Math 135 — Differential Equations

University of California, Los Angeles

Duc Vu
Fall 2021

This is math 135, officially known as Ordinary Differential Equations though we also delve
into partial differential equations. It’s taught by Professor Hester. We meet weekly on MWF
from 12:00 pm to 12:50 pm for lecture. The main textbook used for the class is Differential
Equations with Applications and Historical Notes 3™ by Simmons. Other course notes can be
found at my blog site. Please let me know through my email if you spot any concerning typos

in the note.
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§1.1 Laplace Transforms

Consider the following questions

1. What is a transform?

2. What is a Laplace transform?

3. What are some examples?

4. What are some general properties?

5. Why are they useful for differential equations?
Let’s tackle these questions.

1. Notice that functions: sets — sets. Transform is in higher hierarchy, i.e.,

Transform/Operator: functions — functions

Example 1.1 e differentiation: % cfef

e integration: [“dx: f [¥ f/(2)dx
e multiplication by g(z): f(z) — g(z)f(x)
e shifting: f(z) = f(z — a)

2. Laplace transform &
L f(t) = F(s) :/ ft)e st dt
0
where f:[0,00) > Rand F:C— C

3. Examples:

Example 1.2 o f(t): t—» 0 = Z[0]=0
o f(t)=1

Z[1] = lim e st dt

t—o0 0

efst t

= lim [ ]
t—o0 —S 0

e st 1
= lim ( + >
t—o00 —S S

1
B if Re(s) >0
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Example 1.3 e Consider

== if Re(s) >0
We can generalize this as
1
f[t"]:sn_H, Re(s) >0, neN

In addition,

1
- . Re(s) >
P e(s) >a
s
& [coswt] = — o
. w
Z [sinwt] = — o

4. Properties:
a) Linear!

L f+9l=2[f1+Z]d]
Zaf] = aZ[f]
b) Consider:

atf / f —(s a)tdt
=F(s—a) if Re(s—a)>0

Multiply an exponential in t-space Z, Shift in s-space.

ft—a)] = /000 flt—a)e *tdt = /000 F(t)e s dt' e

where t' =t —a. So

5. In reverse,

L[t —a)] = F(s)e

Thus, a shift in ¢-space Z, multiply an exponential in s-space.

d :/OO f (e stdt
o / F)se— gt

= sF(s) —

6. Differentiation:
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§2.1 Laplace Transform (Cont’d)
Recap: Z: f— F .
2(0)= [ s tar
0

where t > 0 and s € C.

Example 2.1 o Z[t"]=-kr neN

o Ll =-L

sS—a

General properties of Laplace transform:
e linear
e shifting <> multiplying by exponential
o Z[f')=s2f] - 1(0)
Let’s now use Laplace transform to solve the following ODE
[ +af +bf =gt),  f(0)=fo, f'(0)=fg
Apply 2,
L' +af' +bf] = Z]g]
L' +aZ[f]+0L[f] = G(s)

Notice that
Z[f"] = s*F — sf(0) — f'(0)
So
(s*+as+b) F(s) = G(s) + (s +a) fo+ fo

G(s) + (s+a)fo+ fo
s2+as+b

F(s) =

To get f(t) we need to invert .Z.
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Example 2.2
Consider:
frAf =4, f0)=1, f'(0)=5

Apply .Z, we get

4
(52+4)F(s):8—2+s+5

;%4—84—5
e

4 s )
32(52+4)+s2+4+32+4

F(s) =

4 A B

s2(s2+4)  s? + s2+4
4= A(s* +4) + Bs?
= (A+ B)s* + 44

So, A=1, B= —1. Then,
1 1 S 5

F(s) = = —

(5) 52 32+4+52+4+52+4
_1+ 4 L S
T2 244 s244

Zf] = 2L [t + 2sin 2t + cos 2t]
— f=1t+2sin2t + cos2t

Notice that we need to use partial fractions to decompose the first term.
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§3.1 Existence of Laplace Transform

Question 3.1. When is Laplace transform is allowed? When does Laplace transform exist?

21f] = / T ft)e st di

Note: Beware of co — only trust limits.

Laplace transform exists when this limit exists?
lim; 00 f*(7) converges to foo € Rif Ve > 0, IM > 0 s.t.

[f*(7) — fool <& foralT>M

Convergence test for integrals:

T

lim [ f(t)dt

T—00 0

Comparison Test: If | f(t)] < g(t) and [~ g(t) < oo (converges) then

/Oooﬂt)dts/0w|f<t>|dts/0°°g<t>dt<oo

i.e., [i° f(t)dt converges. Now, back to the Laplace transform

2= [ s

What could break this integral?
1. fe~st diverges/unbounded (lim;_,4+ f(t) = oo)
2. fe 5t doesn’t decay fast enough as t — oo.
What could prevent these issues?
1. Piecewise continuous: lim;_,;— f(¢) and lim;_,;+ f(¢) exist.

2. Exponential order
|f(t)| < Me for some M >0 & c

Have
ct< 1.7t Vi >0
1<1-€%  Vt>0
t<1-é vVt >0
Theorem 3.1

If f is piecewise continuous and of exponential order ¢ then .Z[f] exists for s € C with
Re(s) > c.
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Proof. Have

21f](s) = / T ptye st dr

lim [ f(t)e *'dt < lim/ |f()e™*| dt
0

T—00 0 T—00

= lim/ |f(t)| e 5t dt
0

T—00

-
< lim Me et d¢

T—00 0

c—sp)t 17
— lim M [e}
0

T—00 —(c—sy)

1
= if s, >c
Sy —C

< 0

Thus, .Z [f] exists (for Re(s) > ¢) by comparison test.

This is a sufficient condition but not necessary.

Example 3.2

Consider the function f(t) = %
<

|~

[N

[ ]:/ t=2e 5t dt
t 0
1

w |3

However, we can see that -1 isn’t continuous on [0, ).

t2
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§4.1 Convolution
Question 4.1. Can we invert .Z [f] - % [9]?
We have

F(S)G(S) = /OOO f(t)eiSt dt Am g(t’)efst’ dt’
B / i / " Bg(t)e ) at’ de
o Jo

Let’s define r =t +t = dr =dt’

/ F() gt e s ay’ at

/ f@Wg(r —t)e " drdt

0

U
(4

S
8

fg(r —1t) _STdt) dr

oo

— — — —
o\o\

fWg(r —1t) dt> T dr

[ w0

*@

Theorem 4.1 (Convolution)
We have

(f *9)(r /f (r—t)d

Zf*gl = Z 9]

.

J

§4.2 Application of Laplace Transform — Integral Equation

Consider:

() = g(r) + / k(- 0)f(1) dt
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Notice
f=g+K-f
f(r) =~ fi
9(1) =~ gi
k(r—t) = K
Have
f=g+k«f

and we use Laplace

Z 9]
Example 4.2
Consider f(t) =3 + fot sin(t — 1) f(7)dr.
F(s) = j—i + .Z [sint] F(s)

11
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§5.1 Dirac Delta “Function”
Visually:

The limit of a function concentrated at zero, with integral

/_o;é(t)dtzl

0 f(t):/_oof(T)é(t—T)dT:f:f*5

Formally:

d “picks out” a pointwise value of any function we integrate against/convolve with.
For finite dimension, let f € R™ and e; = [0,...,0,1,0,...]. So

fi=1f-e

For infinite dimension, f(t) : R — R for ¢t € R,

£(t) = / F(r)6(t — ) dr

where §(7 —t) = §(t — 7) = (7). These two notions are analogous, in a sense.
Solving a linear finite dimensional system

Solve Lf = h. If we know Lf; = e; where

e; : unit vector

f; : unit response vector
1. h= Z hiei

2. Linear superposition means

f = Zhifi

12
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and

Solving co-dim ODE
f"+af +of =h@)(L[f] = h)

Let’s say we know
g9¢ +ag, +bg =4,

1. h=hx¢

2. Then,
f=hxg

= /Ot gt (T)h(T) dT
= /Ot g(t —1)h(r)dr

where g is known as the Green function.

eizét

fimgtfzzhifi%f:h*g

13
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§6.1 Existence & Uniqueness of ODE Solutions
Intuitively, f(t,z) is continuous seems like it guarantees a solution — this is not true!

1. Failure of existence over R.

d
d—f =22 2(0)=1
x
t
We can easily solve this and obtain z(t) = 1&; which blows up in finite time.
2. What about uniqueness?
dx

= = 325, 2(0)=0

This has infinite number of solution through (0,0) — non-unique. Notice that #’ = 323 is an
autonomous ODE where the solution is x(t) = t3. However, z(t) = 0 is also a solution which
shows that solutions are not unique.

Question 6.1. What can prove existence and uniqueness?
1. Converting to “nicer” problem, DE <= integral equation
2. Devise an iterative algorithm to approximate solutions (Picard iteration)

3. Prove the algorithm converges to a unique solution

14
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§7.1 Picard Iteration

Goal: Find sufficient conditions to prove existence and uniqueness of solution to ODE
&= f(t (), x(to) =0

Idea:

1. Smoother is better (integration is preferred over differentiation). Make things smoother by
integrating

x(t) =f (tax(t))v x(tO) = o

Then, we can transform it into an integral equation

2(t) =zo+ | f( () dt’
to

Notice that f is continuous and x is continuous imply x is differentiable.

2. Iteration: If we can’t solve it at first, try again.

Example 7.1

Newton’s root-finding algorithm

Picard Iteration: Iterative approximation to solutions of the integral equation

z(t) = o +/t f, x(t) dt’

Start with a guess for the function xo(t) = z¢ (can be a constant)

t
Tna1(t) = 29 +/ f z, () dt’
to

In general,
2o () "B 2 (1) T g (1) B g () — .
o0

If 2py1(t) = 2 (t) = T(t), then T(¢) has to solve the IE. We want lim,,_, z,(t) = x(¢) solves
IE.

15
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Example 7.2
Consider @(t) = z(t), (0) = 1. This is equivalent to the following integral equation

z(t) =1+ /Otx(t’)dt’

Picard:
:L'()(t) =1
t t
x1(t) = 1+/ zo(t') dt’ = 1+/ 1dt’
0 0
=1+t
t
x2(t) =1+/ 1+tdt
0
t2
=1+t+ 21
() =) o
k=0 """
Thus,
lim z,(t) — e
n—o0

16
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§8.1 Continuity

Limit of continuous function is not necessarily continuous.

Example 8.1
Consider z,(t) = ¢™ on [0, 1]

33‘0:1
lezt
I2:t2

_ . {0, t<1
Tz = lim =z, =

n— oo ]_7 t=1

which is discontinuous.

Idea: We need “more” continuity. Given z, and given any ¢ > 0, if | — 2| < d(z, &) then

[f(z) = fa")] <e.

Example 8.2
Consider f(z) =z on R. We can see that

|z —2'|<e V|r—a|<e

in which we pick 0(z,¢€) = .
How about f(z) = 2% on R?
% — | <¢
If we pick §(z,e) = ¢, then |z — y| < 6 = & which does not necessarily imply ’xQ — y2‘ <e
because

|22 — ?| = (= + y)(z — v)|
=z +yl|z -yl
<elz+yl

|f(z) = f(y)] > e. So we need to pick smaller § as = and y get larger. It would work for
6 =

e
2max([z],|y[) *

Question 8.1. Is % continuous?

Ans: It depends on the domain. If we're talking about R, it doesn’t work at 0; on (0, 00), yes it’s
continuous.

(Definition 8.3 (Uniform Continuity) — Ve >0, 3d(¢) > 0s.t. |z —y| <d = |f(z)— f(y)] <]
€.

17
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I Remark 8.4. Notice that the definition is similar to continuity except that 6 doesn’t depend on .

Example 8.5

22 on R is not uniformly continuous but x2 on (a,b) C R is continuous since

& €

- max(|al,[y])  max (lal, B])

I Remark 8.6. Uniform continuity also depends on the domain as continuity does.

Exercise 8.1. Is 22 uniformly continuous on [0, 1]?

Lipschitz Continuity: “gradient is bounded”

|f(x) = f(y)
|z —y|

<L < o0

We can pick 6 = £ everywhere.

Example 8.7 o 22 on R is not Lipschitz but it is on a finite interval.

e 2 is not Lipschitz continuous on [0, 1]. However, it’s uniformly continuous.

18
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§9.1 Picard’s Theorem

Let’s prove local existence of the theorem.

/Theorem 9.1 (Picard) A
If f(t,z) and O, f(t,z) are continuous function on a bounded rectangle R = [t1,t2] X [1, Z2]
and (to,xo) is in interior of R (t; < tg < t2, 1 < Zp < x2). Then I a smaller rectangle
R = [to —a,ty + a] X [1‘0 —b,x0 + b] s.t. ODE

z(t) = f(t,x(t), x(to) = o
has a solution in R’.
R
1
R/
To+b -
a(t)
To | 2b
Ty — b -
2a
Ty ! f 1 )
{ t t |
4 ty—a to to+a t2
o J

Note: Since R closed and bounded, then f, 0, f are bounded, i.e.,
max ft,z) =M
m}.%xamf(t,x) =L
Thus, f is Lipschitz.
Proof Outline:
1. Solving ODE <= Soling IE

2. Approximate solutions using Picard iteration

t

zo(t) =20, Tp(t) =20+ [ f(t',2p-1(t)) dt’
to

3. Prove Picard iterates converges
lim z,(t) = Z(t)

n— oo

4. Prove limit Z(t) solves IE.

5. Prove limit Z(t) is continuous.

19
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6. Prove limit Z(¢) is unique.
7. How big is R’ = [to — a,tg + a] X [zg — b, ¢ + b]?

Pick a 2aL <1 & b= Ma <|xg—z1||x0 — 22

Proof. 2. Prove Picard iterates converge

a) We have

lim 2, (t) <= lim z(t) + Y zx(t) — 2x_1(t)
k=1

n—0oo n—oo

telescoping sum!

b) Series zo(t) + > p_, 2k (t) — x,_1(t) converges by Weierstrass M-test — If | f,,(x)| < M,
Vn €N, x € D and ZZOZO M, converges, then

> falx)

n=0

converges absolutely and uniformly.
i) Show z;(t) are all in R" C R so we can use bounds L, M.

|zo(t) — 20| =0

/t F ' zo(t)) dt’

|z1(t) — 20| =

< | 1 xo(t))] dt

t
< M dt

to
< Ma=hb

Thus, x1(t) is in the rectangle. By induction, every x,(t) in R’ C R.
ii) Show Y .2, |z;(¢) — x;_1(t)| is bounded.

Define A = maxp |21(t) — xo|. Then
¢

fE 2 (t) = f (o)) at!

to

S |f(t/,l’1(t/)) - f(tlax()(t/)”dtl

to

g/ Lz (') — zo(t')] dt’

to
< AalL

|z2(t) — 1 (t)] =

and
t

f(t,l‘g(t)) - f(taxl(t)) dt

to
t

< [ @) — f (820 (2))] di

to

g/ Llws(t') — 21 (¢ dt’

L EAaL) (t —to)
A(aL)?

|z3(t) — @2(t)] =

<
<

20



Duc Vu (Fall 2021) 9 Lec 9: Oct 15, 2021

Every |z,(t) — 2,—1(t)| depends on |z,—1(t) — x,—2(t)| recursively. The general
pattern is

[ (t) = 21 (B)] < AlaL)" ™!

Z [Ty — Tp_1] < Z A(aL)"
n=1 n=0
A
T 1-—al
<0

Thus, Y ¢, — x,—1 converges absolutely and uniformly by the Weierstrass M-test.
Therefore,

lim z,(t) = T(t) exists!
n—oo

3. T solves LE.
Idea: We know |Z — x,,| gets small so break ’T—xo - ftto f (', z(¢'))dt'| into pieces like
7~ (o) t
subtract x,(t) —xo — [ f(t',xn_1(t')) dt' =0

Let r = ‘E— To — ftto f @, zt))dt

;= ‘—(a:n - —/ Pz (V) dt’

t
<7 — |+ fu,x>f<uam_1>d4
to

t
<|T— x|+ ) lf(t,7) — f(t,zp_1)|dt
0
<|T—xp| +al|T — xp_1]
which approaches 0 as n — oo because lim,, oo T, = T.
4. T = lim,,_, T, is continuous, i.e., given € > 0, 3 > 0 s.t.
t—t'<d = |z(t)—z(t')| <e
Idea: Split into known things

Z(t) = Z(t)] = [2(t) — 2n(t) + zn(t) — 20 (t') + 20 (t) — ()]

T(t) = zn ()] + |2n(t) — 2 ()] + |2n(t') — Z(1)]

IN

We pick n s.t. [T(t) — x,(t)| < § Vt which is possible because Weierstrass implies uniform
convergence. Then pick § s.t.

|2 () — 20 ()] < % V[t—t| <

which is possible because x,, is continuous.

5. T is unique.

Idea: Prove [z — Z| < |7 — Z.

e If @ is other solution, it also exists in R’.

21
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Proof. (by contradiction) If not, then
|Z(ts) —xo| = b= Ma

for some |t. —t| < a. But

ts
|Z(ts) — o] = [ z(t"))dt’
to
t
< [ It )
to
< M (t. —to)
<Ma=5b
Contradiction! O
e Have
t
z(t) -z =| [ fE,2{) - f(# 2(t))dt
t
tO
< [ If (@ z(t) - f(, 2@ at’
to
t
< / Lmax [2(t') — z(t')| dt
to
< Lamax |[T(t') — Z(t')|
max |[Z(t) — Z(t)| < max |Z(t) — Z(t)]
which is only possible if Z(t) — Z(t) = 0, i.e., solution is unique. O

22
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§10.1 Fourier Series
Goal: Solve linear PDE: 3 canonical examples

1. Heat/Diffusion equation
opu(t, x) — O2u(t,z) =0

— |7

2. Wave equation
Otu = 02u

3. Laplace equation:
O2u + 8§u =0

Question 10.1. How do we solve linear PDEs?

Use linearity to split big problems into small ones that you can solve (find the eigenvectors). Then
we split 1 PDE — oo ODEs. First, let’s define Fourier series.

Definition 10.1 (Fourier Series) — Fourier Series is a function written as a sum of sines and
cosines

flx) = % + i ay, sin(nz) + by, cos(nz)

n=1

o0
= E Cn eznm
— 00

where ¢, = ¢, + icip,.

- J

They have amazing properties:

23
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1. They can approximate almost anything

e analytic function
e smooth function
e periodic function
e differentiable function

e continuous/discontinuous function

2. They simplify differentiation!

d . .
%elkm _ ik_elkr
d2
e sinkz = —k%sinkz
d2
e coskx = —k%coskx

Just like Laplace transform, Fourier series transform differentiation into multiplication problem
(easier to deal with).

3. Fourier series are orthogonal

v
/ sinmx cosnrdr =0

s

or
s
/ sinmxsinnzdr =0 ifm#n

—T

or
s
/ cosmxcosnrdr =0 ifm#n

—T

This gives easy formulas

From these facts follow from linear algebra, because Fourier series are eigenfuncitons of differentiation.
They are the correct basis to solve linear PDEs.
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§11.1 Coefficients of Fourier Series

Question 11.1. How do we calculate Fourier Series a,,, b, =7

Consider the domain: [—m, 7], finite dimensions N, vector

u= E U;€;

How do we calculate u;?

where
5=l M=
0 ifi#j

We want to do this in co dimensions — inner product
N
N: (u,v)y=u-v= Zuivi
i=1

b
00 {u,v) x / u(z)v(z) dx
a
Inner Product: (u,v) — R takes in two function & spits out a number. It has to satisfy the following
properties

1. Bilinear

(au 4+ bv,) = alu, vw) + b(v, w)

2. Symmetric (u,v) = (u,v).

3. Positivity: (u,u) > 0 unless u = 0.
Inner products are important

e They imply a norm ||ul| = \/{(u, )

e Cauchy-Schwarz Inequality
(u,0)* < (u,u)(v,v)

e Triangle inequality
[lu+ vl < flull + [|v]]

Exercise 11.1. Prove these properties.
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Now, we will use inner products to calculate Fourier. Define

1 us

(u,v) = f/ u(z)v(x) de

T™J)_n

Under this inner product, sin kl, cos kl are orthogonal functions, i.e.,
(sinkxz,coslz) =0 Vk,l
(sinkz,sinlz) =0 if k #1
(coskx,coslz) =0 if k#1

Note: 1 = cosOx

Proof. Left as exercise, but use

cos ((k 4+ )z) = coskx coslz — sin kz sinlx

sin ((k + 1)) = sin kx coslz + sin lx cos kx

Also,
(sinkx,sinkx) =1
(coskzx,coskx)y =1 k#0
1,1) =2 0
We have

flz :@—&— ay cos kx + by sin kx
2

(f,coslz) = (% + Z ay, cos kx + by sin kx, cos lx)

ao oo o0 )
= ?<1, coslz) + Z ay{cos kx, coslz) + Z by, (sin kx, cos lx)
k=1 k=1
(f,coslz) = ay

(f,sinlz) = b

So we can write any function f(z)

o0
flz) = (12()+;akcoskx+bksinkx

where
1 s
ar = (f,coskzx) = — f(x) cos kx dx
71— —T

b = (f,sinkz) = 1 f(z)sinkx dzx
™ -7

Question 11.2. Are these orthogonal functions under (u,v)?

Question 11.3. Are there any other kind of L? inner product?
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Example 11.1
Consider f(z) =z

We have

Yo
2

o0
B = +Zakcoskx+bksinkx
k=1

ay = (x,cos kx)
1 T
= / xcoskx dx
ﬂ- —T
=0—-0—-0=0 (integration by parts)
b = (x,sin kx)
1 s
== / xsin kx dx

™

—T

1 [_Wcos km cos(—km)
7r

2(_1)k+1
k

Thus,

To show that infinite series converges

>

k=1

2(_1)k+1

k

which is conclusive (by Weierstrass-M test).

- (_(_W))k] (integration by parts)
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§12.1 Convergence of Fourier Series

Consider the last example from last lecture

flx)=a~ Z%_}Cﬁsinkx

k=1

Question 12.1. In what sense does it converge? (What’s happening at +)

Fourier series must be 27 periodic (because cos kx, sin kz are 2m-periodic) so the y must converge
to a 2m-periodic extension of the function.

fla+2m) = f(z)

Note: x is C' (derivative continuous) but Z is not C’. It is piecewise C’ (C’: f continuous and %
is continuous).
Piecewise C” on [a, b]

—
S

jump corner

f is O except at finitely many points. At any bad point we have

f(x™) =limpo f(z —h) if f(at) # f(z7) jump
f(z™) =limp_o f(z + h)
f(x™) =limp_o f'(x —h) if f(zT) = f(z7)

(
(z7) =limp_o f'(x + k) but f'(zt) # f(z~) corner

Theorem 12.1 (Fourier Convergence)

If f (z) is 27m-periodic, piecewise C’ function, then its Fourier series converges to f everywhere

Y ~
except jump points x where the series converges to w

Question 12.2. Recall the example at the beginning, why is there no cosines for x?
Odd/even symmetries!

Fact 12.1. We have

odd + odd = odd

even - even = even
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and
odd x odd = even
even X even = even
odd x even = odd

and

/ odd dz =0
—a

/ even dr = 2 / even dx
—a 0

This implies odd functions f have sine series and even functions have cosine series.
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Recap:

o0
fz) ~ % + ;akcoskx + by sin kx
where the coefficients are calculated as follows

ar = (f,coskx)
b = (f,sin kx)

(u,v) = 1 /7T u(z)v(x) de

L —

Symmetry simplifies ay, by. Fourier series converges for periodic and piecewise C'' functions.

§13.1 Complex Fourier Series

Recall the Euler’s formula

e** = cos kx + i sin kx
Also,
eikz _’_efikz
coskr = ————
2
) ik __ e—ikm
sin ko = -
21
So,

oo oo
ap . ikx
f~§+kglakcoskx+bk51nkx > kE cpe
= =0

We want ¢, = (f, e?**)

. . 1 ™ .
<61kx,ezkx> _ 7/ 621]{2{1} dx
™

—T

which is not necessarily positive and we want it to be strictly positive, i.e., norm.

T o2ikz ™
/ 627,16:1: dr = |: : :|
o 2ik | _
e27rki _ 6727rki
2ik
sin 2wk

k

=0

To fix this, let’s define Hermitian inner product

1 g —
1h9) =5 | S ds
where x € (—m, 7] and f,g: (—m, 7] = C. So
Cp = <f7 eikx>

1 (7 ;
Cr =5 [W f(x)e ™ dg
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Question 13.1. How do Fourier series work with integration?

Integration makes things smoother. We have

o0
f(l“)N%+Zakcoska:+bksinkx
k=1
/f(x)dajN/%dw—i—Zak/coskxdw—i—bk/smkxdx
k=1

Question 13.2. Is this okay?

Notice that

/COS krdr = s1nkkx /Sin krdr = %ska:

Problem: If f(z) =1, then
fe1
z X (_1)k+1
/ fdx ~ 2ZLsinkx
0 el

Constants terms in Fourier series are bad under integration.

1 s
= — d
ao - f(z)dx

—T

Integration is fine if the function has mean 0

i f@)dz =0

Compare f(z) =1 and g(z) = z.

Remark 13.1. Fourier series need piecewise C*. To have Fourier of f’, it must be C* so f must be
continuous (can have corners but not jumps).

f=ao +Zakcoskm+bksinlm
k=1

f' = kby cos kx — kay, sin kx

if f is continuous.

Summary:
e Integrate: divide by k&

e Differentiation: multiply by &
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§14.1 Rescaling Intervals of Fourier Series

We know Fourier series on [—7, w]. What about [—[,[]? We use coordinate transformation

We have

So F(y) = % + > p2, akcos ky + by sinky

ap = f/ F(y) cos ky dy

0
1
o

/_l F (y(@)) cos ky(a) ] do
= }/ll f(x)cos <kl7r:r) dx

So

ap > km . km
f(z) =F(y(z)) = D) + kZ:l aj Cos Tﬂc + by sin Tm

We can find b similarly.
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§15.1 The Relationship between Smoothness and Fourier
Coefficients

Smoother functions (more differentiable) have faster decaying Fourier coefficients. (infinitely
differentiable leads to exponential decay).

Example 15.1 e Discontinuous function — ¢ %
o OV = ¢

o O = ¢,

S E ¥ [

o C? = ¢,
Why?

Recall these definitions

Definition 15.2 — Ve, x IN s.t.
|fn(x) = f(z)] <& Vn>N(z)

Then, f,(x) = f(x) (pointwise convergence).

Definition 15.3 — Ve, AN s.t.
|fn(@) = f(@)| <e VYn>N, Vz

Then, f,(x) — f(x) (uniform convergence).

Series converges Y p-; fr(z) — g(z) if

su(@) = 3 ful@) > g() as n — o0

k=1

Weierstrass M-test: If |f,(z)] < M, and > .~ M, < oo, then > >~ f,(z) converges (abso-
lutely /uniformly). So the limit is continuous if f,, are continuous.
Consider a complex Fourier series
o0
f ~ Z cneikx

k=—o0

Theorem 15.4

If >02 . lew| < oo, then the Fourier series is “good”, i.e., the limit of the Fourier series is
continuous.

Proof. Weierstrass! _ _
|Ckezkm|é|ck||ezkz}:‘ck| 0
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Corollary 15.5
If |ex| < % where a > 1. Then Fourier series is continuous.
Proof. > 77, kMa < oo for @ > 1 by comparison test. O
Note:
o .
fN Z Ckezkm
k=—oc0
fIN Z ikckeikw
k=—oc0
Differentiation: ¢ — ikcy or |cx| — klck]
Theorem 15.6
If S0 |k|™|ex| < oo where f ~ S22 cpe*® then f(™) is continuous (f is C™)
Proof. Have
(o)
f(n) ~ Z (Zk) Ckezkz
k=—oc0
then Weierstrass |(ik)"cee™™| < [k["ck O
Corollary 15.7
If |ex| < % where ov > n + 1 then f is n times differentiable.
Proof. Comparison test: ¢ = k—12, then
1 1
|Ck| < k1—5 X E
So,
1 0
= C
1 1
el C
L 2
o C
O
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§16.1 Hilbert Spaces & Convergence in Norm

Goal: Prove Fourier series converge “in norm”. First, we need some definitions.

CDefinition 16.1 (L? integrable) — f is L? integrable if || f||> = 5= [ |f(2)]? dz < oo. )

(Definition 16.2 (Hilbert Space) — Hilbert space is vector space of L? integrable function )

Proof. Have

Has a 0 (0 function)

Closed under addition

If+ gl < IIF1+ gl < o0

Closed under scalar multiplication

lefll = lellFll < oo O
e test other axioms ...
Note: L? function have Fourier series.
Proof. |ci| = |(f,e™*)| < |If||le"**]| < oo (Cauchy-Schwarz). O

Note: L? functions are “abnormal” TBA

Fact 16.1. Hilbert spaces are complete (every “convergent” sequence has a limit that is L?)

Definition 16.3 — “Convergent” means Cauchy sequence for sequence a,, — a. We need

Cauchy : Ve, AN > |ay, —an| <e Vm,n >N

Aside: Completeness is the difference between rationals Q, and reals R (Q isn’t complete because 7
is limit of sequence in Q but 7 ¢ Q). Completeness matters for taking limits.

(Definition 16.4 (Convergence in Norm) — f,(x) — f(z) if ||fn(z) — f(z)|| — 0 as n — oo. )

We'll prove Fourier series converge to their function in norm in a general way for a general co-dim
vector space V' with an inner product.

Definition 16.5 (Orthonormal System) — Orthonormal system ¢1,¢a,... € V

0, 1#]
1, i=j

<¢ia¢j> = 5ij = {
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Definition 16.6 (General Fourier Series) — f ~ > 72 | ckdr where ¢; = (f, ¢;) and ¢; comes
from (f, ¢;) on both sides.

/Theorem 16.7
The truncated Fourier series

oo
Sp = Z ckd)k
k=1

is the best approximation to f in least squares sense, that is, consider V;, = span {¢1,...,¢n}
and take any p, = Y _, dx¢r € V,, then

Y 180 = fIl < llpn = fI YPn € Va )

Proof. We have

P =Y diox
k=1

= cxdr
k=1

Cr = <f7¢k>

Then,
||pn||2 = <pmpn>
= didr, Y _ i)
k=1 =1
= szkdz<¢k,¢l>
k=1 1=1
=Y drdidw
k=11=1
=>_|d
k=1
and
Hpn_f||2 = <pn_f7pn_f>
= <pn7pn>_2<pn7f> <faf>
= Z |d|* — 2 (de brs [ > +1£1?
= ldk — il - Z ekl + 1 £11?
k=1 k=1
Pick dy = ¢ — norm minimized by s,. O
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§17.1 Pointwise Convergence of Fourier Series

We know Fourier series converge in norms for continuous, piecewise C'!, periodic functions. But
Fourier series seemed to work even for discontinuous functions too (Gibbs phenomenon!). Today we
will prove it works pointwise for discontinuous function if s, = ZZ:_ n cre™ . Prove

(f@™) + f(z7))

o3, o) =

DN | =

1. Use the formulas for ¢z

=3 (5 [ sweoay) et

k=—n

= % ) ( > eik(x_y)> dy-

k=—n

Notice that > ,_ e is a geometric series

n ihe _ —ing ei(2n+1)w -1
D = T w1

k=—n

sin ((nt %) x)

sin 5
So
L s ) )
n = 5 d
5n(7) 2 f( ) sin 2(z — ) Y
1 sin (n + 2
oy T e
sin Sy
sm n+ 1 /0 sin(n+ 1)y
:f/ foap 0D gy L[ gDy,
n iy ) . sin 5y
WTS:
lim top = f(x™)
n—oo
lim bottom = f(z™)
n——oo
Note

1 [Tsin(n+3)y N ik
;/0 siny dyi [ Z dy

T k=

which is valid if only e? counts.

2. Prove a difference integral — 0 by showing that it’s a Fourier coefficient. Prove
1 [" sin (n+ 1)y

(fl@+y) = fzT)) snfnt o)y

— dy =0
21 Jo sin%y Y
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Notice that
fla+y) + fa)
sin %y

9(y)

is piecewise continuous Vy € [0, 7]. We need foﬂ g(y) sin (n + %) ydy = 0. Note that

1 1 1

sin [ n 4+ = | y = sin -y cosny + cos —y sinny
2 2 2

Then,

/07r (9(9) sin %) (0)ny + (g(y) cos g sin ny)

But we know Fourier coefficients decay for all L? integrable functions. So these terms — 0
and we prove pointwise convergence.
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§18.1 Heat Equation
We’ve been learning about Fourier series
@)= 2+ 3 aycoska + by sinka

2
k=1
o)

— E Ckeikm

k=—o00

Question 18.1. Why is Fourier series useful?

It’s used to solve PDEs; specifically, we want to investigate the heat equation in this lecture.

For us,
Owu(t, ) — kO2u(t,r) =0

where k is constant (diffusing constant). Note that
e 1x time derivative = 1x initial condition
e 2x space derivative = 2x boundary condition
Types of boundary condition
u(t,0) = a(t) (Dirichlet boundaries)
Ozu(t,0) = p(t) (Neumann boundaries)
Ozu~+ B(t)u = 7(t) (Robin/Mixed boundaries)
Homogeneous — RHS =0, i.e., u =0, d,u =0, or d,u+ Bu = 0.
Question 18.2. How do we solve this? (infinitely harder than an ODE!)

Assume u(t,z) = T(t)X (z). Substitute into dyu — kd?u = 0

This can only be true if neither depends on ¢ or z, i.e., constant. So

T/ X/l

— = A
kT X

What sign is A?

e If A > 0, we get exponential growth which isn’t physical.

X" =AX

X = AeVA® | Be=VAw
T = kT

T = Te
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e \=0,
X// —
X=Ax+B
T =
T="T,
e If A <0, redefine A — —\
X" =-)\X
X = AsinVAz + Bcos VAzx
T = —gAT
T = Tpe ™M
So either A =0, or A < 0.
Example 18.1
Consider
Ou — E)ﬁu =0
U(O,Z‘) = UO('I)
u(t,0) =0
u(t,l) =0

If we assume u(t,z) = T(t) X (x) we find
T X'
KT~ X
If XA = (;, X = Ax + B, but u(t,0) = u(t,]) =0 = A =B =0. So A <0. Let’s write
A= —w?,

A

X" = —w?X
X = Acoswz + Bsinwzx

Use BC’s to get A, B.

u(t,0) = T(t)X(0) =0 => X(0)=A=0

X = sinwx
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Example 18.2 (Cont’d)
And we have

7
The final solution is

- n?x2 4
u(t,x) = E (uoyke 72 sm(
n=1

u(t,l) =T(t)X(l) = Bsinwl =0
— wi=kr, k=1,2,...

Thus, w = kl” , and it’s an eigenvalue and sin 2Tz is an eigenfunction.

7))

We get g x from the Fourier series of the function ug(x).

Note: The Fourier coefficients decay more quickly as k gets larger so diffusion smooth things out. If

we have source term

Opu — 0%u = f(t,x)

We can express f as a Fourier series and solve an ODE for each Fourier coefficient.

Summary:
1. We assume separable solution: u(t,z) = T(¢) X (x)

2. Substituting gives an eigenvalue problem

X" =\X

3. The boundary conditions imply A = —w? where w = 2

4. Linearity mean we sum up all the eigenfunctions

© . o (k—ﬂ)zt
u(t,x)zz Qo pe” " 22

n=1

, Tasin (%x)

)

LT
sink—x

l

5. We use the initial condition to determine the Fourier series coeff, i j
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§19.1 Wave Equation
Goal: Solve the wave equation

1. Look for separable solutions
u(t,x) = T(t) X (z)
to
OFu(t, x) = 202u(t, x)

c: wave speed (%)
OH(TX) = 203(TX)
T//X — CQTX//
T”(t) _ CQX”(.%') _
Tt)  X(x)
a) A =w? >0, T =T = T:e“torT:e*“’tandX”:";—jX,X:eWTm or
e_sz

T"=0 = T=A+ Bt
X'"=0 = X=C+Dx
TX =a+bt+cx+d+z

c) A=-w?<0

T" = —w?T = T =sinwt or T = coswt
9 .
—w sinwzx COS W
X”:—QX:>X: or X =
C C

Next, let’s decide on the sign of A using the boundary conditions, e.g., homogeneous, Dirichlet,
boundary conditions

u(t,0) =u(t,l) =0
IftA>0
u= Ae“te’s + Be ¥le¥ + Cevle @ 4 De “le™ve

but the boundary condition implies that A= B =C =D = 0.
If A =0, similarly u = 0 is only possibility.
IfA<0,u=T(t)X(x), T = sinwt,coswt, X = sin £¥, cos =¥

u(t,0) =T(t)X(0)=X(0)=0

w0

0
— Asinw——i-Bcos—:B:O
c c

So X = Asin “F.

l
u(t,l) = T(H)X (1) = Asin
I
ol nw, n=1,
C
nmc
w=—
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In general, the solution is

o0
u(t,x) = Z (An coS ?t + B, sin ?t) sin
n=1

TO find A, B,,, we use the initial conditions
u(0,z) = f(z), Ou(0,x) = g(x)

nmwx

l

Example 19.1
Consider 07u = 9%u, z € [0, 1]

Using Dirichlet, the general solution is

o0
u(t,x) = Z (an cosnmt + by, sinnnt) sin nrwa

n=1

We want to get a,, b, with ICs. For ¢t = 0,

o0
u(0,z) = Z ap, sinnue
n=1

_{3:, 0<zx
- 1
17‘%, 5

INIA
8 o=

<1

1 1
ap = = / f(x) sinnradx
2 Jo

In general,
1

[N

0 1
E an/ sin nmx sin mrxzdr = /

1
n=1 0 0 3

rsinnrxdr + / (1 — z)sinnradx

0, n even
- 3 —1)k 7k sin T
2 (- (=] e nnd) = .. = 4 B et
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§20.1 Midterm 2
Need to know:

e How to calculate Fourier series

e How to test convergence?

e How does convergence relate to continuity?

e How does symmetry affect Fourier series?

e How does rescaling affect Fourier series?

e How does differentiation/integration affect Fourier series?

e How does smoothness (C™) relate to Fourier series?

e How to analyze generalized Fourier series in Hilbert spaces?

e How to use Fourier series to solve PDEs?

§20.2 Laplace Equations

Consider
02 + aiu =0

The Laplace equation satisfies the Maximum principle, i.e., the maximum (and minimum) value
of a solution to the Laplace equation must occur on the boundary,

Proof. If a function u has a maximum at (z,y) then
1. 2u<0
2
2. Oyu <0

But Laplace says d2u + d7u = 0. Thus, we can’t have local maximum (or minimum) in the
domain. 0
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Theorem 20.1

Solutions to Laplace equation, with given boundary conditions, are unique.

Proof. Suppose there exist u; and uy where
a,ful + ajul =0, wu; = f on the boundary
8%112 + BSUQ =0, wus = f on the boundary

Consider u; — us = Au. Since Laplace equation is linear, Awu solves Laplace. And we know that
Aw = 0 on the boundary. Therefore, Au = 0 everywhere (by maximum principle). O

Example 20.2

Consider

1 u(z,1) =0 1

u(0,y) =0 Qu+du=0 u(l,y) =0

and

Have u = X (2)Y (y)

X"Y +XY" =0
X _y"

x- v

e \=—-w?<0

X" = —w?’X = X = coswz, sinwz

Y =w?Y = Y =€, eV, coshy, sinhy

e A=w?>0

_ wT —wx
X =e"" e

Y = CoSwy, sinwy
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Example 20.3 (Cont’d)
Only A\ = —w? < 0 works. For X = sinnmax,

1
T > 5

Therefore,
Y, = Ae™™ + Be "™
Y(1)=0 = Ae""+Be " =0
< Y (y) xsinhnn(l —y)
In general,
(o)
u= Z ap sinhnm (1 — y) sinnre
n=1
and
u(z,0) = ia sinhnsimnrs =40 © 2
’ - " Il =g,
. 4
_ k g
= Z(—l) 22k 1) sinnmx
k=1
where
(=1)*4
a =
LT 22k + 1)2
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§21.1 Adjoints
For w € U, v € V and linear operator L

L:U—VorLu=v

Then,
(ur,ug) : U x U = R/C, ({v1,v9)) : V XV = R/C
(u, L™ [v]) = (L [u] , v))

Example 21.1
U:R™ V:R" L:A matrix with n rows and m columns

<U1,U2> = Uy - Uz, <<01,712>> = V102
What is A*?
((Au,v)) = (Au)Tv=u"ATv=u" (A" v)
=u' (ATU)
= (u, ATv)

Example 21.2
{(uy,u2) = u{ Muy, ({v1,v2)) = v{ Cvy
((Au,v)) = (Au)"Cv=u"ATCv=u"MM~1ATCv
=u'M (M'ATCv)
= (u, M~1AT Cv)

A* = M~'ATC — adjoint depends on inner products.

Differential operators as linear operators
du
U=’ Dlu]=—
u € , [u] .
D is linear! D [u,rus) = L4 . p&2 = D [uy] + D [us] and D [cu] = ¢2% = ¢D [u]. Say

b
(u17u2>:/ up (z)ug () do
b
«%w»:/mumwwx

Question 21.1. What is D*?
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If [uv]” = w(b)v(b) — u(a)v(a) = 0,
1. Dirichlet BC on u: u(b) = u(a) =0
2. Dirichlet BC on v: v(b) = v(a) =0 <= Neumann BC on u: «/(b) = v'(a) =0

3. Periodic BC

Boundary conditions matter. If they’re nice then

D* = —D for standard inner products

Question 21.2. What if

b

(uq,us up (z)ug(z)k(x) de
(x)

(V1,09 vy (x)ve(x)p(z) dz

-
-
—%d%(kv) if [uvk‘]l; =0.

Fact 21.1. (L*)* =L

Show D* [v] is

M
=W
M*

L
Fact 21.2. U=V
L*

Mo L= MIL[u]]
(MoL)" =L*o M* = L*[M* [w]]

Self-Adjoint: L* = L
d*u

2 _
D*=DoD, o

D? [u] =
Provided correct BCs and inner product
D* =D*oD* = (-D)-(-D) = D?

Fredholm Alternative:

Question 21.3. When can we solve a linear problem?
Llu]=f
If f L coker L <= ((f,v)) =0 for each v € coker L.

ker L : {u|L [u] = 0}
coker L : ker L* = {v|L* [v]

0}
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Example 21.3

Consider
Au=f
1 0 -1 U1 f1
0 1 —2 U2 | = f2
1 -2 3 us f3

Way # 1: Direct Gaussian elimination

1 0 -1 | f 10 -1 | f
0 1 =2 | fof ...0 [0 1 =2 | fa
1 -2 3 | f3 00 0 | fs—fi+2f

Thus, f3 — fi + 2f2 must be 0.
Way # 2: Find kernel of A*.

V1 + U3 0
A¥v = vg — 2u3 = |0
—v1 — 209 + 3vs 0
1
v=t|-2|, teR
—1
1 fi
Fredholm = t [—2| - | fo| = 0 which is the same as above.
-1 f3

Example 21.4
What about differential operators?

Way # 1: Direct
u// — f
v =a+ [ f@)dy
0

Ty
u:ax+b+/ / f(z)dzdy
o Jo

BCs = «/(0) =a=0and v/(l) = fol flx)dz =0
Way # 2: Fredholm

Adjoint of % is % for standard inner products

cokernel = kernel = {g(x)|¢" =0, ¢'(0) = ¢'(l) = 0}
= {c|c e R}

Thus, (c, f) = c(1, f) = cfol f(z)dz = 0.
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Proof. If v € coker L and L [u] = f, then

({(f;0)) = (L ful,0)) = (u, L* [v]) = (u,0) = Cl
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§22.1 Self-Adjoint & Positive Definite Linear Operators

/Definition 22.1 (Self-Adjoint Opeator) — Self-adjoint linear operator S : u — wu if )

(S [u1] ,u2) = (u1, S [ug]) Vuy,uz €u

- J

Example 22.2

% with standard L?{u,us) and appropriate boundary conditions

b
(S [u1],u2) = / ufus dx

b
1, b ’o
= [ujugl, —/ ujug dx
a
, b
!/ !/ "
= [ujugs — uyuy), + / uy Uy dx

= (u1, S [uz])

If w) (b)ua(b) — uq (b)ub(b) — uf(a)uz(a) + ui(a)uy(a) = 0 (homogeneous Dirichlet, mixed, and
periodic BCs all work)

Definition 22.3 (Positive Definite Opeator) — Positive definite linear operator S : u — u on
inner product space u,

positive definite : s > 0 if (S [u],u) >0 Yu # 0
positive semi-definite : s > 0 if (S [u],u) > 0 Vu

- J

o1
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Example 22.4

8= —% wit standard inner product and appropriate BCs,
b
(Su],uy = —/ u'udz
. b
= —[u'u], + / (u')? dx

= /ab(u')2 s

for appropriate BCs.

Question 22.1. Is this positive?

1. If homogeneous Dirichlet/Mixed BCs, then no constants solutions with v’ = 0 and so
S > 0.

2. If homogeneous Neumann/Periodic BCs, constants allowed where (S [u] ,u) = 0 for u # 0,
so S > 0.

Boundary conditions matter.

/Proposition 22.5 )

Positive definite operators have unique solutions.

J

Proof. w € kerS = Sfu]=0 = (S[u],u) =0 = u = 0. So ker S = {0}. Then, we get
unique solutions (If instead v # 0, v € ker S, then S{u] = f = S[u+v]=S5[u]+0= ftool) O

If L:u— v, then L* o L is self-adjoint and positive semi-definite, where ker S = ker L and positive
definite <= ker L = ker S = {0}

Proof. 1. S=L*oL
S*=(L*oL)'=L*oL*=L*oL=S5

2. Have

{u, S {ul) = (u, L*[L [u]])
= (L [u], L{ul))
= ||L[u]||* >0 unless L[u] =0, i.e., u € ker L = ker S

Question 22.2. Why are L* o L special?

Simple solvability conditions!

Theorem 22.6

If S=L*oL, and S[u] = f has solution then (z, f) = 0 for each z € ker S = ker S*. If
multiple solutions S [u1] = f, S [ug] = f, then us — uy € ker S

Proof. 1. Fredholm alternative for self-adjoint
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2. Suy —ug] = S[ur] —Sfuz) = f— f=0s0 ug —uz € ker S. O

Example 22.7

For standard inner products, S = D* o D = —D o D is self-adjoint and depending on BCs is
positive definite or positive semi-definite.

What about the non-standard inner products?
b
(uy,us) :/ kuqus dx
a

({v1,v2)) = /aprIUQ dx

Let L{u) = D[u] = L*[v] = —%(kv)’. So

is self-adjoint and positive semi-definite. And

1d d
_];% (de> = f(«) has unique solutions
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§23.1 Minimization Problem

/Theorem 23.1 )

Consider

Su=f (1)

where S is positive definite and self-adjoint operator. If w, solves 1), then u, minimizes the
following optimization problem

(u, Su) = (f,u) = Q(u)
- J

Proof. Have

DN =

(u, Su) — (u, f) = (u, Su) — (u, Su.)
= (Us + U — U, S (s +u— uy)) — (u, Suy)

1 1 1 1

= §<u*,5u*> + i(u — Uy S — uy)) + §<u*, S(u—uy)) + §<(u — Uy ), Sus) — (u, Suy)
1 1

= §<u - u*,S(u - U*)> - §<u*7su*>

where the first term is non-negative and the second term is a constant. Take u = u, and that’s the
solution to minimization problem. O

Example 23.2

—u(x) = f(z) on u(0) = u(b) = 0.

82
dx?

which is self-adjoint and positive definite operator (under certain BCs) and also

S = —

S=—-DoD
If u, solves this, then u, solves

Q(U) = <S’U,, u> - <f7 u>
min(|| Dul|* — (f, u))

§23.2 Sturm-Liouville Problem
Special class of B.V.P. For x € [a,b], p,q,r real valued function defined on |[a, b]
L (Ly)(z) = p(x)y" (z) + q(2)y' (z) + r(x)y(z)
2. BC:
ary(a) + azy’'(a) =
Bry(b) + Bay' (b) =

where

(a17a2) 7é (0,0), (BlaBQ) 7é (an)
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3. BVP/Sturm Liouville problem
Ly+ 2wy = f

where w is a known function that is positive and defined on [a, b].

So the S.L. problem is finding solutions to 2.
We need ¢ = p’ so that L is self-adjoint and positive definite. Then, 1. becomes

(Ly) (@) = (py/') + 1y
Properties:
1. S.L. is self-adjoint and positive definite.
2. A > 0 and eigenvectors are real-valued and orthogonal

3. Eigenvectors will form a complete basis
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§24 ‘ Lec 24: Nov 24, 2021

§24.1 Review

Motivation: u(t, z) = v(t)w(x)
d*w
dz?

We have countably infinite number of solutions \;, w;

= \w

o0
u(t,z) = Z cieitw; ()
i=1

and
_ {uo(@), wi)
’ <w27wz>
Consider the general PDE:
B _ L) 2 4 r(ayua)
ot dxr ox MEJUT
where
L @)L+ r(@yw(a) = u(o)
d:cpxdxw r(x)w(x) = Aw(z

§24.2 Eigenvalue and Eigenvectors of Self-Adjoint and PD
Operator

Consider

(Su,v) = (u, Sv)

and (Su,u) > 0 Vu € H (Hilbert space). Given the operator S, the eigenvalue problem can be
described as
Su = \u

where A € C is the eigenvalue and v € H is known as the eigenvector.

1. Self-adjoint operators have only purely real set of eigenvalues.

2. If A\, A2 € C are eigenvalues corresponding to two distinct eigenvectors ui,us € H. Then
<U1, U2> =0.

3. If S is positive (semi)-definite, then A > 0 or A > 0.

Theorem 24.1
If S is self-adjoint, then A € R.

Proof. Have
AMu,uy = (Au, u)
= (Su,u)
(u, Su)
= (u, \u)
= Mu,u)
= A=) = MeR O
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Theorem 24.2

If S is self-adjoint, A1, Ao € C are eigenvalues corresponding to two distinct eigenvectors
uy, ug € H. Then (uq,us) = 0.

Proof. Have

— <’LL1,U2> =0. O

Example 24.3

Suppose A = AT € R™*". Find an inner product on R" s.t. AD is self-adjoint where D € R"*"
with positive diagonal elements.
Want

<AD:IZ, y>D = <£17, ADy)D

Have

/Theorem 24.4 A
If S is self-adjoint and positive definite, the smallest eigenvalue A; of S is given by
A1 = min Ry
ue€H\{0}
where g
R[] = &5
(u, )
- J
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§25 ‘ Lec 25: Nov 29, 2021

§25.1 Functional Derivatives
Question 25.1. How do we optimize a function f7
1. Calculate the derivative f’/gradient V f
2. Find where the derivative/gradient = 0
Question 25.2. What about optimizing a function of functions?
In general,

I(y) = /xz flx,y,y') de

Note: I eats functions y and their derivatives y" and returns numbers (functional).

Example 25.1
Find function y that minimizes path length between (1, 1), (2,y2)

2
I)= [ Vi+yds
1
where y(x1) = y1, y(x2) = y2

I=/ f(z,y,y) dx

1

of
7y ="

A derivative is a limit of differences
o 1-dim: lim._,o f(x +¢) — f(z) = ef'(z) (standard derivative)
o n-dim: lim. o f (x +ev) — f(x) ~ ev - VI (partial/directional derivative)

o oo-dim: lim. o I(y +¢en) — I(y) = s(‘;—’;, z) (functional derivative)

Example 25.2 (Cont’d from above)
We have

T2
I(y):/ V1+y?dz
x1
T2 P 2 12
I(y+en) = V1+y”® +2ey'n +en dx
o
~ V1idy? +e( )+ .)+... da
1

x

and ... is what we want. Differentiate I(y + en) with respect to € and set € = 0.

dI 2 g , g
E(yﬂtsn):/ %(1+y2+2€y’n'+62n2)2 dx
z1
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Example 25.3 (Cont’d)

Then
d 2 ’ 9 /2 1 7 2 2 7 o /2 _%
%(1—#1/ +2ey'n +e7n ):§<2yn + 2en )(1+y +2ey'n +e°n )
. dI T2 y/n/
ElgT}JI(Z/+577) —I(y) —5d*€(y+577) o € . de
Extremes . .
*_ym
————dx =0 Vn(x) where n(x;) = n(zz) =0
*1 /1+y12
So

/m(_n) (y// (1 + y/Q . y/2)) /(1 + yIZ)% dz = 0

T2 y//
— / ———— n(z)dz =0
- (1 +y/2)§

This must be true for all n at the optimum. This requires that y” 5+ = 0 everywhere which

I
is solved by ¢/ =0 = y = y; + £=%Lyy — straight lines.

T2—T1

Optimizing a functional gave us a differential equation. This DE is called an Euler-Lagrange
equation. In general, if

I(y)=/ Qf(x,yyy’)d:c

then to optimize we want the functional derivative of f to be zero, which involves IBP.

d
iy
e (y +en)

e=

d [*
0=df€/ f(x,y+eny +en') de
_[T(of . or
_/QE1 (ayn—l—ay,n>dw
_ [T (of _d (oF _
/zl (89 dx <0y’)>ndxo

_9f
- <@J)>

Sy Oy dx

of _Of 4 (of\_of (009f 00f,  O0f0f .\ _,
oy ) "y \azoy "ayay? "oy oy’ )T
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§26 ‘ Lec 26: Dec 1, 2021

§26.1 Calculus of Variations with Constraints

Question 26.1. What if there are more variables?

T2
I(y, z) =/ f(zy,2,y,2) de
z1

There are more Euler-Lagrange equations

6f _0f _d (9f\_, o Of_9f d(of
i 3¢ LI - (57)

Sz 9z dx

Question 26.2. How do we optimize with constraints?

Example 26.1
max z = 22 + y? with constraint (z — 1)? +¢% = 1.
Obvious way: parametrize the constrained region. For t € [0, 27),
z(t) =1+ cos(t)
y(t) = sin(t)
2(t) = 2(t)* +y(t)?
= (1 + cost)? + sint?
=1+ 2cost+ cos?t +sin’t
=2+ 2cost

max z(t) = ‘fii =—2sint=0 = t=0,7

t=0 = z=4
t=m — 2=0

Thus, maximum at t =0, x = 2, y = 0.

But parametrizing here isn’t always so simple. Let’s use a Lagrange multiplier A. Consider
2@y, N) =2 +y* = A((z—1)>+y° — 1)
Now, we optimize the easy way. Set 0,2 =0, 0yz =0, Orz2 =0

Opz=2r—X2(x—1)=0
Oyz =2y — A2y =0
hz=—((z—1)24+4°-1)=0

Solve the above system of equations, we obtain
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I Remark 26.2. There’s no need to PARAMETRIZE!

The Lagrange multiplier allows us to find constrained optima using grad = 0 approach. The
optimum along the constraint level set has to happen when moving along the constraint doesn’t

change the function.

§26.2 Calculus of Variations with Integral Constraints

y)=/ 2f(x,y7y’)dw

)
J(y) =/ g(z,y,y')de =0
T

Let’s say we want to maximize

with constraint

Now we want to minimize
L(y,A) = I(y) — AJ(y)
0L dL

5 dg( y+en, A)

e=0

d 1
= f/ f@y+eny +en')—Ag(x,y+en,y'en) do
of L Of (P9, P9

7/0 ay" " ay" /\<0yn+5’ >dm

/1 af d af dg d [ dg

- AN (A N W A A dz
Oy oy’ oy dx \ 0y

and O\F = J(z,y,y’) = 0. So now

of _d (9f\ _ (% _d (99))_,
81/_<0y> (311 af(@y’)>_

J(z,y,y') =0

Example 26.3

Minimize arc-length, given fixed area
minimize I(y / V1+y?de, y(0)=0, y(1)=0

where J(y fo ydz = A or J(y fo y — Adx = 0. So minimize
F(y,\) =1(y) — AJ(y)

1
~ [ VIEP M- Ao
OF d
= = v/
dEF(y+sn, / ( 1+ W +en)?2 =My +en— A))d

dy
Loy

1 /i
:/ "(yBA> dx
o \(1+vy)2

— A\ndzx
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Example 26.4 (Cont’d)
So

" F 1
y73+A=Oandd—:/y—Adx
(1—|—y/)§ d\ 0

Now, y" (1 —i—y’)*% +A=0

, c— Az

e o
y=3VI= (=P +d

M(y—d)?=1-(c— \x)?

This is a circle. It goes through (0,0) and (0,1) and X is determined by fixing the area.
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