. Therefore,

$$
T v_{j}-\sum_{i=j}^{n-1} A_{i j} v_{i} \in \operatorname{ker}^{-}=W=F v_{n}
$$

by definition as $W=\operatorname{ker}^{-}: V \rightarrow V / W$.
In particular, $\exists A_{n j} \in F, 1 \leq j \leq n-1$ satisfying

$$
T v_{j}-\sum_{i=j}^{n-1} A_{i j} v_{i}=A_{n j} v_{n}
$$

So

$$
T v_{j}=\sum_{i=j}^{n} A_{i j} v_{n} \quad 1 \leq j \leq n-1
$$

By choice, $A_{i j}=0, i<j \leq n-1$ and

$$
T v_{n}=\lambda v_{n}
$$

By hw $2 \# 3, \mathscr{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ is an ordered basis for V and

$$
[T]_{\mathscr{B}}=\left(\begin{array}{cc}
{[\bar{T}]_{\mathscr{C}}} & 0 \\
& \vdots \\
& 0 \\
A_{n 1} \ldots A_{n, n-1} & \lambda
\end{array}\right)
$$

which is lower triangular, as needed. " \Longrightarrow " Let $\mathscr{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ be an ordered basis for $V . A=[T]_{\mathscr{B}}$ is lower triangular. Then

$$
f_{T}=\prod_{i=1}^{n}\left(t-A_{i i}\right) \text { splits in } F[t]
$$

$A_{11}, \ldots, A_{n n}$ are the (not necessarily distinct) eigenvalues of T and hence roots of q_{T}.
Let $\lambda_{i}=A_{i i}, i=1, \ldots, n$. We have

$$
\begin{aligned}
& T v_{j}=\sum_{i=1}^{n} A_{i j} v_{i}=\lambda_{j} v_{j}+\sum_{i=j+1}^{n} A_{i j} v_{i}, \quad 1 \leq j \leq n-1 \\
& T v_{n}=\lambda_{n} v_{n}
\end{aligned}
$$

So

$$
\begin{equation*}
\left(T-\lambda_{j} 1_{V}\right) v_{j}=\sum_{i=j+1}^{n} A_{i j} v_{i} \in \operatorname{Span}\left(v_{j+1}, \ldots, v_{n}\right) \quad \forall 1 \leq j \leq n-1 \tag{*}
\end{equation*}
$$

Now

$$
\left(T-\lambda_{n} 1_{V}\right) v_{n}=0
$$

So

$$
\left(T-\lambda_{n} 1_{V}\right) v_{n-1} \in \operatorname{Span}\left(v_{n}\right) \text { by }(*)
$$

This implies

$$
\left(T-\lambda_{n} 1_{V}\right)\left(T-\lambda_{n-1} 1_{V}\right) v_{n-1}=0
$$

By induction, we may assume that

$$
\left(T-\lambda_{n} 1_{V}\right) \ldots\left(T-\lambda_{j} 1_{V}\right) v_{j}=0
$$

So by (*),

$$
\left(T-\lambda_{n} 1_{V}\right) \ldots\left(T-\lambda_{j} 1_{V}\right)\left(T-\lambda_{j-1} 1_{V}\right) v_{j-1}=0
$$

Therefore,

$$
f_{T}(T) v_{i}=\left(T-\lambda_{n} 1_{V}\right) \ldots\left(T-\lambda_{i} 1_{V}\right) v_{i}=0
$$

for $i=1, \ldots, n$. As \mathscr{B} is a basis for $V, f_{T}(T)=0$. Thus $q_{T} \mid f_{T} \in F[t]$. In particular, q_{T} splits in $F[t]$.

Corollary 12.7

Let V be a finite dimensional vector space over $F, T: V \rightarrow V$ a triangularizable linear operator. Then

$$
q_{T} \mid f_{T} \in F[t]
$$

In particular,

$$
f_{T}(T)=0
$$

Definition 12.8 (Algebraically Closed) - A field F is called algebraically closed if every $f \in F[t] \backslash F$ splits in $F[t]$. Equivalently, $f \in F[t] \backslash F$ has a root in F.

Corollary 12.9 (Cayley-Hamilton - Special Case)

Let F be algebraically closed, V a finite dimensional vector space over $F, T: V \rightarrow V$ linear. Then

1. T is triangularizable.
2. $q_{T} \mid f_{T}$
3. $f_{T}(T)=0$

Theorem 12.10 (Fundamental Theorem of Algebra)
(FTA) \mathbb{C} is algebraically closed.

Proof. It's assumed (proven in 132 - Complex Analysis or 110C - Algebra).
§13| Lec 13: Apr 26, 2021

§13.1 Triangularizability (Cont'd)

Remark 13.1. Let V be a finite dimensional vector space over $F, T: V \rightarrow V$ linear, \mathscr{B} an ordered basis for $V, A=[T]_{\mathscr{B}}$. So $q_{A}=q_{T}$ and $f_{A}=f_{T}$.

Let $n=\operatorname{dim} V$. Given a field $F, \exists \tilde{F}$ an algebraically closed field satisfying $F \subseteq \tilde{F}$ is a subfield. Then

$$
A \in \mathbb{M}_{n} F \subseteq \mathbb{M}_{n} \tilde{F}
$$

So by the corollary,

$$
f_{A}(A) v=0 \quad \forall v \in \tilde{F}^{n \times 1}
$$

where we view $A: \tilde{F}^{n \times 1} \rightarrow \tilde{F}^{n \times 1}$ linear. Then

$$
f_{A}(A) v=0 \quad \forall v \in F^{n \times 1} \subseteq \tilde{F}^{n \times 1}
$$

viewing

$$
A: F^{n \times 1} \rightarrow F^{n \times 1} \text { linear }
$$

Thus,

$$
f_{A}(A)=0
$$

Hence $f_{T}(T)=0$ and $q_{T}=q_{A} \mid f_{A}=f_{T}$. So $q_{T} \mid f_{T}$ in $F[t]$. Thus, if we knew such an \tilde{F} exists in general, we would have proven the Cayley-Hamilton Theorem in general, i.e., if V is a finite dimensional vector space over F and $T: V \rightarrow V$ linear, then

$$
\begin{gathered}
q_{T} \mid f_{T} \in F[t] \\
f_{T}(T)=0
\end{gathered}
$$

This is, in fact, true (and proven in Math 110C). Of course, assuming FTA, this proves Cayley-Hamilton for all fields $F \subseteq \mathbb{C}$.

Remark 13.2. The symmetric matrices

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \in \mathbb{M}_{2} \mathbb{F}_{2} \text { and }\left(\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right) \in \mathbb{M}_{2} \mathbb{F}_{5}
$$

are both triangularizable, but not diagonalizable.

§13.2 Primary Decomposition

$\underline{\text { Algebraic Motivation: Let } f \in F[t] \backslash F \text { be monic. Write }}$

$$
f=p_{1}^{e_{1}} \ldots p_{r}^{e_{r}}, p_{1}, \ldots, p_{r} \text { distinct monic }
$$

irreducible polys in $F[t], e_{i}>0 \forall i$. Set

$$
q=\frac{f}{p_{i}^{e_{i}}}=p_{1}^{e_{1}} \ldots p_{i}^{e_{i}} \ldots p_{r}^{e_{r}}
$$

Then p_{i}, q_{i} are relatively prime so there exists an equation

$$
\begin{equation*}
1=p_{i}^{e_{i}} k_{i}+q_{i} g_{i} \in F[t], \quad i=1, \ldots, n \tag{*}
\end{equation*}
$$

if we plug a linear operator $T: V \rightarrow V$ into $\left(^{*}\right)$, we get

$$
1_{V}=p_{i}^{e_{i}}(T) k_{1}(T)+q_{i}(T) g_{i}(T) \quad \forall i
$$

Linear Algebra Motivation: Let V be a finite dimensional vector space over $F, T: V \rightarrow V$ linear. Suppose

$$
V=W_{1} \oplus W_{2}, \quad W_{1}, W_{2} \subseteq V \text { subspaces }
$$

with W_{1}, W_{2} both T-invariant.
Let \mathscr{B}_{i} be an ordered basis for $W_{i}, i=1,2$ and $\mathscr{B}=\mathscr{B}_{1} \cup \mathscr{B}_{2}$ an ordered basis for V. Then

$$
[T]_{\mathscr{B}}=\left(\begin{array}{cc}
{\left[\left.T\right|_{W_{1}}\right]_{\mathscr{B}_{1}}} & 0 \\
0 & {\left[\left.T\right|_{W_{2}}\right]_{\mathscr{B}_{2}}}
\end{array}\right)
$$

Let $P_{W_{i}}: V \rightarrow V$ be the projection onto W_{i} along $W_{j}, j \neq i$. Then we know

$$
\begin{aligned}
1_{V} & =P_{W_{1}}+P_{W_{2}} \\
P_{W_{i}} P_{W_{j}} & =\delta_{i j} P_{W_{j}} \\
P_{W_{i}} T & =T P_{W_{i}}, \quad i=1,2 \\
T & =T P_{W_{1}}+T P_{W_{2}}=\left.T\right|_{W_{1}}+\left.T\right|_{W_{2}}
\end{aligned}
$$

By hw 4 \# 6

$$
q_{T}=\operatorname{lcm}\left(\left.q_{T}\right|_{W_{1}},\left.q_{T}\right|_{W_{2}}\right)
$$

This easily extends to more blocks.

Lemma 13.3

Let $f \in F[t], T: V \rightarrow V$ linear. Then $\operatorname{ker} f(T)$ is T-invariant.

Proof. If $v \in \operatorname{ker} f(T)$, to show $T v \in \operatorname{ker} f(T)$. But

$$
f(T) T v=T f(T) v=0
$$

so this is immediate.

Lemma 13.4

Let $g, h \in F[t] \backslash F$ be relatively prime. Set $f=g h \in F[t]$. Suppose $T: V \rightarrow V$ is linear and $f(T)=0$. Then

$$
\operatorname{ker} g(T) \text { and } \operatorname{ker} h(T) \text { are } T \text {-invariant }
$$

subspaces of V and

$$
\begin{equation*}
V=\operatorname{ker} g(T) \oplus \operatorname{ker} h(T) \tag{+}
\end{equation*}
$$

Proof. By the lemma we just proved, we need only show $(+)$. Since g, h are relatively prime, there exists equation

$$
1=g k+h l \in F[t]
$$

Hence

$$
1_{V}=g(T) k(T)=h(T) l(T)
$$

as linear operators on V i.e. $\forall v \in V$

$$
\begin{equation*}
v=g(T) k(T) v+h(T) l(T) v \tag{}
\end{equation*}
$$

Since $f(T)=0$ we have

$$
0=f(T) k(T) v=h(T) g(T) k(T) v
$$

Therefore,

$$
g(T) k(T) v \in \operatorname{ker} h(T)
$$

and

$$
0=f(T) l(T) v=g(T) h(T) l(T) v
$$

so

$$
h(T) l(T) v \in \operatorname{ker} g(T)
$$

It follows by $(*), \forall v \in V$

$$
v=g(T) k(T) v+h(T) l(T) v \in \operatorname{ker} h(T)+\operatorname{ker} g(T)
$$

where

$$
V=\operatorname{ker} g(T)+\operatorname{ker} h(T)
$$

By $\left({ }^{*}\right)$, if $v \in \operatorname{ker} g(T) \cap \operatorname{ker} h(T)$, then

$$
v=g(T) k(T) v+h(T) l(T) v=0
$$

Hence

$$
V=\operatorname{ker} g(T) \oplus \operatorname{ker} h(T)
$$

as needed.
§14| Lec 14: Apr 28, 2021

§14.1 Primary Decomposition (Cont'd)

Proposition 14.1

Let V be a finite dimensional vector space over $F, T: V \rightarrow V$ linear, $g, h \in F[t] \backslash F$ monic and relatively prime. Suppose that

$$
q_{T}=g h \in F[t]
$$

Then $\operatorname{ker} g(T)$ and $\operatorname{ker} h(T)$ are T-invariant.

$$
V=\operatorname{ker} g(T) \oplus \operatorname{ker} h(T)
$$

and

$$
g=\left.q_{T}\right|_{\operatorname{ker} g(T)} \text { and } h=\left.q_{T}\right|_{\operatorname{ker} h(T)}
$$

Proof. By the last lemma in last lecture, we need only prove the last statement. By definition, we have

$$
\left.g(T)\right|_{\operatorname{ker} g(T)}=0 \text { and }\left.h(T)\right|_{\operatorname{ker} h(T)}=0
$$

So by definition,

$$
\left.q_{T}\right|_{\operatorname{ker} q(T)} \mid g \text { and }\left.q_{T}\right|_{\operatorname{ker} h(T)} \mid h \in F[t]
$$

As g and h are relatively prime, by the FTA, so are

$$
\left.q_{T}\right|_{\operatorname{ker} g(T)} \text { and }\left.q_{T}\right|_{\operatorname{ker} h(T)}
$$

Therefore, we have

$$
\begin{aligned}
f & :=\operatorname{lcm}\left(\left.q_{T}\right|_{\operatorname{ker} g(T)},\left.q_{T}\right|_{\operatorname{ker} h(T)}\right) \\
& =\left.\left.q_{T}\right|_{\operatorname{ker} q(T) q_{T}}\right|_{\operatorname{ker} h(T)}
\end{aligned}
$$

Since

$$
\begin{gathered}
V=\operatorname{ker} g(T) \oplus \operatorname{ker} h(T) \\
f(T) v=0 \quad \forall v \in V
\end{gathered}
$$

Hence

$$
q_{T} \mid f \in F[t]
$$

By (+) and FTA

$$
f \mid g h=q_{T}
$$

As both f and q_{T} are monic,

$$
f=q_{T}
$$

Applying FTA again, we conclude that

$$
g=\left.q_{T}\right|_{\operatorname{ker} g(T)} \text { and } h=\left.q_{T}\right|_{\operatorname{ker} h(T)}
$$

We now generalize the proposition to an important result that decomposes a finite dimensional vector space over F relative to a linear operator $T: V \rightarrow V$.

Theorem 14.2 (Primary Decomposition)

Let V be a finite dimensional vector space over $F, T: V \rightarrow V$ linear, and $q_{T}=$ $p_{1}^{e_{1}} \ldots p_{r}^{e_{r}}$, with p_{1}, \ldots, p_{r} distinct monic irreducible polys in $F[t], e_{1}, \ldots, e_{r} \in \mathbb{Z}^{+}$. Then there exists a direct sum decomposition of V into subspaces W_{1}, \ldots, W_{r}

$$
\begin{equation*}
V=W_{1} \oplus \ldots \oplus W_{r} \tag{*}
\end{equation*}
$$

satisfying all of the following:
i) Each W_{i} is T-invariant, $i=1, \ldots, r$
ii) $\left.q_{T}\right|_{W_{i}}=p_{i}^{e_{i}}, i=1, \ldots, r$
iii) $q_{T}=\prod_{i=1}^{r} p_{i}^{e_{i}}=\prod_{i=1}^{r} q_{\left.T\right|_{W_{i}}}$
iv) If \mathscr{B}_{i} is an ordered basis for $W_{i}, i=1, \ldots, r, \mathscr{B}=\mathscr{B}_{1} \cup \ldots \cup \mathscr{B}_{r}$ is an ordered basis for V with

$$
[T]_{\mathscr{B}}=\left(\begin{array}{ccc}
{\left[\left.T\right|_{W_{1}}\right]_{\mathscr{B}_{1}}} & & 0 \\
& \ddots & \\
0 & & {\left[\left.T\right|_{W_{r}}\right]}
\end{array}\right)
$$

Moreover, any direct sum decomposition $\left({ }^{*}\right)$ of V satisfying $\left.\left.\left.i\right), i i\right), i i i\right)$ is uniquely determined by T and the p_{1}, \ldots, p_{r} up to order. If in addition, this is the case, then

$$
W_{i}=\operatorname{ker} p_{i}^{e_{i}}(T) \quad i=1, \ldots, r
$$

Proof. We induct on r.

- $r=1$ is immediate
- $r>1$ By TFA, $p_{1}^{e_{1}}$ and $g=p_{2}^{e_{2}} \ldots p_{r}^{e_{r}}$ are relatively prime, so by the Proposition

$$
V=W_{1} \oplus V_{1}
$$

where

$$
\begin{aligned}
W_{1} & =\operatorname{ker} p_{1}^{e_{1}}(T) \text { and } W_{1} \text { is } T \text {-invariant } \\
V_{1} & =\operatorname{ker} g(T) \text { and } V_{1} \text { is } T \text {-invariant } \\
q_{\left.T\right|_{W_{1}}} & =p_{1}^{e_{1}} q_{\left.T\right|_{V_{1}}}
\end{aligned}=p_{2}^{e_{2}} \ldots p_{r}^{e_{r}}
$$

Let

$$
T_{1}=\left.T\right|_{V_{1}}: V_{1} \rightarrow V_{1}
$$

By induction on r, we may assume all of the following:

$$
\begin{aligned}
V_{1} & =W_{2} \oplus \ldots \oplus W_{r} \\
W_{i} & =\operatorname{ker} p_{i}^{e_{i}}\left(T_{1}\right) \text { and is } T_{1} \text {-invariant } \\
q_{T_{1} \mid W_{i}} & =p_{i}^{e_{i}} \text { for } i=2, \ldots, r
\end{aligned}
$$

Note:

$$
\operatorname{ker} p_{i}^{e_{i}}\left(T_{1}\right) \cap \sum_{\substack{j=2 \\ j \neq i}}^{r} \operatorname{ker} p_{j}\left(T_{1}\right)=0 \quad \forall i>0
$$

Claim 14.1. Let $2 \leq i \leq r$. Then

$$
\operatorname{ker} p_{i}^{e_{i}}(T)=\operatorname{ker} p_{i}^{e_{i}}\left(T_{1}\right)
$$

Let $v \in \operatorname{ker} p_{i}^{e_{i}}(T), i>1$. So

$$
p_{i}^{e_{i}}(T) v=0
$$

Hence

$$
0=\prod_{j=2}^{r} p_{j}^{e_{j}}(T) v=g(T) v
$$

i.e.,

$$
v \in \operatorname{ker} g(T)=V_{1}
$$

So

$$
T v=\left.T\right|_{V_{1}} v=T_{1} v
$$

and

$$
0=p_{i}^{e_{i}}(T) v=p_{i}^{e_{i}}\left(T_{1}\right) v
$$

as needed.
Let $v \in \operatorname{ker} p_{i}^{e_{i}}\left(T_{1}\right), i>1$. By definition, $v \in V_{1}$, so

$$
\begin{aligned}
0 & =p_{i}^{e_{i}}\left(T_{1}\right) v=p_{i}^{e_{i}}\left(\left.T\right|_{V_{1}}\right) v \\
& =\left.p_{i}^{e_{i}}(T)\right|_{V_{1}} v=p_{i}^{e_{i}}(T) v
\end{aligned}
$$

This proves the claim.
The existence of $\left.\left.\left.\left({ }^{*}\right), i\right), i i\right), i i i\right)$ nad $W_{i}=\operatorname{ker} p_{i}^{e_{i}}(T), i=1, \ldots, r$, now follow. Moreover, i) and $\left({ }^{*}\right)$ yield $i v$).

Uniqueness: Suppose that

$$
V=W_{1} \oplus \ldots \oplus W_{r}
$$

satisfies i), ii), iii). If we show

$$
W_{i}=\operatorname{ker} p_{i}^{e_{i}}(T), \quad i=1, \ldots, r
$$

the result will follow. It suffices to do the case $i=1$. Let

$$
\begin{aligned}
V_{1} & =W_{2} \oplus \ldots \oplus W_{r} \\
V & =W_{1} \oplus V_{1}
\end{aligned}
$$

As each W_{i} is T-invariant and V_{1} is T-invariant. As before

$$
p_{1}^{e_{1}} \text { and } g=p_{2}^{e_{2}} \ldots p_{r}^{e_{r}}
$$

and relatively prime by FTA. So by hw $4 \# 6$

$$
q_{T}=\operatorname{lcm}\left(q_{\left.T\right|_{V_{1}}}, q_{\left.T\right|_{V_{1}}}\right)
$$

It follows that

$$
q_{T \mid V_{1}}=p_{2}^{e_{2}} \ldots p_{r}^{e_{r}}=g
$$

Moreover, we have an equation

$$
1=p_{1}^{e_{1}} k+g l \in F[t]
$$

So

$$
\begin{equation*}
1_{V}=p_{1}^{e_{1}}(T) k(T)+g(T) l(T) \tag{+}
\end{equation*}
$$

Claim 14.2. $W_{1}=\operatorname{ker} p_{1}^{e_{1}}(T)$ and hence we are done.
Since

$$
q_{\left.T\right|_{W_{1}}}=p_{1}^{e_{1}}
$$

We have

$$
p_{1}^{e_{1}}(T) v=0 \quad \forall v \in W_{1}
$$

Hence

$$
W_{1} \subseteq \operatorname{ker} p_{1}^{e_{1}}(T)
$$

To finish, we must know

$$
\operatorname{ker} p_{1}^{e_{1}}(T) \subseteq W_{1}
$$

Let

$$
v \in \operatorname{ker} p_{1}^{e_{1}}(T) \subseteq V=W_{1} \oplus V_{1}
$$

So $\exists!w_{1} \in W_{1}, v_{1} \in V_{1}$ s.t.

$$
v=w_{1}+v_{1}
$$

Since $W_{1} \subseteq \operatorname{ker} p_{1}^{e_{1}}(T)$,

$$
p_{1}^{e_{1}}(T) W_{1}=0
$$

By assumption, $p_{1}^{e_{1}}(T) v=0$, so

$$
p_{1}^{e_{1}}(T) v_{1}=0
$$

As $V_{1}=W_{2} \oplus \ldots \oplus W_{r}$

$$
p_{i}^{e_{i}}=q_{T \mid W_{i}}, \quad i=2, \ldots, r \text { by (ii) }
$$

We have

$$
p_{2}^{e_{2}}(T) \ldots p_{r}^{e_{r}}(T) v_{1}=0
$$

Hence by (+)

$$
v_{1}=1_{V} v_{1}=p_{1}^{e_{1}}(T) k(T) v_{1}+p_{2}^{e_{2}}(T) \ldots p_{r}^{e_{r}}(T) l(T) v_{1}=0
$$

Therefore,

$$
v=w_{1}+v_{1}=w_{1} \in W_{1}
$$

and it follows that $\operatorname{ker} p_{1}^{e_{1}}(T) \subseteq W_{1}$ as needed.

Recall: Let V be a finite dimensional vector space over $F, T: V \rightarrow V$ linear is called diagonalizable if there exists an ordered basis \mathscr{B} for V consisting of eigenvectors of T. By hw $2 \# 2$, this is equivalent to

$$
V=\bigoplus_{\lambda} E_{T}(\lambda)
$$

$\S 15 \mid$ Lec 15: Apr 30, 2021

§15.1 Primary Decomposition (Cont'd)

Recall: Let V be a finite dimensional vector space over $F, T: V \rightarrow V$ linear is called diagonalizable if there exists an ordered basis \mathscr{B} for V consisting of eigenvectors of T. By hw $2 \# 2$, this is equivalent to

$$
V=\bigoplus_{\lambda} E_{T}(\lambda)
$$

Theorem 15.1

Let V be a finite dimensional vector space over $F, T: V \rightarrow V$ linear. Then T is diagonalizable iff q_{T} splits in $F[t]$ and has no repeated roots in F. If this is the case, then

$$
q_{T}=\prod_{i=1}^{r}\left(t-\lambda_{i}\right), \quad \lambda_{1}, \ldots, \lambda_{r} \text { the distinct roots of } q_{T}
$$

Proof." $\Longleftarrow " q_{T}=\prod_{i=1}^{r}\left(t-\lambda_{i}\right), \lambda_{1}, \ldots, \lambda_{r}$ the distinct roots of q_{T}. Let $V_{i}=$ $\operatorname{ker}\left(T-\lambda_{i} 1_{V}\right)=E_{T}\left(\lambda_{i}\right), i=1, \ldots, r$. Then by the Primary Decomposition Theorem,

$$
V=V_{1} \oplus \ldots \oplus V_{r}
$$

SO T is diagonalizable.
" \Longrightarrow " Let $\mathscr{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ be an ordered basis for V consisting of eigenvectors of T with λ_{i} the eigenvalue of v_{i} and ordered s.t.

$$
\lambda_{1}, \ldots, \lambda_{r} \text { are the distinct eigenvalues of } T
$$

For each $j, 1 \leq j \leq n$, we have

$$
\left(T-\lambda_{i} 1_{V}\right) v_{j}=T v_{j}-\lambda_{i} v_{j}=\left(\lambda_{j}-\lambda_{i}\right) v_{j}, \quad j=1, \ldots, n
$$

So

$$
\prod_{i=1}^{r}\left(T-\lambda_{i} 1_{V}\right) v_{j}=0 \quad \text { for } j=1, \ldots, n
$$

i.e.,

$$
\prod_{i=1}^{r}\left(T-\lambda_{i} 1_{V}\right) \text { vanishes on a basis for } V
$$

hence vanishes on all of V. It follows that

$$
q_{T} \mid \prod_{i=1}^{r}\left(t-\lambda_{i}\right) \in F[t]
$$

In particular, q_{T} splits in $F[t]$ and has no multiple roots in F by FTA. As every eigenvalue of T is a root of f_{T}, we have

$$
t-\lambda_{i} \mid q_{T}, \quad i=1, \ldots, r
$$

using f_{T} and q_{T} have the same roots. Therefore,

$$
q_{T}=\prod_{i=1}^{r}\left(t-\lambda_{i}\right) \in F[t]
$$

§15.2 Jordan Blocks

Definition 15.2 (Jordan Block Matrix) - $J \in \mathbb{M}_{n} F$ is called a Jordan block matrix of eigenvalue λ of size n if

$$
J=J_{n}(\lambda):=\left(\begin{array}{cccc}
\lambda & & & 0 \\
1 & \lambda & & \\
& 1 & & \\
& & \ddots & \lambda \\
0 & & & 1
\end{array}\right) \in \mathbb{M}_{n} F
$$

Note: $f_{J_{n}}(\lambda)=\operatorname{det}\left(t I-J_{n}(\lambda)\right)=(t-\lambda)^{n} \in F[t]$, so splits with just one root of multiplicity.

Definition 15.3 (Nilpotent) - $T: V \rightarrow V$ linear is called nilpotent if $q_{T}=t^{m}$, some m, i.e., $\exists M \in \mathbb{Z}^{+} \ni T^{M}=0$.

Example 15.4

$J=J_{n}(0)$ is nilpotent and has $q_{J}=t^{m}$ for some m. In fact, $q_{J}=t^{n}-$ why?
In fact, let $A \in \mathbb{M}_{n} F, A: F^{n \times 1} \rightarrow F^{n \times 1}$ linear with $A \sim N$ with

$$
N=J_{n}\left(\lambda_{-} \lambda I_{n}=J_{n}(0)\right.
$$

Then as N is nilpotent and

$$
A=P N P^{-1}, \quad \text { some } P \in G L_{n} F,
$$

we have

$$
A^{n}=\left(P N P^{-1}\right)^{n}=P N P^{-1} P N P^{-1} \ldots P N P^{-1}=P N^{n} P^{-1}=0
$$

So A is nilpotent. Now N is nilpotent.
If $\mathscr{S}=\left\{e_{1}, \ldots, e_{n}\right\}$ is the standard basis for $F^{n \times 1}$

$$
\begin{aligned}
N e_{i} & =e_{i+1}, \quad i \leq n-1 \\
N e_{n} & =0 \\
N^{2} e_{i} & =N-N e_{i}=e_{i+2}, \quad i \leq n-2
\end{aligned}
$$

Example 15.5 (Cont'd from above)

In any case, we have

$$
\left.\begin{array}{l}
\operatorname{dimim} N^{r}=n-r \\
\operatorname{dim} \operatorname{ker} N^{r}=r
\end{array}\right\} \text { if } r \leq n
$$

Lemma 15.6

Let $J=J_{n}(\lambda) \in \mathbb{M}_{n} F$. Then

1. λ is the only eigenvalue of J.
2. $\operatorname{dim} E_{J}(\lambda)=1$
3. $t_{J}=q_{J}=(t-\lambda)^{n}$
4. $f_{J}(J)=0$

Proof. Let

$$
N=J-\lambda I \in \mathbb{M}_{n} F
$$

the characteristics matrix of J

$$
N^{n-1}=\left(\begin{array}{cccc}
0 & & \ldots & 0 \\
\vdots & & & \vdots \\
0 & & & 0 \\
1 & 0 & \ldots & 0
\end{array}\right) \in \mathbb{M}_{n} F
$$

is not the zero matrix, but

$$
N^{n}=0
$$

So

$$
q_{T} \mid(t-\lambda)^{n} \text { and } q_{J} X(t-\lambda)^{n-1}
$$

It follows that $q_{J}=(t-\lambda)^{n}=f_{J}$. This shows 3) and 4). By the computation,

$$
\operatorname{dim} \operatorname{ker} N=1
$$

and

$$
\operatorname{ker} N=E_{T}(\lambda)
$$

This gives 2) as $\left.f_{T}=(t-\lambda)^{n}, 1\right)$ is clear.

Remark 15.7. $J_{n}(\lambda)$ has only a line as an eigenspace, so among triangulariazable operator away from being diagonalizable when $n \geq 1$.

Proposition 15.8

Let $A \in \mathbb{M}_{n} F$ be triangularizable. Suppose $f_{A}=(t-\lambda)^{n}$ for some $\lambda \in F$. Then A is diagonalizable iff $q_{A}=(t-\lambda)$ iff $A=\lambda I$.

Proof. If $q_{A}=t-\lambda$, then $A=\lambda I$ as

$$
F^{n \times 1}=\operatorname{ker}(A-\lambda I)
$$

The converse is immediate.
Computation: Let V be a finite dimensional vector space over $F, \operatorname{dim} V=n, T: V \rightarrow V$ linear. Suppose there exists $\mathscr{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ an ordered basis for V satisfying

$$
[T]_{\mathscr{B}}=J_{n}(\lambda)
$$

Then by definition

$$
\begin{aligned}
T v_{1} & =\lambda v_{1}+v_{2} \quad \text { i.e. }\left(T-\lambda 1_{V}\right) v_{1}=v_{2} \\
T v_{2} & =\lambda v_{2}+v_{3} \quad \text { i.e. }\left(T-\lambda 1_{V}\right) v_{2}=v_{3} \\
\quad & \\
T v_{n-1} & =\lambda v_{n-1}+v_{n} \quad \text { i.e. }\left(T-\lambda 1_{V}\right) v_{n-1}=v_{n} \\
T v_{n} & =\lambda v_{n}
\end{aligned}
$$

So

$$
E_{\lambda}(\lambda)=F v_{n}
$$

v_{1}, \ldots, v_{n-1} are not eigenvectors, but do satisfy

$$
\begin{aligned}
\left(T-\lambda 1_{V}\right) v_{i} & =v_{i+1} \quad i=1, \ldots, n-1 \\
\left(T-\lambda 1_{V}\right)^{n-i} v_{i} & =v_{n} \quad, \text { an eigenvector }
\end{aligned}
$$

So we can compute v_{1}, \ldots, v_{n-1} from the eigenvalue v_{n}.
§16 Lec 16: May 3, 2021

§16.1 Jordan Blocks (Cont'd)

Definition 16.1 (Sequence of Generalized Eigenvectors) - Let $T: V \rightarrow V$ be linear, $0 \neq v_{n} \in E_{T}(\lambda)$. We say v_{1}, \ldots, v_{n} is an (ordered) sequence of generalized eigenvectors of eigenvalue λ of length n if $(+)$ above holds, i.e.,

$$
\begin{aligned}
\left(T-\lambda 1_{V}\right) v_{i} & =v_{i+1}, \quad i=1, \ldots, n-1 \\
\left(T-\lambda 1_{V}\right) v_{n} & =0
\end{aligned}
$$

We let

$$
\begin{aligned}
g_{n}(\lambda)=g_{n}\left(v_{n}, \lambda\right) & :=\left\{v_{1}, \ldots, v_{n}\right\} \\
& =\left\{v_{1},\left(T-\lambda 1_{V}\right)^{n-1} v_{1}\right\}
\end{aligned}
$$

be an ordered sequence of generalized eigenvectors for T of length n relative to λ.

Note: We should really write

$$
g_{n}\left(v_{n}, \lambda, v_{1}, \ldots, v_{n-1}\right)
$$

Lemma 16.2

Let V be a vector space over $F, T: V \rightarrow V$ linear, $0 \neq v_{n} \in E_{T}(\lambda), v_{1}, \ldots, v_{n}$ an ordered sequence of generalized eigenvectors of T of length $n, g_{n}(\lambda)=\left\{v_{1}, \ldots, v_{n}\right\}$. Then

1. $g_{n}(\lambda)$ is linearly independent.
2. If V is a finite dimensional vector space over $F, \operatorname{dim} V=n$, then
i) $g_{n}(\lambda)$ is an ordered basis for V
ii) $[T]_{g_{n}(\lambda)}=J_{n}(\lambda)$

Proof. 1. We have seen that (*) implies

$$
\begin{aligned}
\left(T-\lambda 1_{V}\right)^{n-i} v_{i} & =v_{n} \quad i<n \\
(T-\lambda 1-V) v_{n} & =0
\end{aligned}
$$

So

$$
\left(T-\lambda 1_{V}\right)^{k} v_{i}=0 \quad \forall k>n-i
$$

Suppose

$$
\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}=0, \quad \alpha_{i} \in F \text { not all } 0
$$

Choose the least k s.t. $\alpha_{k} \neq 0$. Then

$$
0=\left(T-\lambda 1_{V}\right)^{n-k}\left(\alpha_{k} v_{k}+\ldots+\alpha_{n} v_{n}\right)=\alpha_{k} v_{n}
$$

As $v_{n} \neq 0, \alpha_{k}=0$, a contradiction.
So 1) follows and 1) $\rightarrow 2$).

Definition 16.3 (Jordan Canonical Form) - $A \in \mathbb{M}_{n} F$ is called a matrix in Jordan canonical form (JCF) if A has the block form

$$
A=\left(\begin{array}{ccc}
J_{r_{1}}\left(\lambda_{1}\right) & & 0 \\
& \ddots & \\
0 & & J_{r_{m}}\left(\lambda_{m}\right)
\end{array}\right)
$$

$\lambda_{1}, \ldots, \lambda_{m}$ not necessarily distinct.

Definition 16.4 (Jordan Basis) - Let V be a finite dimensional vector space over F, $T: V \rightarrow V$ linear. An ordered basis \mathscr{B} for V is called a Jordan basis (if it exists) for V relative to T if \mathscr{B} is the union

$$
g_{r_{1}}\left(v_{1, r_{1}}, \lambda_{1}\right) \cup \ldots \cup g_{r_{m}}\left(v_{m, r_{m}}, \lambda_{m}\right)
$$

where $g_{r_{j}}\left(v_{j, r_{j}}, \lambda_{j}\right)$ is an ordered sequence of generalized eigenvectors of T relative to λ_{j} ending at eigenvector $v_{j, r_{j}}$. The $\lambda_{1}, \ldots, \lambda_{m}$ need not be distinct.

Proposition 16.5

Let V be a finite dimensional vector space over $F, T: V \rightarrow V$ linear. Then V has a Jordan basis relative to $T \Longleftrightarrow T$ has a matrix representation in Jordan canonical form (JCF).

Proof. Let $w_{i}=g_{r_{i}}\left(v_{i, r_{i}}, \lambda_{i}\right)$ in (\star). The only thing to show is: W_{i} is T-invariant, but this follows from our computation.

Conclusion: Let $T: V \rightarrow V$ be linear with V having a Jordan basis relative to T. Gathering all the Jordan blocks with the same eigenvalues together and ordering these into increasing size, we can write such a Jordan basis as follows:

$$
\lambda_{1}, \ldots, \lambda_{m} \text { the distinct eigenvalues of } T
$$

$$
\begin{aligned}
\mathscr{B} & =g_{r_{11}}\left(v_{11}, \lambda_{1}\right) \cup \ldots \cup g_{r_{1}, n_{1}}\left(v_{1, n_{1}}, \lambda_{1}\right) \\
& \cup g_{r_{21}}\left(v_{21}, \lambda_{2}\right) \cup \ldots \cup g_{r_{2, n_{2}}}\left(v_{2, n_{2}}, \lambda_{2}\right) \\
& \vdots \\
& \cup g_{r_{m}, 1}\left(v_{m, 1}, \lambda_{m}\right) \cup \ldots \cup g_{r_{m}, n_{m}}\left(v_{m, r_{m}}, \lambda_{m}\right)
\end{aligned}
$$

with

$$
r_{i 1} \leq r_{i 2} \leq \ldots \leq r_{i} n_{i}, \quad 1 \leq i \leq m
$$

e.g.

$$
[T]_{\mathscr{B}}=\left(\begin{array}{cccccc}
1 & 0 & & & & \\
0 & 1 & & & & \\
& 1 & 0 & & & \\
& 1 & 1 & & & \\
& & 0 & 2 & 0 & 0 \\
& & & 1 & 2 & 0 \\
& & & 0 & 1 & 2
\end{array}\right)=\left(\begin{array}{llll}
J_{1}(1) & & & \\
& J_{1}(1) & & \\
& & J_{2}(1) & \\
& & & J_{3}(2)
\end{array}\right)
$$

Let

$$
W_{i j}=\operatorname{Span} g_{r_{i}, j}\left(v_{i j}, \lambda_{i}\right) \quad \forall i, j
$$

These are all T-invariant. We have

$$
f_{T}=\prod_{i, j}\left(t-\lambda_{i}\right)^{r_{i j}}
$$

and

$$
\begin{aligned}
q_{T} & =\prod_{i} \operatorname{lcm}\left(\left(t-\lambda_{i}\right)^{r_{i j}} \mid j=1, \ldots, n_{i}\right) \\
& =\prod_{i}\left(t-\lambda_{i}\right)^{r_{i n_{i}}}
\end{aligned}
$$

So

$$
q_{T} \mid f_{T} \text { and } f_{T}(T)=0
$$

Also

$$
q_{T \mid W_{i j}}=f_{T \mid W_{i j}}=\left(t-\lambda_{i}\right)^{r_{i j}}
$$

for all $1 \leq j \leq n_{j}, 1 \leq i \leq m$. There are called the elementary divisors of T

$$
V=W_{11} \oplus \ldots \oplus W_{1, n_{1}} \oplus \ldots \oplus W_{m 1} \oplus \ldots \oplus W_{m n_{m}}
$$

Now let $P_{i j}$ be the projection onto $W_{i j}$ along

$$
W_{11} \oplus \ldots \oplus \underbrace{\widehat{W_{i j}}}_{\text {omit }} \oplus \ldots \oplus W_{m, n_{m}}
$$

Then

$$
\begin{gathered}
P_{i j} P_{k l}=\delta_{i k} \delta_{j l} P_{j l}=\left\{\begin{array}{l}
P_{j l} \text { if } i=k \text { and } j=l \\
0 \text { otherwise }
\end{array}\right. \\
1_{V}=P_{11}+\ldots+P_{m n_{m}} \\
T P_{i j}=P_{i j} T
\end{gathered}
$$

Abusing notation

$$
\lambda_{1}, \ldots, \lambda_{m} \text { are the distinct eigenvalues of } T
$$

Let

$$
W_{i}=W_{i 1} \oplus \ldots \oplus W_{i n_{i}} \quad i=1, \ldots, m
$$

As $r_{i 1} \leq \ldots \leq r_{i n_{i}}$,

$$
\begin{aligned}
\left.\left(T-\lambda_{i} 1_{V}\right)^{r_{i n_{i}}}\right|_{W_{i j}} & =0, \quad 1 \leq j \leq n_{i} \\
\left.\left(T-\lambda_{i} 1_{V}\right)^{r_{i} n_{i}-1}\right|_{W_{i j}} & \neq 0
\end{aligned}
$$

showing

$$
q_{T} \mid W_{i}=\left(t-\lambda_{i}\right)^{r_{i n_{i}}}
$$

So

$$
V=W_{1} \oplus \ldots \oplus W_{m}
$$

is the unique primary decomposition of V relative to T.
Note: The Jordan canonical form of T above is completely determined by the elementary divisors of T.

§16.2 Jordan Canonical Form

Theorem 16.6

Let V be a finite dimensional vector space over $F, T: V \rightarrow V$ linear. Suppose that q_{T} splits in $F[t]$. Then there exists a Jordan basis \mathscr{B} for V relative to T. Moreover, $[T]_{\mathscr{B}}$ is unique up to the order of the Jordan blocks. In addition, all such matrix representations are similar.

Proof. Reduction 1: We may assume that

$$
q_{T}=(t-\lambda)^{r}
$$

Suppose that

$$
q_{T}=\left(t-\lambda_{1}\right)^{r_{1}} \ldots\left(t-\lambda_{m}\right)^{r_{m}} \in F[t]
$$

$\lambda_{1}, \ldots, \lambda_{m}$ distinct. Set

$$
W_{i}=\operatorname{ker}\left(T-\lambda_{i} 1_{V}\right)^{r_{i}}, \quad i=1, \ldots, m
$$

By the Primary Decomposition Theorem,

$$
V=W_{1} \oplus \ldots \oplus W_{m}
$$

W_{i} is T-invariant, $i=1, \ldots, n$

$$
q_{\left.T\right|_{W_{i}}}=\left(t-\lambda_{i}\right)^{r_{i}}, \quad i=1, \ldots, m
$$

So we need only find a Jordan basis for each W_{i}.
§17| Lec 17: May 5, 2021

§17.1 Jordan Canonical Form (Cont'd)

Proof. (Cont'd from Lec 16) Reduction 2: We may assume that $q_{T}=t^{r}$, i.e., $\lambda=0$. Suppose that we have proven the case for $\lambda=0$. Let $S=T-\lambda 1_{V}, T$ as in Reduction 1 . Then

$$
S^{r}=\left(T-\lambda 1_{V}\right)^{r}=0 \text { and } S^{r-1}=\left(T-\lambda 1_{V}\right)^{r-1} \neq 0
$$

Therefore,

$$
q_{S}=t^{r}
$$

if \mathscr{B} is a Jordan basis for V relative to S, then

$$
[S]_{\mathscr{B}}=[T]_{\mathscr{B}}-\lambda I
$$

is a JCF with diagonal entries 0 . Hence

$$
[T]_{\mathscr{B}}=[S]_{\mathscr{B}}+\lambda I
$$

is a JCF with diagonal entries λ and \mathscr{B} is also a Jordan basis for V relative to T. Reduction 2 now follows easily. We turn to
Existence: We have reduced to the case

$$
q_{T}=t^{r}, \quad \text { i.e., } \quad T^{r}=0, \quad T^{r-1} \neq 0
$$

In particular, T is nilpotent. We induct on $\operatorname{dim} V$.

- $\operatorname{dim} V=1$ is immediate.
- $\operatorname{dim} V>1: T$ is singular, so $0<\operatorname{ker} T$, as $\lambda=0$ is an eigenvalue. Since V is a finite dimensional vector space over F, by the Dimension Theorem, T is not onto, i.e.,

$$
\operatorname{im} T<V
$$

As im T is T-invariant, we can (and do) view

$$
\left.T\right|_{\mathrm{im} T}: \operatorname{im} T \rightarrow \operatorname{im} T \text { linear }
$$

As $T^{r}=0$, certainly $\left(\left.T\right|_{\mathrm{im} T}\right)^{r}=0$, so

$$
\left.T\right|_{\mathrm{im} T} \text { is also nilpotent }
$$

and

$$
\left.q_{T}\right|_{\mathrm{im} T} \mid q_{T} \in F[t]
$$

since

$$
q_{T}\left(\left.T\right|_{\mathrm{im} T}\right)=0=q_{T}(T)
$$

So $q_{\left.T\right|_{\text {im } T}}$ splits in $F[t]$ and

$$
\left.q_{T}\right|_{\mathrm{im} T}=t^{s}, \quad \text { for some } s \leq r
$$

by FTA. By induction on $\operatorname{dim} V$, im T has a Jordan basis relative to $\left.T\right|_{\operatorname{im} T}$. So

$$
\operatorname{im} T=W_{1} \oplus \ldots \oplus W_{m}, \text { some } m
$$

with each W_{i} being $\left.T\right|_{\mathrm{im} T^{-}}$(hence $T-$) invariant and W_{i} has a basis of an ordered sequence of generalized eigenvectors for $\left.T\right|_{W_{i}}$, hence for $\left.T\right|_{\mathrm{im} T}$ and T,

$$
g_{r_{i}}(0)=\left\{w_{i}, T w_{i}, \ldots, T^{r_{i}-1} w_{i}\right\}, \quad r_{i} \geq 1
$$

Thus we have

$$
\begin{aligned}
T^{r_{i}} w_{i} & =0, \quad i=1, \ldots, m \\
\left.q_{T}\right|_{W_{i}} & =t^{r_{i}}, \quad i=1, \ldots, m
\end{aligned}
$$

Since $w_{i} \in W_{i} \subseteq$ im T,

$$
\exists v_{i} \in V \ni T v_{i}=w_{i}, \quad i=1, \ldots, m
$$

So we also have

$$
T^{r_{i}+1} v_{i}=T^{r_{i}} T v_{i}=T^{r_{i}} w_{i}=0
$$

and

$$
T^{r_{i}} v_{i}=T^{r_{i}-1} T v_{i}=T^{r_{i}-1} w_{i} \neq 0
$$

Therefore, $v_{i}, T v_{i}, \ldots, T^{r_{i}} v_{i}$ is an ordered sequence of generalized eigenvalues for T in V, and, in particular, linearly independent. For each $i=1, \ldots, m$, let

$$
V_{i}=\operatorname{Span}\left\{v_{i}, T v_{i}, \ldots, T^{r_{i}} v_{i}\right\}
$$

So

$$
\begin{aligned}
V_{i} & =\left\{\sum_{j=0}^{r_{i}} \alpha_{j} T^{j} v_{i} \mid \alpha_{j} \in F\right\} \\
& =\left\{f(T) v_{i} \mid f \in F[t], f=0 \text { or } \operatorname{deg} f \leq r_{i}\right\} \\
& =F[T]_{V_{i}}
\end{aligned}
$$

Since each V_{i} is spanned by an ordered sequence of generalized eigenvectors for T, each V_{i} is T-invariant, $i=1, \ldots, m$.
Note: If $f \in F[t]$ and $f(T) w_{i}=0$, then $f(T)=0$ in W_{i} and similarly if $f \in F[t]$ and $f(T) v_{i}=0$, then $f(T)=0$ on V_{i} as $f(T) w_{i}=0$ implies

$$
0=T^{j} f(T) w_{i}=f(T) T^{j} w_{i}=0 \quad \forall i
$$

Set

$$
V^{\prime}=V_{1}+\ldots+V_{m}
$$

Each V_{i} is T-invariant, so V^{\prime} is T-invariant.
Claim 17.1. $V^{\prime}=V_{1} \oplus \ldots \oplus V_{m}$
In particular,

$$
\mathscr{B}_{0}=\left\{v_{1}, T v_{1}, \ldots, T^{r_{i}} v_{1}, \ldots, v_{m}, T v_{m}, \ldots, T^{r_{m}} v_{m}\right\}
$$

is a basis for V^{\prime}.
§18| Lec 18: May 7, 2021

§18.1 Jordan Canonical Form (Cont'd)

Proof. (Cont'd) Suppose $u_{i} \in V_{i}, i=1, \ldots, m$ satisfies

$$
\begin{equation*}
u_{1}+\ldots+u_{m}=0 \tag{1}
\end{equation*}
$$

To show $u_{i}=0, i=1, \ldots, m$. As $u_{i} \in V_{i}, \exists f_{i} \in F[t] \ni$

$$
u_{i}=f_{i}(T) v_{i}
$$

where we let $f_{i}=0$ if $u_{i}=0$. So (1) becomes

$$
\begin{equation*}
f_{i}(T) v_{1}+\ldots+f_{m}(T) v_{m}=0 \tag{2}
\end{equation*}
$$

Since $T f(T)=f(T) T \forall f \in F[t]$ and

$$
w_{i}=T v_{i} \quad i=1, \ldots, m
$$

taking T of (2) yields

$$
f_{1}(T) w_{1}+\ldots+f_{m}(T) w_{m}=0
$$

As the T-invariant W_{i} satisfying

$$
\begin{equation*}
W_{1}+\ldots+W_{m}=W_{1} \oplus \ldots \oplus W_{m} \tag{}
\end{equation*}
$$

We have

$$
f_{i}(T) w_{i}=0, \quad i=1, \ldots, m
$$

Hence

$$
f_{i}(T)=0 \text { on } W_{i}, \quad i=1, \ldots, m
$$

Thus

$$
t^{r_{i}}=\left.q_{T}\right|_{W_{i}} \mid f_{i} \in F[t], \quad i=1, \ldots, m
$$

In particular, since $r_{i} \geq 1 \forall i$, we can write

$$
\begin{gathered}
f_{i}=t g_{i} \in F[t], \quad i=1, \ldots, m \\
\operatorname{deg} g_{i}<\operatorname{deg} f_{i}, \quad i=1, \ldots, m \text { if } f_{i} \neq 0
\end{gathered}
$$

Since

$$
f_{i}(T)=T g_{i}(T)=g_{i}(T) T
$$

and

$$
w_{i}=T v_{i}, \quad i=1, \ldots, m
$$

(2) now becomes

$$
\begin{equation*}
g_{1}(T) w_{1}+\ldots+g_{m}(T) w_{m}=0 \tag{3}
\end{equation*}
$$

Since each W_{i} is T-invariant, by $\left({ }^{*}\right)$

$$
g_{i}(T) w_{i}=0, \quad \text { hence } g_{i}(T)=0 \text { on } W_{i}
$$

for $i=1, \ldots, m$ by the definition of W_{i}. Therefore, for each $i, i=1, \ldots, m$

$$
t^{r_{i}}=q_{\left.T\right|_{W_{i}}} \mid g_{i} \in F[t]
$$

In particular, we can write

$$
g_{i}=t^{r_{i}} h_{i} \in F[t], \quad i=1, \ldots, m
$$

So

$$
f_{i}=t^{r_{i}+1} h_{i} \in F[t], \quad i=1, \ldots, m
$$

Thus we have

$$
u_{i}=f_{i}(T) v_{i}=h_{i}(T) T^{r_{i}+1} v_{i}=0, \quad i=1, \ldots, m
$$

This establishes claim 1. As

$$
w_{i}=T v_{i} \in W_{i}, \quad i=1, \ldots, m
$$

We have

$$
\begin{align*}
T V^{\prime} & =T V_{1} \oplus \ldots \oplus T V_{m} \\
& =W_{1} \oplus \ldots \oplus W_{m}=T V \tag{*}
\end{align*}
$$

since each W_{i}, V_{i} is T-invariant and

$$
T V_{i}=W_{i}, \quad i=1, \ldots, m
$$

Therefore,

$$
\left.T\right|_{V^{\prime}}=\left.T\right|_{V_{1}}+\ldots+\left.T\right|_{V_{m}}
$$

Claim 18.1. $V=\operatorname{ker} T+V^{\prime}$
Let $v \in V$. Since

$$
T V^{\prime}=T V
$$

by (\star), we have $\forall v \in V$

$$
\exists v^{\prime} \in V^{\prime} \ni T v^{\prime}=T v,
$$

so

$$
v-v^{\prime} \in \operatorname{ker} T
$$

and

$$
v=v^{\prime}+w \text { some } w \in \operatorname{ker} T
$$

i.e.

$$
v \in V^{\prime}+\operatorname{ker} T
$$

as needed.
Now by construction, we have a Jordan basis \mathscr{B}_{0} for the T-invariant subspace V^{\prime} relative to $\left.T\right|_{V^{\prime}}$. Let

$$
\mathscr{C}=\left\{u_{1}, \ldots, u_{k}\right\} \text { be a basis for } \operatorname{ker} T=E_{T}(0)
$$

Modifying the Toss In Theorem, we get a basis for V as follows. If $u_{1} \notin$ Span \mathscr{B}_{0}, let $\mathscr{B}_{1}=\mathscr{B}_{0} \cup\left\{u_{1}\right\}$. Otherwise, let $\mathscr{B}_{1}=\mathscr{B}_{0}$. If $u_{2} \notin$ Span \mathscr{B}_{1}, let $\mathscr{B}_{2}=\mathscr{B}_{1} \cup\left\{u_{2}\right\}$. Otherwise,
let $\mathscr{B}_{2}=\mathscr{B}_{1}$. In either case, \mathscr{B}_{2} is a linearly independent set. Continuing in this way, since $\mathscr{B}_{0} \cup \mathscr{C}$ spans V, we get a spanning set of V

$$
\mathscr{B}=\mathscr{B}_{0} \cup\left\{u_{j_{1}}, \ldots, u_{j_{r}}\right\} \subseteq V
$$

with

$$
T_{u_{j_{i}}}=0
$$

for some $u_{j_{i}}$ constructed above, $1 \leq i \leq s$.
Using claim 1, we have

$$
\begin{aligned}
V & =V^{\prime} \oplus \operatorname{Span}\left\{u_{j_{1}}, \ldots, u_{j_{s}}\right\} \\
& =V_{1} \oplus \ldots \oplus V_{m} \oplus F u_{j_{1}} \oplus \ldots \oplus F u_{j_{s}}
\end{aligned}
$$

and $[T]_{\mathscr{B}}$ is in Jordan canonical form. This proves existence.
Note: $F u_{j_{i}}$ are the $g_{1}\left(u_{j_{i}}, 0\right)$ and the $u_{j_{i}}$ are eigenvectors that cannot be extended to $g_{i}\left(v_{i}, 0\right)$ of longer length.
Uniqueness: By reduction 1) and 2), we have

$$
q_{T}=t^{r}, \quad T^{r}=0, \quad T^{r-1} \neq 0
$$

Let \mathscr{C} be an ordered basis for V. Then by MTT

$$
\begin{equation*}
m_{j}=\operatorname{dimim} T^{j}=\operatorname{rank}\left[T^{j}\right]_{\mathscr{C}}=\operatorname{rank}[T]_{\mathscr{C}}^{j} \tag{*}
\end{equation*}
$$

Let \mathscr{B} be any Jordan basis for V relative to T, say

$$
[T]_{\mathscr{B}}=\left(\begin{array}{ccc}
J_{r_{1}}(0) & & 0 \\
& \ddots & \\
0 & & J_{r_{m}}(0)
\end{array}\right)
$$

the corresponding Jordan canonical form. Prior computation showed for each $i, 1 \leq i \leq m$,

$$
\left\{\begin{array}{l}
\operatorname{rank} J_{r_{i}}^{j}(0)=r_{i}-j \\
\operatorname{dim} \operatorname{ker} J_{r_{i}}^{j}(0)=j
\end{array} \quad \text { if } j<r_{i}\right.
$$

and

$$
\left\{\begin{array}{l}
\operatorname{rank} J_{r_{i}}^{j}(0)=0 \\
\operatorname{dim} \operatorname{ker} J_{r_{i}}^{j}(0)=r_{i}
\end{array} \quad \text { if } j \geq r_{i}\right.
$$

Clearly, for each i,

$$
[T]_{\mathscr{B}}^{j}=\left(\begin{array}{lll}
J_{r_{1}}^{j}(0) & & \\
& \ddots & \\
& & J_{r_{m}}^{j}(0)
\end{array}\right)
$$

as $[T]_{\mathscr{B}}$ is in block form. So by $\left({ }^{*}\right)$,

$$
m_{j}=\operatorname{rank}[T]_{\mathscr{B}}^{j}=\sum_{i=1}^{m} \operatorname{rank} J_{r_{i}}^{j}(0)
$$

It follows that we have

$$
\begin{aligned}
m_{j-1}-m_{j} & =\operatorname{rank}[T]_{\mathscr{B}}^{j-1}-\operatorname{rank}[T]_{\mathscr{B}}^{j} \\
& =\# \text { of } l \times l \text { Jordan blocks } J_{l}(0) \text { in }(+) \text { with } l \geq j
\end{aligned}
$$

We also have, in the same way,

$$
\begin{aligned}
m_{j}-m_{j+1} & =\operatorname{rank}[T]_{\mathscr{B}}^{j}-\operatorname{rank}[T]_{\mathscr{B}}^{j+1} \\
& =\# \text { of } l \times l \text { Jordan blocks } J_{l}(0) \text { in }(+) \text { with } l \geq j+1
\end{aligned}
$$

Consequently, there are precisely

$$
\left(m_{j-1}-m_{j}\right)-\left(m_{j}-m_{j+1}\right)=m_{j-1}-2 m_{j}+m_{j+1}
$$

which equals the number of $l \times l$ Jordan blocks $J_{l}(0)$ in $(+)$ with $l=j$. This number is independent of \mathscr{B} as it is

$$
\operatorname{rank} T^{j-1}-2 \operatorname{rank} T^{j}+\operatorname{rank} T^{j+1}
$$

Thus, $[T]_{\mathscr{B}}$ is unique up to order of the Jordan blocks. This proves uniqueness. If \mathscr{B}^{\prime} is another Jordan basis, then

$$
[T]_{\mathscr{B}^{\prime}} \sim[T]_{\mathscr{B}}
$$

by the Change of Basis Theorem. This finishes the proof (phewww...such a long proof!)

Corollary 18.1

Let $A \in \mathbb{M}_{n} F$. If $q_{A} \in F[t]$ splits in $F[t]$, then A is similar to a matrix in JCF unique up to the order of the Jordan blocks.

Corollary 18.2

Let F be an algebraically closed field, e.g., $F=\mathbb{C}$. Then every $A \in \mathbb{M}_{n} F$ is similar to a matrix in JCF unique up to the order of the Jordan blocks and for every V, a finite dimensional vector space over F, and $T: V \rightarrow V$ linear, V has a Jordan basis relative to T. Moreover, the Jordan blocks of $[T]_{\mathscr{B}}$ are completely determined by the elementary divisors (minimal polys) that correspond to the Jordan blocks.

Theorem 18.3

Let F be an algebraically closed field, e.g., $F=\mathbb{C}, A, B \in \mathbb{M}_{n} F$. Then, the following are equivalent

1. $A \sim B$
2. A and B have the same JCF (up to block order)
3. A and B have the same elementary divisors counted with multiplicities.

Corollary 18.4

Let F be an algebraically closed field. Then $A \sim A^{\top}$.

Proof. For any $B \in \mathbb{M}_{n} F, q_{B}=q_{B^{\top}}$.

§18.2 Companion Matrix

Definition 18.5 (Companion Matrix) - Let $g=t^{n}+a_{n-1} t^{n-1}+\ldots+a_{1} t+a_{0} \in F[t]$, $n \geq 1$. The matrix

$$
C(g):=\left(\begin{array}{cccccc}
0 & 0 & \ldots & 0 & - & a_{0} \\
1 & 0 & & 0 & - & a_{1} \\
0 & 1 & & \vdots & & \vdots \\
\vdots & \vdots & & \vdots & & \vdots \\
& & & 0 & - & a_{n-2} \\
0 & 0 & \ldots & 1 & - & a_{n-1}
\end{array}\right)
$$

is called the companion matrix of g.

Example 18.6
$C\left(t^{n}\right)=J_{n}(0)$.

Note: If $f, g \in F[t]$ are monic, then

$$
f=g \Longleftrightarrow C(f)=C(g)
$$

Lemma 18.7

Let $g \in F[t] \backslash F$ be moinc. Then

$$
f_{C(g)}=g
$$

Proof. Let $g=t^{n}+a_{n-1} t^{n-1}+\ldots+a_{0} \in F[t] \backslash F$. We induct on n, using properties about determinants.

- $n=1$ is immediate
- $n>1$ Expanding on the determinant

$$
f_{C(g)}=\operatorname{det}(t I-C(g))=\operatorname{det}\left(\begin{array}{ccccc}
t & 0 & \ldots & 0 & a_{0} \\
-1 & t & & \vdots & \\
0 & -1 & & \vdots & \\
\vdots & 0 & & \vdots & \\
0 & \ldots & \ldots & -1 & t+a_{n-1}
\end{array}\right)
$$

along the top row and induction yields

$$
t\left(t^{n-1}+a_{n-1} t^{n-2}+\ldots+a_{1}\right)+(-1)^{n-1} a_{0}(-1)^{n-1}=g
$$

Lemma 18.8

Let $g \in F[t] \backslash F$ be monic. Then

$$
q_{C(g)}=f_{C(g)}=g
$$

In particular,

$$
f_{C(g)}(C(g))=0
$$

$\S 19$ Lec 19: May 10, 2021

§19.1 Companion Matrix (Cont'd)

Remark 19.1. If C is a companion matrix in $\mathbb{M}_{n} F$, viewing

$$
C: F^{n \times 1} \rightarrow F^{n \times 1} \text { linear, }
$$

then

$$
\mathscr{B}=\left\{e_{1}, C e_{1}, \ldots, C^{n-1} e_{1}\right\}
$$

is a basis for $F^{n \times 1}$ and

$$
\begin{aligned}
F^{n \times 1} & =\left\{\sum_{i=0}^{n-1} \alpha_{i} C^{i} e_{i} \mid \alpha_{i} \in F\right\} \\
& =F[C] e_{1}:=\left\{f(C) e_{1} \mid f \in F[t]\right\}
\end{aligned}
$$

Definition 19.2 (T-Cyclic) - Let V be a vector space over $F, T: V \rightarrow V$ linear. We say $v \in V$ is a T-cyclic vector for V and V is T-cyclic if

$$
V=\operatorname{Span}\left\{v, T v, \ldots, T^{n} v, \ldots\right\}=F[T] v
$$

Warning: Let $T: V \rightarrow V$ be linear. It is rare that V is T-cyclic. However, if $v \in V$, then $F[t] v \subseteq V$ is a T-invariant subspace and $F[T] v$ is T-cyclic. So T-cyclic subspace generalize the notion of a line in V.

Proposition 19.3

Let V be a finite dimensional vector space over $F, n=\operatorname{dim} V, T: V \rightarrow V$ linear. Suppose there exists a T-cyclic vector v for V, i.e., $V=F[T] v$. Then all of the following are true
i) $\mathscr{B}=\left\{v, T v, \ldots, T^{n-1} v\right\}$ is an ordered basis for V
ii) $[T]_{\mathscr{B}}=C\left(f_{T}\right)$
iii) $f_{T}=q_{T}$

Proof. i) As $\operatorname{dim} V=n$, the set $\left\{v, T v, \ldots, T^{n} v\right\}$ must be linearly independent. Let $j \leq n$ be the first positive integer s.t.

$$
T^{j} v \in \operatorname{Span}\left\{v, T v, \ldots, T^{j-1} v\right\}
$$

say

$$
\begin{equation*}
T^{j} v=\alpha_{j-1} T^{j-1} v+\alpha_{j-2} T^{j-2} v+\ldots+\alpha_{1} T v+\alpha_{0} v \tag{*}
\end{equation*}
$$

for $\alpha_{0}, \ldots, \alpha_{j-1} \in F$. Take T of $\left(^{*}\right)$, to get

$$
T^{j+1} v=\alpha_{j-1} T^{j} v+\alpha_{j-2} T^{j-1} v+\ldots+\alpha_{1} T^{2} v+\alpha_{0} T v
$$

which lies in $\operatorname{Span}\left(v, T v, \ldots, T^{j-1} v\right)$ by $\left(^{*}\right)$. Iterating this process shows

$$
T^{N} v \in \operatorname{Span}\left\{v, T v, \ldots, T^{j-1} v\right\} \quad \forall N \geq j
$$

It follows that

$$
v=F[T] v=\operatorname{Span}\left\{v, T v, \ldots, T^{j-1} v\right\}
$$

So

$$
n=\operatorname{dim} V \leq j, \quad \text { hence } n=j
$$

This proves i).
ii) The computation proving i) shows

$$
\mathscr{B}=\left\{v, T v, \ldots, T^{n-1} v\right\}
$$

is an ordered basis for V. As

$$
\begin{aligned}
{[T]_{\mathscr{B}} } & =\left([T v]_{\mathscr{B}}\right. \\
& {\left[T^{2} v\right]_{\mathscr{B}} }
\end{aligned} \ldots\left[\begin{array}{ll}
{\left[T^{n-2} v\right]_{\mathscr{B}}} & {\left[T^{n} v\right]_{\mathscr{B}}}
\end{array}\right)
$$

it is a companion matrix, hence must be $C\left(f_{T}\right)$ and by the lemma, we have proven ii).
iii) $f_{T}=f_{[T]_{\mathscr{B}}}=q_{[T]_{\mathscr{B}}}=q_{T}$ as $[T]_{\mathscr{B}}=C\left(f_{T}\right)$.

Example 19.4

Let V be a finite dimensional vector space over $F, \operatorname{dim} V=n, T: V \rightarrow V$ linear s.t. there exists an ordered basis \mathscr{B} with

$$
[T]_{\mathscr{B}}=J_{n}(\lambda)
$$

Set $S=T-\lambda 1_{V}: V \rightarrow V$ linear. Then $\exists v \in V \ni$

$$
\mathscr{B}=\left\{v, S v, \ldots, S^{n-1} v\right\}
$$

So $v \mathrm{~s}$ an S-cyclic vector and

$$
V=F[S] v
$$

Fact 19.1. If $A \in \mathbb{M}_{r} F[t], C \in \mathbb{M}_{s} F[t], B \in F[t]^{r \times s}$, then

$$
\operatorname{det}\left(\begin{array}{ll}
A & B \\
O & C
\end{array}\right)=\operatorname{det} A \operatorname{det} C
$$

where

$$
\operatorname{det} D=\sum \operatorname{sgn} \sigma D_{1 \sigma(1)} \ldots D_{n \sigma(n)}
$$

§19.2 Smith Normal Form

 the matrix of the form

$$
\left(\begin{array}{cccccc}
q_{1} & 0 & \ldots & & & \\
0 & q_{2} & & & & \\
\vdots & & \ddots & & & \\
& & & q_{r} & & \\
& & & & 0 & \\
& & & & & \ddots
\end{array}\right)
$$

with $q_{1}\left|q_{2}\right| q_{3}|\ldots| q_{r}$ in $F[t]$ and all monic, i.e., there exists a positive integer r satisfying $r \leq \min (m, n)$ and $q_{1}\left|q_{2}\right| q_{3}|\ldots| q_{r}$ monic in $F[t]$ s.t. $A_{i i}=q_{i}$ for $1 \leq i \leq r$ and $A_{i j}=0$ otherwise.
We generalize Gaussian elimination, i.e., row (and column) reduction for matrices with entries in F to matrices with entries in $F[t]$. The only difference arises because most elements of $F[t]$ do not have multiplicative inverses.
Let $A \in \mathbb{M}_{n}(F[t])$. We say that A is an elementary matrix of
i) Type I: if there exists $\lambda \in F[t]$ and $l \neq k$ s.t.

$$
A_{i j}= \begin{cases}1 & \text { if } i=j \\ \lambda & \text { if }(i, j)=(k, l) \\ 0 & \text { otherwise }\end{cases}
$$

ii) Type II: If there exists $k \neq l$ s.t.

$$
A_{i j}= \begin{cases}1 & \text { if } i=j \neq l \text { or } i=j \neq k \\ 0 & \text { if } i=j=l \text { or } i=j=k \\ 1 & \text { if }(k, l)=(i, j) \text { or }(k, l)=(j, i) \\ 0 & \text { otherwise }\end{cases}
$$

iii) Type III: If there exists a $0 \neq u \in F$ and l s.t.

$$
A_{i j}= \begin{cases}1 & \text { if } i=j \neq l \\ u & \text { if } i=j=l \\ 0 & \text { otherwise }\end{cases}
$$

Remark 19.5. Let $A \in F[t]^{m \times n}$. Multiplying A on the left (respectively right) by a suitable size elementary matrix of
a) Type I is equivalent to adding a multiple of a row (respectively column) of A to another row (respectively column) of A.
b) Type II is equivalent to interchanging two rows (respectively columns) of A.
c) Type III is equivalent to multiplying a row (respectively column) of A by an element in $F[t]$ having a multiplicative inverse.

Remark 19.6. 1. All elementary matrices are invertible.
2. The definition of elementary matrices of Types I and II is exactly the same as that given when defined over a field.
3. The elementary matrices of Type III have a restriction. The u 's appearing in the definition are precisely the elements in $F[t]$ having a multiplicative inverse. The reason for this is so that the elementary matrices of Type III are invertible.

Let

$$
G L_{n}(F[t]):=\{A \mid A \text { is invertible }\}
$$

Warning: A matrix in $\mathbb{M}_{n}(F[t])$ having $\operatorname{det}(A) \neq 0$ may no longer be invertible, i.e., have an inverse. What is true is that $G L_{n}(F[t])=\{A \mid 0 \neq \operatorname{det}(A) \in F\}$, equivalently $G L_{n}(F[t])$ consists of those matrices whose determinant have a multiplicative inverse in $F[t]$.

Definition 19.7 (Equivalent Matrix) - Let $A, B \in F[t]^{m \times n}$. We say that A is equivalent to B and write $A \approx B$ if there exist matrices $P \in G L_{m}(F[t])$ and $Q \in$ $G L_{n}(F[t])$ s.t. $B=P A Q$.

Theorem 19.8

Let $A \in F[t]^{m \times n}$. Then A is equivalent to a matrix in Smith Normal Form. Moreover, there exist matrices $P \in G L_{m}(F[t])$ and $Q \in G L_{n}(F[t])$, each a product of matrices of Type I, Type II, Type III, s.t. $P A Q$ is in SNF.

Remark 19.9. The SNF derived by this algorithm is, in fact, unique. In particular, the monic polynomials $q_{1}\left|q_{2}\right| q_{3}|\ldots| q_{r}$ arising in the SNF of a matrix A are unique and are called the invariant factor of A. This is proven using results about determinant.
$\S 20 \mid$ Lec 20: May 12, 2021

§20.1 Rational Canonical Form

If $A, B \in F[t]^{m \times n}$ then $A \approx B$ if and only if they have the same SNF if and only if they have the same invariant factors. So what good is the NSF relative to linear operators on finite dimensional vector spaces?

Let $A, B \in \mathbb{M}_{n}(F)$. Then $A \sim B$ if and only if $t I-A \approx t I-B$ in $\mathbb{M}_{n}(F[t])$ and this is completely determined by the SNF hence the invariant factors of $t I-A$ and $t I-B$. Now the SNF of $t I-A$ may have some of its invariant factors 1 , and we shall drop these.
Let V be a finite dimensional vector space over F with \mathscr{B} an ordered basis. Let $T: V \rightarrow V$ be a linear operator. If one computes the SNF of $t I-[T]_{\mathscr{B}}$, it will have the form

$$
\left(\begin{array}{ccccccc}
1 & 0 & & \cdots & \cdots & & 0 \\
0 & 1 & & & & & 0 \\
\vdots & & \ddots & & & & \vdots \\
& & & q_{1} & & & \\
& & & q_{2} & & \\
\vdots & & & & & \ddots & \vdots \\
0 & & & \cdots & \cdots & & q_{r}
\end{array}\right)
$$

with $q_{1}\left|q_{1}\right| \ldots \mid q_{r}$ are all the monic polynomials in $F[t] \backslash F$. These are called the invariant factors of T. They are uniquely determined by T. The main theorem is that there exists an ordered basis \mathscr{B} for V s.t.

$$
[T]_{\mathscr{B}}=\left(\begin{array}{cccc}
C\left(q_{1}\right) & 0 & \ldots & 0 \\
0 & C\left(q_{2}\right) & \ldots & 0 \\
\vdots & & \ddots & \vdots \\
0 & & \ldots & C\left(q_{r}\right)
\end{array}\right)
$$

and this matrix representation is unique. This is called the rational canonical form or RCF of T. Moreover, the minimal polynomial q_{t} of T is q_{r}. The algorithm computes this as well as all invariant factors of T. The characteristic polynomial f_{T} of T is the product of $q_{1} \ldots q_{r}$. This works over any field F, even if q_{T} does not split. The basis \mathscr{B} gives a decomposition of V into T-invariant subspaces $V=W_{1} \oplus \ldots \oplus W_{r}$ where $f_{T \mid W_{i}}=q_{T \mid W_{i}}=q_{i}$ and if $\operatorname{dim}\left(W_{i}\right)=n_{i}$ then $\mathscr{B}_{i}=\left\{v_{i}, T v_{i}, \ldots, T^{n_{i}-1} v_{i}\right\}$ is a basis for W_{i}.
Let V be a finite dimensional vector space over F with \mathscr{B} an ordered basis. Let $T: V \rightarrow V$ be a linear operator. Suppose that q_{T} splits over F. Then we know that there exists a Jordan canonical form of T.

Question 20.1. How do we compute it?
We use the Smith Normal Form of $t I-[T]_{\mathscr{B}}$ to compute the invariant factors $q_{1}\left|q_{1}\right| \ldots \mid q_{r}$ of T just as one does to compute the RCF of T. We then factor each q_{i}. Suppose this factorization is

$$
q_{i}=\left(t-\lambda_{1}\right)^{r_{1}} \ldots\left(t-\lambda_{m}\right)^{r_{m}}
$$

in $F[t]$ with $\lambda_{1}, \ldots, \lambda_{m}$ distinct. Note that q_{i+1} has this as a factor so it has the form

$$
q_{i+1}=\left(t-\lambda_{1}\right)^{s_{1}} \ldots\left(t-\lambda_{m}\right)^{s_{m}} \ldots\left(t-\lambda_{m+k}\right)^{s_{m+k}}
$$

with $s_{i} \geq r_{i}$ for each $1 \leq i \leq m$ and $m+1, \ldots, m+k \geq 0$ with $\lambda_{1}, \ldots, \lambda_{m+k}$ distinct. Then the totality of all the $\left(t-\lambda_{i}\right)^{r_{j}}$, including repetition if they occur in different q_{i} 's give all the elementary divisors of T. So to get the JCF of T we take for each q_{i} as factored above the block matrix

$$
\left(\begin{array}{cccc}
J_{r_{1}}\left(\lambda_{1}\right) & 0 & \ldots & 0 \\
\vdots & & \ddots & \vdots \\
0 & & \ldots & J_{r_{m}}\left(\lambda_{m}\right)
\end{array}\right)
$$

and replace $C\left(q_{i}\right)$ by it in the RCF, i.e., we take all the Jordan blocks $J_{r}(\lambda)$ associated to each and every factor of the form $(t-\lambda)^{r}$ in each and every invariant factor q_{i} determined by the SNF and form a matrix out of all such blocks. This is the JCF which is unique only up to block order.
Let V be a finite dimensional vector space over $F, T: V \rightarrow V$ linear, $v \in V$. Then as before, if $v \in V$

$$
F[t] v=\{f(T) v \mid f \in F[t]\} \subseteq V
$$

the T-cyclic subspace of V generated by v and satisfies

$$
n_{v}:=\operatorname{dim} F[T] v \leq \operatorname{dim} V
$$

and has ordered basis

$$
\mathscr{B}_{v}:=\left\{v, T v, \ldots, T^{n_{v}-1} v\right\}
$$

As $F[T] v$ is T-invariant,

$$
\left[\left.T\right|_{F[T] v}\right]_{\mathscr{B} v}=C\left(f_{\left.T\right|_{F[T] v}}\right)
$$

and

$$
q_{\left.T\right|_{F[T]}}=f_{\left.T\right|_{F[T]}}
$$

We want to show that V can be decomposed as a direct sum of T-cyclic subspaces of V. The SNF of the characteristic matrix

$$
t I-[T]_{\mathscr{C}}
$$

\mathscr{C} is an ordered basis for V, which gives rise to invariants of T

$$
\begin{equation*}
q_{1}|\ldots| q_{r} \in F[t] \tag{}
\end{equation*}
$$

$q_{1} \neq 1, q_{i}$ monic for all i.
$\underline{\text { Note: }}$ The SNF of (+) has no 0's on the diagonal $a s f_{T} \neq 0$. We want to show there exists an ordered basis \mathscr{B} for V with all the following properties
i) $V=W_{1} \oplus \ldots \oplus W_{r}, n_{i}=\operatorname{dim} W_{i}, i=1, \ldots, r$
ii) W_{i} is T-invariant, $i=1, \ldots, r$
iii) $W_{i}=F[T] v_{i}$ are T-cyclic, $W_{i}=\operatorname{ker} q_{\left.T\right|_{W_{i}}}\left(\left.T\right|_{W_{i}}\right)$
iv) $q_{i}=q_{\left.T\right|_{W_{i}}}=f_{\left.T\right|_{W_{i}}}, i=1, \ldots, r$ with q_{i} as in $\left({ }^{*}\right)$
v) $q_{T}=q_{r}$
vi) $f_{T}=q_{1} \ldots q_{r}=q_{\left.T\right|_{W_{1}}} \ldots q_{\left.T\right|_{W_{r}}}$
vii) $\mathscr{B}_{v_{i}}=\left\{v_{i}, T v_{i}, \ldots, T^{n_{i}-1} v_{i}\right\}$ is an ordered basis for $W_{i}, i=1, \ldots, r$
viii) $\mathscr{B}=\mathscr{B}_{1} \cup \ldots \cup \mathscr{B}_{r}$ is an ordered basis for V satisfying

$$
[T]_{\mathscr{B}}=\left(\begin{array}{ccc}
C\left(q_{1}\right) & & 0 \\
& \ddots & \\
0 & & C\left(q_{r}\right)
\end{array}\right)
$$

called the rational canonical form of T and it is unique.
The uniqueness follows from the uniqueness of SNF. From the definition of equivalent matrix, we have the following remark

Remark 20.1. If $A \in \mathbb{M}_{n} F[t]$ is in SNF, then

$$
A \in G L_{n} F[t] \Longleftrightarrow A=I
$$

since

$$
\left(\begin{array}{ccccc}
q_{1} & & & & 0 \\
& \ddots & & & \\
& & q_{r} & & \\
& & & 0 & \\
0 & & & & \ddots
\end{array}\right)
$$

means $0 \ldots 0 \cdot q_{1} \ldots q_{r} \in F \backslash\{0\}$ if there are any 0 's on the diagonal, which is inseparable.

Lemma 20.2

Let $g \in F[t] \backslash F$ be monic of degree n. Then

$$
I t-C(q) \approx\left(\begin{array}{llll}
1 & & & \\
& \ddots & & \\
& & 1 & \\
0 & & & q
\end{array}\right)
$$

Corollary 20.3

Let V be a finite dimensional vector space over $F, T: V \rightarrow V$ linear $q_{1}|\ldots| q_{r}$ the invariants of T in $F[t]$. Then

$$
t I-\left(\begin{array}{ccc}
C\left(q_{1}\right) & & 0 \\
& \ddots & \\
0 & & C\left(q_{r}\right)
\end{array}\right)
$$

where $\operatorname{dim} V=\sum_{i=1}^{r} \operatorname{deg} q_{i}$
Certainly, if there exists an ordered basis \mathscr{B} for V a finite dimensional vector space over F, $T: V \rightarrow V$ linear s.t. $[T]_{\mathscr{B}}$ is in RCF, then everything in goal falls out. So by the above, the goal will follow if we prove the following

Theorem 20.4

Let $A_{0}, B_{0} \in \mathbb{M}_{n} F, A=t I-A_{0}$ and $B=t I-B_{0}$ in $\mathbb{M}_{n} F[t]$, the corresponding characteristic matrices. Then the following are equivalent
i) $A_{0} \sim B_{0}$ (i.e. A_{0} and B_{0} are similar)
ii) $A \sim B$ (i.e., A and B are equivalent)
iii) A and B have the same SNF.

We need two preliminary lemmas.

Lemma 20.5

Let $A \approx B$ in $\mathbb{M}_{n} F[t]$. Then $\exists P, Q \in G L_{m} F[t]$ each products of elementary matrices s.t. $A=P B Q$.

Proof. $P \in G L_{n} F[t]$ iff its $\mathrm{SNF}=I$ which we get using elementary matrices.
For the second lemma, we need the "division algorithm" by "linear polys" in $\mathbb{M}_{n} F[t]$. If we were in $F[t]$, we know if $f, g \in F[t], f \neq 0$,

$$
g=f q+r \in F[t] \text { with } r=0 \text { or } \operatorname{deg} r<\operatorname{deg} f
$$

So if $f=t-a, r \in F$, i.e., $r=g(a)$ by plugging in a into $\left(^{*}\right)$. But for matrices,

$$
A Q+R \neq Q A+R
$$

but the same argument to get $\left(^{*}\right)$ for polys, will give a right and left remainder.
Notation: Let $A_{i} \in \mathbb{M}_{r} F, i=0, \ldots, n$ and let

$$
A_{n} t^{n}+A_{n-1} t^{n-1}+\ldots+A_{0}
$$

denote

$$
A_{n}\left(t^{n} I\right)+\ldots+A_{0} I \in \mathbb{M}_{n} F[t]
$$

So if

$$
A=\left(\alpha_{i j}\right)
$$

then

$$
A t^{n}=\left(\alpha_{i j} t^{n}\right)
$$

i.e., two matrix polynomials are the same iff all their corresponding entries are equal, i.e.,

$$
\left(\mathbb{M}_{n} F\right)[t]=\mathbb{M}_{r}(F[t])
$$

Lemma 20.6

Let $A_{0} \in \mathbb{M}_{n} F, A=t I-A_{0} \in \mathbb{M}_{n} F[t]$ and

$$
0 \neq P=P(t) \in \mathbb{M}_{n} F[t]
$$

Then there exist matrices $M, N \in \mathbb{M}_{n} F[t]$ and $R, S \in \mathbb{M}_{n} F$ satisfying
i) $P=A M+R$
ii) $P=N A+S$

$\S 21$ Lec 21: May 14, 2021

§21.1 Rational Canonical Form (Cont'd)

Recall from last lecture,

Lemma 21.1

Let $A_{0} \in \mathbb{M}_{n} F, A=t I-A_{0} \in \mathbb{M}_{n} F[t]$ and

$$
0 \neq P=P(t) \in \mathbb{M}_{n} F[t]
$$

Then there exist matrices $M, N \in \mathbb{M}_{n} F[t]$ and $R, S \in \mathbb{M}_{n} F$ satisfying
i) $P=A M+R$
ii) $P=N A+S$

Proof. i) Let

$$
m=\max _{l, k} \operatorname{deg} P_{l k}, \quad P_{l k} \neq 0
$$

and $\forall i, j$ let

$$
\alpha_{i j}=\left\{\begin{array}{l}
\operatorname{lead} P_{i j} \text { if } \operatorname{deg} P_{i j}=m \\
0 \quad \text { if } P_{i j}=0 \text { or } \operatorname{deg} P_{i j}<m
\end{array}\right.
$$

So

$$
P_{i j}=\alpha_{i j} t^{m}+\text { lower terms in } t \in F[t]
$$

Let $\alpha_{i j} \in \mathbb{M}_{n} F$ and let

$$
P_{m-1}=\left(\alpha_{i j}\right) t^{m-1}=\left(\alpha_{i j} t^{m-1}\right)
$$

Every entry in

$$
\begin{aligned}
A P_{m-1} & =\left(t I-A_{0}\right)\left(\alpha_{i j}\right) t^{m-1} \\
& =\left(\alpha_{i j}\right) t^{m}-A_{0}\left(\alpha_{i j}\right) t^{m-1}
\end{aligned}
$$

has deg $=m$ or is zero and the t^{m}-coefficient of $\left(A P_{m-1}\right)_{i j}$ is $\alpha_{i j}$. Thus, $P-A P_{m-1}$ has polynomial entries of degree at most $m-1($ or $=0)$. Apply the same argument to $P-A P_{m-1}$ (replacing m by $m-1$ in $\left(^{*}\right)$) to produce a matrix P_{m-2} in $\mathbb{M}_{n} F[t]$ s.t. all the polynomial entries in $\left(P-A P_{m-1}\right)-A P_{m-2}$ have degree at most $m-2$ (or $=0$). Continuing this way, we construct matrices P_{m-3}, \ldots, P_{0} satisfying if

$$
M:=P_{m-1}+P_{m-2}+\ldots+P_{0}
$$

then

$$
R:=P-A M
$$

has only constant entries, i.e., $R \in \mathbb{M}_{n} F$. So

$$
P=A M+R
$$

as needed.
ii) This can be proven in an analogous way.

Theorem 21.2

Let $A_{0}, B_{0} \in \mathbb{M}_{n} F, A=t I-A_{0}, B=t I-B_{0}$ in $\mathbb{M}_{n} F[t]$. Then

$$
A \approx B \in \mathbb{M}_{n} F[t] \Longleftrightarrow A_{0} \sim B_{0} \in \mathbb{M}_{n} F
$$

Proof." \Longleftarrow " If

$$
B_{0}=P A_{0} P^{-1}, \quad P \in G L_{n} F,
$$

then

$$
P\left(t I-A_{0}\right) P^{-1}=P t P^{-1}-P A_{0} P^{-1}=t I-B_{0}=B
$$

So $B=P A P^{-1}$ and $B \approx A$.
" \Longrightarrow "Suppose there exist $P_{1}, Q_{1} \in G L_{n} F[t]$, hence each a product of elementary matrices by Lemma 20.5, satisfying

$$
B=t B-B_{0}=P_{1} A Q_{1}=P_{1}\left(t I-A_{0}\right) Q_{1}
$$

Applying Lemma 21.1, we can write
i) $P_{1}=B P_{2}+R, P_{2} \in \mathbb{M}_{n} F[t], R \in \mathbb{M}_{n} F$
ii) $Q_{1}=Q_{2} B+S, Q_{2} \in \mathbb{M}_{n} F[t], S \in \mathbb{M}_{n} F$

Since $B=P_{1} A Q_{1}, P_{1}, Q_{1} \in G L_{n} F[t]$, we also have
iii) $P_{1} A=B Q^{-1}$
iv) $A Q_{1}=P_{1}^{-1} B$

Thus, we have

$$
\begin{aligned}
B & =P_{1} A Q_{1} \stackrel{i)}{=}\left(B P_{2}+R\right) A Q_{1}=B P_{2} A Q_{1}+R A Q_{1} \\
& \stackrel{i v)}{=} B P_{2} P_{1}^{-1} B+R A Q_{1} \stackrel{i i)}{=} B P_{2} P_{1}^{-1} B+R A\left(Q_{2} B+S\right) \\
& =B P_{2} P_{1}^{-1} B+R A Q_{2} B+R A S
\end{aligned}
$$

i.e., we have
v) $B=B P_{2} P_{1}^{-1} B+R A Q_{2} B+R A S$

By i)

$$
R=P_{1}-B P_{2}
$$

Plugging this into $R A Q_{2} B$, yields

$$
\begin{aligned}
R A Q_{2} B & \stackrel{i)}{=}\left(P_{1}-B P_{2}\right) A Q_{2} B=P_{1} A Q_{2} B-B P_{2} A Q_{2} B \\
& \stackrel{i i i)}{=} B Q_{1}^{-1} Q_{2} B-B P_{2} A Q_{2} B=B\left[Q_{1}^{-1} Q_{2}-P_{2} A Q_{2}\right] B
\end{aligned}
$$

i.e.
vi) $R A Q_{2} B=B\left[Q_{1}^{-1} Q_{2}-P_{2} A Q_{2}\right] B$

Plug vi) into v) to get

$$
\begin{aligned}
B & \stackrel{v)}{=} B P_{2} P_{1}^{-1} B+R A Q_{2} B+R A S \\
& \stackrel{v i)}{=} B P_{2} P_{1}^{-1} B+B\left[Q_{1}^{-1} Q_{2}-P_{2} A Q_{2}\right] B+R A S \\
& =B\left[P_{2} P_{1}^{-1}+Q_{1}^{-1} Q_{2}-P_{2} A Q_{2}\right] B+R A S
\end{aligned}
$$

Let

$$
T=P_{2} P_{1}^{-1}+Q_{1}^{-1} Q_{2}-P_{2} A Q_{2}
$$

Then
vii) $B=B T B+R A S \in \mathbb{M}_{n} F[t]$

We next look at the degree of the poly entries of these matrices.
viii) Every entry of $B=t I-B_{0}$ is zero or has deg ≤ 1 and every entry of $R A S=$ $R\left(t I-A_{0}\right) S$ has is zero or has $\operatorname{deg} \leq 1$.

Question 21.1. What about $B T B$?
Let $T=T_{m} t^{m}+T_{m-1} t^{m-1}+\ldots+T_{0}$ with $T_{0}, \ldots, T_{m} \in \mathbb{M}_{n} F$. Then

$$
\begin{aligned}
B T B & =\left(t I-B_{0}\right)\left(T_{m} t^{m}+T_{m-1} t^{m-1}+\ldots+T_{0}\right)\left(t I-B_{0}\right) \\
& =T_{m} t^{m+2}+\text { lower terms in } t
\end{aligned}
$$

Comparing coefficients of the matrix of polys $B T B=B-R A S$ using vii), viii) shows

$$
T_{m}=0
$$

Hence

$$
T=0
$$

So vii) becomes

$$
\begin{align*}
t I-B_{0} & =B=B T B+R A S=R A S=R\left(t I-A_{0}\right) S \\
& =R S T+R A_{0} S \tag{}
\end{align*}
$$

comparing coefficients of the poly matrices in $\left(^{*}\right)$ shows

$$
\begin{aligned}
I & =R S \\
B_{0} & =R A_{0} S
\end{aligned}
$$

i.e., $B_{0}=R A_{0} S=R A_{0} R^{-1}$.

Theorem 21.3

Let $A_{0}, B_{0} \in \mathbb{M}_{n} F, A=t I-A_{0}, B=t I-B_{0}$ in $\mathbb{M}_{n} F[t]$. Then the following are equivalent
i) $A_{0} \sim B_{0}$
ii) $A \approx B$
iii) A and B have the same SNF.
iv) A_{0} and B_{0} have the same invariant factors.

In particular, if V is a finite dimensional vector space over $F, T: V \rightarrow V$ linear, $q_{1}|\ldots| q_{r}$ the invariants of T, then

$$
\begin{aligned}
V & =\operatorname{ker} q_{1}(T) \oplus \ldots \oplus \operatorname{ker} q_{n}(T) \\
q_{r} & =q_{T} \\
f_{T} & =q_{1} \ldots q_{r}
\end{aligned}
$$

Note: If $q_{i}=\prod_{j=1}^{r}\left(t-\lambda_{i}\right)^{e_{j}}$ is an invariant factor, then

$$
C\left(q_{i}\right) \sim\left(\begin{array}{ccc}
J_{e_{1}}\left(\lambda_{1}\right) & & 0 \\
& \ddots & \\
0 & & J_{e_{r}}\left(\lambda_{r}\right)
\end{array}\right)
$$

Corollary 21.4

Let $A, B \in \mathbb{M}_{n} F, F \subseteq K$ a subfield. Then $A \sim B$ in $\mathbb{M}_{n} F$ iff $A \sim B$ in $\mathbb{M}_{n} K$.

$\S 22$ Lec 22: May 17, 2021

§22.1 Inner Product Spaces

Notation: - : $\mathbb{C} \rightarrow \mathbb{C}$ by $\alpha+\beta \sqrt{-1} \mapsto \alpha-\beta \sqrt{-1} \forall \alpha, \beta \in \mathbb{R}$ is called the complex conjugation. If $F \subseteq \mathbb{C}$, set

$$
\bar{F}:=\{\bar{\alpha} \mid \alpha \in F\}
$$

is a field, e.g., $\bar{F}=F$ if $F \subseteq \mathbb{R}$.

Definition 22.1 (Inner Product Space) - Let $F \subseteq \mathbb{C}$ satisfy $F=\bar{F}, V$ a vector space over F. Then V is called an inner product space over F relative to

$$
\langle,\rangle=\langle,\rangle_{V}: V \times V \rightarrow F
$$

satisfies

1. $p_{v}: V \rightarrow F$ by $p_{v}(w):=\langle w, v\rangle$ is linear for all $v \in V$, i.e., $p_{v} \in V^{*}$
2. $\langle v, w\rangle=\overline{\langle v, w\rangle}$ for all $v, w \in V$
3. $\|v\|^{2}:=\langle v, v\rangle \in \mathbb{R} \cap F$ for all $v \in V$ and $\|v\|^{2} \geq 0$ in \mathbb{R} and $=0$ iff $v=0\left(^{*}\right)$

Let V be an inner product space over F. Then,

1. If $v \in V$ satisfies $\langle w, v\rangle=0$ for all $w \in V$, then $v=0$.
2. Let $v_{1}, v_{2} \in V \backslash\{0\}$,

$$
w=\frac{\left\langle v_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}
$$

is called the orthogonal projection of v_{2} on v_{1} and $v=v_{2}-w$ is orthogonal to w, i.e. $\langle v, w\rangle=0$, write $v \perp w$.

Definition 22.2 (Sesquilinear Map) - A map $f: V \rightarrow W$ of inner product space over F is called sesquilinear if $v_{1}, v_{2} \in V, \alpha \in F$

$$
f\left(v_{1}+\alpha v_{2}\right)=f\left(v_{1}\right)+\bar{\alpha} f\left(v_{2}\right)
$$

Let $V^{\dagger}:=\{f: V \rightarrow F \mid f$ sesquilinear $\}$ a vector space over F.

Example 22.3

If $F \subseteq \mathbb{R}$, then any sesquilinear map is linear and $V^{\dagger}=V^{*}$.

Remark 22.4. Let V be an inner product space over F.

1. $p: V \rightarrow V^{*}$ by $v \mapsto p_{v}$ is sesquilinear.

$$
\begin{aligned}
p\left(\alpha v_{1}+v_{2}\right)(w) & =\left\langle w, \alpha v_{1}+v_{2}\right\rangle \\
& =\bar{\alpha}\left\langle w, v_{2}\right\rangle+\left\langle w, v_{1}\right\rangle=\bar{\alpha} p\left(v_{1}\right)+p\left(v_{2}\right)
\end{aligned}
$$

for all $\alpha \in F, v_{1}, v_{2}, w \in V$. Also, we can deduce that p is an injection and if V is finite dimensional, then p is a bijection.
2. If $v \in V$, let $\lambda_{v}: V \rightarrow F$ by $w \mapsto\langle v, w\rangle$, i.e., $\lambda_{v}(w)=\langle v, w\rangle$. Then λ_{v} is sesquilinear. Moreover,

$$
\lambda: V \rightarrow V^{\dagger} \text { by } v \mapsto \lambda v
$$

is linear. As $\langle v, w\rangle=0$ for all $w \rightarrow v=0, \lambda$ is injective hence monic. If V is finite dimensional then λ is an isomorphism.
3. If $f: V \rightarrow W$ is sesquilinear, it is called a sesquilinear isomorphism if it is bijective and f^{-1} is sesquilinear. Then f is a sesquilinear isomorphism iff f is bijective.

Let V be an inner product space over F.

1. If $v \in V,\|v\|:=\sqrt{\|v\|^{2}} \geq 0$ is called the length of v.
2. Length and \angle make sense in V by the Cauchy - Schwarz inequality

$$
|\langle v, w\rangle| \leq\|v\|\|w\| \quad \forall v, w \in V
$$

and V is a metric space by distances from $v, w:=d(v, w):=\|v-w\|$ as the triangle inequality

$$
\|v+w\| \leq\|v\|+\|w\|
$$

holds for all $v, w \in W$.
3. Gram - Schmidt: If $W \subseteq V$ is a finite dimensional subspaces, then \exists an orthogonal basis for W

$$
\mathscr{B}=\left\{w_{1}, \ldots, w_{n}\right\}, \quad \text { i.e. }\left\langle w_{i}, w_{j}\right\rangle=0 \text { if } i \neq j
$$

and if $\left\|w_{i}\right\| \in F \forall i$, then \exists an orthonormal basis

$$
\mathscr{C}=\left\{\frac{w_{1}}{\left\|w_{1}\right\|}, \ldots, \frac{w_{n}}{\left\|w_{n}\right\|}\right\}
$$

4. In 3), if $v \in V$ let $\mathscr{B}=\left\{w_{1}, \ldots, w_{n}\right\}$ be an orthogonal basis for W. Set

$$
v_{w}:=\sum_{i=1}^{n} \frac{\left\langle v, w_{i}\right\rangle}{\left\|w_{i}\right\|^{2}} w_{i}=\sum_{i=1}^{n}\left\langle v, \frac{w_{i}}{\left\|w_{i}\right\|^{2}}\right\rangle w_{i}
$$

Then, the w_{i}-coordinate of v_{w} is $\frac{\left\langle v, w_{i}\right\rangle}{\left\|w_{i}\right\|^{2}} \in F$. Hence

$$
f_{i}=p \frac{w_{i}}{\left\|w_{i}\right\|^{2}}: V \rightarrow F
$$

is the corresponding coordinate function, so $\mathscr{B}^{*}=\left\{f_{1}, \ldots, f_{n}\right\}$ is the dual basis of \mathscr{B}.
5. Let $\emptyset \neq S \subseteq V$ be a subset. The orthogonal complement S^{\perp} of S is defined by

$$
S^{\perp}:=\{x \in V \mid x \perp s \forall s \in S\} \subseteq V
$$

a subspace.
Note: The sesquilinear map

$$
p: V \rightarrow V^{*} \text { by } v \mapsto p_{v}
$$

induces an injective sesquilinear map

$$
\left.p\right|_{S^{\perp}}: S^{\perp} \rightarrow S^{\circ}
$$

and we have

$$
S \subseteq S^{\perp \perp}:=\left(S^{\perp}\right)^{\perp}
$$

If S is a subspace, $S \cap S^{\perp}=0$ so

$$
S+S^{\perp}=S \oplus S^{\perp}
$$

write

$$
S+S^{\perp}=S \perp S^{\perp}
$$

called an orthogonal direct sum and if V is finite dimensional then

$$
S=S^{\perp \perp}
$$

e.g., if $v \in V$, then

$$
\operatorname{ker} p_{v}=(F v)^{\perp}
$$

so

$$
V=F v \perp(F v)^{\perp}
$$

More generally, we have the following crucial result.

Theorem 22.5 (Orthogonal Decomposition)

Let V be an inner product space over $F, S \subseteq V$ a finite dimensional subspace. Then

$$
V=S \perp S^{\perp}
$$

i.e., if $v \in V$

$$
\exists!s \in S, s^{\perp} \in S^{\perp} \ni v=s+s^{\perp}
$$

In particular, $s=v_{S}$. If V is finite dimensional, then

$$
\operatorname{dim} V=\operatorname{dim} S+\operatorname{dim} S^{\perp}
$$

Theorem 22.6 (Best Approximation)

Let V be an inner product space over $F, S \subseteq V$ a finite dimensional subspace, $v \in V$. Then $v_{S} \in S$ is the best approximation to v in S, i.e., for all $s \in S$

$$
\left\|v-v_{S}\right\| \leq\|v-s\| \text { with equality iff } s=v_{S}
$$

Remark 22.7. More generally, if V is an inner product space over F,

$$
V=W_{1} \oplus \ldots \oplus W_{n}
$$

with

$$
w_{i} \perp w_{j} \quad \forall w_{i} \in W_{i}, w_{j} \in W_{j}, i \neq j
$$

We call V an orthogonal direct sum or orthogonal decomposition of V.

By the Orthogonal Decomposition Theorem,

$$
V=W_{i} \perp W_{i}^{\perp}
$$

and

$$
W_{i}^{\perp}=W_{1} \perp \ldots \underbrace{\hat{W}_{i}}_{\text {omit }} \perp \ldots \perp W_{n}
$$

Let $P_{i}: V \rightarrow V$ be the projection along

$$
W_{i}^{\perp}=W_{1} \perp \ldots \perp \hat{W}_{i} \perp \ldots \perp W_{n}
$$

onto W_{i}. Then we have

$$
\begin{aligned}
\operatorname{ker} P_{i} & =W_{i}^{\perp} \\
\operatorname{im~} P_{i} & =W_{i} \\
P_{i} P_{j} & =\delta_{i j} P_{j} \quad \forall i, j \\
1_{V} & =P_{1}+\ldots+P_{n}
\end{aligned}
$$

The P_{i} are called orthogonal projections. As $W_{i} \subseteq V$ is finite dimensional in the above,

$$
P_{i}(v)=v_{W_{i}}
$$

So

$$
v=v_{W_{1}}+\ldots+v_{W_{n}}
$$

is a unique decomposition of v relative to $\left({ }^{*}\right)$.

Definition 22.8 (Adjoint) - Let V, W be inner product spaces over $F, T: V \rightarrow W$ linear. A linear transformation $T^{*}: W \rightarrow V$ is called the adjoint of T if

$$
\langle T v, w\rangle_{W}=\left\langle v, T^{*} w\right\rangle_{V} \quad \forall v \in V \forall w \in W
$$

Theorem 22.9

Let V, W be finite dimensional inner product space over $F, T: V \rightarrow W$ linear. Then the adjoint $T^{*}: W \rightarrow V$ exists.

$\S 23$ Lec 23: May 19, 2021

§23.1 Inner Product Spaces (Cont'd)

Corollary 23.1

Let V, W be finite dimensional inner product space over $F, T: V \rightarrow W$ linear. Then

$$
T=T^{* *}:=\left(T^{*}\right)^{*}
$$

and

$$
\left\langle T^{*} w, v\right\rangle_{V}=\langle w, T v\rangle_{W} \quad \forall w \in W \forall v \in V
$$

Proof. We have

$$
\begin{aligned}
\langle T v, w\rangle_{W} & =\left\langle v, T^{*} w\right\rangle_{V}=\overline{\left\langle T^{*} w, v\right\rangle_{V}} \\
& =\overline{\left\langle w, T^{* *} v\right\rangle_{W}}=\left\langle T^{* *} v, w\right\rangle_{W}
\end{aligned}
$$

which completes the proof.

Definition 23.2 (Isometry) - Let V, W be inner product space over $F, T: V \rightarrow W$ linear. Then T is called an isometry (or isomorphism of inner product space over F) if

1. T is an isomorphism of vector space over F
2. T preserves inner products, i.e.,

$$
\left\langle T v, T v^{\prime}\right\rangle_{W}=\left\langle v, v^{\prime}\right\rangle_{V} \quad \forall v, v^{\prime} \in V
$$

Remark 23.3. Let $T: V \rightarrow W$ linear of inner product space over F. If T preserves inner products, then T is monic.

$$
T v=0 \Longleftrightarrow\|T v\|=0 \Longleftrightarrow\langle T v, T v\rangle=0 \Longleftrightarrow\langle v, v\rangle=0
$$

Theorem 23.4

Let V, W be finite dimensional inner product space over F with $\operatorname{dim} V=\operatorname{dim} W$ and $T: V \rightarrow W$ linear. Then the following are equivalent

1. T preserves inner product.
2. T is an isometry.
3. If $\mathscr{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ is an orthogonal basis for V, then $\mathscr{C}=\left\{T v_{1}, \ldots, T v_{n}\right\}$ is an orthogonal basis for W and

$$
\left\|T v_{i}\right\|=\left\|v_{i}\right\| \quad i=1, \ldots, n
$$

4. \exists an orthogonal basis $\mathscr{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ for V s.t. $\mathscr{C}=\left\{T v_{1}, \ldots, T v_{n}\right\}$ is an orthogonal basis for W with $\left\|T v_{i}\right\|=\left\|v_{i}\right\| i=1, \ldots, n$.

Proof. 1) $\Longrightarrow 2) T$ is monic by the remark above, so an isomorphism by the Isomorphism theorem.
$2) \Longrightarrow 3)$ By the Isomorphism theorem, \mathscr{C} is a basis for W and \mathscr{C} is orthogonal with $\left\|v_{i}\right\|=\left\|T v_{i}\right\|$ for all i.
3) $\Longrightarrow 4)$ is immediate.
4) \Longrightarrow 1) By the Isomorphism theorem, T is an isomorphism of vector space over F. If $x, y \in V$, let $x=\sum_{i=1}^{n} \alpha_{i} v_{i}, y=\sum_{i=1}^{n} \beta_{i} v_{i}$, then

$$
\begin{aligned}
\langle x, y\rangle & =\sum_{i, j} \alpha_{i} \overline{\beta_{j}}\left\langle v_{i}, v_{j}\right\rangle=\sum_{i, j} \alpha_{i} \overline{\beta_{j}} \delta_{i j}\left\|v_{i}\right\|^{2} \\
& =\sum_{i, j} \alpha_{i} \overline{\beta_{j}} \delta_{i j}\left\|T v_{i}\right\|^{2}=\sum_{i, j} \alpha_{i} \overline{\beta_{j}} \delta_{i j}\left\langle T v_{i}, T v_{j}\right\rangle \\
& =\langle T x, T y\rangle
\end{aligned}
$$

Corollary 23.5

Let V, W be finite dimensional inner product space over F both having orthonormal basis. Then V is isometric to W if and only if $\operatorname{dim} V=\operatorname{dim} W$.

Proof. Apply UPVS and the theorem above.

Theorem 23.6

Let V, W be inner product space over $F, T: V \rightarrow W$ linear. Then T preserves inner products iff T preserves lengths, i.e., $\|T v\|_{W}=\|v\|_{V}$ for all $v \in V$.

Proof. " \Longrightarrow " The result is immediate.
$" \Longleftarrow "$ Let $x, y \in V$ and

$$
\begin{aligned}
\langle x, y\rangle_{V} & =\alpha+\beta \sqrt{-1} \\
\langle T x, T y\rangle_{W} & =\gamma+\delta \sqrt{-1}
\end{aligned}
$$

for $\alpha, \beta, \gamma, \delta \in \mathbb{R}$. We notice that

$$
2 \alpha=2 \gamma \Longrightarrow \alpha=\gamma
$$

So we are done if $F \subseteq \mathbb{R}$. Suppose $F \nsubseteq \mathbb{R}$, then there exists $0 \neq \mu \in \mathbb{R}$ s.t. $\mu \sqrt{-1} \in F$. Then

$$
\begin{aligned}
\langle x, \sqrt{-1} \mu y\rangle_{V} & =-\sqrt{-1} \mu\langle x, y\rangle_{V}=-\mu \sqrt{-1} \alpha+\beta \mu \\
\langle T x, \sqrt{-1} \mu T y\rangle_{W} & =-\sqrt{-1} \mu\langle T x, T y\rangle_{W}=-\mu \sqrt{-1} \gamma+\delta \mu
\end{aligned}
$$

Analogous to $\left({ }^{*}\right)$,

$$
\beta \mu=\delta \mu, \quad \text { so } \beta=\delta
$$

Hence $\langle x, y\rangle_{V}=\langle T x, T y\rangle_{W}$.

$\S 24 \quad$ Lec 24: May 21, 2021

§24.1 Inner Product Spaces (Cont'd)

Definition 24.1 (Unitary Operator) - Let V be an inner product space over F, $T: V \rightarrow V$ linear. We call T a unitary operator if T is an isometry. If $F \subseteq \mathbb{R}$, such a T is called an orthogonal operator.

Proposition 24.2

Let V be an inner product space over $F, T: V \rightarrow V$ linear. Suppose that T^{*} exists. Then, T is an isometry if and only if $T^{*}=T^{-1}$, i.e., $T T^{*}=1_{V}=T^{*} T$.

Proof." $\Longrightarrow "$ As T is an isomorphism of vector space over $F, T^{-1}: V \rightarrow V$ exists and is linear. As T preserves inner products, for all $x, y \in V$

$$
\langle T x, y\rangle=\left\langle T x, 1_{V} y\right\rangle=\left\langle T x, T T^{-1} y\right\rangle=\left\langle x, T^{-1} y\right\rangle
$$

It follows that $T^{*}=T^{-1}$ by uniqueness.
$" \Longleftarrow "$ As $T^{*} T=1_{V}=T T^{*}, T$ is invertible with $T^{-1}=T^{*}$, so T is an isomorphism.
Since

$$
\langle T x, T y\rangle=\left\langle x, T^{*} T y\right\rangle=\langle x, y\rangle
$$

for all $x, y \in V . T$ preserves inner products.

Remark 24.3. Let V be a finite dimensional inner product space over $F, T: V \rightarrow V$ linear.

1. T is monic iff T is epic iff T is an iso of vector space over F.
2. T is unitary $\Longleftrightarrow T^{*} T=1_{V} \Longleftrightarrow T T^{*}=1_{V}$
3. T is unitary $\Longleftrightarrow T^{*}$ is unitary as $T^{* *}=T$

Definition 24.4 (Unitary Matrix) - Let $F \subseteq \mathbb{C}, \bar{F}=F$. We say $A \in \mathbb{M}_{n} F$ is unitary if $A^{*} A=I$. Equivalently, $A A^{*}=I$. Let

$$
U_{n} F:=\left\{A \in G L_{n} F \mid A A^{*}=I\right\}
$$

If $F \subseteq \mathbb{R}$, we say $A \in \mathbb{M}_{n} F$ is orthogonal if $A^{\top} A=I$. Equivalently, $A A^{\top}=I$. Let

$$
O_{n} F:=\left\{A \in G L_{n} F \mid A A^{\top}=I\right\}
$$

Remark 24.5. 1. Let $F \subseteq \mathbb{C}, F=\bar{F}, F^{n \times 1}, F^{1 \times n}$ inner product space over F via the dot product. If $A \in \mathbb{M}_{n} F$, then

$$
A=[A]_{s_{n}, 1}: F^{n \times 1} \rightarrow F^{n \times 1}
$$

linear and $s_{n, 1}$ the ordered standard basis. Then A is unitary iff
i) The columns of A form an ordered orthonormal basis for $F^{n \times 1}$
ii) The rows of A form an ordered orthonormal basis for $F^{1 \times n}$
2. If $T: V \rightarrow V$ is linear, V an inner product space over F with $\operatorname{dim} V=n, \mathscr{B}, \mathscr{C}$ ordered orthonormal bases for V, then T is unitary iff $[T]_{\mathscr{B}, \mathscr{C}}$ is unitary.

$\S 24.2$ Spectral Theory

Lemma 24.6

Let V be an inner product space over $F, T: V \rightarrow V$ linear, $W \subseteq V$ a subspace. Suppose that T^{*} exists. Then the following is true: If W is T-invariant, then W^{\perp} is T^{*}-invariant.

Proof. Let $v \in W^{\perp}, w \in W$, then

$$
\left\langle w, T^{*} v\right\rangle=\langle T w, v\rangle=0
$$

Lemma 24.7

Let V be a finite dimensional inner product space over $F, T: V \rightarrow V$ linear. Then the following is true: If λ is an eigenvalue of T, then $\bar{\lambda}$ is an eigenvalue of T^{*}.

Proof. Let $S=T-\lambda 1_{V}: V \rightarrow V$ linear. Then

$$
S^{*}=T^{*}-\bar{\lambda} 1_{V}: V \rightarrow V \text { linear }
$$

Then $\forall w \in V$,

$$
0=\langle 0, w\rangle=\langle S v, w\rangle=\left\langle v, S^{*} w\right\rangle
$$

Hence $v \perp \operatorname{im} S^{*}$ and $v \notin \operatorname{im} S^{*}$ as $v \neq 0$. By the Dimension Theorem,

$$
0<\operatorname{ker} S^{*}, \quad E_{T^{*}}(\bar{\lambda}) \neq 0
$$

Theorem 24.8 (Schur)

Let V be a finite dimensional inner product space over F with $F=\mathbb{R}$ or \mathbb{C} and $T: V \rightarrow V$ linear. Suppose that f_{T} splits in $F[t]$. Then, there exists an ordered orthonormal basis \mathscr{B} for V s.t. $[T]_{\mathscr{B}}$ is upper triangular.

Proof. We induct on $n=\operatorname{dim} V$.
$n=1$ is immediate.
$n>1$. By the 2nd lemma, $\exists \bar{\lambda} \in F$ and $0 \neq v \in E_{T^{*}}(\bar{\lambda})$. By the Orthogonal Decomposition Theorem,

$$
V=F v \perp(F v)^{\perp}
$$

and

$$
\operatorname{dim}(F v)^{\perp}=\operatorname{dim} V-\operatorname{dim} F v=n-1
$$

$F v$ is T^{*}-invariant, hence $(F v)^{\perp}$ is $T^{* *}=T$-invariant. Let \mathscr{C}_{0} be an ordered basis for $(F v)^{\perp}$. Then $\mathscr{C}=\mathscr{C}_{0} \cup\left\{v_{0}\right\}$ is an ordered basis for V and we have

$$
[T]_{\mathscr{C}}=\left(\begin{array}{cc}
{\left[\left.T\right|_{(F v)^{\perp}}\right]_{\mathscr{C}_{0}}} & * \\
& * \\
0 & \\
& \left.\vdots T v_{0}\right]_{\mathscr{C}}
\end{array}\right)
$$

By expansion,

$$
f_{\left.T\right|_{(F v)^{\perp}}} \mid f_{T} \in F[t]
$$

hence $f_{\left.T\right|_{(F v) \perp}} \in F[t]$ splits. By induction, there exists an orthonormal basis $\mathscr{B}_{0}=$ $\left\{v_{1}, \ldots, v_{n-1}\right\}$ for $(F v)^{\perp}$ s.t. $\left[\left.T\right|_{(F v)^{\perp}}\right]_{\mathscr{B}_{0}}$ is upper triangular. Then $\mathscr{B}=\mathscr{B}_{0} \cup\left\{\frac{v}{\|v\|}\right\}$ is an orthonormal basis for V s.t. $[T]_{\mathscr{B}}$ is upper triangular.
§25| Lec 25: May 24, 2021

§25.1 Spectral Theory (Cont'd)

Definition 25.1 (Hermitian(Self-Adjoint)) - Let V be an inner product space over F, $T: V \rightarrow V$ linear. Suppose that T^{*} exists. We say that T is normal

$$
T T^{*}=T^{*} T
$$

and is Hermitian if $T=T^{*}$, i.e.

$$
\langle T v, w\rangle=\langle v, T w\rangle \quad \forall v, w \in V
$$

Note: If T is Hermitian, T^{*} exists automatically and T is normal.

Lemma 25.2

Let V be an inner product space over $F, \lambda \in F, 0 \neq v \in V, T: V \rightarrow V$ a normal operator. Then

$$
v \in E_{T}(\lambda) \Longleftrightarrow v \in E_{T^{*}}(\bar{\lambda})
$$

Proof. Let $S=T-\lambda 1_{V}$, then $S^{*}=T^{*}-\bar{\lambda} 1_{V}$. It follows that

$$
S S^{*}=S^{*} S, \quad \text { i.e. } \quad S \text { is normal }
$$

Then

$$
\begin{aligned}
\|S v\|^{2} & =\langle S v, S v\rangle=\left\langle v, S^{*} S v\right\rangle \\
& =\left\langle v, S S^{*} v\right\rangle=\left\langle S^{*} v, S^{*} v\right\rangle \\
& =\left\|S^{*} v\right\|^{2}
\end{aligned}
$$

So

$$
v \in E_{T}(\lambda) \Longleftrightarrow S v=0 \Longleftrightarrow S^{*} v=0 \Longleftrightarrow v \in E_{T^{*}}(\bar{\lambda})
$$

Corollary 25.3

Let V be an inner product space over $F, T: V \rightarrow V$ normal, $\lambda \neq \mu$ eigenvalue of T. Then, $E_{T}(\lambda)$ and $E_{T}(\mu)$ are orthogonal. In particular,

$$
\sum_{\lambda} E_{T}(\lambda)=\frac{1}{\lambda} E_{T}(\lambda)
$$

Proof. Let $0 \neq v \in E_{T}(\lambda), 0 \neq w \in E_{T}(\mu)$. Then by the lemma, $w \in E_{T^{*}}(\bar{\mu})$ and

$$
\begin{aligned}
\lambda\langle v, w\rangle & =\langle\lambda v, w\rangle=\langle T v, w\rangle=\left\langle v, T^{*} w\right\rangle \\
& =\langle v, \bar{\mu} w\rangle=\mu\langle v, w\rangle
\end{aligned}
$$

As $\lambda \neq \mu$, we obtain $\langle v, w\rangle=0$.

Proposition 25.4

Let V be a finite dimensional inner product space over $F, F=\mathbb{R}$ or $\mathbb{C}, T: V \rightarrow V$ linear, \mathscr{B} an ordered orthonormal basis for V s.t. $[T]_{\mathscr{B}}$ is upper triangular. Then, T is normal if and only if $[T]_{\mathscr{B}}$ is diagonal.

Proof." $\Longleftarrow "$ If

$$
[T]_{\mathscr{B}}=\left(\begin{array}{lll}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right)
$$

then

$$
\left[T^{*}\right]_{\mathscr{B}}=[T]_{\mathscr{B}}^{*}=\left(\begin{array}{ccc}
\overline{\lambda_{1}} & & 0 \\
& \ddots & \\
0 & & \overline{\lambda_{n}}
\end{array}\right)
$$

So

$$
\begin{aligned}
{\left[T T^{*}\right]_{\mathscr{B}}=[T]_{\mathscr{B}}\left[T^{*}\right]_{\mathscr{B}} } & =\left(\begin{array}{ccc}
\left|\lambda_{1}\right|^{2} & & 0 \\
& \ddots & \\
0 & & \left|\lambda_{n}\right|^{2}
\end{array}\right) \\
& =\left[T^{*}\right]_{\mathscr{B}}[T]_{\mathscr{B}} \\
& =\left[T^{*} T\right]_{\mathscr{B}}
\end{aligned}
$$

Hence, $T T^{*}=T^{*} T$ by the Matrix Theory Theorem.
$" \Longrightarrow "$ Let $\mathscr{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ be an orthonormal basis for V s.t. $A=[T]_{\mathscr{B}}$ is upper triangular. By the lemma,

$$
T v_{1}=A_{11} v_{1} \quad \text { and } \quad T^{*} v_{1}=\overline{A_{11}} v_{1}
$$

By definition,

$$
T^{*} v_{1}=\sum_{i=1}^{n}\left(A^{*}\right)_{i 1} v_{i}=\sum_{i=1}^{n} \overline{A_{1 i}} v_{i}
$$

So

$$
\overline{A_{1 i}}=0 \quad \forall i>1
$$

Hence,

$$
A_{1 i}=0 \quad \forall i>1
$$

In particular,

$$
A_{12}=0
$$

By the lemma,

$$
T v_{2}=A_{22} v_{2}, \quad \text { hence } \quad T^{*} v_{2}=\overline{A_{22}} v_{2}
$$

The same argument shows $\overline{A_{2 i}}=0, i \neq 2$, i.e.,

$$
A_{2 i}=0, \quad i \neq 2
$$

Continuing this process, we conclude A is diagonal.

Theorem 25.5 (Spectral Theorem for Normal Operators)
Let V be a finite dimensional inner product space over $\mathbb{C}, T: V \rightarrow V$ linear. Then T is normal if and only if there exists an orthonormal basis \mathscr{B} for V consisting of eigenvectors of T. In particular, if T is normal, then T is diagonalizable.

Proof. This follows immediately by Schur's theorem, FTA, and the above proposition.

Remark 25.6. Let V be a finite dimensional inner product space over $\mathbb{R}, T: V \rightarrow V$ linear. Suppose that $f_{T} \in \mathbb{R}[t]$ splits. Then T is normal iff \exists an orthonormal basis \mathscr{B} for V consisting of eigenvectors for T.
By Schur's theorem, T is triangularizable via an orthonormal basis for V. The same result follows by the proposition in the case $F=\mathbb{R}$.

Spectral Decomposition and Resolution for Normal Operators:
Let V be a finite dimensional inner product space over $F, F=\mathbb{R}$ or $\mathbb{C}, T: V \rightarrow V$ linear s.t. f_{T} splits. So T is normal. Let $\lambda_{1}, \ldots, \lambda_{r}$ be all the distinct eigenvalues of T in F, \mathscr{C} an orthonormal basis for V. We know

$$
\begin{equation*}
v \in E_{T}\left(\lambda_{i}\right) \Longleftrightarrow v \in E_{T^{*}}\left(\overline{\lambda_{i}}\right) \quad \forall i \tag{+}
\end{equation*}
$$

Let $P_{i}: V \rightarrow V$ be the orthogonal projection along $E_{T}\left(\lambda_{i}\right)^{\perp}$ for $i=1, \ldots, r$ omit at $i^{\text {th }}$ onto $E_{T}\left(\lambda_{i}\right)$.
By $(+), P_{i}: V \rightarrow V$ is also the orthogonal projection along $E_{T^{*}}\left(\overline{\lambda_{i}}\right)^{\perp}$ onto $E_{T^{*}}\left(\overline{\lambda_{i}}\right)$.
This is a unique decomposition

$$
\begin{gathered}
P_{E_{T}\left(\lambda_{i}\right)}=P_{i}=P_{E_{T}^{*}}\left(\overline{\lambda_{i}}\right) \quad \forall i \\
T P_{i}=P_{i} T \quad \text { and } \quad T^{*} P_{i}=P_{i} T^{*} \quad \forall i \\
1_{V}=P_{1}+\ldots+P_{r} \\
P_{i} P_{j}=\delta_{i j} P_{i} \quad \forall i \\
T=\lambda_{1} P_{1}+\ldots+\lambda_{r} P_{r} \\
T^{*}=\overline{\lambda_{1}} P_{1}+\ldots+\overline{\lambda_{r}} P_{r}
\end{gathered}
$$

Let \mathscr{B}_{i} be an ordered orthonormal basis for $E_{T}\left(\lambda_{i}\right)$, so $\mathscr{B}=\mathscr{B}_{1} \cup \ldots \cup \mathscr{B}_{r}$ is an ordered orthonormal basis for V with $[T]_{\mathscr{B}}$ and $\left[T^{*}\right]_{\mathscr{B}}$ is diagonal.
Let $\mathscr{Q}=\left[1_{V}\right]_{\mathscr{B}, \mathscr{C}}$. Then \mathscr{Q} is unitary as it takes an orthonormal basis to an orthonormal basis, hence

$$
\begin{aligned}
\mathscr{Q}^{-1} & =\mathscr{Q}^{*} \\
{[T]_{\mathscr{B}} } & =\mathscr{Q}^{*}[T]_{\mathscr{C}} \mathscr{Q} \\
{\left[T^{*}\right]_{\mathscr{B}} } & =\mathscr{Q}^{*}\left[T^{*}\right]_{\mathscr{C}} \mathscr{Q}
\end{aligned}
$$

Theorem 25.7

Let V be a finite dimensional inner product space over $F, F=\mathbb{R}$ or $\mathbb{C}, T: V \rightarrow V$ linear with $f_{T} \in F[t]$ splits. Then, T is normal if and only if $\exists g \in F[t]$ s.t. $T^{*}=g(T)$.
$\S 26 \mid$ Lec 26: May 26, 2021

§26.1 Spectral Theory (Cont'd)

Remark 26.1. A rotation $T_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $\angle \theta, 0<\theta<2 \pi, \theta \neq \pi$ has no eigenvalues, but is normal (with \mathbb{R}^{2} an inner product space over \mathbb{R} via the dot product) as it is unitary.

Lemma 26.2

Let V be an inner product space over $F, T: V \rightarrow V$ hermitian. If λ is an eigenvalue of T, then $\lambda \in F \cap \mathbb{R}$.

Proof. Let $0 \neq v \in E_{T}(\lambda)$. Then

$$
\begin{aligned}
\lambda\|v\|^{2} & =\lambda\langle v, v\rangle=\langle\lambda v, v\rangle=\langle T v, v\rangle \\
& =\left\langle v, T^{*} v\right\rangle=\langle v, T v\rangle=\langle v, \lambda v\rangle \\
& =\bar{\lambda}\langle v, v\rangle=\bar{\lambda}\|v\|^{2}
\end{aligned}
$$

As $\|v\| \neq 0, \lambda=\bar{\lambda}$, so it's real.

Lemma 26.3

Let V be a finite dimensional inner product space over F with $F=\mathbb{R}$ or $\mathbb{C}, T: V \rightarrow V$ hermitian. Then $f_{T} \in F[t]$ splits in $F[t]$.

Proof. By previous result, we can assume that $F=\mathbb{R}$. Let \mathscr{B} be an orthonormal basis for V. Then

$$
A:=[T]_{\mathscr{B}}=\left[T^{*}\right]_{\mathscr{B}}=[T]_{\mathscr{B}}^{*}=A^{*}
$$

in $\mathbb{M}_{n} \mathbb{R} \subseteq \mathbb{M}_{n} \mathbb{C}, n=\operatorname{dim} V$. As

$$
A: \mathbb{C}^{n \times 1} \rightarrow \mathbb{C}^{n \times 1} \text { is Hermitian }
$$

f_{A} splits with real roots by Lemma 26.2. (and FTA), i.e.,

$$
f_{A}=\prod\left(t-\lambda_{i}\right) \in \mathbb{C}[t], \quad \lambda_{i} \in \mathbb{R} \quad \forall i
$$

So $f_{T}=f_{A}=\prod\left(t-\lambda_{i}\right) \in \mathbb{R}[t]$ splits.

Theorem 26.4 (Spectral Theorem for Hermitian Operators)

Let V be a finite dimensional inner product space over $F, F=\mathbb{R}$ or $\mathbb{C}, T: V \rightarrow V$ hermitian. Then, there exists an orthonormal basis for V of eigenvectors of T and all all eigenvalues are real.

Proof. If $F=\mathbb{C}$, the result follows by Lemma 26.2 as T is normal. So we may assume $F=\mathbb{R}$. As $f_{T} \in \mathbb{R}[t]$ splits by Lemma 26.3 , there exists an orthonormal basis \mathscr{B} for V s.t. $[T]_{\mathscr{B}}$ is upper triangular by Schur's Theorem. As T is normal, it is diagonalizable. The result follows by Lemma 26.2.

§26.2 Hermitian Addendum

Theorem 26.5

If $0 \neq V$ is a finite dimensional inner product space over $\mathbb{R}, T: V \rightarrow V$ hermitian, then T has an eigenvalue.

The proof in Axler's book is very nice, and he does not use determinant theory. He uses the following arguments

1. If V is a finite dimensional vector space over $F, T: V \rightarrow V$ linear, then there exists $q \in F[t]$ monic s.t. $q(T)=0$
2. If $0 \neq q \in \mathbb{R}[t]$, then there exists a factorization

$$
q=\beta\left(t-\lambda_{1}\right)^{e_{1}} \ldots\left(t-\lambda_{r}\right)^{e_{r}} q_{1}^{f_{1}} \ldots q_{s}^{f_{s}}
$$

in $\mathbb{R}[t]$ with q_{i} monic irreducible quadratic polynomials in $\mathbb{R}[t]$.
This follows by the FTA.

Lemma 26.6

Let $q=t^{2}+b t+c$ in $\mathbb{R}[t], b^{2}<4 c$, i.e., q is an irreducible monic quadratic polynomial in $\mathbb{R}[t]$. If V is a finite dimensional inner product space over \mathbb{R} and $T: V \rightarrow V$ is Hermitian, then $q(T)$ is an isomorphism.

Proof. It suffices to show $q(T)$ is a monomorphism by the Isomorphism Theorem. So it suffices to show if $0 \neq v \in V$, then $q(T) v \neq 0$. We have

$$
\begin{aligned}
\langle q(T) v, v\rangle & =\left\langle T^{2} v, v\right\rangle+b\langle T v, v\rangle+c\langle v, v\rangle \\
& =\langle T v, T v\rangle+b\langle T v, v\rangle+c\langle v, v\rangle \\
& =\|T v\|^{2}+b\langle T v, v\rangle+c\|v\|^{2} \\
& \geq\|T v\|^{2}-|b|\|T v\|\|v\|+c\|v\|^{2} \\
& =\left(\|T v\|-\frac{|b|\|v\|}{2}\right)^{2}+\left(c-\frac{b^{2}}{4}\right)\|v\|^{2}>0
\end{aligned}
$$

So $q(T) v \neq 0$.
Proof. (of Theorem) Let $q \in \mathbb{R}[t]$ in 2) satisfy $q(T)=0$. So

$$
0=q(T)=\left(T-\lambda_{1} 1_{V}\right)^{e_{1}} \ldots\left(T-\lambda_{r} 1_{V}\right)^{e_{r}} q_{1}(T)^{f_{1}} \ldots q_{s}(T)^{f_{s}}
$$

As all the $q_{i}(T)$ are isomorphism, at least one of the $\left(T-\lambda_{i} 1_{V}\right)$ is not injective, i.e., λ_{i} is an eigenvalue.

$\S 27 \mid$ Lec 27: May 28, 2021

§27.1 Positive (Semi-)Definite Operators

Let V be a finite dimensional inner product space over F, where $F=\mathbb{R}$ or $\mathbb{C}, T: V \rightarrow V$ hermitian, $\mathscr{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ an orthonormal basis of eigenvectors of T, i.e.,

$$
T v_{i}=\lambda_{i} v_{i}, \quad i=1, \ldots, n
$$

So $\lambda_{i} \in \mathbb{R}, i=1, \ldots, n$. Suppose $v \in V$. Then

$$
v=\sum_{i=1}^{n} \alpha_{i} v_{i}, \quad \alpha_{i} \in F \forall i
$$

and

$$
\begin{align*}
\langle T v, v\rangle & =\left\langle\sum_{i=1}^{n} T\left(\alpha_{i} v_{i}\right), \sum_{j=1}^{n} \alpha_{j} v_{j}\right\rangle \\
& =\left\langle\sum_{i=1}^{n} \lambda_{i} \alpha_{i} v_{i}, \sum_{j=1}^{n} \alpha_{j} v_{j}\right\rangle \\
& =\sum_{i, j=1}^{n} \lambda_{i} \alpha_{i} \overline{\alpha_{j}}\left\langle v_{i}, v_{j}\right\rangle \tag{*}\\
& =\sum_{i, j=1}^{n} \lambda_{i} \alpha_{i} \overline{\alpha_{j}} \delta_{i j} \\
& =\sum_{i=1}^{n} \lambda_{i}\left|\alpha_{i}\right|^{2}
\end{align*}
$$

Definition 27.1 (Positive/Negative (Semi-) Definite) - Let V be a finite dimensional inner product space over $F, F=\mathbb{R}$ or $\mathbb{C}, T: V \rightarrow V$ hermitian. We say that T is positive or positive definite if

$$
\langle T v, v\rangle>0 \quad \forall 0 \neq v \in V
$$

and positive semi-definite if

$$
\langle T v, v\rangle \geq 0 \quad \forall 0 \neq v \in V
$$

We can define T as negative (semi-) definite similarly.

It follows from (*) that we have

Proposition 27.2

Let V be a finite dimensional inner product space over $F, F=\mathbb{R}$ or $\mathbb{C}, T: V \rightarrow V$ hermitian. Then T is positive semi-definite (respectively positive) if and only if all eigenvalues of T are non-negative (respectively positive).

Question 27.1. What does this say about the $2^{\text {nd }}$ derivative test for C^{2} function, $f: S \rightarrow \mathbb{R}$ at a critical point in the interior of S ?

Theorem 27.3

Let V be a finite dimensional inner product space over $F, F=\mathbb{R}$ or $\mathbb{C}, T: V \rightarrow V$ hermitian. Then T is non-negative (respectively positive) iff $\exists S: V \rightarrow V$ non-negative s.t.

$$
T=S^{2}
$$

i.e., T has a square root (respectively, and S is invertible).

Proof." \Longrightarrow "Let $\mathscr{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ be an ordered orthonormal basis for V of eigenvectors of T

$$
T v_{i}=\lambda_{i} v_{i}, \quad \lambda_{i} \geq 0 \in \mathbb{R}, \quad i=1, \ldots, n
$$

Then $\exists \mu_{i} \in \mathbb{R}, \mu_{i} \geq 0$ s.t. $\lambda_{i}=\mu_{i}^{2}, i=1, \ldots, n$. Let

$$
B=\left(\begin{array}{ccc}
\sqrt{\lambda_{1}} & & 0 \\
& \ddots & \\
0 & & \sqrt{\lambda_{n}}
\end{array}\right)=\left(\begin{array}{ccc}
\mu_{1} & & 0 \\
& \ddots & \\
0 & & \mu_{n}
\end{array}\right)
$$

So

$$
B^{2}=[T]_{\mathscr{B}}
$$

By MTT, $\exists S: V \rightarrow V$ linear s.t. $[S]_{\mathscr{B}}=B$. So

$$
[T]_{\mathscr{B}}=B^{2}=[S]_{\mathscr{B}}^{2}=\left[S^{2}\right]_{\mathscr{B}}
$$

Hence $T=S^{2}$ by MTT. As \mathscr{B} is orthonormal, $\mu_{i} \in \mathbb{R}$ for all i

$$
\left[S^{*}\right]_{\mathscr{B}}=[S]_{\mathscr{B}}^{*}=B^{*}=B=[S]_{\mathscr{B}}
$$

Thus, $S=S^{*}$ by MTT; so hermitian if $\lambda_{i}>0 \forall i$, $\operatorname{det} B \neq 0$, so $B \in G L_{n} F$.
$" \Longleftarrow "$ Let \mathscr{B} be an ordered orthonormal basis for V of eigenvectors for S. Then

$$
\begin{aligned}
& {[S]_{\mathscr{B}}=\left(\begin{array}{lll}
\mu_{1} & & 0 \\
& \ddots & \\
0 & & \mu_{n}
\end{array}\right), \quad \mu_{i} \geq 0 \in \mathbb{R} \text { and }} \\
& {[T]_{\mathscr{B}}=\left[S^{2}\right]_{\mathscr{B}}=\left(\begin{array}{lll}
\mu_{1}^{2} & & 0 \\
& \ddots & \\
0 & & \mu_{n}^{2}
\end{array}\right)}
\end{aligned}
$$

is diagonal. Therefore, \mathscr{B} is also an orthonormal basis for V of eigenvectors of T. As $\mu_{i}^{2} \geq 0$ (>0 if S is invertible), T is non-negative (respectively positive if S is invertible).

Theorem 27.4

Let V be a finite dimensional inner product space over $F, F=\mathbb{R}$ or \mathbb{C} and $T: V \rightarrow V$ hermitian. Suppose that T is non-negative. Then T has a unique square root S, i.e., $S: V \rightarrow V$ non-negative s.t. $S^{2}=T$.

Proof. Let $S^{2}=T, S: V \rightarrow V$ non-negative. The Spectral Theorem gives unique orthogonal decompositions

$$
\begin{aligned}
V & =E_{T}\left(\lambda_{1}\right) \perp \ldots \perp E_{T}\left(\lambda_{r}\right) \\
T & =\lambda_{1} P_{\lambda_{1}}+\ldots+\lambda_{r} P_{\lambda_{r}} \\
P_{\lambda_{i}} P_{\lambda_{j}} & =\delta_{i j} P_{\lambda_{i}} P_{\lambda_{j}}, \quad \forall i, j \\
1_{V} & =P_{\lambda_{1}}+\ldots+P_{\lambda_{r}}
\end{aligned}
$$

and we also have

$$
\begin{aligned}
V & =E_{S}\left(\mu_{1}\right) \perp \ldots \perp E_{S}\left(\mu_{s}\right), \quad \mu_{i} \geq 0, \quad i=1, \ldots, s \\
S & =\mu_{1} P_{\mu_{1}}+\ldots+\mu_{s} P_{\mu_{s}} \\
P_{\mu_{i}} P_{\mu_{j}} & =\delta_{i j} P_{\mu_{i}}, \quad \forall i, j \\
1_{V} & =P_{\mu_{1}}+\ldots+P_{\mu_{s}}
\end{aligned}
$$

In particular,

$$
\begin{aligned}
S^{2} & =\left(\mu_{1} P_{\mu_{1}}+\ldots+\mu_{s} P_{\mu_{s}}\right)\left(\mu_{1} P_{\mu_{1}}+\ldots+\mu_{s} P_{\mu_{s}}\right) \\
& =\mu_{1}^{2} P_{\mu_{1}}+\ldots+\mu_{s}^{2} P_{\mu_{s}}
\end{aligned}
$$

As $T=S^{2}$,

$$
\mu_{1}^{2} P_{\mu_{1}}+\ldots+\mu_{s}^{2} P_{\mu_{s}}=\lambda_{1} P_{\lambda_{1}}+\ldots+\lambda_{r} \mu_{r}
$$

So by uniqueness, we must have $s=r$ and changing the order if necessary

$$
\mu_{i}^{2}=\lambda_{i}, \quad P_{\mu_{i}}=P_{\lambda_{i}}, \quad \forall i
$$

Lemma 27.5

Let V, W be finite dimensional inner product space over $F, F=\mathbb{R}$ or $\mathbb{C}, T: V \rightarrow W$ linear. Then $T^{*} T: V \rightarrow V$ is hermitian and non-negative.

Remark 27.6. If in the definition of positive operator, etc, we omit V being finite dimensional but assume T^{*} exists, then we would still have $T^{*} T$ hermitian.

Proof. Let $x, y \in V$. Then

$$
\left\langle x,\left(T^{*} T\right)^{*} y\right\rangle_{V}=\left\langle T^{*} T x, y\right\rangle_{V}=\langle T x, T y\rangle_{W}=\left\langle x, T^{*} T y\right\rangle_{V}
$$

Since this is true for all x, y

$$
\left(T^{*} T\right)^{*}=\left(T^{*} T^{* *}\right)^{*}=T^{*} T
$$

is hermitian, hence has real eigenvalues. Let λ be an eigenvalue of $T^{*} T, 0 \neq v \in V$ s.t. $T^{*} T v=\lambda v$. Then

$$
\begin{aligned}
\lambda\|v\|_{V}^{2} & =\lambda\langle v, v\rangle_{V}=\langle\lambda v, v\rangle_{V}=\left\langle T^{*} T v, v\right\rangle_{V} \\
& =\langle T v, T v\rangle_{W}=\|T v\|_{W}^{2} \geq 0
\end{aligned}
$$

So

$$
\lambda=\frac{\|T v\|_{W}^{2}}{\|v\|_{V}^{2}} \geq 0
$$

as $\|v\|_{V}^{2} \neq 0$.

Corollary 27.7

Let V be a finite dimensional inner product space over $F, F=\mathbb{R}$ or $\mathbb{C}, T: V \rightarrow V$ linear. Then T is non-negative (respectively positive) iff $\exists S: V \rightarrow V$ linear (respectively an isomorphism) s.t. $T=S^{*} S$.

Proof. Use the theorem and lemma presented above.
Notation:

- $F=\mathbb{R}$ or $\mathbb{C}, A \in F^{m \times n}$
- $A^{(i)}=$ the $i^{\text {th }}$ column of A
- $A=\left[\begin{array}{lll}A^{(1)} & \ldots & A^{(m)}\end{array}\right]$
- $\langle\rangle=$, the dot product on F^{N} for any $N \geq 1$
- $U_{N}(F)=\left\{U \in G L_{N} F \mid U^{*}=U^{-1}\right\}$

Definition 27.8 (Pseudodiagonal) - Let $D \in F^{m \times n}$. We call D pseudodiagonal if $D_{i j}=0 \forall i \neq j$, i.e., only $D_{i i}$ can have non-zero entries.

Theorem 27.9 (Singular Value)

Let $F=\mathbb{R}$ or $\mathbb{C}, A \in F^{m \times n}$. Then $\exists U \in U_{n}(F), X \in U_{m}(F)$ s.t.

$$
X^{*} A U=D=\left(\begin{array}{ccccc}
\mu_{1} & & & & 0 \\
& \ddots & & & \\
& & \mu_{r} & & \\
& & & 0 & \\
0 & & & & \ddots
\end{array}\right) \in F^{m \times n}
$$

is a pseudodiagonal matrix satisfying

$$
\mu_{1} \geq \ldots \geq \mu_{r}>0
$$

and

$$
r=\operatorname{rank}(A)
$$

Proof. By the lemma, $A^{*} A \in \mathbb{M}_{n} F$ is hermitian and has non-negative eigenvalues. Let $\lambda_{1}, \ldots, \lambda_{r}$ be the positive eigenvalues ordered s.t.

$$
\lambda_{1} \geq \ldots \geq \lambda_{r}>0
$$

By the Spectral Theorem for Hermitian Operators, $\exists U \in U_{n} F$ s.t.

$$
(A U)^{*}(A U)=U^{*} A^{*} A U=\left(\begin{array}{cccccc}
\lambda_{1} & & & & & 0 \\
& \ddots & & & & \\
& & \lambda_{r} & & & \\
& & & 0 & & \\
& & & & \ddots & \\
0 & & & & 0
\end{array}\right)
$$

in $\mathbb{M}_{n} F$. Let $C=A U \in F^{m \times n}$. Then

$$
C^{*} C=(A U)^{*}(A U) \in \mathbb{M}_{n} F
$$

Write

$$
\lambda_{i}=\mu_{i}^{2}, \quad \mu_{i}>0, \quad 1 \leq i \leq r
$$

So

$$
\mu_{1} \geq \ldots \geq \mu_{r}>0
$$

Set

$$
B=\left(\begin{array}{llllll}
\mu_{1} & & & & & 0 \\
& \ddots & & & & \\
& & \mu_{r} & & & \\
& & & 0 & & \\
& & & & \ddots & \\
0 & & & & & 0
\end{array}\right) \in \mathbb{M}_{n} F
$$

If $i>r_{1}$ let $\lambda_{i}=0$. Then, we have

$$
\begin{aligned}
\lambda_{i} \delta_{i j} & =\left(C^{*} C\right)_{i j}=\sum_{l}\left(C^{*}\right)_{i l} C_{l j}=\sum_{l} \overline{C_{l i}} C_{l j} \\
& =\sum_{l} C_{l j} \overline{C_{l i}}=\left\langle C^{(j)}, C^{(i)}\right\rangle
\end{aligned}
$$

Hence

$$
C=\left[\begin{array}{llllll}
C^{(1)} & \ldots & C^{(r)} & 0 & \ldots & 0
\end{array}\right]
$$

We continue with the proof in the next lecture.
$\S 28 \mid$ Lec 28: Jun 2, 2021
§28.1 Positive (Semi-)Definite Operators (Cont'd)
Proof. (Cont'd) Recall, we have proven so far

$$
C=\left[\begin{array}{llllll}
C^{(1)} & \ldots & C^{(r)} & 0 & \ldots & 0
\end{array}\right]
$$

and thus $\left\{C^{(1)}, \ldots, C^{(r)}\right\}$ is an orthogonal set in $F^{m \times 1}$. As $C^{(i)} \neq 0, i=1, \ldots, r$, $C^{(1)}, \ldots, C^{(r)}$ are linearly independent. In particular,

$$
\operatorname{rank} C=r
$$

We also have

$$
\left\|C^{(i)}\right\|^{2}=\left\langle C^{(i)}, C^{(i)}\right\rangle=\lambda_{i}=\mu_{i}^{2}
$$

for $i=1, \ldots, m$. As U is invertible,

$$
\operatorname{rank} A=\operatorname{rank} A U=\operatorname{rank} C=r
$$

So rank $A=r$ as needed.
Now let

$$
X^{(i)}:=\frac{1}{\mu_{i}} C^{(i)}, \quad i=1, \ldots, r
$$

Then $\left\{X^{(1)}, \ldots, X^{(r)}\right\}$ is an orthonormal set. Extend this to an orthonormal basis $\mathscr{B}=$ $\left\{X^{(1)}, \ldots, X^{(m)}\right\}$. Then

$$
X=\left[\begin{array}{lll}
X^{(1)} & \ldots & X^{(m)}
\end{array}\right]=\left[1_{F^{m \times 1}}\right]_{\mathscr{S}_{m, 1}, \mathscr{B}}
$$

Since both $\mathscr{S}_{m, 1}$ and \mathscr{B} are orthonormal bases, $X \in U_{m}(F)$. Let D be the pseudo-diagonal matrix

$$
D:=\left(\begin{array}{ccccc}
\mu_{1} & & & & 0 \\
& \ddots & & & \\
& & \mu_{r} & & \\
& & & 0 & \\
0 & & & & \ddots
\end{array}\right) \in F^{m \times n}
$$

as in the statement of the theorem. Then

$$
\left.\begin{array}{rl}
X D & =\left[\begin{array}{llll}
X^{(1)} & \ldots & X^{(m)}
\end{array}\right]\left(\begin{array}{ccccc}
\mu_{1} & & & & \\
& \ddots & & & \\
& & \mu_{r} & & \\
& & & 0 & \\
& & & & \ddots
\end{array}\right) \\
& =\left[\begin{array}{lllll}
\mu_{1} X^{(1)} & \ldots & \mu_{r} X^{(r)} & 0 & \ldots
\end{array}\right)
\end{array}\right]
$$

Hence

$$
X^{*} A U=D
$$

as needed.

Definition 28.1 (Singular Value Decomposition) - Let $A \in F^{m \times n}, F=\mathbb{R}$ or \mathbb{C}.

$$
\begin{gather*}
A=X D U^{*}, \quad U \in U_{n} F, \quad X \in U_{m} F \\
D=\left(\begin{array}{lllll}
\mu_{1} & & & & \\
& \ddots & & & \\
& & \mu_{r} & & \\
& & & & 0 \\
0 & & & & \ddots
\end{array}\right) \in F^{m \times n} \tag{*}\\
\mu_{1} \geq \ldots \geq \mu_{r}>0 \in \mathbb{R}
\end{gather*}
$$

Then $\left(^{*}\right)$ is called a singular value decomposition (SVD) of $A, \mu_{1}, \ldots, \mu_{r}$ are the singular values of A, D is the pseudo-diagonal matrix of A.

Note: Let $A=X D U^{*}$ be an SVD of A. Then

1. The singular values of A are the (positive) square roots of the positive eigenvalues of $A^{*} A$.
2. The columns of X form an orthonormal basis for $F^{m \times 1}$ of eigenvectors of $A A^{*}$.
3. The columns of U form an orthonormal basis for $F^{n \times 1}$ of eigenvectors of $A^{*} A$.

Corollary 28.2

The singular values of $A \in F^{m \times n}, F=\mathbb{R}$ or \mathbb{C} are unique (including multiplicity) up to order.

Proof. Let $A=X D U^{*}$ be a SVD of $A, X \in U_{m} F, U \in U_{n} F$. Then

$$
A^{*} A=\left(X D U^{*}\right)^{*}\left(X D U^{*}\right)=U D^{*} X^{*} X D U^{*}=U D^{*} D U^{*}
$$

as $X^{*} X=I$. So

$$
A^{*} A \sim D^{*} D=\left(\begin{array}{ccc}
\alpha_{11}^{2} & & \\
& \ddots & \\
& & \ddots
\end{array}\right) \in \mathbb{M}_{n} F
$$

have the same eigenvalues α_{11}^{2}, \ldots, as $A^{*} A$.

Remark 28.3. An SVD of $A \in F^{m \times n}, F=\mathbb{R}$ or \mathbb{C} may not be unique.

Corollary 28.4

The singular values of $A \in F^{m \times n}, F=\mathbb{R}$ or \mathbb{C} are the same as the singular values of $A^{*} \in F^{n \times m}$.

Proof. $\left(X D U^{*}\right)^{*}=U D^{*} X^{*}$ and D, D^{*} have the same non-zero diagonal eigenvalues.
The abstract version of the singular value theorem is

Theorem 28.5 (Singluar Value - Linear Transformation Form)

Let $F=\mathbb{R}$ or \mathbb{C}, V a finite dimensional inner product space over F and $T: V \rightarrow W$ linear of rank r. Then there exists orthonormal basis

$$
\begin{gathered}
\mathscr{B}=\left\{v_{1}, \ldots, v_{n}\right\} \text { for } V \\
\mathscr{C}=\left\{w_{1}, \ldots, w_{m}\right\} \text { for } W \\
\mu_{1} \geq \ldots \geq \mu_{r}>0 \in \mathbb{R}
\end{gathered}
$$

satisfying

$$
T v_{i}= \begin{cases}\mu_{i} w_{i}, & i=1, \ldots, r \\ 0, & i>r\end{cases}
$$

Conversely, suppose the above conditions are all satisfied. Then v_{i} is an eigenvector for $T^{*} T$ with eigenvalue μ_{i}^{2} for $i=1, \ldots, r$ and eigenvalue 0 for $i=r+1, \ldots, n$. In particular, μ_{1}, \ldots, μ_{r} are uniquely determined.

Proof. Left as exercise.

Remark 28.6. So we see for an arbitrary linear transformation $T: V \rightarrow W$ of finite dimensional inner product space over $F, F=\mathbb{R}$ or \mathbb{C}, singular values can be viewed as a substitute for eigenvalues.

When $F=\mathbb{R}$ or \mathbb{C} and $A \in \mathbb{M}_{n} F$, we get a generalization of the polar representation of eigenvalues $z \in \mathbb{C}$ where $z=r e^{\sqrt{-1} \theta}$.

Theorem 28.7 (Polar Decomposition)

Let $F=\mathbb{R}$ or $\mathbb{C}, A \in \mathbb{M}_{n} F$. Then there exists $\tilde{U} \in U_{n} F, N \in \mathbb{M}_{n} F$ hermitian with all its eigenvalues real and non-negative satisfying

$$
A=\tilde{U} N
$$

here $N \leftrightarrow r, \tilde{U} \leftrightarrow e^{\sqrt{-1} \theta}$ for $n=1$.

Proof. In the singular value theorem, we have $m=n$. Let $A=X D U^{*}$ be an SVD, $X, U \in U_{n} F$. We have $D=D^{*}$ is hermitian with non-negative eigenvalues. So

$$
A=X D U^{*}=X\left(U^{*} U\right) D U^{*}=\left(X U^{*}\right)\left(U D U^{*}\right)
$$

Since

$$
\left(X U^{*}\right)^{*}\left(X U^{*}\right)=U X^{*} X U^{*}=U U^{*}=I
$$

$X U^{*} \in U_{n} F$ also. Let $\tilde{U}=X U^{*} \in U_{n} F, N=U D U^{*}$ which completes the proof.

§28.2 Least Squares

We give an application of SVD

Problem 28.1. Let $F=\mathbb{R}$ or \mathbb{C}, V a finite dimensional inner product space over F, $W \subseteq V$ a subspace. Let

$$
P_{W}: V \rightarrow V \text { by } v \mapsto v_{W}
$$

be the orthogonal projection of V onto W. By the Approximation Theorem, v_{W} is the best approximation of $v \in V$ onto W. Now let X be another finite dimensional inner product space over F and $T: X \rightarrow V$ linear with $W=T(X)=\operatorname{im} T$. Let $v \in V$ and $x \in X$. We call
i) x a best approximation to v via T if

$$
T x=v_{W}=P_{W}(v)
$$

ii) x an optimal approximation to v via T if it is a best approximation to v via T and $\|x\|$ is minimal among all best approximation to v via T.

Find an optimal approximation.

Solution:

$$
\left\langle x, T^{*} y\right\rangle_{X}=\langle T x, y\rangle_{V},
$$

we have

$$
W^{\perp}=(\operatorname{im} T)^{\perp}=\operatorname{ker} T^{*}
$$

Since

$$
v-v_{W} \in W^{\perp}=(\operatorname{im} T)^{\perp} \quad(\text { by the OR Decomposition Theorem) }
$$

and

$$
T^{*} v=T^{*} v_{W}
$$

So if x is a best approximation of v via T, then

$$
\begin{equation*}
T^{*} T x=T^{*} v \tag{}
\end{equation*}
$$

i.e., x is also a solution to $T^{*} T x=T^{*} v$. Conversely, if $\left({ }^{*}\right)$ holds, then

$$
T x-v \in \operatorname{ker} T^{*}=(\operatorname{im} T)^{\perp}=W^{\perp}
$$

In particular,

$$
\begin{aligned}
v_{W} & =P_{W} v=P_{W}(T x-(T x-v)) \\
& =P_{W}(T x)-P_{W}(T x-v) \\
& =T x+0=T x
\end{aligned}
$$

Conclusion: x is a best approximation to v via T if and only if $T^{*} T x=T^{*} v$.
Claim 28.1. Suppose that T is monic. Then

$$
T^{*} T: X \rightarrow X \text { is an isomorphism }
$$

and

$$
\begin{equation*}
P_{W}=T\left(T^{*} T\right)^{-1} T^{*}: V \rightarrow V \tag{+}
\end{equation*}
$$

Suppose that $x \in X$ satisfies $T^{*} T x=0$. Then

$$
0=\left\langle T^{*} T x, x\right\rangle_{X}=\langle T x, T x\rangle_{V}=\|T x\|_{V}^{2}
$$

Therefore, $T x=0$. But T is monic, so $x=0$. Hence $T^{*} T: V \rightarrow V$ is monic hence an isomorphism. We now show $(+)$ holds.
Let $v \in V$. Since $T^{*} T$ is an isomorphism, there exists $x \in X$ s.t.

$$
T^{*} T x=T^{*} v
$$

and

$$
\begin{aligned}
T\left(T^{*} T\right)^{-1} T^{*} v & =T\left(T^{*} T\right)^{-1} T^{*} T x \\
& =T x=v_{W}=P_{W}(v)
\end{aligned}
$$

showing $(+)$. This proves the claim and also shows that the x in $(\star \star)$ is a best approximation to v via T.
$\S 29$ Lec 29: Jun 4, 2021

§29.1 Least Squares (Cont'd)

Claim 29.1. Let $v \in V$. Then $\exists!x \in X$ an optimal approximation to v via T. Moreover, this x is characterized by

$$
P_{Y}(x)=0 \text { where } Y=\operatorname{ker} T^{*} T
$$

Let x, x^{\prime} be two best approximation to v via T. Then,

$$
T^{*} T x=T^{*} v=T^{*} T x^{\prime}
$$

Therefore,

$$
x-x^{\prime} \in \operatorname{ker} T^{*} T=: Y
$$

It follows if x is a best approximation to v via T, then any other is of the form $x+y, y \in Y$. We also have for such $x+y$

$$
P_{Y}(x+y)=P_{Y}(x)+P_{Y}(y)=P_{Y}(x)+y
$$

Let $x^{\prime \prime}=x-P_{Y}(x)$. Then

$$
P_{Y}\left(x^{\prime \prime}\right)=P_{Y}(x)-P_{Y}^{2}(x)=0, \quad \text { i.e., } x^{\prime \prime} \perp Y
$$

So

$$
\left\|x^{\prime \prime}+y\right\|^{2}=\left\|x^{\prime \prime}\right\|^{2}+\|y\|^{2} \geq\left\|x^{\prime \prime}\right\|^{2} \quad \forall y \in Y
$$

by the Pythagorean Theorem. Hence, $x^{\prime \prime}=P_{Y^{\perp}}(x)$ is the unique optimal approximation. This proves the claim above.
Let $A=T: F^{n \times 1} \rightarrow F^{m \times 1}, A \in F^{m \times n}, v \in F^{m \times 1}$ with $F=\mathbb{R}$ or \mathbb{C}. Let

$$
A=X D U^{*}, \quad D=\left(\begin{array}{ccccc}
\mu_{1} & & & & \\
& \ddots & & & \\
& & \mu_{r} & & \\
& & & 0 & \\
& & & & \ddots
\end{array}\right) \in F^{m \times n}
$$

and

$$
\mu_{1} \geq \ldots \geq \mu_{r}>0 \in \mathbb{R}
$$

be an SVD. Let's define

$$
D^{\dagger}:=\left(\begin{array}{ccccc}
\mu_{1}^{-1} & & & & \\
& \ddots & & & \\
& & \mu_{r}^{-1} & & \\
& & & 0 & \\
& & & & \ddots
\end{array}\right) \in F^{n \times m}
$$

Then

$$
A^{\dagger}:=U D^{\dagger} X^{*} \in F^{n \times m}
$$

is called the Moore-Penrose generalized pseudoinverse of A. Then the following are true
i) $\operatorname{rank}(A)=\operatorname{rank}\left(A^{\dagger}\right)$
ii) $A^{\top} v$ is an optimal approximation in $F^{n \times 1}$ to v via A and is unique.
iii) If $\operatorname{rank}(A)=n$, then

$$
A^{\dagger}=\left(A^{*} A\right)^{-1} A^{*}
$$

Proof. i) $\operatorname{rank}(A)=\operatorname{rank}(D)=\operatorname{rank}\left(D^{\dagger}\right)=\operatorname{rank}\left(A^{\dagger}\right)$ as X, U are invertible.
ii) Case 1: $A=D$, i.e., X, U are the appropriate identity matrices. Let $W=\operatorname{im} A$, $U=\operatorname{ker} D^{\dagger} D, W=\operatorname{span}\left\{e_{i} \in \mathscr{S}_{m, 1} \mid D_{i i} \neq 0\right\}$
If $v \in F^{m \times 1}$, then

$$
v_{W}=P_{W}(v)=D D^{\dagger} v=D\left(D^{\dagger} v\right)
$$

So $D^{\dagger} v$ is a best approximation to v relative to D. As

$$
U=\operatorname{ker} D^{\dagger} D=\operatorname{Span}\left\{e_{j} \in \mathscr{S}_{n, 1} \mid D_{j j}=0\right\}
$$

and we have

$$
D^{\dagger} v \in \operatorname{Span}\left\{e_{j} \in \mathscr{S}_{n, 1} \mid D_{j j} \neq 0\right\}=Y^{\perp},
$$

and $P_{Y}\left(D^{\dagger} v\right)=0$.

$$
D^{\dagger} v \text { is optimal approximation to } v \text { relative to } D
$$

Case 2: $A=X D U^{*}$ in general. X, U are unitary, so they preserve dot products, so z is an optimal approximation to v relative to $A=A U U^{*}$ if and only if $U^{*} z$ is an optimal approximation to v relative to $A U\left(^{*}\right)$. We also have

$$
\begin{aligned}
\|A z-v\| & =\left\|X D U^{*} z-v\right\|=\left\|X^{*}\left(X D U^{*} z-v\right)\right\| \\
& =\left\|D U^{*} z-X^{*} v\right\|
\end{aligned}
$$

So $\left(^{*}\right)$ is true iff $U^{*} z$ is an optimal approximation to $X^{*} v$ relative to D. By case 1 , $D^{\dagger} X^{*} v$ is an optimal approximation to $X^{*} v$ relative to D. As $A^{\dagger}=U D^{\dagger} X^{*}$

$$
D\left(D^{\dagger} X^{*} v\right) \stackrel{\mathrm{SVD}}{=}\left(X^{*} A U\right)\left(D^{\dagger} X^{*} v\right)=X^{*} A\left(A^{\dagger} v\right)
$$

Therefore, $A^{\dagger} v$ is the optimal approximation to $X^{*} v$ relative to $X^{*} A$. Thus, as X^{*} is an isometry, $A^{\dagger} v$ is the optimal approximation to v relative to A.
iii) This follows as in (ii) for if $\operatorname{rank}(A)=n$, then $\left(A^{*} A\right)^{-1} A^{*} v$ is the unique optimal best approximation to $A z=v$.

Warning: In general, $(A B)^{\dagger} \neq B^{\dagger} A^{\dagger}$.
Let $A \in F^{m \times n}, F=\mathbb{R}$ or \mathbb{C}. Solve

$$
A X=B \text { for } X \in F^{n \times 1}
$$

for $X \in F^{n \times 1}$. As A can be inconsistent, we want an optimal approximation to a solution.

Example 29.1

Let $F=\mathbb{R}$ or \mathbb{C}. Given data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ in F^{2}, find the best line relative to this data, i.e., find

$$
y=\lambda x+b, \quad \lambda=\text { slope }
$$

Let

$$
A=\left(\begin{array}{cc}
x_{1} & 1 \\
\vdots & \vdots \\
x_{n} & 1
\end{array}\right), \quad X=\binom{\lambda}{b}, \quad Y=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)
$$

To solve $A X=Y$, we want the optimal solution

$$
\left(\begin{array}{cc}
x_{1} & 1 \\
\vdots & \vdots \\
x_{n} & 1
\end{array}\right)\binom{\lambda}{b}=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)
$$

Let $W=\operatorname{im} A$. To find the optimal approximation to $A X=Y_{W}, X=A^{\dagger} Y$ works. But $\operatorname{rank}(A)=2$ is most probable

$$
X=\left(A^{*} A\right)^{-1} A^{*} Y
$$

§29.2 Rayleigh Quotient

Let $F=\mathbb{R}$ or $\mathbb{C}, A \in \mathbb{M}_{n} F$. The euclidean norm of A is defined by

$$
\|A\|:=\max _{0 \neq v \in F^{n \times 1}} \frac{\|A v\|}{\|v\|}
$$

If $A \in \mathbb{M}_{n} F$ is hermitian, then the Rayleigh Quotient of A

$$
R(v)=R_{A}(v): F^{n \times 1} \backslash\{0\} \rightarrow \mathbb{R}
$$

is defined by

$$
R(v):=\frac{\langle A v, v\rangle}{\|v\|^{2}}
$$

Rayleigh quotients are used to approximate eigenvalues of hermitian $A \in \mathbb{M}_{n} F$.

Theorem 29.2

Let $F=\mathbb{R}$ or $\mathbb{C}, A \in \mathbb{M}_{n} F$ hermitian. Then,
i) $\max _{v \neq 0} R(v)$ is the largest eigenvalue of A.
ii) $\min _{v \neq 0} R(v)$ is the smallest eigenvalue of A.

Proof. By the Spectral Theorem, \exists an orthonormal basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of eigenvectors for A with $A v_{i}=\lambda v_{i}, i=1, \ldots, n$. We may assume

$$
\lambda_{1} \geq \ldots \geq \lambda_{n} \in \mathbb{R}
$$

i) Let $v \in F^{n \times 1}$ and $v=\sum_{i=1}^{n} \alpha_{i} v_{i}, \alpha_{i} \in F, i=1, \ldots, n$. Then

$$
\begin{aligned}
R(v) & =\frac{\langle A v, v\rangle}{\|v\|^{2}}=\left\langle\sum_{i=1}^{n} \alpha_{i} \lambda_{i} v_{i}, \sum_{j=1}^{n} \alpha_{j} v_{j}\right\rangle /\|v\|^{2} \\
& =\frac{\sum_{i, j=1}^{n} \lambda_{i} \alpha_{i} \bar{\alpha}_{j} \delta_{i j}\left\langle v_{i}, v_{j}\right\rangle}{\|v\|^{2}}=\frac{\sum_{i=1}^{n} \lambda_{i}-\left|\alpha_{i}\right|^{2}}{\|v\|^{2}}
\end{aligned}
$$

By the Pythagorean Theorem

$$
\sum_{i=1}^{n}\left|\alpha_{i}\right|^{2}=\|v\|^{2}
$$

So

$$
R(v) \leq \frac{\sum_{i=1}^{n} \lambda_{1}\left|\alpha_{i}\right|^{2}}{\|v\|^{2}}=\frac{\lambda_{1}\|v\|^{2}}{\|v\|^{2}}=\lambda_{1}
$$

ii) Prove similarly.

Corollary 29.3

Let $F=\mathbb{R}$ or $\mathbb{C}, A \in \mathbb{M}_{n} F$. Then $\|A\|<\infty$. Moreover, if μ is the largest singular value of A, then

$$
\|A\|=\mu
$$

Proof. Consider:

$$
0 \leq \frac{\|A v\|^{2}}{\|v\|^{2}}=\frac{\langle A v, A v\rangle}{\|v\|^{2}}=\frac{\left\langle A^{*} A v, v\right\rangle}{\|v\|^{2}}
$$

for all $v \neq 0$. Since $A^{*} A$ is non-negative, the result follows.
We know that the singular value of $A \in F^{m \times n}$ are the same as for $A^{*} \in F^{n \times m}$ if $F=\mathbb{R}$ or \mathbb{C}. Therefore,

Corollary 29.4

Let $A \in G L_{n} F, F=\mathbb{R}$ or \mathbb{C}, μ the smallest singular value of A. Then

$$
\left\|A^{-1}\right\|=\frac{1}{\sqrt{\mu}}
$$

Proof. If $B \in G L_{n} F$ has an eigenvalue $\lambda \neq 0,0 \neq v \in E_{B}(\lambda)$, then

$$
B v=\lambda v, \quad \text { so } \frac{1}{\lambda} v=B^{-1} v
$$

Hence if

$$
\mu_{1} \geq \ldots \geq \mu_{n}>0
$$

are the singular values of A,

$$
\mu_{n} \geq \ldots \geq \mu_{1}>0
$$

are the singular values of A^{-1} as $\left(A^{-1}\right)^{*} A^{-1}=\left(A A^{*}\right)^{-1}$.
$\S 30 \mid$ Additional Materials: Jun 04, 2021

§30.1 Conditional Number

Let $F=\mathbb{R}$ or $\mathbb{C}, A \in G L_{n} F, b \neq 0$ in $F^{n \times 1}$. Suppose $A x=b$.
Problem 30.1. What happens if we modify x a bit, i.e., by $\delta x \in F^{n \times 1}$. Then we get a new equation

$$
A(x+\delta x)=b+\delta b, \quad \delta b \in F^{n \times 1}
$$

and we would like to understand the variance in b.
Since A is linear,

$$
A(x+\delta x)=b+A(\delta x)
$$

i.e.

$$
A(\delta x)=\delta b \text { or } \delta x=A^{-1}(\delta b)
$$

and we know, therefore, that

$$
\begin{aligned}
& \|b\|=\|A x\| \leq\|A\| \cdot\|x\| \\
& \|\delta\|=\left\|A^{-1}(\delta b)\right\|=\left\|A^{-1}\right\| \cdot\|\delta b\|
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
\frac{1}{\|x\|} \leq \frac{\|A\|}{\|b\|} \text { as }\|x\| \neq 0 \quad(b \neq 0) \\
\Longrightarrow \\
\frac{\|\delta x\|}{\|x\|} \leq \frac{\left\|A^{-1}\right\|\|\delta b\|}{1} \cdot \frac{\|A\|}{\|b\|}=\|A\|\left\|A^{-1}\right\| \frac{\|\delta b\|}{\|b\|}
\end{gathered}
$$

Similarly,

$$
\frac{1}{\|A\|\left\|A^{-1}\right\|} \frac{\|\delta b\|}{\|b\|} \leq \frac{\|\delta x\|}{\|x\|}
$$

We call the number $\|A\|\left\|A^{-1}\right\|$ the Conditional Number of A and denote it $\operatorname{cond}(A)$.

Theorem 30.1

Let $F=\mathbb{R}$ or $\mathbb{C}, A \in G L_{n} F, b \neq 0$ in $F^{n \times 1}$. Then

1. $\frac{1}{\operatorname{cond}(A)} \frac{\|\delta b\|}{\|b\|} \leq \frac{\|\delta x\|}{\|x\|} \leq \operatorname{cond}(A) \frac{\|\delta b\|}{\|b\|}$
2. Let $\mu_{1} \geq \ldots \geq \mu_{r}>0$ be the singular values of A. Then

$$
\operatorname{cond}(A)=\frac{\mu_{1}}{\mu_{n}}
$$

Proof. 1. from the computation above.
2. follows over computation on the Rayleigh function.

Remark 30.2. From the theorem,

1. If $\operatorname{cond}(A)$ is close to one, then a small relative error in b forces a small relative error in x.
2. If $\operatorname{cond}(A)$ is large, even a small relative error in x may cause a relatively large error in b.

Remark 30.3. If there is an error $S A$ of A, things would get more complicated. For example, $A+\delta A$ may no longer be invertible.

There exist conditions that can control this. For example, if $A+S A \in G L_{n} F, F=\mathbb{R}$ or \mathbb{C}, it is true that

$$
\frac{\|\delta x\|}{\|x+\delta x\|} \leq \operatorname{cond}(A) \frac{\|\delta A\|}{\|A\|}
$$

One almost never computes cond (A), as error arises trying to compute it as we need to compute the singular values. However, in some cases, remarkable estimates can be found.

§30.2 Mini-Max

Let $F=\mathbb{R}$ or $\mathbb{C}, A \in \mathbb{M}_{n} F$. We want a method to compute its eigenvalues if A is hermitian. Since A is hermitian, by the Spectral Theorem,

$$
U^{*} A U=\left(\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right), \quad U \in U_{n} F
$$

where $A=[A]_{\mathscr{S}_{n, 1}}$.
$\mathscr{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ is an ordered orthonormal basis of eigenvectors for $V=F^{n \times 1}$ satisfying

$$
A v_{i}=\lambda_{i} v_{i}
$$

So

$$
v_{i}=\text { the } i^{\text {th }} \text { column of } U^{*}
$$

We let the order be s.t.

$$
\lambda_{1} \geq \ldots \geq \lambda_{n}
$$

As $\left(F v_{1}\right)^{\perp}$ is A-invariant, $\left.A\right|_{\left(F v_{1}\right)^{\perp}}$ has maximum eigenvalue λ_{2} obtained from v_{2}, i.e.,

$$
\max _{x \in\left(F v_{1}\right)^{\perp}} R_{A}(x)=\lambda_{n-1}
$$

is obtained from $x=v_{2}$. The constraint is

$$
\left\langle x, v_{1}\right\rangle=0
$$

We can obtain λ_{n-1} without knowing v_{1} or λ_{1}. Let $x \in V$ be constrained by $\langle x, z\rangle=0$, some $z \neq 0$. Let $y=U^{*} x$. Then $\langle x, z\rangle=0$ is equivalent to $\langle y, w\rangle=0$ where $w=U z$. Computation shows the Rayleigh quotient R_{U} for U satisfies

$$
\max _{y} R_{U}(y) \leq \lambda_{n},
$$

So

$$
\min _{w \neq 0} \max _{\substack{y \\\langle y, w\rangle=0}} R_{U}(y) \geq \lambda_{n-1}
$$

gives an upper and lower bound for $R_{U}(y)$. Let

$$
y=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right), \quad \tilde{y}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
0 \\
\vdots \\
0
\end{array}\right)
$$

with $\langle\tilde{y}, w\rangle=0$. In addition, computation shows,

$$
R_{U}(\tilde{y})=\lambda_{2}
$$

Let $w=e_{1}$. Then

$$
\max _{\substack{y \\\left\langle y, e_{1}\right\rangle}} R_{U}(y)=\lambda_{2}
$$

So

$$
\min _{w \neq 0} \max _{\substack{y \\\langle y, w\rangle=0}} R_{U}(y)=\lambda_{2}
$$

and

$$
\min _{w_{1}, w_{2} \neq 0} \max _{\substack{y \\\left\langle y, w_{1}\right\rangle=0 \\\left\langle y, w_{2}\right\rangle=0}} R_{U}(y)=\lambda_{3}
$$

Proceed inductively.

Theorem 30.4 (Minimax Principle)

Let $F=\mathbb{R}$ or \mathbb{C}, $A \in \mathbb{M}_{n} F$ hermitian with eigenvalues

$$
\lambda_{1} \geq \ldots \geq \lambda_{n}
$$

Then

$$
\min _{z_{1}, \ldots, z_{k} \neq 0} \max _{\left\langle x, z_{1}\right\rangle=0} R_{A}(x)=\lambda_{k}
$$

Remark 30.5. The minimax principle is also formulated by

$$
\min _{V_{j}} \max _{x \in V_{j}} R_{A}(x)=\lambda_{n-j}, \quad j=1, \ldots, n
$$

where V_{j} denotes an arbitrary subspace of $\operatorname{dim} j$.

§30.3 Uniqueness of Smith Normal Form

Consult Professor Elman's notes.

