Math 142 — Mathematical Modeling

University of California, Los Angeles

Duc Vu
Fall 2021

This is math 142 — Mathematical Modeling taught by Professor Huang. We meet weekly
on MWF from 9:00am — 9:50am for lecture. There is one textbook used for the class, which is
Mathematical Models by Haberman. You can find other lecture notes at my blog site. Please
let me know through my email if you spot any mathematical errors/typos.
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§1.1 Intro to Mathematical Modeling

First, let’s examine the following question
Question 1.1. Why do we learn mathematical modeling?

There are lots of question that math may provide some explanation so that we could understand
the question deeply.

Example 1.1 1. How is Covid-19 spread? How can we control the spread of Covid-197
2. How to control the spreading of the forest fire and how to reduce the loss?

3. How does the population of human evolve over time?

So,

Question 1.2. What is a mathematical model and how can we create the model?

Definition 1.2 (Mathematical Model) — A mathematical model is a description of a system
using mathematical concepts and language. The process of developing a mathematical model
is called mathematical modeling.

To create a mathematical model, we

1. formulate the problem: approximations and assumptions based on experiments and observa-
tions

2. solve the problem that is formulated above

3. interpret the mathematical results in the context of the problem
Let’s now explain the three steps above in more details.

1. Formulation

a) State the question: If the question is vague, then make it to be precise. If the question is
too “big”, then subdivide it into several simple and manageable parts.

b) Identify factors: Decide important quantities and assign some notation to the correspond-
ing quantity. Then, we need to determine the relationship between the quantities and
represent each relationship with an equation.

2. Solve the problem above: This may entail calculations that involve algebraic equations, some
ODE, PDE, etc; provide some theorems or doing some simulations, etc.

3. Interpretation/Evaluation: We need to translate the mathematical result in step 2 back to the
real world situations and evaluate whether the model is good or not by asking the following
questions:

a) Has the model explained the real-world observations?
b) Are the answers we found accurate enough?

¢) Were our assumptions good?
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d) What are the strengths and weaknesses of our model?

e) Did we make any mistake in step 27

If the answer to any of the above question is not favorable, we need to go back to step 1 and
go through all the steps again until we get some satisfying results.
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§2.1 An Example of Modeling a Mass-Spring System
Consider the following question

Question 2.1. How does the spring-mass system move/work?

S S

Ea——

Formulation:
a) State the question: What formula can describe how the spring-mass system work?
b) Identify factors:

(a) initial position zq (called natural length)
(b) the spring constant k

¢) friction f,

e) position x

(
(f) velocity v
(g) acceleration a
(h

)

)

()

(d) mass of the object m
)

)

)

) force F

A
v

Lo
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Now, we try to find some relations between factors we listed above. First, let’s describe our
observations. If we contract the spring (z < 0), there is some force to push the spring outward
(F > 0). If we stretch the spring (x > 0), there is some force that restores the initial shape of
the spring (F' < 0). So, we can observe that

F.-z<0
The relation between F' and x can be summarized by the Hooke’s Law
F=—kx (*)

Next, let’s find the relation between the force and the movement of the object (F,m,v,a) by
assuming that the movement of the object only depends on the force of the spring (not on
other factors). This can be summarized by Newton’s second law of motion.

- dv d (dZ d*z
F=mid=m—=m—|(— ) =m—— %k
ma=T gy mdt(dt) " )
By (*) and (**), we deduce
F=—-kzx= md2—x
B - ad?

Mathematical analysis: we need to find the solution of the ODE:
mz” +kx=0

To solve the ODE, we want to find the solution to the characteristic equation
2 k.
mA +k=0 = z=244/—1
m
z(t) = clet\/gi + cze_t\/gi
k k
= (c1 + ¢2) cos (\/ t> + (¢1 — ¢2)isin (\/ t>
m m
= (3 COS —t | + c48in —
m m

Thus,
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§3.1 An Example (Cont’d)
Recall that we have
| k , [k
x(t) = c3 cos ( t) + ¢4 sin ( t>
m m

Let 65 = ,/%t. Then,
z(t) =1\/3 +c3 < cos(6s) + sin(fs) )
\/7 \/C3TC4

with tanf; = 03 or #, = arctan (2—2) So,

Let sinf; = ——2— and cosf; =
! 3+l ! \ c3+C4

z(t) = \/ 3 + c2sin(01 + 62)
[k
\/cngcZ( m+01>

Evaluation of z(t) = Asin (wt + 0)

"
A L
t
-A NS
From the figure above, we know z(t) is periodic with period T' = =% = 2X,/%*

max x(t) = A, mtin x(t)=—A

where A is the amplitude and wt + TBA
Since x(t) is a periodic function, this means the spring will oscillate forever. However, in practice,

it is impossible. Thus, we need to modify our model by removing or adding some assumption.
Now, we may consider the case that there is friction when spring oscillates.

dx
Fr = —c—r
=
Then,
md2—x =—kr—c dr
dt? dt



Duc Vu (Fall 2021) 3 Lec 3: Sep 29, 2021

§3.2 Population Dynamics

Consider the following question
Question 3.1. Can we predict whether a species or its population will thrive or go extinct?

In order to answer it, let’s first investigate an example.

Example 3.1

How many people will there be in the U.S. in the next 4 years?
First let’s reformulate the question in the example to be more specific:

Question 3.2. Can we build a math model to predict the number of people in the U.S. in 1,
2, 3, 4 year?

Assumption Factor
the death and birth rate are constant birth rate: b
the counting period (of the population) is fixed death rate: d
the growth of the population only depends on the period
the death and birth rate initial population: Ny

the distribution of the population: N(®)
migration rate
the # of years from the current time: ¢
the # of population at time ¢: N(t)
the growth rate: R

To study N(t) we need to consider the relation between N(t) and N(t + At)
N(t+ At) = N(t) + # of new birth at [t,¢ + At] — # of death at [t, ¢ + Af]
=N(t)+ (b—d)At- N(t)
=1+ (b—d)At)- N(¢)

Thus,
N(t+ At) = (1 + RAt) N(t)
N(1) = (14 R)No
N(2) = (1+R)N(1) = (1+ R)*No
N(3)=(1+R)N(2) = (1+R)>Ny
N(4)=(1+R)N(3) = (1+ R)*No
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§4.1 Population Dynamics (Cont’d)

Example 4.1
Np = 300 millions, R = 0.6%, At =1

N(1) = (1+7)No = (1 +0.6%) - 300
= 300 + 1.8 = 301.8 millions
N(2) = (1 +7)*No = (1 +0.6%) - 300
= 301.8 - 100.6%
N(3) = (14 R)*Ny = (1 + 0.6%)* - 300
N4) = (1+R)* Ny = (1+0.6%)* - 300

Consider:
N(it+At)=(1+R-At)-N(¥)
where tg = 0, t; = At, to = 2At,. .., t, = nAt
= N(n-At)=(1+R-At)N ((nt)At) = ... = (1 + RAt)" Ny
We have

(1+ RAH) ST AL N — (1 4 RAH) TEe R N

Set At — 0, we obtain (1 + RAt)ﬁ — e. Then,
N(t) = e Ny as At — 0
Next, let’s analyze the property of the model above:
N (nAt) = (1 + RAH)" Ny
1. 1+ RAt > 1, then N(nAt) — 400, as n — 400
2. 0 <1+ RAt < 1, then N(nAt) — 0 as n — 400

Conclusion: When 0 < 14 RAt < 1, the model is acceptable; however, when 1+ RAt > 1(R > 0),
the model should be modified. Thus, we may change our assumption: the growth rate is constant
(e.g., the growth rate depends on the population itself)

§4.2 Continuous Population Model

Have:
N(t) = e N

Let’s start from the previous lecture

N (t+ At) = N(t) + RAt - N(t)
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So
Nt + AAtzL N0 _pv
dm, ST RN = RN
O _ kN
df\;f((t) ~ [

t)
In(N(t))=Rt+C
N(t) = eCeltt = Nyeftt

Evaluate the continuous model N(t) = eft* Ny
1.0O<R<1: N(t) > ccast—ooand N(t) T ast 1
2. -1<R<0: N(t)—>0ast—ooand N(t) L ast T

Conclusion: When R < 0, the model is acceptable; however, when the growth rate R > 0,the
individuals (of a species) will compete each other as the resource is limited, N(t) — oo as t — 0.
Now, let’s consider the density-dependent growth. Assumption:

e The growth rate is density dependent, i.e., R(t) = R (N(t))

e If the population is small, then the influence of the environment is small, then we hope that
the population has exponential growth.

e As N(t) gets large enough, we don’t expect the growth of N(t). In other word, the growth
rate R (N(t)) < 0 when N(t) is large enough (since R(t) is usually assume to be smooth,
R(N(t)) =0 when N(t) is large enough)

dN
S5 = R(N() - N()

From our assumption, R (N(¢)) should be a constant when N(¢) is small and R (N(¢t)) =0 as N(t)
is large enough. So we can consider R (N (t)) of the form

R(N(t)) = a — bN(t)

Thus, the model becomes

dN
“Y (@ —bN)N
o (a —bN)

This is known as the logistic model.

Remark 4.2. The discrete-time population model is called Beverton-Holt model.

_ Ro(N(t—1)-At)
{N(t At) = 1+?V((t—1)At)/]M

R,
R(N) = mrg=tyan/m

10
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§5.1 Continuous and Discrete Population Models
Recall the continuous logistic population model

dN
Y N(a—bN
o (a —bN)

Let’s manipulate this

dN
N(a —bN)

1 b
/W—Fa(a—bN)dN_/dt

1 1
—InN——lnla—bN|=t+c
a a

=dt

1 N t+¢
n =at+c
a—bN
N _ _at+c __ at
a—bN_e =Ce
a
N=—
b+ Ce—at
Since N(0) = No == Ny = 375, we have
a

N(t)

T4 (3 —b) e

Let’s now consider the relation between continuous logistic population and discrete-time logistic
model for At = 1. For the discrete case,

RoN(t—1
{N(t) = 1+](\)/'(t(—1)/)1\/[
R
R(N(t) = wasnymr

For the continuous case,

Then,

Notice that

N{t)  N(t-1)

For the continuous model, as ¢ — oo, we can see that N(t) — ¢ which is a good model.

11
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§5.2 Discrete One-Species Model with an Age Distribution

Motivation: The birth and death rates will vary a lot if state A has more young citizens than state

B.
Let’s consider the period At = 1 year, define variables for a population at each age

No(t) = # individuals whose age < 1
N;(t) = # of individuals one year old
Ny(t) = # of individuals two years old

Ny (t) = # of individuals M years old

where M is the oldest age with proper population. Suppose

b, = birth rate for a population that is m years old

d, = death rate for a population that is m years old

Let’s consider the population N, (¢t + 1)

No(t + 1) = boNo(t) + blNl(t) + ...+ b]yjNM(t)
Ni(t+1) = No(t) — doNo(t) = (1 — do)No(t)
Ng(t + 1) = Nl(t) — lel(t) = (1 — dl)Nl(t)

Ny(t+1)=Ny—1(t) —dy—1Nay—1(t) = (1 — dpr—1) Na—a (2)

In matrix notation,

Then,
bo by b
NO(t + 1) 1— do 0 0 No(t)
M+ | Ni(t)
ween] | g o) Do

— N(t+1) = LN(t) - the matrix is called Leslie matrix.

12
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§6.1 Stable Age Distribution

Definition 6.1 (Stable Age Distribution) — A stable age distribution exists if the populations

approach an age distribution that is independent of time as time increases, i.e. 1

as t — oo where

B M
IN@I =D IN:i(2)]
i=0

TIN®I

Assume that the Leslie matrix

2 1
L= [0.44 0}
and
5 100
N () = [100]

Let’s track the evolution of the population age groups. We have

N(t+1)=L-N(t)
- - 2 1] (100 300
N(1) = LN(0) = [0.44 O] [100] a {44}
= 2 1] 1300 644
@=r8m= o4 of %] = 1)
Continue this process we obtain

. 1420]  [3123.4
NE) = {2834} ’ {624.8}

=

Observation: The population appears to grow over time without bound.a The ratio

Ny (t+1)
Ni(t)

No(1) 300 No(2) 644
No(0) ~ 100 No(1) ~ 300
No(3) 1420 No(4)
= —— = 2.2050 = 2.1996
No(2) ~ 300 No(3)

Apply the same process to N; and we can notice that they both approach 2.2, i.e.,

D) =22 )

The fraction of the population in age 0 and fraction of the population in age 0 is 1.

Ny(0) B 100 1 No(1) ~ 300 0.872
No(0) + N;(0) 100+ 100 2 No(1)+Ni(1) 344 =
No(2) No(3)
—————— ~ 0.8407 —————— ~ 0.8336
No(2) + N1(2) No(3) + N1(3)
With these calculations, we can see that
No(t) Ny(t)
————— = 0833 = —————— — 0.167
No(t) + Nq1(t) No(t) + N1 (t)

13
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So

]

Recall that

Claim 6.1. 2.2 is one eigenvalue of the Leslie matrix L.

Guess: [0 833

0.167} is an eigenvector of the Leslie matrix L. Let’s check.

v =an (3, 1] 3 1)

= (2= M\)(=)\) — 0.4
= (A —2.2)(A+0.2)

Thus, A = 2.2, A = —0.2 which verifies our claim. When A = 2.2, we can find the corresponding
eigenvector as follows

2 1] [22 0
L—22= [0.44 0] a [0 2.2]

_[-02 1
~ 044 —22

We need to find the null space of L — 2.21, i.e.

i ][] =[O

which is

5 0.833
Thus, {?} ~ [
5 0.167

From this example, we may guess in order to find the stable age distribution, we need to find the
maximum eigenvalue of the Leslie matrix and then find the corresponding normalized eigenvector.
Now, we will try to check our guess for the general Leslie model.

] is the corresponding eigenvector (of 2.2).

N(t+ At) = LN(t)

with

N(t) = . and [ € RMF1)x(M+1)
Na (1)
being a non-negative. Let’s assume that N(0) = No, then we have N(n-At) = LN ((n — 1) - At) =

...=1L"-Ny. Suppose that the Leslie matrix L is diagonalizable, i.e., there are M + 1 eigenvalues
A1 > A2 > .. A1 and M + 1 linearly independent eigenvectors o7, ..., Upr41.

14
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§7.1 Stable Age Distribution (Cont’d)

Assume that N(0) = Np, then we have N(n-At) = LN ((n— 1) - At) = ... = L™Ny. Suppose that
the Leslie matrix L is diagonalizable, i.e., there are M + 1 eigenvalues Ay > ... > Apry1 and M + 1
linearly indep. eigenvectors vy, ..., Uar41.

L=VDV~!
where
A1
A2
D= . 5 V:[’Ul UM+1]
AM41
Since @y, ¥, . .., Unr41 are linearly independent, {1, ..., ¥a41} is a basis for RM*1. Then, there
exists c1,ca,...,car4+1 S.t.
M+1
N() = E Cﬂ_)'i
i=1
Thus,

N(n-At) = L"N,

M+1
i=1

M+1

=1
M+1

i=1

M+1 n
. A\ L
= v + E C; () U;
; A1
=2

If |A1] > |A;| for ¢ > 2, then ‘li‘i‘l < 1 which means
Ail” .
" —0asn —oofori>2
1

Therefore, we have
1 M+1 s n
EN(?I . At) =101 + lz:; C; ()\i> U; — c1U1
N

as n — 0o. Thus, for large value of n, we can approximate
The process to find “stable age distribution”:

(n . At) by ClA’iL’l_)'l.

1. Find the maximum eigenvalue of the Leslie matrix L
det(L—A)=0
3. Find one corresponding eigenvector v; associated to A;

V1
[1]

4. Normalize 77 : |

15
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§7.2 Logistic Equations with Phase Plane Solution

Definition 7.1 (Phase Plane) — A phase plane is a visual display of certain characteristics of
certain kinds of differential equations. A coordinate plane with axes being the values of two
variables.

Logistic Equation:
dN
— =N:(a—bN
o ( )
Notice that this is an autonomous differential equation. One important thing for autonomous DE is

the stability of the equilibrium points.

N(a—bN)=0 = N =0, N:%

We can observe that the equilibrium point N(t) = % is stable and N(t) = 0 is unstable. Now, let’s
show the stability of equilibrium points from an analytical aspect. We will first analyze the solution
in the neighborhood of N = . Let’s consider the Taylor’s expansion of f(N) = N(a — bN) at
N=¢

b

f(N)=N-(a—bN)

a d d’f(N
= <7>+7f( )’ —a a (2)‘ —a 1 a
b dN N=¢(N-2) dN? IN=g.1(N—2)2
a a\?
=0+ (—a) (N—g> + (—b) (N—g)
a
~—a (N-7)
Therefore,
dN a
SE=N-(a=bN)~ (~a) (Nfg)
near the neighborhood of N = ¢.
dN a
= (v-3)
Lety=N—¢ = % =d¥
d
di; =—ay = y=Ce ™
N — % =Ce ™
a —at
N(t)=+-+Ce

b

as t — oo, we have N(t) — ¢. Thus, N(t) = § is stable.

16
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§8.1 Logistic Equation with Phase Plane Solution (Cont’d)

We’d like to illustrate N(t) = § is stable from perturbation analysis point of view. Let N(t) =

% 4 € - Ni(t) by assuming that
a
b

Let’s substitute N(t) = £ 4+ &N (t) into the original DE:

leN1(t)| <

dN
o N (a —bN)
% (% + le(t)) = E%Nl (t)
- (% +eNi(t) (a— (a+ ebN1(t))>

- —%ele () — e2bN2(¢)
= —aeN;(t) — e>bN(t)

%Nl (t) = —aN(t) — ebN(t)
~ —alN;(t)

Thus, Ni(t) = Ce " — 0 as t — co and N(t) — ¢ as t — co. So, N(t) = ¢ is stable.

§8.2 SIR Model

The SIR model was first used by Kermack and McKendrick in 1947. Now this model is popularly
used to study the spread of infectious disease such as measles, Covid 19, etc. It consists of three
parts:

e S: the number of susceptible individuals
e I: the number of infected individuals
e R: the number of recovered individuals

The process of the spread of the infectious disease is at the beginning where all the individuals are
susceptible. The some of them become infectious and then become recovered individuals.

S I R

We assume that the total population
N=S+I+R

is fixed. Let 8 be the contact rate (individuals who come into contact with each other). Let 7 be
the recovery rate for the infected individuals.

17
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§9.1 SIR Model (Cont’d)

SIR model without vital dynamics
e We assume that the course of the infection is short.
e The birth and death can be ignored.
e The total number N can be treated as a constant.

Observation: The more interactions between the people in S and I the more individuals in S will
“transfer” to I.

ds
—=-p-5-1I/N 1
=51/ (1)
The change of I will involve two parts: S — I which will increase I, and I — R which will decrees I
dI
— =8-S I/n—~-1 2
priads /n—~ 2)
dR
N 3
praaltl (3)
Let’s combine the three equations.
ds _ =BSI
ir _ gs1
a=n~ -
G =1
with S+ I + R = N being a constant. Thus, to understand the model, we only need to understand
das _ _ BSI
ir _ psi
=~
Let’s normalize S, I, R first by setting
S .1 ,_R
- Na - na - N
ds _1dS L (-pSI\
it Na N\ N )"
di _1dL_ (ST
it~ Ndt N\ N )T

and we know r =1 —14 — s.

I Remark 9.1. s € [0,1], i € [0,1], r € [0, 1].

Next, let’s analyze the new model

% = —(si
% = Bsi — i = (Bs — )i
Observe that
1. %:—,@siSO = s
2. # =Ps—7)i=0 = i=0,s= % When % > 0, we know that s > % Similarly, when
di 0, 5< %

18
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Let’s draw the graph for s, i, r together.

SIR Model with Vital Dynamics:
For this model, the disease will last for a long period. It is not reasonable to ignore the birth and

death rate. It is not a reasonable assumption that S+ I + R = N where N is a constant. For this
case, let’s introduce new parameters birth rate b and death rate d.

ds —-pBSI
TSN +bN —dS
dr  BSI
a- N -d
dR
o= ~I —dR
§9.2 SIRS Model
SIRS Model without Vital Dynamics:
S I R
t |
SIRS

ﬁ:—@—i—aR

dt N
%:%—71 and S+ I+ R = N fixed
‘%:v]—QR

SIRS with Vital Dynamics: Similar to SIR with vital dynamics, we need to take the birth and
death rate into account.

a8 — B3 4 R+ bN —dS
%:%f’y[fdf and N(t) =S+ I+ R not fixed
48 — y] —aR —dR

Intro to Two-Species Models: There are several different relations: competition, predator and prey,
symbiosis, mutualism.
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§10.1 Solutions to System of Differential Equations

Theorem 10.1

= g . . . . dg =
If (A, ¥) is an eigen pair of M, then e*# is a solution of % = Mg(t).
Proof. Set i(t) = e*#. Then we have
d d d
%g‘(t) = % (e/\tﬁ) = (@B)\t)ﬁ: )\eAtﬁ (1)
and
Mi(t) = M (M%)
=eMMT
= eM(\D)
=\ M7 (2)
Combining (1) and (2) we have §(t) = eM# is a solution of £4(t) = M{(t). O
From the above theorem, we could find n solutions eMt#,.. ., e*td,.
Question 10.1. Are these n solutions linearly independent?
If Z?:l ¢;U; = 0 where ¢; = 0 in which i = 1,...,n, then v, ..., U, are linearly independent.

Know: Z?:l ¢;U; = 0 and M@ = \;v;. We want to show ¢; = 0 for all i. Let’s use mathematical
induction to show this.

e When n =1, c1v) = 0 = ¢; = 0 because &, #0
o Assume that the statement is correct when n = k.

e We want to show now that the statement also applies for the case n = k + 1. Have

k+1 k+1

ZCiMﬁi = Z CiAiUi = 6 (3)
i=1 i=1

Idea: get rid of one term so that we could use the induction assumption.

k+1 k+1
Z Cﬂ_))i =0 = Z Ci)\k+117i =0 (4)
i=1 i=1
So (3) — (4),
k
Zci ()\z - )\k—l-l) 171 =0
=1

C; ()\z — )\k+1) =0
Thus, ¢; = 0 since \; are distinct.

k+1
E U = Ck+117k+1 =0 = Crt1 = 0
i=1

Thus, the statement is true for n = k + 1.
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Theorem 10.2

If M has n distinct eigenvalues Ay, ..., A, with the corresponding eigenvectors 7, ..., 9, then
{eM'5y, ..., e*5,} are linearly independent.
Proof. Left as exercise. O

Example 10.3
Solve the following ODE:

%:233—314
%%:x—Qy

Let’s rewrite the ODE into the matrix vector form.
= |z(t) 2 -3
o= v=[f 3

Now, let’s find the eigenvalues and the corresponding eigenvectors of M.

2—A -3
det(M—)\I):det[ 1 _2_)\]
= =0
SO,)\1’2::|:1.
e For \; = —1,
- |3 =3
(M+I)1—|:1 _1:|
—f
Y
_— U1 = 1
= h

e For \ = 1, using the same process we obtain vy = [ﬂ

Therefore,
Y (t) = cre 1 + cpet 3
- 1 21

. q day v
is the general solution for % = MY (t).
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§11.1 Solutions to System of Differential Equations
(Cont’d)

Example 11.1 (Cont’d of the last example from last lecture)

Suppose that the initial conditions are x(0) = 8 and y(0) = 4. Find the explicit solution for

the DE. Recall
Y (t) = cret [ﬂ + coe€t E]

_o |1 3 8
e o) v 1] - [
1 3 1| 8
1 1 C2 - 4
al 1317 [8] |2
co| 11 4| |2
Question 11.1. If there are some complex eigenvalues for the real matrix M, how can we find the
general real solutions for diit) = MY ()?

is the general solution. So,

Example 11.2
Find the real solution for the ODE

Notice that (0
= z(t 1 -1
o=l =l 7]
First, let’s find the eigenvalues and their corresponding eigenvectors of M.
1 -1 A0
det (M — M) = det ([1 1 ] - [O /\})
=A2-21+2=0

So, A =14i.

e For A\ =1+ 4, we have B] is a corresponding eigenvector.

e For A =1 — 4, we have {_12] is a corresponding eigenvector.
Thus,

Y (t) = cre(H0t [i] + eIt [_12]

: ] dy (¢ v
is the general solution for di ) — MY (1)
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Question 11.2. How do we transform the general solution to general real solution?

Recall that

e = cos(a) + isin(a),

So,

c1e(1+i)t [ﬂ —I—Cge(l_i)t
z} 4 epeteti [—1

t ti
= cee

a€R
[—i
_1
]

—1

= c1€! (cos(t) + isin(t)) {Z

1_
e[y’
= clet |:

= (c1 +c2)e’ [

(cos(t) + isin(t))
cos(t) + isin(t)
—sin(t) + cos(t)i
cos(t) + sin(t)i
— sin(t)
cos(t)

Because ¢; and ¢y are arbitrary numbers we cou
and (¢; — co)i = 1.

|+t |

} + (c1 — cp)ie’ {

+ cpe’ (cos(—t) + isin(—t)) { 1}
(—t) +isin(—t)) (—1)
cos(—t) + isin(—t)

|

+ coet [(

|

—sin(t) — cos(t)i
cos(t) — sin(t)i

cos(t)]

sin(t)

Id choose ¢ +cs =1and ¢g —cog =0o0rcg +co =0

o sin(t) o cos(t)
cos(t) |’ sin(t)
are two linearly independent real solutions of digt) =M ?(t) The general real solutions can be
represented by
V() = et {— sm(t)} 4 et [cos(t)}

where ¢1, ¢ € R.
Method II: Exponential Method
When n = 1, we have ODE

dzx

— =Mr — T

dt

is the solution of fli—f = mx. Recall that

oo
mt __ (mt)j
€ *Z 4!
=0
Mt _ (Mt)? ) MY
L RO il
j=0 j=1

cos(t)

sin(t)

(t) = e™'xg
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To get a clearer look at eM?, let’s consider the case that M is diagonal, e.g., M = [(2) g} .

et 0
o &

If M is diagonalizable, how can we compute e™*?

M=JDJ !

eMt — i tij

|
=0 S

i JDJ
- Z

=J > tj_Dj Jt
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§12.1 Asymptotic Properties of Solutions to Linear ODE
System

Consider:
‘é—f =ax + by
’;—ZZ =cr+dy
Then,
_la b 2oy |x(t)
u=lo 3 ro=[0)
So,

a—A b
det(M—)\I):det{ . d)\]

=(a—X)(d—=)\) —bc
=X\~ (a+d)\+ad — be

Set p=a+d, g =ad — bc. Then,
det (M —AI) =X —pA\+q=0
A=p®—dq
Thus the eigenvalues distribution of the matrix M are as follows
1. A > 0, the eigenvalues are real and distinct (node or saddle)
2. A =0, repeated real eigenvalues (improper node)
3. A <0, the eigenvalues are complex (spiral)
First, let’s consider the case where we have two real roots: A > 0.

a) positive real roots p > 0, ¢ > 0

Y(t) = 016)\17:’171 + 02€>\2t’l72

Since A\, Ao >0 = eMf— > 0
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Example 12.1

Consider
1 2
then
det(M — M) =X —6\A+7=0
A=34+v2>0

) (3+V2)t 1 (3—v2)t 1
Y (t) = cie [\/5— 1] + coe {_\/i B 1]

b) Two negative real solutions: p < 0, g > 0.
}_}(t) = CleAlt’l_ﬁ + CQ@Azt'I_&

Since A\, Ao <0 = Mt =0, e** — 0 as t — co. So the equilibrium solution is stable.

c) My <0and Ay >0 and soqg<0

Y(t)= 1Mt + cae™2tiy

Since \; <0 = et 5 0ast— oo and Ay >0 = et — 00 as t — 0.

—

V2

—

U1

d) Onme root is 0: ¢ = 0 and another root is positive: p > 0. Let’s assume that Ay =0, Ay > 0

?(t) =107 + 626A2t172
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A\
\

e) One root is 0: ¢ = 0, and another root is negative: p < 0

?(t) = 101 + c2e™2t iy

-
\
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§13.1 Asymptotic Properties (Cont’d)
2. Real and equal: A =0
a) Both are positive, p > 0, the equilibrium point is unstable because ?(t) = (c1 +eat)eM —
00

b) Both negative, p < 0, the equilibrium point is stable because Y (£) = (¢1 + cat)e™ — 0 as
t — oo

c¢) Both zero, p = 0, the equilibrium point is unstable.
3. Complex roots for A2 — p\ + ¢ = 0:
A=p?>—4¢<0

Then we have

_pEVA  pEiy=A
2 2

a) Real part is positive: p > 0 then we could write

A =putwi

Y (t) = e (1 sin(vt) T + ¢y cos(vt)Ts)
since p > 0, e! — 0o as t — co. Therefore, the equilibrium point is unstable.
b) Real part is negative: p < 0
Y (t) = e (1 sin(vt) T + co cos(vt)Ts)
where e#* — 0 as t — oco. Thus, the equilibrium point is stable.

¢) The real part is zero: p = 0. Then the solution can be written as

Y (t) = ¢y sin(bt)F) + ¢ cos(bt) Ty

Notice that for any fixed constants, Y (¢) is a cyclic function of ¢. We call the equilibrium
point is neutrally stable.

dx _ p=A+D
o =A% +BY  a-ap-BC

Yoo, v
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Question 13.1. Why do we spend so much time to learn how to solve linear ODE and study their
asymptotic properties?

Let’s introduce a new section to answer this.

§13.2 Introduction to Two-Species Models

Let’s consider a simple model between two species by assuming that the population of these two
species are only depending on their population. First, let us denote the populations of these two
species as N1 and Ns. By our assumption that the change of the populations Ny, Ny only depends
on Ni, N, i.e., we just ignore the other environmental factors.

{dj;l — g(N1, Ny)

47 = (N1, N2)

()

If we assume that there is no migration of these two species
9(07N2):Oa f(NlaO):O

For a non-linear ODE, we’re interested in the stability of the equilibrium points. Recall the definition
of equilibrium point: constants solutions for the original DE. Thus, we could find the equilibrium
point by solving

{9(N167N2e) =0 (%)

f (NleaN2e) =0

Now let’s assume that (Nie, N2.) is a solution for (**). Our goal is to study the stability of
(N1e, Naoo). We consider small perturbations on (Nie, Nag), i.e.,

Nl(t) = Nie +5N11(t)
Ny (t) = Nae + eNa1 (1)

Let’s substitute Ni(t), Na(t) back to the original DE system

{dé\th = g(N1,Na)

dé\? = f(N15N2)

Then we have

&
4 (Nye +eNoy (1)) = e 210 — £ (Nye + eNyy(t), Noe + eNoy (1))

{;i (Nie +eNn (1)) = eNt0 — g (Nye + eNyy (t), Noe + eNoy (1))

Since ¢ is pretty small, we can consider the Taylor expansion of the function g, f at (Nie, Noe).
Recall the Taylor expansion with two variables

P P
b (e + Ar,y+ Ay) = da,y) + (22 (,y) - A+ 22 (z,y) - Ay
or y
1 (9%¢ 2 ¢ 0° 2
o1 <8362(x,y)A:c + 28x8yAxAy+ an(x,y)Ay > +...

— 179 9 "
:Zn!(axAx—i_ay'AZO - o(z,y)

n=0
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§14.1 Two-Species Models (Cont’d)

The Taylor expansion function for g at the equilibrium point is

g(N1e + eN11(t), Noe + €N21(t)) = g(N1e, Noe) + (Nie, Nae)eNyi ()

0
N,

0
+ aTVQQ(Nle’ Nae )Ny (t) + O(e?)
9 0
— TMQ(NImNZe)Z‘:Nll( )+ N, g(Nie, Noo)eNoi () + O(?)
Similarly, we have
0

a f (Nle,Nge)ENm( ) + 0(52)

f(Nie +eNq1(t), Noe + eNai (1)) = N,

aTVlf(NmNze)SNn( )+

Substitute the Taylor expansion of g and f back to the differential equation system we have

Edgt“ 6N1 g (N1e, Noe) eN11 () + aiNzg (Nie, Nog) eNay () + O(£?)
Edgtzl = 8N1 f (N1e>N2e) ENll(t) + aisz (N167 Nze) ENgl(t) + 0(52)

Since ¢ is very small, we could ignore the term O(e). Therefore, analyzing the stability of the
equilibrium point is equivalent to the analysis of the asymptotic properties (¢ — 00) of the linear
ODE system:

‘“,}’% = 8N1 g (Nie, Noe) Nia(t) + %Nzg(NlaN2e)N21(t>
“”J% = 3le(NleaN2e)N1( ) + %NQJ[ (Nie, Nae) Nop (1)

§14.2 Predator-Prey Models

For this model, we can consider the relations between sharks and the small fish as an example. Let
e F: number of a certain species of fish in a specific region of the sea
e S : number of sharks in the same area

Assume that the area in bounded such that there is no migration, and the food for fish is unlimited.
Therefore, the model can be represented by the two species model.

{ﬁ—ﬂF&
45 = f(F,S)

Since this model is about the relation between the predator and the prey, we should expect some
properties of g and f.
Observations: Since the food for the fish is unlimited, we can expect the increase of number of fish.

e 't = S 7 (the sharks have enough food to maintain a large population)
e ST = F | (the demand of the food of the shark increases)

o ' | = S | (the decrease of the food of the shark results in the fact that there is not a
sufficient amount of food for sharks to maintain a large population)

e S|=— Ft
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The observation above continues periodically. One popular simple model for the predator-prey is
called Lotka-Volterra model. Recall the model for one species: by our assumption, the food for the
fish is unlimited, we should expect the exponential growth of the fish, i.e.,
dF
2 4F
a ¢
If the population growth of the fish stops growing at some point, we should consider the logistic

model. IF
—— =aF — bF?
dt

Next, let’s consider one species model for sharks
ds
— =—kS
dt
Now let’s consider the interaction of fish and shark: the growth rate of the shark increases when
fishes appear. The growth rate of fish decreases when sharks appear.

4E = aF — bF? — cFS
45 — —kS + \FS

where a, b, c, k, A are some positive constants. This is known as the Lotka-Volterra model.
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§15.1 Predator-Prey Models (Cont’d)
Our goal now is to analyze the Lotka-Volterra model by asking the following questions:
Question 15.1. 1. Is this model reasonable?

2. Can the solution of the Lotka-Volterra model be consistent with our observation?
Exercise 15.1. Consider the case b # 0.

Here we will consider the case b = 0.

{‘g =aF —cFS=(a—cSF
95 = —kS + AsF = (—k + AF)S

e Without any predator, S =0 = ‘fi—f = aF, prey(fish) will increase exponentially.

e Without any prey, F =0 = % = —kS, predator(sharks) will decrease exponentially.

e —cF'S describes the effect of the predator on prey. The predator reduces the prey’s growth
with rate ¢S.

e \sF describes the effect of the prey on the predator. The prey makes some contributions to
the growth of the predator by rate \F'.

Next, we will consider
1. the equilibrium population for the Lotka-Volterra model and its stability
2. understand the relation between F' and S by considering the trajectories of the solution of

dF _dF/dt _ (a—cS)F
dS — dS/dt  (—k+\F)S

First, let’s consider the equilibrium points

(a—cS)F=0
(—k+AF)S=0

(a—cS)F=0 = F=0, Sz%
F=0=— 5=0

Thus, we have two equilibrium points

(F,S)=(0,0)

ro-(42)

The stability of these equilibrium points are
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1. (F,8) = (0,0): Set

g(F,S) =aF — cFS
f(F,8)=—kS+ \FS

Then,
@‘ i’
OF oS
_ (0,0) (0,0)
M= ﬂ‘ J’
910,00 99100

a O

0 —k

Because a > 0 and a is one of the eigenvalues of the matrix M, (0,0) is not stable. In order
to find the relation between F' and S near (0,0) we can consider

dF _ aF _ _aF
s —-kS kS

ar _ _ads
F kS
/CLF_ a [ds
F ok S
F=¢9k
2. (%%)
M- j(%%) ﬁ(%%)
ke Pk
—ck

0 = ]
- X
— | aX
|:c 0
det(M —tI) =0 = ¢t =+Vaki
We have two complex eigenvalues with real part equal to 0 for M. Thus, (f, %) is algebraically

unstable. Next, let’s consider the relations between F' and S near (% %) (use Taylor’s
expansion near it)
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§16.1 Predator-Prey Models (Cont’d)

Let’s consider the relations between F' and S near (E %) (we can consider the Taylor’s expansion

)

of g and f near (£,2)). By setting
F=%f1eR
S=42 +€Sl

c

And by ignoring the small €, we can consider the constant coefficient DEs

dFy _ _ ck
{dt - ,\S1
dS1 __ al
dt cF’1

So

dF dFy k k a
E—Eﬁ —a(/\ +€F1> —C<)\ +EF1> (E +€Sl>
= —5%51 +0(?)

In order to find F}, or Sy, we can consider

R d (dR _ d _Chg
a2 dt\at ) at\" A7t

__ckds)
oA dt
ck a\
:—77 1
d’F,
W +(LkF1 =0

The corresponding characteristic polynomial is
t? +ak=0 = t=+Vaki

Fi = cicos (Vakt) + cosin | Vakt
S1 = c3cos | Vakt) + cysin ( Vakt

Remark 16.1. We could also use the formula for linear ODE system with complex eigenvalues
directly.

By considering the initial condition, we have

aA

Fy = Fip cos(wt) — €551 sin(wt)
Sy = S0 cos(wt) + %Flo sin(wt)

where w = vak. We can see that S; and F are periodic functions with period T' = 2w—>‘ = \Z\Tc

I Remark 16.2. The period property only holds near the equilibrium point (?, %), ie,e K 1.
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Goal: Find the phase plane of F' and S

%:aF—CFSZaF( _gs)
95 _ S+ AFS = kS (—1+ 2F)

Set u =<5, v= %F (make the equilibrium points to be independent of the parameters). Then we

have ‘
%:%%:%aF(lf§S) =av(l —u)
eds — Chs (—1+ 2F) = ku(—1+v)
To study the relation between F' and S, we only need to study the relation between u and v.

du  ku(—1+wv)

dv ~ av(l—u)

1_udu:ﬁv_ldv
U

[t /(-2

because u = £S5 and v = %F

ESefgs =c (/\) Faeaf
a

F—ke)\F —_ éSae_CS -7

Next, let’s sketch the relation between F' and S. To implement, we introduce a new variable Z by
setting

7 — Pk AF
7 = ¢e— 58

Idea: Let’s study the relation between Z and F', Z and S. These relations are much easier than the
relation between F' and S because Z is explicitly represented in terms of F' or S.

7
;l? _ _kF—k—le)\F 4 F—k (e)\F)\)
k
:F—k AF [ ™ A =
e <F+> 0

k
F==
A

e When F > %, 42 > ¢

k dZ
.WhenF<X7ﬁ<O
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e
T
N

We have

oWhenS>%,%<O

oWhenS<%,%>0
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§17.1 Cooperation Model

Many organisms cooperate to perform some tasks that they cannot achieve individually.

Example 17.1 e With species cooperation: raising young, gathering food, predator pro-
tection or defense, etc

e Between-species cooperation: remoras and sharks. Remoras remove parasites, dead skin
from the sharks. Sharks will also provide protection for the remoras.

Cooperation is interesting but tricky. The cooperation will involve the process: contributing to the
common good, but the individuals might lose something.
Aim: We will build cooperation model using game theory. There are two types of organism:

1. Cooperators
2. Cheaters
There are three interactions for these two types of organisms

i) Cooperator meets cooperator: they work together

cost: g for each, benefit: b for each

ii) Cooperator meets cheater: only cooperator works, cheater doesn’t contribute anything.

cost: ¢ for cooperator, 0 for cheater, benefit: b for each

iii) Cheater meets cheater: both cheats and do nothing = no cost, no benefit.

Assume that the total population is N. All organisms are equally likely to die at a rate d. Assume
that for each birth, there is one death occurs. We propose the model:

1. Rate of the changes of number of cooperators = the rate of cooperator births - rate of
cooperator deaths.

2. Rate of the changes of numbers cheaters = rate of cheater births - rate of cheater deaths

Our next goal is to find the number of birth by finding the payoffs
total payoff to cooperator = # cooperators interact with xpayoff from the interaction with the cooperator+#cheaters
Assumption: The birth rate is proportional to the payoff.

the rate of cooperator birth = # of cooperators X total payoff to cooperators x k

where k is the proportional constant.
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§18.1 Cooperation Model (Cont’d)

Similarly for the cheater, we have the total payoff for the cheater = to the number of cooperators
interact with - the payoff from the interaction with the cheater. From these interactions, we could
construct a payoff matrix, that represents the hat benefit received by the organism depending on
the choice of these organism
(b -5 b— c>
b 0

e If the other organism is a cooperator then cheating will give a higher off.

which is a payoff matrix.
Observations:

e If the other organism is a cheater, then if b > ¢ it’s better to cooperate if b < ¢ it’s better to
cheat.

Net, let’s introduce some notion for the cooperation model
e N = total population of organisms
e 1z = fraction of organisms that are cooperators
e y = fraction of organisms that are cheaters. Note that z +y =1
e b = benefit, ¢ = cost
e k = proportional constant
e d = death rate
Assumption:
e Birth rate is proportional to the payoff from all its interaction.
e For each interaction, payoff is determined by the payoff matrix
e In each unit time, each orgasm will interact with other n randomly chosen organism.
e Offspring of cooperators are cooperators
e Offspring of cheater are cheaters
Therefore, we have the model

4(Nz)=Nz-(R-(nz-(b—%)+ny-(b—c)) —d)
4(Ny)=Ny-(k-nz-b—d)
Since N is fixed number and = 4+ y = 1, we could cancel N in both of the equations above

do  dy _

— =0
dt + dt
So

x(k-(nx(b—%)+ny(b—c))—d)—l—y(knxb—d):()

kx (mcb - % + nyb — nyc) —dx + kynxb —yd =0
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because z+y=1 — y=1—=x

kx(nb—i—%—nc)—d—i—k‘(l—x)-nxb:O

c
— — — =d >
knax (b 2)(2 z)=d>0
c c
> > =
b 2_0:> b_2

Next, let’s subsided the expression for d to the ODEs above, we have

de = kna (x (b~ §) +y (b — ) — zkna (b §) (2 - x)
% = yknab — yknz (b— §) (2 — )

To do the simplification for the above ODE system, we can get

{‘fgknxy[(gb)z+(bc)]

it =kne (5 - (b= 5v))

Recall that z +y = 1, we have y = 1 — z. Let’s substitute y = 1 — = to the expression of z—f, we
obtain

de  knz(l —x) (5=b)z+b—c)

dt g(x)

where z € [0, 1].
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§19.1 Cooperation Models (Cont’d)

Let’s first find the equilibrium points by setting
g(z) = knz(1l — z) ((% — b) x4+ (b— c)) =0
2=¢ € [0,1]?

(require § — b < 0). Since z € [0,1], we need to discuss whether —
2

Sox=0,1, —2;7%
2
Now, let’s assume that

Therefore, we have the following cases for the equilibrium points

1. When b > ¢, we have three equilibrium points on [0, 1]

dx
dt

From the figure above, we can conclude that the equilibrium points x = 0, 1 are unstable. The

equilibrium point x = 2* = ;’_—g is stable.
2

2. When § < b < ¢, we only have two equilibrium points in [0, 1]

—0, 1
b—c<O0
* = <0
T Ty es0
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dx
dt

From the figure, we can conclude that x = 0 is stable but = 1 is unstable.

§19.2 Stochastic Population Growth

Stochastic Process: family of random variables. Discrete and continuous time models predict the
average behavior of a population. This can be treated as the average size of the population over many
trials with the same environment. In real life, we may care more than the average.

Example 19.1

In stock, we may ask

Question 19.1. What’s the probability that one specific stock will drop 1000 points in a
day /week?

This will be more useful than the question “What’s the average behavior in the stock
market each day/week?”

Example 19.2
What’s the probability that a population for one species goes extinct?

Therefore, realistic population model should take the randomness into account.
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Example 19.3

Let’s consider the cells division. It is more practical to consider the random division because
the real birth rate varies between different periods.
Assumptions:

e Death rate is ignored.

e Census time is divided into subintervals At.
e ) is birth rate per cell.

e time intervals of interest is [0, T7].

In each interval, each cell has a probability to divide and the probability is b - At. How to
simulate the stochastic process?

o At each time step, generate N (¢) random numbers from a uniform distribution on [0, 1]

e For each X < bAt, it means that there is a cell to divide

N(t + At) = N(t) + # random numbers < b - At
=N(t)+ [{X : X < bAt}

42



Duc Vu (Fall 2021) 20 Lec 20: Nov 10, 2021

§20 ‘ Lec 20: Nov 10, 2021

§20.1 Stochastic Population Growth (Cont’d)

From the simulation, we can see that we get different random numbers for each run and hence a
different sequence of population sizes: N(0), N(At), N(2At),..., N(T). This just captures random
growth of populations. To analyze N (¢) itself is tricky because N (t) varies for each simulation.

Question 20.1. What should we analyze for the stochastic birth model?

We could analyze the Py (t), where Py (t) represents the probability that the population equals
N at time t. Let b = birth rate where b can be considered as the probability of a birth per unit
time. We set At to be small enough s.t. the probability for the case where there are more than 2
births can be negligible. Assume

P (one birth) = b- At
P (> 2 birth) < 1

Example 20.1

An average of 20 chickens hatch from a population of 600 hens in one hour. Then the birth

rate
_ 20 _ 1 h
= 500 — 30 per hour

or the birth rate

20 .
b= 600760 — 1800 per minute

Let’s now get back Py(t). To find the stochastic model for Py (¢) we need to find the relation
between Py (t + At) and Py(t). For sufficient small At, we should have

where o [N — 1 is the probability that exactly one birth occurs among N — 1 individuals and 7y is
the probability that no birth among N individuals.

Question 20.2. ony_1?7 Yn7

The probability of an individual giving birth in the time interval with length At is b- At because
P(> 2 birth) < 1. So the probability of not giving birth should be 1 — b - At. Therefore, the
probability that N individuals will not give birth should be

(1-bA)"Y = v =1 —bADY ~1—bNAL

(1—bAHN =14 (7) (—bA) + (];

The probability of at least one birth among N individual is

) (=bAL)® + ...

1=y =1—(1-bAt)Y
~1— (1— NbAL)
= NbAt

= on-1 =~ (N — 1)bAt because the case > 2 birth can be ignored.
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An alternative way to compute on_1,

S <N n 1) (bAE) (1 — bALN 2

= (N — 1) (bAY) (1 + (Nl_ 2) - (—bAt) + (N; 2) (—bAL)? + .. )
~ (N — 1)bAt

We substitute the expression of vy, ony—1 back into (*).

Py (t+At) mb- (N — 1) AtPy_y(t) + (1 — bNAE) Py (t)
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§21.1 Stochastic Population Growth (Cont’d)

Because At is sufficiently small, we could consider the Taylor expansion of Py (t + At) at ¢

dPy(t) N d*Pn (1)

Py (t+At) = Py(t) + — T A+ ...
P
= Py(t) + dst(t)At + O(A)
dPy (t
~ Py (t) + %()At (At < 1)

Plug in Py(t 4+ At) into (*) from last lecture,

PN(t) + %t(t)At ~ b(N - 1)AtPN_1(t) + (]. - bNAt) PN(t)
deLt(t)At — b(N — 1)AtPy_1(t) — BNALPy (1)
IOy 1) Py (8) - NPy (1) (*%)

Let’s solve (**). Assume that we have the initial condition

Pn(0) = {?, xi 1
Let’s rewrite (**)
dPCJ;;(t) +ONPN(t) = b(N = 1) Py—1(t) o

We can see that to find Py (t), we need Py_1(t), to find Px_1(¢), we need Pn_2(t). Therefore, we
need to solve
Pyi(t) = Pa(t) = P3(t) — ... = Py_1(t) = Pn(t)

Now, let’s consider Py (t)

dP(t)
bPi(t) =0
g oA
Since there is no death, we are only interested in populations > N(0) = 1, Py(t) = 0.
dP(t)
——=+bP1(t) =0
a + 0Py (1)
dP;(t)
= —bdt
Pi(t)

In P (t) —In P, (0) = —bt
Py(t) = Pi(0)e bt =70
where P;(0) is the initial condition. Next, we can consider the case N = 2. We have

dPy(t)
dt

+ 2bPy(t) = bP1(t) = be™ % (*)

In order to solve the DE above, we need to find the solution for the homogeneous DE:

—d];zt(t) +20Ps(t) =0 = Pa(t) = Ce 2
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Then we consider the method of parameter C' by setting C' to be a function of . Then
Py(t) = C(t)e "
— 20— o/(1)e=20t 1 O(t) (—2be ). So (%) becomes

C'(t)e™ 2 — 2bC (t)e 2 4 2bC (t)e 2% = be

C'(t) = be
ct)=C+ /bebt dt
=C+e

Py(t) = (C + ) e~
0=P0)=(C+1)-1=C+1

So €' = —1.
PQ(t) — (ebt _ 1) 6_2bt _ (1 _ e—bt) e—bt

Continue this process, we could get the following results
Ps(t) = (1— e*bt)2 e bt
P4(t) _ (1 _ efbt)?)efbt

The general formula then is
Py(t) = (1 — e_bt)N_l e bt

Let’s show the conclusion by mathematical induction.

1. Base case: N =1
Pi(ty=e=e"(1-e) v

2. Let’s assume that the results hold for the case N =k, i.e.,
Py(t) = e (1- e*bt)ki1

3. We need to show the results for the case N =k + 1

dr. N B 4 NPy (t) = bV — 1) Py 1 (8)
We have,
% +b(k + 1) Py (t) = bke " (1 — e*bt)k‘1 (o)
Similar to the process for N = 2, we first find the general solution for the homogeneous DE:
dPy1(t)

R 4 bk +1) Py (1) = 0

Pk+1(t) — Ce—b(k-‘rl)t
Then we set

Pypa(t) = O(t)e D!
(ﬂgkd#tl(t) _ Cl(t)efb(kjtl)t _ C(t)b(k + 1)efb(k+1)t
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Substitute P11 (t), 2Per®) g (o),

dt
O/(t)efb(kJrl)t — bke b (1 _ 6fbt)k*1
k—1 . )
C(t)=C+ /bke*b’“z (k ! 1) (—e7bt)’ 1kt
=0

k—1 .
J i —bjt—bkt
— 1)t
C+/bk;j§0(k 1>( Ye
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§22.1 Stochastic Population Growth (Cont’d)
We have

k—1
k-1 , ‘
Py (t) = c+/bk§ ( ) >(_1)J . e—bit=bkt | —b(k+1)t
; J
Jj=0

_ (c+ ekt (1 — e—bt)k) . e—blkF1)t

So the general formula is
Py(t) = (1 — e_bt)N_l e bt
Since Py41(0) =0 for all £ > 1, we have
Pis1(0)=(c+0)-1=0 = c=0
P (t) = kbt (1 o e,bt)k e blk+1)t

_ (1 _ efbt)k e bt

Here, Py(t) is called the probability mass function. It gives the probability that the population is
exactly equal to NV at time ¢.
Properties of Py (t):

1. >N Pr(t) =1

Proof. Have

Py(t) = i e (1- e_bt)N_1

gk

N=1
> N
— bt Z (1 efbt)
N=0
_ bt 1
1—(1—eb)
=e .t =1 ]

2. Expected (mean) population E(t) at time ¢ is e’

Proof. Have

E(t) = i N - Py(t)
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§22.2  Flow

Random Walks: Let’s imagine that a large group of bacteria that are swimming in a long, thin
tube. Bacteria swim in a “run and tumble” way:

e A “run” propels a bacterium to the left or right.
e A “tumble” randomly change the moving directions of the bacteria.
Question 22.1. How far along the tube do bacteria swim by time ¢?
Assumptions:
e Tube is long and thin so that it can be modeled effectively as one dimensional.

e All bacteria introduced at ¢ = 0 at the center of the tube.

—> > “-— >

Q . (@)
=0

e Each “run” moves the bacteria a distance [ along the tube.

e Bacterium run left with probability é (more general case P) and right with probability %
(more general case 1 — P)

e Move left to be negative direction or move right to be positive direction

e Break up time into tg, t1, ta, ... where each run happens during [tx_1,tx), so tx is the time
where the bacterium ends its kth run and x; is the location at time ¢.

—21 - 0 1 21
t(] °
13} ° °
123 ° ° °

This is a stochastic process with random variable x;. These are some questions:
1. What is the average position Ty, (or denote Ty by E(xy).

2. What is the distribution for z;? E.g., the probability that bacterium is at +2I, 41, 0, etc.
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§23.1 Flow (Cont’d)

First, let’s consider the relation positions at tx and t511
Tpt1 = T + dpy1

where d1 is the directional distance by the bacterium in its (k + 1)st

[, with probability %(1 -p)
d+1 = . a1
—1, with probability 3(p)

Next, we will find E(xy41) by considering

E(xgp4+1) = E (vg + dit1)
= E(vg) + E(dj41)
Notice that

1 1

E(zpt1) =E(vg) =... = E(z1) = E(x9) =0
Since this is a random process, we are interested in the variance of xy1

var (zp41) = E (2p41 — E(2r11))?)
= E ((xr41 — 0)%)
= E(xiﬂ)
=F ((mk + dk+1)2)
= B(2}) + 2E(vydy+1) + E(d7 1)

Since zy and di41 are independent, we have E(xgdi11) = E(xg)E(dk+1) = 0. Notice that

1, 1
E(di,) = 512 - 5(—1)2 =2

So

var(zpy ) = B(x?) + 12
= var(xy,) + 12
= var(zy_1) +1° 4+ 17

= var(zy_1) + 212

= var(zg) + (k + 1)I?
=0+ (k+1)? = (k+ 1)

Next, let’s answer the second question: For [ = 1, we want to find Py(d) the probability of
being at location d at time ty (after N step). When [ = 1, then the possible d at time ¢y is 0,
+1,42,...,+£N. In order to think about the “run” direction, we could correct this with the coin
flip: head = right, tail == left. Therefore, for the N coin flip, we have total 2 outcome
(because for each flip, it has two possibilities and each flip is independent). Thus, we can make the
table for the outcomes.
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figure here
When N =4, it has 16 possibility. Let’s assume that we have d; head and dy tail.

— d ==

dy +dy =4 _4+4d
dy—dy=d 2

Since dy, ds are positive integers, we have d; = 0,2,4. Therefore, for the general NV, we have

di+dy=N
di—dos=d
iy =
—
s

Since d; and ds are positive integers, we have that N and d have the same odd or even properties.
Notice that for each outcome, the probability should be 2% Therefore, we have

- (s3) (3)

Question 23.1. Py(d) if the right moving probability 1 — p and the left has probability p.

§23.2 Diffusion Equation

The continuous hypothesis: Let’s treat distance from the origin as a continuous variable x (no
longer restricted to multiple of 7). Our goal is to derive an equation for the density of the run p(z,t).
Density is defined: for some interval with length Az around the point & ([i — &z Gy %]), the

2
number of the runner at time 7 is p(Z, z) - Az.
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24.1 Diffusion Equation (Cont’d
§ q

We can model how the number of runners in interval [56 — %, T+ %] changes between time points

t and t + At. The number of runners in [& — %,fc + %] at time ¢ is p(Z,t) - Az. The number

of runners in [i‘ — %, T+ %] at time ¢ + At is p(&,t + At) - Az. Thus, the change in number of

runners in [t,t + At] is p(Z,t + At) - Az — p(Z,t) - Az = (p(&,t + At) — p(£,1)) - Az.

Let g(x,t) be the flow rate (“flux”) of the runners at point = at time [¢, ¢ + At]: change in number
Az

of runners in interval [;% - 55T+ %] is

flow in net # crossing flow in net # crossing| . Az . Ax
s&—A;”e[t,HAt]} L&+A;e[t,t+At] e\t ) Alma( @4 ot )AL

Since the above two perspectives describe the same phenomenon (the number of runners that change
over [# — &%, 4 + £%] over [t,t + At], we have

(p(&,t + AL) — p(2,1)) - Az = <q (@«-A;,t) —q(i’—i—A;,t)) CAt

or
p(fc,t—&-At)—p(fc,t)_q(ﬁ—%,t)—q(iﬁ-i-%,t)
At n Az
Set Ax — 0, At — 0, we thus have
op,. . Oq, . dp  0q "
ot B0 =g, B0 = 5t 5, =0 ®)

(*) is called the continuity equation where p(x,t) is the density of runners (bacteria) and g(z,t) is
the flow rate (flux).

Fact 24.1. Equation (*) holds for any system, where mass is conserved (no creation or destruction).

Notice that (*) involves two functions p and g which make it difficult to analyze the solution of
(*). So we want to check whether p and ¢ have some connections so that (*) can be described as a
DE with only p or gq.

Let Az =1 (step length) and At is the time for one step. Let p(z,t) be the probability that a
runner is at position x = ml at time ¢ = n - At. Then

1 1

because At, Az are pretty small, we can consider the Taylor expansion of p(z,t 4+ At), p(x — Az, t),
p(z + Az, t) at (z,1)

L. p(x,t+ At)
N dp 1 6217 2
p(z,t + At) = p(z,t) + 5 At + §w(At) +...
dp
= p(z,t) + EM
2. p(xz — Az,t) and p(z + Az, t)
Op 10%p
p(x — Az, t) = p(x,t) + a—(—Am) + 5@(—Ax)2 +...
N dp 1 6210 2
p(z + Az, t) = p(z,t) + %Aac + 5@<Am) +...
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Thus,
: (z— t) : ( t) (z,1) : 792 (Az)*+ 0O (( )4)
5Pz Ax, +2p x+ Ax,t) = p(z, +2 2 Ax)® + Ax

Substitute 1. and 2. into (**), we obtain

dp 2\ _ 19%p 2 4
p(z,t) + EAt + O(At?) = p(x,t) + 5@(ALB) + O(At?)

Set At = 0, Az — 0
2
op _ 10 D
ot 20z2
where D = limag, At—0 (%)2~
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25.1 Diffusion Equations (Cont’d
§ q

Since p(z,t) = % where N is the total population of runners (bacteria), substitute p(z,t) =
%p(:};t) back into
op _10%
ot 20x2
we obtain
0 (Ax p 0 [Ax
g (NP(%t)) =592 (Np(xat))
Az 0 Az D 0
W'ap(%)—fgai( )
op _D &
ot 2 0Ox?
- 82
= D— *
Ox2 ()

Here (*) is called the diffusion equation. D is called the diffusion coefficient. Also, (*) is called the
heat equation because it can describe the distribution of the heat over time.

Let’s compare %p =Dy~ o° 5.zp and
dp Oq

—+—==0
ot + Ox
Since these two DEs describe the same situation, we have
- 02 dq
D—p=——
ar2” Ox

0 ([~ 0 0
ax(Dax’)>+axq0
0 ([~ 0
m(Daxp”)—O

Therefore, we have Da%p +q=C@). IfC(t)=0,¢= —b%p, which is called Fick’s Law.
Find the solution for the heat equation

0 0?

w_p.

ot Ox?
We will apply the Fourier transformation on p with respect to x. First, let’s review the Fourier
Transformation on a function f(z). The Fourier Transformation on f(x) is denoted by f(s) and it

is defined as -
£ S) :/ f(x)efz’\i” dx

The Fourier Transformation on the derivative of f(x) satisfies

/<S> _ /_OO f/(aj)e—Q)\isa: dx

_ / 672>\isxdf(m)
_ —2Azswf / f 2)\28) —2Xisz dr
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Here we need to assume that lim, o f(z) =0

F(s) = 2xis f'(s)
— (2is)f(s)
= 4X2s%f(s)

The inverse Fourier Transform on f(s) is defined to be 1= f(s)e2Xis7 ds which equal to f(z) itself,
ie., . |
_ / f-(s)eQ/\zsw ds
—00

2
ap Da

Now we are ready to solve

ot~ o2’

by applying Fourier Transform on both sides w.r.t. . Then we have

5p 92
(&) =2 (5)
8p 2.2

prie —4X“s*Dp
ﬁ(s,t) _ 66—4)\252Dt

To get the expression of p(z,t), we need to take the inverse Fourier Transform of p(s,t) w.r.t. s.
Then we have

) = [ pls e s

— 00

> 2.2 .
:/ ce —4N“s DteZ)\zsx ds
00

> 2.2
_ C/ 74)\ Dt+2>\zsmd

VDi— —zi_\?_ 22
—c 2>\s ) 1D g

0 — S \2
= ce 4tD/ e—(2>\s D 2\/bt) ds

— 00

Set y = 2Asv Dt — 2\"7; = dy = 2\VDtds

Di
(x,t) = ce~ D /OO e*yz#d
P " Dt

22 > 2
= e 4tD e Y dy

2)\\/ —o
= e 4tD o\

Notice that

e lim; .o+ p(0,t) = lim;_,q- p(0,t) = co. This is consistent with our assumption: all bacterial
areat z=0att=0.

o lim, o p(x,t) =lim,—,_o p(z,t) =0

e p(0,t) = s7ip5; — density at origin decay over time.
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§25.2 Diffusion on a Bounded Domain

Motivation: In real case, we would like to model dynamics on a finite domain. In this case, we need
to consider the influence at the boundaries. So we need to impose the boundary conditions (along
with the initial conditions) to ensure our PDE problem to be well-posed.

Suppose the length of the bar is L and the bar is perfectly insulated on the outsides (except possibly
from the ends z = 0, z = L). Since the bar is perfectly insulated, we will not gain or lose energy
anywhere except the boundary = conservation of energy. This system satisfies the continuity

equation
1o} 0q
o (Tep) = —22 (1)

where ¢ = specific heat, p = material density, T'cp stands for the heat energy and ¢ represents the
flux (here ¢ and p are some fixed number).

Repeat the process of the density function for the running process, we have that the flux of the

heat should satisfy the Fick’s Law:
oT

Q<x7t) =—k- % (2)

where k is the thermal conductivity of the material. Let’s substitute (2) to (1), we have

0 0 oT
o) =5 ("“a)

0 0°T
CPET = kw
or  k 0°T
9t cp O
¥

where 0 < x < L, t > 0 and it satisfies the initial condition T'(x,0) = Tp(z). In a finite domain, we
also need to consider temperature dynamics at the boundaries.
Popular boundary conditions:

1. Temperature on the boundaries is constant
T(0,t) = ap and T(L,t) = ar,
This is called “Dirichlet” or “fixed” conditions.

2. Flux on boundaries is constant:

Q(O7t) = 607 Q(L7t) = ﬂL

This is called “Neumann” or “fixed-flux” boundary condition. Because ¢(z,t) = ,k%’ the
“Neumann” boundary condition can be converted into

oT or

Y0, % (L.0) =L

oz oy
But Bovo <0, By < 0.

3. Perfect insulation. Then it means that no heat can enter or leave the bar. So the flux is 0.
q(0,t) =q(L,t) =0

“No flux” condition.
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It’s difficult to find the solutions for the PDE with boundary conditions. But we can learn the
system by considering equilibrium solution. Notice that we are assuming the BC are independent of

time, the steady state exist and the steady state is also independent of time:

tlggo T(x,t) = Too(x)

0

Example 25.1

Consider

oT o*T
—=D— 1, T =
5 922 0<z<l, (0,t) = ao

T(1,t) =a; and T(z,0)=Ty(x)
Find the steady state T..

0T 9°T,
o 0 P 70
Pl 3 (T _ .
0r2 Oz \ Oz )
O
— g

(4 is independent of ¢ and x because T, is independent of ¢, $0 Tro = Too ().
— TOO(LL') = Ciz + Cy

Now, let’s use the BC

T(O,t):ao — C1-0+Cy =y = Cy=aqg
T(l,t):alphl — C1+Co=01 = Ci =01 —aop
= Too(z) = (1 — ap)x +

Example 25.2

Consider
or 0°T
ot ox2’

or
Bl = 0 and T(z,0)=Ty(x)

0<z<l1l, T(0,t)=ap

Find the steady state T..
From the above example, we have T, (z) = Ciz + Cs. Next, let’s apply the BC on T,

T(O,t) =0y — TOO(O) =Cy =g
oT 0T

=0 = :C]_:O

0x lz=1 0xr lz=1

Thus, Teo(x) = ag.
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