
156 – Machine Learning
University of California, Los Angeles

Duc Vu

Summer 2021

This is math 156 – Machine Learning, an introductory course on mathematical models for
pattern recognition and machine learning. It’s instructed by Professor Zosso, and we meet
weekly on MWTh from 9:00 am to 10:50 am. The textbook used for the class is Pattern
Recognition and Machine Learning by Bishop. You can find the other course notes through
my blog site. Any error appeared in this note is my responsibility and please email me if you
happen to notice it.

Contents

1 Lec 1: Jun 21, 2021 3
1.1 Introduction & Probability Review . 3
1.2 Gaussian Distribution . 5

2 Lec 2: Jun 23, 2021 7
2.1 Gaussian Distribution (Cont’d) . 7
2.2 Non-parametric Probability Density Function (Estimation) 8

3 Lec 3: Jun 24, 2021 10
3.1 Principal Component Analysis . 10
3.2 High-Dimensional PCA . 12
3.3 Probabilistic PCA . 12
3.4 Maximum Likelihood PCA . 14

4 Lec 4: Jun 30, 2021 15
4.1 Kernel PCA . 15
4.2 Linear Basis Function Models . 17

5 Lec 5: Jul 1, 2021 20
5.1 Overfitting . 20
5.2 Regularized Least Squares . 20
5.3 Bayesian Linear Regression . 21

6 Lec 6: Jul 7, 2021 23
6.1 Linear Models for Classification . 23

7 Lec 7: Jul 12, 2021 29
7.1 Ensemble Methods . 29
7.2 K-Means Clustering . 31

8 Lec 8: Jul 14, 2021 32
8.1 Mixture of Gaussians . 32
8.2 General Expectation-Maximization Algorithm . 33

https://tducvu.github.io/notes
mailto:ducvu2718@ucla.edu

Duc Vu (Summer 2021) Contents

9 Lec 9: Jul 15, 2021 36
9.1 Kernel Methods – Linear Regression . 36
9.2 Kernel Construction . 37
9.3 Gaussian Processes – Linear Regression . 38

10 Lec 10: Jul 19, 2021 41
10.1 Sparse Kernel Machines – SVM for Classification . 41

11 Lec 11: Jul 21, 2021 44
11.1 The Perceptron Algorithm . 44
11.2 Neural Networks . 45

12 Lec 12: Jul 22, 2021 47
12.1 Graphical Models . 47
12.2 Markov Random Fields . 49

13 Lec 13: Jul 26, 2021 52
13.1 Hidden Markov Models/Chains . 52

14 Lec 14: Jul 28, 2021 57
14.1 Viterbi’s Algorithm . 57

2

Duc Vu (Summer 2021) 1 Lec 1: Jun 21, 2021

§1 Lec 1: Jun 21, 2021

§1.1 Introduction & Probabil ity Review

According to Wikipedia, Machine Learning is a scientific discipline that deals with the construction
and study of algorithms that can learn from data.

Input(data) → Model → Output(Predictions/Decisions)

From §1.2 of the book, let’s review a bit on probability.

• Discrete random variable X, value {xi}

prob(X = xi) = p(xi) =
ni
N

and ∑
i

prob(X = xi) =
∑
i

p(xi)

For multiple random variables, X,Y ∈ {xi} × {yi}

1. prob(X = xi, Y = yi) =
nij
N = p(xi, yi) – joint probability

2. prob(X = xi) =
∑
j prob(X = xi, Y = yj) – marginal probability

3. prob(X = xi|Y = yj) = conditional

p (xi|yj)︸ ︷︷ ︸
conditional

· p(yj)︸ ︷︷ ︸
marginal

= p(xi, yj)︸ ︷︷ ︸
joint

=⇒ product rule

Bayes’ Rule:

p(y|x) =
p(x|y) · p(y)

p(x)

• Continuous random variable X ∈ R

prob(X = xi) = 0 in general

So we consider probability densities instead where

p(x) ≥ 0

s.t. p(x) can be greater than 1. In addition,∫ ∞
−∞

p(x) = 1

Within a neighborhood a ≤ b, we have

prob(a ≤ x ≤ b) =

∫ b

a

p(x) dx

Sum rule: ∫
p(x, y)︸ ︷︷ ︸
joint pdf

dy = p(x)︸︷︷︸
marginal pdf

Product rule:
p(x, y) = p(y|x)p(x) = p(x|y)p(y)

Bayes’ Rule:

p(y|x) =
p(x|y)p(y)

p(x)

3

Duc Vu (Summer 2021) 1 Lec 1: Jun 21, 2021

Expectations & Covariances
Expectations:

Definition 1.1 — Expectation is defined as

E[f] :=
∑
i

p(xi)f(xi)

or :=

∫
R
p(x)f(x) dx

“Average value of a function f : R→ R under a probability distribution p(x)”

In practice, we need to estimate p from data.

Sampling Approximation: E[f] ≈ 1

N

N∑
n=1

f(xn)

Definition 1.2 — Marginal expectation is defined as

Ex[f](y) :=
∑
x

p(x)f(x, y)

Conditional expectation:

Ex [f |y] :=
∑
x

p(x|y)f(x)

Covariances:

Definition 1.3 — Variance is defined as

var[f] := E
[
(f(x)− E[f])

2
]

= E[f2]− E[f]2

Covariance (random variables) is defined as

cov[x, y] := E [(x− E[x]) (y − E[y])]

= E[xy]− E[x]E[y]

For vectors ~x, ~y ∈ RD, the covariance matrix is

E
[
(~x− E[~x]) (~y − E[~y])

>
]

Question 1.1. How does this fit in within the context of machine learning?

In machine learning, there are usually two approaches to find the “optimal prediction”

• Frequentist approach: maximize likelihood

max
w

p(D|w)

4

Duc Vu (Summer 2021) 1 Lec 1: Jun 21, 2021

• Bayesian approach: maximize posterior

posterior through Bayes’: p(w|D) =
p(D|w) · p(w)

p(D)

s.t.
max
w

p(w|D) ∼ p(D|w) · p(w)

where D represents data, and w is parameters.

Gaussian noise model:

p (tn|xn, w, β) = N

(
tn|y(xn, w),

1

β

)
Given training data {(x, t)}, we can determine optimal parameters w, β by

1. Frequentist: maximize likelihood

p(t|x,w, β)
i.i.d
=

N∏
n=1

N
(
tn|y(xn|w), β−1

)
2. include a prior: p(w|α) = N(w|0, α−1)

=⇒ posterior: p (w|x, t, α, β) ∝ p (t|x,w, β) p(w|α)

Then, we can estimate

min
w

{
β

2

N∑
n=1

(y(xn, w)− tn)
2

+
α

2
w>w

}

3. Fully Bayesian: not just point estimates =⇒ predictive distribution

p (ti|xi, x, t) =

∫
p (ti|xi, w)︸ ︷︷ ︸

model

p (w|x, t)︸ ︷︷ ︸
posterior

dw

§1.2 Gaussian Distribution

Definition 1.4 (Gaussian Distribution) — The 1-D Gaussian distribution is defined as

N
(
x|µ, σ2

)
:=

1√
2πσ2

e−
(x−µ)2

2σ2

where µ is the mean and σ2 is the variance.
For D-dimensional,

N (~x|~µ,Σ) :=
1

(2π)
D
2

1

|σ| 12
e−

1
2 (x−µ)>σ−1(x−µ)

where Σ is the covariance matrix and |Σ| is the determinant of Σ.

Consider x ∈ RD, x ∼ N . Assume

x =

[
xa
xb

]
where xa is unknown and xb is given component.

x ∼ N
([
µa
µb

]
,Σ =

[
Σaa Σab
Σba Σbb

])

5

Duc Vu (Summer 2021) 1 Lec 1: Jun 21, 2021

Note that
Σ = Σ>

Also, we define the precision matrix Λ as

Λ := Σ−1

=

[
Λaa Λab
Λba Λbb

]

Unfortunately, Λaa 6= Σ−1
aa and similar result applies for b.

Question 1.2. What can we say about p(xa|xb)?

Use product rule:
p (xa|xb) · p(xb) = p(xa, xb)

where p(xb) is a constant w.r.t. xa

=⇒ p(xa|xb) ∝ p(xa, xb)

Let’s look at quadratic form in exponential only.

− 1

2
(x− µ)>Σ−1(x− µ) = −1

2
(xa − µa)>Λaa(xa − µa)− 1

2
(xa − µa)>Λab(xb − µb)

− 1

2
(xb − µb)>Λba(xa − µa)− 1

2
(xb − µb)>Λbb(xb − µb)

Also,

other side = −1

2
x>a Σ−1

a|bxa + x>a Σ−1
a|bµa|b + const

• Quadratic terms need to match

−1

2
x>a Σ−1

a|bxa = −1

2
x>a Λaaxa

=⇒ Σ−1
a|b = Λaa

• Linear terms in xa

x>a Σ−1
a|bµa|b = x>a Λaaµa|b

Λaaµa|b = Λaaµa − Λab(xb − µb)
=⇒ µa|b = µa − Λ−1

aa Λab(xb − µb)

Note that

Λaa =
(
Σaa − ΣabΣ

−1
bb Σba

)−1

Λab = −ΛaaΣabΣ
−1
bb

Thus, {
µa|b = µa + ΣabΣ

−1
bb (xb − µb)

Σa|b = Σaa − ΣabΣ
−1
bb Σba

6

Duc Vu (Summer 2021) 2 Lec 2: Jun 23, 2021

§2 Lec 2: Jun 23, 2021

§2.1 Gaussian Distribution (Cont’d)

Let’s start with a set of observations:

X = {~x1, . . . , ~xN} N data points where each ~xn ∈ RD

and each ~xn ∼ N(µ,Σ). As usual, there are two approach to this.

• Maximum likelihood: given the data, what µ,Σ are most probable/likely?

max
µ,Σ

p (X|µ,Σ)

Model assumption: ~xn are i.i.d (independently, identically distributed). From i.i.d, we have

p (X|µ,Σ) =
N∏
n=1

p (~xn|µ,Σ)

=

N∏
n=1

N (~xn|µ,Σ)

This is tricky to do, so let’s minimize the negative log likelihood

min
µ,Σ
− ln p (X|µ,Σ) = − ln

N∏
n=1

1

(2π)
D
2

1

|Σ| 12
e−

1
2 (xn−µ)>Σ−1(xn−µ)

=

���
����

−N ln
1

(2π)
D
2

−N ln
1

|Σ| 12
+

1

2

N∑
n=1

(xn − µ)>Σ−1(xn − µ)

=
N

2
ln |Σ|+ 1

2

N∑
n=1

(xn − µ)>Σ−1(xn − µ) + C

As the domain is unbounded (unconstrained optimization problem) and objective function is
convex, so to find optimal µ, we set d

dµ = 0. Then

1

2

N∑
n=1

Σ−1(xn − µ) = 0

N∑
n=1

Σ−1xn = NΣ−1µ

=⇒ µ =
1

N

N∑
n=1

xn

• Maximum a posteriori (MAP)

max
µ

p (µ,Σ|X)
Bayes’
=⇒ max

µ
p (X|µ,Σ) · p (µ)

7

Duc Vu (Summer 2021) 2 Lec 2: Jun 23, 2021

e.g., p (µ|µ0,Σ0) = N (µ|µ0,Σ0). We have

− ln p (X|µ,Σ) · p (µ|µ0,Σ0)

min
µ

1

2

N∑
n=1

(xn − µ)>Σ−1(xn − µ) +
1

2
(µ− µ0)>Σ−1

0 (µ− µ0)

d

dµ
= 0 :

N∑
n=1

Σ−1(xn − µ) + Σ−1
0 (µ− µ0) = 0

=⇒ µMAP =
(
NΣ−1 + Σ−1

0

)−1 (
NΣ−1x+ Σ−1

0 µ0

)
§2.2 Non-parametric Probabil ity Density Function
(Estimation)

Let’s consider the following

• Histograms

• partition domain of x into distinct bins of width 4i
• count number of observations ni of x falling into bin i

• divide by N,4i to get a pdf.

pi =
ni
N∆i

is density over bin i

Ri i + 1 i + 2

∆i ∆i+1 ∆i+2

pi

p(x) piecewise
cst. pdf

∫
p(x)dx =

∑
i pi∆i = 1

We often partition the domain uniformly, i.e., ∆i = ∆ refer to fig
2.24 in text-
book for
other cases

Consider a region R ⊆ RD. The probability of a randomly chosen point will fall into R (according
to pdf of p(x) is

p =

∫
R

p(x) dx

Collect N samples; a fraction K of which will fall into R. So K ∼ Binomial(N, p)

E
[
K

N

]
= p

var

[
K

N

]
=
p(1− p)
N

var

[
K

N

]
−→
N→∞

0

8

Duc Vu (Summer 2021) 2 Lec 2: Jun 23, 2021

For large N , K
N ≈ P =⇒ K ≈ N · P . Also, we want R big so that there are plenty of points in

there. On the other hand, we want R small s.t. p(x) ∼ constant over R where p = p(x)V in which
V is the volume of R. Thus,

p(x) =
K

NV

For histogram: we fix V and measure K
N . For the kernel, it’s essentially the same but bin locations

are not predefined.
Kernel Approach: If we want to know p(x) at arbitrary x, we put a bin of predefined size around

x then count K
N for that bin.

Pick a smooth kernel, e.g., the Gaussian

ph(x) :=
1

N

N∑
n=1

1

(2πh2)
D
2

e−
‖x−xn‖22

2h2

where h is standard deviation of Gaussian. Recall from 131BH that this is a convolution.

(f ∗ g)(x) :=

∫
f(y)g(x− y) dy

So k ∗
∑
δ(−xn). More general, {

k(u) ≥ 0∫
k(u) du = 1

is sufficient criteria to be a kernel for kernel density estimation (KDE).

9

Duc Vu (Summer 2021) 3 Lec 3: Jun 24, 2021

§3 Lec 3: Jun 24, 2021

§3.1 Principal Component Analysis

Maximum Variance Formulation: consider {xn}, n = 1, . . . , N , xn ∈ RD. The goal is to
project x onto a flat space with dimension M � D while maximizing the variance of the projected
data.

flat space

goal: max var(o)

Let’s start with M = 1 (a line) defined by a single vector ~u ∈ RD with unit norm, i.e.,

u>1 u1 = 〈u1, u1〉 = ‖u1‖22 = 1

Define: x = 1
N

∑N
n=1 xn. Note that the variance before projection is

var =
1

N

N∑
n=1

(xn − x)
2

and after projection is

var =
1

N

N∑
n=1

(
u>1 xn − u>1 x

)2
= u>1 Su1

with

S =
1

N

N∑
n=1

(xn − x) (xn − x)
>

= cov(x)

Our optimization goal is
max
u1

u>1 Su1 s.t. u>1 u1 = 1

This is a constrained optimization problem – let’s introduce Lagrange multipliers for constraint:

max
u1,λ1

u>1 Su1 + λ1(1− u>1 u1)︸ ︷︷ ︸
=:L[u1,λ1]


We have

∂L

∂u1
: 2Su1 − 2λ1u1 = 0

Su1 = λ1u1

10

Duc Vu (Summer 2021) 3 Lec 3: Jun 24, 2021

So, the eigen-problem: (λ1, u1) is eigenpair of S.

var = u>1 Su1 = u>1 (λ1u1) = λ1u
>
1 u1 = λ1

=⇒ we need to pick the dominant eigenpair of S. So if we want to project onto a flat with M > 1,
we can simply pick u1, . . . , un as the M leading eigenvectors of S where all ui are orthogonal and

var =

N∑
i=1

λi

Minimum Error Formulation:

flat space

goal: max var(o)

Goal: introduce as little distortion as possible.
Consider: {ui} , i = 1, . . . , D orthonormal basis of RD

=⇒ u>i uj = δij =

{
1, i = j

0, otherwise

Then each data point xn has unique expansion in that basis

xn =

D∑
i=1

αniui αni ∈ R

where

x>n uj = u>j xn = u>j

D∑
i=1

αniui

=

D∑
i=1

αniu
>
j ui = αnj

=⇒ xn =

D∑
i=1

(
x>n ui

)
ui

As we project to a flat, we need only the first M terms

x̃n =

M∑
i=1

zniui +

D∑
i=M+1

biui

Now, we choose zni, ui, bi so as to minimize the distortion.

J =
1

N

N∑
n=1

‖xn − x̃n‖22

The results we should’ve obtained are

11

Duc Vu (Summer 2021) 3 Lec 3: Jun 24, 2021

1. zni = x>n ui, i = 1, . . . ,M

2. bi = x>ui, i = M + 1, . . . , D

We can substitute these into the expression of x̃n as follow

x̃n =

M∑
i=1

(
x>n ui

)
ui +

D∑
i=M+1

(
x>ui

)
ui

xn − x̃n =

D∑
i=M+1

(
x>n ui − x>ui

)
ui

In addition, the error term can be written as

J =
1

N

N∑
n=1

D∑
i=M+1

(
x>n ui − x>ui

)2
=

D∑
i=M+1

u>i Sui

So the problem now becomes

min
ui,i=M+1,...,D

D∑
i=M+1

u>i Sui s.t. u>i ui = 1

Analogous to the case of maximum variance, we “throw away” the weakest eigenpairs of S.

§3.2 High-Dimensional PCA

Assume we have N data points with D dimensions and x = 0. Then, S = 1
N x
>x

X =




where each xn is a row of X. As x = 0, rows sum up to 0.
Let’s examine the eigenvalues of x>x v.s. eigenvalues of xx>.

1

N
x>xui = λiui

1

N
xx>(xui) = λi(xui︸︷︷︸

vi

)

1

N
xx>vi = λivi

§3.3 Probabil ist ic PCA

Consider xn ∈ RD where
xn = Wz + µ+ ε

where z ∈ RM is latent variable and µ is mean and ε is noise & ε ∼ N(0, σ2I); z is the coordinates
within the lower-dim flat, and W is the basis of the flat. The probabilistic formulation is

p(z) = N (z|0, I)

=⇒ latent variable ∼ zero-mean, unit variance Gaussian. The conditional distribution x|z is again
Gaussian

p(x|z) = N

x| Wz + µ︸ ︷︷ ︸
nozzle location

, σ2I︸︷︷︸
spray size


12

Duc Vu (Summer 2021) 3 Lec 3: Jun 24, 2021

Resulting point cloud is governed by predictive density p(x).

p(x) =

∫
p(x|z) · p(z)︸ ︷︷ ︸

p(x,z)

dz

Claim 3.1. p(x) is Gaussian, too.

p(x) = N (x|µ,C)

C = WW> + σ2I ∈ RD×D

Proof. Sufficient statistics

E = E [Wz + µ+ ε]

= E[Wz] + µ+ E[ε]

= WE[z] + µ = µ

For the covariance,

cov [x] = E
[
(x− µ)(x− µ)>

]
= E

[
(Wz + µ+ ε− µ) (Wz + µ+ ε− µ)

>
]

= E
[
(Wz + ε)(Wz + ε)>

]
= E

[(
Wz(Wz)>

)
+Wzε> + ε(Wz)> + εε>

]
= E

[
Wzz>W>

]
+ E

[
Wzε>

]
+ E

[
εz>W>

]
+ E

[
εε>

]
= WE

[
zz>

]
W> +�����WE

[
zε>

]
+������E

[
εz>

]
W> + E

[
εε>

]
= WW> + σ2I

Remark 3.1. E
[
zε>

]
= 0 = E

[
εz>

]
because z is independent from ε.

Note: Redundancy w.r.t. rotations in latent space (lack of uniqueness). Let W̃ = WQ where Q
is orthonormal.

C = W̃W̃> + σ2I

= W QQ>︸ ︷︷ ︸
I

W> + σ2I

= WW> + σ2I

To evaluate p(x) = N (x|µ,C). We need C−1.

C−1 = σ−2I − σ2WM−1W>

for M = W>W + σ2I ∈ RM×M .

13

Duc Vu (Summer 2021) 3 Lec 3: Jun 24, 2021

§3.4 Maximum Likel ihood PCA

We need to learn W,µ, σ2 from given data. By i.i.d,

p
(
X|W,µ, σ2

)
=

N∏
n=1

p
(
xn|W,µ, σ2

)
=⇒ ln p

(
X|W,µ, σ2

)
=

N∑
n=1

lnN
(
xn|µ,WW> + σ2I

)
= −ND

2
ln(2π)− N

2
ln |C| − 1

2

N∑
n=1

(xn − µ)>C−1(xn − µ)

where C = WW> + σ2I; d
dµ = 0 → µ = x. refer to

Bishop’s pa-
per

W,σ2 are more tricky but again
W =

[
u1 . . . un

]
where ui are leading eigenvectors of S.

14

Duc Vu (Summer 2021) 4 Lec 4: Jun 30, 2021

§4 Lec 4: Jun 30, 2021

§4.1 Kernel PCA

Recap: Consider standard PCA – {xn}Nn=1 where each xn ∈ RD. Assume w.l.o.g,
∑
xn = 0, then

S =
1

N

N∑
n=1

xnx
>
n

=⇒ Principal components are found as leading eigenvectors of S.

Sui = λiui where oftentimes u>i ui = 1

optimal subspace (flat)
remove mean

xn → u>i xn = zni

x̃n =
∑

i uizni + x

[u1 . . . uM] [zn1 . . . znM]>

x

Question 4.1. What happens if we have non-flat data?

?

One way we can introduce non-linearity:

{xn} → {φ(xn)}

where φ : RD → RE (E is possibly much bigger than D)

15

Duc Vu (Summer 2021) 4 Lec 4: Jun 30, 2021

φ

Let’s assume {φ(xn)} has 0 mean. Then, we can perform PCA on that data set.

C =
1

N

N∑
n=1

φ(xn)φ(xn)>

is the relevant covariance matrix. We then need eigenpairs Cvi = λivi, i = 1, . . . ,M . In fact,

k(xn, xm) := φ(xn)>φ(xm)

where k is the kernel – it would be interesting if we can compute k easily even for large/infinite
dimensional φ. more in later

lecture!
1

N

∑
φ(xn)φ(xn)> = λivi

For λi > 0, vi (RHS) is a linear combination of φ(xn). So

vi =

N∑
n=1

ainφ(xn)

and we don’t know a yet. Let’s substitute this into the eigen-equation:

1

N

N∑
n=1

φ(xn)φ(xn)>
N∑
m=1

aimφ(xm) = λi

N∑
n=1

ainφ(xn)

Multiply both sides with φ(xl)
>, we have

1

N

N∑
n=1

φ(xl)
>φ(xn)

N∑
m=1

aimφ(xn)>φ(xm) = λi

N∑
n=1

ainφ(xl)
>φ(xn)

Now, we can replace all φ>φ by the appropriate kernel k:

1

N

N∑
n=1

k(xl, xn)

N∑
m=1

aimk(xn, xm) = λi

N∑
n=1

aink(xl, xn)

Notice that ain, λi are the unknowns. In matrix notation,

K2ai = λiNKai =⇒ Kai = (λiN) ai

where 
Km,n = k(xm, xn)

ai =


ai1
...

aiN

 ∈ RN

So we just need to look for eigenpairs of K, i.e., instead of eigenpairs of C(RE×E), we now look for
eigenpairs of K (RN×N). But we don’t actually need vi (we will project onto principal components,
so all we do is compute inner products with vi)

16

Duc Vu (Summer 2021) 4 Lec 4: Jun 30, 2021

z – “Score” = coordinates within manifold

z(x) = φ(x)>vi =

N∑
n=1

ainφ(x)>φ(xn)

=

N∑
n=1

aink(x, xn)

Summary of Kernel PCA (kPCA):

• Start with φ : RD → RE

• Build kernel k(x, y) := φ(x)>φ(y)

• Build kernel matrix: Kmin := k(xm, xn) ∈ RN×N

• Eigenpairs (λiN, ai) of Kai = λiNai

• For new data point x, zi(x) =
∑N
n=1 aink(x, xn)

Example 4.1

A kernel that we usually see:

k(x, y) = e−
‖x−y‖2

σ2

§4.2 Linear Basis Function Models

Goal: Predict the value of one or more continuous (real value) target variables t given the D-
dimensional input vector x.

Example 4.2

We have

• x 7→ t is linear, x ∈ RD

• t = w0 + w1x1 + w2x2 + . . .+ wDxD

• t = w0 + w1φ1(x) + w2φ2(x) + . . . where φ(x) could be some non-linear basis function
(polys, exponentials,. . .). The important part here is the linearity w.r.t. parameters.

Linear regression:
y(x,w) = w0 + w1x1 + . . .+ wDxD

where x ∈ RD is data, and w is parameters. Extend to non-linear functions of input

y(x,w) = w0 +

M−1∑
j=1

wjφj(x)

where 
φj(x) = basis function

M = degree of freedom

w0 = offset/bias

For convenience, we often denote
φ0(x) := 1

17

Duc Vu (Summer 2021) 4 Lec 4: Jun 30, 2021

Then
y(x,w) = w>φ

where

φ =


φ0(x) = 1
φ1(x)

...
φn−1(x)

 , w =

 w0

...
wn−1


in which φ,w ∈ Rn

Example 4.3

Consider:

• φj = xj

• φj = e−
‖x−µj‖

2

2σ2 – Gaussian.

Question 4.2. How do we find the optimal weights, train/fit the model given the data point?

Approach 1 – Maximum Likelihood/Least Squares
Assumption: Want to find w that make the observed data most likely.

Model : t = y(x,w) + ε

where ε ∼ N(0, σ2) – Gaussian noise. Note that the book uses 1
β = σ2, σ2 = variance, and β =

precision.
p
(
t|x,w, σ2

)
:= N

(
t|y(x,w), σ2

)
in which x : location, w : parameter, and σ2 : noise. Next, let’s look at the conditional mean

E [t|x] =

∫
tp(t|x) dt

= y(x,w)

We have training data X = {x1 . . . xN} with associated target values t = {t1 . . . tN}.
Observed samples are i.i.d.

p
(
~t|X,w, σ2

)
=

N∏
n=1

N
(
tn|y(x,w), σ2

)
The usual approach:

ln
(
~t|X,w, σ2

)
=

N∑
n=1

lnN
(
tn|w>φ(xn), σ2

)
= −N

2
lnσ2 − N

2
ln(2π)− 1

2σ2

N∑
n=1

(
tn − w>φ(xn)

)2
Thus,

− ln p ∼=
1

2

N∑
n=1

(
tn − w>φ(xn)

)2
= sum of squared errors

i.e., maximum likelihood is equivalent to minimum squared error.

18

Duc Vu (Summer 2021) 4 Lec 4: Jun 30, 2021

To minimize error: d
dw

set
= 0

d

dw
− ln p

(
~t|X,w, σ2

)
=

1

σ2

N∑
n=1

(
tn − w>φ(xn)

)
φ(xn)>

As LHS = 0, we have

N∑
n=1

tnφ(xn)> = w>
N∑
n=1

φ(xn)φ(xn)>

Let’s define

Φ :=

φ0(x1) . . . φn−1(x1)
...

...
φ0(xN) . . . φn−1(xN)

 – design matrix

So the solution is
wML = (Φ>Φ)−1Φ>︸ ︷︷ ︸

Moore Penrose pseudo inverse

~t

From the pseudo-inverse idea, recall that for A~x = ~b where ~b /∈ range(A), we have

min
1

2
‖A~x−~b‖2 (least squares problem)

=⇒ ~x = (A>A)−1A>~b

Question 4.3. What is the MLE for σ2?

Same approach as above but we take the derivative with repspect to σ2 and set that equal to 0.

σ2 =
1

N

N∑
n=1

tn − w>MLφ(xn)︸ ︷︷ ︸
residual(error)


2

Remark 4.4. In the context of “big data” – N,D big (or M : # of basis functions big), Φ is not
going to fit into memory and/or difficult to handle or data visible in portions (streaming). So we need
sequential learning in which we use “gradual updates” to estimates of wML

w0 = initial guess

wn+1 = wn − η d

dw
E︸ ︷︷ ︸

gradient descent

(*)

where E is the loss function evaluated for current batch of data points and η is the stepsize. We hope
that (*) converge to optimal parameters. In details,

wn+1 = wn − η
(
tn − wnTφ(xn)

)
φ(xn)>

One of the crucial step here is to choose the step-size carefully.

19

Duc Vu (Summer 2021) 5 Lec 5: Jul 1, 2021

§5 Lec 5: Jul 1, 2021

§5.1 Overfitt ing

Consider:

Through a first glance, it might be intuitive to assume that the data is generated from the blue
curve . . . However, it’s not that clear, and the data may actually stem from the green line. In fact,
it’s very difficult to tell as the data itself does not communicate well with us here (noise level?).
This phenomenon, in one direction, is called overfitting.
Assume that {x} was generated from the blue curve, and we try to fit/learn the green line instead;
this is the definition of overfitting. In essence, we try to explain some of the “wiggle” (variance) we
see in the data by a more complicated/unnecessary model – a very dangerous process. Overfit is a
consequence of too powerful models (often too many options to learn from).
Thus, to avoid overfitting, we use 3 data sets:

1. training data set {xn}& {tn}

2. validation: {xn}& {tn} (10-20 % of data not used for training)

→ run “trained” model and see how well it performs.

3. “real data”: {xn} → {tn} inferred using trained model.

Overall, our ultimate goal is to test the model’s ability to “generalize” or perform on new/unseen
data. refer to over-

fitting for
more details
on the topic

§5.2 Regularized Least Squares

Goal: we want to control overfitting – include a regularization term in addition to the data term.
Connection to linear algebra:

A~x = ~b does not have a solution

A ill-conditioned (no solution, not unique solution, sensitive to 4~b)
=⇒ Tikhonov – regularization :

min 1
2‖A~x−~b‖

2
2 + ‖ Γ~x︸︷︷︸

regularizer

‖22

Data-term for linear regression

E0(w) =
1

2

N∑
n=1

(
tn − w>φ(xn)

)2
Simple regularizer: quadratic penalty on w

Ew(w) =
1

2
w>w =

1

2
‖w‖2

then

min
w
E0(w) + λEw(w) =

1

2

N∑
n=1

(
tn − w>φ(xn)

)2
+
λ

2
w>w

20

https://elitedatascience.com/overfitting-in-machine-learning
https://elitedatascience.com/overfitting-in-machine-learning

Duc Vu (Summer 2021) 5 Lec 5: Jul 1, 2021

Now, we can set d
dw = 0,

w =
(
λI + Φ>Φ

)−1
Φ>~t

This shrinks the component of w towards 0 if compared to

wML =
(
Φ>Φ

)−1
Φ>~t

More generally (more modern),

Ew(w) :=
1

2

M∑
j=1

|wj |q

• q = 1→ “LASSO” which has tendency to promote sparsity (some coeffs of w will be exactly
0) refer to wiki

for more de-
tails• q = 2→ same as above.

To summarize, to address the problem of overfitting, we have the following ways

• Model complexity: keep model simple (restricted set of basis functions)

• Regularization: encourage simple coefficients by adding penalty to complex choices.

§5.3 Bayesian Linear Regression

Let’s start by introducing a prior distribution on w (for now we consider noise σ2 = 1
position known).

Recall from the last lecture,

• p(t|xn, w, σ2) is Gaussian, i.e., = N
(
tn|w>φ(xn), σ2

)
• conjugate prior: p(w) = N (w|m0, S0) is Gaussian too.

The posterior will also be Gaussian.

p
(
w|~t, x, σ2

)
= N (w|mN , SN)

which is in basically through Bayes’ rule

p (w|data) =
p (data|w) p(w)

p(data)

From exercise 3.7 in the book,

mN = SN

(
S−1

0 m0 +
1

σ2
Φ>~t

)
and

S−1
N = S−1

0 +
1

σ2
Φ>Φ (precision)

So
posterior precision = prior precision + data precision

Remark 5.1. If S−1
0 = 0(=⇒ S0 = 1

α
I, α→ 0) non-informative prior

S−1
N =

1

σ2
Φ>Φ→ mN = σ2

(
Φ>Φ

)−1 1

σ2
Φ>~t =

(
Φ>Φ

)
Φ>~t

21

https://en.wikipedia.org/wiki/Lasso_(statistics)

Duc Vu (Summer 2021) 5 Lec 5: Jul 1, 2021

Notice that
argmax

w
p
(
w|~t,X, σ2

)
= argmax

w
N (w|mN , SN)

Gaussian: argmaxw n (w|mN , SN) = mN

wMAP = mN = SN

(
S−1

0 m0 +
1

σ2
Φ>~t

)
The second special case: N → 0

mN → m0 (prior becomes dominant)

Choose a special prior: m0 = 0;S0 = 1
αI (zero mean, isotropic Gaussian prior).

=⇒

{
mN = 1

σ2SNΦ>~t

S−1
N = αI + 1

σ2 Φ>Φ

Now, we can take − log of posterior

− ln p
(
w|~t,X, σ2

)
=

1

2σ2

N∑
n=1

(
tn − w>φ(xn)

)2
+
α

2
w>w︸ ︷︷ ︸

=E0(w)+Ew(w)

+ constant(w)

Predictive Distribution
w is/are not actually the object of interest. Rather, we want to predict t for new x. For a new
query location x and new target variable t,

p
(
t|x,~t,X, α, σ2

)
=

∫
p
(
t|x,w, σ2

)
· p
(
w|~t,X, α, σ2

)
dw

then ∫
N
(
t|w>φ(x), σ2

)
N (w|mN , SN) dw = N ∗N

and the convolution of two Gaussians is Gaussian. So we only need to find the right parameters

p
(
t|x,~t,X, α, σ2

)
= N

(
t|m>Nφ(x), σ2

N (x)
)

where σ2
N (x) = σ2 + φ(x)>SNφ(x) in which the first term is general noise, and second term is

uncertainty on w due to proximity/distance of training data.

22

Duc Vu (Summer 2021) 6 Lec 6: Jul 7, 2021

§6 Lec 6: Jul 7, 2021

§6.1 Linear Models for Classi f ication

Goal: RD 3 x 7→ Ck one of k discrete classes k = 1 . . . k. Note that classes are disjoint, i.e., x
belongs to exactly 1 class. Thus, classification is equivalent to partitioning of RD (decision regions
separated by decision boundaries/surfaces).

linear model ⇐⇒ decision surfaces are D − 1 dimensional hyperplanes

boundary (flat)

dogs

cats

Representation: 
t ∈ {0; 1} , k = 2

or {−1; +1} , “binary”

t ∈ {1, . . . , k} , k ≥ 2 – not use in practice

t ∈ {0, 1}k ; |t| = 1, 1 in k coding (vector)

There are 3 approaches to classification problems

1. discriminant function: x 7→ Ck

2. probability based

a) discriminative: p(Ck|x)

b) generative model: p(Ck) · p(x|Ck)

Let’s dive right into the first approach.

General form of linear model:
y(x) = f

(
w>x+ w0

)
where f is an activation function. same notation

later on for
deep learning

Decision surface: y(x) = constant which means

w>x+ w0 = constant

Take k = 2, f := sign, i.e., y(x) ∈ {−1; +1}.

23

Duc Vu (Summer 2021) 6 Lec 6: Jul 7, 2021

Claim 6.1. Let xa, xb on decision boundary (which means w>xa +w0 = 0, etc). Then w ⊥ xa−xb.

~w

xb

xa

− w0
‖w‖

Proof. WTS: w>(xa − xb) = 0.

w>(xa − xb) = w>xa − w>xb + w0 − w0

=
(
w>xa + w0

)
−
(
w>xb + w0

)
= 0− 0 = 0

So w is orthogonal to xa − xb.

Claim 6.2. Signed distance between the origin and decision surface is −w0

‖w‖ .

Proof. As x is on decision surface, we have w>x = −w0. Signed distance between origin and
decision surface

w>

‖w‖
x = − w0

‖w‖

w

w

w0 > 0w0 < 0

w>x > 0

w>x+ w0 = 0

w>x < 0

w>x+ w0 = 0

24

Duc Vu (Summer 2021) 6 Lec 6: Jul 7, 2021

Claim 6.3. Signed distance between x and decision surface is w>x+w0

‖w‖ .

Proof. We have

x = xp + r
w

‖w‖

w>x = w>xp + r
w>w

‖w‖

w>x+ w0 = (w>xp + w0) + r
w>w

‖w‖
w>x+ w0 = r‖w‖

r =
w>x+ w0

‖w‖

That’s all the geometry we need. Next, let’s take a quick look at multiclass extension. De-
fine yk(x) = w>k x + wk0 for each class. Then assign class by winner takes all. For a new x:
y1(x), y2(x), . . . , yk(x) then say x class j if yi ≥ yk(x) ∀k.
Decision boundary: (b|w class k & j)

w>k x+ wk0 = w>j x+ wj0

(wk − wj)>︸ ︷︷ ︸
orth

x+ (wk0 + wj0)︸ ︷︷ ︸
bias

= 0

=⇒ decision surfaces = D − 1 dimensional hyperplanes

cat = ducks

dog = ducks

cat = dogs

Claim 6.4. Decision regions are always convex.

Proof. Let xa, xb ∈ class k. Convexity means that for any λ ∈ (0, 1]

λxa + (1− λ)xb ∈ class k

25

Duc Vu (Summer 2021) 6 Lec 6: Jul 7, 2021

We then have

∀j 6= k : w>k xa + wk0 > w>j xa + wj0

w>k xb + wk0 > w>j xb + wj0

Consider: x = λxa + (1− λ)xb

w>k x+ wk0 = w>k (λxa + (1− λ)xb) + wk0

= λ
(
w>k xa + wk0

)
+ (1− λ)

(
w>k xb + wk0

)
w>j x+ wj0 = . . . = λ

(
w>j xa + wj0

)
+ (1− λ)

(
w>j xb + wj0

)
=⇒ x is also in class k.

Probabilistic Generative Models
Goal: get linear models as a result of probabilistic modeling.
Generative model:

1. class conditional probabilities: p(x|Ck)

2. class priors: p(Ck)

We want to use Bayes’ to compute the estimate p(Ck|x). We will consider the two-class case only.

p(C1|x) =
p(x|C1) · p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)

Let’s define

a := ln
p(x|C1)p(C1)

p(x|C2)p(C2)

Then,

p(C1|x) =
1

1 + e−a
=: σ(a)

which we call sigmoid(a). Notice that the logistic sigmoid σ : R→ [0, 1]

• symmetry: σ(−a) = 1− σ(a)

• inverse: a = ln
(

σ
1−σ

)
– logit function

We now define class-conditional probability (Gaussian). Then

p(x|Ck) =
1

(2π)
D
2

1

|Σ| 12
e−

1
2 (x−µk)>Σ−1(x−µk

where we assume class-specific µk; common Σ. So

p(C1|x) = σ(w>x+ w0),

{
w = Σ−1(µ1 − µ2)

w0 = − 1
2µ
>
1 Σ−1µ1 + 1

2µ
>
2 Σ−1µ2 + ln p(C1)

p(C2)

26

Duc Vu (Summer 2021) 6 Lec 6: Jul 7, 2021

µ1

µ2

same isotropic

Σ = σ2I

W = 1
σ2 (µ1 − µ2)

p(C1) = p(C2)→ boundary at midpoint

p(C1) > p(C2)→ boundary shifted to µ2

For a more general Σ (not necessarily isotropic)

µ1

µ2

w = Σ−1(µ1 − µ2)

We will use MLE to learn Σ, p(C1)/p(C2), and µ1, µ2

Data: X =
[
x1 . . . xN

]
~t =

 t1...
tN

 ; tn ∈ {0, 1}

p(C1) = π︸︷︷︸
6=3.14...

, p(C2) = 1− π

For xn ∈ C1 : tn = 1, and

p(xn, C1) = p(C1)p(xn|C1) = πN (xn|µ1,Σ)

27

Duc Vu (Summer 2021) 6 Lec 6: Jul 7, 2021

Similarly, for xn ∈ C2 : tn = 0, and

p(xn, C2) = p(C2)p(xn|C2) = (1− π)N(xn|µ2,Σ)

Because the data is assume i.i.d:

p
(
~t, x|π, µ1, µ2,Σ

)
=

N∏
n=1

πN (xn|µ1,Σ)︸ ︷︷ ︸
N1

tn (1− π)N (xn|µ2,Σ)︸ ︷︷ ︸
N2

1−tn

As usual, we want to maximize the log-likelihood.

ln p
(
~t, x|π, µ1, µ2,Σ

)
=

N∑
n=1

tn [lnπ + lnN1] + (1− tn) [ln(1− π) + lnN2]

and set the derivatives of each term to zero.

• π
N∑
n=1

tn lnπ + (1− tn) ln(1− π)

Set d
dπ = 0, then

π =
1

N

N∑
n=1

tn =
of data pts in class 1

N

• µk, let’s consider k = 1, i.e., µ1

N∑
n=1

tn

(
−1

2
(xn − µ1)>Σ−1(xN − µ1)

)
Set d

du1
= 0 as before and we get

µ1 =
1

#1

N∑
n=1

tnxn

Similarly,

µ2 =
1

#2

N∑
n=1

(1− tn)xn

Probabilistic Discriminative Models
Probabilities are good, but we have to deal with too many parameters, e.g., π, µ1, µ2,Σ. Knowing
that the shared covariance matrix Σ leads to linear models we can try to learn p(Ck|x) directly.

p(Ck|x) = σ
(
w>k x+ wk0

)
⇐= logistic regression

28

Duc Vu (Summer 2021) 7 Lec 7: Jul 12, 2021

§7 Lec 7: Jul 12, 2021

§7.1 Ensemble Methods

The basic idea of ensemble method is “pool” (average) predictions stemming from a diverse set of
models (regression/classification). This is another way to address the issue of overfitting, in which
we hope that multiple models will

1. overfit differently

2. capture the structure coherently

When trained on different parts of the data, noise realizations will hopefully cancel out (in statis-
tical sense) in aggregation because they are statistically independent. Meanwhile, the structural
components will be reinforced. There are two crucial steps to this problem.

1. Bootstrapping

Given a data set D of size N (N data points in the set). We can generate M new training
sets Dm each of size N ′ by sampling from D uniformly and with replacement.

Remark 7.1. If N ′ = N , then each Dm contains
(
1− 1

e

)
≈ 63% of unique elements of D and

the rest is duplicates.

By using the M “new” training data sets Dm, we train M models.

2. Aggregation

→ combine output of M models by

• averaging (regression)

• majority vote (classification)

This process is also known as “bagging” (bootstrap aggregating). Notice that the M models are all
equally dumb as they don’t learn from each other’s mistakes.

weak learner

weak learner

weak learner

weak learner

weak learner

strong learner

(high performing)

classification:
better than random

Adaptive Boosting (AdaBoost for classification)
Fundamentally, we still have M weak learners (slightly better than random), and we train them in
sequence where training focuses on data points that were previously misclassified. In this case, the
output is weighted average; this provably results in strong learners.

29

Duc Vu (Summer 2021) 7 Lec 7: Jul 12, 2021

Algorithm:
Input:

• location: x1, . . . , xN ∈ RD

• binary targets: t1, . . . , tN ∈ {−1; +1}

A family of weak learners: yw(x) where w is parameters (discrete/continuous) and

yw(x) ∈ {−1; +1}

For example, yw(x) = sign(w>x+ w0).
Initial weights:

w(1)
n =

1

N

which is not a parameter, but it’s weight attached to each data point. So they all have same weight
initially and add up to one. For m = 1, . . . ,M ,

• train/select classifier ymw (x) – minimizing:

Jm :=

N∑
n=1

w(m)
n 1 (ymw (xn) 6= tn)︸ ︷︷ ︸

error indicator

where w
(m)
n is the current weight of xn, ymw (xn) is the current prediction for xn, and tn is the

label. Also, when the arguments inside 1 are equal, the term becomes zero, or one otherwise.

• estimate learner performance:

εm :=

∑N
n=1 w

(m)
n 1 (ymw (xn) 6= tn)∑N
n=1 w

(m)
n

• weight learner:

αm := ln
1− εm
εm

• update the data weighting:

w(m+1)
n = w(m)

n eαm1(ymw (xn)6=tn)

• prediction:

ym(x) = sign

(
M∑
m=1

αmy
m
w (x)

)

Notice that

• the perfect learner has εm = 0 =⇒ αm →∞

• the perfect liar has εm = 1 =⇒ αm → −∞

• the random learner has εm = 1
2 =⇒ αm = 0

• εm > 1
2 =⇒ αm < 0

30

Duc Vu (Summer 2021) 7 Lec 7: Jul 12, 2021

§7.2 K-Means Clustering

Clustering is basically classification without training labels. It’s the partitioning of data points into
“meaningful” groups from “scratch” (no training data).

Goal: Given data {xn}Nn=1 , xn ∈ RD group samples into K clusters s.t.

• within a cluster: distances are small

• between clusters: distances are big

small clusters

clear separation

The trick here is to introduce µk ∈ RD, k = 1, . . . ,K to represent the cluster centers. Cluster
membership: rnk ∈ {0, 1}

rnk = 1 if xn belongs to class k (1-in-k coding)

rnk = 0 otherwise

We can now introduce the objective function as follow

min
rnk,µk

J :=
1

2

N∑
n=1

K∑
k=1

rnk‖xn − µk‖22

Our goal here is to minimize J to make sure that each xn is close to its assigned µk. NP-hard
problemAlgorithm to approximate the min:

1. Initialize with a random µk

2. Given µk, assign each xn to closest µk

rnk =

{
1, k = argmin ‖xn − µj‖2

0, otherwise

3. Given rnk, update the cluster centers

µk =

∑
n rnkxn∑
n rnk

Repeat this process until no further class reassignments happen. It can be shown that this converges
but not necessarily to the global optimum, and it might be trapped in a local min.

31

Duc Vu (Summer 2021) 8 Lec 8: Jul 14, 2021

§8 Lec 8: Jul 14, 2021

§8.1 Mixture of Gaussians

Let’s first introduce a latent variable:

z ∈ {0, 1}k ,

(∑
k

zk = 1

)
– 1-in-k code

This latent variable describes the “inner” state of a data point (or of an observed x). We can now
talk about the joint distribution. Let x be an observed data point and z be its associated latent
variable.

p(x, z) = p(x|z)︸ ︷︷ ︸
Gaussian

·p(z)

• Denote p(zk = 1) = πk,
∑k
k=1 πk = 1, πk ∈ [0, 1]

=⇒ p(z) =

K∏
k=1

πzkk – A compact notation

• Class-conditional is Gaussian:

p(x|zk = 1) := N (x|µk,Σk)

Using the same trick as above, we have

p(x|z) =

K∏
k=1

N (x|µk,Σk)
zk

and the marginal is

p(x) =
∑
z

p(x, z) =
∑
z

p(x|z)p(z)

=

K∑
k=1

N (x|µk,Σk)πk

From Bayes, we can find the likelihood of latent variable as follows

γ(zn) = p(zk = 1|x)
p(x|zk = 1)p(zk = 1)
k∑
j=1

p (x|zj = 1) p(zj = 1)︸ ︷︷ ︸
p(x)

=
πkN (x|µk,Σk)∑
j πjN (x|µj ,Σj)

Question 8.1. So how do we learn πk, µk,Σk?

→ Maximum Likelihood Estimation (MLE). Given a point cloud X = {x1, . . . , xN}, xn ∈ RD.
As the joint are i.i.d., we have

p(X) =

N∏
n=1

p(xn)

=

N∏
n=1

K∑
k=1

πkN (xn|µk,Σk)

32

Duc Vu (Summer 2021) 8 Lec 8: Jul 14, 2021

Note: When we take the natural logarithm, we obtain

ln p(X) =

N∑
n=1

ln

K∑
k=1

πkN (xn|µk,Σk)

Observe that setting taking the derivative and set it equal to 0 (the usual approach) fails here as
the problem becomes difficult and ”labor-intensive”, i.e.,

0 =

N∑
n=1

πkN (xn|µk,Σk)∑
j πjN (xn|µj ,Σj)

Σ−1
k (xn − µk)

But recall from earlier when we define γ(z),

0 =

N∑
n=1

γ(znk)Σ−1
k (xn − µk)

Keeping γ(znk) fixed, we can solve for µk.

µk =

N∑
n=1

γ(znk)xn/

N∑
n=1

γ(znk)︸ ︷︷ ︸
=Nk

– weighted average of data points. Also,

Σk =
1

Nk

N∑
n=1

γ(znk)(xn − µk)(xn − µk)>

Now, consider πk s.t.
∑
πk = 1. Since this is a constraint optimization problem, we include

Lagrange multiplier for this constraint in the optimization.

πk =
Nk
N

1. Maximization Step: Given γ(znk). We need to update

• µk

• Σk

• πk

using MLE

2. Expectation Step: Given µk,Σk, πk. We will update

• γ(znk) = p (zk = 1|xn) = πkN(xn|µk,Σk)∑
j πjN(xn|µj ,Σj)

This is an example of Expectation-Maximization Algorithm on a Gaussian mixture model.

§8.2 General Expectation-Maximization Algorithm

First, we have 
observed variables X

latent variables z

parameters θ

, the joint: p (X, z|θ)

Goal: maximize p(X|θ) w.r.t θ. Let’s get to the steps to solve this.

33

Duc Vu (Summer 2021) 8 Lec 8: Jul 14, 2021

1. Initialize θold (estimate)

2. E-step: evaluate p(z|X, θold)

3. M-step: θnew = argmaxθ Q
(
θ|θold

)
where

Q
(
θ|θold

)
:=
∑
z

p
(
z|X, θold

)
ln p (X, z|θ)

4. θold ← θnew repeat if necessary.

Now, we’re ready to delve into the derivation of the EM-algorithm. Let’s start with the log-likelihood
function.

L(θ) := ln p(X|θ)

E-M is iterative: given θold, we want to find θnew s.t. L(θnew) > L(θold) which we can obtain by

max
θnew

L (θnew)− L
(
θold

)
= ln p (X|θnew)− ln p

(
X|θold

)
The trick here is to include the latent variable z.

p(X|θ) =
∑
z

p(X, z|θ)

=
∑
z

p (X|z, θ) · p(z|θ)

L(θnew)− L(θold) = ln
∑
z

p (X|z, θnew) p (z|θnew)− ln p
(
X|θold

)
= ln

∑
z

p
(
z|X, θold

) p (X|z, θnew) p (z|θnew)

p (z|X, θold)
− ln p

(
X|θold

)
Using Jensen’s inequality, which is

ln
∑

λixi ≥
∑

λi lnxi

provided that λi ≥ 0 and
∑
λi = 0.

L(θnew)− L(θold) ≥
∑
z

p
(
z|X, θold

) [
ln
p (X|z, θnew) p (z|θnew)

p (z|X, θold)
− ln p

(
X|θold

)]
=
∑
z

p
(
z|X, θold

)
ln
p (X|z, θnew) p (z|θnew)

p (z|X, θold) p (X|θold)
=: ∆

(
θnew|θold

)
Thus,

L(θnew)− L(θold) ≥ ∆
(
θnew|θold

)
L(θnew) ≥ L(θold) + ∆

(
θnew|θold

)︸ ︷︷ ︸
=:l(θnew|θold)

L (θnew) is bounded below by l
(
θnew|θold

)
. The best guess to update θ is

θnew = argmax
θ

l
(
θ|θold

)
= argmax

θ

{
L(θold) +

∑
z

p
(
z|X, θold

)
ln

p (X|z, θ) p(z|θ)
p (z|X, θold) p (X|θold)

}

which is equivalent to

argmax
θ

∑
z

p
(
z|X, θold

)
ln p (X|z, θ) p(z|θ)

34

Duc Vu (Summer 2021) 8 Lec 8: Jul 14, 2021

or
argmax

θ︸ ︷︷ ︸
M-step

∑
z

p
(
z|X, θold

)
ln p (X, z|θ)︸ ︷︷ ︸

=:Q(θ|θold)

Convergence:

θnew maximizes ∆
(
θ|θold

)
∆
(
θold|θold

)
= 0

}
=⇒ ∆

(
θnew|θold

)
≥ 0

As a result,
L (θnew) ≥ L

(
θold

)
+ ∆

(
θnew|θold

)
Thus,

L (θnew) ≥ L
(
θold

)
(non-decreasing)

When θ reaches a fixed point on l
(
θ|θold

)
, we can only conclude that ∇L

(
θold

)
= 0 (not necessarily

reach global max, could be a local max or even just a local min or saddle point).

θo = θn

35

Duc Vu (Summer 2021) 9 Lec 9: Jul 15, 2021

§9 Lec 9: Jul 15, 2021

§9.1 Kernel Methods – Linear Regression

Idea: Apply a linear machine learning model onto data after non-linear preprocessing thereof.

xn
φ7→ φ(xn) RD → RE

We want to avoid isolated φ(xn), but we want to have φ(xn)>φ(xm) instead. We define the kernel
function as follows

φ(xn)>φ(xm) ≡ k(xn, xm) (kernel trick)

Recall: regularized least squares loss function

J(w) :=
1

2

N∑
n=1

(
w>φ(xn)− tn

)2
+
λ

2
w>w

As this is a non-constraint optimization problem, optimality requires:

∆wJ =

N∑
n=1

(
w>φ(xn)− tn

)
φ(xn)λw

set
= 0

Rearrange this a bit and we obtain

w = − 1

λ

N∑
n=1

(
w>φ(xn)− tn

)
φ(xn)

Notice that w is a linear combination of the non-linear transform data φ(xn).

w =

N∑
n=1

anφ(xn) = Φ>a

in which the design matrix Φ is defined as

Φ =

φ1(x1) . . . φE(x1)
...

...
φ1(xN) . . . φE(xN)


Also,

an := − 1

λ

(
w>φ(xn)− tn

)
Substitute w = Φ>a into J(w),

J(a) :=
1

2

N∑
n=1

(
a>Φφ(xn)− tn

)2
+
λ

2
a>ΦΦ>a

which is equivalent to

J(a) =
1

2
a>ΦΦ>ΦΦ>a− a>ΦΦ>t+

1

2
t>t+

λ

2
a>ΦΦ>a

We introduce K := ΦΦ> = Gram matrix, N ×N and symmetric.

Kmn = φ(xm)>φ(xn) = K(xm, xn) (K � 0)

36

Duc Vu (Summer 2021) 9 Lec 9: Jul 15, 2021

So, the loss (in terms of weights a) becomes

J(a) =
1

2
a>KKa− a>Kt+

1

2
t>t+

λ

2
a>Ka

The optimality requires

∇aJ = KKa−Kt+ λka
set
= 0

K−1KKa−K−1Kt+ λK−1Ka = 0 (as K � 0)

Ka− t+ λa = 0

(K + λI) a = t

a = (K + λI)
−1
t

If E →∞ then w has ∞-dim as well. We are not actually interested in w but in using w to make
predictions for new data points x̃ and

t̃ = w>φ(x̃) = φ(x̃)>w = φ(x̃)>Φ>︸ ︷︷ ︸
~K>

a = K> (K + λI)
−1
t

where K is the kernel with x̃ and each sample, Kn = K(x̃, xn).
The main difference between traditional linear regression and kernel-based linear regression:

• Traditional: use training data to learn optimal parameters (then discard data)

• Kernel (no parameters): the data are in charge which needs to say in memory as we need to
evaluate K(x̃, xn).

§9.2 Kernel Construction

In principle:
k(x, y) = φ(x)>φ(y)

In practice, we want to skip the φ-part. It’s “easy” if we find a φ that results in k, then we have
confirmation that k is indeed a kernel.

Example 9.1

k(x, y) :=
(
x>y

)2
, x, y ∈ R2

k(x, y) = (x1y1 + x2y2)
2

= x2
1y

2
1 + 2x1y1x2y2 + x2

2y
2
2

=

 x2
1√

2x1x2

x2
2

>  y2
1√

2y1y2

y2
2

 = φ(x)>φ(y)

with

φ(z) :=

 z2
1√

2z1z2

z2
2


Necessary and sufficient condition for k(x, y) to be a kernel function: If for any {xn}, n = 1 . . . N ,
the Gram matrix K, (Kmn = K(xm, xn)), is positive semidefinite. Then k(x, y) s a valid kernel
(however, this is not a very practical rule).
From page 296 of the textbook, given k1, k2 valid kernels, then the following new kernels will also
be valid (kernel lego)

• ck1(x, y), c > 0

37

Duc Vu (Summer 2021) 9 Lec 9: Jul 15, 2021

• f(x)k1(x, y)f(y) for any f

• q (k1(x, y)), q is a polynomial with non-negative coefficients

• ek1(x,y)

• k1(x, y) + k2(x, y)

• k1(x, y) · k2(x, y)

• k1(φ(x), φ(y)), φ : RD → RM

• x>Ay, A is symmetric positive semidefinite.

§9.3 Gaussian Processes – Linear Regression

Linear regression: linear combination of M fixed basis functions

y(x) = y = w>φ(x), φ ∈ RM

We will add a prior distribution on w

p(w) = N

(
w
∣∣∣0, 1

α
I

)
For any given value w, y(x) is a particular function. So the pdf over w defines a pdf over function
y(x). In practice, we evaluate y(x) not on the entire RD but only at discrete locations (e.g.
x1, . . . , xN , x̃).
We’re interested in the joint distribution y(x1), . . . , y(xN). We write

~y : yn := y(xn)

where ~y ∈ RN .
=⇒ ~y = Φw (Φnk = φk(xn))

Question 9.1. What does the joint distribution of ~y look like?

It turns out ~y is multiple linear combination of Gaussian random variables w =

 w0

...
wm−1

 which

is Gaussian itself. To find the parameters, we compute sufficient statistics.

• E[y] = E [Φw] = ΦE[w] = 0

• cov[~y] = E
[
(~y − E[~y]) (~y − E[~y])

>
]

= E
[
~y~y>

]
E
[
Φww>Φ>

]
= ΦE

[
ww>

]
Φ>

= Φ cov[w]Φ> =
1

α
ΦΦ> = k

So, the kernel is

kmn =
1

α
φ(xm)>φ(xn) = k(xm, xn)

38

Duc Vu (Summer 2021) 9 Lec 9: Jul 15, 2021

Overall, what just happens is

w ∼ N
(

0,
1

α
I

)
↓

y(x) = w>φ(x)

↓

~y =

 y(x1)
...

y(xN)


↓

~y ∼ N(0, k)

Definition 9.2 (Gaussian Process) — Gaussian process is a pdf over function y(x) s.t. the
values evaluated at arbitrary x1, . . . , xN jointly have a Gaussian distribution.

Fundamental Property:
E [y(xn)y(xm)] = k(xn, xm)

Now, let’s get to the Gaussian processes for regression.

Model : tn = yn + εn

where εn is the white noise and εn ∼ N
(

0, σ2(= 1
β)
)

=⇒ p
(
tn|yn, σ2

)
= N

(
tn|yn, σ2

)
Then, we have

p
(
~t|~y
)

=

N∏
n=1

p (tn|yn)

= N
(
~t|~y, σ2I

)
From the definition of Gaussian process, we know

p(~y) = N (~y|0,K)

From page 93 of the textbook, we can find the predictive distribution

p(~t) =

∫
p
(
~t|~y
)
P (~y) d~y = N

(
~t|0,K + σ2I

)
We can evaluate the likelihood of a given data set as follows

1. xn ∼ xm, i.e., k(xn, xm) is large =⇒ tn ∼ tm or “penalty” (unlikely)

2. xn 6∼ xm, i.e., k(xn, xm) is small =⇒ tn ⊥ tm (independent)

39

Duc Vu (Summer 2021) 9 Lec 9: Jul 15, 2021

x3 x2 x1

t1, t2

t3

x

t

k :

k(x1, x2) is relatively large: exp(−‖x1 − x2‖2)
→ strong correlation between t1 & t2 (need to be similar)

What’s even more interesting is we can use this to make predictions, p
(
t̃|~t
)

at x̃?

~tN+1 =


t1
...
tN
t̃

 , ~yN+1 =


y(x1)

...
y(xN)
y(x̃)


Then,

p
(
~tN+1

)
= N

(
~tN+1|0, CN+1

)
CN+1 = kn+1 + σ2I =

[
C k
k> c

]
where kn = k (x̃, xn) and c = k (x̃, x̃) + σ2. Then, we can use page 87 to get the marginal partition
as follows

p
(
t̃|~t
)

= N
(
t̃|m (x̃) , σ2(x̃)

)
m(x̃) = k>C−1~t = k>

(
k + σ2I

)−1 ~t

σ2(x̃) = c− k>C−1k

40

Duc Vu (Summer 2021) 10 Lec 10: Jul 19, 2021

§10 Lec 10: Jul 19, 2021

§10.1 Sparse Kernel Machines – SVM for Classi f ication

First, let’s consider the following model

y(x) = w>φ(x) + b

Training data (assume linear separability):

X = {x1, . . . , xN} , xn ∈ RD

t̃ =

 t1...
tN

 , tn ∈ {−1; +1}

New data is classified according to the sign of y. If data are linearly separable, there are usually
more than one (w, b) that do the job. Among these choices, we want to find the one with the best
generalization (doing the best job on new data).

Definition 10.1 (Margin) — Margin is the smallest distance between the decision boundary
and any of the training data points.

Idea: Among all the decision boundary we could find, we want to find the one that has the largest
margin (large margin = least generalization error). Recall that the signed distance of x from decision

boundary (y(x) = 0) is y(x)
‖w‖ . We want to have large distances with correct sign.{

tny(xn) > 0 (correct sign)

max |y(xn)|
‖w‖

So combining these together, we obtain the signed distance

tny(xn)

‖w‖
=
tn
(
w>φ(xn) + b

)
‖w‖

Now, the margin is the least of these signed distances

margin := min
n

tn
(
w>φ(xn) + b

)
‖w‖

Also, we know that misclassified samples will have negative signed distance. On the other hand, the
maximum classifier problem becomes

max
w,b

{
1

‖w‖
min
n
tn
(
w>φ(xn) + b

)}

41

Duc Vu (Summer 2021) 10 Lec 10: Jul 19, 2021

(k · w, k · b) where k > 0 all describe the same decision boundary. Thus, in all cases we can rescale
the problem to [

min
n
tn
(
w>φ(xn) + b

)]
= 1

We can rephrase the interior problem into a constraint

∀n : tn
(
w>φ(xn) + b

)
≥ 1

For support vectors (data points = 1), the constraint is active. For all other data points, the
constraint is inactive. Max margin classifier becomes

max
w,b

{
1

‖w‖

}
s.t. tn

(
w>φ(xn) + b

)
≥ 1 ∀n

Equivalently,

min
w,b

1

2
‖w‖2 s.t. tn

(
w>φ(xn) + b

)
≥ 1 ∀n

=⇒ quadratic program.
To solve the optimization problem, let’s introduce KKT-multipliers to address the constraints

L(w, b, a) =
1

2
‖w‖2 −

N∑
n=1

an
(
tn
(
w>φ(xn) + b

)
− 1
)

Then, we check KKT-conditions for optimality.{
∇wL

set
= 0 =⇒ w =

∑
antnφ(xn)

dL
db

set
= 0 =⇒

∑N
n=1 antn = 0

Next, we construct the dual

L̃(a) :=

N∑
n=1

an −
1

2

N∑
n=1

N∑
m=1

anamtntmk(xn, xm) s.t.

{
an ≥ 0∑N
n=1 antn = 0

So the dual problem is

max L̃(a) s.t.

{
an ≥ 0∑N
n=1 antn = 0

Let’ say we have a new data point: y(x) =
∑N
n=1 antnk(x, xn) + b(∗). From one of the KKT

conditions (complementarity), we have

∀n : an
(
tn
(
w>φ(xn) + b

)
− 1
)

= 0

So either we have an inactive data point, i.e.

an = 0, tn
(
w>φ(xn) + b

)
> 1

or an active data point (support vectors)

an > 0, tn
(
w>φ(xn) + b

)
= 1

From (∗), we can deduce that only the support vectors need to be considered when making predictions
– thus sparsity.

42

Duc Vu (Summer 2021) 10 Lec 10: Jul 19, 2021

Let’s now consider the non-linear separable case.

not linearly separable

Specifically, no (w, b) is going to give perfect classification of training data (but it is still nearly
separable).
Trick: Introduce slack variable. For each data point xn, we now have

ξn ≥ 0

ξn = 0 if xn is on margin or correct outside the margin

ξn = |tn − y(xn)| , otherwise

In essence, ξn captures how much we violate the constraint tn
(
w>φ(xn) + b

)
≥ 1.

Fact 10.1. • ξn = 1 if xn on decision boundary.

• ξn > 1 if xn is misclassified.

Question 10.1. How do we incorporate the slack variables into the problem?

We will add slack to constraints (permissible) and add slack to objective (penalty). So the
soft-margin classifier problem now looks like

min
w,b,ξn

γ

N∑
n=1

ξn +
1

2
‖w‖2 s.t. ∀n : tn

(
w>φ(xn) + b

)
≥ 1− ξn

Optimization Review: KKT-conditions for inequality constrained optimization

min
x∈RD

f(x) s.t.

{
gi(x) ≤ 0

hj(x) = 0

Then, we write down the Lagrange

L(x, µi, λi) := f(x) +
∑
i

µigi(x) +
∑
j

λjhj(x)

The saddle point (x?, µ?i , λ
?
j) w.r.t. L

(
minx,maxµi,λj

)
solves original problem. In addition, the

saddle point must satisfy

1. Constrained stationary: ∇f(x) +
∑
i µi∇gi(x) +

∑
j λj∇hj(x) = 0

2. Primal feasibility: gi(x
?) ≤ 0 and hj(x

?) = 0

3. Dual feasibility: µi ≥ 0 (only for inequality case)

4. Complementary slackness: µ?i gi(x
?) = 0

43

Duc Vu (Summer 2021) 11 Lec 11: Jul 21, 2021

§11 Lec 11: Jul 21, 2021

§11.1 The Perceptron Algorithm

Idea: We have 2-class model which makes decision using φ (including bias term, φ0 = 1)

y(x) = f
(
w>φ(x)

)
where f = sign function.
We want to make connection to biology – neuron.

dendrites

Σ

(weighting)

integration and sum up

greater than threshold

fire

activation potential

synapse

For an arbitrary xn, we want

f
(
w>φ(xn)

)
=

{
+1 if xn is member of class 1

−1 if xn is member of class -1

which means
w>φ(xn) · tn > 0

Perceptron criterion: focus on misclassified data xn only. More specifically,

• associate zero error with a correctly classified xn

• associate −w>φ(xn) · tn as error of misclassified patterns (error > 0)

Thus, a weakly wrong prediction is less bad than a strongly wrong prediction.

Ep(w) := −
∑
n∈M

w>φ(xn)tn

where M = set of misclassified data points given w and Ep(w) is a function of parameters w given
a fixed training set. Notice that

1. the contribution of error by xn is 0 in regions of w where xn is correctly classified.

2. the contribution of error is a linear function of w where xn is misclassified.

=⇒ the error function Ep(w) is piecewise linear and continuous (no jump discontinuity, etc). Thus,
gradient methods can be used for optimization almost everywhere. Instead of gradient descent, we
will perform stochastic gradient descent, i.e., at each step t, we will estimate ∇E using a subset of
data points only. Here, for the extreme case (with only 1 data point),

wt+1 = wt − η (−φ(xn)tn)

where η is the step size/learning rate.

44

Duc Vu (Summer 2021) 11 Lec 11: Jul 21, 2021

Remark 11.1. 1. at each update step, pick xn

• if xn is correctly classified, then we move on.

• otherwise, update w.

2. pick η = 1 without loss of generality

3. the set M will change (at each step) as w is updated.
Note that perceptron algorithm may not reduce the error at each step.

There is a perceptron convergence theorem that states

Theorem 11.2

If the data are linearly separable to begin with (a solution with no misclassification error
exists) then the algorithm will find it within finite numbers of update steps.

Remark 11.3. Solution may not be unique, i.e., there’s no guarantee that we find a good boundary
in terms of margin, for example. So which solution we find depends on

1. initial w◦

2. sequence of xn presented to the algorithm

If no solution exists (data is not linearly separable), the algorithm keeps going indefinitely.

§11.2 Neural Networks

Idea: We use a fixed number of model components and/or adaptive basis functions.

1. put “a bunch” of perceptrons in parallel, train them and their aggregation simultaneously.{
each individual weak learners: yi(x) = f

(
w>φ(x) + b

)
aggregation: z(x) = f

(
w>y + b

)
2. make φ adaptive themselves; then learn {φj} along with {wj} s.t. w>φ(x) performs well. We

also need to parametrize φj
φj(x) = f

(
w>x+ b

)

......

x1

x2

x3

xD

z1

...

zn

INPUTS HIDDEN

OUTPUT

w1
11

w1
12

am =
∑D

d=1w
1
mdxd + w1

m0

zm = h1(am)

ak =
∑M

m=1w
2
kmzm + w2

k0

yk = h2(ak)

k

45

Duc Vu (Summer 2021) 11 Lec 11: Jul 21, 2021

We can refer to the neural networks above as

• single hidden layer

• double layers (weights)

• 3 total layers

Combining by substituting the expression from the hidden layer into the output and we obtain

yk(x,w) = h2

(
M∑
m=1

w2
kmh

1

(
D∑
d=1

w1
md + w1

m0

)
+ w2

k0

)

Clearly, yk(x,w) is a non-linear function of x ∈ RD parametrized by all the weights w and
hyperparameters (number of nodes and choice of h1, h2).
Once the model is trained, we have forward propagation (left-to-right). More complicated archi-
tectures are possible with more layers, etc. The important thing to keep in mind is h1 must be
non-linear; otherwise, the network collapses into a single perceptron.

Question 11.1. How do we train the multilayer perceptrons model?

Given a classification/regression, the output which includes bias in the nodes x0 is

yk(x,w) = h2

(
M∑
m=0

w2
kmh

1

(
D∑
d=0

w1
mdxd

))

Consider the energy/error function

E(w) =
1

2

N∑
n=1

{y(xn, w)− tn}2

We can optimize E by solving ∇wE = 0, but it’s unfortunately too hard to solve directly. Instead,
we use gradient descent method: dw

dt = −∇wE. Explicitly, we have

wt+1 = wt − η∇wE(w>)

We estimate ∇wE based off just a few data points, at a time.

Question 11.2. Why stochastic gradient descent works?

1. Far from the solution, all samples/data point will want the same change.

2. Close to optimal w, ∇E will be relatively flat.

3. Data set is redundant (even smaller fractions of the data set should capture the essence).

Refer to the book for more details about backpropagation.

46

Duc Vu (Summer 2021) 12 Lec 12: Jul 22, 2021

§12 Lec 12: Jul 22, 2021

§12.1 Graphical Models

Doodle rules:

• nodes = random variables

• links/edges = probabilistic relationship

Assume a, b, c are random variables and the joint is

p(a, b, c) = p(c|a, b) · p(a, b) = p(c|a, b) · p(b|a) · p(a)

a

b c

However, an actual model might not be fully connected.

p(x1, . . . , x7) = p(x7|x4, x5) p(x6|x4) p(x5|x1, x3) p(x4|x1, x2, x3) p(x3) p(x2) p(x1)

1 2 3

4 5

6 7

47

Duc Vu (Summer 2021) 12 Lec 12: Jul 22, 2021

Example 12.1 (Linear Regression)

xn → tn with parameters w

p(~t, w) = p(w) ·
N∏
n=1

p(tn|w)

.

w

t1 tN

With variance and noise,

p(~t, w) = p(w|α) ·
N∏
n=1

p(tn|xn, w, σ2)

tn

N

w

α

xn

σ2

observed variables

latent/hidden variables

Prediction:

tn

N

w

α

xn

σ2
t̂ x̂

The joint is

p(t̂,~t, w|x̂, ~x, α, σ2) = p(w|α)

N∏
n=1

p(tn|xn, w, σ2) · p(t̂|x̂, w, σ2)

Marginal:

p(t̂|x̂, ~x,~t, α, σ2) ∝
∫
p(t̂,~t, w|x̂, ~x, α, σ2) dw

48

Duc Vu (Summer 2021) 12 Lec 12: Jul 22, 2021

Example 12.2 (Sampling)

Graphical models can also be used to visualize sampling: draw samples of the joint distribution
by sequentially sampling from the conditional distributions (starting from the parent node).

§12.2 Markov Random Fields

Definition 12.3 (Conditional Independence) — Random variables a and b are called conditionally
independent given c iff

p(a|b, c) = p(a|c)

or equivalently
p(a, b|c) = p(a|c) · p(b|c)

Definition 12.4 (Conditional Independence – Extended) — For graphical model with three sets
of nodes A,B and C, we say A and B are conditionally independent given C iff for all paths
connecting A and B we have to visit C; equivalently, if we remove C, then A is disconnected
from B.

Example 12.5

Markov blanket:

A

C

B

We can observe that A and B are conditionally independent given C.

49

Duc Vu (Summer 2021) 12 Lec 12: Jul 22, 2021

Example 12.6 (Dirty Pictures)

Besag 1986: Statistical analysis of dirty pictures

• Observed: binary images yi ∈ {−1,+1}

• underlying/latent/hidden image: xi ∈ {−1,+1}

What happened is yi is obtained from xi by randomly flipping some of the pixels

y3 y4

y1 y2

x3 x4

x2x1

1. strong correlation between xi and yi

2. strong correlation between neighboring xi, xj

For two random variables not connected by an edge or xi, xj are not neighbors,

p(xi, xj |xk 6=i,j) = p(xi|xk 6=i,j)p(xj |xk 6=i,j)

The factorization of the joint distribution must not contain xi, xj in the same factor.

Definition 12.7 (Clique) — A clique is a subset of nodes of the graph, s.t. there exists a link
between each pair of nodes.

Remark 12.8. 1. • nodes = random variables

• link = dependence between random variables

2. cliques = fully connected subgraphs

Definition 12.9 (Maximal Clique) — A clique is maximal iff it’s not possible to add further
nodes while still being a clique.

Then, observe that factors of the joint distribution are functions of the variables in the maximal
cliques. Let C denote the set of maximal cliques, and xc for c ∈ C is the variables in that clique.

50

Duc Vu (Summer 2021) 12 Lec 12: Jul 22, 2021

Then

p(x) =
1

z

∏
c∈C

ψc(xc)

where ψc is a potential function (positive) and z =
∑
x

∏
c∈C ψc(xc) is a normalization constant.

Factorization and conditional independence are connected through the Hammersley – Clifford
theorem. Because ψc > 0, it can be expressed as

ψc(xc) = exp {−E(xc)}

• E(xc) is an energy function

• the exponential representation is called Boltzmann distribution.

joint prob =
1

z

∏
c

ψc(xc)

which is also the total energy
∑
cE(xc). However, ψc is not the probability density itself.

Example 12.10

From the Besag’s example above, we have two types of maximal cliques

• xi ∼ yi

• xi ∼ xj

We define the clique energy as follows

• −ηxiyi

• −βxixj

which would be small when pixels values match.
Total energy:

E(x, y) = −β
∑

(i,j)∈E

xixj − η
∑
i

xiyi

and

p(x, y) =
1

z
e−E(x,y) =

1

z

∏
c

ψc(xc)

Now, given y find x s.t. E(x, y) is minimal – very hard to solve. So we want to solve this
optimization problem using “coordinate descent”, i.e., iterative conditional models.

51

Duc Vu (Summer 2021) 13 Lec 13: Jul 26, 2021

§13 Lec 13: Jul 26, 2021

§13.1 Hidden Markov Models/Chains

Example 13.1

Rainfall/pollen data per day

: first order

: second order

x1 x2 x3 x4 x5

Since the data is not i.i.d., the joint looks more complicated

p(x1, . . . , xN) = p(x1)

N∏
n=2

p(xn|xn−1)

Stationarity(homogeneous Markov chain): p(xn|xn−1) is independent of n. For 2nd order model, we
have

p(x1)p(x2|x1)

N∏
n=3

p(xn|xn−1, xn−2)

Powerful idea: Markov assumption on hidden/latent data (“state variable”)

x1 x2 x3 x4 x5

z1 z2 z3 z4 z5

1st order Markov: zn+1 and zn−1 are conditionally independent given zn.
HMM are an extension of mixture models: zn describes which mixture component is responsible for
xn.

• xn : p(xn|zn)

• zn : is strutted in time: p(zn|zn−1)

Since states zn are discrete,

p(zn = k|zn−1 = j) = Ajk =: transition matrix

where
∑
k Ajk = 1. The initial node distribution is

p(z1)?

p(z1 = k) = πk (
∑
k

πk = 1)

52

Duc Vu (Summer 2021) 13 Lec 13: Jul 26, 2021

k = 2

k = 1

k = 3

A12

A21

A31
A13

A23

A32

A11

A22

A33

π2

π1

π3

πk is the starting probability

State Diagram

k = 1

k = 2

k = 3

n = 1 n = 2 n = 3

A11

A12

A13

A21

A22

A23

A33

A31

A32

π1

π2

π3

Trellis Diagram

Now, the second ingredient is emission probabilities which corresponds to class conditional
densities

p(xn|zn) = p(xn|zn, φ)

for some parameters φ, e.g., φ = {µ1,Σ1, µ2,Σ2, . . .}

p(xn|zn = k, φ) = p(xn|φk)

So, the joint is

p(X,Z|θ) = p(z1|π)

N∏
n=2

p(zn|zn−1)

N∏
n=1

p(xn|zn1
φ)

where θ = (A, π, φ).

Question 13.1. How do we learn θ = {A, π, φ} from a sequence of x1, . . . , xN?

=⇒ Maximum likelihood!
max p(X|θ) =

∑
z

p(X,Z|θ)

53

Duc Vu (Summer 2021) 13 Lec 13: Jul 26, 2021

in which we sum over all the possible paths through state/trellis diagram.
Since summing over all the possible paths is a very labor-intensive task, we “need” to use E-M
algorithm.

Q(θnew, θold) =
∑
z

p(Z|X, θold) ln p(X,Z|θnew)

Notation: γ(zn)k = p(zn = k|X, θold)

ξ → ξ(zn−1, zn)jk = p
(
zn−1 = j, zn = k|X, θold

)
Thus,

Q(θnew, θold) =

K∑
k=1

γ(z1)k lnπk +

N∑
n=2

K∑
j=1

K∑
k=1

ξ(zn−1, zn)jk lnAjk +

N∑
n=1

K∑
k=1

γ(zn)k ln p(xn|φk)

• E-step: compute γ(zn)k and ξ(zn−1, zn)jk with an efficient algorithm (Baum-Welch)

• M-step: update π,A, φ

πk =
γ(z1)k∑K
j=1 γ(z1)j

; Ajk =

∑N
n=2 ξ(zn−1, zn)jk∑K

l=1

∑N
n=2 ξ(zn−1, zn)jl

For φ update, it’s the same as for GMM.

In order to compute γ, ξ, let’s dive into the Baum-Welch algorithm. First, let’s take a look at the
conditional independence properties.

p(X|zn) = p(x1, . . . , xn|zn) p(xn+1, . . . , xN |zn) (1)

p(x1, . . . , xn−1|xn, zn) = p(x1, . . . , xn−1|zn) (2)

p(x1, . . . , xn−1|zn−1, zn) = p(x1, . . . , xn−1|zn−1) (3)

p(xn+1, . . . , xN |zn, zn+1) = p(xn+1, . . . , xN |zn+1) (4)

p(xn+2, . . . , xN |zn+1, xn+1) = p(xn+2, . . . , xN |zn+1) (5)

p(X|zn−1, zn) = p(x1, . . . , xn−1|zn−1) p(xn|zn) p(xn+1, . . . , xN |zn) (6)

p(xN+1|X, zN+1) = p(xN+1|zN+1) (7)

p(zN+1|zN , X) = p(zN+1|zN) (8)

We begin with γ(zn)k. By Bayes’ Rules,

γ(zn)k = p(zn = k|X)

=
p(X|zn = k) p(zn = k)

p(X)

(1)
=
p(x1, . . . , xn|zn) p(xn+1, . . . , xN |zn) p(zn = k)

p(X)

=

α(zn)k︷ ︸︸ ︷
p(x1, . . . , xN , zn = k)

β(zn)k︷ ︸︸ ︷
p(xn+1, . . . , xN |zn = k)

p(X)

=
α(zn)kβ(zn)k

p(X)

with α(zn)k = p(x1, . . . , xn, zn = k) and β(zn)k = p(xn+1, . . . , xN |zn = k). At this point, we want
to find recursion rules for α, β.

54

Duc Vu (Summer 2021) 13 Lec 13: Jul 26, 2021

1.

α(zn)k = p(x1, . . . , xn, zn = k)∏
= p(x1, . . . , xn|zn = k) p(zn = k)

(2)
= p(xn|zn = k) p(x1, . . . , xn−1|zn = k) p(zn = k)∏
= p(xn|zn = k) p(x1, . . . , xn−1, zn = k)

Σ
= p(xn|zn = k)

∑
j

p(x1, . . . , xn−1, zn−1 = j, zn = k)

3,
∏

= p(xn|zn = k)
∑
j

p(x1, . . . , xn−1|zn−1 = j) p(zn−1 = j) p(zn = k|zn−1 = j)

∏
= p(xn|zn = k)

∑
j

p(x1, . . . , xn−1, zn−1 = j)︸ ︷︷ ︸
α(zn−1)j

p(zn = k|zn−1 = j)

= p(xn|φk)
∑
j

α(zn−1)jAjk

Recursion starts for n = 1:

α(z1)k = p(x1, z1 = k) = p(x1|z1 = k) · p(z1 = k)

= p(x1|φk)πk

We proceed with left-to-right sweep, and it’s pretty easy to compute the data. Let’s now
tackle the other half of the problem, β.

2.

β(zn)k = p(xn+1, . . . , xN |zn = k)

Σ
=
∑
j

p(xn+1, . . . , xN , zn+1 = j|zn = k)

∏
=
∑
j

p(xn+1, . . . , xN |zn+1 = j, zn = k) p(zn+1 = j|zn = k)

(4)
=
∑
j

p(xn+1, . . . , xN |zn+1 = j) p(zn+1 = j|zn = k)

(5)
=
∑
j

p(xn+2, . . . , xN |zn+1 = j) p(xn+1|zn+1 = j) p(zn+1 = j|zn = k)

=
∑
j

β(zn+1)jp(xn+1|φj)Ajk

Recursion needs to start at n = N for β(zN)k.

γ(zN)k =
α(zN)kβ(zN)k

p(X)

p(zN = k|X) =
p(X, zN = k)β(zN)k

p(X)

=⇒ β(zN)k = 1

We proceed right-to-left (backward) sweep to compute all β.

55

Duc Vu (Summer 2021) 13 Lec 13: Jul 26, 2021

3. Also,

ξ(zn−1, zn)jk = p(zn−1 = j, zn = k|X)

(Bayes’) =
p(X|zn−1 = j, zn = k) p(zn−1 = j, zn = k)

p(X)

(6)
= p(x1, . . . , xn−1|zn−1 = j) p(xn|zn = k) p(xn+1, . . . , xN |zn = k)

p(zn = k|zn−1 = j) p(zn−1 = j) · 1

p(X)

=
α(zn−1)j β(zn)k p(xn|φk)Ajk

p(X)

56

Duc Vu (Summer 2021) 14 Lec 14: Jul 28, 2021

§14 Lec 14: Jul 28, 2021

§14.1 Viterbi ’s Algorithm

Given a fully trained model: πk, Ajk, φk, and we have a new sequence of observations x1, . . . , xN .

Question 14.1. What is the most likely sequence z1, . . . , zN that produces these observations?
(Decoding)

The key idea is to avoid computing p(X,Z|π,A, φ) for all possible paths. Instead, we want to
use dynamic programming-based “Viterbi” algorithm. We want to incrementally (left-to-right)
compute the probability and sequence of the most likely path.

V1,1

π1 · p(x1|φ1)
x

π2 · p(x1|φ2)

π3 · p(x1|φ3)

Vn,k is the probability of most likely path that leads

to state k at time n
V2,1

A1,1

Vn,k = maxj(vn−1,j · Ajk) · p(xn|φk)

At the end of the sequence, we can trace back the path with the highest likelihood to obtain the
most likely state.

57

	Lec 1: Jun 21, 2021
	Introduction & Probability Review
	Gaussian Distribution

	Lec 2: Jun 23, 2021
	Gaussian Distribution (Cont'd)
	Non-parametric Probability Density Function (Estimation)

	Lec 3: Jun 24, 2021
	Principal Component Analysis
	High-Dimensional PCA
	Probabilistic PCA
	Maximum Likelihood PCA

	Lec 4: Jun 30, 2021
	Kernel PCA
	Linear Basis Function Models

	Lec 5: Jul 1, 2021
	Overfitting
	Regularized Least Squares
	Bayesian Linear Regression

	Lec 6: Jul 7, 2021
	Linear Models for Classification

	Lec 7: Jul 12, 2021
	Ensemble Methods
	K-Means Clustering

	Lec 8: Jul 14, 2021
	Mixture of Gaussians
	General Expectation-Maximization Algorithm

	Lec 9: Jul 15, 2021
	Kernel Methods – Linear Regression
	Kernel Construction
	Gaussian Processes – Linear Regression

	Lec 10: Jul 19, 2021
	Sparse Kernel Machines – SVM for Classification

	Lec 11: Jul 21, 2021
	The Perceptron Algorithm
	Neural Networks

	Lec 12: Jul 22, 2021
	Graphical Models
	Markov Random Fields

	Lec 13: Jul 26, 2021
	Hidden Markov Models/Chains

	Lec 14: Jul 28, 2021
	Viterbi's Algorithm

