
Math 151B – Applied Numerical Methods II
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Duc Vu
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This is math 151B – Applied Numerical Methods taught by Professor Jeong. We meet
weekly on MWF from 1:00 pm to 1:50 pm for lecture. The recommended textbook for the class
is Numerical Analysis 10th by Burden, Faires and Burden. Other course notes can be found at
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§1 Lec 1: Jan 3, 2022

§1.1 Review of 151A

From math 151A, we learned

1. how to solve equations numerically

2. interpolating of fitting data points

3. how to numerically integrate

4. solving a system of linear equations

In 151B, we will focus on

1. Numerically methods for solving ordinary differential equations (ODEs) with either initial
conditions or boundary conditions

2. Iterative methods for solving linear systems

3. Least square approximation

4. Approximating eigenvalues

Question 1.1. Why are we studying numerical methods?

We are interested solving equations such as 4x+ 3 = 5, x2 − 5x+ 2 = 0, ex
2+x = 10 sinx, Ax⃗ = b⃗.

But only few of them can be solved exactly (the first two for example). Even for the class of
polynomial equations when the degree of polynomial greater than or equal to 5, we cannot solve
the equations algebraically in general but only numerically. Also for Ax⃗ = b⃗, we can solve it by
hand in principle, but if x⃗ is high-dimensional, we have to solve it numerically.

Example 1.1

Consider dy
dt = t2y − 5t2, y(0) = 6

dy

dt
= t2(y − 5)

1

y − 5
dy = t2dt∫

1

y − 5
dy =

∫
t2dt+ C

ln(y − 5) =
1

3
t3 + C

y(t) = e
1
3 t

3

+ 5 ← y(0) = 6

On the other hand, consider

dx

dt
= cos(x+ t2) + 3x2 + e−2t

This is probably difficult or impossible to solve analytically.
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§2 Lec 2: Jan 5, 2022

§2.1 Review (Cont’d)

Example 2.1

Consider {
dx1

dt = 3x1 + x2

dx2

dt = −x1 + x2

Let u⃗ =

[
x1

x2

]
. Then

du⃗

dt
:=

[
dx1

dt
dx2

dt

]
=

[
3x1 + x2

−x1 + x2

]
=

[
3 1
−1 1

] [
x1

x2

]
=

[
3 1
−1 1

]
u⃗

This can be solved analytically but it has only two variables x1, x2. But what if we have more
than thousands? Only numerical methods are feasible? We’ll see the numerical methods based
on discretization to find some approximation to ODEs with initial conditions.

First order DE with initial conditions{
dy
dt = f(t, y)

y(t0) = α, t ∈ [t0, T ]
(*)

We will approximate the analytic solution y to (*) using a finite discrete set of points as follows. We
approximate y(t) at the grid (mesh) points t0 < t1 < t2 < . . . < tN = T by y(t0), y(t1), . . . , y(tN ).
Here the mesh points t0, t1, . . . , tN are obtained by dividing [t0, T ] into N subintervals with endpoints
ti−1, ti for the interval [ti−1, ti]. Note that the number of subintervals is N whereas the number of
mesh points is N + 1 not N . One natural way to mesh points is to use the uniform mesh points
h = T−t0

N =⇒ ti = t0 + ih for i = 0, 1, . . . , N . We will assume uniform mesh points unless stated
otherwise.
Goal: Construct y0, y1, y2, . . . , yN by numerical methods to approximate y(t0), y(t1), . . . , y(tN ), i.e.,
we want to have y0 ≈ y(t0), y1 ≈ y(t1), . . . , yN ≈ y(tN )

§2.2 Euler’s Method for IVP

Definition 2.2 (Euler’s Method) — Consider{
dy
dt = f(t, y)

y(t0) = α, t ∈ [t0, T ]
(*)

The formula for Euler’s method is{
yi+1 = yi + hf(ti, yi) for i = 0, 1, . . . , N − 1

y0 = y(t0) = α

5
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§3 Lec 3: Jan 7, 2022

§3.1 Euler’s Method (Cont’d)

Example 3.1

Consider the IVP {
dy
dt = y − t2 + 1, t ∈ [0, 2]

y(0) = 0.5
(*)

First, let’s find the analytic solution to (*)

i) First we compute the homogeneous equation of the ODE in (*)

dy

dt
= y ⇐⇒ dy

y
= dt

=⇒
∫

dy

y
=

∫
dt+ C

=⇒ ln y = t+ C

=⇒ y = C̃et

ii) Now we go back to the original ODE in (*), dy
dt = y − t2 + 1 =⇒ By the variation of

constant (parameter) the solution is of the form of

y(t) = C̃(t)et

Then,
C̃ ′(t)et + C̃(t)et = C̃(t)et − t2 + 1

So

C̃(t) =

∫
(−t2 + 1)e−tdt+ C1

=

∫
(t2 − 1)(e−t)′dt+ C1

= (t2 − 1)e−t −
∫

2te−t dt+ C1

= . . .

= (t2 − 1)e−t + 2te−t + 2e−t + C1

= (t+ 1)2e−t + C1

Thus, y(t) =
[
(t+ 1)2e−t + C1

]
et. From the initial condition, y(0) = 0.5, we get

y(t) = (t+ 1)2 − 0.5e−t

6
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§4 Lec 4: Jan 10, 2022

§4.1 Euler’s Method (Cont’d)

7
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Example 4.1 (Cont’d from Lec 3)

Now, let’s apply the Euler’s method for N = 2, i.e., h = T−t0
N = 2−0

2 = 1. So

t0 = 0

t1 = t0 + 1 · h = 1

t2 = 2

From the initial condition, y0 = y(t0) = 0.5

y1 = y0 + hf(t0, y0)

= y0 + h(y0 − t20 + 1)

= 0.5 + 1 · (0.5− 02 + 1)

= 2

y2 = y1 + hf(t1, y1)

= 4

The values of analytic solution of mesh points t0, t1, t2 are

y(t0) = 0.5

y(t1) = 4− 0.5e

y(t2) = 9− 0.5e2

So, the absolute error is

ei = |yi − y(ti)|
e0 = 0

e1 = 0.641

e2 = 1.306

When N = 4, h = 1
2 ,

e0 = 0

e1 = 0.176

e2 = 0.391

e3 = 0.634

e4 = 0.868

When N = 6, we have h = 1
3 , we have

e0 = 0

e1 = 0.080

e2 = 0.194

e3 = 0.283

e4 = 0.404

e5 = 0.531

e6 = 654

From the errors in the example above, as h decreases, the errors seem to decrease as well.
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Question 4.1. What is the dependence of the error in terms of the step size h?

The error we saw |yi − y(ti)| is called the global truncation error and it turn out that we
need some theory of ODE to discuss this. There is another type of error, called local truncation
error.

1. This is easy to compute

2. The global truncation error can be bounded in the local truncation error under a certain
condition.

§4.2 Local Truncation Error Analysis

Local truncation error (LTE) measures the accuracy of the method at the specific step by assuming
that the values of the variables are exact.

|yi+1 − y(ti+1)| = |yi + hf(ti, yi)− y(ti+1)|
= |y(ti) + hf (ti, y(ti))− y(ti+1)|

9
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§5 Lec 5: Jan 12, 2022

§5.1 Local Truncation Error Analysis(Cont’d)

We denote the LTE for Euler’s method is

ei+1 = y(ti+1)− yi+1

= y(ti+1)− (y(ti) + hf(ti, y(ti))) (*)

We assume the analytic solution y(t) has (n+ 1)−th continuous derivatives to analyze ei+1. Thus,
y(t) has the Taylor series expansion (with remainder term) at t = ti

y(ti+1) = y(ti) +
dy

dt

∣∣∣
ti
(ti+1 − ti) +

1

2!

d2y

dt2

∣∣∣
ti
(ti+1 − ti)

2 + . . .+
1

n!

dny

dtn

∣∣∣
ti
(ti+1 − ti)

n

+
1

(n+ 1)!

dn+1y

dtn+1

∣∣∣
ξ∈[ti,ti+1]

(ti+1 − ti)
n+1

= y(ti) +
dy

dt

∣∣∣
ti
h+

1

2!

d2y

dt2

∣∣∣
ti
h2 + . . .+

1

n!

dny

dtn

∣∣∣
ti
hn +

1

(n+ 1)!

dn+1y

dtn+1

∣∣∣
ξ∈[ti,ti+1]

hn+1

We replace y(ti+1) in (*) by the Taylor series expansion above.

ei+1 = y(ti+1)− (y(ti) + hf(ti, y(ti)))

=
1

2!

d2y

dt2

∣∣∣
ti
h2 + . . .+

1

n!

dny

dtn

∣∣∣
ti
hn +

1

(n+ 1)!

dn+1y

dtn+1

∣∣∣
ξ∈[ti,ti+1]

hn+1 (**)

Recall our assumption is that y(t) has (n+ 1)−th continuous derivatives. Thus, d2y
dt2 , . . . ,

dn+1y
dtn+1 are

all bounded on [t0, T ]. Using this fact to (**)

|ei+1| ≤ C1h
2 + C2h

3 + . . .+ Cnh
n+1

≤ Ch2 (since h≪ 1)

We only need to assume that y(t) is smooth so that y′′ is continuous on [t0, T ] where C =
maxt∈[t0,T ] |y′′(t)| /2.

Remark 5.1. Big-O notation: If |ei+1| ≤ Chn where C is some constant independent with h, then
ei+1 = O(hn). So the LTE of Euler’s method, ei+1 satisfies ei+1 = O(h2).

§5.2 Global Truncation Error

Recall that the global truncation error for Euler’s method is given by{
ei+1 = y(ti+1)− yi+1 = y(ti+1)− (yi + f(ti, yi))

y0 = y(t0)

To study the global truncation error further, we need to introduce the definite of Lipschitz condi-
tion/constant.

Definition 5.2 (Lipschitz Condition) — A function f(t, y) is said to satisfy a Lipschitz condition
in y on a set D : [t0, T ]× (−∞,∞) with the Lipschitz constant L if for all y1, y2 ∈ (−∞,∞)
and t ∈ [t0, T ] we have

|f(t, y1)− f(t, y2)| ≤ L |y1 − y2|

10



Duc Vu (Winter 2022) 5 Lec 5: Jan 12, 2022

Theorem 5.3

Suppose that f(t, y) is continuous and ∂f
∂y (t, y) is bounded by L on D : [t0, T ] × (−∞,∞).

Then f(t, y) satisfies the Lipschitz condition with constant L.

11
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§6 Lec 6: Jan 14, 2022

§6.1 Global Truncation Error (Cont’d)

Theorem 6.1

Suppose that D = [t0, T ]× R and the function f(t, y) satisfies

1. f(t, y) is continuous on D

2. f(t, y) satisfies the Lipschitz condition on D in the variable y

Then the IVP in the form {
dy
dt = f(t, y)

y(t0) = y0

has a unique solution y(t) for t ∈ [t0, T ].

Theorem 6.2 (Global Truncation Error Bound for Euler’s Method)

If

1. f(t, y) satisfies the Lipschitz condition in y on D = [t0, T ] × (−∞,∞) with Lipschitz
constant L.

2. |y′′(t)| ≤M <∞ for all t ∈ [t0, T ],

max
0≤i≤N

|y(ti)− yi| ≤ eL(T−t0) |e0|+
(
eL(T−t0) − 1

L
· Mh

2

)

12
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§7 Lec 7: Jan 19, 2022

§7.1 Global Truncation Error (Cont’d)

Note that if |e0| = 0, we have

|ei| ≤
(
eNhL − 1

2L

)
·Mh

Remark 7.1. The global truncation error for Euler’s method is O(h).

§7.2 Relation Between LTE and GTE

Next, we will remark the relation between the local truncation and global truncation errors. Let τi
be the local truncation error and ei denote the global truncation error.

Remark 7.2. We have

|τi| ≤
max |y′′|

2
· h2

|ei| ≤
e(T−t0)·L

2L
·max

∣∣y′′∣∣h
Although we cannot apply the bound on τi to the bound of ei above, it turns out that

|ei| ≤ C

(
1

h
max |τi|

)

Local truncation error Global truncation error

O(h2), Mh2

2 O(h), eL(T−t0)−1
2 · Mh

2

Remark 7.3. An important message from above table that holds for global/local truncation errors
of other numerical methods: If we have a numerical method for IVPs whose local truncation error
satisfies |τi| ≤ Chp+1 or O(hp+1), then this method has a global truncation error |ei| ≤ C̃ · hp or
O(hp).

Question 7.1. What other methods for IVP has global error of O(hp) (pth order of accuracy)?

Consider the Taylor method of order p given as follows:{
yi+1 = yi + h · T (p)(ti, yi), i = 0, . . . , N − 1

y0 = y(t0)

where

T (p)(ti, yi) = f(ti, yi) +
h

2
f ′(ti, yi) + . . .+

hp−1

p!
f (p−1)(ti, yi)

Definition 7.4 (Order Accuracy) — A numerical method is called pth order accuracy method
if its global truncation error bound is |ei| ≤ Chp or ei = O(hp) where C is some constant
independent of h.

13
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We saw the Euler’s method has the global truncation error ei = O(h), so it is 1st order accuracy
method.

Question 7.2. Suppose we have a numerical method for IVP with a formula of the method, but
we don’t know its order accuracy. How can we determine it?

There are two cases:

1. The analytic solution y(t) is known.

2. The analytic solution y(t) is unknown.

Case 1: y(t) is given. Note that dy
dt = f(t, y). Let’s assume that f(t, y) is smooth enough. Let the

formula of the method is given by yi+1 = g(ti, yi) for some function g.

i) Compute the local truncation error τi+1(h) = y(ti+1)− ỹi+1, where ỹi+1 = g(ti, y(ti)).

ii) Use the Taylor series expansion for y(ti+1) at y(ti) along with the fact that dy
dt = f(t, y).

Then, apply the similar argument used for the local truncation error for the Euler’s method.

iii) If the exponent of h of the leading term of τi+1(h) is p+ 1 (i.e., the smallest exponent of h is
τi+1(h)),

|τi+1(h)| ≤ Chp+1

By the remark about LTE and GTE, the accuracy of the method is p.

14
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§8 Lec 8: Jan 21, 2022

§8.1 Relation Between LTE and GTE (Cont’d)

Case 2: y(t) is not given. First we assume that the method is at least p-th order accuracy method
for p ≥ 1 but the value of p is not known.
Recall the global truncation error for the p-th order method

max
0≤i≤N

|ei| ≤ C0 |e0|+ C1h
p

and if e0 = 0, max0≤i≤N |ei| ≤ C1h
p

Definition 8.1 (Convergent Method) — If limh→0 max0≤i≤N |ei| = 0, then the given method
is convergent.

Then, let’s observe how the error changes if step size h is decreases by half as below.

Step size 1st order 2nd order pth order
h O(h) O(h2) O(hp)
h
2 O

(
h
2

)
O
(

h2

22

)
O
(
hp

2p

)
Note that if the step size h is decreased by a factor of 2, then the ratio of the global truncation

error bound is improved by a factor of 2p:

• 1st order: O(h)

O(h
2 )

= 2

• 2nd order: O(h2)

O
(

h2

22

) = 22

• pth order: O(hp)

O(hp

2p )
= 2p

This gives some idea about how to estimate the order of accuracy for a numerical method empiri-
cally.

Theorem 8.2 (Asymptotic Error Estimation – Aitken’s Estimation)

For Euler’s method: assume that y(t) is 3-times continuously differentiable and ∂f
∂y ,

∂2f
∂y2

are continuous and bounded on D = [t0, T ] × R. Then there exists D(t) s.t. y(ti) − yi =
D(ti)h+O(h2). Specifically, consider ti = T , then

y(T )− ỹh = Dh+O(h2)

where ỹh := yN is the estimate of y(T ) by Euler’s method with step size h. Then

ỹh − ỹh
2

ỹh
2
− ỹh

4

≈ 2

As h→ 0,
ỹh − ỹh

2

ỹh
2
− ỹh

4

=
D ·
(
1
2 − 1

)
D
(
1
4 −

1
2

) = 2

15
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Note that to identify p in 2p, we can take

log 2p

log 2
=

p log 2

log 2
= p

Therefore,

lim
h→0

log

(
ỹh−ỹh

2

ỹh
2
−ỹh

4

)
log 2

= 1

Thus, the order of accuracy of Euler’s method is 1.
The Aitken’s estimation can be generalized to general order p accuracy methods. For a general pth
order method, it has the asymptotic error bound in this form

y(T )− ỹh = Dhp +O(hp+1)

where D is some constant independent of h. Thus, we have

lim
h→0

ỹh − ỹh
2

ỹh
2
− ỹh

4

= 2p

16
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§9.1 Relation between LTE and GTE (Cont’d)

Recall

p =
log 2p

log 2
=

limh→0 log

(
ỹh−ỹh

2

ỹh
2
−ỹh

4

)
log 2

Note that to obtain the exact value of p, we need to let h→ 0. In practice, we have estimate with
some step size h > 0. When h is not small enough, the estimate for p may not be reliable. Typically,
the smaller h is the better estimate for p is. For example, let p1, p2, p3 are the estimates for p with
step sizes h, h

2 ,
h
4 .

|p− p3| ≤ |p− p2| ≤ |p− p1|

§9.2 An Overview

First, let’s take a look at the table of classification of numerical methods.

Explicit methods Implicit methods
yi+1 = ϕ (yi, yi−1, . . . , y0) yi+1 = ϕ (yi+1, yi, yi−1, . . . , y0)

◦ Do not need to solve an equation to find yi+1 ◦ Need to solve an equation to find yi+1

◦ Fast ◦ Slow
◦ Less stable ◦ More stable

◦ For non-stiff differential equations ◦ For stiff problems

For example, recall the formula of Euler’s method

yi+1 = yi + hf (ti, yi)

Euler’s method is an explicit method. Next, we will take a look at the classification of numerical
methods for IVP

1-step method Multi-step methods
yi+1 is only based on yi If yi+1 is based on yi, yi−1 (2-step method)

or yi, yi−1, yi−2 (3-step method)
. . .

or yi, . . . , yi+1−m (m-step method)

Remark 9.1. Euler’s method is 1-step method.

Explicit Implicit
1. Euler (1-step) 1. Backward Euler (1-step)
2. Runge-Kutta 2. Trapezoidal Method (Cronk-Nicolson method)

3. Adam-Bashforth (multi-step) 3. Adams-Moulton (multi-step)

§9.3 Runge-Kutta Method

Recall the Taylor’s method of order p{
yi+1 = yi + h · T (p)(ti, yi), i = 0, . . . , N − 1

y0 = y(t0)

17
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where

T (p)(ti, yi) = f(ti, yi) +
h2

2
f ′(ti, yi) + . . .+

hp−1

(p− 1)!
f (p−1)(ti, yi)

Although the Taylor method provides higher order of accuracy, it is computationally heavy since it
requires to compute high order derivatives of f(t, y). Thus, Runge-Kutta method is computationally
cheap and also have high order of accuracy.

18
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§10 Lec 10: Jan 26, 2022

§10.1 Runge-Kutta Method (Cont’d)

2-stage Runge-Kutta method: Recall the Euler’s method{
yk+1 = yk + hf (tk, yk)

y0 = y(t0)

Here, we have used f(tk, yk) as the estimation of the slope dy
dt

∣∣
tk
. For Runge-Kutta method,

1. We use a better estimate of slope rather than using f(tk, yk)

2. Then use it to compute yk+1

There are several versions of 2-stage Runge-Kutta method

i) Midpoint method 
y∗ = yk + h

2 f (tk, yk)

yk+1 = yk + hf
(
tk + h

2 , y
∗)

y0 = y(t0)

First, note that y∗ = yk +
h
2 f (tk, yk) is the formula of Euler’s method at tk but with step size

h
2 . So, for the midpoint method at (tk, yk) with step size h, we use the Euler’s method to find

the estimate y∗ for y
(
tk + h

2

)
= y

(
tk+tk+1

2

)
. Then, using the estimate y∗ to compute f at

tk+tk+1

2 , which is used to estimate yk+1.

ii) Modified Euler’s method 
S1 = f(tk, yk)

S2 = f (tk+1, yk + hS1)

yk+1 = yk + h · S1+S2

2

y0 = y(t0)

iii) Generalized Runge-Kutta method
S1 = f(tk, yk)

S2 = f (tk + αh, yk + αhS1)

yk+1 = yk + h (β1S1 + β2S2) , k = 0, 1, . . . , N − 1

y0 = y(t0)

with α ∈ [0, 1] and β1 + β2 = 1.

It is easy to see that the midpoint method is a special case of the generalized Runge-Kutta method
with α = 1

2 , β1 = 0, β2 = 1. Similarly, the modified Euler’s method is a special case of the generalized
Runge-Kutta method with α = 1, β1 = β2 = 1

2 .
Now, we will consider a simpler type of IVP with autonomous ODE{

dy
dt = f(y)

y0 = y(t0), t ∈ [0, T ]

• The local truncation error analysis is much simpler for autonomous case but it still contains
of the main idea of analysis of LTE for nonautonomous case.

• The relation between LTE and GTE still holds. If |τi| = O(hp+1), then |ei| = O(hp).
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We will start with LTE analysis for the midpoint method. Recall
y∗ = yk + h

2 f (tk, yk)

yk+1 = yk + hf
(
tk + h

2 , y
∗)

y0 = y(t0)

So, yk+1 = yk + hf
(
tk + h

2 , yk + h
2 f(tk, yk)

)
.

1. Since we assumed the autonomous ODE,

yi+1 = yi + hf

(
yi +

h

2
f(ti, yi)

)
Then, the LTE

τi+1 = y(ti+1)− yi+1

= y(ti+1)−
[
y(ti) + hf

(
y(ti) +

h

2
f (ti, y(ti))

)]
2. Next, we apply the Taylor series expansion on y(ti+1) at t = ti.

y(ti+1) = y(ti) + y′(ti)h+
1

2!
y′′(ti)h

2 +
1

3!
y(3)(ti)h

3 + . . .

20
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§11.1 Runge-Kutta Method (Cont’d)

3. We will consider the Taylor series expansion for f
(
y(ti) +

h
2 f(y(ti))

)
. Note that the Taylor

series expansion for f(a+ b) at a is given by

f(a+ b) = f(a) +
df

dt

∣∣∣
a
b+

1

2!

d2f

dt2

∣∣∣
a
b2 +

1

3!

d3f

dt3

∣∣∣
a
b3 + . . .

So

f

(
y(ti) +

h

2
f(y(ti))

)
= f (y(ti)) +

df

dy

∣∣∣
y(ti)

h

2
f (y(ti)) +

1

2!

d2f

dy2

∣∣∣
y(ti)

(
h

2
f(y(ti))

)2

+
1

3!

d3f

dy3

∣∣∣
y(ti)

(
h

2
f(y(ti))

)3

+ . . .

4. Using the results 1), 2), and 3)

τi+1 = y′(ti)h+
1

2!
y′′(ti)h

2 +
1

3!
y(3)(ti)h

3 + . . .

− h

[
f(y(ti)) +

df

dy

∣∣∣
y(ti)

h

2
f(y(ti)) +

1

2!

d2f

dy2

∣∣∣
y(ti)

(
h

2
f(y(ti))

)2

+ . . .

]
. . .

After some manipulation, we obtain

τi+1 =

[
1

24
fyy (y(ti)) f

2 (y(ti)) +
1

6
f2
y (y(ti)) f (y(ti))

]
h3 +O(h4)

5. By our assumption, since f is smooth enough so that f, fy, fyy, fyyy are continuous on [t0, T ]
and [t0, T ] is bounded and closed. So,

|τi+1| ≤ C̃ · h3

i.e., τi+1 = O(h3). Therefore, ei+1 = O(h2)

=⇒ max
0≤i≤N

|ei| ≤ C2h
2

and the global truncation error of the midpoint method is O(h2).

Exercise 11.1. Analyze the modified Euler’s method and the generalized 2-stage Runge-Kutta
methods (which are similar to the analysis of the midpoint method above).
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§12.1 Runge-Kutta Method (Cont’d)

Nonautonomous case: {
dy
dt = f(t, y)

y0 = y(t0), t ∈ [t0, T ]

From the formula of the midpoint method

yi+1 = yi + hf

(
ti +

h

2
, yi +

h

2
f(ti, yi)

)
So the LTE is

τi+1 = y(ti+1)− yi+1

= y(ti+1)−
[
y(ti) + hf

(
ti +

h

2
, y(ti) +

h

2
f (ti, y(ti))

)]
Again, the LTE analysis for the nonautonomous case is similar to the autonomous case, except
we need to apply the Taylor series expansion with 2 variables. Then, τi+1 = O(h3), so the global
truncation error is O(h2).

§12.2 High-order Runge-Kutta Method

The order of accuracy can be improved by constructing a better estimate g(ti, yi) for the slope
f(t, y) in the iteration step yi+1 = yi + hg(ti, yi). This can be done by considering more careful
linear combinations of f (ti + ch1ỹ).
The most popular high-order RK method is classical RK4 (4-stage RK). For nonautonomous case
DE, the formula is given by 

S1 = f(ti, yi)

S2 = f
(
ti +

h
2 , yi +

h
2S1

)
S3 = f

(
ti +

h
2 , yi +

h
2S2

)
S4 = f (ti+1, yi + hS3)

yi+1 = yi +
h
6 (S1 + 2S2 + 2S3 + S4)

y0 = y(t0), i = 0, . . . , N − 1

For autonomous DE, the formula is

S1 = f(yi)

S2 = f
(
yi +

h
2S1

)
S3 = f

(
yi +

h
2S2

)
S4 = f (yi + hS3)

yi+1 = yi +
h
6 (S1 + 2S2 + 2S3 + S4)

y0 = y(t0), i = 0, . . . , N − 1

The local truncation error τi(h) of RK4 is O(h5), so RK4 is 4th order method (when y(t) is 5-times
differentiable), i.e.,

max
0≤i≤N

|ei| ≤ C1 |e0|︸︷︷︸
=0

+C2h
4
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General s-stage explicit RK method for nonautonomous DE is

S1 = f(ti, yi)

S2 = f (ti + c2h, yi + α21hS1)

S3 = f (ti + c3h, yi + α31hS1 + α32hS2)
...

Ss = f
(
ti + csh, yi + h

∑s−1
j=1 αsjSj

)
yi+1 = yi + h

(∑s
j=1 βjSj

)
, i = 0, . . . , N − 1

y0 = y(t0)

where ck =
∑s

j=1 αkj and
∑s

j=1 βj = 1.
These parameters can be represented in “Butcher table”.

c1 α11 α12 . . . α1s

c2 α21 α22 . . . α2s

...
...

...
cs αs1 αs2 . . . αss

1 β1 β2 . . . βs
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§13.1 High-order Runge-Kutta Method (Cont’d)

Recall the formula of the midpoint method (RK2)
y∗ = yk + h

2 f(tk, yk)

yk+1 = yk + hf
(
tk + h

2 , y
∗)

y0 = y(t0)

⇐⇒


S1 = f(tk, yk)

S2 = f
(
tk + h

2 , yk + h
2S1

)
yk+1 = yk + hS2

So, the corresponding Butcher’s table

0 0 0
1
2

1
2 0

1 0 1

The Butcher’s table for modified Euler’s method

0 0 0
1 1 0
1 1

2
1
2

The Butcher’s table for classical RK4

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0
1 1

6
1
3

1
3

1
6

Question 13.1. How do we choose the parameters in a general s-stage method?

One is typically interested in achieving high-order of accuracy. To do that we can choose the
parameters αkj , βj so that it makes the order of LTE as high as possible by making the exponent of
the leading term in LTE as high as possible.
The classical RK4 method has become one of the most popular numerical methods.

• Reasonably high accuracy: 4th order

• Still easy to implement

• No 5-stage RK method exists that provides 5th order of accuracy. There are RK methods
with order of accuracy higher than 4, but they require more than 5-stages (more complicated
and expensive to compute)

Summary of RK methods:

1. Any s-stage explicit RK method cannot have order greater than s

|ei(h)| ∼ O(hp)

for some p ≤ s.

2. There exists no 5-stage explicit RK method with order 5. More precisely, see the following
table

Number of stage 1 ≤ s ≤ 4 5 ≤ s ≤ 4 8 ≤ s ≤ 9 s ≥ 10
Order of accuracy s s− 1 s− 2 s− 3
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§13.2 Stabil ity of Numerical Methods

We have seen that the error bounds of a numerical method depends on the step size h. In practice,
we typically have a desired error and choose the step size h accordingly. The order of accuracy,
say O(hp), gives a rough idea about how to choose the step size h, but usually this is not enough:
In O(hp), there are hidden dependence on other parameters such as Lipschitz constant L or T .
Absolute stability provides more precise information to determine the step size h.
First, let’s start with recalling the error bound of Euler’s method

max
0≤i≤N

|y(ti)− yi| ≤ eL(T−t0)|e0|+
eL(T−t0)

L
· Mh

2

Let’s motivate the importance of choosing the step size h.

Example 13.1

Consider {
dy
dt = λy

y(t0) = y0

We will see the step size requirements to solve above IVP for Euler’s method, the midpoint
method, and Trapezoidal method (Cronk-Nicholson)

• Trapezoidal method: Let an IVP be given by{
dy
dt = f(t, y)

y(t0) = y0, t ∈ [t0, T ]

The formula is given by

yi+1 = yi +
h

2
(f(ti, yi) + f(ti+1, yi+1))

So, for the ODE in the example dy
dt = λy, we have

yi+1 = yi +
h

2
(λyi + λyi+1)

We need to solve for yi+1, which is easy in this case(
1− λh

2

)
yi+1 =

(
1 +

λh

2

)
yi

yi+1 =

(
1 + λh

2

1− λh
2

)
yi
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§14.1 Stabil ity of Numerical Methods (Cont’d)

We can deduce that the proper step size h to get a desired error not only depends on the problem
(such as L, T) but the numerical method.

Definition 14.1 (Interval of Absolute Stability) — The interval for step size of absolute stability
of a numerical method is the set

S = {hλ : |yi| → 0 as i→∞∀ initial data y0}

when the method is applied to the problem{
dy
dt = λy

y(t0) = y0

Let’s consider the IVP {
dy
dt = λy

y(t0) = y0, t ∈ [t0, T ]

Then, we have

dy

dt
= λy

=⇒ y(t) = C̃eλt

=⇒ y(t) = y0e
λ(t−t0)

Thus, |y(t)| → ∞ if λ > 0 and |y(t)| → 0 if λ < 0.
Goal: To find S when λ < 0 for a numerical method. By the definition of S, we need to find the
condition on h s.t. yi → 0 as i→∞ for λ < 0 for a numerical method.

1. Euler’s method {
dy
dt = λy

y(t0) = t0, t ∈ [t0, T ]

Recall the formula of Euler’s method

yi+1 = yi + hf(ti, yi)

= yi + hλyi

= (1 + hλ)yi

= (1 + hλ)2yi−1

= . . .

= (1 + hλ)i+1y0

So, to have |yi+1| → 0 as i→∞,∣∣(1 + hλ)i+1y0
∣∣ = |1 + hλ|i+1 |y0| → 0

as i→∞.

⇐⇒ |1 + hλ| < 1

⇐⇒ −1 < 1 + hλ < 1

⇐⇒ −2 < hλ < 0
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Thus, the interval of absolute stability of Euler’s method is S = (−2, 0) and the corresponding
step size h satisfies 0 < h < − 2

λ (since λ < 0)

2. For the midpoint method, the formula is given by{
y∗ = yi +

h
2 f(ti, yi)

yi+1 = yi + hf
(
ti +

h
2 , y

∗)
Since the IVP is {

dy
dt = λy

y(t0) = y0, t ∈ [t0, T ]

Then, {
y∗ = yi +

h
2λyi

yi+1 = yi + hλy∗

=⇒ yi+1 = yi + hλ
(
yi +

hλ
2 yi

)
. So,

yi+1 =

(
1 + hλ+

(hλ)2

2

)
yi

In order to have |yi+1| → 0 as i→∞,∣∣∣∣1 + hλ+
(hλ)2

2

∣∣∣∣ < 1

−2 < hλ+
(hλ)2

2
< 0

−2 < hλ < 0

The interval of absolute stability for the midpoint method is S = (−2, 0) and the corresponding
h satisfies h ∈

(
0,− 2

λ

)
.

3. Trapezoidal method: From the last lecture, we have

yi+1 =

(
1 + λh

2

1− λh
2

)
yi

Therefore to have |yi+1| → 0 as i→∞, ∣∣∣∣∣1 + λh
2

1− λh
2

∣∣∣∣∣ < 1

Check that the interval of stability is (−∞, o) for the trapezoidal method so the corresponding
h satisfies h ∈ (0,∞). The similar argument can be applied to other numerical methods to
find its interval of stability for the IVP dy

dt = λy (λ < 0).

Question 14.1. How do we find the interval of stability of a numerical method for general IVPs,
dy
dt = f(t, y)?

Let y(t) be analytic solution to dy
dt = f(t, y) and ỹ(t) be the numerical solution to dy

dt = f(t, y). Let
v(t) be the difference of ỹ(t) and y(t), i.e., v(t) = ỹ(t)− y(t). Then,

dv

dt
=

d

dt
(ỹ(t)− y(t))

=
d

dt
ỹ(t)− d

dt
y(t)

≈ f (t, ỹ(t))− f(t, y)
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Thus, dv
dt = f(t, ỹ)− f(t, y) ≈ ∂f

∂y v(t). This is similar to the previous IVP, dz
dt = λz for λ < 0 case

=⇒ |z(t)| → 0 as t→∞

If ∂f
∂y < 0, this implies that |v(t)| → 0 as t → ∞, above finding implies that h · ∂f∂y ∈ S gives the

step size requirement for the IVP dy
dt = f(t, y).
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§15 Lec 15: Feb 11, 2022

§15.1 Stabil ity of Numerical Methods (Cont’d)

Fact 15.1. To estimate the step size requirement for a good numerical solution for the IVP
dy
dt = f(t, y). If ∂f

∂y < 0, we need to find the stability restriction on h s.t. h · ∂f∂y ∈ S.

Example 15.1

Use the Euler’s to solve following IVPs

dy

dt
= cos(y) + 1 with y(0) = 0 and t ∈ [0, 5]

For this IVP, f(t, y) = cos(y), then ∂f
∂y = − sin(y). It turns out that y(t) ∈ [0, π]

dy

1 + cos y
= dt

1

2
sec2

(y
2

)
dy = dt

t = tan
(y
2

)
y = 2 tan−1(t)

We want to find h s.t. h · ∂f∂y ∈ S = (−2, 0). By considering the points to find worst possible

case which happens when ∂f
∂y = −1, −h ∈ (−2, 0) =⇒ h ∈ (0, 2).

A summary for the τi, ei the interval of stability for Euler’s method RK2, RK4, and trapezoidal

Method Order of τi Order of ei Interval of AS
Euler O(h2) O(h) (−2, 0)
RK2 O(h3) O(h2) (−2, 0)
RK4 O(h5) O(h4) (−2.78, 0)

Trapezoidal O(h3) O(h2) (−∞, 0)

Note that from this table, the interval of absolute stability of trapezoidal method is (−∞, 0).
This implies that when ∂f

∂y < 0, h · ∂f∂y ∈ (−∞, 0) for any positive step size h. In other words, the

trapezoidal method is unconditionally stable (no restriction on the step size). Typically, implicit
methods are more stable than the implicit methods.

§15.2 Stif f Problems

Definition 15.2 (Stiff Problem) — • A problem is stiff if ∂f
∂y < 0 and

∣∣∣∂f∂y ∣∣∣ is large.
• A problem is stiff if explicit methods don’t work or work only with very small step size h.

• A problem is stiff if some components of solution decay much faster than others, for
example y(t) = e−2t + e−500t

Implicit methods are typically a good choice for solving the stiff problems. For example, the
trapezoidal method is unconditionally stable, so it has no restrictions on the step size h to be stable.
Summary of choosing numerical methods for solving on IVP
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• If the IVP is non-stiff, we usually prefer to use explicit methods (e.g., te classical RK4) and
the step size h is determined by the accuracy.

• If the IVP is stiff, we choose the implicit methods so that h doesn’t need to be extremely
small.

§15.3 Multi-step Methods

Multi-step methods have become popular in machine learning. We will briefly take a look at some
multi-step methods:

1. Adam-Bashforth (AB method) which is on explicit method

2. Adam-Moulton (AM method) which is an implicit method.

Definition 15.3 (k-step multi-step method) — A k-step multi-step method for solving the IVP{
dy
dt = f(t, y)

y(t0) = y0, t ∈ [t0, T ]

has a difference equation for finding the approximation yi+1 at the mesh point ti+1 represented
by

yi+1 =

k∑
j=1

αjyi+1−j + h

k∑
j=0

βjf (ti+1−j , yi+1−j) (*)

• From the formula, we notice that we need to solve previous k solution values (yi, . . . , yi+1−k)
at each step for the computation of next step.

• Also from the formula (*) of the k-step method, we need to know the first k values:
y0, y1, . . . , yk−1 in advance for the method to work. However, we only know y0 from the
initial condition. To compute y1, y2, . . . , yk−1, one often use the other 1-step or multi-step
methods such as RK2.

• Note that the meaning of the word “multi-step” differs from “multi-stage”. For example, the
s-stage RK methods are all 1-step methods since at each step, we only need to know (yi, ti)
to compute yi+1.

Definition 15.4 (Adam-Bashforth Method (AB Method)) — The form of the formula of AB
method is

yi+1 = yi + h

k∑
j=1

βjf (ti+1−j , yi+1−j)

with
∑k

j=1 βj = 1 where βj ∈ R.

For each k, we will choose β1, β2, . . . , βk appropriately to maximize the order of accuracy. One way
is to use Taylor series expansion for LTE analysis and choose βj ’s to eliminate as many terms as
possible. Another way to determine β1, . . . , βk is based on polynomial interpolation (fitting) which
is the route we take.
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For each subinterval [ti, ti+1] we have dy
dt = f(t, y) on [ti, ti+1]. Then we have∫ ti+1

ti

dy

dt
dt =

∫ ti+1

ti

f(t, y)dt

y(ti+1) = y(ti) +

∫ ti+1

ti

f(t, y)dt

We replace f(t, y(t)) with its interpolation polynomial by using the data obtained previously
(t0, y0), (t1, y1), . . . , (ti, yi) where yi is the estimate for y(ti). We expect to have estimates of

f (tj , y(tj)) ≈ f(tj , yj) := fj

More precisely, to get the k-step AB formula, we use the Lagrange interpolation polynomial with
degree k.
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§16.1 Multi-step Methods (Cont’d)

Let

Pj(t) =

∏
i−k+1≤l ̸=j≤i(t− tl)∏
i−k+1≤l ̸=j≤i(tj − tl)

So Pj is a polynomial with roots ti, ti−1, . . . , tj+1, tj−1, tj−2, . . . , ti−k+1 and Pj(tj) = 1.

Let P (t) =
∑k

j=1 fi+1−jPi+1−j(t). By the properties of Pj ’s, P (ti+1−j) = fi+1−j . Hence,∫ ti+1

ti

f(t, y) dt ≈
∫ ti+1

ti

p(t)dt

=

∫ ti+1

ti

k∑
j=1

fi+1−jPi+1−j(t) dt

= h ·
k∑

j=1

βjfi+1−j

where βj =
1
h

∫ ti+1

ti
Pi+1−j(t)dt. Note that

k∑
j=1

βj = 1

Also,
k∑

j=1

Pi+1−j(t) = 1

and the polynomial
∑k

j=1 Pi+1−j(t)− 1 must be the zero polynomial.

§16.2 Special Cases of AB Method

1. k = 1 (AB1)

The AB method reduces to the Euler’s method in this case. From the form of AB formula,

yi+1 = yi + β1hf(ti, yi)

= yi + hf(ti, yi)

since
∑k

j=1 βj = β1 = 1. Order of accuracy of AB1 is O(h).

2. k = 2 (AB2)
yi+1 = yi + h (β1f(ti, yi) + β2f(ti−1, yi−1))
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β1, β2 can be computed as follow

β1 =
1

h

∫ ti+1

ti

t− ti−1

ti − ti−1
dt

= . . .

=
3

2

β2 =
1

h

∫ ti+1

ti

t− ti
ti−1 − ti

dt

= . . .

= −1

2

So the formula for AB2 is

yi+1 = yi + h

(
3

2
f(ti, yi)−

1

2
f(ti−1, yi−1)

)
This method has O(h2) accuracy.

3. k = 3 (AB3)

The formula can be obtained in a similar way

yi+1 = yi + h

(
23

12
f(ti, yi)−

16

12
f(ti−1, yi−1) +

5

12
f(ti−2, yi−2)

)
This method is O(h3) method.

4. Typically, the k -step AB method is O(hk) method.
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§17.1 Adam-Moulton Method (AM Method)

The form of the formula of k-step AM method is given by

yi+1 = yi + h

k∑
j=0

βjf (ti+1−j , yi+1−j)

with
∑k

j=0 βj = 1 and βj ∈ R.
Let

Pj(t) =

∏
i−k+1≤l ̸=i−j+1≤i+1(t− tl)∏

i−k+1≤l ̸=i−j+1≤i+1(ti−j+1 − tl)

The roots of polynomial Pj(t) are tl with i− k + 1 ≤ l ̸= i− j + 1 ≤ i+ 1 and Pj(ti−j+1) = 1 and

βj =
1
h

∫ ti+1

ti
Pj(t)dt.

1. k = 0 (AM0)

The formula of AM0 i nthis case is

yi+1 = yi + h · β0f(ti+1, yi+1)

= yi + hf (ti+1, yi+1)

AM0 is the backward Euler, which is O(h) method.

2. k = 1 (AM1)

It turns out that AM1 is the trapezoidal method with formula we’ve seen before

yi+1 = yi +
h

2
(f(ti, yi) + f(ti+1, yi+1))

which is O(h2) method. Note that β0 = β1 = 1
2 as we did before

β0 =
1

h

∫ ti+1

ti

t− ti
ti+1 − ti

dt = . . . =
1

2

β1 =
1

h

∫ ti+1

ti

t− ti+1

ti − ti+1
dt = . . . =

1

2

3. k = 2 (AM2)

The formula of AM2 can be obtained by the similar process, which is given by

yi+1 = yi +
h

12
(5f(ti+1, yi+1) + 8f(ti, yi)− f(ti−1, yi−1))

This is a O(h3) method. For example, we can compute β0 as follows

β0 =
1

h

∫ ti+1

ti

(t− ti)(t− ti−1)

(ti+1 − ti)(ti+1 − ti−1)
dt

=
5

12

4. For general k, k-step AM has accuracy of order k + 1 (ei = O(hk+1).
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§18 Lec 18: Feb 23, 2022

§18.1 AM Method (Cont’d)

Since AM method is implicit, we need to solve the equation to compute yi+1 at each step. Recall
the AM formula

yi+1 = yi + h

k∑
j=0

βjf (ti+1−j , yi+1−j)

= yi + β0hf(ti+1, yi+1) + h

k∑
j=1

βjf (ti+1−j , yi+1−j)

If the function f is linear, the we can solve for yi+1 in the formula above. However, f is usually
nonlinear, so it is typically not easy to solve for yi+1 exactly. We usually solve this by some
numerical methods such as Newton’s method, bisection methods, etc. to find yi+1.

§18.2 Interval of Absolute Stabil ity

We will extend the notion of interval of absolute stability to complex numbers

• Interval of stability: λh ∈ R

• Region of stability: λh ∈ C

Example 18.1

Find the region of AS for Euler’s method. The formula of Euler’s method for the IVP{
dy
dt = λy

y(t0) = y0

is

yi+1 = yi + hf(ti, yi)

= yi + hλyi

= (1 + hλ)yi

= . . . = (1 + hλ)i+1y0

when hλ ∈ C, yi+1 → 0 iff |1 + hλ| < 1.
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Example 18.2

The region of AS for the midpoint method for the same IVP. From the formula of the midpoint
method, 

y∗ = y + h
2 f(ti, yi)

yi+1 = y + hf
(
ti +

h
2 , y

∗)
y0 = y(t0)

Then,

yk+1 = yi + hf

(
ti +

h

2
, yk +

h

2
f(ti, yi)

)
=⇒ yi+1 = yi + hλ

(
yi +

h

2
f(ti, yi)

)
=

(
1 + hλ

(hλ)2

2

)
yi

To make sure yi+1 → 0 as i→∞,
∣∣∣1 + hλ+ (hλ)2

2

∣∣∣ < 1.

Definition 18.3 (Uncondiitonally Stable Method) — If the region of AS for a method includes
the left half complex plane then the method is called unconditionally stable.

For example, trapezoidal method and the backward Euler’s method are unconditionally stable.
From the formula of trapezoidal method,

yi+1 =

(
1 + hλ

2

1− hλ
2

)
yi

To make sure yi+1 → 0 as i→∞ ∣∣∣∣∣1 + hλ
2

1− hλ
2

∣∣∣∣∣ < 1

Let hλ = a+ ib where a, b ∈ R since hλ ∈ C. Note that |α+ iβ|2 = α2 + β2 ∀α, β ∈ R. So after
some manipulation, we get a < 0. The region of AS for the trapezoidal method is the left half of
complex plane.

§18.3 Numerical Methods for Systems of ODEs
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Definition 18.4 (ODE system) — An m-th order system of 1st order IVP has the following
form 

dy1

dt = f1(t, y1, y2, . . . , ym)
dy2

dt = f2(t, y1, y2, . . . , ym)
...
dym

dt = fm(t, y1, y2, . . . , ym)

with initial condition 
y1(t0) = y1,0

y2(t0) = y2,0
...

ym(t0) = ym,0

We can write this IVP in the vector form. The IVP is then written as{
dy⃗
dt = F⃗ (t, y⃗)

y⃗(t0) = y⃗0

Example 18.5

For m = 2, {
dy1

dt = f1(t, y1, y2)
dy2

dt = f2(t, y1, y2)
with

{
y1(t0) = y1,0

y2(t0) = y2,0

Using

y⃗ =

[
y1
y2

]
, F =

[
f1(t, y1, y2)
f2(t, y1, y2)

]
, y⃗0 =

[
y1,0
y2,0

]

Goal: Use some numerical methods to compute the estimates y⃗1, y⃗2, . . . , y⃗N for y⃗(t0), y⃗(t1), . . . , y⃗(tN ).

Remark 18.6. 1. If f1, f2, . . . , fm are linear functions w.r.t. y1, y2, . . . , ym, then dy⃗
dt

= F⃗ (t, y⃗) is
a linear system.

F⃗ (t, y⃗) = A(t)y⃗ + b⃗(t)
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Example 18.7

Consider {
dy1

dt =
√
ty1 − 3y2 + sin t

dy2

dt = y1 + e−t

with {
y1(0) = −1
y2(0) = 2

This system of ODEs is linear.

F⃗ (t) =

[√
ty1 − 3y2 + sin t

y1 + e−t

]
=

[√
t −3
1 0

] [
y1
y2

]
+

[
sin t
e−t

]
= A(t)y⃗ + b⃗(t)

Remark 18.8. 2. Let a system of ODEs be given by

dy⃗

dt
= F⃗ (t, y) = A(t)y⃗ + b⃗(t)

If b⃗(t) = 0, then the ODE system dy⃗
dt

= A(t)y⃗ is homogeneous. Otherwise, it is inhomogeneous.

3. If one of the functions f1, f2, . . . , fm is nonlinear, then dy⃗
dt

= F⃗ (t, y⃗) is nonlinear. In other words,
if one of the ODE equations is nonlinear, then the ODE system is nonlinear.

Example 18.9

Consider {
dy1

dt = y1 + 2y22
dy2

dt = 2y1 − 3y2

with {
y1(0) = 2

y2(0) = 4

Since y1 + 2y22 is nonlinear with respect to y2, this ODE is nonlinear.

Let’s get to numerical methods to solve IVP systems.

• Euler’s method for one ODE. Recall{
yi+1 = yi + hf(ti, yi)

y0 = y(t0)

So we can extend the method to a system of ODEs as follows{
dy⃗
dt = F⃗ (t, y⃗)

y⃗(t0) = y0

So the formula is {
y⃗i+1 = y⃗i + hF⃗ (ti, y⃗i)

y⃗0 = y⃗(t0)
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where

y⃗i+1 =


y1,i+1

y2,i+1

...
ym,i+1

 , y⃗i =


y1,i
y2,i
...

ym,i



F⃗ (ti, y⃗i) =


f1 (ti, y1,i, y2,i, . . . , ym,i)
f2 (ti, y1,i, y2,i, . . . , ym,i)

...
fm (ti, y1,i, y2,i, . . . , ym,i)


In particular, when the ODE system is linear, then F⃗ (ti, y⃗i) can be expressed in the matrix
form.

• Modified Euler’s method: Recall that for ODE with m = 1, the formula is{
y∗ = yi + hf(ti, yi)

yi+1 = yi +
h
2 (f(ti, yi) + f(ti+1, y

∗))

or 
S1 = f(ti, yi)

S2 = f (ti+1, yi + hf(ti, yi))

yi+1 = yi +
h
2 (S1 + S2)

For the general system of ODEs, the formula of the modified Euler’s method is

y⃗∗ = y⃗i + hF⃗ (ti, y⃗i)

y⃗i+1 = y⃗i +
h

2

(
F⃗ (ti, y⃗i) + F⃗ (ti+1, y⃗

∗)
)

with the initial conditions y⃗0 = y⃗(t0).
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§19.1 Numerical Methods for Systems of ODEs (Cont’d)

Example 19.1

Consider {
dy1

dt = 2y1 − 3y2 + sin t+ 2e−t

dy2

dt = y1 + 2y2 + 3 cos t

with initial conditions {
y1(0) = 1

y2(0) = −2

1. First, let’s write down this IVP in a vector/matrix form.

y⃗ =

[
y1
y2

]
, A(t) =

[
2 −3
1 2

]
b⃗(t) =

[
sin t+ 2e−t

3 cos t

]
Then, this IVP is 

dy⃗
dt = A(t)y⃗ + b⃗(t)

y⃗(0) =

[
1

−2

]
Next, we apply numerical methods to solve this problem

• Euler’s method 
y⃗i+1 = y⃗i + h

([
2 −3
1 2

]
y⃗i +

[
sin(ti) + 2e−ti

3 cos(ti)

])

y⃗0 =

[
1

−2

]

with

y⃗i+1 =

[
y1,i+1

y2,i+1

]
, y⃗i =

[
y1,i
y2,i

]
• Modified Euler’s method

y⃗∗ = y⃗i + h

([
2 −3
1 2

]
y⃗i +

[
sin(ti) + 2e−ti

3 cos(ti)

])

y⃗i+1 = y⃗i +
h
2

([
2 −3
1 2

]
y⃗i +

[
sin(ti) + 2e−ti

3 cos(ti)

])
+ h

2

([
2 −3
1 2

]
y⃗∗ +

[
sin(ti+1) + 2e−ti+1

3 cos(ti+1)

])

y⃗0 =

[
1

−2

]

with

y⃗i+1 =

[
y1,i+1

y2,i+1

]
, y⃗i =

[
y1,i
y2,i

]
, y⃗∗ =

[
y∗1
y∗2

]
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§19.2 Reduction of a Higher ODE to a First Order ODE
System

Consider pth order ODE of the form of

y(p) =
dpy

dtp
= f

(
t, y, y(1), y(2), . . . , y(p−1)

)
for t ∈ [t0, T ] with initial conditions

y(t0) = u1, y(1)(t0) = u2, . . . y(p−1)(t0) = up

Question 19.1. How can the pth order ODE be transformed into a first order ODE system?

Let v1 = y, v2 = y(1), v3 = y(2), . . . , vp = y(p−1)

dv1

dt = dy
dt = y(1) = v2

dv2

dt = dy1

dt = y(2) = v3
...
dvp−1

dt = dy(p−2)

dt = y(p−1) = vp
dvp

dt = dy(p−1)

dt = y(p) = f(t, v1, v2, . . . , vp)

Therefore, the original ODE can be written as a system of first order ODEs

dv1
dt = v2
dv2
dt = v3
...
dvp−1

dt = vp
dvp
dt = f (t, v1, v2, . . . , vp)

(*)

with the initial conditions

v1(t0) = u1, v2(t0) = u2, . . . vp(t0) = up

Let

v⃗(t) =


v1(t)
v2(t)
...

vp(t)

 so v⃗(t0) =


u1

u2

...
up


But initially we wanted to solve the pth order ODE numerically. How do we find it? Our goal is to
use numerical methods to compute a vector sequence v⃗0, v⃗1, . . . , v⃗N , a numerical solution to estimate
the analytic solution v⃗(t0), v⃗(t1), . . . , v⃗(tN ) of the ODE system. Then, v⃗0(1), v⃗1(1), . . . , v⃗N (1), the
first components of the numerical solution are the numerical estimates of y(t0), y(t1), . . . , y(tN ), the
solution of the original pth order ODE.
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§20.1 Reduction of a Higher Order ODE (Cont’d)

Summary: In order to use the numerical methods to solve a p-th order ODE, first transform the
p-th order ODE into a first-order ODE system and write it a vector/matrix form.

v⃗ =


v1
v2
...
vp

 , v⃗0 =


u1

u2

...
up



F⃗ (t, v⃗) =


v2
v3
...
vp

f(t, v1, v2, . . . , vp)


So d

dt v⃗ = F⃗ (t, v⃗) with v⃗(t0) = v⃗0. Furthermore, if dv⃗
dt = F⃗ (t, v⃗) is linear, i.e., F⃗ (t, v⃗) is linear then

f(t, v1, . . . , vp) is linear and vice versa. In that case, f(t, v1, . . . , vp) = ap,1v1+ap,2v2+ . . .+ap,pvp+
bp(t). Thus, the first order ODE system is linear, then, it can be written as

d

dt
v⃗ =


0 1 0 0 . . . 0
0 0 1 0 . . . 0
...
0 0 0 0 . . . 1

ap,1 ap,2 ap,3 . . . ap,p




v1
v2
v3
...
vp

+


0
0
0
...

bp(t)



Example 20.1

Consider the following ODE
y(3) − 2y′ + y + cos t = 0

with y(0) = 1, y′(0) = −1, y′′(0) = 3.

Let v1 = y1, v2 = y′, v3 = y′′ and let v⃗ =

v1v2
v3

. Then, we have

y(3) = 2y′ − y − cos t

So

d

dt
v⃗ =

 v2
v3

2v2 − v1 − cos t


=

 0 1 0
0 0 1
−1 2 0

v1v2
v3

+

 0
0

− cos t



with the initial condition v⃗(0) =

 1
−1
3

.
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The process to solve a higher order IVP

1. Transform the higher-order IVP into a first order ODE system

2. Write the ODE in the vector/matrix form if the ODE system is linear.

3. Use numerical methods to solve the system (Euler’s, modified Euler’s, RK, etc.)

4. The output of methods are a sequence of vectors v⃗0, v⃗1, . . . , v⃗N . If they are saved in the matrix
form such as

v =
[
v⃗0 v⃗1 . . . v⃗N

]
=


u1 v1,1 v1,2 . . . v1,N
u2 v2,1 v2,2 . . . v2,N
...

...
...

. . .
...

up up,1 up,2 . . . up,N


§20.2 Boundary Value Problem for ODEs

We will focus on the finite difference method (FDM) for the 2nd order BVP.

Example 20.2

The second order ODE with two points boundary value problems has the ODE

d2y

dx2
+ f(x, y, y′) = 0

with the boundary conditions at two boundary points x = a and x = b.

Example 20.3

Typical boundary conditions

1. Dirichlet boundary conditions

y(a) = ya and y(b) = yb

2. Neumann boundary conditions

dy

dx
(a) = α and

dy

dx
(b) = β

3. Robin (or mixed) boundary conditions{
a1y(a) + b1

dy
dx (a) = g1(a)

a2y(b) + b2
dy
dx (b) = g2(b)
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§21 Lec 21: Mar 3, 2022

§21.1 Finite Difference Method for BVP

The FDM for a simple 2nd order ODE of the form of d2y
dx2 = f(x) with the Dirichlet boundary

condition
y(a) = ya and y(b) = yb

Step 1: We discretize the domain [a, b] into N # of subintervals with endpoints x0, x1, . . . , xN

where xi = a+ bh where h = b−a
N . Let yi be the numerical solution to approximate y(xi), the exact

solution at xi for i = 0, 1, . . . , N .
Step 2: First, note that x0 = a and xN = b and from the boundary conditions. y(x) should
satisfy these conditions at the boundary points x0 = a, xN = b. For x1, x2, . . . , xN−1, they are

the interior points of the domain [a, b] and they need to satisfy the ODE, so d2y
dx2

∣∣
x=xi

= f(xi)
for i = 1, 2, . . . , N − 1. We want to generate a sequence by numerical methods that satisfies

“approximately” the equation d2y
dx2

∣∣
x=xi

= f(xi). Thus, we need to find a numerical quantity

approximating d2y
dx2

∣∣
x=xi

, the second derivative centered difference formula. The idea is as follows

dy

dx

∣∣∣
xi− 1

2

≈ yi − yi−1

h

dy

dx

∣∣∣
xi+

1
2

≈ yi+1 − yi
h

So,

d2y

dx2

∣∣∣
x=xi

≈

dy
dx

∣∣∣
xi+

1
2

− dy
dx

∣∣∣
xi− 1

2

h

≈
yi+1−yi

h − yi−yi−1

h

h

=
yi+1 − 2yi + yi−1

h2

Thus, we have
yi+1 − 2yi + yi−1

h2
= f(xi) for i = 1, 2, . . . , N − 1

Step 3: We will rewrite above equation in a vector/matrix form

i = 1 =⇒ y2 − 2y1 + y0
h2

= f(x1)

=⇒ y2 − 2y1
h2

= f(x1)−
y0
h2

= f(x1)−
ya
h2

i = 2 =⇒ y3 − 2y2 + y1
h2

= f(x2)

...

i = N − 2 =⇒ yN−1 − 2yN−2 + yN−3

h2
= f(xN−2)

i = N − 1 =⇒ yN − 2yN−1 + yN−2

h2
= f(xN−1)

=⇒ 1

h2
(−2yN−1 + yN−2) = f(xN−1)−

yN
h2

= f(xN−1)−
yb
h2
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Now we are ready to write these equations in the matrix equation form

1

h2



−2 1 0 0 . . . 0
1 −2 1 0 . . . 0
0 1 −2 1 . . . 0
...
0 0 0 . . . 1 −2 1
0 0 0 . . . 0 1 −2




y1
y2
...

yN−2

yN−1

 =


f(x1)− ya

h2

f(x2)
...

f(xN−2)
f(xN−1)− yb

h2


Therefore, to solve the Dirichlet problem of the form of d2y

dx2 = f(x) numerically, solve Ay⃗ = f⃗B.

One can check A is invertible, so y⃗ = A−1f⃗B . We can use FDM to solve the BVP in a more general
form. {

d2y
dx2 + p(x) dydx + q(x)y = f(x)

y(a) = ya, y(b) = yb

We can use the centered difference formula to approximate d2y
dx2

∣∣
xi

as before, yi+1−yi−1

2h to approximate
dy
dx

∣∣
xi
, i.e., 

d2y
dx2

∣∣∣
xi

≈ yi+1−2yi+yi−1

h2

dy
dx

∣∣∣
xi

≈ yi+1−yi−1

2h

y(xi) ≈ yi
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§22.1 Finite Difference Method for BVP (Cont’d)

After plugging them into the ODE, d2y
dx2 + p(x) dydx + q(x)y = f(x), we have

yi+1 − 2yi + yi−1

h2
+ p(xi)

yi+1 − yi−1

2h
+ q(xi)yi = f(xi)

for i = 1, 2, . . . , N − 1.

i = 1 =⇒ y2 − 2y1 + y0
h2

+ p(x1)
y2 − y0

2h
+ q(x1)y1 = f(x1)

=⇒ y2 − 2y1
h2

+
p(x1)

2h
y2 + q(x1)y1 = f(x1)−

ya
h2

+
p(x1)

2h
ya

i = 2 =⇒ y3 − 2y2 + y1
h2

+ p(x2)
y3 − y1

2h
+ q(x2)y2 = f(x2)

...

i = N − 2 =⇒ yN−1 − 2yN−2 + yN−3

h2
+ p(xN−2)

yN−1 − yN−3

2h
+ q(xN−2)yN−2 = f(xN−2)

i = N − 1 =⇒ yN − 2yN−1 + yN−2

h2
+ p(xN−1)

yN − yN−2

2h
+ q(xN−1)yN−1 = f(xN−1)

=⇒ −2yN−1 + yN−2

h2
− p(xN−1)

2h
yN−2 + q(xN−1)yN−1 = f(xN−1)−

yb
h2
− p(xN−1)

2h
yb

Matlab code for solving BVP using FDM:

1. Specify boundary conditions a, b, ya, yb and the step size h

2. Construct f⃗B and A

3. Solve for y⃗ using y⃗ = A \ f⃗B

§22.2 Vector Norms

Definition 22.1 (Vector Norm) — A vector norm for a vector v⃗ in Rm will be denoted by ∥v⃗∥
is a function from v⃗ ∈ Rm → R s.t.

i) ∥v⃗∥ ≥ 0 and ∥v⃗∥ = 0 ⇐⇒ v⃗ = 0⃗.

ii) ∥αv⃗∥ = |α|∥v⃗∥ for each α ∈ R, v⃗ ∈ Rm

iii) ∥u⃗+ v⃗∥ ≤ ∥u⃗∥+ ∥v⃗∥ for each u⃗, v⃗ ∈ Rm.

The norm of v⃗ is a measure of the “size/generalized length” of v⃗. Thus, ∥u⃗− v⃗∥ is a measure of the
distance between u⃗ and v⃗. There are many different vector norms

1. 1-norm (l1 norm): ∥v⃗∥1 =
∑m

i=1 |vi|

2. 2-norm (l2 norm): ∥v⃗∥2 =
√∑m

i=1 |vi|2

3. ∞-norm (l∞ norm): ∥v⃗∥∞ = max1≤i≤m |vi|

Generalization of l1, l2 norm

lp norm: ∥v⃗∥p =

(
m∑
i=1

|vi|p
) 1

p

Relation between vector norms for v⃗ ∈ Rm
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1. ∥v⃗∥∞ ≤ ∥v⃗∥1 ≤ m · ∥v⃗∥∞

2. ∥v⃗∥∞ ≤ ∥v⃗∥2 ≤
√
m∥v⃗∥∞

3. 1√
m
∥v⃗∥1 ≤ ∥v⃗∥2 ≤ ∥v⃗∥1

This means that all three norms ∥ · ∥1, ∥ · ∥2, ∥ · ∥∞ are all equivalent (up to at most constant m).

§22.3 Matrix Norms

Definition 22.2 (Matrix Norm) — Suppose that A,B are square m×m matrices. A matrix
norm of A, denoted by ∥A∥, is a scalar valued function satisfying the following properties:

i) ∥A∥ ≥ 0 and ∥A∥ = 0 ⇐⇒ A = 0

ii) ∥αA∥ = |α|∥A∥ for each α ∈ R, A ∈ Rm×m

iii) ∥A+B∥ ≤ ∥A∥+ ∥B∥ for each A,B ∈ Rm×m

iv) ∥AB∥ ≤ ∥A∥∥B∥

Given a vector norm, a matrix norm can be obtained by defining

∥A∥ = max
∥v⃗∥=1

∥Av⃗∥

This norm is sometimes called an operator norm or induced matrix norm associated with a vector
norm. Note that it depends on what vector norm we are in the definition.
Property of an operator norm:

For any v⃗, matrix A, and an operator norm, we have

∥Av⃗∥ ≤ ∥A∥∥v⃗∥
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Example 22.3

Consider these examples associated with vector norms ∥ · ∥1, ∥ · ∥2, ∥ · ∥∞ respectively.

1. l1-norm

∥A∥1 = max
∥v⃗∥1=1

∥Av⃗∥1

= max
j

m∑
i=1

|aij | (maximum column sum)

Example

A =

 1 −2 −5
−3 6 0
2 −3 5


∥A∥1 = max {1 + 3 + 2, 2 + 6 + 3, 5 + 0 + 5} = 11

2. l∞ norm

∥A∥∞ = max
∥v⃗∥∞=1

∥Av⃗∥∞

= max
i

m∑
j=1

|aij | (maximum row sum)

Example

A =

 1 −2 −5
−3 6 0
2 −3 5


∥A∥∞ = max {1 + 2 + 5, 3 + 6 + 0, 2 + 3 + 5} = 10

3. l2-norm

∥A∥2 = max
∥v⃗∥2=1

∥Av⃗∥2

=
√

λmax (A⊤A)

= Smax(A) (maximum singular value of A)

This is also called the spectral norm.

§22.4 Error Bound of FDM

Consider the BVP {
d2y
dx2 = f(x)

y(a) = ya, y(b) = yb
(*)

Mesh points of FDM are

xi = a+ ih for i = 1, . . . , N − 1, h =
b− a

N

1. First write down errors at xi, ei = y(xi) − yi for i = 1, . . . , N − 1 where y(xi) is the exact
solution at xi and yi is the numerical estimate for y(xi). If we write down these in the vector
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form,

e⃗ = y⃗exact − y⃗est

=


y(x1)
y(x2)

...
y(xN−1)

−


y1
y2
...

yN−1

 =


e1
e2
...

eN−1


2. Our goal is to find an error bound for e⃗ : ∥e⃗∥ ≤ Chp (C > 0 constant, p > 0) and identify

how large p is (order of accuracy). Recall that the numerical estimate y⃗ using FDM can be
obtained by solving

Ay⃗est = f⃗B

Let τ⃗ := Ay⃗exact −Ay⃗est. Then

τ⃗ = A (y⃗exact − y⃗est)

= Ae⃗

e⃗ = A−1τ⃗

So, if ∥τ⃗∥ ≤ Cτh
p for some Cτ > 0, p > 0 then

∥e⃗∥ = ∥A−1τ⃗∥
≤ ∥A−1∥∥τ⃗∥ (**)

≤ Cτ∥A−1∥hp

We need a bound for τ⃗ , which will be our next step.

3. Since τ⃗ = Ay⃗exact −Ay⃗est =
[
τ1 τ2 . . . τN−1

]⊤
and

A =
1

h2



−2 1 0 0 . . . 0
1 −2 1 0 . . . 0
0 1 −2 1 . . . 0
...
0 0 0 . . . 1 −2 1
0 0 0 . . . 0 1 −2


Then

τi =
y(xi+1)− 2y(xi) + y(xi−1)

h2
− yi+1 − 2yi + yi−1

h2

≈ y(xi+1)− 2y(xi) + y(xi−1)

h2
− f(xi) (+)

Here this approximation step follows from d2y
dx2

∣∣
xi

= f(xi) from the ODE and d2y
dx2

∣∣
xi
≈

yi+1−2yi+yi−1

h2 from the centered difference formula. Now, we use the Taylor series expansions
at y(xi+1) = y(xi + h) and y(xi−1) = y(xi − h) at x = xi. By plugging these expansion into
(+) and using y′′(xi) = f(xi) we have

τi =
h2

12

d4y(xi)

dx4
+O(h4)

So if d4y
dx4 is continuous, then d4y

dx4 is bounded or [a, b] =⇒ |τi| ≤ Cih
2 =⇒ ∥τ⃗∥ ≤ Cτh

2 for
some Cτ .
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§23.1 Error Bound of FDM (Cont’d)

4. Going back to (**) in 2) (from last lecture)

∥e⃗∥ ≤ ∥A−1∥∥τ⃗∥

Also, ∥A−1∥ is bound, i.e., ∥A−1∥ ≤ CA for some constant CA > 0. Thus, when we use FDM

using the centered approximation formula for d2y
dx2 , we have ∥τ⃗∥ ≤ Cτh

2

=⇒ ∥e⃗∥ ≤ CACτh
2 = Ch2

with C = CACτ .

Remark 23.1. If we use a pth order difference formula to approximate derivatives,

∥τ⃗∥ ≤ Cτh
p =⇒ ∥e⃗∥ ≤ Chp

§23.2 Iterative Methods for Solving Linear Systems

Motivation: Recall that we need to solve a linear system Ax⃗ = b⃗ in FDM for BVPs. The direct
methods based on computing A−1 or apply Gaussian elimination require a lot of computations if the
matrix size is big (e.g., for an n× n matrix A, Gaussian Elimination requires Ω(n3) of operations).
There are iterative methods for showing large-scale linear systems more efficiently.

• Idea of iterative methods:

Transform Ax⃗ = b⃗ into a simpler systems, for example into Dx̃ = b̃ where D is diagonal
matrix or of special structure so that Dx̃ = b̃ can be easily solved.

• Procedure of iterative methods:

i) Start with initial guess x⃗(0) of the solution

ii) Use some process depending onA, b⃗ and approximates at k steps x⃗(k), x⃗(k−1), . . . , x⃗(1), x⃗(0)

to create a sequence of approximates x⃗(k+1)

iii) Our goal is x⃗(k) → x⃗ as k →∞.
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§23.3 Jacobi’s Method

Let a linear system, Ax⃗ = b⃗ where A ∈ Rn×n and x⃗, b⃗ ∈ Rn given as follows
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
an1 an2 . . . ann



x1

x2

...
xn

 =


b1
b2
...
bn



a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2
...

an1x1 + an2x2 + . . .+ annxn = bn

=⇒


a11x1 = b1 − (a12x2 + . . .+ a1nxn)

a22x2 = b2 − (a21x1 + a23x3 + . . .+ a2nxn)
...

annxn = bn − (an1x1 + an2x2 + . . .+ ann−1xn−1)

These equations motivate us the following procedure

x
(k)
1 =

1

a11

(
b1 −

(
a12x

(k−1)
2 + . . .+ a1nx

(k−1)
n

))
x
(k)
2 =

1

a22

(
b2 −

(
a21x

(k−1)
1 + a23x

(k−1)
3 + . . .+ a2nx

(k−1)
n

))
...

x(k)
n =

1

ann

(
bn −

(
an1x

(k−1)
1 + an2x

(k−2)
2 + . . .+ ann−1x

(k−1)
n−1

))
Let’s set

D =


a11 0

a22
. . .

0 ann



L =


0 0
a21 0

0
...

. . .
. . .

an1 . . . ann−1 0

 ,U =


0 a12 . . . a1n

0 . . . a2n
. . . an−1n

0 0


then the iterative formula for the Jacobi’s method is

Dx⃗(k) = b⃗− (L+U) x⃗(k−1)

x⃗(k) = D−1⃗b−D−1 (L+U) x⃗(k−1)

Note that in order to apply the Jacobi’s method, it requires D to be invertible, so all the diagonal
entries of A need to be nonzero.
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§24 Lec 24: Mar 11, 2022

§24.1 Gauss-Seidel Method

Idea: Similar to the Jacobi’s method, but when we create x
(k)
i , we use the updated values

x
(k)
1 , . . . , x

(k)
i−1 instead of using x

(k−1)
1 , . . . , x

(k−1)
i−1 . Thus, we need the following equations at time

step k. 
a11x

(k)
1 + a12x

(k−1)
2 + . . .+ a1nx

(k−1)
n = b1

a21x
(k)
1 + a22x

(k)
2 + . . .+ a2nx

(k−1)
n = b2

...

an1x
(k)
1 + an2x

(k)
2 + . . .+ annx

(k)
n = bn

Note that A = D+L+U where D is the diagonal matrix, L is the strictly lower triangular matrix,
and U is the strictly upper triangular matrix. The Gauss-Seidel method can be written as

(D+ L)x⃗(k) +Ux⃗(k−1) = b⃗

(D+ L)x⃗(k) = b⃗−Ux⃗(k−1)

=⇒ x⃗(k) = (D+ L)−1
(⃗
b−Ux⃗(k−1)

)
Again, note that in order for D+L to be invertible, all the diagonal entries of A need to be nonzero.

§24.2 Stopping Criteria

One of the important questions in practice is when to stop the iterative process. Since we cannot
run the process forever, we need to figure out the conditions when the estimates are satisfactory.
Let ε be the desired accuracy (tolerance value).

1. Bound on the residual: Let r⃗(k) = b⃗−Ax⃗(k) be the residual at k-th step, then the iteration
stops when ∥r⃗(k)∥ ≤ ε. Note that r⃗(k) = A

(
x⃗− x⃗(k)

)
= Ae⃗(k). So ∥e⃗(k)∥ ≤ ∥A−1r⃗(k)∥ ≤

∥A−1∥∥r⃗(k)∥. If ∥A−1∥ is small and ∥r⃗(k)∥ is small, then ∥e⃗(k)∥ is small. But if ∥A−1∥ is very
large, we cannot say ∥e⃗(k)∥ is small even if ∥r⃗(k)∥ is small.

2. Instead of using the absolute error ∥e⃗(k)∥, the relative error ∥e⃗(k)∥
∥x⃗exact∥ is more commonly used.

∥e⃗(k)∥ ≤ ∥A−1∥∥r⃗(k)∥
∥e⃗(k)∥
∥⃗b∥

≤ ∥A
−1∥∥r⃗(k)∥
∥⃗b∥

Since b⃗ = Ax⃗exact, then

∥⃗b∥ = ∥Ax⃗exact∥ ≤ ∥A∥∥x⃗exact∥
1

∥⃗b∥
≥ 1

∥A∥
1

∥x⃗exact∥

∥e⃗(k)∥
∥⃗b∥

≥ ∥e⃗(k)∥
∥A∥∥x⃗exact∥

∥e⃗(k)∥
∥x⃗exact∥

≤ ∥A∥∥e⃗
(k)∥
∥⃗b∥

≤ ∥A∥∥A−1∥∥r⃗
(k)∥
∥⃗b∥
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Note that the condition number of a matrix A is usually denoted by κ(A) = ∥A∥∥A−1∥. For
different norms, we have different conditions numbers

• κ1(A) = ∥A∥1∥A−1∥1

• κ2(A) = ∥A∥2∥A−1∥2

• κ3(A) = ∥A∥∞∥A−1∥∞

Also note that

κ(A) = ∥A∥∥A−1∥
≥ ∥AA−1∥ = ∥I∥ = 1

Definition 24.1 (Well/Ill-Conditioned Matrix) — If κ(A) is not too large, then we say that
matrix A is well-conditioned. Otherwise, the matrix A is ill-conditioned.

• If A is well-conditioned, ∥r⃗(k)∥
∥⃗b∥

being small, then the relative error ∥e⃗(k)∥
∥x⃗exact∥ is small.

• If A is ill-conditioned, ∥r⃗(k)∥
∥⃗b∥

being small doesn’t guarantee that ∥e⃗(k)∥
∥x⃗exact∥ is small.

3. For simplicity, let’s assume ∥x⃗exact∥ = 1 from now on. Stop the iterative process to run until
∥x⃗(k) − x⃗(k−1)∥ ≤ ε. We’ll see that under what conditions small ∥x⃗(k) − x⃗(k−1)∥ implies that
∥e⃗(k)∥ is small.

Consider an iterative method of the form x⃗(k) = Tx⃗(k−1) + g⃗ . . . . . . (1).

• For the Jacobi’s method
T = −D−1(L+D), g⃗ = D−1⃗b

• For Gauss-Seidel,
T = −(D+ L)−1U, g⃗ = (D+ L)−1⃗b

Note that x⃗exact = Tx⃗exact + g⃗ . . . (2). Let (1)− (2)

x⃗(k) − x⃗exact = T
(
x⃗(k−1) − x⃗exact

)
= T

(
x⃗(k−1) − x⃗(k) + x⃗(k) − x⃗exact

)
= T

(
x⃗(k−1) − x⃗(k)

)
+T

(
x⃗(k) − x⃗exact

)
(I−T)

(
x⃗(k) − x⃗exact

)
= T

(
x⃗(k−1) − x⃗(k)

)
Thus,

e⃗(k) = −(I−T)−1T
(
x⃗(k) − x⃗(k−1)

)
∥e⃗(k)∥ = ∥(I−T)−1T

(
x⃗(k) − x⃗(k−1)

)
∥

≤ ∥(I−T)−1T∥∥x⃗(k) − x⃗(k−1)∥

Thus, if ∥(I−T)−1T∥ is not too large, small ∥x⃗(k) − x⃗(k−1)∥ implies that ∥e⃗k∥ is small.
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