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§1 Lec 1: Jan 4, 2021

§1.1 Intro to Dynamical Systems

There are two types of dynamical systems:

1. Discrete in time:

• Difference equation

• Iterated map: an+1 = f(an)

2. Continuous in time: differential equation

• Partial Differential Equation (PDE):

e.g. heat equation
∂u

∂t
=
∂2u

∂x21
+
∂2u

∂x22

wave equation
∂2u

∂t2
=
∂2u

∂x21
+
∂2u

∂x22

where the derivatives w.r.t time and space.

• Ordinary Differential Equation (ODE):

i) Harmonic oscillator

m

0

x

m: mass
k: spring constant

mẋ+ kx = 0

If ω2 = k
m , then

x(t) = x0 cos(ωt) + x1 sin(ωt)

ii) Damped harmonic oscillator

mẍ+ bẋ+ kx = 0, b: damping constant

iii) Forced, damped harmonic oscillator

mẍ+ bẋ+ kx = F cos(t), F : force

so derivatives w.r.t time only.

Definition 1.1 (Order of ODE) — Highest occurring derivative is defined as the order
of the ODE.
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Remark 1.2. We can always write an ODE of nth order as a system of ODEs of 1st order.

Trick: Consider the damped harmonic oscillator

mẍ+ bẋ+ kx = 0

Set

x1 = x

x2 = ẋ

Then,

ẋ1 = ẋ = x2

ẋ2 = ẍ = − b

m
ẋ− k

m
x

= − b

m
x2 −

k

m
x1

i.e.,

ẋ1 = x2

ẋ2 = − b

m
x2 −

k

m
x1

General framework: ẋ = f(t, x)
f : R× Rn → Rn

i.e.,

ẋ1 = f1(t1, x1, . . . , xn)

... (1)

ẋn = fn(t, x1, . . . , xn)

which is 1st order n-dimensional ODE.

Definition 1.3 (Linear ODE) — The ODE (1) is called linear if f(t, x) = A(t) · x for
a time dependent matrix A(t), otherwise we call it non-linear.

Example 1.4

The damped harmonic oscillator is linear.(
ẋ1
ẋ2

)
=

(
0 1

− k
m − b

m

)(
x1
x2

)

Question 1.1. Why are linear equations special?

They satisfy the principle of superposition. If φ, ψ solve ẋ = A(t)x, then y(t) = c · φ(t) +
ψ(t), c ∈ R also solves ẋ = A(t)x. This is valid because ẏ = cφ̇ + ψ̇ = cAφ + Aψ =
A(cφ+ ψ) = Ay. For non-linear ODEs, the principle of superposition fails.

6



Duc Vu (Winter 2021) 1 Lec 1: Jan 4, 2021

Definition 1.5 (Autonomous ODE) — The ODE (1) is called autonomous if f does
not depend on t, i.e., f(t, x) = f(x).

Example 1.6

mẍ+ bẋ+ kx = F cos(t)

is non-autonomous.

However, we can always consider an autonomous system instead. Set

x1 = x

x2 = ẋ

x3 = t

Then

ẋ1 = x2

ẋ2 = − b

m
x2 −

k

m
x1 + F cos(x3)

ẋ3 = 1

We will primarily study autonomous 1st order system in 1 or 2 variables.

Example 1.7 (Swinging Pendulum)

Consider a swinging pendulum

•

x
L

m
g

ẍ+ g
L sin(x) = 0

Set

x1 = x

x2 = ẋ

Then

ẋ1 = x2

ẋ2 = − g
L

sin(x1)

1st order, non-linear autonomous ODE in 2 variables.
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Question 1.2. What can we say about the behavior of a solution x1(t), x2(t) for larger
time t? How does it depend on g

L?

Idea: Use geometric methods, without solving ẋ = f(x) explicitly, to make qualitative
statements about the long time behavior of the solution.
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§2 Lec 2: Jan 6, 2021

§2.1 Phase Portraits

We want to study 1D autonomous dynamical systems

ẋ = f(x), f : R→ R

Remark 2.1. x(t) is the solution to ẋ = f(x) with x(0) = x0. Find the solution y(t) with
y(t0) = x0.

Ans: y(t) = x(t − t0) because y(t0) = x(0) = x0 and ẏ(t) = ẋ(t − t0) = f (x(t− t0)) =
f (y(t)).
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Example 2.2

x = sin(x). Suppose x0 = π
4 , x(t) solution with x(0) = x0. Answer the followings

• Describe the long time behaviors of x(t) as t→∞.

• How does the long time behavior depend on x0 ∈ R?

Attemp 1: Find explicit solution

dx

dt
= sin(x)

dt =
dx

sin(x)

t = − ln

∣∣∣∣ 1

sin(x)
+

cos(x)

sin(x)

∣∣∣∣+ c

We know x(0) = x0, so c = ln
∣∣∣1+cos(x0)

sin(x0)

∣∣∣. But what is x(t) =? This approach fails!

Attempt 2: Draw a phase portrait/diagram. We want to interpret the velocity ẋ = f(x)
as a vector field on the real line.

−2π −3π
2
−π −π

2
π
2

π 3π
2

2π

−2

−1

1

2

f(x) = sin(x)

t

x

Idea:

• If f(x0) > 0, then the solution to ẋ = f(x), x(0) = x0 increase near x0.

• If f(x0) < 0, then the solution to ẋ = f(x), x(0) = x0 decrease near x0.

• If f(x0) = 0, then the solution to ẋ = f(x), x(0) = x0 is x(t) = x0 for all t ∈ R,
i.e., we have a fixed point/equilibrium point.

10
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Example 2.3

ẋ = f(x) = sin(x)

−3π −2π −π π 2π 3π

−2

−1

1

2

f(x) = sin(x)

t

x

Phase portrait:

−2π
• ◦

0−π
•
π

◦
2π

•
3π

stable fixed point
(sink, attractors)

unstable fixed point
(source, )

Qualitative plot of solution:

3π
2

π

π
2
π
4

t
x(t) is concave up

if f(x(t)) is increasing

x(t) is concave down

if f(x(t)) is decreasing

11
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Example 2.4

ẋ = x2 − 1. Fixed points: f(x) = x2 − 1 = 0 =⇒ x = ±1

•
-1 x

◦

-1

Note: If x0 > 1, then solution x(t) with x(0) = x0 > 1 is unbounded. In fact, x(t)→∞
in finite time.

12
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§3 Lec 3: Jan 8, 2021

§3.1 Stabil ity Types of Fixed Points

Definition 3.1 (Stability Types) — Consider the ODE ẋ = f(x) and suppose that
f(x∗) = 0. The fixed point x∗ is called

1. Lyapunov stable if every solution x(t) with x(0) = x0 closed to x∗ remain close
to x∗ for all t ≥ 0, otherwise unstable.

2. Attracting if every solution x(t) with x(0) = x0 close to x∗ satisfies x(t)→ x∗
as t→∞.

3. (asymptotically) stable if x∗ is both Lyapunov stable and attracting.

Example 3.2

Let α ∈ R, ẋ = αx. General solution x(t) = x0e
αt.

• x∗ = 0 is always an equilibrium solution.

• x∗ = 0 is

1. attracting if α < 0

2. Lyapunov stable if α ≤ 0

3. unstable if α > 0

13
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Example 3.3 (RC circuit)

We have the following circuit

◦
◦

capacity C
voltage
V0

resistor R

V0 = RI +
Q

C
I : current, Q : change

I = Q̇

Q̇ =
V0
R
− Q

RC

Phase portrait

Q
•

V0C

Q̇

V0
R

Q∗ = V0C globally stable because every Q(t) approaches Q∗ as t→∞.

t

V0C

Q(t)

§3.2 Linear Stabil ity Analysis

We have ẋ = f(x), f(x∗) = 0. Our task is to find an analytic criterion to decide if a fixed
point x∗ is stable/unstable.
Picture:

14
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◦ •

if f ′(x∗) > 0, then x∗
is unstable

if f ′(x∗) < 0, then
x∗ is a stable fixed point

If f ′(x∗) > 0, then x∗ is unstable. On the other hand, if f ′(x∗) < 0, then x∗ is a stable
fixed point.
The linearization:
Consider: η(t) = x(t) − x∗ where x(t) is the solution of ẋ = f(x) with x(0) close to x∗,
f(x∗) = 0.
Note: η̇(t) = ẋ(t) = f (x(t)) = f (x(t)− x∗ + x∗) = f (η(t) + x∗).
Taylor’s Theorem:

f(x∗ + η) = f(x∗)︸ ︷︷ ︸
=0

+f ′(x∗)η + O(η2)︸ ︷︷ ︸
error term and negligible iff ′(x∗)6=0 and η is small

=⇒ η̇(t) ≈ f ′(x∗)η(t) (as long as η(t) is small) which is called the linearization of
ẋ = f(x) about x∗. The general solution is

η(t) = η0e
f ′(x∗)·t

In particular, η grows exponentially if f ′(x∗) > 0 or decreases exponentially if f ′(x∗) <
0.

Definition 3.4 (Characteristics Time Scale) — 1
|f ′(x∗)| is called the characteristics time

scale.

15
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Example 3.5 (Logstics Equation)

N ≥ 0 population size, r > 0 growth rate, K > 0 carrying capacity

Ṅ = rN

(
1− N

K

)
Fixed points: Ṅ = 0 =⇒ N∗ = 0 or N∗ = K.
Let f(N) = rN

(
1− N

K

)
=⇒ f ′(N) = r − 2 r

KN . In particular, f ′(0) = r > 0 =⇒
N∗ = 0 is an unstable fixed point and f ′(K) = r − 2r = −r < 0 =⇒ N∗ = K is
stable.
Phase portrait:

◦ •
K N

Ṅ

Thus, if N(t) is the population with

N(0) = N0 > 0 =⇒ N(t)→ K as t→∞
N(0) = 0→ N(t) = 0 ∀t (no spontaneous outbreak)

Characteristics time scale: 1
|f ′(N∗)| = 1

r for both N∗ = 0,K.

Example 3.6

What if f ′(x∗) = 0? Then we can’t tell.

x

ẋ
ẋ = −x3

x∗ = 0 stable

ẋ = x3

x∗ = 0 unstable

ẋ = x2

x∗ = 0 unstable

(semistable)

16
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§4 Lec 4: Jan 11, 2021

§4.1 Existence and Uniqueness

Example 4.1 (Non-uniqueness)

ẋ = x
1
3 =⇒ x1(t) ≡ 0 (for all t) is a solution with x1(0) = 0 but x2(t) =

(
2
3 t
) 3

2 is also
a solution with x2(0) = 0

x
1
3

x

Is x0 = 0 really a fixed point? No, it’s unclear how it would behave (according to

x(t) = 0 or x(t) =
(
2
3 t
) 3

2 ).

Theorem 4.2 (Picard’s)

Let I = (a, b) ⊆ R be an open interval, f : I → R differentiable and f ′ continuous. Let
x0 ∈ I. Then there is τ > 0 s.t. the initial value problem

ẋ = f(x), x(0) = x0

has a unique solution x : (−τ, τ)→ R.

17



Duc Vu (Winter 2021) 4 Lec 4: Jan 11, 2021

Example 4.3

(The solution might not exist for all times) Consider

dx

dt
= ẋ = 1 + x2, x(0) = 0

So,

dt =
dx

1 + x2

t =

∫
dx

1 + x2
= arctanx+ C

0 = 0 + C =⇒ C = 0

x(t) = tan(t)

t−π
2

π
2

tan(t)

In particular,

x(t)→ +∞ as t→ π

2

x(t)→ −∞ as t→ −π
2

i.e., x(t) reaches infinity in finite time, i.e., the solution x(t) blows up in finite time.

Remark 4.4. (Hw 1) If x0 > 0, then the solution to ẋ = x2, x(0) = x0 > 0 blows up in finite
time. In fact, if α > 1, then the solution to ẋ = xα, x(0) = x0 > 0 blows up in finite time.

Theorem 4.5 (ODE Comparison)

If x1(t) solves ẋ = f(x), x2(t) solves ẋ = q(x) and x1(0) ≤ x2(0), f(x) < q(x), then
x1(t) ≤ x2(t) for all t > 0.
In particular, if x1(t)→∞ in finite time, then x2(t)→∞ in finite time.

18
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Example 4.6

The solution to ẋ = 1 + x2 + x3, x(0) = 0 blows up in finite time.
Note: For x ≥ 0 :

1 + x2 ≤ 1 + x2 + x3

Recall: tan(t) solves ẋ = 1 + x2, x(0) = 0. By comparison: the solution x(t) to
ẋ = 1 + x2 + x3, x(0) = 0 satisfies x(t) ≥ tan(t). Thus, x(t) blows up in finite time.
We may indeed assume that x(t) > 0. Since ẋ(0) = 1, it follows that x(t) > 0 for t > 0
small. In fact, ẋ = 1 + x2 + x3 > 0 for x(t) small, i.e., whenever x(t) is close to zero, it
must increase =⇒ x(t) > 0 for t > 0.

Example 4.7 (No Oscillating Solution in 1D)

Let f ∈ C1(R) = {f : R→ R|f differentiable, f ′ continuous}. Suppose f(x∗) = 0, x(t)
solution of ẋ = f(x). If x(t0) = x∗ for some t0. Then x(t) = x∗ for all time t.
Geometrically this says that a solution can never reach/cross a fixed point (unless it is
a fixed point).

• f (x(t)) > 0 and ẋ(t) > 0, i.e., x(t) increases.

• f (x(t)) = 0 and x(t) = constant for all t.

• f (x(t)) < 0 and ẋ(t) < 0 i.e., x(t) decreases.

In particular, there is no oscillating solution.
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§5 Lec 5: Jan 13, 2021

§5.1 Potential

Consider the movement of a particle (with lots of friction) in a potential.

•
V (x)

x

Notice:

• Particle approaches the local minimum of V (x) (minimum energy level) no fixed
point.

• Local minima of V (x) are stable fixed points.

• Local maxima of V (x) are unstable fixed points.

=⇒ ẋ = f(x) = −dV
dx = −V ′(x).

• ◦
x

ẋ

Expect t→ V (x(t)) is non-increasing for a solution x(t) of ẋ = −V ′(x).
Indeed:

d

dt
V (x(t)) = V ′ (x(t))

d

dt
x(t)

= V ′ (x(t))
(
−V ′ (x(t))

)
= −

(
V ′ (x(t))

)2 ≤ 0

=⇒ particle always moves towards a lower energy level.

Definition 5.1 (Potential) — A function V (x) s.t. ẋ = f(x) = −dV
dx is called a

potential.
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Example 5.2

Graph potential for ẋ = x− x3. Find/characterize equilibria (fixed points).

ẋ = f(x) = x− x3 = −dV
dx

∫
=⇒ V (x) = −1

2
x2 +

1

4
x4 + C

=⇒ V is only defined up to a constant, we may choose any C ∈ R, e.g., choose C = 0.

+1-1

V (x)

x

Local minima of V correspond to stable fixed points =⇒ 0 = −dV
dx = f(x) = x− x3,

i.e., x = ±1.
Local maximum of V corresponds to an unstable fixed point at x = 0.
Phase portrait:

• ◦ •

Remark 5.3. This system is often called bistable because it has two stable fixed points.

§5.2 Bifurcations

The qualitative behavior of 1D dynamical systems ẋ = f(x) is determined by fixed points.

qualitative the same

(dynamics)

If ẋ = f(r, x) depends on a parameter r, then the numbers of fixed points and their
stability may change as r varies. This is called bifurcation.
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Example 5.4 (Saddle-node, blue sky bifurcation)

ẋ = r + x2, r ∈ R.

r

ẋ

r > 0

r + x2

r = 0
ẋ

x2

xx

r < 0
ẋ

x
r

Hence, the qualitative behavior changes at r∗ = 0, i.e., r∗ = 0 is called a
bifurcation point.

Ways to plot the dependence on the parameter:

r > 0

r = 0

r < 0

continuous
diagram

stable
fixed points

unstable
fixed points

Most common: bifurcation diagram

+
ẋ = r + x2

ẋ = 0→ x = ±
√
−r
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§6 Lec 6: Jan 15, 2021

§6.1 Saddle-Node Example

Example 6.1

Argue geometrically that the ODE

ẋ = r − x− e−x

undergoes a saddle-node bifurcation. Furthermore, find the bifurcation point.
Note: Fixed points of ẋ = r−x−e−x correspond to intersection points of the functions
r − x, e−x because r − x− e−x = 0 ⇐⇒ r − x = e−x.

x

e−x

r > r∗

e−x

r − x

x

r − x

e−x

x

Indeed we have a saddle-node bifurcation.
Note: At r = r∗, the graph of r − x and e−x intersect tangentially. Thus, for the
bifurcation point we require:

0 = ẋ = r − x− e−x =⇒ r − x = e−x

0 =
d

dx
(r − x− e−x) =⇒ d

dx
(r − x) =

d

dx
e−x

So,

−1 = −e−x

e−x = 1

x = 0

r∗ = x∗ + e−x∗ = 0 + 1 = 1

Thus the bifurcation point is (r∗, x∗) = (1, 0).

Note:

ẋ = r − x− e−x = r − x−
(

1− x+
x2

2
− x3

6
+ . . .

)
= r − 1− 1

2
x2 +

x3

6
− . . .

≈ (r − 1)− 1

2
x2 for x near x∗ = 0
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Set R = r − 1, then ẋ ≈ R− 1
2x

2.
Upshot: Up to appropriate rescalings/coordinate changes, every saddle-node bifurcation
looks like its normal form

ẋ = r − x2 (or ẋ = r + x2)

close to the bifurcation point (r∗, x∗) = (0, 0).

§6.2 Normal Forms

point where f (r, x) = 0

Recall:

• Normal vector:

(
∂rf
∂xf

)
• Tangent vector:

(
−∂xf
∂rf

)
Note: Bifurcation points have vertical tangent vectors, i.e., ∂xf = 0, ∂rf 6= 0.

Theorem 6.2 (Taylor’s)

Suppose f(r∗, x∗) = 0.

f(r, x) = f(r∗, x∗) +
∂f

∂r
(r∗, x∗)︸ ︷︷ ︸
p1

(r − r∗) +
∂f

∂x
(r∗, x∗)︸ ︷︷ ︸
q1

(x− x∗)

+
1

2

∂2f

∂r2
(r∗, x∗)︸ ︷︷ ︸
p2

(r−r∗)2+
∂2f

∂r∂x
(r∗, x∗)︸ ︷︷ ︸
R

(r−r∗)(x−x∗)+
1

2

∂2f

∂x2
(r∗, x∗)︸ ︷︷ ︸
q2

(x−x∗)2+ . . .
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Remark 6.3. If q1 6= 0, then there is no bifurcation at (r∗, x∗), linear stability (sign of q1)
determines if (r∗, x∗) is (un)stable.

Theorem 6.4

Suppose that f(r∗, x∗) = 0, q1 = 0, p1 6= 0, q2 6= 0, then ẋ = f(r, x) undergoes a saddle
node bifurcation at (r∗, x∗) and

ẋ =
∂f

∂r
(r∗, x∗)(r − r∗) +

1

2

∂2f

∂x2
(x− x∗)2 +O(ε3)

for |r − r∗| < ε2, |x− x∗| < ε.

Remark 6.5. i) Note that the constant (r − r∗)(x− x∗) is O(ε3)

ii) With a coordinate change (t, x, r) 7→ (s, y,R) we can arrange that ODE looks like

d

ds
y = R+ y2

near (0, 0) = (R(r∗), y(x∗))
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Example 6.6

ẋ = er − x− e−x undergoes a saddle-node bifurcation near (r∗, x∗) = (0, 0). Apply the
theorem 6.4,

f(r, x) = er − x− e−x

f(0, 0) = 1− 0− 1 = 0

∂f

∂x
(r, x) = −1 + e−x =⇒ ∂f

∂x
(0, 0) = 0

∂f

∂r
(r, x) = er =⇒ ∂f

∂r
(0, 0) = 1 6= 0

∂2f

∂x2
(r, x) = −e−x =⇒ ∂2f

∂x2
(0, 0) = −1 6= 0

Therefore, by theorem 6.4, (r∗, x∗) = (0, 0) is a bifurcation point of a saddle-node
bifurcation.
Normal form near (r∗, x∗) = (0, 0) :

ẋ = er − x− e−x

= 1 + r +
r2

2
+O(r3)− x−

(
1− x+

x2

2
+O(x3)

)
= r +

r2

2︸︷︷︸
O(ε4)

−x
2

2
+O(r3) +O(x3)

= r − x2

2︸ ︷︷ ︸
O(ε2)

+O(ε3) if |r − r∗| = |r| < ε2

if |x− x∗| = |x| < ε

Set y = x
2 , then

ẏ =
1

2
ẋ =

r

2
− x2

4
+O(ε3) =

r

2
− y2 +O(ε3)

Set s = −t, then
d

ds
y = − d

dt
y = −r

2
+ y2 +O(ε3)

Set R = − r
2 , then

d

ds
y = R+ y2︸ ︷︷ ︸

normal form of a saddle-node bifurcation

+O(ε3)
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§7 Lec 7: Jan 20, 2021

§7.1 Classi f ication of Bifurcations

Let’s rewrite ẋ in theorem 6.4 as

ẋ = p(r − r∗) +
c

2
(x− x∗)2 +O(ε3)

if |r − r∗| < ε2, |x− x∗| < ε. After a coordinate change (t, x, r) 7→ (s, y,R) such that

s = t

y =
c

2
(x− x∗)

R = p
c

2
(r − r∗)

the ODE is represented by the normal form.

d

ds
y = ẏ = R+ y2 +O(ε3)

for |R| < ε2, |y| < ε.
If f(x∗, r∗) = 0, and also ∂f

∂x (x∗, r∗) = 0 = ∂f
∂r (x∗, r∗), then the second derivatives determines

the bifurcation type.

Hessian Hessf =

(
∂2f
∂r2

∂2f
∂r∂x

∂2f
∂r∂x

∂2f
∂x2

)
=

(
A B
B C

)
Second test: if AC −B2 > 0, (r∗, x∗) is a local maximum/minimum. In particular, (r∗, x∗)
is an isolated fixed point. (irrelevant case)
Practically relevant case: If AC − B2 < 0 : (r∗, x∗) is a saddle. If also C 6= 0:
transcritical bifurcation.

ẏ = Ry − y2 +O(ε2)

for |R| < ε, |y| < ε (after an appropriate coordinate change)

O(r − r∗) = O(R), O(x− x∗) = O(y)

If also C = 0 : Pitchfork bifurcation

• Supercritical Pitchfork bifurcation:

y′ = Ry − y3 +O(ε3)

• Subcritical Pitchfork bifurcation

y′ = Ry + y3 +O(ε3)

for |R| < ε2, |y| < ε

Again,
O(r − r∗) = O(R), O(x− x∗) = O(y)
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§7.2 Transcrit ical Bifurcation

Normal form:
ẋ = rx− x2 = x(r − x)

In particular, x∗ = 0 is always a fixed point but it changes stability.

r < 0 r = 0 r > 0

Bifurcation diagram: ẋ = x(r − x) = rx− x2 = f(x). Fixed points:

x∗ = 0, x∗ = r r ∈ R

··············

. . . . . . . . . . . . . . . . . .
r

x

stable

unstable

bifurcation diagram

intermediate step:

draw fixed points

(without stability)

x

r
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§8 Lec 8: Jan 22, 2021

§8.1 Example of Transcrit ical Bifurcation

Example 8.1

ẋ = r ln(x) + x− 1 has a transcritical bifurcation at (r∗, x∗) = (−1, 1).
Geometric approach:

ẋ = 0 ⇐⇒ r ln(x) = 1− x

r < −1 r = −1 −1 < r < 0

1− x
1− x

1− x

Bifurcation near (r∗, x∗) = (−1, 1)

−1
r

1

x

Normal form: ẋ = r ln(x) + x− 1.

Remark 8.2. ln(1 + x) =
∑∞
k=1

(−1)k+1

k xk, |x| < 1
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So,

ẋ = r ln(x) + x− 1

= r(x− 1− 1

2
(x− 1)2 +O((x− 1)3) + x− 1

= (r + 1)(x− 1)− 1

2
((r + 1)− 1) (x− 1)2 +O

(
r(x− 1)3

)
= (r + 1)(x− 1) +

1

2
(x− 1)2 +O(ε3)

if |r − (−1)| < ε and |x− 1 < ε|.
Now, set R = r + 1, y = c · (x− 1). Then,

ẏ = cẋ

= (r + 1)c(x− 1) +
1

2
c(x− 1)2 +O(ε3)

= Ry +
1

2c
(c(x− 1))2 +O(ε3)

= Ry +
1

2c︸︷︷︸
=1

y2 = Ry + y2

for c = 1
2 .

§8.2 Application of Transcrit ical Bifurcations
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Example 8.3 (Laser Threshold)

Consider

energy source

active material

mirrors

laser
light

Simple model:
n = n(t) = # photons in the laser

Then

ṅ = G · N︸︷︷︸
# excited atoms

·n− kn

= N0 − α · n
= G(N0 − αn)n− kn
= (GN0 − k)n− αGn2

where G, k, α > 0. Fixed points:

ṅ = 0 ⇐⇒ n = 0 or n =
GN0 − k
αG

GN0 − k < 0
ṅ

GN0 − k = 0

n

ṅ
GN0 − k > 0

Bifurcation diagram

k
G N0

transcritical bifurcation at

(N, n) = ( kG , 0)

k
G = laser threshold
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§9 Lec 9: Jan 25, 2021

§9.1 Supercrit ical Pitchfork Bifurcation

Fixed points appear/disappear in symmetric pairs

beam

mass

“beam buckles”

Supercritical Pitchfork Bifurcation:

ẋ = rx− x3

•

r < 0

•

r = 0

• ◦ •

r > 0

Remark 9.1. Decay towards x∗ = 0 is not exponential in time for r = 0.

Bifurcation diagram:

ẋ = rx− x3 = 0

=⇒ x = 0, x = ±
√
r, r > 0

x
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Example 9.2

Potential for ẋ = rx− x3 = −dV
dx

=⇒ V (x) = −1

2
rx2 +

1

4
x4 + C︸︷︷︸

=0

x

r < 0

V
V

x

x4
r = 0

−
√
r

√
r

r > 0

§9.2 Subcrit ical Pitchfork Bifurcation

ẋ = rx+ x3

ẋ

x x x

ẋ ẋ
r < 0 r = 0 r > 0

Fixed points:

ẋ = rx+ x3 = 0

=⇒ x = 0, x = ±
√
−r, r < 0

Bifurcation Diagram:
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x

r

√
−r

−
√
−r

Remark 9.3. If r > 0, x0 > 0, then the solution x(t) with x(0) = x0 > 0 blows up in finite
time (cf. homework). Interpretation: +x3 is destabilizing.

Physically more realistic scenario:

ẋ = rx+ x3 − x5

where x5 is the stabilizing higher order term.
Fixed points:

ẋ = 0 ⇐⇒ x = 0, r = −x2 + x4

Bifurcation diagram:
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r

x

1. Intermediate step

x

2. Stability Types

r

x

rs

3. Change axes: bifurcation diagram

ẋ = rx + x3 − x5

Remark 9.4. i) Subcritical pitchfork bifurcation at (r∗, x∗) = (0, 0) and saddle node
bifurcation at (rs, x∗) =

(
− 1

4 ,±
√

2
)
.

rs r

x

ẋ = r(t)x + x3 − x5

ii) jump at r∗ = 0 : A small perturbation of a stable fixed point at (0, r) with r < 0 jumps
to the stable large amplitude branch as r becomes positive, but does not jump back
until r < rs.

This non-reversibility is called hysteresis.
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§10 Lec 10: Jan 27, 2021

§10.1 Bifurcation at Infinity

Example 10.1

ẋ = r − x2

1+x2

Fixed points: ẋ = 0 ⇐⇒ r = x2

1+x2

x

r

ẋ > 0

ẋ < 0

r

x

bifurcation diagram

Note:

• At (r∗, x∗) we have a saddle node bifurcation.

• If r ∈ (0, 1) we have two fixed points.

• For r ≥ 1 we have no fixed points.

Thus, we have a bifurcation at (spatial) infinity.

§10.2 Dimensional Analysis and Scal ing

Over-damped bead over a hoop:

• m

ω

forces: gravitation: −mg~e2

centrifugal: mr sinφω2~ex

φ

damping: −bφ~eφ

36



Duc Vu (Winter 2021) 10 Lec 10: Jan 27, 2021

Physics: mrφ̈ = −bφ̇−mg sinφ+mrω2 sinφ cosφ
Experiment: Provided ω large enough, bead slides slowly towards a fixed angle, after an
initial acceleration phase.

Question 10.1. When we can neglect second order term φ̈?

Problem 10.1. We’re working with different dimensions, e.g.

[m] = kg

[b] =
kg ·m
s

What is small – what quantity is actually small so we can neglect the second order term?

Idea: Non-dimensionalize

• small means � 1

• reduce the numbers of parameters

• no general algorithm

Quantity ω large, time scale T .
Set τ = t

T =⇒ dτ = 1
T dt, where T is the characteristics time scale.

φ̇ = dφ
dt = dφ

dτ
dτ
dt = 1

T
dφ
dτ

Similarly, φ̈ = 1
T 2

d2φ
dτ2

mrφ̈ = −bφ̇−mg sinφ+mrω2 sinφ cosφ (1)

So

=⇒ mr

T 2

d2φ

dτ2
= − b

T

dφ

dτ
−mg sinφ+mrω2 sinφ cosφ (unit force)

=⇒ r

gT 2

d2φ

dτ2
= − b

mgT

dφ

dτ
− sinφ+

rω2

g
sinφ cosφ (dimensionless)

Thus 1st order term dφ
dτ dominates d2φ

dτ2
if r

gT 2 � 1 and b
mgT ≈ O(1), i.e., b

mgT = 1 and
ε = r

gT 2

=⇒ T =
b

mg

=⇒ ε =
rgm2

b2
� 1

Set γ = rω2

g . Then the non-dimensionalize equation becomes

ε
d2φ

dτ2
= −dφ

dτ
− sinφ+ γ sinφ cosφ

Overdamped limit: ε→ 0

dφ

dτ
= − sinφ+ γ sinφ cosφ

= sinφ(γ cosφ− 1)
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Dynamics: dφ
dτ = 0 (fixed points)

=⇒ sinφ = 0 ⇐⇒ φ = 0, π (bottom/top of hoop)

or

cosφ =
1

γ
∈ (0, 1] =⇒ γ ≥ 1

Fixed points:

γ < 1 γ > 1

Bifurcation Diagram:

π

−π

π
2

−π
2

1
γ

In particular, we have a supercritical pitchfork bifurcation at γ = 1.
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§11 Lec 11: Jan 29, 2021

§11.1 Imperfect Bifurcation and Catastrophes

ẋ = h+ rx− x3

• If h = 0 : symmetry, if x(t) is a solution then −x(t) is also a solution (supercritical
pitchfork bifurcation).

• If h 6= 0 : imperfect parameter, breaks symmetry.

Aim: Study qualitative behavior of ODE as parameters vary.
Strategy: keep h fixed and vary r

• h = 0 : supercritical pitchfork bifurcation

x

Figure 1: Bifurcation Diagram

• h > 0 : fixed points: ẋ = 0 ⇐⇒ x3 = h+ rx

r = rc

h

x

r

rc(h)

Figure 2: Bifurcation Diagram
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• h < 0 : Fixed points: x3 = h+ rx

h

r

x

rc

Figure 3: Bifurcation Diagram

Note:We have saddle node bifurcation at rc = r(h)

Bifurcation Curves {
(h, r)|(h, r, x) solves f = 0,

∂f

∂x
= 0

}
in our example ẋ = h+ rx− x3

0 =
∂f

∂x
= r − 3x2 =⇒ x = ±

√
r

3

0 = f = h+ rx− x3 =⇒ h = x3 − rx

=⇒ h = x3 − rx = ±2
√

3

9
r3

h = hc(r) = ±2
√

3

9
r

3
2

=⇒ r = rc(h) =

(
9

2
√

3
|h|
) 2

3

Stability Diagram:
Plot the bifurcation curves in the parameters space (= (h, r) plane).

r

h

bifurcation curve
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Note: qualitative behavior of ode changes as (h, r) cross bifurcation curve.
In example:

• “below” bifurcation curve: ODE has one (stable) fixed point.

• “on” bifurcation curve: two fixed points.

• “above” bifurcation curve: three fixed points.

Remark 11.1. • Saddle-node bifurcation occurs along bifurcation curve for (h, r) 6= (0, 0)

• At (h, r) = (0, 0), the branches rc(h) =
(

9
2
√
3
|h|
) 2

3

for h > 0 and h < 0 meet

tangentially, and we have a cusp point at (h, r) = (0, 0). This is an example of a
codimension 2 bifurcation (i.e., we need two parameters to model this type of bifurca-
tion).

Bifurcation diagrams for fixed r ∈ R.

ẋ = h+ rx− x3 = 0 ⇐⇒ h = x3 − rx

h

x

r < 0 r = 0 r > 0

x

h h

x

3D plot(h, r, fixed points x)

h

x

r

h = 0

r

h

x

bifurcation curve in
(r, h)

Picture/surface of cusp catastrophe solutions close to “upper” stable fixed points drop
to “lower” stable fixed points as (r, h) vary (and vice versa).
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Example 11.2 (practical)

Details in the book, page 74

•

wire
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§12 Midterm 1: Feb 1, 2021
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§13 Lec 12: Feb 3, 2021

§13.1 Flows on the Circle

real line R

ẋ = f (x)

x = position

circle (with radius 1)

θ
θ = 0

θ = angle

θ̇ = f (θ)
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Example 13.1 i) ẋ = sin(x). Fixed points: ẋ = 0

⇐⇒ x = . . . ,−π, 0, π, 2π, . . .

i.e., x = kπ, k ∈ Z.

x

ẋ

θ̇ = sin θ

θ̇ = 0

⇐⇒ θ = 0 or θ = π

θ = 2π︸ ︷︷ ︸
same position on circle

i.e., θ is defined up to multiples of 2π.

Note: If f(θ) > 0 : flow is counterclockwise, and if f(θ) < 0 : flow is clockwise.

θ̇ = sin(θ)

ii) ẋ = x where f(x) = x is not periodic.

Thus θ̇ = θ does not work, because θ = 0, θ = 2π describe the same position
on the circle but f(θ) = θ yields different values at θ = 0, 2π, i.e. f(θ) is not a
vector field on the circle.

Correspondence:

f(x) is 2π-periodic, i.e. f(x+ 2π) = f(x), and f is continuously differentiable
⇐⇒ f(θ) defines a vector field on the circle.
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Example 13.2 iii) ẋ = c > 0
x(t) = ct+ x0

θ̇ = ω > 0 – uniform oscillator

θ(t) = ωt + θ0

Period T:

θ(T ) = θ(0) + 2π

ωT + θ0 = θ0 + 2π

T =
2π

ω

In particular, periodic solutions are possible.
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Example 13.3

Two runners are on a circular track, running in the same direction, with constant
speed:

• Runner 1: period T1 = 2π
ω1

, angle θ1

• Runner 2: period T2 = 2π
ω2

, angle θ2

Runner 1, 2 start at the same position. Suppose T1 < T2, i.e. Runner 1 is faster than
runner 2.

Question 13.1. How long does it take runner 1 to lap runner 2?

Ans: Tlap = time when phase difference

φ = θ1 − θ2 is 2π

φ̇ = θ̇1 − θ̇2 = ω1 − ω2, φ(0) = 0

=⇒ φ(t) = (ω1 − ω2)t

=⇒ Tlap =
2π

ω1 − ω2
=

1
1
T1
− 1

T2

=

(
1

T1
− 1

T2

)−1
i.e. Runner 1,2 are in phase after Tlap again. This is called beat phenomenon.
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§14 Lec 13: Feb 5, 2021

§14.1 Non-uniform Osci l lator

θ̇ = ω − a sin θ, ω > 0, a > 0

Practical example: overdamped limit of pendulum driven by constant torque.

φ

slow
fast

m

gravitation counteract torque

φ̇ = ω − a sinφ

Consider: θ̇ = ω − a sin θ
For 0 < a < ω :

ω

ω + a

ω − a

π
2

3π
2

θ

θ̇
slow

fast

θ

phase portrait

slow fast t

θ(t)

θ(0) = 0

2π

3π
2

π
2

π
2

3π
2

2π

θ(t)

t
for a < ω, a ≈ ω

Figure 4: bottle neck remnants or “ghost” of a saddle-node bifurcation
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For a = ω

π
2

3π
2 θ

θ̇

ω

ω − ω sin θ

solutions are not
periodic anymore!

phase portrait

For a > ω :

π
2

3π
2

θ

θ̇

phase portrait

Oscillation period for a < ω:

T =

∫
dt =

∫ 2π

0

dt

dθ
dθ =

∫ 2π

0

dθ

ω − a sin θ

= . . . =
2π√

ω2 − a2
=

2π√
ω + a

· 1√
ω − a

≈ 2π√
2ω
· 1√

ω − a︸ ︷︷ ︸
blow up as a→ω

ω
a

T

2π
ω
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Remark 14.1. Bottlenecks/this scaling law are a general feature of saddle-node bifurcations:

Normal form:
dx

dt
= ẋ = r + x2

r

0
x

f (x)

Tbottleneck ≈
∫
dt

=

∫ ∞
−∞

dt

dx
dx

=

∫ ∞
−∞

1

r + x2
dx

Tbottleneck =
π√
r

blows up like ∼ r− 1
2 = 1√

r
as r → 0 and r > 0.
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Example 14.2

Draw all qualitatively different phase portraits of

θ̇ = ω − a sin θ (where ω > 0 fixed )

Bifurcation points: θ̇ = f(θ) = 0, ∂f∂θ = 0. Thus, 0 = −a cos θ =⇒ a = 0 or θ = π
2 ,

3π
2 .

If a = 0 : θ̇ = ω > 0 (no bifurcation)

If θ =
π

2
: 0 = θ̇ = ω − a =⇒ a = ω

If θ =
3π

2
: 0 = θ̇ = ω + a =⇒ a = −ω

Bifurcation points (a∗, θ∗) =
(
ω, π2

)
,
(
−ω, 3π2

)
.

θ̇ = ω − a sin θ

a > ω a = ω −ω < a < ω

a = −ω a < −ω

§14.2 2D Dynamical Systems

d

dt

(
x1
x2

)
=

(
f1(x1, x2)
f2(x1, x2)

)
Introduction & Linear Systems:

d

dt

(
x1
x2

)
=

(
a b
c d

)(
x1
x2

)
i.e. ẋ = Ax

Harmonic Oscillator: mẍ+ kx = 0
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ẍ+ ω2x = 0, ω2 =
k

m

where k : spring constant and m : mass, x : position, v : velocity.

ẋ = v

v̇ = ẍ = −ω2x

d

dt

(
x
v

)
=

(
0 1
−ω2 0

)(
x
v

)
=

(
v
−ω2x

)
Note: the last matrix defines vector field on phase plane.

x

V V

x

phase portrait

Harmonic oscillator:

max speed

x = 0

x
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Remark 14.3. Have:

d

dt
(ω2x2 + v2) = 2ω2xẋ+ 2vv̇

= 2ω2xv − 2ω2vx = 0

=⇒ ω2x2 + v2 = const

=⇒ trajectories

(
x(t)
v(t)

)
describe ellipses, in particular, they are closed orbits i.e. correspond

to periodic solutions.
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§15 Lec 14: Feb 8, 2021

§15.1 Classi f ication of Linear Systems

d

dt

(
x1
x2

)
=

(
a b
c d

)(
x1
x2

)
i.e. ẋ = Ax

Question 15.1. What is the stability type of x∗ = 0?

Definition 15.1 (Eigenvector) — v 6= 0 is an eigenvector of A if

Av = λv

for some λ ∈ C

λ ∈ C is an eigenvalue

⇐⇒ Λλ(A) = det(A− λI) = 0

= det

(
a− λ b
c d− λ

)
= (a− λ)(d− λ)− bc
= λ2 − tr(A)λ+ det(A)

= 0

⇐⇒ λ1,2 =
1

2

(
tr(A)±

√
tr(A)2 − 4 det(A)

)
3 cases:

i) λ1 6= λ2 real valued ⇐⇒ tr(A)2 > 4 det(A)

ii) λ1 = λ2 real valued ⇐⇒ tr(A)2 = 4 det(A)

iii) λ1 = λ2 complex conjugate ⇐⇒ tr(A)2 < 4 det(A)

1. λ1 6= λ2 =⇒ there are linearly independent eigenvectors vi :

Avi = λivi for i = 1, 2

A is diagonalizable.

Coordinate change:

C = (v1|v2)

B = C−1AC =

(
λ1 0
0 λ2

)
y = C−1x
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Then ẏ = C−1ẋ = C−1Ax = C−1ACy = By i.e. d
dt

(
y1
y2

)
=

(
λ1 0
0 λ2

)(
y1
y2

)
=(

λ1y1
λ2y2

)
i.e. the ODE decouples

ẏi = λiyi for i = 1, 2

So

=⇒ y(t) =

(
c1e

λ1t

c2e
λ2t

)
=⇒ x(t) = Cy(t) = c1e

λ1tC

(
1
0

)
+ c2e

λ2tC

(
0
1

)
If λ1 6= λ2 :

x(t) = c1e
λ1tv1 + c2e

λ2tv2

Phase portraits:
λ1 < 0 < λ2 (saddle)

V1

V2

x∗ is unstable

Definition 15.2 (Hyperbolic Fixed Point) — x∗ is a hyperbolic fixed point if Re(λi) 6= 0
for i = 1, 2 otherwise non-hyperbolic.

λ1 = 0 < λ2 : x(t) = c1v1 + c2e
λ2tv2
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x∗ is unstable and v1 axis consists of fixed points x∗ = 0 is a non-isolated fixed point.
λ1 < 0 = λ2: x(t) = c1e

λ1tv1 + c2v2

v2

v1

v2 axis consists of fixed points.

x(t) = c1e
λ1tv1 + c2v2

x∗ = 0 is Lypunov stable but not attracting (neutrally stable)
λ1 < λ2 < 0 : x(t) = c1e

λ1tv1 + c2e
λ2tv2

v2

v1

Trajectories approach x∗ tangent to “slower” v2 direction (note |λ1| > |λ2| > 0) –
stable node.
0 < λ1 < λ2 : trajectories quickly appear parallel to “faster” v2 direction.
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unstable node

Case ii) λ = λ1 = λ2, real valued
1. There are v1, v2 linearly independent eigenvectors Avi = λvi for i = 1, 2

=⇒ For v ∈ R2 : Av = λv =⇒ A = λ

(
1 0
0 1

)
= λI

So, ẋ = Ax is solved by

x(t) =

(
c1
c2

)
eλt

Phase portraits:

λ > 0

x∗ is unstable

unstable star

λ = 0 : A = 0

every point is a fixed point

x(t) = x(0)

(x∗ = 0
is stable non-hyperbolic,
non-isolated)

λ < 0

x∗ is stable (stable star)
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§16 Lec 15: Feb 10, 2021

§16.1 Classi f ication (Cont’d)

Case ii) λ = λ1 = λ2
2. Eigenspace Eigλ(A) = span(v), v 6= 0 A is not diagonalizable.

=⇒ x(t) = [(c1 + c2t)v + c2ω] eλt

where λ s.t. (A− λI)ω = v. Note x(t)
|x(t)| →

v
|v| as t → ±∞ i.e. x(t) tangent/parallel to

v-direction as t→ ±∞.
Recall: λ1 < λ2 < 0:

unstable node

intuitively as λ1 → λ2 and v1 → v2.
λ < 0 : stable degenerate node

ω
v

Remark 16.1. Instead of solving for ω explicitly, calculate Az for some vector z to determine
which way the solution “curls”.

λ > 0
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λ = 0 : x(t) = (c1 + c2t)v + c2ω

w
v

Note: x(0) = c1v =⇒ x(t) = c1v for all t i.e. the v−axis consists of fixed points
(non-isolated fixed points, x∗ = 0 unstable).

Remark 16.2. If λ = λ1 = λ2, Eigλ(A) = span(v). Then there is ω s.t.

(A− λI)ω = v

=⇒ v1ω lin. indep

=⇒ v1ω form a basis of R2

Coordinate change:
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Set

C = (v|w)

B = C−1AC =

(
λ 1
0 λ

)
︸ ︷︷ ︸

Jordan normal form

y = C−1x : ẏ = By

So

ẏ2 = λy2 =⇒ y2(t) = c2e
λt

ẏ1 = λy1 + y2 =⇒ y1(t) = (c1 + c2t) e
λt

=⇒ x = Cy = [(c1 + c2t) + c2ω] eλt

Case iii) {
λ1 = λ = α+ iβ

λ2 = λ = α− iβ
(β > 0)

=⇒ A is diagonalizable over C, in particular there is v ∈ C2, v 6= 0, s.t. Av = λv.
Let v = a− ib, a, b ∈ R2. Assume a ⊥ b. General solution:

x(t) = (a|b)
(

cos(βt) − sin(βt)
sin(βt) cos(βt)

)
︸ ︷︷ ︸
rotationR(βt) period 2π

β

(
c1
c2

)
eλt︸︷︷︸

stretching factor

In particular, x(t) = [a cos(βt) + b sin(βt)] eλt is the solution with x(0) = a and x
(
π
2β = beαt

)
[
set

(
c1
c2

)
=

(
1
0

)]
.

Phase portraits:

α = 0 :

x1

x2
α < 0 :
x2

x1

b

a

center
stable spiral

x∗ = 0 is Lyapunov stable
but not attracting
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α > 0 : unstable spiral

α > 0 : unstable spiral

ab
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Remark 16.3. i) If α = 0,

(
c1
c2

)
=

(
1
0

)
=⇒ x(t) = cos(βt) · a+ sin(βt) · b. Then since

a ⊥ b :

1

|a|2
〈x(t),

a

|a|
〉2 +

1

|b|2
〈x(t),

b

|b|
〉2 =

1

|a|2

(
a · a
|a|
· cos(βt)

)2

+
1

|b|2

(
b · b
|b|
· sin(βt)

)2

= (cos(βt))
2

+ (sin(βt))
2

= 1

=⇒ x(t) is on an ellipse with axes a
|a| ,

b
|b| .

ii) λ = α+ iβ, v = a− ib. If a is not orthogonal to b, then replace v by

w = (γ + iδ) v

with γ = −2ab

δ =
(
|a|2 − |b|2

)
±
√

(|a|2 − |b|2)
2

+ 4(ab)2

Then Aω = λω and Re ω ⊥ Im ω.

Assume Av = λv, v = a− ib, a ⊥ b.

Aa− iAb = A(a− ib) = Av = λv = (α+ iβ)(a− ib)
= (αa+ βb) + i(βa− αb)

So

Aa = αa+ βb

Ab = −βa+ αb

Set C = (a|b). Then

AC = C

(
α −β
β α

)
B = C−1AC =

(
α −β
β α

)
︸ ︷︷ ︸
normal form

Set y = C−1x, ẏ =

(
α −β
β α

)
y with solution:

y(t) =

(
cos(βt) − sin(βt)
sin(βt) cos(βt)

)(
c1
c2

)
eαt

=⇒ x(t) = C · y(t)
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§17 Lec 16: Feb 12, 2021

§17.1 Linear Systems – Harmonic Osci l lator

Example 17.1 (Harmoinc oscillator)

mẍ+ kx = 0

where k : spring constant.

m

=⇒ ẍ+ ω2x = 0 where ω2 = k
m . Set{

x1 = x

x2 = ẋ
=⇒

{
ẋ1 = x2

ẋ2 = −ω2x1

i.e.
d

dt

(
x1
x2

)
=

(
0 1
−ω2 0

)
︸ ︷︷ ︸

A

(
x1
x2

)

eigenvalues:

0 = det(A− λI)

= det

(
−λ 1
−ω2 −λ

)
= λ2 + ω2

=⇒ λ1,2 = ±iω =⇒ center
Phase portrait:

i) in practice: compute ẋ = Ax for a specific vector to determine which way
solutions turn

ẋ =

(
0 1
−ω2 0

)
x

e.g.

(
0 1
−ω2 0

)(
1
0

)
=

(
0
−ω2

)
.
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Example 17.2 (Cont’d of example 17.1)

Then,

x1

x2

ii) more precise quantitative analysis, eigenvectors solutions of (A− λI)v = 0

A− iωI =

(
−iω 1
−ω2 −iω

)
→
(
−iω 1

0 0

)

eigenvector v =

(
−i
ω

)
=

(
0
ω

)
−
(

1
0

)
i

ω

−1 1

−ω

Recall:

x(t) = C ·
[(

0
ω

)
cos(ωt) +

(
1
0

)
sin(ωt)

]

64



Duc Vu (Winter 2021) 17 Lec 16: Feb 12, 2021

Example 17.3

ẋ = Ax A =

(
8 −1
4 4

)
. Eigenvalues:

0 = det(A− λI)

= det

(
8− λ −1

4 4− λ

)
= (8− λ)(4− λ)− 4(−1)

= λ2 − 12λ+ 36 = 0

=⇒ λ = 6

A 6=
(

6 0
0 6

)
, we have an unstable degenerate node. Eigenvector: A−λI =

(
2 −1
4 −2

)
→(

2 −1
0 0

)
, so v =

(
1
2

)
is an eigenvector. Note A ·

(
1
0

)
=

(
8
4

)
.

Phase portrait:

x2

x1

Summary:

Recall λ1,2 = 1
2

(
tr(A)±

√
tr(A)2 − 4 det(A)

)
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tr(A) = λ1 + λ2

unstable nodes
tr(A)2 − 4 det(A) = 0

unstable spirals

centers

stable spirals

det(A) = λ1 · λ2

degenerate nodes, stars

stable nodes

saddle

points

non-hyperbolic fixed points

non-isolated fixed points

§17.2 Nonlinear Systems – Existence and Uniqueness

ẋ = f (x) i.e. ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

Theorem 17.4 (Existence & Uniqueness of Systems)

Let D ⊆ Rn be open, f : D → Rn s.t. ∂fi
∂xj

exist and are continuous, that is f ∈ C1(D).

Then for every x0 ∈ D there τ > 0 s.t. ẋ = f(x), x(t0) = x0 has a unique solution
φ : (t0 − τ, t0 + τ)→ Rn i.e. φ̇(t) = f(φ(t)), φ(t0) = x0.
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Remark 17.5. f ∈ C2(D) if ∂2fi
∂xk∂xl

exist and continuous.

Consequence: Different trajectories in the phase portrait cannot intersect

impossible
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§18 Lec 17: Feb 15, 2021

§18.1 Nonlinear Systems – Nullcl ines

ẋ = f(x) and ẋ1 = f1(x1, x2), ẋ2 = f2(x1, x2)

Example 18.1

Consider

Definition 18.2 (Isocline and Nullcline) — Let c ∈ R. The curves {(x1, x2)|fi(x1, x2) = c}
i = 1, 2 are called isoclines. Specifically, if c = 0

• f1(x1, x2) = 0 is called vertical nullcline.

• f2(x1, x2) = 0 is called horizontal nullcline.
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Example 18.3

Consider:

ẋ1 = x1 + e−x2

ẋ2 = −x2

Fixed points: ẋ = f(x) = 0 ⇐⇒ (x1, x2) = (−1, 0).
Nullclines:

ẋ1 = 0 : x1 = −e−x2 (vertical nullcline)

ẋ2 = 0 : x2 = 0 (horizontal nullcline)

x2

x1

ẋ2 < 0

ẋ1 < 0
ẋ1 > 0

ẋ2 < 0

ẋ1 > 0

ẋ2 > 0

ẋ1 < 0

ẋ2 > 0

nullclines

x1

x2

phase portrait saddle at (-1, 0)
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Remark 18.4. A nullclines typically are not/do not consist of trajectories. Vertical(horizontal)
nullclines consist of trajectories if it is exactly vertical(horizontal.

§18.2 Principle of Linear Stabil ity

ẋ = f(x), f ∈ C1(D), f(x∗) = 0. We want to approximate the nonlinear DE near the fixed
point.

d

dt
(x− x∗) = ẋ = f(x) = f(x− x∗ + x∗)

Taylor
= f(x∗)︸ ︷︷ ︸

=0

+Df(x∗)(x− x∗) +O(|x− x∗|2)

i.e. y = x− x∗ approximately solves the linear ODE

ẏ = Df(x∗)y

where

Df(x∗)

( ∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

)
Let λ1, λ2 denote the eigenvalues of Df(x∗).

Theorem 18.5 (Linear Stability)

Similar to the linear systems,

i) If Re(λ1) < 0, Re(λ2) < 0 then x∗ is asymptotically stable, i.e. x∗ is Lyapunov
stable and attracting.

ii) If Re(λi) > 0 for i = 1 or i = 2 then x∗ is unstable.
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§19 Lec 18: Feb 19, 2021

§19.1 The Stable/Unstable Manifold Theorem

f ∈ C1, ẋ = f(x), f(x∗) = 0 i.e. x∗ fixed point, λ1, λ2 eigenvalues of Df(x∗).
Let x∗ be a hyperbolic fixed point and x(t, x0) be the solution of

ẋ = f(x), x(0) = x0

Set

Ms :=
{
x0 ∈ D|x(t, x0) defined for all t ≥ 0 and lim

t→∞
x(t, x0) = x∗

}
(stable manifold)

Mu :=

{
x0 ∈ D|x(t, x0) defined for all t ≤ 0 and lim

t→−∞
x(t, x0) = x∗

}
(unstable manifold)
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Example 19.1

Linear stable node

Ms = R2

Mu = {x∗} = {0}

Linear saddle

v2

v1

Ms = span(v1)

= line through v1(λ1 < 0) (trajectories that approach x∗)

Mu = span(v2)

= line through v2(λ2 > 0) (trajectories that emanate from x∗)
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Theorem 19.2 (Stable/Unstable Manifold)

Let f ∈ C1, x∗ is a hyperbolic fixed point.

i) If Re(λi) < 0 for i = 1, 2, then Ms contains an open neighborhood of x∗ and
Mu = {x∗}.

ii) If Re(λi) > 0 for i = 1, 2, then Ms = {x∗} and Mu contains an open neighbor-
hood of x∗.

iii) If Re(λ1) < 0 < Re(λ2), then Ms,Mu are C1-curves through x∗. Ms tangent
to v1 at x∗, Df(x∗)v1 = λ1v1, and Mu tangent to v2 at x∗, Df(x∗)v2 = λ2v2

Theorem 19.3

Suppose x∗ is a hyperbolic fixed points of ẋ = f(x). Then the phase portrait of
ẏ = Df(x∗)y near y∗ = 0 gives a qualitatively accurate picture of the phase portrait
of ẋ = f(x) near x∗ if

a) f ∈ C2 i.e. ∂2f
∂xi∂xj

exists and are continuous.

or

b) f ∈ C1 and λ1 6= λ2.

73



Duc Vu (Winter 2021) 19 Lec 18: Feb 19, 2021

Example 19.4

Consider:

ẋ1 = x1 + e−x2

ẋ2 = −x2

only fixed point: (x1, x2) = (−1, 0) and note that f(x1, x2) =

(
x1 + e−x2

−x2

)
.

Df =

(
1 −e−x2
0 −1

)
Df(x∗) =

(
1 −1
0 −1

)
Eigenvalues: λ1 = −1, λ2 = 1 =⇒ (−1, 0) is unstable (by Theorem 18.5)
Eigenvectors:

A− (−1)I =

(
2 −1
0 0

)
=⇒ v1 =

(
1
2

)
A− (1)I =

(
0 −1
0 −2

)
→
(

0 1
0 0

)
=⇒ v2 =

(
1
0

)
where v1 is the tangent direction of stable manifold at x∗ = (−1, 0) and v2 is the
tangent direction of unstable manifold at x∗ = (−1, 0).

stable manifold

unstable manifold
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Example 19.5 (Cont’d from above)

Note: f(x1, x2) =

(
x1 + e−x2

−x2

)
is infinitely often differentiable, in particular, f ∈ C2

(or f ∈ C1), thus the phase portrait of

ẏ = Df(x∗) =

(
1 −1
0 −1

)
near y∗ = 0

is an accurate picture of the phase portrait of ẋ = f(x) near x∗.

v1

ẋ = f (x) near x∗ = (−1, 0)

where the left figure denote the approximation ẏ.

Theorem 19.6 (Hartman – Grobman)

Let f ∈ C1, x∗ a hyperbolic fixed point of ẋ = f(x). Then the phase portrait of
ẋ = f(x) near x∗ and ẏ = Df(x∗)y near y∗ = 0 are topologically equivalent i.e. the
same up to continuous deformation (homeomorphisms).

Morally: hyperbolic fixed points are structurally stable.

§19.2 Lotka Volterra Model
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Example 19.7 (Lotka Volterra model for competition of two species for limited
resources)

Recall: logistic model

ẋ = rx
(

1− x

k

)
Consider:

ẋ = x(3− x− 2y)

ẏ = y(2− x− y)

fixed points

(x∗, y∗)

eigenvalues/eigendirections

of Df (x∗, y∗)

λ1 v1 λ2 v2

(0, 0)

(0, 2)

(3, 0)

(1, 1)

3 1

0

1

0
√
2

−1

0

1

0

1

3

−1
√
2

1

1

−2

−1

−3

−1 +
√

2

2

−2

−1

−1−
√

2

where all the fixed points above are hyperbolic fixed points.
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Example 19.8 (Cont’d from above)

Phase portrait: tangent directions of stable/unstable manifolds

ẋ = x(3− x− 2y)

ẏ = y(2− x− y)

Phase portrait:

y

x

Conclusion: Only one species survives.
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§20 Lec 19: Feb 22, 2021

§20.1 Non-Hyperbol ic Fixed Points

Example 20.1 (Sheet 7, Ex A)

The phase portrait of a non-linear ODE near a non-hyperbolic fixed point can be very
different from the phase portrait of the linearization at the fixed point.
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Example 20.2 (Centers)

For a ∈ R, consider

ẋ = −y + ax(x2 + y2)

ẏ = x+ ay(x2 + y2)

(0, 0) is the only fixed point.

Df(0, 0) =

(
0 −1
1 0

)
=⇒ eigenvalues: λ = ±i

=⇒ phase portrait of linearization is center around origin

In polar coordinates, (r, θ) (
x
y

)
=

(
r cos θ
r sin θ

)

θ

r

(x, y)

Have

ṙ =
1

r
(xẋ+ yẏ) = ar3

θ̇ =
xẏ − yẋ
r2

= 1

Thus phase portrait of non-linear ODE:

a < 0 a = 0 a > 0

stable spiral center unstable spiral

i.e. we have qualitatively different phase portraits (linearization compared to
non-linear ODE) for a 6= 0.
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§20.2 Conservative Systems

Consider Newton’s Law: mẍ = F (x). The force F is called conservative if there is V (x)
s.t. F (x) = −dV

dx . V is called potential energy. In this case,

mẍ+
dV

dx
= 0 (*)

Proposition 20.3

The total energy E = 1
2mẋ

2 + V (x) is preserved, i.e. if x(t) solves (∗) then E (x(t)) =
const.

Proof. Observe

d

dt
E (x(t)) =

d

dt

(
1

2
mẋ2 + +V (x)

)
=

1

2
m · 2 · ẋẍ+ V ′ (x(t)) ẋ

= ẋ
(
mẍ+ V ′(x)

)
= 0

Definition 20.4 (Conserved Quantity/First Integral) — Suppose f : D → R2, D ⊆ R2.
A conserved quantity/first integral for ẋ = f(x) is a function E : D → R s.t.

i) d
dtE (x(t)) = 0 for every solution x(t) of ẋ = f(x).

ii) E is non-constant on every ball Br(x0) ⊂ D.

Remark 20.5. If E is a first integral of ẋ = f(x) then ẋ = f(x) cannot have attracting fixed
points.
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Example 20.6 (Particle of mass m = 1 in a double-well potential)

Consider the following:

y

x

V (x)

ODE: ẍ + V ′(x) = 0

V (x) = −1
2 x

2 + 1
4x

4

The ODE is equivalent to

ẋ1 = x2

ẋ2 = −V ′(x1) = x− x3 = x1(1− x21)

Fixed points: (−1, 0), (0, 0), (1, 0)

Df =

(
0 1

1− 3x21 0

)
Df(0, 0) =

(
0 1
1 0

)
=⇒ eigenvalues λ = ±1

=⇒ (0, 0) is saddle for both linear and nonlinear ODE

Df(±1, 0) =

(
0 1
−2 0

)
=⇒ eigenvalues: λ2 + 2 = 0 =⇒ λ = ±i

√
2

=⇒ (−1, 0), (1, 0) are linear centers

Theorem 20.7

f ∈ C1(D). Suppose E is a preserved quantity for ẋ = f(x). Suppose x∗ is an
isolated fixed point. If x∗ is a local minimum (or maximum) of E, then all trajectories
sufficiently close to x∗ are closed trajectories. In particular, x∗ is a center for the ODE
ẋ = f(x).
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Example 20.8

Recall from the previous example, ẍ+ V ′(x) = 0, V (x) = −1
2x

2 + 1
4x

4 i.e. equivalently
for x1 = x and x2 = ẋ :

ẋ1 = x2

ẋ2 = x1 − x31

By example, E = 1
2 ẋ

2 + V (x) = 1
2x

2
2 − 1

2x
2
1 + 1

4x
4
1 is a preserved quantity.

x2

E

x1−1 0 1

Look at level sets: E = const

x1 large : E ≈ x22
2

+
x41
4

= const

x1 small : E ≈ x22
2
− x21

2
= const

Recall if

(
x1(t)
x2(t)

)
solves ẋ = f(x), then E

(
x1(t)
x2(t)

)
= const i.e.

(
x1(t)
x2(t)

)
is on level set.
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§21 Lec 20: Feb 24, 2021

§21.1 Conservative System (Cont’d)

Example 21.1 (Cont’d from the last example in Lec 19)

Phase portrait:

x1

x2

homoclinic

orbits (not periodic)

Remark 21.2. The assumption that x∗ is isolated is necessary:

ẋ = xy

ẏ = −x2

has the preserved quantity E = x2 + y2 ( ddtE = 2xẋ + 2yẏ = 2x2y − 2yx2 = 0), E has a
minimum at (x, y) = (0, 0), but {(0, y)|y ∈ R} = y-axis is a line of fixed points.

fixed points

and in particular, the ODE has no closed orbit (around (0, 0)).
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Recall: Suppose E : R2 → R,

DE =

(
∂E

∂x1
,
∂E

∂x2

)
= 0 at x∗

If

Hess E =

(
∂2E
∂x21

∂2E
∂x1∂x2

∂2E
∂x1∂x2

∂2E
∂x22

)
has only negative (positive) eigenvalues, then x∗ is a local maximum (minimum) of E
(alternatively, if det Hess E > 0, then E has either a local minimum or local maximum at
x∗).
If Hess E has eigenvalues λ1 < 0 < λ2 (i.e. det Hess E < 0), these x∗ is a sad-
dle.

Example 21.3

Consider:

E =
1

2
mẋ2 + V (x)

=
1

2
x22 −

1

2
x21 +

1

4
x41

DE =
(
−x1 + x31, x2

)
= 0

⇐⇒ (x1, x2) = (−1, 0), (0, 0), (1, 0)

Hess E =

(
−1 + 3x21 0

0 1

)
Hess E(±1, 0) =

(
2 0
0 1

)
=⇒ (±1, 0) are local minima

Hess E(0, 0) =

(
−1 0
0 1

)
=⇒ (0, 0) is a saddle

Remark 21.4. If E is a preserved quantity, then the trajectories are on the level sets, a, b > 0.

If E ≈ ax21 + bx22 = 1↔ ellipse

If E ≈ ax21 − bx22 = 1↔ saddle

§21.2 Reversible Systems

Definition 21.5 (Involution) — A map R : R2 → R2 is an involution if R2(x) =
R (R(x)) = x.
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Example 21.6 i) R(x, y) = (x, y) identity

ii) R is a reflection ,e.g. R(x, y) = (x,−y) reflection along x-axis.

iii) R(x, y) = (−x,−y) antipodal map

Definition 21.7 (Time-Reversible) — Let R be an involution. The ODE ẋ = f(x) is
time – reversible with respect to R if for every solution x(t) of ẋ = f(x), R (x(−t)) is
also a solution.
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Example 21.8

mẍ = F (x) i.e.

(∗)

{
ẋ = v

v̇ = 1
mF (x)

Consider: R(x, v) = (x,−v). Let

(X,V )(t) = R (x(−t), v(−t)) = (x(−t),−v(−t))

Then

d

dt
(X,V )(t) = (−ẋ(−t), v̇(−t))

=

(
−v(−t), 1

m
F (x(−t))

)
=

(
V (t),

1

m
F (X(t))

)
i.e. (X,V )(t) indeed solves the ODE (*) geometrically:

x

V

harmonic oscillator: F (x) = −kx with spring constant k. Recall: conservation of
energy (

k

m

)2

x2 + v2 = const
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Remark 21.9. Reversible systems may not be conservative, e.g.

ẋ = −2 cos(x)− cos(y)

ẏ = −2 cos(y)− cos(x)

has a sink at
(−π

2 ,
π
2

)
. On the other hand, the ODE is time-reversible with respect to

R(x, y) = (−x,−y) – more details: Strogatz example 6.6.
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§22 Midterm 2: Feb 26, 2021
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§23 Lec 21: Mar 1, 2021

§23.1 Reversible Systems (Cont’d)

Theorem 23.1

Let f ∈ C1(R2), f(x∗) = 0 and suppose that x∗ is a center for the linearization
ẏ = Df(x∗) = y. If ẋ = f(x) is time-reversible with respect to a reflection through x∗,
then x∗ is a center for ẋ = f(x), i.e. all trajectories close to x∗ are closed orbits.

Idea:

linear centers induces rotational behavior, hence yields intersections with reflection axis,
thus closed trajectory.
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Example 23.2

Consider:

ẋ = y

ẏ = x− x2 = x(1− x)

Fixed points: y = 0, x = 0 or x = 1.

Df =

(
0 1

1− 2x 0

)
=⇒ Eigenvectors : λ = ±1 :

(
1
±1

)
Df(0, 0) =

(
0 1
1 0

)
Eigenvalues : λ = ±1

=⇒ (0, 0) is a saddle for both the linear and non-linear ODE.

Df(1, 0) =

(
0 1
−1 0

)
, eigenvalues : λ = ±i

=⇒ (1, 0) is a linear center. ODE time-reversible wrt the reflection R(x, y) = (x,−y).
Check: Suppose (x(t), y(t)) is a solution. Then

(X(t), Y (t)) = R (x(−t), y(−t)) = (x(−t),−y(−t))

satisfies

d

dt
(X(t), Y (t)) = (−ẋ(−t), ẏ(−t))

= (−y(−t), x(−t)(1− x(−t)))
= (Y (t), X(t)(1−X(t)))

i.e. (X(t), Y (t)) is a solution
theorem

=⇒ (1, 0) is also a non-linear center.
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Example 23.3 (Cont’d from above)

Phase portrait:

ẋ = y

ẏ = x(1− x)

Note:

ẋ > 0 ⇐⇒ y > 0

ẏ > 0 ⇐⇒ 0 < x < 1

=⇒ solution (x, y) with x > 0, y > 0 in the unstable manifold of (0, 0) satisfies x = 1
for TBA, then ẏ < 0 as long as x > 1, hence it must cross the x-axis; time reversibility
yields a homoclinic orbit.

Remark 23.4. The ODE

ẋ = f(x, y)

ẏ = g(x, y)

is time reversible wrt R(x, y) = (x,−y)

⇐⇒

{
f is odd in y, f(x,−y) = −f(x, y)

g is even in y, g(x,−y) = g(x, y)

§23.2 Index Theory

ẋ = f(x)
Phase plane:
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φ

c

unless stated explicitly otherwise C is a simple (=no self-intersections) closed curve, no
fixed points on C, oriented counterclockwise.

Remark 23.5. Usually C is not a trajectory.

φ

Definition 23.6 (Index of a Curve) — Index of C : IC(f) = IC = net numbers of
counter-clockwise rotations of the vector field f along C = 1

2π (change of angle).

Theorem 23.7

If C can be continuously deformed into C ′ without passing through fixed points, then
IC = IC′

Idea: C changes continuously, IC is an integer, hence it cannot jump.
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Example 23.8

Consider:

1 = 9

2

3

4

8

i) =⇒ IC = 1. In particular, if C encloses a stable node (and no other fixed
points), then IC = 1.

1 = 9

2

3

8

1
2

3

ii) =⇒ IC = −1. In particular, if C encloses a saddle (and no other fixed points),
then IC = −1.

Proposition 23.9

If C does not enclose a fixed point, then IC = 0.

Idea:

shrink

tiny curve C1

f is continuous, hence
approach const along C1

93



Duc Vu (Winter 2021) 23 Lec 21: Mar 1, 2021

Proposition 23.10

IC(f) = IC(−f) i.e. the index does not change when reversing all arrows.

change

direction

ẋ = f (x)
ẋ = −f (x)

Idea: angle changes from φ to φ+ π, hence the difference stays the same.

Proposition 23.11

If C is a trajectory, i.e. a closed orbit of ẋ = f(x), then IC = 1. Intuition:

vector field is tangent to

C everywhere

precise result: Hopfscher Umlaufsatz.

Note: Closed orbits precisely correspond to periodic solutions.
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§24 Lec 22: Mar 3, 2021

§24.1 Index Theory (Cont’d)

Definition 24.1 (Index of a Fixed Point) — Let x∗ be a fixed point of ẋ = f(x),
f(x∗) = 0. The index of x∗ is Ix∗ = IC where C encloses x∗ and no other fixed point.

Proposition 24.2

If x∗ is a hyperbolic fixed point, then I∗ = sign detDf(x∗). In particular, I∗ =
−1 ⇐⇒ x∗ saddle.

Proposition 24.3

If C encloses the fixed points x∗1, . . . , x
∗
n then

IC =

n∑
i=1

Ix∗1

Idea:

Theorem 24.4

Any closed orbit in R2 must enclose fixed point(s) whose indices sum up to +1. In
particular, every closed orbit encloses a fixed point.

Corollary 24.5

If ẋ = f(x), f ∈ C1(R2), does not have any fixed points, then it does not have a closed
orbit.
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Example 24.6

The ODE:

ẋ = x(3− x− 2y)

ẏ = y(2− x− y)

does not have closed orbit, (0, 0) – unstable node, (0, 2), (3, 0) – stable nodes, (1, 1) –
saddle.
Phase portrait:

C4

C1

C3

C2

IC1 = 0

(C1 does not enclose any f.p.)

IC2 = −1

(C2 encloses a saddle)

Any closed has index = +1, so C1, C2 cannot be closed orbit. IC3 = IC4 = 1 but
C3, C4 intersect the x- or y-axis. However, the x-axis, y-axis consist of trajectories. By
uniqueness, trajectories cannot intersect, hence C3, C4 cannot be trajectories.

The same argument applies to any other curve with index +1 since all f.p. with
index +1 are on the x- or y-axis.

§24.2 Limit Cycles

Definition 24.7 (Limit Cycles) — Limit cycles are isolated closed trajectories.

stable
unstable unstable

(semi-stable/half stable)

Remark 24.8. Limit cycles are a non-linear phenomenon.
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Example 24.9

ṙ = r(1− r2), θ̇ = 1 (counter-clockwise rotation with speed +1)

ṙ = 0 : r = 0, r = 1

Phase portrait for radius:

r = 1

Phase portrait of ODE:

at r = 1 we have a stable limit cycle.

§24.3 Gradient Systems

Definition 24.10 (Gradient) — ẋ = f(x) is gradient if f(x) = −∇V = −
(
∂x1V
∂x2V

)
for

a scalar function V (x1, x2). V is called potential.
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Example 24.11

Consider:

i) V = x2 + y2 where

ẋ = −∂xV = −2x

ẏ = −∂yV = −2y

i.e. (0, 0) is a stable star. Level sets of V = x2 + y2 = r2

trajectories are orthogonal

to the level sets of V

ii) V = x2 − y2 where

ẋ = −∂xV = −2x

ẏ = −∂yV = 2y

i.e. (0, 0) is a saddle.
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Theorem 24.12

Gradient systems cannot have closed orbits.

Proof. Otherwise, let x(t), t ∈ [0, t] be a closed orbit. Then

0 = V (x(T ))− V (x(x(0)))

=

∫ T

0

d

dt
V (x(t)) dt

=

∫ T

0
〈∇V (x(t)) , ẋ(t)〉 dt

= −
∫ T

0
‖ẋ(t)‖2 dt < 0

unless ẋ = 0 i.e. x(t) = const is a fixed point. Contradiction.
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§25 Lec 23: Mar 5, 2021

§25.1 Gradient Systems (Cont’d)

Remark 25.1. If ẋ = f(x) is gradient, i.e.(
f1
f2

)
= −

(
∂x1

V
∂x2

V

)
then ∂f

∂x2
= −∂x2

∂x1
V = −∂x1

∂x2
V = ∂f2

∂x1
i.e. ∂f1

∂x2
− ∂f2

∂x1
= 0 and f is curl-free.

Theorem 25.2

Suppose f is curl-free. Then ẋ = f(x) is gradient provided that the domain of f does
not contain any holes e.g

R2 or Br ((x0, y0)) =
{

(x, y)|
√

(x− x0)2 + (y − y0)2 < r
}

In this case

V (x1, x2) = −
∫
γx0

〈f(x), dx〉 = −
(

line integral from x0 to

(
x1
x2

)
along a path γ

)
= −

∫ b

a
f (γx0(t)) · γ̇x0(t) dt

where γx0(a) = x0, γx0(b) =

(
x1
x2

)
, and also

V (x1, x2) = −
∫ 1

0
(f1(tx1, tx2)x1 + f2(tx1, tx2)x2) dt

for γ : [0, 1]→ R2 and γ(t) = t

(
x1
x2

)
.
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Example 25.3

Consider:

ẋ = sin(y)

ẏ = x cos(y)

Then ∂f1
∂y = cos(y) = ∂f2

∂x i.e. f is curl-free. Thus, the ODE is gradient. Then the
potential

V (x, y) = −
∫ 1

0
(f1(tx, ty)x+ f2(tx, ty)y) dt

= −
∫ 1

0
(x sin(ty) + tx cos(ty)y) dt

= −x sin(y)

§25.2 Lyapunov Functions

Definition 25.4 (Lyapunov Function) — Let S be a set. A function L(x) is a
Lyapunov function for ẋ = f(x) if

i) L(x) ≥ 0 and L(x) = 0 ⇐⇒ x ∈ S.

ii) d
dtL (x(t)) < 0 for every solution x(t) of ẋ = f(x), x(t) /∈ S
d
dtL (x(t)) = 0 ⇐⇒ for every solution x(t) of ẋ = f(x), x(t) ∈ S.

Theorem 25.5

If ẋ = f(x) has a Lyapunov function L(x) with L(x) = 0 ⇐⇒ x = x∗, then x∗ is a
globally stable fixed point. In particular, there is no closed orbit.

Example 25.6

The ODE:

ẋ = −x+ 4y

ẏ = −x− y3

does not have closed orbits, moreover (0, 0) is a globally stable fixed point.

Proof. The function L(x, y) = x2 + 4y2 is a Lyapunov function w.r.t S = {(0, 0)}

• L(x, y) = x2 + 4y2 ≥ 0, L(x, y) = 0 ⇐⇒ x = y = 0
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• Consider:

d

dt
L(x, y) = 2xẋ+ 8yẏ

= −2x2 + 8xy − 8xy − 8y4

= −2(x2 + 4y4) ≤ 0

d

dt
L(x, y) = 0 ⇐⇒ x = y = 0

Thus, the theorem applies.

Example 25.7

Consider:

ẋ = x
(
1− 4x2 − y2

)
− 1

2
y(1 + x)

ẏ = y
(
1− 4x2 − y2

)
+ 2x(1 + x)

linear stability analysis: (0, 0) is an unstable spiral. Consider L(x, y) =
(
1− 4x2 − y2

)2
• L(x, y) ≥ 0 and L(x, y) = 0 ⇐⇒ 4x2 + y2 = 1

• Have:

d

dt
L(x, y) = 2

(
1− 4x2 − y2

)
(−8xẋ− 2yẏ)

= . . .

= −4
(
1− 4x2 − y2

)2 (
4x2 + y2

)
≤ 0

and d
dtL(x, y) = 0 ⇐⇒ x = y = 0 or 4x2 + y2 = 1.

Consequence: 4x2 + y2 = 1 is a limit cycle because

• ODE does not have a f.p. on 4x2 + y2 = 1. Note: if 4x2 + y2 = 1 :

ẋ =
1

2
y(1 + x)

ẏ = 2x(1 + x)

thus if ẋ = 0, then (x, y) =
(
±1

2 , 0
)

is the only option on 4x2 + y2 = 1 and ẏ 6= 0.
Similarly, if ẏ = 0, then (x, y) = (0,±1) and ẋ 6= 0

• Trajectories approach the minimum level set 4x2 + y2 = 1 unless (x(t), y(t)) =
(0, 0).
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§26 Lec 24: Mar 8, 2021

§26.1 The Poincaré – Bendixson Theorem

Theorem 26.1 (Poincaré – Bendixson)

Let D ⊆ R2 be open, f ∈ C(D). Let x(t) be a trajectory of ẋ = f(x) s.t. C =
{x(t)|t ≥ 0} is contained in a closed, bounded region R ⊂ D.

If R does not contain any fixed points, then either C is a closed orbit or x(t) spirals
towards a closed orbit (in R) as t→∞. In particular, R contains a closed orbit.

Example 26.2

Consider: D = R2

R

R

the region R

the fixed point in

has to be excluded

R is a trapping region, i.e. the vector field f points inward on the boundary of R.
Hence, all trajectories starting in R, remain in R. In particular, if R does not contain
any fixed points, then the Poincaré – Bendixson theorem applies. In particular, R
contains a closed orbit.

Remark 26.3. Poincaré – Bendixson fails in dimension 3, i.e. if R2 is replaced by R3.
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P-B rules out chaotic behavior. However, in dimension 3, chaotic solutions are possible
(strange attractors).

Example 26.4

Consider:

ẋ = x− y − x3

ẏ = x+ y − y3

Claim 26.1. The ODE has a closed orbit.

Vertical Nullclines : ẋ = 0 ⇐⇒ y = −x(x− 1)(x+ 1)

Horizontal Nullclines : ẏ = 0 ⇐⇒ x = y(y − 1)(y + 1)

in particular, the nullclines intersect only at (0,0),

so (0,0) is the only fixed point

Df(0, 0) =

(
1 −1
1 1

)
=⇒ λ = 1± i

=⇒ (0, 0) is an unstable spiral. Let’s construct a trapping region
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Example 26.5 (Cont’d from the above)

Have:

radius =δ

x = −2 : ẋ = 6− y ≥ 4 > 0

x = 2 : ẋ = −6− y < 0

for −2 ≤ y ≤ 2

y = −2 : ẏ = x+ 6 ≥ 4 > 0

y = 2 : ẏ = x− 6 ≥ −4 < 0

for −2 ≤ x ≤ 2

2

−2

2−2

Thus any trajectory starting in R = {(x, y)| − 2 ≤ x ≤ 2, −2 ≤ y ≤ 2} has to
remain in R. Hence

Rδ = R \Bδ(0) = R \
{

(x, y)|x2 + y2 < δ2
}

for δ > 0 small, is a trapping region, because (0, 0) is an unstable spiral, thus all
trajectories must leave (and cannot re-enter) Bδ(0) for some δ > 0 small. Thus, by
P-B, Rδ contains a closed orbit.

nullclines

trapping region + v.f.

closed orbit
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Example 26.6

Consider:

ṙ = r
(
1− r2 + µ cos θ

)
θ̇ = 1

for a fixed parameter µ ∈ R. If µ = 0 : ṙ = r(1− r2) and the circle r = 1 is a closed
orbit.

Claim 26.2. For µ ∈ (0, 1) there is a closed orbit.

Proof. Fix µ ∈ (0, 1). Then ṙ ≥ r(1− r2 − µ) > 0 if r2 < 1− µ i.e. 0 < r <
√

1− µ.

ṙ ≤ r
(
1− r2 + µ

)
< 0 if r2 > 1 + µ i.e. r >

√
1 + µ

Thus, for any ε > 0 small, e.g., ε = 1
2

R =
{

(x, y) = r(cos θ, sin θ)|(1− ε) ·
√

1− µ ≤ r ≤ (1 + ε)
√

1 + µ
}

is a trapping region. Recall R does not contain nay fixed points. Therefore, by P-B,
there is a closed orbit in R.
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§27 Lec 25: Mar 10, 2021

§27.1 Pendulum

Consider:

φ
L

m

g

φ̈ + g
L sinφ = 0

Remark 27.1. For small angles:

sinφ ≈ φ, ω2 =
g

L

φ̈+ ω2φ = 0 (harmonic oscillator)

Normalize ω2 = g
L = 1. Alternatively, non-dimensional with time scale T = 1

ω , τ = t
T . Set

v = φ̇. Then {
φ̇ = v

v̇ = − sinφ

Fixed points, v∗ = 0, φ∗ = πZ on R, 0, π on circle.

Linearization at fixed point: f(φ, v) =

(
v

− sinφ

)

Df =

(
0 1

− cosφ 0

)
Df(0, π) =

(
0 1
0 1

)
=⇒ λ1 = −1, λ2 = 1

=⇒ (0, π) is a saddle, hyperbolic fixed point, and thus also a saddle for non-linear ODE.

Df(0, 0) =

(
0 1
−1 0

)
=⇒ (0, 0) is a linear center, in fact, (0, 0) is a non-linear center because:

• ODE time-reversible w.r.t (φ, v) 7→ (φ,−v)

• E = 1
2v

2 − cosφ is a conserved quantity (conservation of energy) and (0, 0) is an
isolated fixed point and local minimum of E.

107



Duc Vu (Winter 2021) 27 Lec 25: Mar 10, 2021

Phase portrait:

v

φ

E = 1
2v

2 − cosφ

E = -1: fixed points

closed orbitsE < 1 :

E = 1: heteroclinic orbits

E > 1 : rotations over the top of the pendulum

Phase portrait on the cylinder:

E = 1

E = −1

E

Damping: φ̈+ bφ̇+ sinφ = 0, b > 0 damping constant. Energy is not preserved:

d

dt
E =

d

dt

(
1

2
v2 − cosφ

)
= vv̇ + sinφφ̇ = φ̇

(
φ̈+ sinφ

)
= −bφ̇2 ≤ 0

=⇒ E non-increasing, decreasing if φ̇ 6= 0
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E

E = 1

E = −1

§27.2 Bifurcation in 2D

i) Saddle-node bifurcation

ẋ = µ− x2

ẏ = −y

µ > 0 :

µ− x2

µ > 0 µ = 0 µ < 0

ii) Transcritical bifurcation

ẋ = µx− x2

ẏ = −y
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x(µ− x)

µ < 0 µ = 0 µ > 0

x(µ− x)

−x2

µ < 0 µ = 0 µ > 0
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§28 Lec 26: Mar 12, 2021 – Last Lecture : ’(

§28.1 Bifurcation in 2D (Cont’d)

Continue from last lecture,

iii) Pitchfork bifurcations:

subcritical : µx+ x3, ẏ = −y
supercritical : µx− x3, ẏ = −y

Remark 28.1. In all examples, one eigenvalue of Df(0, 0) for µ = 0 is equal to zero.

Recall: conditions for bifurcation in 1D

f = 0

∂f

∂x
= 0

therefore examples i)− iii) are zero-eigenvalue bifurcations.

Example 28.2

Transcritical bifurcation:

ẋ = µx− x2

ẏ = −y

Df(0, 0) =

(
µ 0
0 −1

)

−1 µ Re(λ)

Im(λ)
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Example 28.3

Supercritical Hopf bifurcation:

ṙ = µr − r3 = r
(
µ− r2

)
θ̇ = ω > 0

Eigenvalues of linearization at (x, y) = (0, 0) : λ1,2 = µ± iω

Im(λ)

Re(λ)

µ ≤ 0 µ > 0

origin: stable spiral origin: unstable spiral

r =
√
µ is a closed orbit, in fact, a stable limit cycle.
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Example 28.4

Consider:

ṙ = µr + r3 − r5 = r
(
µ+ r2 − r4

)
θ̇ = ω > 0

µ = −1
4

−1
4 < µ < 0

µ + r2 − r4
µ

µ + 1
4

ṙ

µ ≥ 0

origin: unstable spiral

: stable limit cycle

−1
4 < µ < 0 :

ṙ

r

origin: stable spiral

: stable limit cycle

: unstable limit cycle
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Example 28.5 (Cont’d from above)

We have a subcritical Hopf bifurcation at the origin for µ < 0. (the fixed point
(=origin) changes stability and an unstable limit cycle is created)

µ = −1
4 :

ṙ

1√
2

r

origin: stable spiral

: semi-stable limit cycle

µ < −1
4 :

r

ṙ

origin: stable spiral

We have a global bifurcation at the radius r = 1√
2

(a bifurcation that does take a

fixed point), more precisely a “saddle-node bifurcation of limit cycles”. A stable and
an unstable limit cycles collide and disappear (or appear out of the blue).

Remark 28.6. Degenerate Hopf fibration: center at bifurcation (µ∗, x∗) (recall: sub/supercritical
case: spirals)
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Example 28.7

Damped pendulum:

ẍ+ µẋ+ sin(x) = 0 µ ∈ R : damping parameter

Have:

µ > 0 : friction: (x, ẋ) = (0, 0) is a stable spiral

µ = 0 : conservative system (x, ẋ) = (0, 0) is a non-linear center

µ < 0 : energy increases: (x, ẋ) = (0, 0) is a stable spiral

Recall: d
dtE = d

dt

(
1
2 ẋ

2 − cos(x)
)

= −µx2.
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