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§1 Lec 1: Mar 28, 2022

§1.1 Introduction

Some introduction and logistics stuffs of the class. Nothing mathy is discussed in this lecture.
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§2 Lec 2: Mar 30, 2022

§2.1 Networks and Matrices

Definition 2.1 (Graph) — A (simple, undirected) graph is G = (N,E), a node set N and an
edge set E ⊆ N ×N s.t. i ̸= j∀(i, j) ∈ E.

Definition 2.2 (Adjacency Matrix) — The adjacency matrix A of a graph G = (N,E) is a
matrix in Rn×n where n = |N | with entries

aij =

{
1, if (i, j) ∈ E

0, otherwise

Example 2.3

Consider the following graph

1 2

3

4
5

The adjacency matrix is

A =


0 1 1 0 0
1 0 0 1 1
1 0 0 1 0
0 1 1 0 0
0 1 0 0 0



Definition 2.4 (Walk)— A walk inG = (N,E) is a sequence of edges (i1, j1), (i2, j2), . . . , (ik, jk)
where

j1 = i2, j2 = i3, . . . , jk−1 = ik

This is a walk of length k (number of edges) from i1 to jk.
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Example 2.5

Consider the above example

1 2

3

4
5

Walk 3 → 2 of length

• 1 : ∅

• 2 : (3, 1), (1, 2); (3, 4), (4, 2)

• 3 : ∅

• 4 : (3, 1), (1, 2), (2, 1), (1, 2)

Fact 2.1. The ijth entry of A counts the number of walks of length 1 from node i to j.

Conjecture 2.1. The ijth entry of Ak counts the number of walks of length k from i to j.

Proof. Suppose inductively that W (k)
△
= Ak has entries wij(k) counting k-walks from i → j.

Consider W (k + 1) = W (k)A. Its entries are

wij(k + 1) =
∑
l∈N

wil(k)alj

6
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§3 Lec 3: Apr 1, 2022

§3.1 Measures and Metrics

A walk of length 2, i ↔ i, is the number of edges attached to node i
△
= degree of node i, ki

ki =
∑
j∈N

aij =
∑
j∈N

aji = iith entry of A2

Definition 3.1 (Degree) — The degree ki of a node i is the number of edges attached to it

ki = |{j : (i, j) ∈ E}|

Definition 3.2 (Path-connected) — Nodes i and j are path-connected if ∃ a walk i ↔ j of any
length. The connected component of i is the set of notes to which i is path-connected.
G is connected if it has 1 connected component.

Consider a disconnected graph G

1

2 3

4

5

6

7

1

2

Then, the adjacency graph is

A =

[
A1 0
0 A2

]
up to permutations of node labels

Question 3.1. How big is a graph?

• Number of nodes

• Number of edges

• Diameter

Definition 3.3 (Geodesic Path) — Geodesic (shortest) path between i ↔ j is a walk s.t. no
walk has shorter length.

7
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Definition 3.4 (Diameter) — Diameter of G is

max
ij

geodesic distance(i, j)

which is undefined if i and j are not connected.

Example 3.5

“6 degrees of separation”: in social networks, the diameter is usually about 6.

Node Importance:

∗

• * has highest degree

• If * were removed, graph would be disconnected

• Short average distance to other nodes

• Betweeness: # of geodesic paths passing through i ∈ N .

8
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§4 Lec 4: Apr 5, 2022

§4.1 Measures and Metrics (Cont’d)

Definition 4.1 (Triadic Closure) — In networks, the observation that this phenomenon

happens a lot is called triadic closure.

Calculation: # of triangles attached to node i = # of walks of length 3 i ↔ i (A3 diagonal)
· 12 = 1

2

∑
j

∑
k aijajkaki.

To compute the # of possible triangles attached to i

1. Calculate ki

2.
(
ki

2

)
Exercise 4.1. Express in terms of the adjacency matrix A.

Definition 4.2 (Local Clustering Coefficient) — The local clustering coefficient CCi at node i
is

# of triangles at i

# of possible triangles

Note: 0 ≤ CCi ≤ 1.

Remark 4.3. On average, CCi is high (many triangles can be observed) and global measures are
high.

Definition 4.4 (Laplacian Matrix) — The (combinatorial) Laplacian matrix of a graph L ∈ Rn×n

L = D−A

where

D =


k1

k2
. . .

kn
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Definition 4.5 (Clustering/Partition) — A clustering/partition of a graph is a partition of N ,
{C1, C2, . . . , Cl}

N =

l⋃
j=1

Cj , Cj ∩ Cj′ = ∅ if j ̸= j′

Let ci
△
= cluster of node i.

Definition 4.6 (Cut Value) — The cut value of a partition {C1, . . . , Cl} is

1

2

∑
i,j∈N

aij 1 [ci ̸= cj ]︸ ︷︷ ︸
=1, ci ̸=cj

=0 otherwise

Idea: Good clustering have small cut values.
Setting: 2 clusters {C1, C2}

s ∈ Rn, si =

{
+1, ci = 1

−1, ci = 2

Theorem 4.7 (Laplacian Formula for Cuts)

The cut value of {C1, C2} is 1
4s

⊤Ls.

Proof. Consider

x⊤Lx = x⊤(D−A)x

=
∑
i∈N

kix
2
i −

∑
i,j∈N

aijxixj

=
∑
i,j∈N

aijx
2
i −

∑
i,j∈N

aijxixj

=
1

2

 ∑
i,j∈N

aijx
2
i +

∑
i,j∈N

aijx
2
j − 2

∑
i,j∈N

aijxixj


=

1

2

∑
i,j∈N

aij(xi − xj)
2

So

s⊤Ls =
1

2

∑
i,j∈N

aij(si − sj)
2

=
1

2

∑
i,j∈N

aij (41 [ci ̸= cj ])
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§5 Lec 5: Apr 6, 2022

§5.1 Erdos-Renyi Random Graph

Definition 5.1 (Random Graph) — Random graph is a probability distribution over graphs.

Definition 5.2 — An Erdos-Renyi random graph on n nodes with edges probability p is
written G(n, p).

To sample, we take each pair of nodes and draw an edge between them i.i.d with probability p.

Question 5.1. How many pairs are there?

There are
(
n
2

)
. Also,

E [# of edges] = p

(
n

2

)
So # edges ∼ Binomial

((
n
2

)
, p
)
.

Example 5.3

Consider

G(4, 12) G(4, 12)

Question 5.2. What is the average degree c?

We can see that c = 1
2 for the left graph and c = 2 for the right graph.

Note: The average degree can be calculate as c = 2m
n where m is the number of edges and n is the

number of nodes.
Expected # of Triangles in ER

E [# of triangles] =

(
n

3

)
p3

where each edge is independent. Recall the global clustering coefficient is

C =
# of triangles · 3
# of wedges

where a wedge is a graph with 3 nodes and 2 edges. Then,

E [# of wedges] = 3

(
n

3

)
p2

11
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Note that

E [C] ̸= E [△] · 3
E [# of wedges]

= p

Fact 5.1. As n → ∞, C
in dist.−→ p.

Node degree in ER
E [ki] = (n− 1)p = c

As p increase, E [ki] also increases (linearly). However, this is not always the case. Consider
sparse ER with p = c

n−1 . So, as n → ∞, p = c
n−1 → 0, i.e., sparse ER model has very little

clustering.

Definition 5.4 (Cycle) — A cycle on node i is a walk from i ↔ i with no repeated nodes or
edges.

We can observe that 3-cycles are rare in large sparse ER (n → ∞).

12
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§6 Lec 6: Apr 8, 2022

§6.1 Paths and Branching Processes in ER Random Graphs

Definition 6.1 (Path) — A path is a walk with no node repetitions.

Path lengths: Pick i, j ∈ N . Define Rk
△
= # of paths of length k between i and j. Let’s compute

rk = E [Rk].

E [Rk] ≈ E [#( path to l and (l, j) ∈ E)] = E [# of length to l of length k − 1] p = rk−1p

So
rk ≈ rk−1p︸ ︷︷ ︸

for path through l

(n− 2)︸ ︷︷ ︸
# of ways to choose l ̸=i,j

Also, notice that
rk ≈ rk−1p(n− 1) = rk−1c = ck−1r1 = ck−1p

Question 6.1. What length k makes path likely?

We have

log rk ≈ (k − 1) log c+ log p︸︷︷︸
log c−logn

k ≈ log rk + log n

log c

Assume rk = 1. Then, consider the world population of 8 billions with average degree of 1000

k ≈ log n

log c
≈ log 8 · 109

log 103
≈ 3.4

Notice that if c ≤ 1, the expression above doesn’t make any sense.
Galton-Waston Branching Process

Definition 6.2 (Branching Process) — Let p be a probability distribution on Z, called the
offspring distribution. A branching process with distribution p is a sequence of random variables
X0, X1, X2, . . . s.t. X0 = 1 and for t ≥ 1,

Xt =

Xt−1∑
i=1

Yi

where each Yi is distributed i.i.d. according to p.

Branching processes create tree-graphs without cycles, which we can utilize to better understand
the behavior of ER random graph.

13
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§7 Lec 7: Apr 11, 2022

§7.1 Giant Component in Sparse Erdos-Renyi

Fact 7.1. Say we have a Poisson(c) process, then

E [Xk] = ck

Total number of individuals in E

E

[ ∞∑
k=0

Xk

]
=

∞∑
k=0

E [Xk] =

∞∑
k=0

ck =

{
1

1−c 0 < c < 1

divergent “∞” c ≥ 1

Let’s consider

P

(
size of component containing node i

n
> a

)
= P (size > an)

≤ E [size]

an
(Markov’s)

=
1

an

1

1− c
→ 0 unless a = 0

In the case of a = 0, P
(
size
n > 0

)
= 1.

Definition 7.1 (Giant Component) — A sequence G
(
n, c

n−1

)
as n → ∞ has a giant compo-

nent(GC) if

P

(
component containing random node i

n
> a(> 0)

)
≥ b > 0

In other words,

E [size of largest component] = an for some 0 < a ≤ 1

Fact 7.2. Sequence G
(
n, c

n−1

)
has a giant component if and only if c > 1.

Let u be the probability P that a node is not in giant component, s = 1− u is probability that a
node is in giant component, sn = size of giant component.

u =

 1− p︸ ︷︷ ︸
not connected

+ pu︸︷︷︸
connected not in GC

n−1

Let’s simplify the above expression.

u = (1− p (1− u))
n−1

=

(
1− c(1− u)

n− 1

)n−1

= e−c(1−u) as n → ∞

Replace s = 1− u
s = 1− e−cs

14
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§8 Lec 8: Apr 13, 2022

§8.1 Experimental Lecture on ER Theory

In this lecture, we did some experiments with Python to check whether they agree with the
theoretical results that we discussed previously on ER random graph.
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§9 Lec 9: Apr 15, 2022

§9.1 Configuration Model

Definition 9.1 (Degree Sequence) — The degree sequence of G = (N,E) with |N | = n is

k⃗ ∈ Zn s.t. degree of i ∈ N = ki.

Definition 9.2 (Configuration Model Random Graph) — The configuration model random graph

with degree sequence k⃗ is a uniformly random graph among all graph with degree sequence k⃗.

Stub-Matching:
Select uniformly random pairs of half edges and turn them into edges until we run out of edge

pair (we then have a graph). However, this method is not perfect as we can have a problem with
self-loop or parallel edges, i.e., we only want simple graphs.

Fact 9.1. For n → ∞, if the degree sequence doesn’t grow in its entries (sparsity), then
P (simple graph) > ε > 0.

Fact 9.2. Stub matching (conditioned on getting a simple graph) samples from configuration model.

Moment of the degree sequence:

Definition 9.3 — Degree distribution pk = P (random node has degree k) = # nodes of degree k
n .

The lth moment is defined as

⟨kl⟩ △
=

∑
k

pkk
l

So

⟨k0⟩ =
∑
k

pk = 1

⟨k1⟩ =
∑
k

pkk

Branching Process:

i

X1 ∼ pk

qk X2

E [X1] = ⟨k⟩

16
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and

qk = P (if I follow an edge to node j, the number of additional edges on j = k)

qk =
(k + 1)pk+1n

# of half-edges=2m

=
(k + 1)pk+1

⟨k⟩

Then,

E [# offspring in 2nd gen from single parent] =
∑
k=0

kqk =
∑
k=0

k(k + 1)pk+1

⟨k⟩

=
∑
k′=1

(k′ − 1)k′pk′

⟨k⟩

=
1

⟨k⟩
∑
k′=1

(
k′2 − k′

)
pk′

=
1

⟨k⟩
(
⟨k2⟩ − ⟨k⟩

)
Branching heuristic for giant component: Giant component iff ⟨k2⟩−⟨k⟩

⟨k⟩ > 1.
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§10 Lec 10: Apr 18, 2022

§10.1 Configuration Model (Cont’d)

From Cauchy-Schwarz, ⟨k2⟩ ≥ ⟨k⟩2. In real world social networks, ⟨k2⟩ ≫ ⟨k2⟩ (heterogeneous
degree). For example, say we have vaccine for 1% of population, and we want to vaccinate high
degree individuals but in reality we don’t know their degree. The problem here is we don’t have
network data/structure, and our assumption is ⟨k2⟩ ≫ ⟨k⟩2.
Instead of randomly picking people to get vaccine, we encourage people to nominate a friend to get
the vaccine (walk along social network).

18
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§11 Lec 11: Apr 20, 2022

§11.1 Modularity Maximization

Definition 11.1 (Modularity) — The modularity of graph G and cluster labels zi for each
node, z⃗ ∈ Rn with respect to random graph model M

Q(G, z) =
1

2m

∑
i,j∈N

[aij − Em [Aij ]] δ(zi, zj)

where

δ(x, y) =

{
1, x = y

0, x ̸= y

Consider an ER random graph G(n, p)

E [Aij ] = P (Aij = 1) = p

Now, consider the configuration model, we know the degrees k1, k2, . . . , kn

n∑
i=1

ki = 2m

Then,

E [Aij ] =

(
ki
2m

kj
2m− 1

)
2m ≈ kikj

2m

So we can substitute the expression above into the modularity formula

Q =
1

2m

∑
i,j

(
aij −

kikj
2m

)
δ(zi, zj)

which is known as the standard modularity.
Now, let’s dig into how to maximize the modularity. We need to find cluster/communities in G by
solving

ẑ = argmax
z

Q(G, z)

Assume we have n nodes and 2 groups, then there are 2n candidate solutions. However, this is
NP-hard problem. We must use heuristics. First, let’s turn δ(zi, zj) into some expression that
involves linear algebra.

si
△
=

{
+1, zi = 1

−1, zi = 2

δ(zi, zj) =

{
1, zi = zj

0, otherwise

=
1

2
(sisj + 1)

19
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So

Q =
1

2m

∑
i,j

(
aij −

kikj
2m

)
1

2
(sisj + 1)

=
1

4m

∑
i,j

(
aij −

kikj
2m

)
︸ ︷︷ ︸

bij

sisj +
1

4m

∑
i,j

(
aij −

kikj
2m

)
︸ ︷︷ ︸

=0

=
1

4m

∑
i,j

bijsisj

Definition 11.2 (Modularity Matrix) — The modularity matrix B ∈ Rn×n has entries

bij = aij −
kikj
2m

This allows to write

Q =
1

4m
s⃗⊤Bs⃗

Let s have any entries, solve maxs s⃗
⊤Bs⃗, set

zi =

{
1, si < 0

2, si ≥ 0

So from homework 0, we know that s = 1st eigenvector of B.
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§12 Lec 12: Apr 22, 2022

§12.1 Modularity Maximization (Cont’d)

Consider a community detection problem

1

2

3

4

5

6

7

Say we find a label vector z⃗ = (1, 1, 1, 1, 2, 2, 2). In modularity maximization, our goal is to pick
z⃗ to maximize

Q =
1

2m

∑
i,j∈N

[
aij −

kikj
2m

]
δ(zi, zj)

Let l be a label. Let’s define

el
△
=

1

2m

∑
i,j∈N

aijδ(zi, l)δ(zj , l) = % of all edges w/ both ends in community l

and

fl
△
=

1

2m

∑
i∈N

kiδ(zi, l) = % of edges that end in cluster l

So from the above figure, we can see that

e1 =
1 · 10
2 · 9

=
5

9

f2 =
1 · 7
18

=
7

18

So we can rewrite Q as follows

Q =
1

2m

∑
i,j

[
aij −

kikj
2m

]
δ(zi, zj)

=
1

2m

∑
l

∑
i,j

aijδ(zi, l)δ(zj , l)


=

1

2m

∑
l

∑
i,j

kiδ(zi, l)kjδ(zj , l)

2m


=

∑
l

[
el − f2

l

]
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Consider max−
∑

l f
2
l or min

∑
l f

2
l s.t.

∑
l fl = 1 and fl ≥ 0. Then, by using Lagrange multiplier,

we have

∇
∑
l

f2
l = λ∇

∑
l

fl

2

f1
f2
...

 = λ

1
1
...


=⇒ fl = fl′ for l ̸= l′

Thus, modularity maximization says

1. Try to make lots of in-cluster edge (max el)

2. Try to make the cluster similar sizes (fl)
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§13 Lec 13: Apr 25, 2022

§13.1 Resolution Limit

Modularity maximization can’t find communities that are “too small” relative to graph size.

?
?

u

v

w

Let ∆Q be the change in Q due to merging u and v into w.

∆Q = ew − (eu + ev)︸ ︷︷ ︸
1

2m

−
(
f2
w −

(
f2
u + f2

v

))
Note that

fu =
1

2m
(sum of node degrees in cluster u) =

1

2m
[(k − 1)k + 1] = fv

△
=

s

2m

and

fw =
1

2m
2s (= fu + fv)

So when is ∆Q > 0?

1

2m
− (2s)2

(2m)2
+ 2

s2

(2m)2
> 0

2m > s2

Example 13.1

Consider a graph with n = 5× 106 and c = 20

=⇒ 2m = nc = 108

We need s >
√
2m = 104 where s = k2−k+1. So roughly speaking, k > 100 to detect k-clique

communities in this graph.
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§14 Lec 14: Apr 27, 2022

§14.1 Random Walks on Graphs

Simple Random Walk:
Start at node i. Pick a neighbor of i uniformly at random and move there. Repeat this process

infinitely.

Definition 14.1 (Simple Random Walk) — A simple random walk on graph G is a countable
sequence of random variables X1, . . . , Xt, . . . with values in N (Xt = i implies we are at node
i at time t). The distribution of Xt+1

P (Xt+1 = i|Xt = jt, Xt−1 = jt−1, . . . , X0 = j0) = P (Xt+1 = i|Xt = jt) =

{
1

kjt
(jt, i) ∈ E

0 (jt, i) /∈ E

=
aijt
kjt

Definition 14.2 (Transition Matrix) — The transition matrix of a simple random walk is
P = AK−1 where

K =

k1
. . .

kn


and pij =

aij

kj
.

Consider

P (Xt+1 = i) =
∑
j∈N

P (Xt+1 = i|Xt = j)P (Xt = j)

qi(t+ 1) =
∑
j∈N

pijqj(t)

So
q⃗(t+ 1) = Pq⃗(t) = Pt+1q(0)

Definition 14.3 (Stationary Distribution) — A simple random walk has a stationary distribution
π⃗ ∈ Rn if limt→∞ q⃗i(t) = π⃗i, regardless of the starting point.

Definition 14.4 (Ergodic Graph) — A graph is ergodic if

1. it is connected and

2. it is aperiodic (gcd of cycle length = 1)
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Theorem 14.5

A simple random walk on an ergodic graph has a unique stationary distribution π⃗. Furthermore,
π⃗ is the unique solution of π⃗ = Pπ⃗.

Proof. Use Perron-Frobenius Theorem.

Structure of π⃗: Recall P = AK−1. We want to show

π⃗ = AK−1π⃗

Guess: ρ⃗ = k⃗. Then, let’s check.

AK−1ρ⃗ = AK−1k⃗ = A1 = k⃗ = ρ⃗

This is not normalized, so we can deduce that π⃗ = 1
2m k⃗.
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§15 Lec 15: Apr 29, 2022

§15.1 PageRank

Definition 15.1 (Directed Adjacency Matrix) — Directed adjacency matrix A ∈ Rn×n

aij =

{
1 if j → i

0 otherwise

Consequently, A is, in general, not symmetric.

Definition 15.2 ((Directed) Degree) — We define

kini =
∑
j∈N

aij

kouti =
∑
j∈N

aji

Directed Random Walk: From node j, follow a random outgoing arrow to the next node

P (Xt+1 = i|Xt = j) =
aij
koutj

△
= pij

Then, we define the transition matrix as follows

P = A(Kout)−1

where

Kout =

k
out
1

. . .

koutn


in which we assume kouti ≥ 1 ∀i.

Theorem 15.3

Suppose that there exists integer t > 0 s.t. At has all positive entries. Then the directed
random walks has a stationary distribution π⃗, and Pπ⃗ = π⃗.

Definition 15.4 (PageRank) — With probability 1 − α, take a directed random walk step
with probability α, teleport somewhere else. Note that

• α ∈ [0, 1] is the teleportation rate

• v⃗ ∈ Rn is the teleportation vector (assume v⃗ is entry-wise positive,
∑

vi = 1)

This walk has the probability transition

P (Xt+1 = i|Xt = j) = (1− α)
aij
koutj

+ αvi = p̃ij
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We define
P̃ = (1− α)P+ αV

Traditionally, α = 0.15 and v⃗ = 1
n

(
1 1 . . . 1

)⊤
. If we choose this particular choice, PakeRank

has a stationary distribution. Notice that πi > 0 where π⃗ = P̃π⃗.
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§16 Lec 16: May 2, 2022

§16.1 Agent-Based Modeling

Coding session :)
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§17 Lec 17: May 4, 2022

§17.1 Opinion Dynamics

figure here
Each node i has opinion xi ∈ [−1, 1]. For example,

x1

x2

x3

x4

x5

 =


0.5
−0.7
0.2
−0.3
0.0

 = x⃗(t)

Then,

x⃗(t+ 1) = F (x⃗(t))

This is discrete-time deterministic (not random) synchronous (all nodes update simultaneously)
model, and our function F depends on the graph structure.

F (x⃗(t)) =


f1 (x⃗(t))
f2 (x⃗(t))

...
fn (x⃗(t))


Note that fi (x⃗(t)) is a function only of the neighbors of node i and i itself.

xi(t+ 1) = fi (x⃗(t)) = (1− β)xi(t) + β
1

ki

∑
j∼i

xj(t)︸ ︷︷ ︸
average of neighbor opinion

Notice that
∑

j∼i xj(t) =
∑

j∈N aijxj(t) = (Ax⃗)i and (1− β)xi(t) = ((1− β)Ix⃗)i. Then,

x⃗(t+ 1) =
[
(1− β)I+ β

(
K−1A

)]
x⃗
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§18 Lec 18: May 6, 2022

§18.1 Opinion Dynamics (Cont’d)

Recall
x⃗(t+ 1) = (1− β) [Ix⃗(t)] + β

[
K−1Ax⃗(t)

]
Then, we have

x⃗(t+ 1)− x⃗(t) = β
(
K−1A− I

)
x⃗(t)

= βK−1 (A−K) x⃗(t)

= βK−1(−L)x⃗(t)

= −βLx⃗(t)

Fact 18.1. x⃗(t)
t→∞−→ x⃗∗ where Lx⃗∗ = 0⃗ and x⃗∗ is unique if G is connected.

Suppose Lx⃗ = 0⃗, and in particular

K−1(K−A)x⃗ = 0⃗

(K−A)x⃗ = 0⃗

So Lx⃗∗ = 0⃗. Thus,
x⃗∗ = γ1⃗

Fact 18.2. On connected graphs, linear consensus dynamics converges to consensus, i.e., x∗
i = x∗

j

for all i, j ∈ N .

Model Modifications

• β depends on node where some nodes have βi = 0

• Interaction depends on xi and xj (Hegselmann-Krause)

• Introduce noise
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§19 Lec 19: May 9, 2022

§19.1 Opinion Model Implementation

Coding session – refer to this link!
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https://www.philchodrow.com/intro-networks/chapters/multi_agent_models.html#agent-based-implementations
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§20 Lec 20: May 11, 2022

§20.1 Midterm
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§21 Lec 21: May 13, 2022

§21.1 Intro to Epidemics on Networks

Coding session :D – refer to this link!
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https://www.philchodrow.com/intro-networks/chapters/multi_agent_models.html#epidemic-modeling
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§22 Lec 22-23: May 18-20, 2022

§22.1 Link Prediction in Networks

Coding Session :) – refer to this link!
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https://www.philchodrow.com/intro-networks/chapters/prediction_feedback_loops.html
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