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This is math 151B — Applied Numerical Methods taught by Professor Jeong. We meet
weekly on MWF from 1:00 pm to 1:50 pm for lecture. The recommended textbook for the class
is Numerical Analysis 10" by Burden, Faires and Burden. Other course notes can be found at
my blog site. Please let me know through my email if you spot any typos in the note.
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§1 ‘ Lec 1: Jan 3, 2022

§1.1 Review of 151A
From math 151A, we learned
1. how to solve equations numerically
2. interpolating of fitting data points
3. how to numerically integrate
4. solving a system of linear equations
In 151B, we will focus on

1. Numerically methods for solving ordinary differential equations (ODEs) with either initial
conditions or boundary conditions

2. Iterative methods for solving linear systems
3. Least square approximation
4. Approximating eigenvalues
Question 1.1. Why are we studying numerical methods?

We are interested solving equations such as 4z +3 =5, 22 — 5z + 2 =0, e’ +* = 10sin x, AZ = b.
But only few of them can be solved exactly (the first two for example). Even for the class of
polynomial equations when the degree of polynomial greater than or equal to 5, we cannot solve
the equations algebraically in general but only numerically. Also for AZ = 5, we can solve it by
hand in principle, but if Z is high-dimensional, we have to solve it numerically.

Example 1.1

Consider % =t2y —5t2, y(0) =6

dy_z
o= (y—5)
Ld = 2dt
y—5""

1
—dy:/t2dt+c
Yy—95

1
In(y —5) = §t3 +C
y(t) = ei’ 15 y(0) =6

On the other hand, consider

d
d—:; = cos(z + %) + 32 + e~ 2

This is probably difficult or impossible to solve analytically.
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§ 2 ‘ Lec 2: Jan 5, 2022

§2.1 Review (Cont’d)

Example 2.1
Consider
9 = 3z + 22
=t
Let @ = {wl} Then
T2
@_: LJ;I _ _3ZL'1+:L‘2
dt % | —Z1 + X2
3 1] [m
o _—1 1 T
- (3 1] .
B S

This can be solved analytically but it has only two variables x1, 2. But what if we have more
than thousands? Only numerical methods are feasible? We'll see the numerical methods based
on discretization to find some approximation to ODEs with initial conditions.

First order DE with initial conditions

{i?z:f(tvy) (*)

y(to) =, t € [to, 7]

We will approximate the analytic solution y to (*) using a finite discrete set of points as follows. We
approximate y(t) at the grid (mesh) points to < t; <ty < ... <ty =T by y(to),y(t1),...,y(tN)-
Here the mesh points tg, ¢1, ...,y are obtained by dividing [t, T'] into N subintervals with endpoints
t;—1,t; for the interval [¢;_1,t;]. Note that the number of subintervals is N whereas the number of
mesh points is N + 1 not N. One natural way to mesh points is to use the uniform mesh points
h= % — t; =tg+ihfori=0,1,...,N. We will assume uniform mesh points unless stated
otherwise.

Goal: Construct yo, 41,2, - . -,yn by numerical methods to approximate y(to), y(¢t1),. ., y(tn), i.e.,

we want to have yo =~ y(to), y1 ~ y(t1), ..., yn = y(tn)

§2.2 Euler’s Method for IVP

(Definition 2.2 (Euler's Method) — Consider

y(to) =a, t€ [to,T]

The formula for Euler’s method is

Yit1 =Y + hf(ti,y;) fori=0,1,...,N —1
Yo = y(to) = @
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§3 ‘ Lec 3: Jan 7, 2022

§3.1 Euler’s Method (Cont’d)

Example 3.1

Consider the IVP
L—y—2+1, te[0,2]
y(0) = 0.5

First, let’s find the analytic solution to (*)

i) First we compute the homogeneous equation of the ODE in (*)

d d
72/_ <:>7y:

- dt
at 7

Yy
d
— /—y:/dtJrC
Yy
— lny=t+C
— y=Cé

ii) Now we go back to the original ODE in (*), % =y —1t2+1 = By the variation of
constant (parameter) the solution is of the form of

y(t) = C(t)e’

Then,

C'(t)et + C(t)et = C(t)e! — > +1
So

C(t) = /(—t2 +1)etdt + Cy
_ / (£ = 1)(e~tYdt + Cs

=(t?—1)e "t - /Qteft dt 4+ Cy

= —De ' +2te P+ 27+ Oy
=(t+1)2%e "+

Thus, y(t) = [(t +1)%¢~* + C1] e'. From the initial condition, y(0) = 0.5, we get

y(t) = (t+1)* = 0.5¢"
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84 ‘ Lec 4: Jan 10, 2022

§4.1 Euler’s Method (Cont’d)
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Example 4.1 (Cont’d from Lec 3)
Now, let’s apply the Euler’s method for N = 2, i.e., h = T5fe = 220 =1, So

to=0
ti=to+1-h=1
ty =2

From the initial condition, yo = y(to) = 0.5

y1 =yo + hf(to, o)
=yo + h(yo — 5 + 1)
= 05 100 (05 = 07 <= 1)
— 9
Yo =y1 + hf(t1,91)
=4

The values of analytic solution of mesh points tg, t1, t are

y(to) =05
y(t1) =4 —0.5¢e
=9 —0.5¢°

So, the absolute error is

e = |yi — y(t:)l
€eyg = 0

e; = 0.641

es = 1.306

WhenN:4,h:%,

€y =

er = 0.176
es = 0.391
es = 0.634

es = 0.868

When N = 6, we have h = %, we have

eg =0

e; = 0.080
es = 0.194
e3 = 0.283
eqs = 0.404
es = 0.531
eg = 654

From the errors in the example above, as h decreases, the errors seem to decrease as well.
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Question 4.1. What is the dependence of the error in terms of the step size h?

The error we saw |y; — y(t;)| is called the global truncation error and it turn out that we
need some theory of ODE to discuss this. There is another type of error, called local truncation
error.

1. This is easy to compute
2. The global truncation error can be bounded in the local truncation error under a certain
condition.
§4.2 Local Truncation Error Analysis

Local truncation error (LTE) measures the accuracy of the method at the specific step by assuming
that the values of the variables are exact.

[Yiv1r — y(tix1)| = lya + hf(ts, vi) — y(tiva)]
= |y(t;) + hf (ti,y(ti)) — y(tit1)]
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§5 ‘ Lec 5: Jan 12, 2022

§5.1 Local Truncation Error Analysis(Cont’d)
We denote the LTE for Euler’s method is
€iv1 = Y(tit1) = Yitr
=y(ti+1) — (y(t:) + hf(ti, y(t:))) (*)

We assume the analytic solution y(¢) has (n + 1)—th continuous derivatives to analyze e;;1. Thus,
y(t) has the Taylor series expansion (with remainder term) at ¢t = ¢;

y(tipr) = y(ti) + %  (ien — 1) + %%  (isa = ti) 4.+ %% (i — )"
n+1
i (n}rl)!jt"i/ ettt 1 T
2 n n+1
=y(t;) + % tih+ %% t,-h2 + ..+ %% . n (nil)!w 5e[ti,ti+1}hn+l

We replace y(t;+1) in (*) by the Taylor series expansion above.

eit1 = Y(tit1) — (y(t:) + hf (i, y(t:)))

2 n n+1
- %% tih2+.”+%% tihn+ﬁ% Ee[ti,ti+1]hn+l %)

Recall our assumption is that y(¢) has (n + 1)—th continuous derivatives. Thus, ‘fi%’, cee % are

all bounded on [tg, T]. Using this fact to (**)

|6i+1| < Clh2 + 02h3 + ...+ Cnhn+1
< Ch* (since h < 1)

We only need to assume that y(t) is smooth so that y” is continuous on [tg,T] where C =
maXiel(ty,T) ly" ()] /2.

Remark 5.1. Big-O notation: If |e;+1| < Ch™ where C' is some constant independent with h, then
eir1 = O(h™). So the LTE of Euler’s method, e; 1 satisfies e;41 = O(h2).

§5.2 Global Truncation Error

Recall that the global truncation error for Euler’s method is given by
eir1 = Y(tit1) = Yir1r = y(tiv1) — (i + f(ti, v:))
Yo = y(to)

To study the global truncation error further, we need to introduce the definite of Lipschitz condi-
tion/constant.

Definition 5.2 (Lipschitz Condition) — A function f(¢,y) is said to satisfy a Lipschitz condition
in y on aset D : [ty,T] x (—o0,00) with the Lipschitz constant L if for all y;,y2 € (—o0, c0)
and t € [tg, T] we have

|f(ty1) = f(t,y2)| < Llyr — 2

10
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Theorem 5.3
Suppose that f(¢,y) is continuous and g—g(t, y) is bounded by L on D : [ty,T] X (—o0, 00).
Then f(t,y) satisfies the Lipschitz condition with constant L.

11
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86 ‘ Lec 6: Jan 14, 2022

§6.1 Global Truncation Error (Cont’d)

/Theorem 6.1 A
Suppose that D = [tg, 7] X R and the function f(¢,y) satisfies
1. f(t,y) is continuous on D
2. f(t,y) satisfies the Lipschitz condition on D in the variable y
Then the IVP in the form .
& =1ty
y(to) = o
has a unique solution y(t) for ¢ € [to, T].
J
(- : : )
Theorem 6.2 (Global Truncation Error Bound for Euler's Method)
If
1. f(t,y) satisfies the Lipschitz condition in y on D = [to,T] X (—o0, 00) with Lipschitz
constant L.
2. [y'(t)] < M < oo for all t € [tg, T,
L(T—to) __ 1 Mh
N | < oE(T—t0) e T Ah
orgnfgv ly(t:) —vil <e leol + I B
N\ J

12
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§7‘ Lec 7: Jan 19, 2022

§7.1 Global Truncation Error (Cont’d)

Note that if |eg| = 0, we have
Y
| < .
Jeil < ( 2L )

I Remark 7.1. The global truncation error for Euler’s method is O(h).

§7.2 Relation Between LTE and GTE

Next, we will remark the relation between the local truncation and global truncation errors. Let 7;
be the local truncation error and e; denote the global truncation error.

Remark 7.2. We have

"
|Ti| < max\y | 'h2
e(T—to)-L

< =
leil < —5F

- max |y//| h

Although we cannot apply the bound on 7; to the bound of e; above, it turns out that

1
le;| < C (h max|n>

Local truncation error | Global truncation error

O(r?). 2" o), 5=t

Remark 7.3. An important message from above table that holds for global/local truncation errors
of other numerical methods: If we have a numerical method for IVPs whose local truncation error
satisfies |7;| < ChP*! or O(hP™1), then this method has a global truncation error |e;| < C - h* or
O(hP).

Question 7.1. What other methods for IVP has global error of O(h?) (pth order of accuracy)?

Consider the Taylor method of order p given as follows:

{y1+1y7+hT(p)(t77yl)a 1:075N71

Yo = y(to)
where
) f g W)
Tt yi) = f(tivi) + §f (ti,yi) +-.. + ) Pt yi)
Definition 7.4 (Order Accuracy) — A numerical method is called pth order accuracy method

if its global truncation error bound is |e;| < ChP or e; = O(h?) where C' is some constant
independent of h.

13
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We saw the Euler’s method has the global truncation error e; = O(h), so it is 1st order accuracy
method.

Question 7.2. Suppose we have a numerical method for IVP with a formula of the method, but
we don’t know its order accuracy. How can we determine it?

There are two cases:
1. The analytic solution y(t) is known.
2. The analytic solution y(t) is unknown.

Case 1: y(t) is given. Note that %’ = f(t,y). Let’s assume that f(¢,y) is smooth enough. Let the
formula of the method is given by ;11 = g(¢;, y;) for some function g.

i) Compute the local truncation error 7;11(h) = y(tiy1) — Ji+1, where i1 = g(t;, y(t:)).

ii) Use the Taylor series expansion for y(t;11) at y(¢;) along with the fact that % = f(t,y).

Then, apply the similar argument used for the local truncation error for the Euler’s method.

iii) If the exponent of h of the leading term of 7;41(h) is p+ 1 (i.e., the smallest exponent of h is

Tir1(h)),
ITir1(h)| < ChPH!

By the remark about LTE and GTE, the accuracy of the method is p.

14
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§8 ‘ Lec 8: Jan 21, 2022

§8.1 Relation Between LTE and GTE (Cont’d)

Case 2: y(t) is not given. First we assume that the method is at least p-th order accuracy method
for p > 1 but the value of p is not known.
Recall the global truncation error for the p-th order method

. p
Jhax lei] < Coleo| + Crih

and if eg = 0, maxo<;<n |e;| < C1h?

Definition 8.1 (Convergent Method) — If limj,_,o maxo<;<n |e;| = 0, then the given method
is convergent.

Then, let’s observe how the error changes if step size h is decreases by half as below.

Step size | 1st order | 2nd order | pth order
h O(h) O(h?) O(hP)
Lol ol | o(®) | o)

Note that if the step size h is decreased by a factor of 2, then the ratio of the global truncation
error bound is improved by a factor of 27:

1st order: 2 — 9
e 1st order o(%)
e 2nd order: O(h?) =22
o(%)
O(h?) _ op

e pth order: o(%)

2P

This gives some idea about how to estimate the order of accuracy for a numerical method empiri-
cally.

~

Theorem 8.2 (Asymptotic Error Estimation — Aitken’s Estimation)

For Euler’s method: assume that y(t) is 3-times continuously differentiable and %5, %é

are continuous and bounded on D = [tp,T] x R. Then there exists D(¢) s.t. y(t;) —y; =
D(t;)h + O(h?). Specifically, consider t; = T, then
y(T) — g = Dh+ O(h?)

where gy, := yn is the estimate of y(T") by Euler’s method with step size h. Then

=
|
<,

[Vl
N}
IR VB

|

As h — 0,

<
>

I
<

—~
N[ =
I
—_
~—
I
\}

NS MRS

—
=
\
o=
S—

<
[N
I

<
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Note that to identify p in 2P, we can take
log2?  plog2
~ log2 -P

log 2

Therefore,
The Aitken’s estimation can be generalized to general order p accuracy methods. For a general pth

Thus, the order of accuracy of Euler’s method is 1.
order method, it has the asymptotic error bound in this form
y(T) = Gin = Dh? + O(hP*)

where D is some constant independent of A. Thus, we have
Ynh — Ynr _op

ISEIN N

lim — —
h—0 y% -y

16
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§9.1 Relation between LTE and GTE (Cont’d)
Recall

. Yh—Uh
log op 11mh_>0 IOg Yn _QQIL

log 2 log 2

Note that to obtain the exact value of p, we need to let A — 0. In practice, we have estimate with
some step size h > 0. When h is not small enough, the estimate for p may not be reliable. Typically,
the smaller h is the better estimate for p is. For example, let py, p2, p3 are the estimates for p with
. h h
step sizes h, 3, 7-
Ip—p3| < [p—p2| < |p—p1

§9.2 An Overview

First, let’s take a look at the table of classification of numerical methods.

Explicit methods Implicit methods
Yit1 = & (Yi, Yi—1,- - Y0) Yit1 = & (Yit1, Yir Yi-1,- -+ Yo)
o Do not need to solve an equation to find y;+1 | o Need to solve an equation to find y;41
o Fast o Slow
o Less stable o More stable
o For non-stiff differential equations o For stiff problems

For example, recall the formula of Euler’s method
Yir1r = Yi + hf (ti, vi)

Euler’s method is an explicit method. Next, we will take a look at the classification of numerical
methods for IVP

1-step method Multi-step methods
yi+1 is only based on y; | If y;11 is based on y;,y;—1 (2-step method)
or Yi, Yi—1, Yi—2 (3-step method)

Or Yiy ..y Yit1—m (m-step method)

I Remark 9.1. Euler’s method is 1-step method.

Explicit Implicit
1. Euler (1-step) 1. Backward Euler (1-step)
2. Runge-Kutta 2. Trapezoidal Method (Cronk-Nicolson method)
3. Adam-Bashforth (multi-step) 3. Adams-Moulton (multi-step)

§9.3 Runge-Kutta Method
Recall the Taylor’s method of order p

Yir1 =y +h-TP(t;,y:), i=0,...,N—1
Yo = y(to)

17
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where
2 hpfl

h
T (t;,y:) = f(tiys) + ?f/(fi, yi) +..+ ,f(pfl)(ti,yi)

(p—1)
Although the Taylor method provides higher order of accuracy, it is computationally heavy since it
requires to compute high order derivatives of f(t,y). Thus, Runge-Kutta method is computationally
cheap and also have high order of accuracy.

18
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§10.1 Runge-Kutta Method (Cont’d)
2-stage Runge-Kutta method: Recall the Euler’s method

Yk+1 = Y + hf (trs yr)
Yo = y(to)

Here, we have used f(x,yx) as the estimation of the slope %‘tk. For Runge-Kutta method,
1. We use a better estimate of slope rather than using f(tx, yx)
2. Then use it to compute Y41

There are several versions of 2-stage Runge-Kutta method

i) Midpoint method
Y =k + 2 f (te, yk)
k1 =Yk +hf (t+ 5, 97)
Yo = y(to)
First, note that y* =y, + 2 f (¢4, yx) is the formula of Euler’s method at ¢, but with step size
4. So, for the midpoint method at (ty,yx) with step size h, we use the Euler’s method to find
the estimate y* for y (tk + %) =y (%) Then, using the estimate y* to compute f at

ttt Lo )
%, which is used to estimate ygy1.

ii) Modified Euler’s method
St = f(tk: yw)
Sy = f (trs1, Y + hS1)
Yip1 = Y + h - 5552
Yo = y(to)
iii) Generalized Runge-Kutta method
St = f(tk yr)
Sy = f (tk + ah,yx + ahSy)
yk+1:yk+h(5151+5252)7 k:07177N_]-
Yo = y(to)
with « € [0, 1] and B + B = 1.

It is easy to see that the midpoint method is a special case of the generalized Runge-Kutta method
with a = %, B1 =0, By = 1. Similarly, the modified Euler’s method is a special case of the generalized
Runge-Kutta method with a =1, 51 = 83 = %

Now, we will consider a simpler type of IVP with autonomous ODE

W =fy)
Yo = y(t())v te [OvT}

e The local truncation error analysis is much simpler for autonomous case but it still contains
of the main idea of analysis of LTE for nonautonomous case.

e The relation between LTE and GTE still holds. If |7;| = O(hPT1), then |e;| = O(hP).

19
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We will start with LTE analysis for the midpoint method. Recall

Y =kt 2 f (t,yk)
Yrt1 =y + hf (tk + %, y7)
Yo = y(to)

SO, Y1 =Yk + hf (b + %, ye + 2 f(te, ur))-

1. Since we assumed the autonomous ODE;,
h
Yirr =Yi +hf (yi + Ef(tiayi)
Then, the LTE

Tiv1 = Y(tiv1) — Yir

h
= y(t0) — [ott) + 0F (e + 51 yte) )
2. Next, we apply the Taylor series expansion on y(t;+1) at t = ¢;.

1 1
y(tirr) = y(ts) +y () + 59" (t)R* + gy (t)h* + .
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§11 ‘ Lec 11: Jan 28, 2022

§11.1 Runge-Kutta Method (Cont’d)

3. We will consider the Taylor series expansion for f (y(t;) + 2 f(y(t;))). Note that the Taylor
series expansion for f(a + b) at a is given by

d 1 2 1d3
fla+b) = f(a)+d—]; b+ 5% Bt gﬁf‘abu...
So
h d h 1 d? h 2
(v + 50000 ) =0 + | S+ 5 5h] - (Grae)
1d3f h 3
31 dy? lyen) <2f(y(ti))) +..
4. Using the results 1), 2), and 3)
Tip1 =y (ti)h + %y”(u)h2 + %y@(ti)h‘”’ +..
df h 1 d%f h 2
—h [ﬂy(ti)) s 2| S+ 5] (Gwen) +

After some manipulation, we obtain
ris1 = | g 00 £ 0060 + 12 0(09) £ (0] 2+ O

5. By our assumption, since f is smooth enough so that f, f,, fyy, fyyy are continuous on [¢, T
and [tg, T'] is bounded and closed. So,
Tipa| <C- 1P

ie., 741 = O(h?). Therefore, ;11 = O(h?)

= max |e| < Csyh?
0<i<N

and the global truncation error of the midpoint method is O(h?).

Exercise 11.1. Analyze the modified Euler’s method and the generalized 2-stage Runge-Kutta
methods (which are similar to the analysis of the midpoint method above).

21



Duc Vu (Winter 2022) 12 Lec 12: Jan 31, 2022

§12 ‘ Lec 12: Jan 31, 2022

§12.1 Runge-Kutta Method (Cont’d)

Nonautonomous case:

Yo = y(to), t € [to,T]

From the formula of the midpoint method

{(f# :f(t7y)

h h
Yirr = Yi + hf <ti + 50 i + 2f(tiayi)>

So the LTE is

Tir1 = Y(tiv1) — Yit1

= y(t0) — [olt) 0 (14 5,

oot + 5 (13 |

Again, the LTE analysis for the nonautonomous case is similar to the autonomous case, except
we need to apply the Taylor series expansion with 2 variables. Then, 7,1 = O(h?), so the global
truncation error is O(h?).

§12.2 High-order Runge-Kutta Method

The order of accuracy can be improved by constructing a better estimate g(t;,y;) for the slope
f(t,y) in the iteration step y;+1 = y; + hg(ti,y;). This can be done by considering more careful
linear combinations of f (¢; + ch17).

The most popular high-order RK method is classical RK4 (4-stage RK). For nonautonomous case
DE, the formula is given by

Sy = f(ti,yi)

Sy =f(ti+ 5,9+ 551)
Ss=f(ti+ 5, u:i + 552)

Sy = f(tix1,y: +hSs)

Yir1 = Yi + % (S1 + 255 + 255 + S4)
yozy(to)7 i:O,...,N—l

For autonomous DE, the formula is

S1 = f(vi)

So = f (yi + 251)

Ss = f (yi + 252)

Sa = f(yi + hS3)

Yir1 = Yi + 2 (S1+ 25 + 255 + Sy)
yo=y(to), i=0,...,N—1

The local truncation error 7;(h) of RK4 is O(h®), so RK4 is 4th order method (when y(t) is 5-times
differentiable), i.e.,

max |6i| S Cl |€0| —|—02h4

0<i<N ~—~

=0
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General s-stage explicit RK method for nonautonomous DE is

Sy = f(ti,ys)
So=f (ti + coh,yi + agthl)
Ss = f (t; + csh,y; + az1hS1 + az2hSs)

So = f (ti+ eohyi+ Y57 a8, )
Yit1 :yi+h(2;zlﬁj5j), 1=0,...,.N—1
Yo = y(to)

where ¢, = 377 ag;j and 335, B = 1.
These parameters can be represented in “Butcher table”.

C1 11 (12 . A1
Co | Qxg1 Qg2 ... Q24
Cs Qg1 Qg2 e Qgg

1] B B ... Bs
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§13 ‘ Lec 13: Feb 1, 2022

§13.1 High-order Runge-Kutta Method (Cont’d)
Recall the formula of the midpoint method (RK2)

y* =Yk + gf(tlmyk?) Sl = f(tkrayk)
Ykr1 =Yk +hf (e +5,9%) = {S2=f(te+ 5y + 551)
Yo = y(to) Ye+1 = Y + hS2

So, the corresponding Butcher’s table

010 O
-1 [ I n
2135 0
170 1

The Butcher’s table for classical RK4

0jlo 0o 0 o0
1 | 1

L1 9090 0
i5100
2 2

110 0 1 0
R
6 3 3 6

Question 13.1. How do we choose the parameters in a general s-stage method?

One is typically interested in achieving high-order of accuracy. To do that we can choose the
parameters ay;, 8; so that it makes the order of LTE as high as possible by making the exponent of
the leading term in LTE as high as possible.

The classical RK4 method has become one of the most popular numerical methods.

e Reasonably high accuracy: 4th order
e Still easy to implement

e No 5-stage RK method exists that provides 5th order of accuracy. There are RK methods
with order of accuracy higher than 4, but they require more than 5-stages (more complicated
and expensive to compute)

Summary of RK methods:
1. Any s-stage explicit RK method cannot have order greater than s
lei(h)| ~ O(h?)
for some p < s.

2. There exists no 5-stage explicit RK method with order 5. More precisely, see the following
table
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§13.2 Stability of Numerical Methods

We have seen that the error bounds of a numerical method depends on the step size h. In practice,
we typically have a desired error and choose the step size h accordingly. The order of accuracy,
say O(hP), gives a rough idea about how to choose the step size h, but usually this is not enough:
In O(hP), there are hidden dependence on other parameters such as Lipschitz constant L or T.
Absolute stability provides more precise information to determine the step size h.

First, let’s start with recalling the error bound of Euler’s method

L(T=to)  Afh
N | < oL(T—t0) e . an
Jnax ly(ti) —yil <e leol + — 5

Let’s motivate the importance of choosing the step size h.

Example 13.1

Consider

d
ar =M
y(to) = %o

We will see the step size requirements to solve above IVP for Euler’s method, the midpoint
method, and Trapezoidal method (Cronk-Nicholson)

e Trapezoidal method: Let an IVP be given by

{ﬁzfmw

y(to) = yo, tE€ [to,T]

The formula is given by

h
Yigl = Yi + B (f(ti, vi) + f(tig1,Yis1))

So, for the ODE in the example % = \y, we have

h
Yi+l = Yi + 5 (Ayi + A\yit1)

We need to solve for 3,11, which is easy in this case
Ah Ah
I——)yinn=(1++5u
< 5 >y +1 ( T3 )y
(12
Yirr = | 7o | Vi
2

25



Duc Vu (Winter 2022) 14 Lec 14: Feb 5, 2022

§14 ‘ Lec 14: Feb 5, 2022

§14.1 Stability of Numerical Methods (Cont’d)

We can deduce that the proper step size h to get a desired error not only depends on the problem
(such as L, T) but the numerical method.

[Definition 14.1 (Interval of Absolute Stability) — The interval for step size of absolute stability\
of a numerical method is the set

S ={hA: |y;| = 0 as i — ooV initial data yo}

when the method is applied to the problem

\\ J
Let’s consider the IVP

d

a =Ny

y(to) = vo, t € [to,T]
Then, we have

dy _
dt

— y(t) = Ce
= y(t) = yoe =)

Ay

Thus, |y(t)] = o0 if A > 0 and |y(¢)| — 0 if A < 0.
Goal: To find S when A < 0 for a numerical method. By the definition of S, we need to find the
condition on h s.t. y; — 0 as ¢ — oo for A < 0 for a numerical method.

1. Euler’s method

y(to) =to, tE€ [to,T)
Recall the formula of Euler’s method
Yir1 = Yi + hf(ti, vi)
=yi + hAy;
= (1+hN)y;
= (1+h)\) 2y

= (1+h\) "y,
So, to have |y;+1| — 0 as i — oo,
|1+ hX) T hyo| = |1+ R [yo| = 0
as 1 — 00.
— [1+hA\ <1

<— —-1<1l+hr<l1
<— —2<hA<0
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Thus, the interval of absolute stability of Euler’s method is S = (—2,0) and the corresponding
step size h satisfies 0 < h < —% (since A < 0)

2. For the midpoint method, the formula is given by
Y =y + 2f(t,y)
Yir1 =y +hf (6 + 5, y%)

Since the IVP is

dy _ )\y
y(to) =0, tE€ [to,T]
Then,

Y=y + 2y
Yit1 = ¥Yi + hAY*

= Yir1 =i + b (v + Byi). So,

hA
Yiy1 = (1+h/\+( 2) )yz

In order to have |y;+1| — 0 as i — oo,

‘1+h/\+(h/\) <1
h/\+(h>\) 0
—2<hA<0

The interval of absolute stability for the midpoint method is S = (—2,0) and the corresponding
h satisfies h € (0,—%).

3. Trapezoidal method: From the last lecture, we have

\h
_(1t%
Yir1 =\ 7 | ¥

2

Therefore to have |y;11] — 0 as i — oo,

Ah

1+5

Y
2

<1

Check that the interval of stability is (—oo, 0) for the trapezoidal method so the corresponding
h satisfies h € (0,00). The similar argument can be applied to other numerical methods to
find its interval of stability for the IVP dy =y (A <0).

Question 14.1. How do we find the interval of stability of a numerical method for general IVPs,
Bty
dt 7y *

Let y(t) be analytic solution to Cfl% = f(t,y) and §(t) be the numerical solution to df = f(t,y). Let
v(t) be the difference of §(t) and y(t), i.e., v(t) = §(¢t) — y(¢). Then,

= % (G0 (o)
d d
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Thus, % = f(t,9) — f(t,y) = %v(t). This is similar to the previous IVP, ‘é—j = Az for A < 0 case

= |z(t)] >0 as t—
It % < 0, this implies that |v(t)] — 0 as t — oo, above finding implies that h - % € S gives the

step size requirement for the IVP % = f(t,y).

28



Duc Vu (Winter 2022) 15 Lec 15: Feb 11, 2022

§15 ‘ Lec 15: Feb 11, 2022

§15.1 Stability of Numerical Methods (Cont’d)

Fact 15.1. To estimate the step size requirement for a good numerical solution for the IVP
% = f(t,y). If % < 0, we need to find the stability restriction on h s.t. h - g—ch es.

Example 15.1
Use the Euler’s to solve following IVPs

d
ditJ =cos(y)+1 with y(0)=0 and t€][0,5]

For this IVP, f(t,y) = cos(y), then g—?’; = —sin(y). It turns out that y(t) € [0, 7]

We want to find h s.t. h- gTJ; € S =(—2,0). By considering the points to find worst possible
case which happens when %5 =-1,-he (2,00 = he(0,2).

A summary for the 7;, e; the interval of stability for Euler’s method RK2, RK4, and trapezoidal

‘ Method ‘ Order of 7; ‘ Order of ¢; ‘ Interval of AS ‘

Euler O(h?) O(h) (—2,0)

RK2 O(h?) O(h?) (—2,0)

RK4 O(h?) O(h*) (—2.78,0)
Trapezoidal O(h3) O(h?) (—00,0)

Note that from this table, the interval of absolute stability of trapezoidal method is (—o0, 0).
This implies that when g—]; <0, h- % € (—00,0) for any positive step size h. In other words, the

trapezoidal method is unconditionally stable (no restriction on the step size). Typically, implicit
methods are more stable than the implicit methods.

§15.2 Stiff Problems

Definition 15.2 (Stiff Problem) — e A problem is stiff if g—i < 0 and ’g—ﬂ is large.

e A problem is stiff if explicit methods don’t work or work only with very small step size h.

e A problem is stiff if some components of solution decay much faster than others, for
example y(t) = e~ 2! 4 =500t

Implicit methods are typically a good choice for solving the stiff problems. For example, the
trapezoidal method is unconditionally stable, so it has no restrictions on the step size h to be stable.
Summary of choosing numerical methods for solving on IVP

29



Duc Vu (Winter 2022) 15 Lec 15: Feb 11, 2022

o If the IVP is non-stiff, we usually prefer to use explicit methods (e.g., te classical RK4) and
the step size h is determined by the accuracy.

o If the IVP is stiff, we choose the implicit methods so that h doesn’t need to be extremely
small.

§15.3 Multi-step Methods

Multi-step methods have become popular in machine learning. We will briefly take a look at some
multi-step methods:

1. Adam-Bashforth (AB method) which is on explicit method

2. Adam-Moulton (AM method) which is an implicit method.

\

(Definition 15.3 (k-step multi-step method) — A k-step multi-step method for solving the IVP
¥ =fty)
y(to) =wo, t€ [to,T]

has a difference equation for finding the approximation y; 1 at the mesh point ¢;;1 represented
by

k k
Yir1 = 3 0Yip1—j +h Y Bif (tiv1—j, Yie1-5) (*)
j=1 j=0
- J
e From the formula, we notice that we need to solve previous k solution values (y;, ..., ¥ir1-k)

at each step for the computation of next step.

e Also from the formula (*) of the k-step method, we need to know the first k values:
Yo, Y1, ---,Yk—1 in advance for the method to work. However, we only know yy from the
initial condition. To compute y1,¥y2,...,Yr—1, one often use the other 1-step or multi-step
methods such as RK2.

e Note that the meaning of the word “multi-step” differs from “multi-stage”. For example, the
s-stage RK methods are all 1-step methods since at each step, we only need to know (y;, ;)
to compute y;1.

(Definition 15.4 (Adam-Bashforth Method (AB Method)) — The form of the formula of AB\

method is

k
Yitl = Yi + hZij (tit1—js Yir1—j)
i

with 2?21 B; = 1 where 8; € R. y

For each k, we will choose f1, 52, ..., Br appropriately to maximize the order of accuracy. One way
is to use Taylor series expansion for LTE analysis and choose ;’s to eliminate as many terms as
possible. Another way to determine f,. .., 8 is based on polynomial interpolation (fitting) which
is the route we take.
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For each subinterval [t;,t;+1] we have % = f(t,y) on [t;,t;+1]. Then we have

tig1 dy tit1
—dt = t,y)dt
/ti = /t ft,y)

y(tio) = y(t) + / "y

ti

We replace f(t,y(t)) with its interpolation polynomial by using the data obtained previously
(to,yo), (t1,y1), - - -, (t;, y;) where y; is the estimate for y(¢;). We expect to have estimates of

f(t,y(ty) = f(tg,y5) = f;

More precisely, to get the k-step AB formula, we use the Lagrange interpolation polynomial with
degree k.
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§16 ‘ Lec 16: Feb 14, 2022

§16.1 Multi-step Methods (Cont’d)

Let
ILiorii<izj<i(t — 1)
P;(t) = —
Hi—k+1§l;£j§i( J l)
So Pj is a polynomial with roots ti7ti—1a e ,tj+1,tj_1,tj_2, e 7ti—k+1 and Pj(tj) =1.

Let P(t) = Z?:l fi-‘rl—j[ji-‘rl—j (t) By the properties of Pj’S, P(ti+1_]‘) = fi+1—j' Hence,

tit1 tit1
/ f@wﬁ%/ p(t)dt
t t;

7 i

/ti+1
ti

k
> i1 Pra—j(t) dt
@ 1

K
=h-> Bifit1-j

j=1

where 3; = %ftt”l P;+1_;(t)dt. Note that

i

k
> B =1
=1
Also,
k
Y Pt =1
j=1

and the polynomial Z?:l P;11_;(t) — 1 must be the zero polynomial.

§16.2 Special Cases of AB Method
1. k=1 (AB1)
The AB method reduces to the Euler’s method in this case. From the form of AB formula,

Yiv1 = Yi + Bihf(ti, yi)
=y + hf(ti,y)

since 25:1 B = 1 = 1. Order of accuracy of AB1 is O(h).

2. k=2 (AB2)
Vi1 = Yi +h (Bof(ti, vi) + Baf(tiz1,9i-1))
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51, B2 can be computed as follow

1 [ ¢ —t
= — —dt
A h ‘/ti ti —ti1

it —
/ b
4 ti-1—t

i

So the formula for AB2 is

3 1
Yiv1 =Yi T h (Qf(tiayi> - 2f(ti—1,yi—1)>
This method has O(h?) accuracy.

3. k=3 (AB3)

The formula can be obtained in a similar way

23 16 5
i1 =Y +h (| 5 f(tiyi) = 5 f(ti1, yie o iz, Yie
Yit1 =¥ + (12f( Yi) 12f( LY 1)+12f( 2,Y 2))

This method is O(h?) method.
4. Typically, the k -step AB method is O(h*) method.
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§17‘ Lec 17: Feb 16, 2022

§17.1 Adam-Moulton Method (AM Method)
The form of the formula of k-step AM method is given by
k
Yigl = Yi + hZij(tingvyinj)
§=0

with Z?:o B; =1and B; € R.
Let
(t) = ickri<igiojricin (t— 1)

! ILi-ki1<iziojri<iva (fimjar — 1)

The roots of polynomial P;(t) are ¢; withi —k+1<Il#i—j+1<i+1and Pj(t;—j41) =1 and
B; = %f:j“ Pj(t)dt.
1. k=0 (AMO)
The formula of AMO i nthis case is
Yir1 =Yi + - Bof(tiv1,vit1)
=yi +hf (tit1,Yi41)
AMO is the backward Euler, which is O(h) method.
2. k=1 (AM1)

It turns out that AM1 is the trapezoidal method with formula we’ve seen before

h
Yirr = Yi + = (f(ts, i) + f(tit1,Yit1))

2

which is O(h?) method. Note that 8y = 81 = é as we did before
[l -ty 1

. TN ==

fo=1 /f ti1 — t; 2

1Yt — iy 1

== ———dt=...= =

=7 /t t— ti 2

3. k=2 (AM2)
The formula of AM2 can be obtained by the similar process, which is given by

h
Yir1 = Yi + 12 (5f (tig1, Yir1) +8f (i, vs) — f(tiz1,yi-1))

This is a O(h?®) method. For example, we can compute 3y as follows

1 (=)t —ti 1)
=— dt
o h /t (tit1 — ti)(tivr — tiz1)

_5
12

4. For general k, k-step AM has accuracy of order k + 1 (e; = O(hF*1).
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§18 ‘ Lec 18: Feb 23, 2022

§18.1 AM Method (Cont’d)

Since AM method is implicit, we need to solve the equation to compute ;11 at each step. Recall
the AM formula

k
i1 =vi + 0> Bif (tiv1jrvit1-5)
=0
!

=y + Pohf(tiv1, yir1) + hZ@‘f (tiv1—5, Yit1-5)

j=1

If the function f is linear, the we can solve for y;;1 in the formula above. However, f is usually
nonlinear, so it is typically not easy to solve for y;;1 exactly. We usually solve this by some
numerical methods such as Newton’s method, bisection methods, etc. to find y;1.

§18.2 Interval of Absolute Stability

We will extend the notion of interval of absolute stability to complex numbers
e Interval of stability: A\h € R

e Region of stability: A\h € C

Example 18.1
Find the region of AS for Euler’s method. The formula of Euler’s method for the IVP

d
a =M
y(to) = Yo

Yit1 = Yi + hf(ts, vs)
=y + hAy;
=...=(1+hr\)" 1y

is

when hA € C, yiq1 — 0 iff |14 hA| < 1.
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Example 18.2

The region of AS for the midpoint method for the same IVP. From the formula of the midpoint
method,

Yy =y + %f(tz‘, Yi)
Yirr =y+hf(ti+ 5%, 9%)
Yo = y(to)

Then,

h
yk+1yz+hf< 27 Yk + f( u%))
h
= Yiy1 = Yi +hA 2 (ti, ys)

~ ))w

+ Lgf\ <1

To make sure y;41 — 0 as ¢ — oo,

Definition 18.3 (Uncondiitonally Stable Method) — If the region of AS for a method includes\
the left half complex plane then the method is called unconditionally stable. )

For example, trapezoidal method and the backward Euler’s method are unconditionally stable.
From the formula of trapezoidal method,

1+”A
Yitl = | 7 x | Y
_7

hA
1+ 22
DY
2

To make sure y;41 — 0 as i — oo

Let hA = a + b where a,b € R since hA € C. Note that |a + iﬂ|2 =a?+ 3% Va,p €R. So after
some manipulation, we get a < 0. The region of AS for the trapezoidal method is the left half of
complex plane.

§18.3 Numerical Methods for Systems of ODEs

36



18 Lec 18: Feb 23, 2022

Duc Vu (Winter 2022)

Definition 18.4 (ODE system) — An m-th order system of 1st order IVP has the following

form .,
% = fl(tvylayQu”wym)
& = fZ(taylayQa"'aym)

dt

< = fm(t7y1ay27 e 7ym)

dt
with initial condition
y1(to) = y1,0
y2(to) = y2,0
Ym (to) = Ym0
\ J
We can write this IVP in the vector form. The IVP is then written as
diy 2,
at = (t’ y)
§(to) = o

Example 18.5
For m = 2,
% = fl(tayhyQ) with yl(to) =Y10
2 = f5(t, 51, 92) Yy2(to) = y2,0
Using
S |n fi(t,y1,92) ~ Y1,0
= F = = ?
Y [yz} ’ L@(t,yhyz) A [P

Goal: Use some numerical methods to compute the estimates ¢, %, -

Remark 18.6. 1. If f1, f2,..., fm are linear functions w.r.t. y1,ya2,...,Ym, then ‘;—g = ﬁ(t, 9) is

a linear system. .
F(t,9) = A7+ b(t)
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Example 18.7

Consider
dyl
m -

with

This system of ODEs is linear.

.

{

_ {\/Eﬁn — 3yo +sint

= Vity1 — 3y2 +sint
Yy +et

y1(0) = —1
y2(0) =2

y1+et ]

o )+ [

()7 + b(t)

Remark 18.8.
g
d
If b(t) = 0, then the ODE system ‘fi—?
3. If one of the functions fi, fa,...

2. Let a system of ODEs be given by

= F(t,y) = A(t) + b(t)

= A(t)y is homogeneous. Otherwise, it is inhomogeneous.

, fm is nonlinear, then ‘;—g =F
if one of the ODE equations is nonlinear, then the ODE system is nonlinear.

(t,¥) is nonlinear. In other words,

Example 18.9

Consider

with

{z

=y + 243
Y2 2y1 _ 3y2

y1(0) =2
y2(0) =4

Since y; + 2y3 is nonlinear with respect to g, this ODE is nonlinear.

Let’s get to numerical methods to solve IVP systems.

e Euler’s method for one ODE. Recall

Yir1 = Yi + hf(ti,vi)
Yo = y(to)

So we can extend the method to a system of ODEs as follows

So the formula is

'111

(17)

=t &\57

(o

to) =

Gi1 = §i + hF (t;, §;)
Yo = (o)
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where
Y1,i+1 Yi,i
. Y2,i+1 . Y2,i
Yi+1 = . y  Yi = .
Ym,it+1 Ym,i
fl (tza yl,i7 y2,i7 e 7ym,i)

- f2 (tivyl,iva,i7°"7ym,i)

fm (tia Y1,4,Y2,4y - - - 7ym,i)

In particular, when the ODE system is linear, then F (t;, ¥;) can be expressed in the matrix
form.
e Modified Euler’s method: Recall that for ODE with m = 1, the formula is
Yy =y +hf(tiyi)
Yirr =i + 2 (f(ti,yi) + [(tiv1,y%))

or
St = f(ti,vi)
Sy = f(tiv1,yi +hf(ti,y:))
Yir1 = yi + 2(S1 4 S2)

For the general system of ODEs, the formula of the modified Euler’s method is
| o hym o = .
Virr =i + 5 (F(tmyi) + F(tiv1,9 ))

with the initial conditions ¢y = ¢(to).

39



Duc Vu (Winter 2022) 19 Lec 19: Feb 25, 2022

§19 ‘ Lec 19: Feb 25, 2022

19.1 Numerical Methods for Systems of ODEs (Cont’d
§ y

Example 19.1

Consider
{dyl = 2y; — 3y +sint + 2e?

2 — 41 + 2y + 3cost

Y1 (0) =B
yQ(O) = =0
1. First, let’s write down this IVP in a vector/matrix form.
2 -3
1 2
= sint + 2e™

b()[ 3cost ]

with initial conditions

Then, this IVP is

—

& =AM7+ ()

Next, we apply numerical methods to solve this problem

=3| _  |sin(t;) +2e "
2 ] e l 3 cos(t;) ])

e Fuler’s method

R N 2
yi+1:yi+h< .

L |1
Yo = _9

with
Y1,i+1 = Y1
Jiy1 = |:y2,z+1:| Y |:y2,i:|
o Modified Euler’s method
2 3| . sin(t;) + 2=t
7+ (t:) +2e
1 2 3cos(t;)

2 -3 7+ sin(t;) + 2e~t L 2 -3 7+ sin(t;y1) + 2e~ bt
1 2 3 cos(t;) 1 2 3 cos(tit1)

T:ﬂi+h<

27i+1=y7’+}§<

L |1
Yo = 9

with

Y1,i+1 R = _ |y
szrl |:y2,1+1:| y  Yi |:y2,i:| Y I:y§:|

40

AR



Duc Vu (Winter 2022) 19 Lec 19: Feb 25, 2022

§19.2 Reduction of a Higher ODE to a First Order ODE
System

Consider pth order ODE of the form of

dp
» _ %Y _ 1,2 <p—1>)
y T f(tvy,y YTy

for ¢ € [to,T] with initial conditions

y(to) = w1, yWP(to) =ua, ... yP V(tg) =1,

Question 19.1. How can the pth order ODE be transformed into a first order ODE system?

Let vi =y, vo = y(l)7 vy = y(Z)7 R y(p—l)
G ==y =u
d'U2 = % = y(z) = ’()3

dt

d (p—1)
dvp _ dy :y(p):f(t,l}l,’l)g,...,’l)p)

Therefore, the original ODE can be written as a system of first order ODEs

d’l)l —

dt v2
(*)
dl)p71
a
% = f(t71}1,'l)2,...,’l)p)
with the initial conditions
Ul(to) = ui, ’Ug(to) = U2, e ’Up(to) = up
Let
V1 (t) (5%
. (%) (t) u2
v(t) =1 . so U(tg) =
vp(1) Up,
But initially we wanted to solve the pth order ODE numerically. How do we find it? Our goal is to
use numerical methods to compute a vector sequence v, ¥1, ..., Un, a numerical solution to estimate
the analytic solution #(tg),¥(t1),...,0(ty) of the ODE system. Then, ¢p(1), t1(1),...,9n(1), the
first components of the numerical solution are the numerical estimates of y(to), y(t1),- .., y(tn), the

solution of the original pth order ODE.
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§20.1

Reduction of a Higher Order ODE (Cont’d)

Summary: In order to use the numerical methods to solve a p-th order ODE, first transform the
p-th order ODE into a first-order ODE system and write it a vector/matrix form.

U1
U2
v=1| .1, U=
Up
V2
U3
F(t,7) = :
Up
f(t,"Ul,UQ, e

So #U = F(t,7) with ©(ty) = @. Furthermore, if 40—

f(t7v17'~

., Up) is linear and vice versa. In that case, f(t,v1,..

Uy

U2

Up

s Up)

F(t,7) is linear, i.c., F(t,7) is linear then

L Up) = Gp U1 +ApaUa+ ...+ appUp+

by (t). Thus, the first order ODE system is linear, then, it can be written as

=

0 0 0 0

ap,1 Gp2 GApg3

Qp,p

0 U1 0

0 V2 0
Ug + 0

1 |: :
Up by(t)

Example 20.1
Consider the following ODE

with y(0) = 1, 4'(0) = -1, y"(0) = 3.
U1
Let v1 = y1, vo =/, v3 =y and let ¥ =
U3

y® — 2% +y+cost=0

v9 | . Then, we have

y(3) =2y —y —cost

So
d [ Lz |
*1_1’ = V3
dt _2112 — U1 — oSt
i 0 1 0 ’U1-
= 0 0 1 V2
-1 2 0f |vs]
1
with the initial condition ¥(0) = [—1].
3

—cost
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The process to solve a higher order IVP

1. Transform the higher-order IVP into a first order ODE system
2. Write the ODE in the vector/matrix form if the ODE system is linear.
3. Use numerical methods to solve the system (Euler’s, modified Euler’s, RK, etc.)

4. The output of methods are a sequence of vectors vy, U1, ..., 0nN. If they are saved in the matrix
form such as

v = [’UO (%) UN]
Ul V1,1 V1,2 ... V1N
(%) V2,1 V2,2 e V2, N
Up Up1 Up2 ... Up N

§20.2 Boundary Value Problem for ODEs
We will focus on the finite difference method (FDM) for the 2nd order BVP.

Example 20.2
The second order ODE with two points boundary value problems has the ODE

d?y
@ +f(x’y7y/) =0

with the boundary conditions at two boundary points x = a and x = b.

Example 20.3

Typical boundary conditions

1. Dirichlet boundary conditions
y(a) = ya and y(b) =y

2. Neumann boundary conditions

dy

Y
dx(a) =« and —x(b) =4

3. Robin (or mixed) boundary conditions

ary(a) + b1% (a) = g1(a)
asy (D) + ba 2 (b) = g2(b)

43



Duc Vu (Winter 2022) 21 Lec 21: Mar 3, 2022

§21 ‘ Lec 21: Mar 3, 2022

§21.1 Finite Difference Method for BVP

The FDM for a simple 2nd order ODE of the form of % = f(z) with the Dirichlet boundary
condition

y(a) =y, and y(b) = yp

Step 1: We discretize the domain [a,b] into N # of subintervals with endpoints zg,x1,...,ZN

where x; = a + bh where h = b’T“ Let y; be the numerical solution to approximate y(z;), the exact
solution at z; for ¢ =0,1,..., V.
Step 2: First, note that 29 = a and xy = b and from the boundary conditions. y(z) should

satisfy these conditions at the boundary points zg = a, xny = b. For x1,x2,...,xny_1, they are
2
the interior points of the domain [a,b] and they need to satisfy the ODE, so %b:w_ = f(a;)
fori =1,2,...,N — 1. We want to generate a sequence by numerical methods that satisfies
2
“approximately” the equation %’m:x_ = f(z;). Thus, we need to find a numerical quantity
approximating %|x=x_7 the second derivative centered difference formula. The idea is as follows
dy Y Y1
dy  Yir1 — Yi
dI a:i+% h
So,
dy _dy
de dx ’1:7‘,+% dx z %
dz? o=z, h
Yi+1—=Yi _ Yi—Yi—1
~ h h
h
Vi1 — 2Yi T Yi
= 3

Thus, we have

L — . i .
Yit1 hy;er 1=f(1'i) for i=1,2,...,N—1

Step 3: We will rewrite above equation in a vector/matrix form

-2
i1 — Y2 y1+y0:f(x1)

h2
92—2y1 Yo Ya
~ Ys —2y2 +
=2 = TZJ”(@)
; 1= 2Yyn-2+Yyn—
Z:N—2:>yN1 y;;? YN 3:f($N72>
- — YN o1+ yn-
i=N-1 = & 3/th1 UNZ2 _ o)
1
= ﬁ(_zyN—l +yN—2):f(l‘N_l)—y—Z;[:f(xN_l)_&

h h?
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Now we are ready to write these equations in the matrix equation form

-2 1 0 0 ... 0 7

1 -2 1 o ... 0 Y1 f(xl) _ %
10 1 -2 1 ... 0 Y2 e
7| S

o o0 o0 ... 1 -2 1 YN—2 flxn_2)

0 0 0 ... O 1 _of L¥N-1 flan—1) — &

Therefore, to solve the Dirichlet problem of the form of % = f(z) numerically, solve A7 = f5.

One can check A is invertible, so i = A~} f 5. We can use FDM to solve the BVP in a more general
form.

{leg +p(2) % + g(z)y = f(z)
y(a) =va, yb) =y

2 . — s .
We can use the centered difference formula to approximate gwy ~as before, % to approximate

2 g,
dy :
AR
Pyl yi1—2uityio1
dxz? ~ h2
z;
dy ~ Yit1—Yi—1
dx ~ 2h
z;
y(z:) = y;
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§22.1 Finite Difference Method for BVP (Cont’d)

After plugging them into the ODE, % —|—p(w)% + q(x)y = f(z), we have

Yit+1 — 2 + Yi—1 Yirl — Yi-1
12 () = +a(@)y: = f(ai)
fori=1,2,...,N—1.
. Y2 — 2y1 + Yo Y2 — Yo B
i=1 = Ter(xl) T +q(z1)y1 = f(z1)
ya —2y1  p(x1) Yo p(x1)
— = - T 5
T oy Y2 +q(z1)yr = f(z1) w2t o Ya

. — 2y + -
i=2 = w +p(x2)y32hy1 + q(22)y2 = f(z2)

YN-1— 2Yyn—2 +YN—_3 YN—1 — YN-3

i=N-2 = o +p(en-2) = +q(zn—2)yn—2 = f(zn-2)
. —2yn—1+Yn— —YN—
P=N-1 = yl\;zzl = er(xN‘l)%JFQ(xN—l)yNa = f(zn-1)
—2yn-1+yn—2 plan-1) v plan_1)
:> - — _ 1 = _ —_ = — =
B o, UN—2t q(@n-1)yn-1 = f(zn-1) 12 TR

Matlab code for solving BVP using FDM:
1. Specify boundary conditions a, b, y,, y» and the step size h
2. Construct fB and A

3. Solve for 7 using 7 = A\ fx

§22.2 Vector Norms

Definition 22.1 (Vector Norm) — A vector norm for a vector ¢ in R™ will be denoted by ||17||\
is a function from v € R™ — R s.t.

i) ||7]| >0 and ||7]] =0 < @ =0.

ii) ||av|| = |e|||7]| for each o € R, ¥ € R™

iii) [|@+ o] < ||@|| + ||7]| for each @, v € R™.

J

The norm of ¥ is a measure of the “size/generalized length” of ¢. Thus, ||@ — ¥|| is a measure of the
distance between i and ¢. There are many different vector norms

1. 1-norm (1 norm): |7y = it |vs

2. 2-norm (lp norm): |2 = /> e, |vil?

3. oo-norm (loo norm): [|¥]ec = maxy<i<m |vil
Generalization of Iy, [y norm

m D
1, norm: [, = (Z |>

i=1
Relation between vector norms for © € R™
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L [0lloe < [|9]lx <m0 - [|9]]oo

2. Tlloe < N17ll2 < v/ml| 7]l

3. =Nl < Nollz < 1]
This means that all three norms || - ||1, ] - |2, || - ||oo are all equivalent (up to at most constant m).

§22.3 Matrix Norms

Definition 22.2 (Matrix Norm) — Suppose that A, B are square m X m matrices. A matrix
norm of A, denoted by ||A||, is a scalar valued function satisfying the following properties:

i) JA||>0and |[A|=0 < A=0

iii) |A+ B|| < ||A] + |B]| for each A,B € R™>*™

v

)

ii) [[@Al = |a|||A| for each o € R, A € R™*™
)
)

IAB] < [[A[lB]]
Given a vector norm, a matrix norm can be obtained by defining

1Al = max [|A7]
J

.

This norm is sometimes called an operator norm or induced matrix norm associated with a vector
norm. Note that it depends on what vector norm we are in the definition.

Property of an operator norm:
For any ¢, matrix A, and an operator norm, we have

[Ad] < [lA]l[7]
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Example 22.3

Consider these examples associated with vector norms || - ||1, || - ||2, || - ||cc respectively.
1. l1-norm

[A[ly = max [|A%]]y

llall=1
m
= max Z la;;| (maximum column sum)
J

g=i

Example
1 -2 -5
A=]|-3 6 0
2 -3 5

|All; =max{1+3+2,2+6+3,5+0+5} =11

2. lso norm

|Allo = max [lAT]e

1]l o=
m

= maxz la;;| (maximum row sum)
(2

j=1
Example
1 -2 -5
A=]|-3 6 0
2 -3 5
|Alloc = max{l+2+53+6+0,2+3+5} =10
3. ly-norm

[Alls = max [[A7]

l15l2=1
= 4/ Amax (ATA)

= Shax(4) (maximum singular value of A)

This is also called the spectral norm.

§22.4 Error Bound of FDM
Consider the BVP
{3 = f(a)
y(@) =ya,  y(b) =
Mesh points of FDM are

_b-a

i = ihfori=1,...,N—1, h
x a + 1h tor 1 N

1. First write down errors at z;, e; = y(z;) —y; for i = 1,..., N — 1 where y(x;) is the exact
solution at x; and y; is the numerical estimate for y(z;). If we write down these in the vector
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form,
€= Hexact - gest
y(z1) Y1 el
y($2) Y2 €2
y(l”Nq) YN-1 EN—1

2. Our goal is to find an error bound for €: ||€]] < Ch? (C > 0 constant, p > 0) and identify
how large p is (order of accuracy). Recall that the numerical estimate ¢ using FDM can be
obtained by solving

Agest = fB
Let 7:= Agexact - Agest~ Then
T=A (gexact - ?jest)
=A¢
e=A"1'7

So, if ||7|| < C;hP for some C; > 0, p > 0 then

el = A= 7|
< [lA7H1I7] (**)
< CrllATHRP

We need a bound for 7, which will be our next step.

3. Since T = A¥exact — Alest = [7'1 Ty ... TN,l]T and
(2 1 0 o0 0 T
1 -2 1 0
1lo 1 =2 1 0
A - ﬁ
0 0 o0 1 -2 1
(0 0 0 0 1 -2
Then
_y(@isr) = 2y(@) + y(@ic1) Y1 — 20+ Y
e h2 h2
y(@iv1) — 2y(z;) + y(@i-1)
Here this approximation step follows from %’m, = f(z;) from the ODE and 3273 . R

Y =2YitViot from the centered difference formula. Now, we use the Taylor series expansions
at y(x;41) = y(z; + h) and y(x;—1) = y(z; — h) at x = x;. By plugging these expansion into
(+) and using y"(x;) = f(x;) we have

_ W2 dly(xi)

= o(h*
= g O
So if Zz—ﬂ is continuous, then Zz—ﬂ is bounded or [a,b] = |r;| < C;h? = ||7|| < C,h? for
some C..

49



Duc Vu (Winter 2022) 23 Lec 23: Mar 9, 2022

§23 ‘ Lec 23: Mar 9, 2022

§23.1 Error Bound of FDM (Cont’d)

4. Going back to (**) in 2) (from last lecture)
et < AH117)

Also, ||[A~Y|| is bound, i.e., |A~Y|| < Ca for some constant Ca > 0. Thus, when we use FDM

using the centered approximation formula for %, we have ||7]| < C,h?
= ||&]| < CaC.h* = Ch?

with C = CaC;.

Remark 23.1. If we use a pth order difference formula to approximate derivatives,

|17l < C-h” = |lé]| < Ch*

§23.2 Iterative Methods for Solving Linear Systems

Motivation: Recall that we need to solve a linear system AT = b in FDM for BVPs. The direct
methods based on computing A~! or apply Gaussian elimination require a lot of computations if the
matrix size is big (e.g., for an n x n matrix A, Gaussian Elimination requires (n3) of operations).
There are iterative methods for showing large-scale linear systems more efficiently.

e Idea of iterative methods:

Transform AZ = b into a simpler systems, for example into Dz = b where D is diagonal
matrix or of special structure so that DZ = b can be easily solved.

e Procedure of iterative methods:

i) Start with initial guess Z(©) of the solution
ii) Use some process depending on A, b and approximates at k steps 2%, 2k=1 71 70)
to create a sequence of approximates gk+1)

iii) Our goal is #F) — # as k — oc.
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§23.3 Jacobi’s Method

Let a linear system, AZ = b where A € R™ " and z, beR" given as follows

ail ai12 e QA1n X1 bl
as a292 e a2n X9 b2
Apl Ap2  «-. Gpn| |Tn bn,

a1y + a12x2 + ...+ ATy — b1

a21%1 + a2 + ...+ ALy = b2

Ap1T1 + 2o + ... + GpnTn = by,

aj1x1 = by — (algl‘g + ...+ alnmn)

a90%o = by — (a2121 + G23x3 + ... + G2nTy)
—

ApnTn = bn - (anlxl + ap2ro + ...+ ann—lxn—l)

These equations motivate us the following procedure

1 _
xgk) = — (b1 — (algx(k D +..+ a1n9€51k_1)))

aii
1 _ _
xék) = - (b2 — (a21x§’“ b + aggl‘ék D + ...+ C@mﬁf‘”))
22

1 _ _ _
wg“) = — (bn — (anlxgk b + angwgk 2 +...+ ann,lx;kfll))>

Apn
Let’s set
a1 0
a22
D =
0 A,
0 0 0 aig ... A1n
21 0 0 ce as
L= 0 U=

t. Qn—1n

an1 e Apn—1 0 0 O

then the iterative formula for the Jacobi’s method is

D = — (L 4 U) #+-V
) =D % -D (L4 U) kY

Note that in order to apply the Jacobi’s method, it requires D to be invertible, so all the diagonal
entries of A need to be nonzero.
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§24.1 Gauss-Seidel Method

Idea: Similar to the Jacobi’s method, but when we create xgk)

:cgk), ceey Z( )1 instead of using m(k 1) ey Ek 11) Thus, we need the following equations at time

step k.

, we use the updated values

a11$gk) + a12$g€71) +...+ alnx(k D= =b

w178 1 amel® 4.+ aalV = by

anlxgk) + angxgk) + .+ a,ma:n =b,

Note that A = D + L + U where D is the diagonal matrix, L is the strictly lower triangular matrix,
and U is the strictly upper triangular matrix. The Gauss-Seidel method can be written as

(D +L)z® + uzh-H =
(D +L)#® = p—uzk-1
— #® = (D + 1) (b uzh- 1>)

Again, note that in order for D 4+ L to be invertible, all the diagonal entries of A need to be nonzero.

§24.2 Stopping Criteria

One of the important questions in practice is when to stop the iterative process. Since we cannot
run the process forever, we need to figure out the conditions when the estimates are satisfactory.
Let ¢ be the desired accuracy (tolerance value).

1. Bound on the residual: Let 7% = b — AZ®) be the residual at k-th step, then the iteration
stops when [|7F)|| < e. Note that 7% = A (7 — ) = Ae®). So ||| < A7 P <
|A=L|[|7F)]]. If |A=1]| is small and ||7*) || is small, then ||&¥)|| is small. But if ||A~Y|| is very
large, we cannot say ||€®)| is small even if ||7*)|| is small.

2. Instead of using the absolute error [¢*)]], the relative error H‘Jf(k)lt‘ﬂ is more commonly used.
[ER] < (| AT 175
[e®] - A” AR
o] I
Since b = AZoyact, then
1] = | AZexact]l < 1A Foxact |
1 1 1
>
Hb” ||A|| ||xexact||
e e®
[/ ||A||||xexact||
(k) k)
el <||A||” . [
||:Eexact|| ||b||

_ay 1]
< [|A AT ==
161l
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Note that the condition number of a matrix A is usually denoted by x(A) = |AJ||A~!||. For
different norms, we have different conditions numbers

o r1(A) = [A[L[|ATH

o ria(A) = [|All2| AT

o ri3(A) = [AlllATH
Also note that

K(A) = [A]AT]
> |AATY = 1) =1

Definition 24.1 (Well/lll-Conditioned Matrix) — If x(A) is not too large, then we say that
matrix A is well-conditioned. Otherwise, the matrix A is ill-conditioned.

(k)
e If A is well-conditioned, HTIII?H I being small, then the relative error

[e®)]]

|Zexact |l

is small.

A
I3

L™ |

s is small.
”wexact H

e If A is ill-conditioned, I being small doesn’t guarantee that

3. For simplicity, let’s assume ||Zexact| = 1 from now on. Stop the iterative process to run until
[ — (=D < e. We'll see that under what conditions small ||#*) — #*~1|| implies that
[ef®)]| is small.

Consider an iterative method of the form #®) = T#k=D 4 g, .. (1).

e For the Jacobi’s method .
T=-D YL+D), g=D'b

e For Gauss-Seidel, B
T=-(D+L)"'U, g=MD+L)"b

Note that Zexact = TZexact + - - - (2). Let (1) — (2)
(#5Y = Fovac)
(f(k—l) OO fexact)
(fug_l) _ fw)) LT (f(k) _ j’exact)
(f(kfl) _ j‘(k))
Thus,

9 = —(1— 1) (#9 — 6)

[#®)] = X T)~1T (79 - #EV) |
<@ -T)~'T|E* - 2D

Thus, if ||(I —T)~'T|| is not too large, small ||#*) — #+=D|| implies that ||e}| is small.
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