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§1 Lec 1: Sep 24, 2021

§1.1 Calculus Review

• Intermediate Value Theorem (IVT): For continuous function C ([a, b]), let f ∈ C ([a, b]). Let
k ∈ R s.t. k is strictly between f(a) and f(b). Then, ∃ some c ∈ (a, b) s.t. f(c) = k.

Question 1.1. Why is IVT useful?

It guarantees the existence of solution to some nonlinear equations.

Example 1.1

Let f(x) = 4x2 − ex. IVT tells us ∃x∗ s.t. f(x∗) = 0.

f(0) = 0− e0 = −1 < 0

f(1) = 4− e > 0

With k = 0, by IVT, ∃c ∈ (0, 1) s.t. f(c) = 0.

• Mean Value Theorem (MVT): If f ∈ C ([a, b]) and f is differentiable in (a, b), then ∃c ∈ (a, b)
s.t.

f ′(c) =
f(b)− f(a)

b− a
in which f ′(c) is essentially the slope of the tangent line at (c, f(c)).

a b

A(a, f(a))

B(b, f(b))

secant line

• Taylor’s Theorem: Apply for a differentiable function, f ∈ Cm ([a, b]) – f is m times continu-
ously differentiable.

Theorem 1.2 (Taylor)

Let f ∈ Cn ([a, b]). Let x0 ∈ [a, b]. Assume f (n+1) exists on [a, b]. Then ∀x ∈ [a, b],
∃ξ(x) ∈ R s.t. x0 < ξ < x or x < ξ < x0. Then, we can express f as

f(x) = Pn(x) +Rn(x)

where

Pn(x) = f(x0) + f ′(x0)(x− x0) + f ′′(x0)
(x− x0)2

2!
+ . . .+

f (n)(x0)

n!
(x− x0)n

and

Rn(x) =
f (n+1)(ξ)

(n+ 1)!
(x− x0)n+1
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Example 1.3

f(x) = cos(x), x0 = 0

f(x) = cos(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(ξ(x))

3!
x3

= 1 + 0− 1

2
x2 +

1

6
x3 sin(ξ(x))

Note: Saying f ∈ C1 is different from saying f ′(x) exists.

Example 1.4

Consider

f(x) =

{
x2 sin

(
1
x

)
, x 6= 0

0, x = 0

Have

f ′(0) = lim
h→0

f(0 + h)− f(0)

h

= lim
h→0

h sin

(
1

h

)
= 0

But f ′(x) is not continuous. Specifically,

f ′(x) =

{
2x sin

(
1
x

)
− cos

(
1
x

)
, x 6= 0

0, x = 0

Take sequence 1
2kπ , f

′ → −1 and 1
(2k+1)π , f

′ → 1. Thus, the function is not continuous

as it converges to two different values.
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§2 Lec 2: Sep 27, 2021

§2.1 Errors and Convergence Rate

Fact 2.1. 1. Computers have finite memory

2. Only a subset of rational numbers Q can be exactly represented/stored.

3. Working with floating numbers instead of reals produces round-off error

Definition 2.1 (Error) — Let p ∈ R, p̃ approximate to p. We define absolute error as

eabs := |p− p̃|

We define relative error as

erel :=

∣∣∣∣p− p̃p
∣∣∣∣

Example 2.2 • p = 1, p̃ = 0.9. In this case,

eabs = 0.1

erel = 0.1

• p = 1000, p̃ = 900

eabs = 100

erel = 0.1

Finite Digit Arithmetic

Example 2.3 • π is rounded/chopped by computers

• x = 5
7 = 0.714285, y = 1

3 = 0.3

Let fl(x) is the floating point approx. to x. For example, we assume 5 digit rounding.

fl(x) = 0.71428, f l(y) = 0.33333

Say if we want to add x+ y on computer

fl (fl(x) + fl(y)) = fl (1.04761) = 1.0476

7



Duc Vu (Fall 2021) 2 Lec 2: Sep 27, 2021

Example 2.4

f(x) = x3−6.1x2+3.2x+1.5 where x = 4.71. The exact value of f(x) at x = 4.71 is -14.263899.
Let’s assume 3 digit rounding

fl(x2) = fl(4.71 · 4.71) = fl(22.1841) = 22.2

fl(x3) = 105

fl(3.2x) = 15.1

fl (f(4.71)) = −13.4

The relative error here is approximately 6% which is huge. Our example has 7 floating point
operations (FLOPs). In order to reduce the floating point error, we want to nest the function

f(x) = ((x− 6.1)x+ 3.2)x+ 1.5 – 5 FLOPs

So fl (f(4.71)) = −14.3 and the erel = 0.25%.

Remark 2.5. Every operation introduces error.

Order of convergence for Sequences:

Definition 2.6 (Order of Convergence for Sequences) — For a convergent sequence (pn) =
(p1, p2, p3, . . .). Let pn → p as n→∞. Assume pn 6= p. Then, if ∃λ, α with 0 < λ <∞ and
α > 0 s.t.

lim
n→∞

|pn+1 − p|
|pn − p|α

= λ

Then we say pn converges to p with order α.

Example 2.7

p1 = 1, p2 = 1
5 , . . . , pn = 1

5pn−1 or pn = 1
5n−1 where pn → 0 as n→∞.

|pn+1 − 0|
|pn − 0|1

=

(
1
5

)n(
1
5

)n−1 =
1

5

So pn converges with α = 1

Problem 2.1. Test with α = 2.

Definition 2.8 (Big O Notation) — We have a(t) = O (b(t)) where a is on the order of b ⇐⇒

∃C > 0 3 |a(t)| ≤ Cb(t) for t→ 0 or t→∞

In practice, the definition is equivalent to

lim
t→0

|a(t)|
b(t)

is bounded by a positive number

8



Duc Vu (Fall 2021) 3 Lec 3: Sep 29, 2021

§3 Lec 3: Sep 29, 2021

§3.1 Lec 2 (Cont’d)

Example 3.1

The Taylor’s theorem for cos(h) about 0 is

cos(h) = 1− 1

2
h2 +

1

24
h4 cos (ξ(h)) with some 0 < ξ(h) < h

Denote f(h) = cos(h) + 1
2h

2 − 1 = 1
24h

4 cos (ξ(h))

lim
h→0

|f(h)|
h4

= lim
h→0

1

24
|cos (ξ(h))| ≤ 1

24

Thus y definition of big O notation,

f (h) = O(h4)

§3.2 Root Finding with Bisection

The goal is to find a root, or a zero, of a function f , i.e., find p s.t. f(p) = 0. First, let’s assume

1. f ∈ C ([a, b])

2. f(a)f(b) < 0

Then, ∃p s.t. f(p) = 0 (by IVT).

Example 3.2

Consider:
f(x) =

√
x− cosx, [a, b] = [0, 1]

Then,
f(0) = −1, f(1) = 1− cos 1 > 0

Therefore, by IVT, ∃p ∈ (0, 1) s.t.
√
p− cos p = 0.

Bisection Method (B.M): is an algorithm to approximate p s.t. f(p) = 0 on an interval [a, b].
Algorithm 1: Bisection method (given f(x) ∈ C ([a, b]), with f(a)f(b) < 0)

1. Set a1 = a, b1 = b

2. Set p1 = a1+b1
2

3. if f(p1) == 0 then we are done!

4. else if f(p1) has same sign as f(a1) then p ∈ (p1, b1)

• Set a2 = p1, b2 = b1

5. else if f(p1) has same sign as f(b1) then p ∈ (a1, p1)

• Set a2 = a1, b2 = p1

6. end

9
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7. Set p2 = a2+b2
2

8. Reset the entire if/else process.

Remark 3.3. B.M. is similar to binary search in computer algorithms. If there exists multiple roots,
e.g., {p, q, r} ∈ [a, b], then the B.M. is guaranteed to find exactly one root, not all of them (but no
guarantee exists for which one the method will find).

Stopping Criteria: We need a sequence (p1, p2, . . .) and need specified tolerance ε. Choices for when
to stop an algorithm:

• |pn − pn−1| < ε – absolute difference between successive elements of the sequence

• |pn−pn−1|
|pn| < ε (assume pn 6= 0) – relative difference

• |f(pn)| < ε – sometimes called a residual (how close are we to the answer).

10
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§4 Lec 4: Oct 1, 2021

§4.1 Bisection Method (Cont’d)

Remark 4.1. B.M. is a global method, f ∈ C ([a, b]) as long as the assumptions are satisfied,
f(a)f(b) < 0, the B.M. will converge. In particular, it will converge to some point p s.t. f(p) = 0.
Here “global” means the algorithm doesn’t need a good initial guess p0 unlike some “local” methods
that we will cover later.

Example 4.2

The B.M. won’t work for functions like f(x) = x2 even though it has a root at p = 0 because
we can’t find any a, b that satisfies f(a)f(b) < 0.

Theorem 4.3 (Convergence Order of B.M.)

The sequence provided by B.M. satisfies

|pn − p| ≤
b− a

2n

which approaches to 0 as n→∞.

This further tells us that the error bound of B.M. converges linearly. Recall from previous lectures
that linear convergence for a convergent sequence (pn) means that

lim
n→∞

|pn+1 − p|
|pn − p|1

= λ for some finite positive λ

and

pn =
b− a

2n
, p = 0

We can easily show that λ = 1
2 .

Remark 4.4. The B.M. converges slowly compared to other methods. We will soon see that Newton’s
method has quadratic order of convergence.

§4.2 Fixed Points

Definition 4.5 (Fixed Point) — Let function g be g : [a, b] → R and p ∈ [a, b] s.t. g(p) = p.
Then p is a fixed point of g.

Theorem 4.6

Let p be a fixed point of g, then p is also a root of G(x) := g(x)− x.

Proof. Obvious by definition.

11
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Given a root-finding problem f(p) = 0, we can define functions g with a fixed point at p in a number
of ways. For example, as g(x) = x− f(x) or as g(x) = x+ 3f(x).
A fixed point for g just corresponds to the intersection between y = g(x) and y = x.
Fixed Point Iteration (F.P.I): the F.P.I method is quite simple. For g ∈ C ([a, b]) and p0 ∈ [a, b] we
set pn+1 = g(pn). We also need g(x) ∈ [a, b], otherwise at some point of the algorithm we won’t be
able to proceed to evaluate g. Also note that the initial guess p0 is arbitrary.

p1 = g(p0), p2 = g(p1), . . . , pn+1 = g(pn)

We use the same stopping criteria as in B.M.

Example 4.7 (F.P.I Failure Case)

To solve x2−7 = 0, it is equivalent to x = 7
x . We want to use F.P.I to find p =

√
7 ≈ 2.64575 . . .,

so we can set

g1(x) =
7

x

then the goal is to find p s.t. p = g1(p). Another option is to use

g2(x) :=
x+ 7

x

2
= x

Let p0 = 3 we can show that

• g1(x): p0 = 3, p1 = 7
3 , p2 = 3,. . . , oscillates between 2 numbers

• g2(x): p0 = 3, p1 = 2.666 . . ., p2 = 2.645833 . . .,. . .

Example 4.8

x3 + 4x2 − 10 = 0 has a unique root in [1, 2], i.e. p = 1.365230013.

a) x = g1(x) = x− x3 − 4x2 + 10 – does not converge

b) x = g2(x) =
(
10
x − 4x

) 1
2 – does not converge

c) x = g3(x) = 1
2 (10− x3)

1
2 – converge

d) x = g4(x) =
(

10
x+4

) 1
2

– converge

e) x = g5(x) = x− x3+4x2−10
3x2+8x – converge

We can see that the choice of g(x) is critical to determine whether the algorithm converges.
Before delving into that problem, let’s first establish a theorem about the existence of a fixed
point.

Theorem 4.9 (Existence of a Fixed Point)

Let g ∈ C ([a, b]) with a ≤ g(x) ≤ b. Then, ∀x ∈ [a, b], ∃ at least one fixed point p s.t. g(p) = p.

12
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§5 Lec 5: Oct 4, 2021

§5.1 Fixed Point Iteration (Cont’d)

Recall

Theorem 5.1

Let g ∈ C[a, b] with a ≤ g(x) ≤ b∀x ∈ [a, b], then ∃ at least one fixed point p s.t. g(p) = p.

Let’s prove it.

Proof. First, we need to check if an end point is a fixed point, i.e., if

g(a) = a or g(b) = b

then we’re done. Otherwise, let’s define G(x) := g(x)− x. Our goal is to use IVT to prove that G
has a root. Then since g ∈ [a, b], we know

G(a) = g(a)− a > 0, G(b) = g(b)− b < 0

=⇒ G(a)G(b) < 0

Also, G ∈ C ([a, b]). Therefore, by IVT, ∃p s.t. G(p) = 0, i.e., ∃p ∈ [a, b] s.t. g(p) = p.

Remark 5.2. The theorem is just a sufficient condition for existence.

Theorem 5.3 (FPI Convergence with Lipschitz Continuity)

Assume g ∈ C ([a, b]), g ∈ [a, b] (*) and ∃k ∈ (0, 1) s.t.

|g(x)− g(y)| ≤ k |x− y| , ∀x, y ∈ [a, b] (**)

Then,

1. ∃ unique p s.t. g(p) = p.

2. The F.P.I (pn+1 = g(pn)) will converge to p.

3. Error estimate: |pn − p| < kn max {b− p0, p0 − a}.

Proof. 1. Let’s prove by contradiction. Assume ∃ two different fixed points p and q, then

|g(p)− g(q)| = |p− q|

But by (**) we know
|g(p)− g(q)| ≤ k |p− q|

This implies that
|p− q| ≤ k |p− q|

which cannot be true since p 6= q and k ∈ (0, 1) – contradiction!

13



Duc Vu (Fall 2021) 5 Lec 5: Oct 4, 2021

2. + 3. By (**) we know that differences of g values are bounded. So let’s try to convert this to
something with g values. We know F.P.I g(pn) = pn+1 and also let p be the solution g(p) = p.
So

|pn − p| = |g(pn−1)− g(p)|

By (**), we know
|pn − p| = |g(pn−1)− g(p)| ≤ k |pn−1 − p|

Similarly,
k |pn−1 − p| = k |g(pn−2)− g(p)| ≤ k2 |pn−2 − p|

Recursively apply this until n = 0. Then,

|pn − p| ≤ kn |p0 − p|

Notice that
|p− p0| ≤ max {b− p0, p0 − a}

Thus,
|pn − p| ≤ kn max {b− p0, p0 − a}

Since k ∈ (0, 1), this goes to 0.

Remark 5.4. Speed of convergence depends on k. The closer to 0 k is, the faster it converges.

In practice, to use the theorem, it is sometimes more useful to look at the derivatives instead of
Lipschitz condition.

Theorem 5.5 (FPI Convergence with Bounded Derivative)

Assume (*) and g ∈ C1 [a, b] and that ∀x ∈ [a, b] , ∃k ∈ (0, 1) s.t. |g′(x)| ≤ k. Then, following
the above theorem, F.P.I converges to the unique solution.

Proof. Here we need to prove that bounded derivative gives Lipschitz. Let’s use MVT, ∃c ∈ (a, b)
s.t. ∀x, y ∈ [a, b]

g′(c) =
g(x)− g(y)

x− y
Thus,

|g(x)− g(y)| = |g′(c)| |x− y| ≤ k |x− y|

14
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§6 Lec 6: Oct 6, 2021

§6.1 Newton’s Method

Newton’s Method (N.M.) is a classic technique used in science and engineering, research and industry
all the time. There are many ways to derive it, and we will go over 3 today.
Analytic derivation with Taylor’s polynomial:

Let f ∈ C2 ([a, b]), p is a root (f(p) = 0). Suppose pn is “close to” p, i.e., |pn − p| is “small”.

0 = f(p) = f(pn) + f ′(pn)(p− pn) + f ′′(ξ)
(p− pn)2

2

If |p− pn| is “small”, then |p− pn|2 is “really small”. Up to an error of size ≈ (p− pn)2,

0 = f(p) ≈ f(pn) + f ′(pn)(p− pn)

So

p = pn −
f(pn)

f ′(pn)

This can be used to “invent” Newton’s method.

Definition 6.1 (Newton’s Method) — Start with p0 close to p, then do

pn+1 = pn −
f(pn)

f ′(pn)

Remark 6.2. The initial guess p0 must be close to p, otherwise the analytic derivation breaks down.

Graphical Derivation:

p0 p2

p p1

Tangent line: y = ax+ b and the intersection with the x-axis is pn+1. We know

f(pn) = apn + b

0 = apn+1 + b

a = f ′(pn)

The unknowns are a, b, pn+1. Solving them we obtain

pn+1 = pn −
f(pn)

f ′(pn)

Fixed Point Derivation Method:

15
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Theorem 6.3

Let g(x) := x− f(x)
f ′(x) for some f ∈ C1 ([a, b]) where f ′(x) 6= 0 for x ∈ [a, b]. Then g(p) = p if

and only if f(p) = 0.

Proof. Basic algebra :D

Define a fixed point iteration from g

pn+1 = g(pn) = pn −
f(pn)

f ′(pn)

Remark 6.4. We must have f ′(pn) 6= 0 ∀n, otherwise, N.M will fail.

Pros of N.M:

• It will converge faster than the B.M. to the root p of function f(x) (when it does converge).

Cons of N.M.:

• Unlike the B.M., N.M. is a local method, not global. That means p0 must be sufficiently close
to p for success.

• N.M. requires knowledge of f ′(x) and evaluation of f ′(x) (especially when f is Rn → Rm).

In higher dimension, if f is Rn → Rn, then N.M. is

xn+1 = xn − (J(xn))
−1

f(xn)

where J(x) is the Jacobian matrix and Jii = ∂fi
∂xj

(x).

§6.2 Secant Method

N.M. requires the knowledge of f ′(x) and evaluation of f ′(x), so we can approximate it as follows

f ′(pn) ≈ f(pn)− f(pn−1)

pn − pn−1

This defines the Secant Method.

Definition 6.5 (Secant Method) — Given some p0 and p1, define

pn+1 = pn − f(pn)
pn − pn−1

f(pn)− f(pn−1)

Secant method is useful when you don’t have access to f ′(x), e.g., when we don’t have access to f .
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§7.1 Secant Method (Cont’d)

Recall Newton’s Method (N.M.) is defined as follows

Given p0, pn+1 = pn +
f(pn)

f ′(pn)

This requires evaluation of f ′. In general, this could be expensive or unknown, e.g., in higher
dimension or f(x) comes from experimental data. The definition of derivative is

f ′(x) := lim
h→0

f(x)− f(x− h)

h

So when h is small, the derivative can be approximated by “finite difference”,

f ′(x) ≈ f(x)− f(x− h)

h

So if we let x = pn, and x− h = pn−1, then this becomes

f ′(pn) ≈ f(pn)− f(pn−1)

pn − pn−1

which holds true when pn−pn−1 is small. This leads us to the definition of secant method.

Definition 7.1 — Given p0, p1, secant method is defined as

pn+1 = pn − f(pn)
pn − pn−1

f(pn)− f(pn−1)

where the fraction is approximating (f ′(pn))
−1

.

Question 7.1. How to get p1?

e.g., running one iteration of bisection method.

§7.2 Local Convergence of Newton’s Method

Theorem 7.2 (Newton Convergence)

Let f ∈ C2 ([a, b]) and p ∈ (a, b) s.t.

i) f(p) = 0

ii) f ′(p) 6= 0

Then ∃δ > 0 s.t. N.M. will converge for ∀p0 ∈ [p− δ, p+ δ].

There is no guideline to find the exact δ – which means we don’t know what close-enough means in
practice unfortunately.

Proof. The idea here is to apply the F.P.I. theorem from previous lectures to some to-be-defined
function g. What is g?
Key conditions to satisfy:

17
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1.
[
â, b̂
]
→
[
â, b̂
]

2. g is C1

3. g has bounded derivative with bound in (0, 1).

Define g(x) := x− f(x)
f ′(x) . N.M. on f(x) is the same as F.P.I. on g(x)

pn+1 = pn −
f(pn)

f ′(pn)
⇐⇒ g(pn) = pn+1

Thus, we just need to show the three postulates about g.

2. f ∈ C2 ([a, b]) so f ∈ C ([a, b]) and f ′ ∈ C ([a, b]) and f ′′ ∈ C ([a, b]). Let’s compute g′(x)

g′(x) = 1−

(
f ′(x)f ′(x)− f(x)f ′′(x)

(f ′(x))
2

)
=
f(x)f ′′(x)

(f ′(x))
2

There exists a region [p− δ1, p+ δ1] in [a, b] s.t. f ′(x) 6= 0, so g′ is continuous in [p− δ1, p+ δ1].
This proves 2.

3. WTS: bounded derivative

g′(x) =
f(x)f ′′(x)

(f ′(x))
2

g′(p) = 0

Due to continuity of g′ in [p− δ1, p+ δ1], there exists a region (with 0 < δ < δ1) s.t. |g′(x)| ≤ k
in [p− δ, p+ δ] for any k ∈ (0, 1). This proves 3.

Lastly, let’s show 1.

1. Need to prove g maps [p− δ, p+ δ] to [p− δ, p+ δ]

|g(x)− p| = |g(x)− g(p)| = |g′(ξ)| |x− p| ≤ k |x− p| < |x− p|

By M.V.T, ∃ξ ∈ (x, p). N.M. on f(x) is the same as F.P.I on g(x).

Now, we proved that F.P.I converges to p for any p0 ∈ [p− δ, p+ δ]. Equivalently, N.M. converges
for f at p.

Remark 7.3. δ cannot be a priori. In practice, we can

• begin with some p0 ∈ [a, b]

• run several iterations of B.M. (a global method)

• switch to N.M.
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§8.1 Convergence Order Theorem

Let’s begin with a fact.

Fact 8.1. Let p = g(p) e a fixed point, F.P.I g(pn) = pn+1

• If g′(p) 6= 0, we get linear convergence (order of convergence α = 1)

• If g′(p) = 0, we get quadratic convergence (α = 2)

Theorem 8.1

Let g ∈ C1 ([a, b]) with |g′(x)| ≤ k for some 0 < k < 1. If g′(p) 6= 0, then F.P.I. converges to p
linearly.

Proof. From F.P.I convergence theorem, we know that F.P.I converges in this case. So we just need
to prove the linear order. Use M.V.T.:

pn+1 − p = g(pn)− g(p) = g′(ξ)(pn − p)

where ξ is between pn and p.

lim
n→∞

|pn+1 − p|
|pn − p|

= lim
n→∞

|g′(ξ)| = |g′(p)| = k

in which k is a positive number that is smaller than 1. It’s also easy to see that it only has linear
convergence, e.g.,

lim
n→∞

|pn+1 − p|
|pn − p|2

= lim
n→∞

|g′(ξ)| 1

|pn − p|
=∞

Theorem 8.2 (Convergence Order Theorem of FPI)

Let g ∈ Cα ([a, b]), α ≥ 2 is an integer. If

i) g(p) = p

ii) g′(p) = g′′(p) = . . . = g(α−1)(p) = 0

iii) g(α)(p) 6= 0

Then, F.P.I. converges ∀p0 sufficiently close to p with order α.

Proof. First let’s prove that pn → p. We can follow the procedure in the proof in lecture 7.
Sketch: g′(p) = 0 and g′ ∈ C ([a, b]), ∃δ s.t.

|g′(x)| ≤ k ∈ [p− δ, p+ δ] for any k ∈ (0, 1)

Also,

|g(x)− p| = |g(x)− g(p)| = |g′(ξ)| |x− p| ≤ k |x− p| < |x− p|
p− δ ≤ g(x) ≤ p+ δ
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These conditions guarantee convergence for pn → p by F.P.I Theorem. Next, let’s prove that the
order is α. Let n = α− 1,

g(x) = g(x0)+g′(x0)(x−x0)+g′′(x0)
(x− x0)2

2!
+. . .+g(α−1)(x0)

(x− x0)α−1

(α− 1)!
+g(α) (ξ(x))

(x− x0)α

α!

where ξ(x) is between x0 and x is a general unknown. Let x = pn and x0 = p,

g(pn) = p+ g(α)(ξn)
(pn − p)α

α!

where ξn := ξ(pn) is between pn and p. So

pn+1 = p+ g(α)(ξn)
(pn − p)α

α!

After some manipulation we get

lim
n→∞

|pn+1 − p|
|pn − p|α

= lim
n→∞

∣∣∣∣g(α)(ξn)

α!

∣∣∣∣
We know g ∈ Cα ([a, b]), then

lim
n→∞

|pn+1 − p|
|p−p|α

=
1

α!

∣∣∣g(α) ( lim
n→∞

ξn

)∣∣∣
Recall ξn ∈ [pn, p] or [p, pn], so pn → p =⇒ ξn converges to p.

lim
n→∞

|pn+1 − p|
|pn − p|α

=
1

α!

∣∣∣g(α)(p)∣∣∣ := α ∈ (0,∞)

Note that from Extreme Value Theorem we know that continuous function in a bounded interval is
bounded.

g(pn) = pn+1 converges with order 2 (or better, if g′′(p) = 0).

Remark 8.3. Suppose that derivative vanishes at p, i.e., f ′(p) = 0, then N.M. may

1. not converge at all

2. or converge very slowly (only linearly) depending on initial guess

If pn → p and f ′(p) = 0, then that timplies f ′(pn) ≈ 0 for n large.

Example 8.4

Consider: f(x) = x2 =⇒ f ′(x) = 2x

f(0) = 0, f ′(0) = 0

0 is a double root of f . Have
f ′(p) = f(p) = 0

and

g(x) = x− x2

2x
=
x

2
=⇒ g′(x) =

1

2

which converges linearly (bad case).
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§9.1 Multiple Roots

Definition 9.1 (Multiple Root) — A root of f(x) = 0, p, is called a root of multiplicity m of
f ⇐⇒ for x 6= p, there exists decomposition

f(x) = (x− p)mq(x) where lim
x→p

q(x) 6= 0

If the multiplicity of a root p is 1, then p is called a simple root/zero.

Theorem 9.2

Let f ∈ Cm ([a, b]) , p ∈ [a, b]. Then p is a root of multiplicity m ⇐⇒

f(p) = f ′(p) = f ′′(p) = . . . = fm−1(p) = 0 but f (m)(p) 6= 0

Example 9.3

Consider f(x) = x2, f ′(x) = 2x, f ′′(x) = 2. So p = 0 and m = 2.

f(x) = (x− 0)2 · 1, q(x) = 1

Example 9.4

Consider f(x) = ex
2 − 1

f(0) = 0

f ′(x) = 2xex
2

f ′(0) = 0

f ′′(x) = 2ex
2

+ 4x2ex
2

f ′′(0) = 2

Have p = 0, m = 2

f(x) = (x− 0)2
ex

2 − 1

x2
, q(x) =

ex
2 − 1

x2

So

lim
x→0

q(x) = lim
x→0

1 + x2 + 1
2x

4 + 1
6x

6 +O(x8)− 1

x2
= 1

Question 9.1. How does this relate to N.M?

We know that N.M. fails when f(p) = 0 and f ′(p) = 0. To resolve this, let’s introduce µ(x) = f(x)
f ′(x) .

We have
f ′(x) = m(x− p)m−1q(x) + (x− p)mq′(x)

So

µ(x) = x− p q(x)

mq(x) + (x− p)q′(x)
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and µ(p) = 0
q(p)

mq(p) + (p− p)q′(p)
=

1

m
6= 0

µ(x) has root p with multiplicity 1 (µ′(p) 6= 0).
Modified Newton’s Method: Given p0, define

µ(x) :=
f(x)

f ′(x)

pn+1 = pn −
µ(pn)

µ′(pn)

pn+1 = pn −
f(pn)f ′(pn)

(f ′(pn))
2 − f(pn)f ′′(pn)

This allows us to find p without worrying about division by zero. However, the drawback here is we
have to compute second derivative. . .

§9.2 Interpolation

Given n discrete points (x0, f(x0)), (x1, f(x1)) , . . . , (xn, f(xn)). We want to find polynomial P (x)

P (x) = f(x), at x = xi, ∀0 ≤ i ≤ n

Lagrangian polynomials is our solution here. Given n+1 data points, these will produce a polynomial
of degree n.

Example 9.5 • 1 data point gives a constant function

• 2 data points give a linear function

P (x) = f(x0)
x− x1
x0 − x1

+ f(x1)
x− x0
x1 − x0

Clearly, P (x0) = f(x0), P (x1) = f(x1).

The strategy here is to sum up polynomials so that each piece vanishes at other data points.

L0(x) :=
x− x1
x0 − x1

, L1(x) :=
x− x0
x1 − x0

So

L0(xi) = δi0

L1(xi) = δi1

δij =

{
1 i = j

0 i 6= j

Then
P (x) = f(x0)L0(x) + f(x1)L1(x)

Suppose we have n+ 1 distinct points. Then we define

Li(x) :=
(x− x0)(x− x1) . . . (x− xi−1)(x− xi+1) . . . (x− xn)

(xi − x0)(xi − x1) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xn)

or more compactly

Li(x) =

n∏
j=0, j 6=i

x− xj
xi − xj

, 0 ≤ i ≤ n, Li(xj) = δij
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Definition 9.6 (Lagrangian Polynomial) — A Lagrangian polynomial of degree n of f(x) is

P (x) =

n∑
i=0

f(xi)Li(x)
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§10.1 Theoretical Results for Lagrangian Polynomials

Given input data points {xi, f(xi)}ni=0 we say

Li(x) =

n∏
j=0,j 6=i

x− xj
xi − xj

, P (x) =

n∑
i=0

f(xi)Li(x)

where P (x) is a degree n polynomial.

Example 10.1

Let f(x) = ex, x0 = 0, x1 = 1
2 , x2 = 1. Then,

f(x0) = 1, f(x1) =
√
e, f(x2) = e

So,

P (x) = 1 · L0(x) +
√
e · L1(x) + e · L2(x)

= 1 · (x− x1)(x− x2)

(x0 − x1)(x0 − x2)
+
√
e

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
+ e · (x− x0)(x− x1)

(x2 − x0)(x2 − x1)

Summing up degree 2 polynomials, the result is a degree 2 polynomial

P (1/4) ≈ 1.2717

f(1/4) ≈ 1.2840

which is roughly 1% error.

In the above example, using more points than n+ 1 = 3 will result in a better approximation.

Question 10.1. How do we measure error?

First, we need two results from calculus

Theorem 10.2 (Generalized Rolle)

Let f ∈ Cn ([a, b]). Suppose ∃n+1 distinct roots of f on [a, b]. Then ∃ξ ∈ (a, b) s.t. f (n)(ξ) = 0.

This basically says zeros in a function implies a zero of the high-order derivative.

Lemma 10.3

Derivative of Multiplied Monomials

dn+1

dtn+1
(t− t0)(t− t1) . . . (t− tn) = (n+ 1)!
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Example 10.4

Have
d

dt
(t− x0) = 1 = 1!,

d2

dt2
(t− x0)(t− x1) = 2 = 2!

Induction!

Theorem 10.5 (Error of Lagrangian Polynomial Interpolation)

Let {x0, x1, . . . , xn} ∈ [a, b] be distinct. Let f ∈ Cn+1 ([a, b]), P (x) =
∑n
i=0 f(xi)Li(x), then

∀x ∈ [a, b], ∃ξ(x) ∈ (a, b) s.t.

f(x) = P (x) +
f (n+1)(ξ)

(n+ 1)!
(x− x0)(x− x1) . . . (x− xn)

= P (x) +
f (n+1)(ξ)

(n+ 1)!

n∏
k=0

(x− xk)

Proof. True if x = xi since f(xi) = P (xi) by construction. So we only deal with x 6= xi. Let x be
fixed and define

g(t) := f(t)− P (t)− (f(x)− P (x)) ·
n∏
j=0

(
t− xj
x− xj

)
We want to apply Generalized Rolle’s Theorem on g(t) to claim g(n+1)(ξ) = 0, and we need to show
g is Cn+1 ([a, b]) and has n+ 2 distinct roots. Generalized Rolle’s Theorem says g(n+1)(ξ) = 0.

g(n+1)(t) = f (n+1)(t)− P (n+1)(t)− (f(x)− P (x))
dn+1

dtn+1

n∏
j=0

(t− xj)
x− xj)

= f (n+1)(t)− (f(x)− P (x)) (n+ 1)!

n∏
j=0

1

(x− xj)

0 = g(n+1)(ξ) = f (n+1)(ξ)− (f(x)− P (x)) (n+ 1)!

n∏
j=0

1

(x− xj)

f(x) = P (x) +
f (n+1)(ξ)

(n+ 1)!

n∏
k=0

(x− xk)

Remark 10.6. The pointwise error

f(x)− P (x) =
f (n+1)(ξ)

(n+ 1)!

n∏
k=0

(x− xk)

In order for it to be useful, we need a bound on
∣∣fn+1(ξ)

∣∣. And L.P. is unique.
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§11.1 Nevil le ’s Method

Preliminaries: Suppose we have a Lagrangian polynomial from k data points. But now we obtain
more information and we want to update P (x)’s approximation so some number x.
Neville’s Method let’s re-use our previous work to update the interpolant. It lets us generate
polynomial approximations recursively.

Example 11.1

Given {(x0, f(x0)) , (x1, f(x1)) , (x2, f(x2))},

P (x) = f(x0)
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
+ f(x1)

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
+ f(x2)

(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
(*)

But we can also build it recursively. Let P0 = f(x0), P1 = f(x1), P2 = f(x2) be the 0th degree
polynomials. Then define

P01(x) :=
1

x− x0
((x− x0)P1 − (x− x1)P0)

Similarly, we can form L.P. for P12(x)

P12(x) :=
1

x2 − x1
((x− x1)P2 − (x− x2)P1)

Claim 11.1. P01 and P12 can be combined to form (*) using x0, x1, x2.

P (x) = P012(x) :=
1

x2 − x0
((x− x0)P12 − (x− x2)P01)

Definition 11.2 — Let f defined at points {xi|0 ≤ i ≤ n} and let m1, . . . ,mk ⊆ {0, 1, 2, . . . , n}
be distinct. Then Pm1m2...mk

(x) is the Lagrangian Polynomial formed by interpolating f(x)
at the points {xm1

, . . . , xmk
}.

Theorem 11.3

Let f be defined at points x0, x1, x2, . . . , xK and let xi and xj be distinct points in the set.
Then the L.P. that interpolates f at all the k + 1 points is

P (x) =
[
(x− xj)P012...(j−1)(j+1)...k(x)− (x− xi)P012...(i−1)(i+1)...k(x)

] 1

xi − xj

Proof. Verify the interpolation property, the degree, and use the uniqueness of L.P.

26



Duc Vu (Fall 2021) 11 Lec 11: Oct 18, 2021

Example 11.4

Given x0, x1, . . . , x4 and P0, P1, . . . , P4 be the constant degree 0 polynomials.

P0 P1 P2 P3 P4

P01 P12 P23 P34

P012 P123 P234

P0123 P1234

P01234

P5

P45

P345

P2345

P12345

P012345

Neville’s method is useful when we want to successively generate higher degree polynomial approxi-
mation at a specific point.

Example 11.5

Values of various interpolating polynomials at x = 1.5

x0 = 1.0, x1 = 1.3, x2 = 1.6

1.0 0.7651977 P0

1.3 0.6200680 P1

1.6 0.4554022 P2

1.9 0.2818186 P3

and

0.5233449 P01(1.5)

0.5102968 P12(1.5)

0.5132634 P23(1.5)

and

0.5124715 P012(1.5)

0.5112857 P123(1.5)

and
0.51181

So x3 = 1.9
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§11.2 Divided Differences

Divided difference method is useful for successively generating higher degere polynomial expression
(as a function of x).
Let {x0, x1, . . . , xn} be distinct and P (x) is L.P. of f(x).

Li(x) =

n∏
j=0,j 6=i

x− xj
xi − xj

, P (x) =

n∑
i=0

f(xi)Li(x)

We know P (x) is unique, but it can be written in many different ways. One of these ways is called
“Newton’s Divided Differences”, it defines a function looking like

Pn(x) := a0 + a1(x− x0) + a2(x− x0)(x− x1) + . . .+ an(x− x0)(x− x1) . . . (x− xn−1)

Observation:

Pn(x0) = a0

Pn(x1) = a0 + a1(x1 − x0)

. . .

Pn(xk) contains the first k + 1 terms of Pn(x).

Theorem 11.6

Pn(x) = P (x) if aj ’s are chosen correctly.

For example, if we want Pn(x0) = P (x0) = f(x0), then a0 = f(x0). If we want Pn(x1) = P (x1) =
f(x1), then

f(x1) = Pn(x1) = a0 + a1(x1 − x0) =⇒ a1 =
f(x1)− f(x0)

x1 − x0

Definition 11.7 (Divided Differences) — We introduce notation:

f [xi] = f(xi) (0th divided differences)

f [xi, xi+1] =
f [xi+1]− f [xi]

xi+1 − xi
(first divided differences)

f [xi, xi+1, xi+2] =
f [xi+1, xi+2]− f [xi+1, xi]

xi+2 − xi
(second divided differences)

The kth divided differences is

f [xi, xi+1, . . . , xi+k] =
f [xi+1, . . . , xi+k]− f [xi, . . . , xi+k−1]

xi+k − xi

It turns out that Pn(x) = P (x) can be achieved by choosing

ak = f [x0, x1, x2, . . . , xk]

thus, the Newton’s Divided Difference way of writing the L.P. is

Pn(x) = P (x) = f [x0] + f [x0, x1] (x− x0) + f [x0, x1, x2] (x− x0)(x− x1) + . . .

+ f [x0, x1, . . . , xn] (x− x0)(x− x1) . . . (x− xn−1)
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§12 Lec 12: Oct 20, 2021

§12.1 Divided Differences (Cont’d)

1st order divided difference is highly related to the first derivative. How about the high order ones?
How does the k-th order divided difference relate to the k-th derivative?

Theorem 12.1

Suppose f ∈ Cn ([a, b]) with {xi}ni=0 ∈ [a, b] distinct, then ∃ξ ∈ (a, b) s.t. f [x0, x1, . . . , xn] =
f(n)(ξ)
n!

Proof. The proof uses generalized Rolle’s theorem and derivative of multiplied monomials (lecture
10).
Let g(x) := f(x)− Pn(x)

Pn(x) = P (x) = f [x0] + f [x0, x1] (x− x0) + f [x0, x1, x2] (x− x0)(x− x1) + . . .

+ f [x0, x1, . . . , xn] (x− x0)(x− x1) . . . (x− xn−1)

Then g(xi) = f(xi) − Pn(xi) = 0 for 0 ≤ i ≤ n. By Generalized Rolle’s Theorem, ∃ξ ∈ [a, b] s.t.
g(n)(ξ) = 0.

g(n)(x) = f (n)(x)− P (n)
n (x) = f (n)(x)− f [x0, x1, . . . , xn]n!

where all terms vanish except the final one, and use the following lemma

Lemma 12.2
dn+1

dtn+1 (t− t0)(t− t1) . . . (t− tn) = (n+ 1)!.

to obtain
g(n)(ξ) = f (n)(ξ)− f [x0, x1, . . . , xn]n! = 0

=⇒ f(n)(ξ)
n! = f [x0, x1, . . . , xn].

§12.2 Runge’s Phenomenon

Now let’s look into potential challenges with Lagrangian polynomial.

f(x) = 1− 2
∣∣∣x− 1

2

∣∣∣

f’(x) is not continuous
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T 2T
t

f(t)

A

−A

Square Wave Function

f(x) is not continuous

Let’s look at a super smooth function instead

f(x) =
1

1 + 25x2
∈ C∞ [−1, 1]

1

Runge’s function

If L.P. with equispaced nodes is used: xi = x0 + ih, 0 ≤ i ≤ n, h = b−a
n . If we increase n further,

oscillation will have higher magnitude. This is called Runge’s phenomenon. It was discovered by
David Runge (1901) when exploring the behavior of errors when using polynomial interpolation to
approximate certain functions. The discovery was important because it shows that going
to higher degrees does not always improve accuracy.
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§13 Lec 13: Oct 22, 2021

§13.1 High Order Interpolation Issues

Recall the error of Lagrangian polynomial interpolation

f(x) = P (x) +
f (n+1)(ξ)

(n+ 1)!

n∏
k=0

(x− xk)

Remark 13.1. If we can bound the n+ 1 derivatives, ∃M > 0 s.t.

max
a≤x≤b

∣∣∣f (n+1)(x)
∣∣∣ ≤M

then

|f(x)− P (x)| ≤ M

(n+ 1)!

∣∣∣∣∣
n∏

k=0

(x− xk)

∣∣∣∣∣
Suppose now xi’s are equispaced, e.g., xi = x0 + ih, h = b−a

n . Then we can bound

max
a≤x≤b

∣∣∣∣∣
n∏
k=0

(x− xk)

∣∣∣∣∣ ≤ 1

4
hn+1n!

Proof. Skip (Optional reading).

max
a≤x≤b

|f(x)− P (x)| ≤ M

(n+ 1)!

1

4
hn+1 · n! =

1

4

M

n+ 1
hn+1

For some nice functions, decreasing h (i.e., increasing n) will decrease the error.

Example 13.2

f(x) = e−x, x ∈ [0, 1]. If we want

max
0≤x≤1

|f(x)− P (x)| < 10−6

One can show that using the bound, we need at least n + 1 = 7 data points. Notice that
e−x ∈ C∞ ([0, 1]) and its derivative are bounded.

Let [a, b] = [−1, 1]

max
−1≤x≤1

|f(x)− P (x)| ≤ 1

4

M

n+ 1
hn+1, M = max

−1≤x≤1

∣∣∣f (n+1)(x)
∣∣∣

The trouble is that for f(x) = 1
1+25x2 , M →∞ as n→∞.

Dealing with Runge’s Phenomenon: In general, one can

• avoid using equispaced points – we can cleverly choose {xi} to minimize error. chebyshev
polynomials of the first kind

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x)
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For a given positive integer n the Chebyshev nodes in the interval (−1, 1) are

xk = cos

(
2k − 1

2n
π

)
, k = 1, . . . , n

These are the roots of the Chebyshev polynomial of the first kind of degree n. The roots of
the polynomials are the projection onto x axis of equal pieces on the circle. The resulting
interpolation polynomial minimizes the effect of Runge’s phenomenon.

If we cannot easily pick points (e.g., doing an experiment), another option is to approximate f(x)
with something other than polynomials, e.g., Fourier (approximating a function with sines and
cosines at different frequencies). Another option: use piecewise polynomial approximation or we
can use higher order piecewise polynomials. Cubic polynomials are popular. They are often called
splines and are very powerful.

Definition 13.3 (Cubic Spline Interpolant) — Given f defined on [a, b], {xj}nj=0 ∈ [a, b]

a = x0 < x1 < x2 < . . . < xn−1 < xn = b

The spline is a function S(x) that satisfies

1. On each sub-interval [xj , xj+1], j = 0, . . . , n− 1, S(x) is a cubic polynomials

S(x) = Sj(x) = aj + bj(x− xj) + cj(x− xj)2 + dj(x− xj)3

2. S(x) interpolates f at each xj , i.e., S(xj) = f(xj)

3. Continuity: S ∈ C ([a, b])

4. Differentiability: S ∈ C2 ([a, b]).

We can use the properties 2,3,4 and some extra conditions to determine the coefficients in
1.

Example 13.4

(1, 2), (2, 3), and (3, 5).

[1, 2] S0(x) = a0 + b0(x− 1) + c0(x− 1)2 + d0(x− 1)3

[2, 3] S1(x) = a1 + b1(x− 2) + c1(x− 2)2 + d1(x− 2)3

There are 8 unknowns.

2 = f(1) = a0, 3 = f(2) = a0 + b0 + c0 + d0, 3 = f(2) = a1,

5 = f(3) = a1 + b1 + c1 + d1

S′0(2) = S′1(2) : b0 + 2c0 + 3d0 = b1

S′′0 (2) = S′′1 (2) : 2c0 + 6d0 = 2c1

S′′0 (1) = 0 : 2c0 = 0

S′′1 (3) = 0 : 2c1 + 6d1 = 0

So

S(x) =

{
2 + 3

4 (x− 1) + 1
4 (x− 1)3, x ∈ [1, 2]

3 + 3
2 (x− 2) + 3

4 (x− 2)2 − 1
4 (x− 2)3, x ∈ [2, 3]
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§14 Lec 14: Oct 27, 2021

§14.1 Cubic Splines

Definition 14.1 (Spline) — A spline is a piecewise defined polynomial.

Example 14.2

Consider a piecewise linear function L(x)

(1, f(1))

(2, f(2))

(3, f(3))

where

L(x) =

{
f(2)−f(1)
x2−x1

(x− x1) + f(x1), x ∈ [1, 2]

. . . x ∈ [2, 3]

In general, piecewise linear splines L(x) are simple and powerful. But they are not smooth, i.e.,
L(x) ∈ C ([a, b]) but L(x) /∈ C1 ([a, b]). Note that each piece is a line (y = mx+ b) which means it
has two degrees of freedom: slope m and b. Cubic splines have more degrees of freedom and thus
have more regularity (better differentiability properties).

Theorem 14.3

a = x0 < x1 < x2 < . . . < xn−1 < xn = b, f(x) has a unique “natural” spline interpolant on
[a, b] for the points {xj}nj=0

“natural”: S′′(a) = S′′(b) = 0

Proof. First, by property 1 and 2 in the definition of cubic spline,

S0(x0) = a0 = f(x0)

S1(x1) = a1 = f(x1)

. . .

Sn−1(xn−1) = an−1 = f(xn−1)

where Sj(xh) = aj = f(xj), j = 0, 1, . . . , n− 1 and aj = f(xj), j = 0, 1, 2, . . . , n.

S0(x1) = S1(x1)

S1(x2) = S2(x2) . . .

Sn−2(xn−1) = Sn−1(xn−1)

Sn−1(xn) = f(xn) =: an
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and

hj = xj+1 − xj
a0 + b0h0 + c0h

2
0 + d0h

3
0 = S0(x1) = a1

a1 + b1h1 + c1h
2
1 + d1h

3
1 = S1(x2) = a2

. . .

an−1 + bn−1hn−1 + cn−1h
2
n−1 + dn−1h

3
n−1 = f(xn) = an

Thus,
aj−1 + bj−1hj−1 + cj−1h

2
j−1 + dj−1h

3
j−1 = aj , j = 1, 2, . . . , n

Similarly, we can deduce from the property 4 on first derivative that

bj−1 + 2cj−1hj−1 + 3dj−1h
2
j−1 = bj , j = 1, 2, . . . , n

and from the property 4 on the second derivative

cj−1 + 3dj−1hj−1 = cj , j = 1, 2, . . . , n

The natural boundary condition

S′′0 (x0) = 0

S
′′

n−1(xn) = 0

Summarizing the above

aj = f(xj), j = 0, 1, 2, . . . , n

bn = S′(xn)

cn = S′′(xn)/2

aj + bjhj + cjh
2
j + djh

3
j = aj+1, j = 0, 1, 2, . . . , n− 1

bj + 2cjhj + 3djh
2
j = bj+1, j = 0, 1, 2, . . . , n− 1

cj + 3djhj = cj+1, j = 0, 1, 2, . . . , n− 1

c0 = cn = 0

where the variables are aj , bj , cj , dj , an, bn, cn, j = 0, 1, 2, . . . , n − 1. Note that all aj values for
j = 0, 1, . . . , n can be determined.
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§15.1 Cubic Splines (Cont’d)

Lemma 15.1

If a square n× n matrix M satisfies |Mii| >
∑
j 6=i |Mij | then M is invertible.

Proof. Suppose M is non-invertible which means it’s not full rank. Consequently, the null space is
at least dimension 1. Thus, ∃~v 6= 0 s.t. M~v = 0. Let’s assume vi > 0 has the largest magnitude in
~v (this can always be chosen, because otherwise we could just use −~v instead as our ~v. The ith row
of M~v = 0 is then∑

j

Mijvj = 0 ⇐⇒ Miivi = −
∑
j 6=i

Mijvj ⇐⇒ Mii = −
∑
j 6=i

Mij
vj
vi

So

=⇒ |Mii| ≤
∑
j 6=i

∣∣∣∣Mij
vj
vi

∣∣∣∣ ≤∑
j 6=i

|Mij |

which is a contradiction!

Use this lemma and we can prove the theorem in the last lecture.

§15.2 Numerical Differentiation

Recall the definition of derivative

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h

If h is small, then

f ′(x0) ≈ f(x0 + h)− f(x0)

h

By Taylor’s Theorem, if f ∈ C2 ([a, b]), and x0, x1 ∈ [a, b] then

f(x1) = f(x0) + f ′(x0)(x1 − x0) + f ′′(ξ)
(x1 − x0)2

2

Let x1 = x0 + h, then this becomes

f(x0 + h) = f(x0) + f ′(x0)h+
f ′′(ξ)h2

2

So
f(x0 + h)− f(x0)

h
= f ′(x0) + h

f ′′(ξ)

2
– forward difference formula

If we used x0 and x0 − h instead

f(x0)− f(x0 − h)

h
= f ′(x0) +

h

2
f ′′(ξ) – backward difference formula

The error is h
2 |f

′′(ξ)| ≤ h
2M where M = maxa≤x≤b |f ′′(x)|.
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Remark 15.2. The error is O(h) which is not very desirable.

Question 15.1. How to get O(h2)?

Suppose f ∈ C3 ([a, b]), x0, x1 ∈ [a, b] then

f(x1) = f(x0) + f ′(x0)(x1 − x0) + f ′′(x0)
(x1 − x0)2

2
+ f ′′′(ξ)

(x− x0)3

3!

Let x1 = x0 + h, then

f(x0 + h) = f(x0) + f ′(x0)h+ f ′′(x0)
h2

2
+ f ′′′(ξ1)

h3

3!

Let x1 = x0 − h then

f(x0 − h) = f(x0)− f ′(x0)h+ f ′′(x0)
h2

2
− f ′′′(ξ2)

h3

3!

Then, we obtain the centered difference formula

f(x0 + h)− f(x0 − h)

2h
= f ′(x0) + (f ′′′(ξ1) + f ′′′(ξ2))

h2

12

36



Duc Vu (Fall 2021) 16 Lec 16: Nov 1, 2021

§16 Lec 16: Nov 1, 2021

§16.1 Richardson Extrapolation

Basic Idea: Generate high accuracy results using low order formulas. Recall for f ∈ C2 ([a, b])

f(x0 + h)− f(x0)

h
= f ′(x0) +

h

2
f ′′(ξ)

If f ∈ C3 ([a, b]), then

f(x0 + h)− f(x0)

h
= f ′(x0) +

h

2
f ′′(x0) +

h2

3!
f ′′′(ξ)

where the error is still O(h) as above but with one more term in Taylor’s expansion. TBA
First define a notation for forward difference

D+
h f(x0) :=

f(x0 + h)− f(x0)

h

Then,

D+
h
2

f(x0) =
f
(
x0 + h

2

)
− f(x0)

h
2

and

2D+
h
2

f(x0)−D+
h f(x0) =

(
2f ′(x0) +

h1
2
f ′′(x0) + 2

h2

4

1

3!
f ′′′(ξ1)

)
−
(
f ′(x0) + h

1

2
f ′′(x0) + h2

1

3!
f ′′′(ξ2)

)
f ′(x0) +O(h2)

In summary, we combine two first order formula to get a second order method.
Let M be the true quantity that we want to compute N(h) be the approximation, e.g.,

M = f ′(x0), N = D+
h f(x0) =

f(x0 + h)− f(x0)

h

Further, assume M can be written as

M = N(h) + k1h+ k2h
2 + k3h

3 + . . . (*)

where k1, k2, k3 are constant independent of h. Then,

M = N

(
h

2

)
+ k1

h

2
+ k2

(
h

2

)2

+ k3

(
h

2

)3

+ . . . (**)

Similarly, 2(∗∗)− (∗)

M = 2N

(
h

2

)
−N(h)− 1

2
k2h

2 − 3

4
k3h

3 + . . .︸ ︷︷ ︸
O(h2)

Question 16.1. What if we have higher order?

For instance,
f(x0 + h)− f(x0 − h)

2h
= f ′(x0) + (f ′′′(ξ1) + f ′′′(ξ2))

h2

12

We can repeat the process, cancel out h2 terms and get

M =
1

3

(
4N

(
h

2

)
−N(h)

)
+O(h4)

Proof. Hw 6.
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§17.1 Numerical Quadrature (Integration)

Goal: Approximate
∫ b
a
f(x) dx when no explicit antiderivative F (x) is known.

Example 17.1

Consider
∫ 1

−1 e
−x2

dx which we don’t know the explicit antiderivative.

Definition 17.2 (Quadrature) — A quadrature formula to approximate
∫ b
a
f(x) dx.{

nodes {xi}ni=0

weights {wi}ni=0

and is given by
n∑
i=0

wif(xi)

To quantify accuracy let’s define

Definition 17.3 (Degree of Exactness (D.O.E)) — D.O.E of a quadrature formula is largest
non-zero integer N s.t. the quadrature formula is exact for

f(x) = xk, k = 0, 1, . . . , N

i.e., reproducing up to degree N polynomials.

How to derive quadrature formulas? One way to derive quadrature formulas is to approximate
f(x)? ∫ b

a

f(x) dx =

∫ b

a

P (x) dx+

∫ b

a

E(x) dx

P (x) =

n∑
i=0

f(xi)Li(x)

E(x) =
f (n+1) (ξ(x))

(n+ 1)!
(x− x0) . . . (x− xn)∫ b

a

P (x) dx =

n∑
i=0

f(xi)

∫ b

a

Li(x) dx

Thus,

wi :=

∫ b

a

Li(x) dx

We can also compute the error (integral of E(x) ).
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§17.2 Trapezoidal Rule

Idea: Approximate f with a line.
figure here
f(x) defined in [a, b], let x0 = a and x1 = b. Then we know P (x) = f(x0) x−x1

x0−x1
+ f(x1) x−x0

x1−x0∫ b

a

f(x) dx ≈
∫ b

a

P (x) dx =

1∑
i=0

wif(xi)

where wi =
∫ x1

x0
Li(x) dx. We can do the integrals to get w0 = w1 = x1−x0

2 = h
2 . Finally,∫ x1

x0

f(x) dx ≈ h

2
(f(x0) + f(x1))

which is indeed the area of a trapezoid. The error in the trapezoidal rule is∫ x1

x0

E(x) dx =

∫ x1

x0

f ′′(ξ(x))

2
(x− x0)(x− x1) dx

How do we understand this error? To calculate this, we need

Theorem 17.4 (Weighted Mean Value)

Suppose f ∈ C ([a, b]) and the integral of g(x) exists on [a, b]. Suppose further that the sign of
g(x) does not change on [a, b]. Then ∃c ∈ (a, b) s.t.∫ b

a

f(x)g(x) dx = f(c)

∫ b

a

g(x) dx

Proof. Not covered in this course.

So, apply the theorem, we obtain∫ x1

x0

E(x) dx =
f ′′(c)

2

∫ x1

x0

(x− x0)(x− x1) dx

= −f
′′(c)

2

h3

6

Finally, ∫ x1

x0

f(x) dx =
h

2
(f(x0) + f(x1))− f ′′(c)

2

h3

6

Note that D.O.E for trapezoidal rule is 1. In practice, we integrate by summing through subintervals∫ b

a

f(x) dx ≈ Tn =
∆x

2
[f(x0) + 2f(x1) + 2f(x2) + . . .+ 2f(xn−1) + f(xn)]

Example 17.5

Consider
∫ 5

1
1
x use 4 subintervals

∆x

2
[f(x0) + 2f(x1) + 2f(x2) + 2f(x3) + f(x4)] =

101

60
= 1.6833333 . . .

where the exact answer ln(5)− ln(1) = 1.60943791243
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§17.3 Simpson’s Rule

Now with 3 points (n = 2)

a = x0, x1 =
a+ b

2
, x2 = b

Everything stays relatively the same∫ b

a

P (x) dx =

2∑
i=0

wif(xi)

wi =

∫ b

a

Li(x) dx∫ b

a

E(x) dx =

∫ b

a

f ′′′ (ξ(x))

3!
(x− x0)(x− x1)(x− x2) dx

Note that (x−x0)(x−x1)(x−x2) changes sign so we can’t apply the weighted mean value theorem
here.
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§18 Lec 18: Nov 5, 2021

§18.1 Simpson’s Rule & Newton-Cotes

The trapezoidal rule, Simpsons’ rule, Newton-Cotes, etc are quadrature rules t approximate∫ b
a
f(x) dx where f(x) is replaced by a polynomial approximation, e.g., Lagrange polynomial, Taylor

polynomial. We can estimate error and easily see degree of exactness.

Example 18.1

Consider ∫ b

a

f(x)dx =
h

2
(f(a) + f(b))− f ′′(c)

12
h3

for trapezoidal rule (h = b− a), DOE: N = 1.

In practice, replacing f(x) with a single low order polynomial across x = a to x = b, e.g., with
linear, or quadratic, is not sufficient. We should replace f(x) with piecewise polynomials, which is
more accurate. Break up [a, b] into a sequence of intervals and approximate f(x) with a polynomial
on each one - use splines. The piecewise polynomial approach is called Composite Quadrature
Formulas. To analyze the properties of the composite formulas, we still need to understand the
properties of the “original” approach. We derived the error for trapezoidal rule using weighted
mean value theorem ∫ x1

x0

f(x)dx =
h

2
(f(x0) + f(x1))− f ′′(c)

2

h3

6

Now, let’s get into Simpson’s rule. The bad derivation uses Lagrange polynomial

f(x) = P (x) + E(x)

using 3 points x0 = a, x1 = a+ h, x2 = b, h = b−a
2 .∫ x2

x0

f(x)dx =

∫ x2

x0

P (x)dx+

∫ x2

x0

E(x)dx∫ x2

x0

P (x)dx = f(x0)

∫ x2

x0

L0(x)dx+ f(x1)

∫ x2

x0

L1(x)dx+ f(x2)

∫ x2

x0

L2(x)dx∫ x2

x0

E(x)dx =

∫ x2

x0

f ′′′ (ξ(x))

3!
(x− x0)(x− x1)(x− x2)dx

Since when f(x) = x2, f ′′(x) = 0, we know DOE N = 2. The error is bounded by

|error| ≤
(

max
a≤x≤b

|f ′′′(x)|
)

1

6

∫ x2

x0

|x− x0|︸ ︷︷ ︸
≤2h

|x− x1|︸ ︷︷ ︸
≤h

|x− x2|︸ ︷︷ ︸
≤2h

In summary, using Lagrange polynomial for Simpson’s rule gives DOE N = 2 and error O(h4) (bad
derivation).

Remark 18.2. In Hw6, we will use Taylor polynomial to re-derive Simpson’s rule with DOE N = 3
and error O(h5).

Both results in quadrature formula∫ x2

x0

f(x)dx ≈ h

3
(f(x0) + 4f(x1) + f(x2))
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Newton-Cotes: uses {x0, x1, . . . , xn−1, xn} which are n+ 1 pints. It’s defined to be the quadrature
formula

∑n
i=0 wif(xi) where a = x0 ≤ x1 ≤ . . . ≤ xn = b are equispaced and

wi =

∫ b

a

Li(x)dx =

∫ b

a

n∏
j=0,j 6=i

(
x− xj
xi − xj

)
dx

Note f(x) = P (x) +E(x) where P (x) =
∑n
i=0 f(xi)Li(x). It’s good to know what Newton-Cotes is.

But in practice it’s not useful – because of Runge’s phenomenon.

§18.2 Composite Quadrature Formulas

Similar to splines, in each subinterval we approximate the function with a linear/quadratic function.
Then we integrate. Dividing [a, b] into n subintervals of equal width. Let’s derive the composite
trapezoidal rule. Let f ∈ C2 ([a, b]), the error term is∫ b

a

f(x) dx =

n−1∑
j=0

∫ xj+1

xj

f(x) dx

=

n−1∑
j=0

(
h

2
f(xj) + f(xj+1)− h3

12
f ′′(ξj)

)
, ξj ∈ (xj , xj+1)

Thus,

C.T.R =

n−1∑
j=0

h

2
(f(xj) + f(xj+1)) =

h

2

f(x0) + 2

n−1∑
j=1

f(xj) + f(xn)


Notice that

error = −h
3

12

n−1∑
j=0

f ′′(ξj) =
−h3

12
n

∑n−1
j=0 f

′′(ξj)

n

f ∈ C2 ([a, b]), so ∃ a min and max of f ′′ on [a, b] (by EVT)

min = min
a≤x≤b

f ′′(x) ≤ f ′′(ξj) ≤ max
a≤x≤b

f ′′(x) = max ∀j

Summing up we get

min ≤
∑n−1
j=0 f

′′(ξj)

n
≤ max

By I.V.T, ∃µ ∈ (a, b) s.t. f ′′(µ) =
∑n−1

j=0 f
′′(ξj)

n

error = −h
3

12
nf ′′(µ) = −h

2

12

b− a
n

nf ′′(µ) = −h
2

12
(b− a)f ′′(µ)
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§19 Lec 19: Nov 8, 2021

§19.1 Composite Quadrature (Cont’d)

Example 19.1 (CTR)

Consider: f(x) = ex

I :=

∫ 1

0

exdx = e− 1 ≈ 1.7183 . . .

n = 1 picking x0 = 0, x1 = 1, h = 1,

I ≈ 1

2
(e0 + e1) = 1.8591 . . .

n = 2,

I ≈ 1

4

(
e0 + 2e

1
2 + e1

)
= 1.7539 . . .

n = 4,

I ≈ 1

8

(
e0 + 2e

1
2 + 2e

3
4 e1
)

= 1.7272 . . .

n = 8,
I ≈ 1.7205

Recall for 3 points x0, x1, x2 (equispaced), in Hw6 Q3 we showed∫ x2

x0

f(x)dx =
h

3
(f(x0) + 4f(x1) + f(x2)) + error

and for f ∈ C5 ([x0, x2]) then

error = −h
5

12

(
1

3
f (4)(ξ1) +

1

5
f (4)(ξ2)

)
It also can be shown that ∃ξ ∈ (x0, x2)

error = −h
5

90
f (4)(ξ)

The Composite Simpson’s Rule (C.S.R) assumes that n is even

Example 19.2

{a = x0, x2, x4, x6, x8 = b} with n = 8

We then use Simpson’s rule on each interval [x0, x2], [x2, x4], [x4, x6], [x6, x8].

∫ b

a

f(x)dx =

n
2∑
j=1

∫ x2j

x2j−2

f(x)dx

=

n
2∑
j=1

h

3
(f(x2h−2) + 4f(x2j−1) + f(x2j))−

n
2∑
j=1

h5

90
f (4)(ξj)
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Error analysis similar to C.T.R

error =
h5

90

n

2

n
2∑
j=1

f (4)(ξj)

n/2

=
h5

90

n

2
f (4)(ζ) by IVT

Summary:

• C.T.R formula∫ b

a

f(x)dx =
h

2

f(x0) + 2

n−1∑
j=1

f(xj) + f(xn)

− h2

12
(b− a)f ′′(µ)

• C.S.R formula∫ b

a

f(x)dx =

n
2∑
j=1

h

3
(f(x2j−2) + 4f(x2j−1) + f(x2j))−

h4

180
(b− a) f (4)(ζ)

§19.2 Computational Cost Estimate

Suppose we fix an error tolerance τ . For a give numerical quadrature formula and a given f(x),
how many points n are required to guarantee that |error| < τ?

Example 19.3

f(x) = 1
x+4 , I =

∫ 2

0
1

4+xdx. Use Composite Trapezoidal Rule with τ = 10−5

|error| = h2

12
(b− a) |f ′′(µ)| = h2

12
2

∣∣∣∣ 2

(4 + µ)3

∣∣∣∣
So,

|error| ≤ h2

6

2

64
< τ = 10−5

h < 0.04389

=⇒ n ≥ 46.
A similar analysis for the C.S.R gives n ≥ 6.

§19.3 Numerical Stabil ity of Numerical Dif ferentiation
and Integration

Theorem 19.4

Composite trapezoidal/Simpson’s rule (and other composite quadrature rules) are stable with
respect to numerical roundoff errors. Integration is stable.

Theorem 19.5

In contrast, in general numerical differentiation formulas are not stable w.r.t. roundoff errors.
Differentiation is unstable.
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Let’s start with numerical differentiation. Recall

x ≈ fl(x)

In exact arithmetic, we know

f ′(x0) =
f(x0 + h)− f(x0 − h)

2h
− h2

6
f ′′′(ξ)

Then, ∣∣∣∣f ′(x0)− f(x0 + h)− f(x0 − h)

2h

∣∣∣∣ =
h2

6
|f ′′′(ξ)| ≤ h2

6
M

where M = maxx∈[a,b] |f ′′′(x)|. Since we are using floating point, let

f̃ (x0 + h) := fl (f(x0 + h))

f̃(x0 − h) := fl (f(x0 − h))

So

f(x0 + h) = f̃(x0 + h) + ε1

f(x0 − h) = f̃(x0 − h) + ε2

Assume h can be represented exactly. Then the floating point approximation to the true f ′(x0) is

f̃(x0 + h)− f̃(x0 − h)

2h
=
f(x0 + h)− f(x0 − h)

2h
+
ε1 − ε2

2h

Error is ∣∣∣∣∣f ′(x0)− f̃(x0 + h)− f̃(x0 − h)

2h

∣∣∣∣∣
≤
∣∣∣∣f ′(x0)− f(x0 + h)− f(x0 − h)

2h

∣∣∣∣+

∣∣∣∣ε2 − ε12h

∣∣∣∣
≤ M

6
h2 +

∣∣∣∣ε2 − ε12h

∣∣∣∣
where M

6 h
2 is the truncation error which decreases as h is small and the second term increases in

contrast. To minimize the error, we let

ε :=

∣∣∣∣ε2 − ε12

∣∣∣∣ , g(h) :=
M

6
h2 +

ε

h

Then, g′(h) = M
3 h−

ε
h2 = 0 results in

h =

(
3ε

M

) 1
3

This is the optimal choice of h which minimized the error.
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§20 Lec 20: Nov 10, 2021

§20.1 Stabil ity of Numerical Integration

More generally, if an approximation is O(hp), e.g. with Richardson extrapolation, the centered
difference formula becomes O(h4), then the same analysis gives an optimal

h ∼ ε
1

p+1

Question 20.1. How about the stability of integration?

Suppose f : [a, b]→ R, [a, b] divided into n subintervals [xj , xj+1]. Then,

∫ b

a

f(x) dx ≈ h

3

f(x0) + 2

n
2−1∑
j=1

f(x2j) + 4

n
2∑
j=1

f(x2j−1) + f(xn)


Let f(xj) = f̃(xj) + εj . Under floating points, the round off error is

ER.O =
h

3

e0 + 2

n/2−1∑
j=1

e2j

+ 4

n/2∑
j=1

e2j−1 + en

Then, ∣∣ER.O(h)
∣∣ ≤ h

3

|e0|+ 2

n
2−1∑
j=1

|e2j |+ 4

n
2∑
j=1

|e2j−1|+ |en|


Let ε = max |ej |, then

ε ≤ h

3

(
ε+ 2 (n/2− 1) ε+ 4(

n

2
)ε+ ε

)
= nhε = ε(b− a)

which is independent of h or n. One can safely decrease h to improve the accuracy numerical
integration – stable.

§20.2 Gaussian Quadrature

Recall the general definition of the quadrature formula

n∑
i=1

wif(xi)

where wi is weight and xi nodes(?). This gives 2n degrees of freedom. The main idea for Gaussian
Quadrature (G.Q.) is given n, maximize the degree of exactness (D.O.E). Consider∫ b

a

f(x)dx =

n∑
i=1

wif(xi) (*)

We want this equality to be exact for f(x) being polynomials. We want as high degree polynomials
as possible. We get to choose 2n numbers on the right, so we can hope that it is good for polynomials
that contain 2n coefficients, which is at most degree 2n− 1 polynomials.
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Assumption: The interval of integration [a, b] is assumed to be [−1, 1]. Note that quadrature
formulas can be generalized to arbitrary [a, b] using u-substitution by

x =
b− a

2
t+

b+ a

2

dx =
b− a

2
dt

Question 20.2. How to find {wi} and {xi}?

• Option 1: brute force, e.g., consider two nodes and weights: x1, x2, w1, w2 solving∫ 1

−1
xkdx = w1x

k
1 + w2x

k
2 , k = 0, 1, 2, 3

when n is large we don’t want to do this.

• Option 2: use orthogonal polynomials

Definition 20.1 (Orthogonal Polynomial) — If f and g are functions on [−1, 1] then an
inner product can be defined

〈f, g〉 :=

∫ 1

−1
f(x)g(x) dx

This is called an L2 inner product. If 〈f, g〉 = 0 for non-zero f, g, then f ⊥ g.

∃n+ 1 polynomials {qi}ni=0, each qi is a polynomial of degree i,∫ 1

−1
qi(x)qj(x) dx = δij

Lemma 20.2 (Lemma 1)

{qi}ni=0 is a basis for space of polynomials of degree n or less.

Proof. {qi}ni=0 being orthogonal =⇒ they are linearly independent. Note that Pn has
dimension n + 1. Counting the degrees of freedom, e.g., cubic polynomial has 4 degree of
freedoms. There are n+ 1 of the qi’s thus qi’s are a (orthonormal) basis.

Lemma 20.3 (Lemma 2)

For each polynomials p ∈ Pn−1, we have 〈p, qn〉 = 0, where qn is the last vector in the
set {qi}ni=0.

Proof. {qi}n−1i=0 is a basis for Pn−1 by lemma 1. Thus, p(x) =
∑n−1
i=0 ciqi(x) for some ci.

Therefore, 〈p, qn〉 = . . . = 0 (inner product is linear).
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§21 Lec 21: Nov 12, 2021

§21.1 Gaussian Quadrature (Cont’d)

Theorem 21.1 (Gaussian Quadrature)

Let {xi}ni=1 be the n roots of n degree polynomials qn(x) where qn is the last in the set {qi}ni=0.
We’ll assume they are real and distinct. Let

wi =

∫ 1

−1

n∏
j=1,j 6=i

x− xj
xi − xj

dx, i = 1, 2, . . . , n

where the integrand equals to Li(x) from Lagrangian interpolation polynomial. Then,∑n
i=1 wif(xi) is exact for any f ∈ P2n−1.

Proof. Consider

1. f ∈ Pn−1, there are n nodes {xi}ni=1 =⇒ ∃P (x) to interpolate f(x)

P (x) =

n∑
i=1

f(xi)Li(x)

Both P (x) and f(x) are degree n− 1 polynomials for {xi}ni=1

=⇒ f(x) =

n∑
i=1

f(xi)Li(x) (uniqueness of L.I.P)

Thus,

=⇒
∫ 1

−1
f(x) dx =

n∑
i=1

wif(xi)

2. Next, assume f is a polynomial of degree n ≤ d ≤ 2n− 1. Polynomial long division implies
that

f(x) = Q(x)qn(x) +R(x)

degree: f : [n, 2n− 1], qn : n, Q : [0, n− 1], R : [0, n− 1]

f(xi) = Q(xi)qn(xi) +R(xi) = R(xi) (*)

By 1., ∫ 1

−1
R(x) dx =

n∑
i=1

wiR(xi) (**)

Then, ∫ 1

−1
f(x) dx =

∫ 1

−1
Q(x)qn(x) dx+

∫ 1

−1
R(x) dx

=

∫ 1

−1
R(x) dx

=

n∑
i=1

wiR(xi)

=

n∑
i=1

wif(xi)
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Question 21.1. How to construct {q1, q2, . . . , qn}? Or more general, how to construct an orthonor-
mal basis for a vector space?

=⇒ Gram-Schmidt! It’s a method for orthonormalizing a set of vectors in an inner product
space.

proju(v) =
〈u,v〉
〈u,u〉

u,

Let {x1, x2, . . . , xn} be linearly independent.

• Set v1 = x1

• For i = 2, . . . , n set vi = xi −
∑i−1
j=1

〈xi,xj〉
〈vj ,vj〉vj

• For i = 1, . . . , n normalize qi = vi
‖vi‖ where ‖vi‖ = (〈vi, vi〉)

1
2 .

• Output is {q1, . . . , qn} are orthonormal.

Consider Pn :
{

1, x, x2, . . . , xn−1, xn
}
〈f, g〉 =

∫ 1

−1
fg dx

• P0(x) = 1

P1(x) = x− 〈x, 1〉
〈1, 1〉

1 = x−
∫ 1

−1 x dx∫ 1

−1 dx
= x

• P2(x)

P2(x) = x2 − 〈x
2, 1〉
〈1, 1〉

1− 〈x
2, x〉
〈x, x〉

x

= x2 − 1

3

• Similarly, P3(x) = x3 − 3
5x

• P4(x) = x4 − 6
7x

2 + 3
35

These polynomials are known as Legendre polynomials. For the roots of the polynomial, we just
need to look it up.

Theorem 21.2

Let {φ1, . . . , φn} be a set of orthogonal polynomials on [a, b], and let each φk has degree k.
Then each φk has precisely k real roots which are simple.

Example 21.3

Approximate
∫ 1

−1 e
x cosx dx using Gaussian quadrature with n = 3.

wi =

∫ 1

−1

n∏
j=1,j 6=i

x− xj
xi − xj

dx

Search for the roots rn,i from a table and then

0.5e0.774596692 cos 0.774596692 + 0.8 cos 0 + 0.5e−0.774596692 cos (−0.774596692) = 1.9333904

and the true value of the integral is 1.9334214. The absolute error is less than 3.2× 10−5.
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§22 Lec 22: Nov 15, 2021

§22.1 Remarks on Numerical Quadrature

Remark 22.1. If f is smooth, G.Q. with n = 10, 20, 40, . . . ,O(100) often sufficient.

Remark 22.2. In practice, it’s best to use an existing implementation of G.Q. rather than writing
one’s own.

Remark 22.3. Trapezoidal/Simpson’s rule is still quite effective and easy to implement.

Remark 22.4. Another simple/effective technique: interpolate f(x) with cubic spline s(x) and
integrate.

Remark 22.5. We do not cover Romberg integration but the basic idea is to use Richardson
extrapolation repeatedly.

Remark 22.6. Integrals over unbounded domains – we cannot approximate infinity in a computer.
The idea is to transform variables to make integrals bounds finite.

Example 22.7

Consider ∫ ∞
0

e−x
2

dx

Let z = x
1+x , z(0) = 0, and z(∞) = 1.∫ ∞

0

e−x
2

dx =

∫ 1

0

1

(1− z)2
e−( z

1−z )
2

dz

§22.2 Direct Methods for Solving Linear System of
Equations

Matrix equation: for A ∈ Rn×n, x,b ∈ Rn

Ax = b

From this point on, we will assume that det(A) 6= 0. Also, this is equivalent to a linear system

n∑
j=1

aijxj = bj , 1 ≤ i ≤ n

Question 22.1. Why do we care about solving linear system?

Because they show up nearly everywhere in applied math.
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Example 22.8

Solve for coefficients of cubic spline interpolant. Another example is Newton’s method in
higher dimension than d = 1. Third example is to solve (partial) differential equation.

We will transform the original form to upper triangular matrix Ux = y.

Fact 22.1. Every elementary row operation can be presented by applying an invertible matrix P .

Upper triangular matrices are easy to inverta11 a12 a13
0 a22 a23
0 0 a33

x1x2
x3

 =

y1y2
y3


1. Start with the last equation because it has only one unknown.

2. Solve the second from last equation (n− 1)th using xn solved for previously. This solves xn−1.

3. Keep going up
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§23 Lec 23: Nov 17, 2021

§23.1 Gaussian Elimination

These statements are equivalent

• A is invertible

• Determinant of A is non-zero

• Nullspace of A is {0} (trivial null space)

• Columns of A are linearly independent

• Rows of A are linearly independent

• and so on

We study direct methods for solving the matrix equation Ax = b for x. Two basic issues in direct
methods are

• How do we construct a solution method for solving Ax = b?

• What is computational complexity?

• Is the method efficient?

Gaussian Elimination: To find x s.t. Ax = b

1. Form augmented matrix [A|b]

2. Use row reduction to transform into upper triangular form

[A|b]→ [U |y]

3. Solve Ux = y using back substitution.

General description:

1. Form an augmented matrix. If A ∈ Rn×n and x, b ∈ Rn then [A|b] ∈ Rn×(n+1)

2. Use row reduction to transform into upper triangular form.

• (non-zero) scalar multiplication: if we scale with zero the matrix is no longer invertible

• scalar multiplication plus row addition

• row swap

These elementary row operations are invertible because they are reversible.

Row reduction on augmented matrix can be represented as

P1(Ax) = P1b

P2 (P1Ax) = P2P1b

. . .

PnPn−1 . . . P2P1Ax = PnPn−1 . . . P2P1b

Ux = y

3. Solve Ux = y using back substitution

52



Duc Vu (Fall 2021) 23 Lec 23: Nov 17, 2021

For a 3× 3 matrix A, “knock out” a21 and a31. The corresponding E.R.O.s are

λE1 + E2 → E2

µE1 + E3 → E3

where we choose λ, µ to “knock out” a21 and a31. To do that we can choose λ = − 1
a11
a21,

µ = − 1
a11
a31. Then we just need to knock out the element below the diagonal 22.

Note: This can fail if elements along diagonal are zero. In this case we can pivot to a new diagonal
element by performing row swapping (which is an E.R.O.). Fancy word for row swapping is
pivoting.
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§24 Lec 24: Nov 19, 2021

§24.1 Gaussian Elimination with Pivoting

In general, swapping rows to avoid division by zero is called pivoting.

Theorem 24.1

Let A ∈ Rn×n, then

det(A) 6= 0 ⇐⇒ Gaussian elimination with row interchanges can be performed on A without failure

Example 24.2

consider 4 1 1
1 1

4 1
1 1 3

 =⇒

4 1 1
0 0 3

4
0 3

4
11
4

 =⇒

4 1 1
0 3

4
11
4

0 0 3
4

 – invertible

Consider4 1 1
1 1

4 1
1 1

4 3

 =⇒

4 1 1
0 0 3

4
0 0 11

4

 – stuck with zero diagonals (failure/singular)

Input: invertible matrix A ∈ Rn×n. For i = 1, 2, . . . , n− 1: let p (i ≤ p ≤ n) be the smallest integer
s.t. api 6= 0. If p 6= i, perform E.R.O Ei ↔ Ep. For j = i + 1, i + 2, . . . , n, set λij = −aji/aii.
Perform E.R.O: Ej + λjiEi → Ej .
Output: upper triangulate matrix U .

§24.2 Computational Complexity of G.E.

Cost of upper-triangularization: To transform A to U , the answer is: n3

3 + n2 − n
3 multiplica-

tion/divisions n3

3 + n2

2 −
5n
6 additions/subtractions. Remember that 2

3n
3 FLOPs for large n.

Cost of back-substitution: Let U be a upper triangular, then solving Ux = y with back substitution
requires ≈ n2 FLOPs.
Recall two types of red flags:

1. Division by small numbers

2. Subtracting two numbers that are close

In Gaussian elimination, we are essentially doing both.

Remark 24.3. This strategy is called partial pivoting. There exists other strategies such as scaled
partial pivoting and complete pivoting.

§24.3 Matrix Decomposit ion

Eigenvalue Decomposition: Until specified later, we assume now we are using exact arithmetic.
Recall from linear algebra, A ∈ Rn×n is called normal if it commutes with its transpose:

AA> = A>A
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Theorem 24.4

If A ∈ Rn×n is normal then
A = UDU> (*)

where D = diag(λi) is diagonal and U is orthogonal (U−1 = U>).

LU Decomposition: Recall that for Gaussian Elimination, row reduction can be represented by
E.R.O that can be represented as multiplications of matrices. Thus, G.E. is equivalent to doing

Pn−1Pn−2 . . . P3P2P1A = U

Here are some facts about the E.R.O. matrices

Fact 24.1. 1. Each Pj is invertible, because we can always undo E.R.O.s.

2. If no row swapping is performed ,then each Pj is lower triangular.

3. The inverse of a lower triangular matrix is lower triangular (same holds for upper triangular
matrix).

4. If L1 and L2 are both lower triangular, then their product is also lower triangular (same holds
for upper triangular)

Therefore, Pn−1Pn−2 . . . P3P2P1 is lower triangular.

Let L−1 = Pn−1Pn−2 . . . P3P2P1. So A = LU .
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§25 Lec 25: Nov 22, 2021

§25.1 LU Decomposit ion

G.E. is equivalent to doing
Pn−1Pn−2 . . . P3P2P1A = U

Fact 25.1. • Each Pj is invertible because we can always undo E.R.O.s.

• If no row swapping is performed, then each Pj is lower triangular.

• The inverse of a lower triangular matrix is lower triangular.

• If L1 and L2 are both lower triangular, then their product is also lower triangular.

We have
L−1 = Pn−1Pn−2 . . . P3P2P1

so A = LU . This is called LU decomposition.

Remark 25.1. It can be useful to store matrix factors L and U during G.E.

Suppose we want to solve Ax = b, that is

LUx = b

We can first solve Ly = b for y using “forward substitution”. Then we solve Ux = y using back
substitution. Importantly, both forward and back substitution take O(n2) FLOPs. Performing LU
is like O(n3) as n→∞.

Pn−1Pn−2 . . . P3P2P1A = U

L−1 = Pn−1Pn−2 . . . P3P2P1

Question 25.1. When is such a decomposition possible?

Theorem 25.2 (Sufficient Condition for Generating LU Decomposition)

If G.E. can be performed on Ax = b without row interchanges (pivoting), then A can be
factored into A = LU .

Question 25.2. But what if pivoting is necessary?

When row swaps exist

Definition 25.3 (Permutation Matrix) — E.R.O. matrix that represents row swaps is called a
permutation matrix. In general, it is not lower triangular (unless it is 1× 1 matrix).

1 1
. . .

0 1
. . .

1 0
. . .

1


– not lower triangular

56



Duc Vu (Fall 2021) 25 Lec 25: Nov 22, 2021

Permutation matrices can be obtained by modifying the identity matrix. Note that Q−1 = Q> = Q.
In general, to swap ij rows, we do

Q = I

Qii = Qjj = 0

Qij = Qji = 1

then Q is permutation matrix we want.
Consider
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Have
L3P3L2P2L1P1A = U

which doesn’t look lower-triangular at all. Let’s define

L′3 = L3, L′2 = P3L2P
−1
3 , L′1 = P3P2L1P

−1
2 P−13

Then,

L′3L
′
2L
′
1P3P2P1 = L3

(
P3L2P

−1
3

) (
P3P2L1P

−1
2 P−13

)
P3P2P1

= L3P3L2P2L1P1

L′3L
′
2L
′
1P3P2P1A = U

Lemma 25.4

L′k has the same structure as Lk

L′3 = L3, L′2 = P3L2P
−1
3 , L′1 = P3P2L1P

−1
2 P−13

Note: Right multiplication by permutation matrix corresponds to column swap.

L′3L
′
2L
′
1︸ ︷︷ ︸

L−1

P3P2P1︸ ︷︷ ︸
P

A = U =⇒ PA = LU Factorization

§25.2 Special Matrix

Definition 25.5 (PSD Matrix) — A ∈ Rn×n matrix is symmetric and positive definite (SPD)
if

• A = A>

• ∀x ∈ Rn, x 6= 0, 〈x,Ax〉 > 0

Remark 25.6. If 〈x,Ax〉 ≥ 0 instead, then A is positive semi-definite (SPSD).
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Theorem 25.7

If A is SPD, then A is invertible.

Proof. Suppose Ax = 0. We know 〈x,Ax〉 > 0 (unless x is 0) but 〈x, 0〉 = 0. This only occurs if
x = 0. So Ax = 0 =⇒ x = 0 (trivial null space).

Theorem 25.8 (Cholesky Factorization)

A is SPD iff A can be factored as A = LL>. This is called Cholesky Factorization.

Intuition: L is like a “square” root of A.
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§26 Lec 26: Nov 29, 2021

§26.1 Cholesky Decomposit ion

Recall that A ∈ Rn×n matrix is symmetric, positive definite (SPD) if

• A = A>

• ∀x ∈ Rn, x 6= 0, 〈x,Ax〉 > 0

Example 26.1

Consider

A =

 4 −1 1
−1 4.25 2.75
1 2.75 3.5


A is clearly symmetric. It’s less obvious whether it’s SPD. Recall the Cholesky factorization
theorem, how to compute this factorization? We want A = LL>, where L is made with lij ’s
on the lower diagonal.

A =

 4 −1 1
−1 4.25 2.75
1 2.75 3.5

 =

l11 0 0
l21 l22 0
l31 l32 l33

l11 l21 l31
0 l22 l32
0 0 l33


We have

a11 = l211 =⇒ l11 =
√

4 = 2

Note: Negative root is OK.

a21 = −1 = l11l21 =⇒ l21 = −0.5

a31 = 1 = l11l31 =⇒ l31 = 0.5

a22 = 4.25 = l221 + l222 =⇒ l222 = 4, l22 = 2

a32 = 2.75 = l21l31 + l22l32 =⇒ l32 = 1.5

a33 = 3.5 = l231 + l232 + l233 =⇒ l33 = 1

Note: If A is not SPD, we will encounter a square root of a negative number or a division
by zero in the process. Also, keep in mind that the determinant of a SPD matrix is always
positive (in this case 4)

For i = 2, 3, . . . , n

lii =

(
aii −

i−1∑
k=1

l2ik

) 1
2

For j = i+ 1, . . . , n

lji =

(
aji −

i−1∑
k=1

ljklik

)
/lii
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Example 26.2 (Tridiagonal Systems)

Consider

A =


1 −2 0 0
3 7 4 0
0 2 −5 2
0 0 −2 1


Matrix Bandwidth: The upper and lower bandwidths of a matrix are measured by finding the last
diagonal (above or below the main diagonal, respectively) that contains nonzero values.

bandwidth = max (upper bandwidth, lower bandwidth)1 0 0
0 1 1
1 1 0

 , w = 2



1 1 0 . . . . . . 0

1 1 1
. . .

. . .
...

0 1 1 1
. . .

...
...

. . . 1 1 1 0
...

. . .
. . . 1 1 1

0 . . . . . . 0 1 1


, w = 1



1 1 1 0 . . . 0

1 1 1 1
. . .

...
1 1 1 1 1 0
0 1 1 1 1 1
...

. . . 1 1 1 1
0 . . . 0 1 1 1


, w = 2

Tri-diagonal systems have factorizations that preserve their low bandwidth property.

§26.2 Tridiagonal LU

Lemma 26.3

Tridiagonal matrices have factorizations that preserve their low-bandwidth structure.
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Example 26.4

LU decomposition, L only has 1 non-zero subdiagonal, U only has 1 non-zero superdiagonal.
Also, take convention that U ’s diagonal is 1.

a11 a12 0 0
a21 a22 a23 0
0 a32 a33 a34
0 0 a43 a44

 =


l11 0 0 0
l21 l22 0 0
0 l32 l33 0
0 0 l43 l44




1 u12 0 0
0 1 u23 0
0 0 1 u34
0 0 0 1


We have 10 unknowns, 10 equations. Start with the first diagonal and all the subdiagonals

a11 = l11, a21 = l21, a32 = l32, a43 = l43

Then
a12 = l11u12, a22 = l21u12 + l22, . . .

Input: Nonsingular A ∈ Rn×n that is tridiagonal.

u11 = 1

l11 = a11

u12 = a12/l11

For i = 2, 3, . . . , n− 1

uii = 1

li,i−1 = ai,i−1

lii = aii − li,i−1ui−1,i
ui,i+1 = ai,i+1/liiln,n−1 = an,n−1

lnn = ann − ln,n−1un−1,n
unn = 1

Theorem 26.5

Let A ∈ Rn×n be tridiagonal with ai,i−1 6= 0, ai,i+1 6= 0 for i = 2, 3, . . . , n− 1. If |a11| > |a12|,
|ann| > |an,n−1| and |aii| ≥ |ai,i−1|+ |ai,i+1| for i = 2, . . . , n− 1 then

i) A is nonsingular

ii) The decomposition described in the previous algorithm exists.
a11 a12 0 0
a21 a22 a23 0
0 a32 a33 a34
0 0 a43 a44

 =


l11 0 0 0
l21 l22 0 0
0 l32 l33 0
0 0 l43 l44




1 u12 0 0
0 1 u23 0
0 0 1 u34
0 0 0 1
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