
Math 164 – Optimization
University of California, Los Angeles

Duc Vu

Spring 2021

This is math 164 – Optimization taught by Professor Li. We meet weekly on MWF
from 3:00 pm to 3:50 pm for lecture. The main textbook used for the class is An
Introduction to Optimization 4th by Chong and Zak. Other course notes can be found
at my github. Please let me know through my email if you spot any typos in the note.

Contents

1 Lec 1: Mar 29, 2021 5
1.1 Introduction . 5
1.2 Some Examples . 6
1.3 Classification of Optimizations . 9

2 Lec 2: Mar 31, 2021 11
2.1 An Overview of Linear Algebra . 11

3 Lec 3: Apr 2, 2021 16
3.1 Lec 2 (Cont’d) . 16
3.2 Linear Operators . 20
3.3 Operator Norms . 20

4 Lec 4: Apr 5, 2021 22
4.1 Operator Norms (Cont’d) . 22
4.2 Inverse Operator . 24
4.3 Adjoint Operators . 25

5 Lec 5: Apr 7, 2021 27
5.1 Fundamental Subspaces of Linear Operators 27
5.2 Projection Operators . 28

6 Lec 6: Apr 9, 2021 31
6.1 Motivating Examples . 31
6.2 Eigenvalues and Eigenvectors . 32

7 Lec 7: Apr 12, 2021 35
7.1 Diagonalization . 35
7.2 Positive Definite Matrices . 36

https://github.com/tducvu/LectureNotes
mailto:ducvu2718@ucla.edu

Duc Vu (Spring 2021) Contents

8 Lec 8: Apr 14, 2021 39
8.1 Some Properties of Eigenvalues . 39
8.2 Singular Value Decomposition . 39
8.3 Gradient, Hessian, Jacobian, and Chain Rule 41

9 Lec 9: Apr 16, 2021 43
9.1 Lec 8 (Cont’d) . 43

10 Lec 10: Apr 19, 2021 45
10.1 Lec 9 (Cont’d) . 45
10.2 Taylor’s Theorem . 46

11 Lec 11: Apr 21, 2021 48
11.1 Taylor’s Theorem (Cont’d) . 48
11.2 Solution and Optimality Conditions . 49

12 Lec 12: Apr 23, 2021 50
12.1 Solution and Optimality Conditions (Cont’d) 50
12.2 Midterm . 51
12.3 Convexity . 51

13 Lec 13: Apr 26, 2021 54
13.1 Strongly Convex Functions . 54

14 Lec 14: Apr 28, 2021 56
14.1 Examples of Finding Global Minimizers . 56

15 Midterm: Apr 30, 2021 – :D 58

16 Lec 15: May 3, 2021 59
16.1 Gradient Descent Methods . 59

17 Lec 16: May 5, 2021 62
17.1 Gradient Descent Methods (Cont’d) . 62

18 Lec 17: May 7, 2021 64
18.1 Gradient Descent Methods (Cont’d) . 64
18.2 An Example . 65

19 Lec 18: May 10, 2021 67
19.1 An Example (Cont’d) . 67
19.2 Newton’s Method . 67

20 Lec 19: May 12, 2021 69
20.1 Newton’s Method (Cont’d) . 69

21 Lec 20: May 14, 2021 72
21.1 Gradient Descent v.s. Newton’s Method . 72
21.2 Subgradient Methods . 73

2

Duc Vu (Spring 2021) List of Definitions

22 Lec 21: May 17, 2021 75
22.1 Subgradient Methods (Cont’d) . 75

23 Lec 22: May 19, 2021 79
23.1 Subgradient Methods (Cont’d) . 79

24 Lec 23: May 21, 2021 81
24.1 Subgradient Methods (Cont’d) . 81
24.2 Theory of Constrained Optimization . 82

25 Lec 24: May 24, 2021 83
25.1 Theory of Constrained Optimization (Cont’d) 83

26 Lec 25: May 26, 2021 86
26.1 Example – KKT Conditions . 86

27 Lec 26: May 28, 2021 88
27.1 Examples – KKT Conditions (Cont’d) . 88
27.2 Duality . 89

28 Lec 27: Jun 2, 2021 91
28.1 Duality (Cont’d) . 91
28.2 Lagrange Dual Problem . 91

29 Lec 28: Jun 4, 2021 93
29.1 Final Review . 93

List of Theorems

11.2 Necessary Conditions for Smooth Unconstrained Optimization 49
12.1 Sufficient Condition for Smooth Unconstrained Optimization 50
23.3 Convergence of Subgradient Method with Polyak’s Stepsize 80
24.1 Subgradient Method for Convex and Lipschitz Functions 81
25.3 First-Order Necessary Condition; KKT Conditions 85

List of Definitions

2.1 Linear Subspace . 12
2.4 Linear Combination . 13
2.5 Span . 13
2.7 Linear Dependence . 14
2.8 Linear Independence . 14
2.10 Basis . 14
2.11 Dimension . 15
3.1 Norm . 16
3.2 Normed Linear Space . 16
3.4 Inner Product . 17
3.5 Inner Product Space . 17

3

Duc Vu (Spring 2021) List of Definitions

3.6 Orthogonality . 17
3.9 Orthogonal Basis . 19
3.10 Orthonormal Basis . 19
3.13 Linear Operator . 20
3.14 Operator Norm . 21
4.1 Invertibility . 24
4.4 Adjoint of an Operator . 25
4.5 Self-Adjoint Operator . 25
5.1 Range . 27
5.2 Nullspace . 27
5.3 Projection Operator . 28
5.4 Orthgonal Projection Operator . 28
11.1 Critical/Stationary Point . 49
12.2 Local Maximizer . 51
12.3 Saddle Point . 51
12.4 Convex Set . 51
12.6 Convex Function . 53

4

Duc Vu (Spring 2021) 1 Lec 1: Mar 29, 2021

§1 Lec 1: Mar 29, 2021

§1.1 Introduction

Question 1.1. Why Optimization?

• Find the fastest route from A to B.

• Possible constraints: avoid tolls?

Question 1.2. So what is optimization?

• Optimization is an important tool in decision science and in the analysis of artificial
or physical systems.

• An optimization problem involves

– An objective, which is a scalar, quantitative measure of the performance of the
system under study.

– examples of objectives include profit, time, energy, error, loss, cost, etc.

– The objective depends on certain characteristics of the system, called variables
or unknowns or parameters.

– Often the variables are restricted, or constrained in some way.

– The goal of solving an optimization problem is to find values of the variables
that satisfy the constraints and optimize/minimize/maximize the objective.

In general, an optimization problem can be summarized as

Optimized Objective(Variables) Subject to Constraints on variables

Applying the optimization framework to solve problems involves three steps:

5

Duc Vu (Spring 2021) 1 Lec 1: Mar 29, 2021

1. Modeling: identifying objective, variables, and constraints for a given problem.

2. Solving: employing an optimization algorithm to find solutions, usually with the help
of a computer.

3. Analyzing: recognizing whether the problem has been successfully solved using
optimality conditions.

Mathematically speaking, optimization is the minimization or maximization of a (scalar
valued) function subject to constraints on its variables.
We use the following notation

• x is a vector of variables/unknowns/parameters.

• f(x) is the objective function, a scalar function of x that we want to maximize or
minimize.

• Ci(x) are constraint functions, which are scalar functions of x that define certain
equations or inequalities that the unknown vector x must satisfy.

Using this notation, the optimization problem is

minimize f(x)︸︷︷︸
objective

with x ∈ Rn︸ ︷︷ ︸
variables

subject to

ci(x) = 0, i ∈ E︸︷︷︸

equality

ci(x) ≥ 0, i ∈ I︸︷︷︸
inequality

The set of variables that satisfies all constraints, i.e.,

Ω = {x ∈ Rn : ci(x) = 0, i ∈ E , ci(x) ≥ 0, i ∈ I}

is called the feasible region/set. So the optimization can also be written in an abstract
manner as

minimize f(x) with x ∈ Rn subject to x ∈ Ω︸ ︷︷ ︸
feasible/constraint set

§1.2 Some Examples

6

Duc Vu (Spring 2021) 1 Lec 1: Mar 29, 2021

Example 1.1

Consider the problem

minimize (x1 − 2)2 + (x2 − 1)2 subject to

x2
1 − x2 ≤ 0

x1 + x2 ≤ 2

We identify

• the optimization variable x =

[
x1

x2

]
• the objective(cost) function f(x) = (x1 − 2)2 + (x2 − 1)2

• the constraint c(x) =

[
c1(x)
c2(x)

]
=

[
x2 − x2

1

2− x1 − x2

]
, I = {1, 2}, E = ∅.

A lot of times we stack all equality constraints and/or inequality constraints into vector
functions and write, e.g., c(x) ≥ 0 meaning element-wise equality or inequality.

c(x) =

c1(x)
c2(x)
c3(x)

...

7

Duc Vu (Spring 2021) 1 Lec 1: Mar 29, 2021

Example 1.2 (Linear Regression)

Given a set of feature vectors ai ∈ Rn and outcomes yi, i = 1, . . . , N , find weights x
that predict the outcome accuracy xTai ≈ yi.

We can find the optimal x by solving the least squares problem.

min
x

N∑
i=1

(
yi − xTai

)2

8

Duc Vu (Spring 2021) 1 Lec 1: Mar 29, 2021

Example 1.3

The Netflix prize: predict how a user will rate a movie.

• Some pattern exists: users do not assign ratings completely at random – if you
like Godfather I, you’ll probably like Godfather II.

• We have lots and lots of data: we know how a user has rated other movies, and
we know how other users have rated this (and other) movies.

• Let yij denote the rate of user i for movie j.

• The Netflix price concerns finding a low-rank matrix X such that xij = yij for
observed (i, j), related to the following optimization problem

min
X

(minimize)
∑

observed(i,j)

(xij − yij)2 subject to rank(X) ≤ r

or an alternative way is to

min
X

rank(X) s.t. xij = yij observed(i, j)

§1.3 Classi f ication of Optimizations

minimize f(x)

subject to ci(x) = 0, i ∈ E
ci(x) ≥ 0, i ∈ I

9

Duc Vu (Spring 2021) 1 Lec 1: Mar 29, 2021

• Unconstrained Optimization: E = I = ∅.

– Many practical problems are unconstrained or the constraints can be safely
discarded.

– Unconstrained problems arise also as reformulation of constrained ones by
replacing the constraints with penalization.

• Contrained Optimization: when constraints are essential for the problem.

• Linear Programming: when the objective function and all the constraints are linear
function of x.

– widely used in management, financial, and economic applications.

• Nonlinear Programming: at least some of the constraints or the objective are nonlinear
functions.

– tend to arise naturally in physical sciences, engineering, signal processing, and
machine learning.

– become more widely used in management and economic sciences as well.

• Global Optimization: aim at fining the global optimal solution, which is generally
very challenging.

• Local Optimization: focuses instead on the computation and characterization of local
solutions.

• Convex Optimization: the objective function is convex, the equality constraint func-
tions are linear, and the inequality constraint functions are concave.

10

Duc Vu (Spring 2021) 2 Lec 2: Mar 31, 2021

§2 Lec 2: Mar 31, 2021

§2.1 An Overview of Linear Algebra

Vector Spaces:
In “linear algebra”, we denote a vector as a list of numbers,

~x =

x1

x2
...
xn

 ∈ Rn or Cn

The general definition of a vector space is as follows.

• A vector space S is composed of a set of elements (called “vectors”) and members of
a field R (called scalars).

– Roughly, vectors are objects that can be added together and multiplied by
numbers (namely, the scalars).

– A field is a set of numbers for which addition and multiplication are will defined.
We will typically use R = R or R = C.

• In a vector space, there must be two rules defined for combining vectors and scalars.

– The first operation is vector addition, which associates with any two vectors
~x, ~y ∈ S the sum ~x+ ~y which also must belong to S.

– The second operation is scalar multiplication, which associates with any vector
~x ∈ S and any scalar a ∈ R the scalar multiple of ~x by a, denoted by a~x or a · ~x,
which must belong to S.

• The vector addition operation must obey four rules:

1. Commutativity: ~x+ ~y = ~y + ~x ∀~x, ~y ∈ S.

2. Associativity: ~x+ (~y + ~z) = (~x+ ~y) + ~z ∀~x, ~y, ~z ∈ S.

3. There is a unique “zero vector” ~0 ∈ S such that ~x+~0 = ~x ∀~x ∈ S.

4. For each ~x ∈ S, there is a vector −~x ∈ S such that ~x+ (−~x) = ~0.

• The scalar multiplication operation must also obey four rules:

1. Distributivity: a (~x+ ~y) = a~x+a~y and (a+b)~x = a~x+b~x ∀~x, ~y ∈ S and a, b ∈ R.

2. Associativity: (ab)~x = a(b~x) ∀~x ∈ S and a, b ∈ R.

3. For the multiplicative identity of R (denoted by the scalar 1 ∈ R), we have
1 · ~x = ~x ∈ S.

4. For the additive identity of R (denoted by the scalar 0 ∈ R), we have 0·~x = ~0 ∈ S.

Linear Subspaces:
The concept of a linear subspace is useful for modeling, approximating signals, discussing

the concept of bases,etc.

11

Duc Vu (Spring 2021) 2 Lec 2: Mar 31, 2021

Definition 2.1 (Linear Subspace) — A nonempty subset T of a vector space S is called
a subspace (or linear subspace) of S if

a~x+ b~y ∈ T

for all ~x, ~y ∈ T and all a, b ∈ R.

Notes:

• Any linear subspace T must contain ~0.

• Any vector space S is a linear subspace (of itself).

• Any linear subspace T meets all the properties of a vector space.

Example 2.2

Are either of these a subspace of S = R2

Left: No! Right: Yes!

Example 2.3

Which of the following are subspaces?

1. S = R5 and T =
{
~x ∈ R5 : x4 = 0

}
– Yes!

2. S = R5 and T =
{
~x ∈ R5 : x4 = 1

}
– No, add any two vectors in T and the sum

will not belong to T .

3. S = R5 and T is the set of vectors in R5 with no more than 3 nonzero entries –
No, can add certain vectors in T to get up to 5 nonzero elements.

Linear Combinations:
Linear combinations are used to build new vectors a weighted sum of other vec-

tors.

12

Duc Vu (Spring 2021) 2 Lec 2: Mar 31, 2021

Definition 2.4 (Linear Combination) — Let M = {~v1, ~v2, . . . , ~vn} be a collection of
vectors in a vector space S. (we will stick with finite collections at the moment).
A linear combination of vectors in M is a sum of the form

a1 ~v1 + a2 ~v2 + . . .+ an ~vn

for some a1, a2, . . . , an ∈ R. Since S is a vector space, this sum must belong to S.

Mentally, you might find it useful to replace “linear combination” with “weighted sum”,
although this is not standard terminology.

Definition 2.5 (Span) — Let M = {~v1, . . . , ~vn} be a finite collection of vectors in a
vector space S. The span of M , denoted by span(M) or span {~v1, . . . , ~vn}, is the set
of all linear combinations of vectors in M .

Example 2.6

Consider the vectors ~v1 =

1
1
0

 and ~v2 =

0
1
0

. What is span {~v1, ~v2}?

The entire (x1, x2)-plane.

When we are in Rn for some finite n, it is common to use matrix-vector notation as
shorthand for linear combinations:

• Suppose ~x = c1 ~p1 + . . .+ ck ~pk

• Then we may define the n× k matrix

A =
[
~p1 ~p2 . . . ~pk

]
13

Duc Vu (Spring 2021) 2 Lec 2: Mar 31, 2021

and the k × 1 vector

~c =

c1

c2
...
ck

and this allows us to write the n× 1 vector ~x as ~x = A~c.

Definition 2.7 (Linear Dependence) — A finite set of vectors ~v1, . . . , ~vn in a vector
space S is said to be linearly dependent if there exists scalars a1, . . . , an ∈ R, not all
equal to zero, such that

a1 ~v1 + . . .+ an ~vn = ~0

Definition 2.8 (Linear Independence) — A finite set of vectors ~v1, . . . , ~vn in a vector
space S is said to be linearly independent if

a1 ~v1 + . . .+ an ~vn = ~0

only when all ak = 0.

Every vector in the span of a linearly independent set of vectors has a unique expansion in
terms of those vectors. This is formalized in the following lemma.

Lemma 2.9

Suppose ~v1, . . . , ~vn are linearly indep. and suppose

a1 ~v1 + . . .+ an ~vn = b1 ~v1 + . . .+ bn ~vn

for some scalars a1, . . . , an ∈ R and b1, . . . , bn ∈ R. Then ak = bk for k = 1, 2, . . . , n.

Proof. Note that
∑n

k=1 (ak − bk) ~vk = ~0. Since ~v1, . . . , ~vn are linearly indep., it must follow
that ak − bk = 0 for all k = 1, 2, . . . , n.

Bases and Dimension:
Now that we know how to combine vectors (via linear combinations), let’s think about

important sets of vectors we’d be interested in combining.

Definition 2.10 (Basis) — A finite set of vectors ~v1, . . . , ~vn in a vector space S is said
to form a basis for S if the following two conditions are satisfied:

1. ~v1, . . . , ~vn are linearly independent.

2. span {~v1, . . . , ~vn} = S.

14

Duc Vu (Spring 2021) 2 Lec 2: Mar 31, 2021

A vector space wit a finite basis, as in the above definition, is said to be finite-dimensional.
Any two bases for a finite-dimensional vector space contain the same number of elements.
This leads to a meaningful definition of dimension.

Definition 2.11 (Dimension) — • For a vector space S that can be spanned using
a finite set of basis vectors, the dimension of S is the number of vectors required
in any basis for S.

• For a vector space S that cannot be spanned using a finite set of basis vectors,
the dimension of S is said to be infinite.

Example 2.12 (Bases for S = Rn) • The standard, or canonical, basis for Rn is
given by:

{~v1, ~v2, . . . , ~vn} =

1
0
...
0

 ,

0
1
...
0

 , . . . ,

0
0
...
1

• Any set of n linearly indep. vectors in Rn forms a basis for Rn.

15

Duc Vu (Spring 2021) 3 Lec 3: Apr 2, 2021

§3 Lec 3: Apr 2, 2021

§3.1 Lec 2 (Cont’d)

Normed Linear Spaces:
A norm is a function used to measure the size of vectors in a vector space.

Definition 3.1 (Norm) — A norm ‖ · ‖ on a vector space S is a mapping ‖ · ‖ : S → R
with the following properties:

1. ‖~x‖ ≥ 0 for all ~x ∈ S, and ‖~x‖ = 0 ⇐⇒ ~x = ~0.

2. Triangle inequality: ‖~x+ ~y‖ ≤ ‖~x‖+ ‖~y‖ for all ~x, ~y ∈ S.

3. ‖a~x‖ = |a| · ‖~x‖ for any a ∈ R and ~x ∈ S.

Definition 3.2 (Normed Linear Space) — A normed linear space is a vector space S
together with a valid norm ‖ · ‖ : S → R.

The lp metrics for vectors in Rn extend naturally to lp norms for these same spaces:

• l1 norm: ‖~x‖1 =
∑n

i=1 |xi|

• l2 (“Euclidean”) norm:

‖~x‖2 =

(
n∑
i=1

|xi|2
) 1

2

• lp norm for 1 ≤ p <∞:

‖~x‖p =

(
n∑
i=1

|xi|p
) 1

p

• l∞ norm:
‖~x‖∞ = max

i=1,...,n
|xi|

• Bonus – l0 norm (not really a norm – not satisfied the definition of a norm)

‖~x‖0 = # of nonzeros in ~x

16

Duc Vu (Spring 2021) 3 Lec 3: Apr 2, 2021

Example 3.3

The “unit ball” in a normed linear space is the set of all vectors in S having norm less
than or equal to 1. Suppose S = R2 and draw the lp balls for p = 1, 2,∞.

• p = 1: ‖~x‖1 = |x1|+ |x2| ≤ 1 – diamond.

• p = 2: ‖~x‖2 = x2
1 + x2

2 ≤ 1 – circle.

• p =∞ : ‖~x‖∞ = max {|x1|, |x2|} – square.

Inner Product Spaces:
An inner product is a function used to compare two vectors in a vector space. The

concept of an inner product will give us additional geometric structure beyond what is
available in general normed linear spaces. In particular, using an inner product we can
define a meaningful measure of the angle between two vectors, discuss orthonormal bases
and orthogonal projections, etc.

Definition 3.4 (Inner Product) — An inner product 〈·, ·〉 on a vector space S is a
mapping 〈·, ·〉 : S × S → R with the following properties:

1. 〈~x, ~y〉 = 〈~y, ~x〉∗ for all ~x, ~y ∈ S.

2. For any ~x, ~y, ~z ∈ S and any a, b ∈ R, 〈a~x+ b~y, ~z〉 = a〈~x, ~z〉+ b〈~y, ~z〉.

3. For any ~x ∈ S, 〈~x, ~x〉 is real-valued and non-negative, and 〈~x, ~x〉 = 0 iff ~x = ~0.

Definition 3.5 (Inner Product Space) — An inner product space is a vector space S
together with a valid inner product 〈·, ·〉 : S × S → R.

Definition 3.6 (Orthogonality) — Two vectors ~x and ~y in an inner product space S
are said to be orthogonal if 〈~x, ~y〉 = 0.

17

Duc Vu (Spring 2021) 3 Lec 3: Apr 2, 2021

Example 3.7

When S = Rn, the standard inner product between two vectors ~x, ~y ∈ S is given by

〈~x, ~y〉 =
n∑
i=1

xiyi = ~y>~x

The standard inner product on Rn is also known as the dot product.
S = Cn : 〈~x, ~y〉 = ~yH~x =

∑n
i=1 xiy

∗
i where H denotes conjugate transpose/hermitian.

Before we get to the connection between inner product and angles, it is worth noting that
inner products can actually be used to measure the length of vectors (and thus distances
between vectors as well).
In particular, any valid inner product induces a valid norm by

‖~x‖ =
√
〈~x, ~x〉

Example 3.8

When S = Rn, the standard inner product induces the following norm:

‖~x‖ =
√
〈~x, ~x〉 =

√√√√ n∑
i=1

x2
i

We can recognize this as the l2 norm.

Other lp norm (for p 6= 2)cannot be induced by inner products. Because every valid inner
product induces a valid norm, every inner product space is also a normed linear space. But,
not every normed linear space is also an inner product space:

Recall the definition of a basis in a generic, finite-dimensional vector space. In inner
product spaces, a particularly useful class of bases are orthogonal bases.

18

Duc Vu (Spring 2021) 3 Lec 3: Apr 2, 2021

Definition 3.9 (Orthogonal Basis) — A finite sets of non-zero vectors ~v1, . . . , ~vn in an
inner product space S is said to form an orthogonal basis for S if the following two
conditions are satisfied:

1. 〈 ~vk, ~vl〉 = 0 for all k 6= l (note that this implies the vectors are linearly indep.)

2. span {~v1, . . . , ~vn} = S

Definition 3.10 (Orthonormal Basis) — An orthogonal basis is called orthonormal
basis or orthobasis if every basis vector ~vk has unit norm (i.e., ‖~vk = 1‖) according to
the induced norm in the inner product space.

Example 3.11

Using the standard inner product,

~v1 =

[
1
0

]
and ~v2 =

[
0
1

]
form an orthobasis for R2.

19

Duc Vu (Spring 2021) 3 Lec 3: Apr 2, 2021

Example 3.12 (Rotation of 45 degree from the last example)

Another possible orthobasis in R2 is given by

~v1 =

[
1√
2

1√
2

]
and ~v2 =

[
1√
2

− 1√
2

]

§3.2 Linear Operators

Operators are transformations that map vectors in some vector space to vectors in some
other (possible different) vector space.

Definition 3.13 (Linear Operator) — Suppose X and Y are vector spaces. We say the
operator A : X → Y is a linear operator if

A (α1~x1 + α2~x2) = α1A~x1 + α2A~x2

for all α1, α2 ∈ R and ~x1, ~x2 ∈ X.

Fact 3.1. If X = Rn and Y = Rm, any linear operator from X to Y can be represented as
multiplication by an m× n matrix.

Therefore, a particularly interesting class of linear operators for us will simply be matrices.

§3.3 Operator Norms

Roughly speaking, operator norms help us talk about the “gain” of a system.

20

Duc Vu (Spring 2021) 3 Lec 3: Apr 2, 2021

Definition 3.14 (Operator Norm) — Let X and Y be normed linear spaces with
corresponding norms ‖ · ‖X and ‖ · ‖Y and suppose A : X → Y is linear operator. The
operator norm ‖A‖ is defined as

‖A‖ := sup
~06=~x∈X

‖A~x‖Y
‖~x‖X

This is equivalent to
‖A‖ := sup

~x∈X, ‖~x‖X=1
‖A~x‖Y

21

Duc Vu (Spring 2021) 4 Lec 4: Apr 5, 2021

§4 Lec 4: Apr 5, 2021

§4.1 Operator Norms (Cont’d)

Any operator norm as defined in the last lecture will satisfy the following properties

1. ‖A‖ ≥ 0 with equality iff A = 0

2. ‖αA‖ = |α|‖A‖ for all α ∈ R

3. ‖A+B‖ ≤ ‖A‖+ ‖B‖ for all linear operators A and B between the vector spaces X
and Y .

• Examining these first three properties, we see that ‖A‖ is a valid norm on the
vector space of linear operators!

4. ‖A~x‖Y ≤ ‖A‖‖~x‖X for all ~x ∈ X

• Therefore, the operator norm helps us bound how much an operator can “amplify”
a signal.

5. ‖AB‖ ≤ ‖A‖‖B‖

6. If X = Y and if ‖A‖ < 1, then we can write

∞∑
i=0

Ai = (I −A)−1

just as for a scalar a ∈ R with |a| < 1, we can write
∑∞

i=0 ai = 1
1−a

Let’s restrict our attention to the special case where X = Rn and Y = Rm. For these
choices of X and Y , recall that any linear operator A : X → Y can be represented as
multiplication by an m× n matrix. In such a case, the operator norm ‖A‖ is also called a
matrix norm.
When X and Y are both equipped with the lp norm for p ∈ [1,∞], we can write

‖A‖p := sup
~x∈X, ‖~x‖p=1

‖A~x‖p

We can relate ‖A‖p to certain properties of the matrix A:

• In the case p =∞, letting ~y = A~x, we have

‖A‖∞ := sup
‖~x‖∞=1

‖ A~x︸︷︷︸
~y

‖∞ = sup
‖~x‖∞=1

∥∥∥∥∥∥∥∥∥

y1

y2
...
ym

∥∥∥∥∥∥∥∥∥
∞

Note that |yi| =
∣∣∣∑n

j=1 aijxj

∣∣∣. Overall ~x with ‖~x‖∞ = 1, the largest |yi| for a given

i = 1, 2, . . . ,m is achieved by taking xj = sign(aij) for j = 1, 2, . . . , n, and for this
choice of i and ~x, we will have

|yi| =
n∑
j=1

|aij | = absolute sum of row i of A

22

Duc Vu (Spring 2021) 4 Lec 4: Apr 5, 2021

Thus,

‖A‖∞ = max
i=1,2,...,m

n∑
j=1

|aij | = maximum absolute row sum of A

• Similarly, in the case p = 1, we have

‖A‖1 = max
j=1,2,...,n

=

m∑
i=1

|aij | = maximum absolute column sum of A

• When p = 2, ‖A‖2 is also referred to as the spectral norm of A. We can understand
‖A‖2 geometrically: the operator A maps the l2 unit ball in Rn to an ellipsoid in Rm.

The length of the major axis of the ellipsoid is equal to ‖A‖2. We can also write

‖A‖2 =
√
λmax(A>A) = σmax(A)

where λmax denotes the largest eigenvalue of a matrix and σmax denotes the largest
singular value of a matrix. If the matrix A happens to be symmetric (i.e. if A = A>)
then we can also write

‖A‖2 = max
i
|λi(A)|

There is also a special type of “matrix norm” that does not actually follow the definition of
an operator norm,

‖A‖ := sup
~x∈X, ‖~x‖X=1

‖A~x‖Y

In particular, the Frobenius form of a matrix A is defined to be

‖A‖F :=

√√√√ m∑
i=1

n∑
j=1

|aij |2 =
√

trace(AHA)

Note that Frobenius form ‖A‖F is not an operator norm, because A =

[
1 0
0 1

]
.

‖A‖F =
√

2 > 1 = sup
‖x‖X=1

‖Ax‖Y = ‖x‖X = 1

‖A‖F =
√

1 + 1 =
√

2

‖A‖2 = sup
‖x‖2=1

‖Ax‖2 = 1

How about A =

[
1 1
2 0

]
?

‖A‖F =
√

1 + 1 + 4 + 0 =
√

6

23

Duc Vu (Spring 2021) 4 Lec 4: Apr 5, 2021

§4.2 Inverse Operator

Definition 4.1 (Invertibility) — A linear operator A : X → Y between two vector
spaces X and Y is said to be invertible if there exists an operator A−1 : Y → X s.t.

• AA−1 = I, i.e., AA−1~y = ~y for all ~y ∈ Y and

• A−1A = I, i.e., A−1A~x = ~x for all ~x ∈ X.

In such a case, A−1 is referred to as the inverse of A.

Lemma 4.2

If A is an invertible linear operator, A−1 is itself a linear operator.

Invertibility is a topic of interest when we want to find an exact solution to a linear equation.
Let us again restrict our attention to the special case where X = Rn and Y = Rm. For
these choices of X and Y , recall that any linear operator A : X → Y can be represented as
multiplication by an m× n matrix.

Fact 4.1. An m× n matrix A cannot be invertible unless it is square.

Not all square matrices are invertible. An invertible matrix is also known as the
nonsingular matrix.

Proposition 4.3

If A is a square matrix, the following statements are all equivalent

• A is invertible

• A is nonsingular

• det(A) 6= 0

• A~x = ~0 ⇐⇒ ~x = ~0

• The rows of A are linearly indep.

• The columns of A are linearly indep.

• dim(N (A)) = 0, i.e., N =
{
~0
}

• dim(R(A)) = n.

• A is full rank

• All eigenvalues of A are nonzero

• The matrix A>A is positive definite.

• A> is invertible.

24

Duc Vu (Spring 2021) 4 Lec 4: Apr 5, 2021

§4.3 Adjoint Operators

Definition 4.4 (Adjoint of an Operator) — Let A : X → Y be a bounded (‖A‖ <∞)
linear operator between two inner product spaces X and Y . The adjoint of A, denoted
A∗ : Y → X is the unique operator such that

〈A~x, ~y〉Y = 〈~x,A∗~y〉X

for all ~x ∈ X and ~y ∈ Y .

Definition 4.5 (Self-Adjoint Operator) — An operator A : X → X is said to be
self-adjoint if A = A∗.

An illustration:

Lemma 4.6

If A is bounded linear operator with adjoint A∗ then A∗ is itself a bounded linear
operator, and

‖A∗‖ = ‖A‖

Lemma 4.7

If A is bounded linear operator with adjoint A∗ then (A∗)∗ = A

Lemma 4.8

If A is an invertible bounded linear operator with adjoint A∗ and bounded inverse
A−1, then

(A−1)∗ = (A∗)−1

25

Duc Vu (Spring 2021) 4 Lec 4: Apr 5, 2021

In the special case where X = Rn and Y = Rm, recall that any linear operator A : X → Y
can be represented as multiplication by an m× n matrix.

Question 4.1. What is the adjoint of a matrix?

Using the standard inner product on X and Y , the adjoint of A is the unique operator
s.t.

~yHA~x = 〈A~x, ~y〉 = 〈~x,A∗~y〉 = ~yH(A∗)H~x

for all ~x and ~y. This requires that A = (A∗)H which is satisfied by taking

A∗ = AH

Therefore, the adjoint of a matrix is simply its conjugate transpose (not its inverse). Self-
adjoint matrices satisfy A = AH . These are also known as symmetric (if real), conjugate
symmetric or Hermitian (if complex).

Theorem 4.9

Let A be a real-valued m × n matrix. For a fixed ~y ∈ Rm, the vector ~x ∈ Rn is a
minimizer of ‖~y −A~x‖2 ⇐⇒

A>A~x = A>~y

If A>A is invertible, then the unique minimizer of ‖~y −A~x‖2 is given by

~x = (A>A)−1A>~y

The same theorem holds if A, ~x and ~y are all complex-valued.

26

Duc Vu (Spring 2021) 5 Lec 5: Apr 7, 2021

§5 Lec 5: Apr 7, 2021

§5.1 Fundamental Subspaces of Linear Operators

Definition 5.1 (Range) — Let A : X → Y be a linear operator between two vector
spaces X and Y . The range or range space of A, denoted by R(A), is defined to be

R(A) := {~y ∈ Y : A~x = ~y for some ~x ∈ X}

The range space is a linear subspace of Y .

Definition 5.2 (Nullspace) — Let A : X → Y a linear operator between two vector
spaces X and Y . The nullspace of A, denoted by N (A), is defined to be

N (A) :=
{
~x ∈ X : A~x = ~0

}
The nullspace is a linear subspace of X.

Again, we consider the case where X = Rn and Y = Rm (or where X = Cn and Y = Cm)
and A : X → Y can be represented as multiplication by an m× n matrix.
When A is a matrix, R(A) is just the span of the columns of A:

R(A) = colspan(A)

For any m× n matrix A,
rank(A) ≤ min {m,n}

We say that A is full rank if rank(A) = min {m,n}, otherwise we call it rank deficient.
We can related the rank of A to the dimensions of the four fundamental subspaces of A:

• dim(R(A)) = dim (colspan(A)) = rank(A)

• dim(N (A)) = n− rank(A)

• dim (R(A∗)) = dim (rowspan(A)) = rank(A)

• dim (N (A∗)) = m− rank(A)

• dim (R(A)) + dim (N (A)) = n = # columns of A.

For two matrices A and B, we have

• rank(AB) ≤ min {rank(A), rank(B)}

• rank(A+B) ≤ rank(A) + rank(B)

27

Duc Vu (Spring 2021) 5 Lec 5: Apr 7, 2021

§5.2 Pro jection Operators

Definition 5.3 (Projection Operator) — A linear operator P : X → X from a vector
space X into itself is called a projection or a projection operator if

P 2 = P

i.e., P (P (~x)) = P (~x) for all ~x ∈ X.

For P 2 = P , P is called idempotent operator.

Definition 5.4 (Orthgonal Projection Operator) — A projection operator P in an
inner product space X is called an orthogonal projection or an orthogonal projection
operator if

R(P) ⊥ N (P)

i.e., if 〈~x, ~y〉 = 0 for all ~x ∈ R(P) and ~y ∈ N (P).

We notice
~x = P~x︸︷︷︸

∈R(P)

+ (I − P)~x︸ ︷︷ ︸
∈N (P)

If P is an orthogonal projection operator,

〈P~x, (I − P)~x〉 = 0

Lemma 5.5

A bounded linear operator P : X → X on an inner product space X is an orthogonal
projection iff

1. P 2 = P and

2. P = P ∗

Theorem 5.6

Suppose S is an inner product space and suppose T is a linear subspace of S. For a
given vector ~x ∈ S, there is a unique vector ~x′ ∈ T such that ‖~x− ~x′‖ ≤ ‖~x− ~z‖ for
all ~z ∈ T . Furthermore, this minimizer has the property that

~x− ~x′ ⊥ T

i.e. 〈~x− ~x′, ~y〉 = 0 for all ~y ∈ T .

The minimizing vector ~x′ is referred to as the orthogonal projection of ~x onto T . In other
words, ~x′ = P~x, where P is an orthogonal projection operator with R(P) = T .

28

Duc Vu (Spring 2021) 5 Lec 5: Apr 7, 2021

For an n× n matrix P ,

• P is a projection if P 2 = P

• P is orthogonal projection if P 2 = P and P> = P

Example 5.7

Consider the operator P : R2 → R2 defined as

P

([
x1

x2

])
=

[
x1

x1

]

We can express P as the 2× 2 matrix P =

[
1 0
1 0

] [
x1

x2

]
=

[
x1

x1

]
Consider:

• Does P 2 = P? Yes!

• Does P> = P? No!

• What is R(P)? the line x2 = x1

• What is N (P)? x2-axis

• Is R(P) ⊥ N (P)? No!

29

Duc Vu (Spring 2021) 5 Lec 5: Apr 7, 2021

Example 5.8

Consider the operator P : R3 → R3 defined as

P

x1

x2

x3

 =

x1

x2

0

where

P =

1 0 0
0 1 0
0 0 0

Consider:

• Does P 2 = P? Yes!

• Does P> = P? Yes!

• What is R(P)? the plane x1 − x2

• What is N (P)? x3-axis

• Is R(P) ⊥ N (P)? Yes!

Consider a set of m linearly indep. vectors ~v1, ~v2, . . . , ~vm ∈ Rn or Cn. We can construct an
orthogonal projection matrix P onto the subspace T = span {~v1, ~v2, . . . , ~vm} as follows:

1. Construct an n×m matrix

A =
[
~v1 ~v2 . . . ~vm

]
Note that colspan(A) = T.

2. Let

P = A
(
A>A

)−1
A> = AA†

Example 5.9

Consider the vectors

~v1 =

1
0
0

 and ~v2 =

0
1
0

The orthogonal projection can be constructed as follows

P = AA† = A(A>A)−1A> =

1 0 0
0 1 0
0 0 0

30

Duc Vu (Spring 2021) 6 Lec 6: Apr 9, 2021

§6 Lec 6: Apr 9, 2021

§6.1 Motivating Examples

Consider a 2× 2 matrix

A =

[
1 1

2
1
2 1

]
For what nonzero vectors ~x ∈ S (eigenvectors) and scalar λ ∈ C (eigenvalue), do we have
that A~x = λx?

• We know that ~x and λ must satisfy (A− λI)~x = ~0.

• Thus, ~x must be in N (A− λI).

• Thus, A− λI must have a nontrivial nullspace.

• Thus, A− λI must be singular.

• We can solve for λ s.t. det (A− λI) = 0:

det (A− λI) = det

([
1− λ 1

2
1
2 1− λ

])
= (1− λ)2 − 1

4
= 0

which equals 0 for λ = 1.5 or λ = 0.5

• Now we know the eigenvalues. What are the corresponding eigenvectors?

• For λ = 1.5, we need A~x = 1.5~x.[
1 1

2
1
2 1

] [
x1

x2

]
=

[
1.5x1

1.5x2

]
which requires x1 = x2. To have unit norm, we can choose

~x =

[
1√
2

1√
2

]
but notice that any rescaling of this ~x is also an eigenvector.

• For λ = 0.5, we need A~x = 0.5~x.[
1 1

2
1
2 1

] [
x1

x2

]
=

[
0.5x1

0.5x2

]
This requires x1 = −x2. To have unit norm, we can choose

~x =

[
1√
2

− 1√
2

]
but notice that any rescaling of this ~x is also an eigenvector.

• We say that the eigenvectors of A are

~v1 =

[
1√
2

1√
2

]
and ~v2 =

[
1√
2

− 1√
2

]
with the understanding that any rescaling of either one is also an eigenvector.

31

Duc Vu (Spring 2021) 6 Lec 6: Apr 9, 2021

§6.2 Eigenvalues and Eigenvectors

Big picture:

• first find the eigenvalues

– Suppose A is an n× n matrix.

– We want to know: for what values of λ ∈ C does there exist a non-zero ~x ∈ Cn
s.t.

A~x = λ~x?

– We know that for such a (λ, ~x) pair to exist, we must have

(A− λI) ~x = ~0

and therefore, ~x ∈ N (A− λI).

– For such a non-zero ~x to exist in the nullspace of A− λI, we need

dim (N (A− λI)) > 0

Since

dim (R(A− λI)) + dim (N (A− λI)) = n = # columns of A− λI

which means we require
dim (R(A− λI)) < n

so A− λI cannot be full rank. We also know this requires

det (A− λI) = 0

– Hence, by finding all λ s.t. det (A− λI) = 0, we get the eigenvalues of A.

• the find the eigenvectors

– Suppose λ is an eigenvalue of A, which has size n× n.

– Then every ~x ∈ N (A− λI) is considered an eigenvector of A, corresponding to
the eigenvalue λ.

– Because N (A− λI) is a linear subspace of Cn, we conventionally just specify
enough vectors to span this subspace, i.e., a basis for N (A− λI).

Let’s work through an example.

32

Duc Vu (Spring 2021) 6 Lec 6: Apr 9, 2021

Example 6.1

Let

A =

2 0 0
0 3

2
1
2

0 1
2

3
2

Solving det(A− λI) = 0, we want

det(A− λI) = (2− λ)

((
3

2
− λ

)2

− 1

4

)
= 0

which is satisfied if λ = 2, 1.

• For λ = 1 (with multiplicity one)

– We want to find all ~x ∈ C3 s.t.1 0 0
0 1

2
1
2

0 1
2

1
2

x1

x2

x3

 =

0
0
0

– This requires that x1 = 0 and that x2

2 + x3
2 = 0. We have two linear

equations, which imply that N (A− λI) is a line in C3.

– So we can pick ~v1 =

 0
1√
2

− 1√
2

 as our first eigenvector.

• For λ = 2 (with multiplicity two)

– We want to find ~x ∈ C3 s.t.0 0 0
0 −1

2
1
2

0 1
2 −1

2

x1

x2

x3

 =

0
0
0

– This requires that −x22 + x3

2 = 0 =⇒ x2 = x3. We have one linear equation,
which implies that N (A− λI) is a plane in C3.

– So we can pick two linearly indep. vectors from this nullspace, e.g.,

~v2 =

 0
1√
2

1√
2

 and ~v3 =

1
0
0

– Thus, for this particular matrix A, we have two distinct eigenvalues but

three linearly indep. eigenvectors.

In the case where the eigenvalues of the matrix are distinct, we have an important re-
sult:

33

Duc Vu (Spring 2021) 6 Lec 6: Apr 9, 2021

Theorem 6.2

Eigenvectors corresponding to distinct eigenvalues are linearly independent.

Proof. Left for readers to figure out on your own :) (just kidding, I guess I am just lazy).

Eigenvectors corresponding to repeated eigenvalues could be linearly indep.

Example 6.3

Consider

A =

[
1 0
0 1

]
, λ1 = λ2 = 1, ~v1 =

[
1
0

]
, ~v2 =

[
0
1

]
in which case A− λI has a two-dimensional nullspace.

Example 6.4

Consider:

A =

[
4 2
0 4

]
, λ1 = λ2 = 4, ~v1 = ~v2 =

[
1
0

]
in which case A− λI has a one-dimensional nullspace.

34

Duc Vu (Spring 2021) 7 Lec 7: Apr 12, 2021

§7 Lec 7: Apr 12, 2021

§7.1 Diagonalization

If an n× n matrix A happens to have n linearly indep. eigenvectors, then it can be written
(or “diagonalized”) as

A = TΛT−1

where

• T is an n× n invertible matrix

• Λ is an n× n diagonal matrix

Construction:

• Let λ1, λ2, . . . , λn be the eigenvalues of A (not necessarily distinct)

• Let ~v1, ~v2, . . . , ~vn be the corresponding eigenvectors (not necessarily linearly indep.)

• For all i = 1, 2, . . . , n, we know that A~vi = λi~vi.

• We can stack these n equations in the form of a matrix equation:

A

~v1 ~v2 . . . ~vn

 =

λ1 ~v1 λ2 ~v2 . . . λn ~vn

that is,

A

~v1 ~v2 . . . ~vn

︸ ︷︷ ︸

T

=

~v1 ~v2 . . . ~vn

︸ ︷︷ ︸

T

λ1

λ2

. . .

λn

︸ ︷︷ ︸

Λ

• Because the ~v1, ~v2, . . . , ~vn are linearly indep., then T must be invertible. Then

A = TΛT−1

Lemma 7.1 (Eigenvalues of a Hermitian Matrix)

If A = AH , then all eigenvalues of A are real-valued (even if A has complex entries).

Proof. Let λ be an eigenvalue of A and let ~x be an eigenvector corresponding to λ. Then

〈A~x, ~x〉 = 〈λ~x, ~x〉 = λ〈~x, ~x〉

But also,
〈~x,A~x〉 = 〈~x, λ~x〉 = λ∗〈~x, ~x〉

Since A = AH , then 〈A~x, ~x〉 must equal 〈~x,A~x〉, and so this implies that λ = λ∗. Thus, λ
is real.

35

Duc Vu (Spring 2021) 7 Lec 7: Apr 12, 2021

This lemma does not mean that all the eigenvalues must be distinct (only that they must be
real). So what can we say about the eigenvectors? Will they be linearly indep.?

Lemma 7.2 (Eigenvectors of a Hermitian Matrix)

If A = AH , then there exists a set of n orthonormal eigenvectors ~v1, ~v2, . . . , ~vn s.t.

A~vi = λi~vi

for all i = 1, 2, . . . , n.

This result holds even if there are repeated eigenvalues, but it uses the assumption that
A = AH .
Let A be an n × n matrix and suppose A = AH . Then choosing an orthonormal set of
eigenvectors ~v1, ~v2, . . . , ~vn and letting T = [~v1, ~v2, . . . , ~vn] as before, we have

A = TΛT−1

However, since the {~vi} are orthonormal, then T s unitary. Therefore, T−1 = TH and so

A = TΛTH

Note: If A is real, it is possible to choose T real and have A = TΛT>.

Example 7.3

Let

A = AH =

[
3
2

1
2

1
2

3
2

]
Then λ1 = 2 and λ2 = 1, both of which are real since A = AH . We can derive

~v1 =

[
1√
2

1√
2

]
and ~v2 =

[
1√
2

− 1√
2

]

Thus, A = TΛTH , where

T =
[
~v1 ~v2

]
=

1√
2

[
1 1
1 −1

]
, Λ =

[
2 0
0 1

]

§7.2 Positive Definite Matrices

Let A be an n× n, Hermitian, symmetric matrix. Recall that we say A is postiive definite
if

~xHA~x > 0, A � 0

holds for all non-zero ~x ∈ Rn (or Cn). Similarly, we say that A is positive semi-definite if

~xHA~x ≥ 0, A � 0

holds for all non-zero ~x ∈ Rn (or Cn). Such matrices are called symmetric, positive (semi-) definite.

If A = AH , we already know the eigenvalues of A are real. Furthermore, if A is positive
definite, then all eigenvalues of A are positive.

36

Duc Vu (Spring 2021) 7 Lec 7: Apr 12, 2021

Proof. Let ~v be an eigenvector of A and let λ be the corresponding eigenvalue. Assume
~v 6= ~0. Then, because A is positive definite,

~vH A~v︸︷︷︸
λ~v

> 0

Substituting,
~vH(λ~v) > 0 =⇒ λ~vH~v > 0 =⇒ λ > 0

because ‖~v‖ > 0. Similarly, if A is positive semi-definite, then all eigenvalues of A are
non-negative.

Positive definite matrices can be used to define variations on the standard l2 inner
product. In particular, suppose A is a symmetric, positive definite matrix. Then

〈~x, ~y〉A := ~yHA~x

defines a valid inner product on Cn. Consequently,

‖~x‖A =
√
〈~x, ~x〉A =

√
~xHA~x

defines a valid induced norm on Cn.
Consider the optimization problems

max
~x∈Cn

‖~x‖2A
‖~x‖22

= max
~x∈Cn

‖~x‖2=1

~xHA~x

and

min
~x∈Cn

‖~x‖2A
‖~x‖22

= min
~x∈Cn

‖~x‖2=1

~xHA~x

The maximum value of the first problem is given by λmax(A) and occurs when ~x equals the
corresponding eigenvector of A. Similarly, the minimum value of the second problem is
given by λmin(A) and occurs when ~x equals the corresponding eigenvector of A.

Proof. Refer to the lecture note.

Recall the 2-norm (spectral norm) of a matrix A:

‖A‖2 = sup
~x∈Cn

‖~x‖2=1

‖A~x‖2

Note that

‖A~x‖2 =

√
(A~x)H A~x =

√
~xHAHA~x = ‖~x‖AHA

For any matrix A, it turns out that AHA is positive semi-definite. Thus it follows that

‖A‖2 = sup
‖~x‖2=1

‖~x‖AHA =
√
λmax(AHA)

Now, consider the special case where A = AH . In this case,

‖~x‖AHA = ‖~x‖A2

37

https://tducvu.github.io/assets/lecturenotes/164-lec7-proof.pdf#page=11

Duc Vu (Spring 2021) 7 Lec 7: Apr 12, 2021

Also, since A = TΛTH with T unitary, then A2 = TΛ2TH , and so (λi(A))2 = λi(A
2). Thus,

when A = AH we have

‖A‖2 = sup
‖~x‖2=1

‖~x‖A2 =
√
λmax(A2) = max

i
|λi(A)|

Similarly, it follows that

‖A−1‖2 =
1

mini |λi(A)|
Notice

A = TΛTH =⇒ A−1 = TΛ−1TH =⇒ λi(A
−1) =

1

λi(A)

‖A−1‖2 = max
i

∣∣λi(A−1)
∣∣ = max

i

1

|λi(A)|
=

1

mini |λi(A)|

38

Duc Vu (Spring 2021) 8 Lec 8: Apr 14, 2021

§8 Lec 8: Apr 14, 2021

§8.1 Some Properties of Eigenvalues

Let A be an n× n matrix. Then,

• det(A) =
∏n
i=1 λi(A)

• trace(A) =
∑n

i=1 λi(A)

Rank:

• If A is not full rank, at least one of its eigenvalues must equal 0.

• If A = AH , we have seen that we can write A = UΛUH︸ ︷︷ ︸
TΛTH

for some unitary U .

– rank(A) = # nonzero eigenvalues of A.

– Writing U =
[
~u1 ~u2 . . . ~un

]
, we have

A = UΛUH

=
[
u1 . . . un

] λ1

. . .

λn

u

H
1
...
uHn

=

n∑
i=1

λi ~ui ~ui
H

If A is not full rank, some of the terms in this summation equal 0.

§8.2 Singular Value Decomposit ion

We’ve seen that a square Hermitian matrix A can be factored as

A = UΛUH

where U is orthonormal and Λ is diagonal.
The SVD allows us to generalize this type of factorization to any matrix, even those that
are not square. Let A be an m× n matrix, with real or complex entries. Then A can be
factored as

A = UΣV H ← SVD

where

• U is m× n and orthonormal.

• Σ is m× n and diagonal.

• V is n× n and orthonormal.

39

Duc Vu (Spring 2021) 8 Lec 8: Apr 14, 2021

Let p = min(m,n). Then m× n diagonal matrix Σ has the form
σ1

σ2 0
. . .

0 σp

 if m ≤ n

or

σ1

σ2 0
. . .

0 σp

if m ≥ n

Terminology: The elements σ1, σ2, . . . , σp are known as the singular values of A. For any
matrix A, the singular values are always real and non-negative. Thus, it is customary to
order them as follows:

σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0

The columns of U are known as the left singular vectors. The columns of V are known as
the right singular vectors.
The SVD an eigenvalue decomposition are closely related. For any m× n matrix A with
SVD given by A = UΣV H , consider the matrix

AHA = (UΣV H)H
(
UΣV H

)
= V ΣH UHU︸ ︷︷ ︸

=I

ΣV H = V ΣHΣ︸ ︷︷ ︸
=Σ2

V H = V ΛV H

Let Λ = ΣHΣ = Σ2. Then Λ is an n× n diagonal matrix with the following entries along
the main diagonal

λi =

{
σ2
i , i ≤ p

0, i > p

Thus, we see that the singular values of A are the square root of the eigenvalues of AHA,
and the right singular vectors of A are the eigenvectors of AHA. Similar statements can be
made for AAH , since

AAH =
(
UΣV H

) (
UΣV H

)H
= UΣV HV ΣHUH = UΣΣHUH = UΣ2UH = UΛUH

Thus, we see that the singular values of A are the square roots of the eigenvalues of AAH ,
and the left singular vectors of A are the eigenvectors of AAH .
An m× n matrix A can have at most p = min(m,n) nonzero singular values. Suppose that
a matrix A has fewer than p nonzero singular values. In other words, suppose for some
r < p that

σ1 ≥ σ2 ≥ . . . ≥ σr > 0

but that
σr+1 = σr+2 = . . . = σp = 0

That is, A has only r nonzero singular values. Then, we can write

Σ =

[
Σ1 0
0 Σ2

]
40

Duc Vu (Spring 2021) 8 Lec 8: Apr 14, 2021

where Σ1 is r × r and diagonal (with non-zeros on the diagonal, and thus it is invertible),
and Σ2 is (m− r)× (n− r) and all zeros.
We can similarly partition

U =
[
U1 U2

]
and V > =

[
V >1
V >2

]
and note that

U>1 U1 = I, V >1 V1 = I, U>1 U2 = 0, V >1 V2 = 0

This allows us to write the “compact” or “reduced” form of the SVD

A =
[
U1 U2

] [Σ1 0
0 Σ2

] [
V H

1

V H
2

]
= U1Σ1V

H
1

where U1 is m× r with orthonormal columns, Σ1 is diagonal with positive real entries along
the diagonal, and V1 is n× r with orthonormal columns. Equivalently, we can write

A =
r∑
i=1

σi ~ui~vi
>

which decomposes A as a sum of r rank-1 matrices.
The SVD reveals the rank of the matrix A as

rank(A) = r = # of nonzero singular values of A

The SVD also reveals the four fundamental subspaces of A

• R(A) = colspan(U1)

• N (A) = colspan(V2)

• R(A>) = colspan(V1)

• N (A>) = colspan(U2)

For example, suppose ~x ∈ colspan(V2). Then V >1 ~x = ~0 because the columns of V are
orthonormal (and so V >1 V2 = 0). So A~x = ~0.

§8.3 Gradient, Hessian, Jacobian, and Chain Rule

• Let f : Rn → R be a real-valued function of n variables that is continuously differen-
tiable. The gradient of f at x, denoted by, ∇f(x), is

∇f(x) =

∂f
∂x1
∂f
∂x2
...
∂f
∂xn

 ∈ Rn

Here ∂f/∂fxi represents the partial derivative of f with respect to xi.

• A gradient with respect to only a subset of the unknowns can be expressed by means
of subscript on the symbol ∇. For example, ∇xf(x, z) denotes the gradient with
respect to x while holding z constant.

41

Duc Vu (Spring 2021) 8 Lec 8: Apr 14, 2021

• If f is twice continuously differentiable, the matrix of second-order partial derivatives
of f is known as the Hessian, and is defined as

∇2f(x) =

∂2f
∂x21

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x22

. . . ∂2f
∂x2∂xn

...
...

...
∂2f

∂xn∂x1
∂2f

∂xn∂x2
. . . ∂2f

∂x2n

• The Hessian is a symmetric matrix since ∂2f

∂xi∂xj
= ∂2f

∂xj∂xi

• When f is a vector-valued function, that is, f : Rn → Rm, we define ∇f(x) to be the
n×m matrix whose ith columns is ∇fi(x), that is

∇f(x) =

 ∇f1(x) ∇f2(x) . . . ∇fm(x)

• The rows of the gradient are indexed by variable components, while the columns by

function components, and the (i, j)th entry is [∇(x)]ij =
∂fj(x)
∂xi

.

• Often it’s easier to work with the transpose of this matrix called Jacobian and usually
denoted by Df(x), Jf (x) or ∂(f1,...,fm)

∂(x1,...,xn)

Df(x) =
[
∂f
∂x1

∂f
∂x2

. . . ∂f
∂xn

]
= (∇f(x))> ∈ Rm×n

• The rows of Jacobian are indexed by function components, while the columns by
variable components, and the (i, j)th entry is [Df(x)]ij = ∂fi(x)

∂xj
.

Question 8.1. Is ∇2f(x) = ∇ (∇f(x)) or = D (∇f(x))

Ans: Both! For f : Rn → R

∇f(x) =

∂f
∂x1
...
∂f
∂xn

 4= g(x) g : Rn → Rn

∇ (∇f(x)) = ∇g(x) =

 ∇g1(x) ∇g2(x) . . . ∇gn(x)

=

∂2f

∂x1∂x1
. . . ∂2f

∂xn∂x1
...

...
∂2f

∂x1∂xn
. . . ∂2f

∂xn∂xn

 = ∇2f(x)

D (∇f(x)) = Dg(x) =
[
∂g
∂x1

. . . ∂g
∂xn

]

=

∂2f

∂x1∂x1
. . . ∂2f

∂x1∂xn
...

...
∂2f

∂xn∂x1
. . . ∂2f

∂xn∂xn

 = ∇2f(x)

42

Duc Vu (Spring 2021) 9 Lec 9: Apr 16, 2021

§9 Lec 9: Apr 16, 2021

§9.1 Lec 8 (Cont’d)

Chain Rule: Let g : Rn → Rm and f : Rm → Rp, and their composition h = f ◦g : Rn → Rp
be defined via h(x) = f (g(x)) for x ∈ Rn. Then

∇h(x) =
[
. . . ∇hi(x) . . .

]
=
[
. . .

∑m
j=1

∂fi
∂gj
∇gj(x) . . .

]
=
[
. . . ∇g(x)∇fi(g) . . .

]
= ∇g(x)∇f (g(x))

Or simply

∇(f ◦ g) = ∇g∇f(g) =⇒ (∇(f ◦ g))> = (∇g∇f(g))> = (∇f(g))> (∇g)>

Or in terms of Jacobian,

Jf◦g(x) = Jf (g(x)) Jg(x), D (f ◦ g) = DfDg

Example 9.1

Calculate the gradient and Hessian for f(x) = x3
1 + 3x1x

2
2

• Gradient:

∇f(x) =

[
3x2

1 + 3x2
2

6x1x2

]
• Hessian:

∇2f(x) =

[
6x1 6x2

6x2 6x1

]

43

Duc Vu (Spring 2021) 9 Lec 9: Apr 16, 2021

Example 9.2

Calculate the gradient and Jacobian for f(x) = Ax+ b for A ∈ Rm×n.
Notice f : Rn → Rm, denote

A =

aT1
aT2
...
aTm

 , f(x) = Ax+ b =

 a
>
1 x+ b1

...
a>mx+ bm

• Gradient:

g(x)
4
= a>x =

n∑
i=1

αiγi = a1γ1 + a2γ2 + . . .

∇g(x) =

∂g
∂x1
...
∂g
∂xn

 =

a1
...
an

 = a

∇f(x) =
[
∇f1(x) . . . ∇fm(x)

]
=
[
a1 . . . am

]
= A>

• Jacobian:
Df(x) = [∇f(x)]> = A

44

Duc Vu (Spring 2021) 10 Lec 10: Apr 19, 2021

§10 Lec 10: Apr 19, 2021

§10.1 Lec 9 (Cont’d)

Example 10.1

How about f(A) = Ax+ b?
Hint:

1. Vectorize A

2. Connect it to Ex 2.

Have:

A =

 a1 . . . an

 , vec(A) =

a1
...
an

f(vec(A)) = f(A) = Ax+ b =

[
a1 . . . an

] x1
...
xn

+ b

=
n∑
i=1

xiai + b =
n∑
i=1

(xiI)ai + b

=
[
x1I . . . xnI

] a1
...
an

+ b

So

Df(A) =
[
x1I . . . xnI

]
= x> ⊗ I

where ⊗ denotes the Kronecker product and

A︸︷︷︸
m×n
⊗ B︸︷︷︸

p×q
=

a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

...
am1B am2B . . . amnB

 = C︸︷︷︸
mp×nq

So

∇f(A) =

x1I
...

xnI

 = x⊗ I

45

Duc Vu (Spring 2021) 10 Lec 10: Apr 19, 2021

Example 10.2

Calculate the gradient and Hessian for f(x) = 1
2‖Ax− b‖

2
2

Hint: Chain rule

g(x)
4
= Ax− b︸ ︷︷ ︸

g:Rn→Rn

, h(g) =
1

2
‖g‖22︸ ︷︷ ︸

h:Rm→R

=⇒ f(x) = h (g(x))

∇f(x) = ∇g(x)∇h (g(x)) = A>g(x) = A>(Ax− b)

∇2f(x) = D (∇f(x)) = D
(
A>(Ax− b)

)
= D

(
A>Ax

)
= A>A

§10.2 Taylor’s Theorem

The foundational result for many algorithms in smooth nonlinear optimization is Taylor’s
theorem. Taylor’s theorem shows how smooth functions can be approximated locally by
low-order (linear or quadratic) functions. The next iterate of many iterative algorithms
can be obtained by minimizing a local approximation of the objective function around the
previous iterate. Therefore, the convergence property of these algorithms on the accuracy
of this approximation.
Given a continuously differentiable function f : Rn → R and x, p ∈ Rn, we have

mean-value version: f(x+ p) = f(x) + ∇f(x+ tp)>︸ ︷︷ ︸
slope in scalar case

p for some t ∈ (0, 1)

integral version: f(x+ p) = f(x) +

∫ 1

0
∇f(x+ tp)>p dt

If f is twice continuously differentiable then

∇f(x+ p) = ∇f(x) +

∫ 1

0
∇2f(x+ tp)p dt

f(x+ p) = f(x) +∇f(x)>p+
1

2
p>∇2f(x+ tp)p for some t ∈ (0, 1) (?)

? is also known as Taylor’s Expansion Theorem. We can use it to compute gradient
and Hessian.

46

Duc Vu (Spring 2021) 10 Lec 10: Apr 19, 2021

Example 10.3

Compute ∇f(x) and ∇2f(x) with Taylor’s Expansion Theorem where f(x) = 1
2‖Ax−

b‖22 for A ∈ Rm×n.
Have

f(x) =
1

2
(Ax− b)>(Ax− b)

=
1

2
x>A>Ax− 1

2
b>Ax− 1

2
x>A>b+

1

2
b>b

=
1

2
x>A>Ax︸ ︷︷ ︸
g(x)

− b>Ax︸ ︷︷ ︸
∇(b>Ax)

+
1

2
b>b

g(x+ p) =
1

2
(x+ p)>A>A(x+ p)

=
1

2
x>A>Ax︸ ︷︷ ︸
g(x)

+
1

2
p>A>Ax+

1

2
x>A>Ap︸ ︷︷ ︸

=x>A>Ap

+
1

2
p> A>A︸ ︷︷ ︸
∇2g(x)

p

Then

∇f(x) = A>Ax−A>b = A>(Ax− b)
∇2f(x) = A>A

47

Duc Vu (Spring 2021) 11 Lec 11: Apr 21, 2021

§11 Lec 11: Apr 21, 2021

§11.1 Taylor’s Theorem (Cont’d)

A brief intro to norm: a norm ξ is a function from a vector space to the non-negative real
numbers, that satisfies the following three properties for any x, y ∈ Rn.

• Non-negative: ξ(x) ≥ 0 and ξ(x) = 0 ⇐⇒ x = 0.

• Absolutely homogeneous: ξ(ax) = |a|ξ(x) for any a ∈ R.

• Triangle inequality: ξ(x+ y) ≤ ξ(x) + ξ(y)

Common examples: the lp norm (p ≥ 1) in Rn is ‖x‖p = (
∑n

i=1 |xi|
p)

1
p .

When p = 2, we have

‖x‖2 =

√√√√ n∑
i=1

|xi|2

which for convenience is often written as ‖x‖. It defines the Euclidean distance of a vector
and is by far the most commonly used norm in Rn.

Fact 11.1. ‖x‖ =
√
x>x =

√
〈x, x〉

Cauchy-Schwarz Inequality:

|〈x, y〉| ≤ ‖x‖2 · ‖y‖2 (x, y ∈ Rn)

A crucial quantity in optimization is the Lipschitz constant L for the gradient of f , which
is defined to satisfy

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ ← l2-norm

for all x, y in the domain of f .
Given f with ∇f uniformly Lipschitz continuous with constant L, we have for any x, y in
the domain of f that

f(y) ≤ f(x) +∇f(x)>(y − x) +
L

2
‖y − x‖22︸ ︷︷ ︸

4
=Q(y)

where “ ≤ ” is sometimes known as as the quadratic upper bound.

Proof. Denote p = y − x. Using the integral-version of Taylor’s theorem,

f(y) = f(x+ p) = f(x) +

∫ 1

0
∇f(x+ tp)>p dt

= f(x) +

∫ 1

0
(∇f(x+ tp)−∇f(x) +∇f(x))> p dt

= f(x) +∇f(x)>(y − x) +

∫ 1

0
(∇f(x+ tp)−∇f(x))> p dt∣∣∣(∇f(x+ t(y − x))−∇f(x))> (y − x)

∣∣∣ ≤ ‖∇f(x+ t(y − x))−∇f(x)‖2 · ‖y − x‖2

≤ Lt‖y − x‖22

48

Duc Vu (Spring 2021) 11 Lec 11: Apr 21, 2021

Finally,

f(y) ≤ f(x) +∇f(x)>(y − x) +

∫ 1

0
Lt‖y − x‖22 dt

= f(x) +∇f(x)>(y − x) +
1

2
‖y − x‖22

This means that f can be upper bounded by a quadratic function whose value at x is
equal to f(x). If f is twice continuously differentiable, then ∇f is Lipschitz continuous
with Lipschitz constant L ⇐⇒ for x we have all the eigenvalues of ∇2f(x) are between
−L and L.

−L ≤ λmin

(
∇2f(x)

)
≤ λmax

(
∇2f(x)

)
≤ L

§11.2 Solution and Optimality Conditions

Let f : D → R where D ⊆ Rn. We define different notions of minimizers.

• x∗ ∈ D is a local minimizer of f if there is a neighborhood N of x∗ s.t. f(x) ≥ f(x∗)
for all x ∈ N ∩ D.

• x∗ ∈ D is a global minimizer of f if f(x) ≥ f(x∗) for all x ∈ D.

• x∗ ∈ D is a strict local minimizer if it is a local minimizer and in addition f(x) > f(x∗)
for all x ∈ N with x 6= x∗.

Definition 11.1 (Critical/Stationary Point) — A point x∗ with ∇f(x∗) = 0 is called a
critical point or a stationary point.

Theorem 11.2 (Necessary Conditions for Smooth Unconstrained Optimization)

There are two necessary conditions:

1. Suppose that f is continuously differentiable. Then if x∗ is a local minimizer of
the unconstraint optimization minx f(x), then ∇f(x∗) = 0.

2. Suppose that f is twice continuously differentiable. Then if x∗ is a local minimizer
of the unconstraint optimization minx f(x), then ∇f(x∗) = 0 and ∇2f(x∗) is
positive semi-definite, i.e. ∇2f(x∗) � 0

(1) is called the first-order necessary condition and (2) is called the second-order
necessary condition.

A matrix A is positive semi-definite if

1. A is symmetric.

2. eigs(A) are non-negative.

3. For all nonzero x ∈ Rn, x>Ax ≥ 0.

49

Duc Vu (Spring 2021) 12 Lec 12: Apr 23, 2021

§12 Lec 12: Apr 23, 2021

§12.1 Solution and Optimality Conditions (Cont’d)

Proof. 1. Assume x∗ is a local min but ∇f(x∗) 6= 0. Consider x(α) = x∗ − α∇f(x∗),
α > 0

f (x(α)) = f(x∗ − α∇f(x∗)), α > 0

Taylor’s(mean-value) = f(x∗) +∇f (x∗ − αt∇f(x∗))> (−α∇f(x∗)) , for some t ∈ (0, 1)

= f(x∗)− α∇f
(
x∗ − αt∇f(x∗)>∇f(x)

)
Have

lim
α→0
∇f (x∗ − αt∇f(x∗))>∇f(x) = ‖∇f(x∗)‖22 > 0

By definition of limit, there exists α1 s.t. for all α ∈ [0, α1), we have

∇f (x∗ − αt∇f(x∗))>∇f(x)∗ >
1

2
‖∇f(x∗)‖22

=⇒ f(x(α)) < f(x∗)− 1

2
α‖∇f(x∗)‖22︸ ︷︷ ︸

>0

< f(x∗), ∀α ∈ [0, α1)

2. By (1), we have ∇f(x∗) = 0. Suppose ∇2f(x∗) 6� 0. Then ∃v 6= 0, s.t. v>∇2f(x∗)v =
λ < 0. Consider x(α) = x∗ + αv

f (x(α)) = f(x∗ = αv)

Taylor’s Thm = f(x∗) +∇f(x∗)>(αv) +
1

2
α2v>∇2f(x∗ + αtv)v, for some t ∈ (0, 1)

= f(x∗) =
1

2
α2v>∇2f (x∗ + αtv) v, for some t ∈ (0, 1)

Notice
lim
α→0

v>∇2f (x∗ + αtv) v = v>∇2f(x∗)v = λ < 0

By definition of limit, there exists α1 s.t. for all α ∈ [0, α1), we have

v>∇2f (x∗ + αtv) v <
λ

2
=⇒ f(x(α)) < f(x∗), ∀α ∈ [0, α1)

Theorem 12.1 (Sufficient Condition for Smooth Unconstrained Optimization)

Suppose that f is twice continuously differentiable and for some x∗, we have∇f(x∗) = 0
and ∇2f(x∗) is positive definite. Then x∗ is a strict local minimizer of the unconstraint
optimization minx f(x).

50

Duc Vu (Spring 2021) 12 Lec 12: Apr 23, 2021

Proof. Have

∇2f(x∗) � 0 =⇒ ∇2f(x∗ + tp) � 0 for any ‖p‖ ≤ r, t ∈ (0, 1)

f(x∗ + p) = f(x∗) +∇f(x∗)>p+
1

2
p>∇2f(x∗ + tp)p, for some t ∈ (0, 1)

= f(x∗)) +
1

2
p>∇2f(x∗ + tp)p︸ ︷︷ ︸

>0

, for some t ∈ (0, 1)

> f(x∗), for any ‖p‖ ≤ r

Choose N = {x∗ + p : ‖p‖ ≤ r}.

Definition 12.2 (Local Maximizer) — If ∇f(x∗) = 0 and all the eigenvalues of ∇2f(x∗)
are negative, x∗ is a local maximizer.

Definition 12.3 (Saddle Point) — If ∇f(x∗) = 0 and ∇2f(x∗) has both positive and
negative eigenvalues, x∗ is a saddle points.

§12.2 Midterm

• Date: Next Friday, Apr 30, 2021 at 9:00 am

• Deadline: May 1, 2021 at 9:00 am

• Materials covered: Lec 1, Lec 2.1 – Lec 2.4 on CCLE

• Review:

– Notes/Examples on slides

– Questions in HW1 & HW2

• Open note/book.

§12.3 Convexity

Convex functions take a central role in optimization – they are the class of functions that
are guaranteed to find global minimizer within a reasonable amount of time.

Definition 12.4 (Convex Set) — A set ω ⊆ Rn is convex if for any x, y ∈ ω and any
α ∈ [0, 1], one has (1− α)x+ αy ∈ ω.

Geometrically, for all pairs of points in a convex set, the line segment between them is also
contained in the set.

51

Duc Vu (Spring 2021) 12 Lec 12: Apr 23, 2021

Example 12.5

Examples of convex sets:

• Hyperplane:
{
x : a>x = b

}
with a 6= 0 ∈ Rn and b ∈ R

• Halfspace:
{
x : a>x ≤ b

}
with a 6= 0 ∈ Rn and b ∈ R

• Norm ball: {x : ‖x− xc‖ ≤ r}

• Non-negative Orthant: Rn+ = {x : x ≥ 0}

• Positive semi-definite cone: Sn+ = {X : X is symmetric, X � 0}

52

Duc Vu (Spring 2021) 12 Lec 12: Apr 23, 2021

Definition 12.6 (Convex Function) — A function f : ω → R where ω ⊆ Rn is a
convex function if its domain ω is a convex set and for all x, y ∈ ω and all α ∈ [0, 1],
one has

f ((1− α)x+ αy) ≤ (1− α)f(x) + αf(y)

Geometrically, for convex function, the line segment connecting (x, f(x)) and (y, f(y))
lie above the graph of the function f .

f((1− α)x+ αy)

(1− α)f(x) + αf(y)

(1− α)x+ αyx y

f(y)

f(x)

(y, f(y))

A function f is concave if −f is convex.

A continuously differentiable function f is convex iff its domain is convex and for all
x, y ∈ dom(f)

f(y) ≥ f(x) +∇f(x)>(y − x)

A twice continuously differentiable function f is convex iff its domain is convex and its
Hessian is positive semi-definite, that is, ∇2f(x) � 0 for all x ∈ dom(f).

53

Duc Vu (Spring 2021) 13 Lec 13: Apr 26, 2021

§13 Lec 13: Apr 26, 2021

§13.1 Strongly Convex Functions

When f : ω → R is continuously differentiable, we call f is strongly convex with modulus
of convexity m if ω is convex and there exists m > 0 s.t.

f(y) ≥ f(x) +∇f(x)>(y − x) +
m

2
‖y − x‖22

Just as the Lipschitz constant of the gradient provides an upper bound on the eigenvalues of
the Hessian, the strongly convex parameter provides a lower bound for twice continuously
differentiable functions.
More precisely, suppose f is twice continuously differentiable, then f has modulus of
convexity m ⇐⇒ λmin

(
∇2f(x)

)
≥ m > 0 for all x.

Exercise 13.1. Answer whether or when the following functions are (strongly) convex.
Hint:

1. Check domain of f is convex.

2. Compute ∇2f(x)

3. If λmin

(
∇2f(x)

)
≥ m > 0 =⇒ strongly convex.

4. λmin

(
∇2f(x)

)
≥ 0 =⇒ convex.

• x2, x ∈ R

1. Domain is convex

2. ∇f(x) = 2x =⇒ ∇2f(x) = 2 =⇒ strongly convex

• x4, x ∈ R

1. Domain is convex

2. ∇f(x) = 4x3, ∇2f(x) = 12x2 ≥ 0 =⇒ convex

• eax on R

1. Domain is convex

2. ∇f(x) = aeax, ∇2f(x) = a2eax ≥ 0 =⇒ convex

• − log(x) on R++︸︷︷︸
x>0

1. Domain is convex

2. ∇f(x) = − 1
x , ∇2f(x) = 1

x2
≥ 0 =⇒ convex

• f(x) = ‖x‖22, x ∈ Rn

1. Domain is convex

2. ∇f(x) = 2x, ∇2f(x) = 2I =⇒ strongly convex

54

Duc Vu (Spring 2021) 13 Lec 13: Apr 26, 2021

• f(x) = a>x+ b, x ∈ Rn

1. Domain is convex

2. ∇f(x) = a, ∇2f(x) = 0 =⇒ convex and concave

• f(x) = 1
2x
>Px+ q>x+ r, x ∈ Rn and P = P>

1. Domain is convex

2. ∇f(x) = Px+ q, ∇2f(x) = P . If P � 0 =⇒ convex. If P � 0 =⇒ strongly
convex. If P � 0 =⇒ concave. If P ≺ 0 =⇒ strongly concave

Theorem 13.1

Suppose f is continuously differentiable and convex. Then if ∇f(x?) = 0, then x? is a
global minimizer of minx f(x). When, in addition, f is strongly convex, then x∗ is the
unique global minimizer.

Proof. Take x = x?,

f(y) ≥ f(x?) +∇f(x?)>︸ ︷︷ ︸
=0

(y − x?) = f(x?), ∀y

for convex f , and

f(y) ≥ f(x?) +∇f(x?)>︸ ︷︷ ︸
=0

(y − x?) +
m

2
‖y − x?‖22 = f(x?) +

m

2
‖y − x?‖22︸ ︷︷ ︸
>0 if y 6=x?

> f(x?)

for strongly convex f and y 6= x?.

55

Duc Vu (Spring 2021) 14 Lec 14: Apr 28, 2021

§14 Lec 14: Apr 28, 2021

§14.1 Examples of Finding Global Minimizers

Example 14.1

f : R→ R, f(x) = (x− 3)2

1. Is f(x) strongly convex?

2. Find the global minimizers of f(x). Is it unique?

• dom(f) = R is a convex set

• ∇f(x) = 2(x− 3), ∇2f(x) = 2 =⇒ f(x) is a strongly convex function.

∇f(x) = 0 =⇒ x = 3 is the unique global minimizer of f(x).

Example 14.2

f : Rn → R, f(x) = ‖x− x?‖22, x? ∈ Rn is given.

1. Is f(x) (strongly) convex?

2. Find the global minimizers of f(x). Is it unique?

• dom(f) = Rn is a convex set

• Consider:

f(x+ d) = ‖x+ d− x?‖22 = ‖(x− x?) + d‖22
= 〈(x− x?) + d, (x− x?) + d〉
= 〈x− x?, x− x?〉+ 〈x− x?, d〉+ 〈d, x− x?〉+ 〈d, d〉

= ‖x− x?‖22︸ ︷︷ ︸
f(x)

+〈2(x− x?)︸ ︷︷ ︸
∇f(x)

, d〉+
1

2
d>(2I︸︷︷︸

∇2f(x)

)d

=⇒ f(x) is a strongly convex function, so ∇f(x) = 2(x− x∗) = 0 =⇒ x = x∗

is the unique global minimizer.

56

Duc Vu (Spring 2021) 14 Lec 14: Apr 28, 2021

Example 14.3

f : Rd → R. Given x1, . . . , xn ∈ Rd. Find the global minimizer of

f(x) =
n∑
k=1

‖x− xk‖22

Hint: Show f(x) is a convex function, so any critical point is a global minimizer.

• dom(f = Rd) is a convex set.

• Consider

f(x+ d) =
n∑
k=1

‖x+ d− xk‖22 =
n∑
k=1

‖(x− xk) + d‖22

=
n∑
k=1

(
‖x− xk‖22 + 〈2(x− xk), d〉+

1

2
d>(2I)d

)

=
n∑
k=1

‖x− xk‖22︸ ︷︷ ︸
f(x)

+〈2
n∑
k=1

(x− xk)︸ ︷︷ ︸
∇f(x)

, d〉+
1

2
d> (2nI)︸ ︷︷ ︸
∇2f(x)

d

=⇒ f(x) is a strongly convex function.

∇f(x) = 2nx− 2
n∑
k=1

xk = 0 =⇒ x =
1

n

n∑
k=1

xk

is the unique global minimizer of f(x).

57

Duc Vu (Spring 2021) 15 Midterm: Apr 30, 2021 – :D

§15 Midterm: Apr 30, 2021 – :D

Figure 1: Better study now!

58

Duc Vu (Spring 2021) 16 Lec 15: May 3, 2021

§16 Lec 15: May 3, 2021

§16.1 Gradient Descent Methods

We will focus on the problem of unconstrained optimization

minimizex∈Rnf(x)

We will first consider first-order algorithms such as steepest/gradient descent. Then, we
switch to second-order methods such as Newton method. All algorithms in unconstrained
optimization require the user to supply a starting point x0. Beginning at x0, optimization
algorithms generate a sequence of iterates {xk}∞k=0 that terminates when either no more
progress can be made or when it seems that an approximate solution has been found. In
deciding how to proceed from one iterate xk to the next, the algorithms use information
about the function at xk, and possibly information from earlier states. They typically use
this information to find a new iterate xk+1 with a lower function value.

Consider finding the global minimizer x∗. A native way is to uniformly sample the
x-axis N points, and find the minimizer among these N points.

Let x# be the minimizer among the N points. Then,∣∣∣x# − x∗
∣∣∣ ≤ 6

N

59

Duc Vu (Spring 2021) 16 Lec 15: May 3, 2021

Also, f(x#)−f(x∗) ≤ 6
NL, where L is the Lipschitzness of f , which captures the smoothness

of f . This also implies f(x#)− f(x∗) ≤ ε if N = 6L
ε . This brute-force approach finds very

good solution. Then why do we need other optimization algorithms?

Curse of dimensionality: When x is Rn, then to guarantee

f(x#)− f(x∗) ≤ ε

we need N = O
(

1
εn

)

We call d a descent direction for f at x if f(x+ d) < f(x) for all t > 0 sufficiently small.
For any continuously differentiable function, any d s.t. ∇f(x)>d < 0 is a descent direction.

Proof. Continuity of ∇f ensures the existence of t s.t.

∇f(x+ td)>d < 0 ∀t ∈
[
0, t
]

Thus, Taylor’s theorem implies that

f(x+ td) = f(x) + t∇f(x+ γ + d)>d < f(x) for some γ ∈ (0, 1)

60

Duc Vu (Spring 2021) 16 Lec 15: May 3, 2021

When t is sufficiently small, the amount of decrease is approximately t∇f(x)>d. Among

all directions with unit norm, the minimum of ∇f(x)>d < 0 is achieved when d = − ∇f(x)
‖∇f(x)‖2 .

Thus, d = −∇f(x) is called the direction of steepest descent.

The simplest methods for optimization

xk+1 = xk − αk∇f(xk), k = 0, 1, 2, . . .

for some length αk > 0.
At each step, there is either some αk > 0 s.t. the function value is decreased, or ∇f(xk) = 0,
at which we have found a local minimum, or a global one if f is convex. This algorithm
is called gradient descent or the steepest descent. Large step-size risks taking a step that
increases the function value, while too small step-size risks making too little progress in
each iteration. Short-step variant: for functions with Lipschitz gradient with Lipschitz
constant L, choose a constant step-size

xk+1 = xk −
1

L
∇f(xk), k = 0, 1, 2, . . .

This iteration scheme can also be obtained by minimizing the quadratic upper bound with
respect to y :

f(y) ≤ f(xk) +∇f(xk)
>(y − xk) +

L

2
‖y − xk‖22︸ ︷︷ ︸

4
=G(y)

Plugging in the iteration y = xk+1 = xk − 1
L∇f(xk) yields

f(xk+1) ≤ f(xk)−
1

2L
‖∇f(xk)‖22

This so called descent lemma/inequality or sufficient decrease condition quantifies the
amount of decrease we obtain and is one of the foundational inequalities in the analysis of
optimization algorithms.

61

Duc Vu (Spring 2021) 17 Lec 16: May 5, 2021

§17 Lec 16: May 5, 2021

§17.1 Gradient Descent Methods (Cont’d)

f is bounded below, i.e., f(x) ≥ f for all x. Adding the descent inequalities for k = 0 to
T − 1 yields

f ≤ f(XT) ≤ f(x0)− 1

2L

T−1∑
k=0

‖∇f(xk)‖22

Since f(xT) ≥ f , we have

T · min
0≤k≤T−1

‖∇f(xk)‖22 ≤
T−1∑
k=0

‖∇f(xk)‖22 ≤ 2L
(
f(x0)− f

)
<∞

implying

lim
T→∞

‖∇f(xT)‖2 = 0 and min
0≤k≤T−1

‖∇f(xk)‖2 ≤

√
2L(f(x0)− f)

T
≤ ε

So after T ≥ 2L(f(x0)−f)
ε2

steps, we can find a point whose gradient norm is less than ε.
Now suppose that f is convex, smooth with Lipschitz L gradients, and has a minimizer x∗

with f? = f(x?). Convexity implies

f(x?) ≥ f(xk) +∇f(xk)
>(x? − xk)

Substituting this into the descent inequality gives

f(xk+1) ≤ f(xk)−
1

2L
‖∇f(xk)‖22 ≤ f(x?) +∇f(xk)

>(xk − x?)−
1

2L
‖∇f(xk)‖22

= f(x?) +
L

2

(
‖xk − x?‖22 − ‖xk − x? −

1

L
∇f(xk)‖22

)
= f(x?) +

L

2

(
‖xk − x?‖22 − ‖xk+1 − x?‖22

)
Summing over k = 0 to T − 1 gives

T−1∑
k=0

(f(xk+1)− f?) ≤ L

2

(
‖x0 − x?‖22 − ‖xT − x?‖22

)
≤ L

2
‖x0 − x?‖22

Since f(xk) is decreasing, one has

f(XT)− f? ≤ L

2T
‖x0 − x?‖22

To find a solution with f(xT)− f? ≤ ε, we need T ≥ L‖x0−x?‖22
2ε iterations.

m-strongly convex functions satisfy the Polyak-Lojasiewicz (PL) inequality:

1

2
‖∇f(x)‖22 ≥ m (f(x)− f?)

62

Duc Vu (Spring 2021) 17 Lec 16: May 5, 2021

Proof. m-strongly convexity implies

f(y) ≥ f(x) +∇f(x)>(y − x) +
m

2
‖y − x‖2 := q(y)

This implies

min
y
f(y) ≥ min

y
q(y) = q

(
x− 1

m
∇f(x)

)
Therefore,

f? ≥ f(x)− 1

m
‖∇f(x)‖2 +

1

2m
‖∇f(x)‖2 = f(x)− 1

2m
‖∇f(x)‖2

63

Duc Vu (Spring 2021) 18 Lec 17: May 7, 2021

§18 Lec 17: May 7, 2021

§18.1 Gradient Descent Methods (Cont’d)

This combines with the descent lemma gives

f(xk+1) ≤ f(xk)−
1

2L
‖∇f(xk)‖22 ≤ f(xk)−

m

L
(f(xk)− f?)

Subtracting f? from both sides gives the recursion

f(xk+1)−f? ≤
(

1− m

L

)
(f(xk)− f?) ≤

(
1− m

L

)2
(f(xk−1)− f?) ≤ . . . ≤

(
1− m

L

)k+1
(f(x0)− f?)

The function values converge linearly to the optimum

f
(
x>
)
− f? ≤

(
1− m

L

)>
(f(x0)− f?)

To find a solution with f(xT)− f? ≤ ε, we need T ≥ 1

log

(
1

1−m
L

) log
(
f(x0)−f?

ε

)
iterations.

Denote by {τk} the sequence of positive scalar quantities of interest with τk → 0. Examples
include τk = f(xk)− f?, ‖∇f(xk)‖2 or ‖xk − x?‖2. We say that {τk} has a linear rate of a
convergence if

lim
k→∞

τk+1

τk
= φ, for some φ ∈ (0, 1)

or equivalently,
τk+1 ≤ φτk ≤ . . . ≤ φk+1τ0, for some φ ∈ (0, 1)

Example 18.1

Consider

(τk) =

{
1,

1

2
,
1

4
,
1

8
,

1

16
,

1

32
, . . . ,

1

2k
, . . .

}
Note that τk+1 = 1

2τk.

We say that {τk} has a sublinear rate of convergence if

lim
k→∞

τk+1

τk
= 1

64

Duc Vu (Spring 2021) 18 Lec 17: May 7, 2021

Example 18.2

Consider

τk ≤
A

k +B

for some scalars A > 0 and B ≥ 0, denoted by τk = O
(

1
k

)
(τk) =

{
1,

1

2
,
1

3
,
1

4
, . . . ,

1

k + 1
, . . .

}
when

τk ≤
A√
k +B

denoted by τk = O
(

1√
k

)
.

(τk) =

{
1,

1√
2
,

1√
3
,

1√
4
, . . . ,

1√
k + 1

, . . .

}

We say that {τk} has a superlinear rate of convergence if

lim
k→∞

τk+1

τk
= 0

Example 18.3

This includes convergence with order q for q > 1 when

lim
k→∞

τk+1

τ qk
≤M

for some M > 0. In particular, q = 2 is called quadratic convergence

(τk) =

{
1

2
,
1

4
,

1

16
,

1

256
,

1

65, 536
, . . . ,

1

22k
, . . .

}

Denote the target value of τk by ε > 0. We can obtain expression for k = k(ε) for the
number of iterations required to guarantee τk ≤ ε as done previously. The expression k(ε)
is usually called (iteration) complexity.

§18.2 An Example

65

Duc Vu (Spring 2021) 18 Lec 17: May 7, 2021

Example 18.4

f : R2 → R, f(x) = x>Ax, A =

[
1 0
0 100

]
a) Find the global minimizer x?of f(x)

f(x+ d) = (x+ d)>A(x+ d) = x>Ax+ d>Ax+ x>Ad+ d>Ad

= x>Ax+ 〈 2Ax︸︷︷︸
=∇f(x)

, d〉+
1

2
d> (2A)︸︷︷︸
∇2f(x)

d

So

=⇒ ∇f(x) = 2Ax, ∀∇2f(x) = 2A =

[
2 0
0 200

]
=⇒ λ1

(
∇2f(x)

)
= 2, λ2

(
∇2f(x)

)
= 200 =⇒ f(x) is strongly convex with m = 2

=⇒ Its critical point x? is the unique global minimizer of f(x)

=⇒ ∇f(x?) = 2Ax? = ~0 =⇒ Ax? = ~0

Since A is invertible, x? = A−1~0 = ~0 =

[
0
0

]
b) What is the first iteration of gradient descent method with the step-size chosen

as one over the Lipschitz constant of ∇f(x) and starting point as x0 =

[
100
100

]
?

Hint: ∇2f(x) ≤ LI,i.e.,
(
−L ≤ λmin(∇2f(x)) ≤ λmax

(
∇2f(x)

)
≤ L

)
=⇒ L = 200

x1 = x0 −
1

L
∇f(x0) = x0 −

1

200
· 2
[
1 0
0 100

]
x0 =

([
1 0
0 1

]
−
[

1
100 0
0 1

])
x0

=

[
0.99 0

0 0

]
x0

66

Duc Vu (Spring 2021) 19 Lec 18: May 10, 2021

§19 Lec 18: May 10, 2021

§19.1 An Example (Cont’d)

Example 19.1 (Cont’d from Lec 17) c) What is the closed-form expression of xk
in the k-th iteration of gradient descent method for any positive integer k?
(αk = 1

L)

xk = xk−1 −
1

L
∇f(xk−1) = xk−1 −

1

200
· 2
[
1 0
0 100

]
xk−1 =

([
1 0
0 1

]
−
[

1
100 0
0 1

])
xk−1

=

[
.99 0
0 0

]
xk−1 =

[
.99 0
0 0

]2

xk−2 = . . . =

[
.99 0
0 0

]k
x0

c) After how many iterations, we have ‖xk − x?‖2 < 1
100?

‖xk − x?‖2 = ‖xk‖2 = ‖
[
.99k 0

0 0

] [
100
100

]
‖2 = ‖

[
.99k · 100

0

]
‖2 = .99k · 100 <

1

100

We need .99k < 10−4 which means k log(0.99) < −4, so k > − 4
log(0.99) ≈ 916.4.

So after k = 917 iterations, we have ‖xk − x?‖2 < 1
100

c) What’s the convergence rate of the sequence {‖xk − x?‖2}? (sublinear/linear/quadratic)

‖xk − x?‖2 = .99k · 100 = .99
(
.99k−1 · 100

)
= .99 ‖xk−1 − x?‖2︸ ︷︷ ︸

τk−1

so τk = 0.99τk−1 =⇒ linear.

§19.2 Newton’s Method

Newton’s method uses the search direction given by

dNk = −∇2f(xk)
−1∇f(xk)

Newton’s direction is derived from the second-order Taylor series approximation to f(xk+d),
which is

f(xk + d) ≈ f(xk) +∇f(xk)
>d+

1

2
d>∇2f(xk)d := mk(d)

When the Hessian is positive definite, the Taylor series approximate is minimized by setting

d = dNk = −∇2f(xk)
−1∇f(xk)

The Newton direction is reliable when the difference between the true function f(xk + d)
and its quadratic model mk(d) is not too large.

∇dmk(d) = ∇f(xk) +∇2f(xk)d = 0 =⇒ d = −∇2f(xk)
−1∇f(xk)

The Newton’s direction is usually not computed by taking the inverse of the Hessian, but
rather solving the system of linear equations

∇2f(xk)d
N
k = −∇f(xk)

67

Duc Vu (Spring 2021) 19 Lec 18: May 10, 2021

When the Hessian is positive definite, Newton’s direction is a descent direction because

∇f(xk)
>dNK =

(
−∇2f(xk)d

N
k

)>
dNk = −dN>k ∇2f(xk)d

N
k ≤ −dN

>
k

(
λmin

(
∇2f(xk)

)
I
)
dNk

There is a step length of 1 associated with the Newton direction. Most implementations of
Newton’s method use the unit step α = 1 where possible and adjust it only when it does
not produce a satisfactory reduction in the value of f .
Methods that use the Newton direction have a fast rate of local convergence, typically
quadratic. More formally, we have the following theorem

Theorem 19.2

Suppose f is twice differentiable and Hessian is ρ-Lipschitz continuous, i.e.,

‖∇2f(x)−∇2f(y)‖2 ≤ ρ‖x− y‖2

around a solution x? where the Hessian is positive definite. Then

1. If the starting point is close to x?, the sequence of iterates converges to x?.

2. The rate of convergence is quadratic.

68

Duc Vu (Spring 2021) 20 Lec 19: May 12, 2021

§20 Lec 19: May 12, 2021

§20.1 Newton’s Method (Cont’d)

Proof. By definition of k + 1-th step of Newton method, we get

xk+1 − x? = xk + dNk − x?

= xk − x? + dNk

= (xk − x?)−∇2f(xk)
−1∇f(xk)

= ∇2f(xk)
−1∇2f(xk)(xk − x?)−∇2f(xk)

−1

∇f(xk)−∇f(x?)︸ ︷︷ ︸
=0

= ∇2f(xk)

−1
[
∇2f(xk)(xk − x?)− (∇f(xk)−∇f(x?))

]
Using integral version of Taylor’s theorem

∇f(xk)−∇f(x?) =

∫ 1

0
∇2f (x? + t(xk − x?)) (xk − x?) dt

Therefore, we note that

∇2f(xk)(xk−x?)−(∇f(xk)−∇f(x?)) = ∇2f(xk)(xk−x?)−
∫ 1

0
∇2f (x? + t(xk − x?)) (xk−x?) dt

which is equal to∫ 1

0
∇2f(xk)(xk − x?) dt−

∫ 1

0
∇2f (x? + t(xk − x?)) (xk − x?) dt

Note that
‖Ax‖2 ≤ ‖A‖2 · ‖x‖2

‖∇2f(xk)(xk − x?)− (∇f(xk)−∇f(x?)) ‖2

= ‖
∫ 1

0

[
∇2f(xk)(xk − x?)−∇2f (x? + t(xk − x?)) (xk − x?)

]
dt‖2

= ‖
∫ 1

0

[
∇2f(xk)−∇2f (x? + t(xk − x?))

]
(xk − x?) dt‖2

≤
∫ 1

0
‖
[
∇2f(xk)−∇2f (x? + t(xk − x?))

]
(xk − x?)‖2 dt

≤
∫ 1

0
‖
[
∇2f(xk)−∇2f (x? + t(xk − x?))

]
‖2‖xk − x?‖2 dt

≤
∫ 1

0
ρ‖xk − (x? + t(xk − x?)) ‖2‖xk − x?‖2 dt

=

∫ 1

0
ρ‖xk − x?‖22(1− t) dt =

ρ

2
‖xk − x?‖22

69

Duc Vu (Spring 2021) 20 Lec 19: May 12, 2021

Now, we have{
‖xk+1 − x?‖2 = ‖∇2f(xk)

−1
[
∇2f(xk)(xk − x?)− (∇f(xk)−∇f(x?))

]
‖2

‖
[
∇2f(xk)(xk − x?)− (∇f(xk)−∇f(x?))

]
‖2 ≤ ρ

2‖xk − x
?‖22

This implies that

‖xk+1 − x?‖2 ≤ ‖∇2f(xk)
−1‖2 ·

ρ

2
‖xk − x?‖22 (1)

Finally note when xk → x?, we have

‖∇2f(xk)
−1‖2 = ‖∇2f(x?)−1‖2

Therefore, by the definition of continuity, there exists a small number ε s.t. for any

‖xk − x?‖2 ≤ ε

We have
‖∇2f(xk)

−1‖2 ≤ 2‖∇2f(x?)−1‖2 (2)

Then
‖xk+1 − x?‖ ≤ ρ‖∇2f(x?)−1‖2‖xk − x?‖22 = O

(
‖xk − x?‖22

)
Plugging (2) into (1)

‖xk+1 − x?‖2︸ ︷︷ ︸
τk+1

≤ 2‖∇2f(x?)−1‖2 ·
ρ

2
‖xk − x?‖22 = ρ‖∇2f(x?)−1‖2 · ‖xk − x?‖22

= O

‖xk − x?‖22︸ ︷︷ ︸
τ2k

When initialized away from a second-order optimal point, the Hessian matrix might
not be positive definite, and the Newton direction defined by

∇2f(xk)d
N
k = −∇f(xk)

may not be a search direction. We can overcome this difficulty y replacing the Hessian
matrix with a positive definite approximation.
Eigenvalue modification: assume the eigenvalue decomposition of the Hessian is available.
To approximate an indefinite Hessian with a positive definite matrix, one option is to
replace all negative eigenvalues with a small positive number δ.
The simplest idea of modifying the Hessian is to find a scalar τ > 0 s.t. ∇2f(xk) + τI is
sufficiently positive definite.

xk+1 = xk − αk∇f(xk) = xk −
1

L
∇f(xk)

Gradient descent can be derived from the quadratic upper-bound of f(xk + d)

f(xk + d) ≤ f(xk) +∇f(xk)
>d+

L

2
‖d‖22 := qk(d)

70

Duc Vu (Spring 2021) 20 Lec 19: May 12, 2021

The minimize qk(d) gives d = − 1
L∇f(xk).

Newton’s method is derived from exactly the second-order Taylor series approximation to
f(xk + d)

f(xk + d) ≤ f(xk) +∇f(xk)
>d+

1

2
d>
[
∇2f(xk)

]
d := mk(d)

Then minimize mk(d) gives d = −∇2f(xk)
−1∇f(xk). We can view gradient descent is

obtained from second-order Taylor series by replacing ∇2f(xk) by LI while Newton’s
method uses exactly ∇2f(xk). Therefore, Newton’s method is more accurate.

71

Duc Vu (Spring 2021) 21 Lec 20: May 14, 2021

§21 Lec 20: May 14, 2021

§21.1 Gradient Descent v.s . Newton’s Method

Example 21.1

Consider minimizing f(x, y) = 100x2 + y2 with starting point

[
x0

y0

]
=

[
1
1

]
and L =

λmax(∇2f) = λmax

([
200 0
0 2

])
= 200.

We have

∇f =

[
∂f
∂x
∂f
∂y

]
=

[
200x
2y

]
∇2f =

[
200 0
0 2

]
So λ1 = 200, λ2 = 2, and L = 200 =⇒ f(x, y) is strongly convex

∇f =

[
200x
2y

]
= 0

=⇒
[
x
y

]
=

[
0
0

]
is the unique global minimizer

• Gradient Descent: xk+1 = xk − 1
L∇f(xk)[

x1

y1

]
=

[
1
1

]
− 1

200

[
200
2

]
=

[
0

0.99

]
[
x2

y2

]
=

[
0

0.99

]
− 1

200

[
0

2 · 0.99

]
=

[
0

0.992

]
...

• Newton’s Method: xk+1 = xk −∇2f(xk)
−1∇f(xk)[

x1

y1

]
=

[
1
1

]
−
[
200 0
0 2

]−1 [
200
2

]
=

[
0
0

]

Conclusion: Newton’s method needs much fewer iterations than the gradient descent
method. However, gradient descent method still runs much faster than Newton’s
method since it does not need to compute the second-order derivative information.

72

Duc Vu (Spring 2021) 21 Lec 20: May 14, 2021

§21.2 Subgradient Methods

We first consider the simple case where the function f : Rn → R is convex. We say g is a
subgradient of f at x if

f(z) ≥ f(x) + g>(z − x)︸ ︷︷ ︸
linear underestimate of f

, ∀z

g is not unique. The set of all subgradients of f at x is called subdiffernetial of f at x,
denoted by ∂f(x) :=

{
f(z) ≥ f(x) + g>(z − x) ∀z

}
.

Example 21.2

Consider: f(x) = |x|, x ∈ R.

f(x) = |x|

−1 0 1

1

∂f(x)

So,

∂f(x) =

{
{−1} , x < 0

[−1, 1] , x = 0 {1} , x > 0

Subgradient of |x| at x = 0:

|z| = f(z) ≥ f (0) + g(z − 0), ∀z ∈ R
=⇒ find g 3 |z| ≥ gz, ∀z ∈ R

z > 0, z ≥ gz =⇒ g ≤ 1

z < 0, −z ≥ gz =⇒ −1 ≤ g

}
=⇒ −1 ≤ g ≤ 1

If −1 ≤ g ≤ 1, we have |z| ≥ gz, ∀z ∈ R.

73

Duc Vu (Spring 2021) 21 Lec 20: May 14, 2021

Example 21.3

Consider: Rectified Linear Unit (ReLU) f(x) = max {0, x}, the mostly used nonlinear
function in deep learning

−1 0 1

1

−1 0

1

1

∂f(x)
f(x) = max {0, x}

So,

∂f(x) =

{0} , x < 0

[0, 1] , x = 0

{1} , x > 0

74

Duc Vu (Spring 2021) 22 Lec 21: May 17, 2021

§22 Lec 21: May 17, 2021

§22.1 Subgradient Methods (Cont’d)

Example 22.1

Consider f(x) = max {f1(x), f2(x)}

f(x) = max {f1(x), f2(x)} where f1 and f2 are differentiable

∂f(x) =

f ′2(x), f1(x) < f2(x)

[f ′2(x), f ′1(x)] , f1(x) = f2(x)

f ′1(x), f1(x) > f2(x)

Basic Rules for Subdifferential:

• Scaling: ∂(af) = a∂f , a ≥ 0

• Summation: ∂(f1 + f2) = ∂f1 + ∂f2

• Affine Transformation: if h(x) = f(Ax+ b), then

∂h(x) = A>∂f(Ax+ b)

Consider:

f(x) = ‖x‖1 =

n∑
i=1

|xi| =
n∑
i=1

fi(x)

75

Duc Vu (Spring 2021) 22 Lec 21: May 17, 2021

and

∂f(x) =

n∑
i=1

∂fi(x), ∂xi |xi| =

{
sign(xi), xi 6= 0

[−1, 1] , xi = 0

∂fi(x) =

∂x1 |xi|
∂x2 |xi|

...
∂xn |xi|

 =

0
...
0

∂xi |xi|
...
0

= ∂xi |xi|ei

=

{
sign(xi)ei, xi 6= 0

[−1, 1] ei, xi = 0
= ∂fi(x)

So,

[∂f(x)]i =

{
sign(xi), xi 6= 0

[−1, 1] , xi = 0

∂f(x) = s̃ign(x) ∈ Rn[
s̃ign(x)

]
i

=

{
sign(xi), xi 6= 0

[−1, 1] , xi = 0

Example 22.2

Consider:

x =

1
3
−4
0

Then

s̃ign(x) =

1
1
−1

[−1, 1]

76

Duc Vu (Spring 2021) 22 Lec 21: May 17, 2021

Example 22.3

Consider h(x) = ‖Ax+b‖1. Letting f(x) = ‖x‖1 and A = [a1, . . . , am], and in addition

Ax+ b =

 a
>
1 x+ b1

...
a>mx+ bm

 =

{
sign (a>i x+ bi), a

>
i x+ bi 6= 0

[−1, 1] , a>i x+ bi = 0

and
∂h(x) = A>∂f (Ax+ b)

Consider minimize f(x) which may not be continuously differentiable at some points. To
mimic the gradient descent, subgradient methods involve the update

xk+1 = xk − αkgk, gk ∈ ∂f(xk)

for k = 0, 1, Unlike gradient, the negative subgradient is not necessarily a descent
direction. This also makes it more difficult to select appropriate step sizes αk for the
subgradient methods.

Example 22.4

Consider f(x) = |x1|+ 3|x2|

We have

∂f(x) =

[
∂x1f(x)
∂x2f(x)

]
=

[
s̃ign(x1)

3s̃ign(x2)

]
At x = (1, 0),

∂f(1, 0) =

[
1

[−3, 3]

]
=

{[
1
t

]
, t ∈ [−3, 3]

}

77

Duc Vu (Spring 2021) 22 Lec 21: May 17, 2021

Example 22.5 (Cont’d from above)

At x = (1, 0),

• g1 = (1, 0) ∈ ∂f(x), and −g1 is a descent direction.

• g2 = (1, 3) ∈ ∂f(x), and −g2 is not a descent direction.

Reason: lack of continuity – one can change direction significantly without violating
validity of subgradient.

78

Duc Vu (Spring 2021) 23 Lec 22: May 19, 2021

§23 Lec 22: May 19, 2021

§23.1 Subgradient Methods (Cont’d)

Since {f(xk)} is not necessarily monotone, we will keep track of the best

f?k = min
1≤i≤k

f(xi)

We also denote f? := minx f(x), the optimal objective value. We cannot analyze all non-
smooth functions. A nice and widely encountered class to start with is Lipschitz functions,
i.e., we assume f is Lipschitz

|f(x)− f(z)| ≤ Lf‖x− z‖2 ∀x, z ∈ dom(f)

Property: ‖g‖ ≤ Lf for all subgradients g ∈ ∂f(x) for all x.

Proof. From definition of subgradient,

f(z) ≥ f(x) + g>(z − x) ∀z, x

which implies
〈g, z − x〉 = g>(z − x) ≤ f(z)− f(x)

Choose z = x+ g =⇒ ‖g‖22 = 〈g, g〉 ≤ f(x+ g)− f(x) ≤ Lf‖g‖2

=⇒ ‖g‖2 ≤ Lf ∀g ∈ ∂f(x), ∀x

Subgradient methods with constant step size may converge to non-optimal point

Example 23.1

Consider f(x) = |x|, x0 = 0.1, and step size αk = α = 0.08. Then,

x1 = x0 − αs̃ign(x0) = 0.1− 0.08× 1 = 0.02

x2 = x1 − αs̃ign(x1) = 0.02− 0.08× 1 = −0.06

x3 = x2 − αs̃ign(x2) = −0.06− 0.08× (−1) = 0.02

Thus, the sequence of iterates {xk} never converge, and neither of its limit points is
the optimal solution of |x|.

How to select appropriate step size? Polyak’s step size, diminishing step sizes, etc . . .
We’d like to optimize ‖xk+1 − x?‖2 but don’t have access to x?.

Lemma 23.2

Subgradient update rule xk+1 = xk − αkgk obeys

‖xk+1 − x?‖22 ≤ ‖xk − x?‖22 − 2αk (f(xk)− f?) + α2
k‖gk‖22

79

Duc Vu (Spring 2021) 23 Lec 22: May 19, 2021

Proof. We have

‖xk+1 − x?‖22 = ‖xk − αkgk − x?‖22 = ‖(xk − x?)− αkgk‖22
= ‖xk − x?‖22 − 2αk〈xk − x?, gk〉+ α2

k‖gk‖22
≤ ‖xk − x?‖22 − 2αk (f(xk)− f?) + α2

k‖gk‖22
where the last line uses subgradient inequality

f(xk)− f(x?) ≥ 〈xk − x?, g〉
f(xk) ≥ f(x?) + g>(xk − x?) =⇒ f(xk)− f(x?) ≥ g>(xk − x?)

Majorizing function suggests Polyak’s stepsize

αk =
f(xk)− f?

‖gk‖22
which leads to error reduction

‖xk+1 − x?‖22 ≤ ‖xk − x?‖22 −
(f(xk)− f?)2

‖gk‖22
≤ ‖xk − x?‖22

It’s useful if f? is known

h

(
αk =

f(xk)− f?

‖gk‖22

)
= ‖xk − x?‖22 −

2 (f(xk)− f?)2

‖gk‖22
+

(f(xk)− f?)2

‖gk‖22

= ‖xk − x?‖22 −
(f(xk)− f?)2

‖gk‖22
Estimation error is monotonically decreasing with Poylak’s stepsize.

Theorem 23.3 (Convergence of Subgradient Method with Polyak’s Stepsize)

Suppose f is convex and Lf -Lipschitz continuous. Then subgradient method with
Polyak’s stepsize rule obeys

f?k − f? ≤
Lf‖x0 − x?‖2√

k + 1

Sublinear convergence rate O
(

1√
k

)
Proof. We have

(f(xk)− f?)2 ≤
(
‖xk − x?‖22 − ‖xk+1 − x?‖22

)
‖gk‖22

≤
(
‖xk − x?‖22 − ‖xk+1 − x?‖22

)
L2
f

Applying iterations (from 0-th to k-th) and summing up yield

k∑
i=0

(f(xi)− f?)2 ≤
(
‖x0 − x?‖22 − ‖xk+1 − x?‖22

)
L2
f

=⇒ (k + 1) (f?k − f?)
2 ≤ ‖x0 − x?‖22L2

f

which completes the proof.

80

Duc Vu (Spring 2021) 24 Lec 23: May 21, 2021

§24 Lec 23: May 21, 2021

§24.1 Subgradient Methods (Cont’d)

Theorem 24.1 (Subgradient Method for Convex and Lipschitz Functions)

Suppose f is convex and Lf -Lipschitz continuous. Then subgradient method

xk+1 = xk − αkgk, gk ∈ ∂f(xk), k = 0, 1, 2, . . .

obeys

f?k − f? ≤
‖x0 − x?‖22 + L2

f

∑k
i=0 α

2
i

2
∑k

i=0 αi

For constant step size αk = α,

lim
k→∞

f?k − f? ≤
L2
fα

2

i.e., may converge to a non-optimal point.
Diminishing step size obeys

∑
k α

2
k <∞ and

∑
k αk →∞

lim
k→∞

f?k − f? = 0,

i.e., converge to an optimal point.
The optimal choice here is αk = 1√

k

f?k − f? = O

(
‖x0 − x?‖22 + L2

f log k
√
k

)

i.e., matches the results with the Polyak’s stepsize and attains ε-accuracy within about
O
(

1
ε2

)
iterations.

Proof. Applying the lemma in lecture 22 recursively gives

‖xk+1 − x?‖22 ≤ ‖x0 − x?‖22 − 2

k∑
i=0

αi (f(xi)− f?) +

k∑
i=0

α2
i ‖gi‖22

Rearranging these terms, we have

2

k∑
i=0

αi (f(xi)− f?) ≤ ‖x0 − x?‖22 − ‖xk+1 − x?‖22 +

k∑
i=0

α2
i ‖gi‖22

≤ ‖x0 − x?‖22 + L2
f

k∑
i=0

α2
i

=⇒ f?k − f? ≤
‖x0 − x?‖22 + L2

f

∑k
i=0 α

2
i

2
∑k

i=0 αi

81

Duc Vu (Spring 2021) 24 Lec 23: May 21, 2021

§24.2 Theory of Constrained Optimization

Overview:

minimize
x∈Rn

f(x) subject to

{
ci(x) = 0, i ∈ E
ci(x) ≥ 0, i ∈ I

Example 24.2 (A Single Equality Constraint)

minimize
x1,x2

x1 + x2 subject to x2
1 + x2

2 − 2︸ ︷︷ ︸
c1(x)

= 0

At the solution x?, the constraint gradient ∇c1(x?) is parallel to ∇f(x?)

∇f(x?) = λ?1∇c1(x?) with λ?1 = −1

2

Lagrangian function:
L(x, λ1) = f(x)− λ1c1(x)

The condition becomes: at x?, there is a scalar λ?1 s.t.

∇xL(x?, λ?1) = 0

The condition is only necessary, but not sufficient.
Consider:

∇f(1, 1) =

[
1
1

]
, ∇c1(1, 1) =

[
2
2

]
=⇒ ∇f(1, 1) =

1

2
∇c1(1, 1)

=⇒ ∇xL
([

1
1

]
,
1

2

)
= ∇f(1, 1)− 1

2
∇c1(1, 1) =

[
0
0

]

However, x∗ =

[
1
1

]
is not the optimal solution.

82

Duc Vu (Spring 2021) 25 Lec 24: May 24, 2021

§25 Lec 24: May 24, 2021

§25.1 Theory of Constrained Optimization (Cont’d)

Example 25.1

Consider:
minimize

x1,x2
x1 + x2︸ ︷︷ ︸
f(x)

subject to 2− x2
1 − x2

2︸ ︷︷ ︸
c1(x)

≥ 0

Fact 25.1. A feasible x is not optimal if we can find a small step s that both retains
feasibility and decreases the objective function f .

Case 1: x lies strictly inside the circle.
Case 2: x lies on the boundary.

83

Duc Vu (Spring 2021) 25 Lec 24: May 24, 2021

Example 25.2 (Two Inequality Constraints)

Consider:
minimize

x1,x2
x1 + x2︸ ︷︷ ︸
f(x)

subject to 2− x2
1 − x2

2︸ ︷︷ ︸
c1(x)

≥ 0, x2︸︷︷︸
c2(x)

≥ 0

The geometric analysis at x =
[√

2 0
]>

Let’s define the Lagrangian function

L(x, λ) = f(x)−
∑
i∈E∪I

λici(x)

84

Duc Vu (Spring 2021) 25 Lec 24: May 24, 2021

Theorem 25.3 (First-Order Necessary Condition; KKT Conditions)

Suppose that x∗ is a local solution of the general constrained optimization, that the
function f and ci are continuously differentiable. Then there is a Lagrange multiplier
vector λ?, with components λ?i , i ∈ E ∪ I s.t. the following conditions are satisfied at
(x?, λ?)

• ∇xL(x?, λ?) = 0 Zero-gradient

• ci(x
?) = 0, i ∈ E , ci(x

?) ≥ 0, i ∈ I Primal Feasibility

• λ?i ≥ 0, i ∈ I Dual Feasibility

• λ?i ci(x
?) = 0, i ∈ E ∪ I Complementarity

For 3rd and 4th bullet points, there is no dual feasibility or complementarity conditions
if I = ∅.

85

Duc Vu (Spring 2021) 26 Lec 25: May 26, 2021

§26 Lec 25: May 26, 2021

§26.1 Example – KKT Conditions

Example 26.1

Verify the KKT conditions for the optimization

minimize
x1,x2

(
x1 −

3

2

)2

+
1

2

(
x2 −

1

2

)2

subject to

1− x1 − x2 ← c1(x)
1− x1 + x2 ← c2(x)
1 + x1 − x2 ← c3(x)
1 + x1 + x2 ← c4(x)

 ≥ 0

at the point x? = (1, 0)>. The feasible region is illustrated below:

a) Verify the KKT conditions at x? =

[
1
0

]
KKT on x? =

[
1
0

]
. We have

L(x, λ) = f(x)−
4∑
i=1

λici(x)

and

∇f(x) =

[
2x1 − 3
x2 − 1

2

]
,

∇c1(x) =

[
−1

−1

]
, ∇c2(x) =

[
−1

1

]

∇c3(x) =

[
1

−1

]
, ∇c4(x) =

[
1

1

]

86

Duc Vu (Spring 2021) 26 Lec 25: May 26, 2021

Example 26.2

Then,

∇xL(x, λ) = ∇f(x)−
4∑
i=1

λi∇ci(x)

=

[
2x1 − 3
x2 − 1

2

]
− λ1

[
−1
−1

]
− λ2

[
−1
1

]
− λ3

[
1
−1

]
− λ4

[
1
1

]
=

[
2x1 − 3 + λ1 + λ2 − λ3 − λ4

x2 − 1
2 + λ1 − λ2 + λ3 − λ4

]
1. Zero-gradient:

∇xL(x?, λ?) =

[
−1 + λ?1 + λ?2 − λ?3 − λ?4
−1

2 + λ?1 − λ?2 + λ?3 − λ?4

]
=

[
0
0

]
2. Primal feasibility:

c1(x?) = 1− 1− 0 = 0, c2(x?) = 1− 1 + 0 = 0

c3(x?) = 1 + 1− 0 = 2 ≥ 0, c4(x?) = 1 + 1 + 0 = 2 ≥ 0

3. Dual feasibility: λ?1 ≥ 0, λ?2 ≥ 0, λ?3 ≥ 0, λ?4 ≥ 0

4. Complementarity: λ?1c1(x?) = 0, λ?2c2(x?) = 0, λ?3c3(x?) = 0, λ?4c4(x?) = 0

b) What is the value of λ??

2) + 4) =⇒
λ?3 = λ?4 = 0

1)

}
=⇒

{
−1 + λ?1 + λ?2 = 0

−1
2 + λ?1 − λ?2 = 0

=⇒

{
λ?1 = 3

4

λ?2 = 1
4

Example 26.3

Minimal energy problem (b 6= 0):

minimize
1

2
‖x‖22 subject to Ax = b

Find the KKT conditions:

L(x, λ) = f(x)−
m∑
i=1

λici(x) =
1

2
‖x‖22 − λ>(Ax− b)

∇xL(x, λ) = x−A>λ

1. Zero-gradient: ∇xL(x?, λ?) = x? −A>λ? = 0

2. Primal feasibility: Ax? = b.

87

Duc Vu (Spring 2021) 27 Lec 26: May 28, 2021

§27 Lec 26: May 28, 2021

§27.1 Examples – KKT Conditions (Cont’d)

Example 27.1

Equality constrained convex quadratic minimization

minimize
x

1

2
x>Px+ q>x+ r subject to Ax = b

KKT conditions: Px? + q −A>λ? = 0, Ax? = b, equivalent to[
P −A>
−A 0

] [
x?

λ?

]
=

[
−a
−b

]
Solve this square system to obtain KKT points (x?, λ?)

L(x, λ) =
1

2
x>Px+ q>x+ r − λ>(Ax− b)

∇xL(x, λ) = Px+ q −A>λ

Example 27.2

Eigenvalue problem (A is symmetric)

maximize x>Ax subject to ‖x‖22 = 1

which is equivalent to

minimize
x

− x>Ax subject to ‖x‖22 = 1

So,

L(x, λ) = −x>Ax− λ
(
‖x‖22 − 1

)
∇xL(x, λ) = −2Ax− 2λx

which implies

zero-gradient : −2Ax? − 2λ?x? = 0 ⇐⇒ Ax? = (−λ?)x?

primal feasibility: ‖x?‖22 = 1

}

=⇒

{
x? is the normalized eigenvector

−λ? is the eigenvalue

88

Duc Vu (Spring 2021) 27 Lec 26: May 28, 2021

Example 27.3

Minimize x1 + x2 subject to 2− x2
1 − x2

2 ≥ 0.

L(x, λ) = x1 + x2 − λ(2− x2
1 − x2

2)

∇xL(x, λ) =

[
∂L
∂x1
∂L
∂x2

]
=

[
1 + 2λx1

1 + 2λx2

]
1. Zero-gradient: [

1 + 2λ?x?1
1 + 2λ?x?2

]
=

[
0
0

]
2. Primal feasibility: 2− (x?1)2 − (x?2)2 ≥ 0

3. Dual feasibility: λ? ≥ 0

4. Complimentary: λ?

2− (x?1)2 − (x?2)2︸ ︷︷ ︸
=0

 = 0

HW Hint:

1) =⇒ λ? 6= 0

4)

}
=⇒ 2− (x?1)2 − (x?2)2 = 0

§27.2 Duality

Duality theory constructs an alternative problem from the functions and data that define
the original optimization problem

minimize f(x) subject to ci(x) = 0, i ∈ E , ci(x) ≥ 0, i ∈ I

The Lagrangian takes the constraints into account by augmenting the objective function
with a weighted sum of the constraint functions

L(x, λ) = f(x)−
∑
i∈E∪I

λici(x)

L(x, λ, v) = f(x)−
∑
i∈I

λici(x)−
∑
i∈E

vici(x)

The Lagrangian dual function g(λ, v) is the minimum value of the Lagrangian over x

g(λ, v) = inf
x
L(x, λ, v)

= inf
x

(
f(x)−

∑
i∈I

λici(x)−
∑
i∈E

vici(x)

)

89

Duc Vu (Spring 2021) 27 Lec 26: May 28, 2021

Example 27.4 (Least Square Solution)

Minimal energy problem:

minimize
1

2
‖x‖22 subject to Ax = b

where A ∈ Rp×n.

• The Lagrangian: L(x, v) = 1
2‖x‖

2
2 − v>(Ax− b)

• The dual function: g(v) = infx L(x, v)

We set
∇xL(x, v) = x−A>v = 0

to get x = A>v. Therefore, the dual function is

g(v) = L
(
A>v, v

)
= −1

2
v>AA>v + b>v

=
1

2
‖A>v‖22 − v>

(
AA>v − b

)
=

1

2
v>AA>v − v>AA>v + v>b

90

Duc Vu (Spring 2021) 28 Lec 27: Jun 2, 2021

§28 Lec 27: Jun 2, 2021

§28.1 Duality (Cont’d)

Example 28.1 (Standard Form Linear Program)

Linear program in standard form

minimize c>x subject to Ax = b, x ≥ 0

The Lagrangian:

L(x, λ, v) = c>x−
n∑
i=1

λixi − v>(b−Ax)

= c>x− λ>x+ v>(Ax− b)

= −b>v +
(
A>v + c− λ

)>
x

The dual function:

g(λ, v) = inf
x
L(x, λ, v) = −b>v + inf

x

(
c+A>v − λ

)>
x

=

{
−b>v, c+A>v − λ = 0

−∞, otherwise

§28.2 Lagrange Dual Problem

For each pair (λ, v) with λ > 0, the Lagrange dual function gives a lower bound on the
optimal value p? of the original optimization.

Question 28.1. What is the best lower bound that can be obtained from the Lagrange
dual function?

maximize g(λ, v) subject to λ ≥ 0, λi ≥ 0, λ =

λ1

λ2
...

This problem is called the Lagrange dual problem. The original problem is called the
primal problem.
A pair (λ, v) is called dual feasible if λ ≥ 0 and g(λ, v) > −∞. A pair (λ?, v?) is called
dual optimal or optimal Lagrange multipliers if they are optimal for the dual problem.
The dual problem is a convex optimization whether or not the primal problem is convex.

• The domain of the dual function dom g = {(λ, v) : g(λ, v) > −∞}

• The optimization looks nicer if we make the hidden affine constraints explicit.

91

Duc Vu (Spring 2021) 28 Lec 27: Jun 2, 2021

Example 28.2

The dual function of the standard linear program

minimize c>x subject to Ax = b, x ≥ 0

which is

g(λ, v) =

{
−b>v, A>v − λ+ c = 0

−∞, otherwise

whose domain is
{

(λ, v) : A>v − λ+ c = 0
}

.
(λ, v) is dual feasible if λ ≥ 0 and A>v − λ+ c = 0. By making the constraint explicit,
we obtain the dual problem

maximize − b>v subject to A>v − λ+ c = 0, λ ≥ 0︸ ︷︷ ︸
vectors

which is equivalent to

maximize − b>v subject to A>v + c ≥ 0

an linear program inequality form.

Example 28.3

Consider:
minimize c>x subject to Ax ≤ b ⇐⇒ b−Ax ≥ 0︸ ︷︷ ︸

c(x)

Compute the dual problem:
Hint:

1. Lagrangian function:

L(x, λ) = f(x)− λ>c(x) = c>x− λ>(b−Ax) = c>x+ λ>Ax− λ>b

= −b>λ+
(
c+A>λ

)>
x

2. Dual function:

g(λ) = inf
x
L(x, λ) = −b>λ+ inf

x

(
c+A>λ

)>
x

=

{
−b>λ, c+A>λ = 0

−∞, otherwise

3. Dual problem:

maximize − b>λ subject to c+A>λ = 0, λ ≥ 0

92

Duc Vu (Spring 2021) 29 Lec 28: Jun 4, 2021

§29 Lec 28: Jun 4, 2021

§29.1 Final Review

• Foundations on vector space/linear operators/eigenvalue decompositions.

• Computation of gradient, Hessian, and Jacobian

1. Definition

2. Taylor’s Expansion Theorem

• Optimality conditions for smooth unconstrained optimization

– Necessary conditions: If x? is a local minimizer, then ∇f(x?) = 0 & ∇2f(x?)
is PSD.

– Sufficient conditions: If ∇f(x?) = 0 & ∇2f(x?) is PD =⇒ x? is a strict
local minimizer.

• Convexity:

– Determine whether a set ω is convex: check if (1−α)x+αy ∈ ω for any x, y ∈ ω
and α ∈ [0, 1].

– Determine whether a function f(x) is (strongly) convex:

1. Check if dom(f) is convex

2. Compute its Hessian ∇2f(x) and eigenvectors of ∇2f(x).

3. Check the minimal eigenvalue of Hessian

∀x ∈ dom(f), if λmin(∇2f(x)) ≥ m > 0 = =⇒ f(x) is strongly convex

if λmin(∇2f(x)) ≥ 0 =⇒ f(x) is convex

• Optimality conditions for convex functions:

1. If f is convex & ∇f(x?) = 0 =⇒ x? is a global minimizer.

2. If f is strongly convex & ∇f(x?) = 0 =⇒ x? is the unique global minimizer.

• Gradient Descent Method: minx∈Rn f(x)

xk+1 = xk − αk∇f(xk)

– If f(x) has Lipschitz gradient with Lipschitz constant L, then we can choose
the stepsize αk = 1

L .

– Convergence rate & complexity.

• Newton’s method:
xk+1 = xk −∇2f(xk)

−1∇f(xk)

• Subgradient Method

• Constrained optimization

93

Duc Vu (Spring 2021) 29 Lec 28: Jun 4, 2021

– Find the KKT conditions, and all the points satisfy the KKT conditions.

– Compute the Lagrange function, dual function, and dual problem.

Lagrangian function:

L(x, λ, v) = f(x)−
∑
i∈I

λi ci(x)︸ ︷︷ ︸
inequality constraint

−
∑
i∈E

vi ci(x)︸ ︷︷ ︸
equality constraint

Assume we have m equality and n equality constraints. We also have

L(x, λ, v) = f(x)−
m∑
i=1

λici(x)−
n∑
i=1

vic̃(x)

m∑
i=1

λici(x) =
[
λ1 . . . λm

] c1(x)
...

cm(x)

 = λ>

 c1(x)
...

cm(x)

n∑
i=1

vic̃i(x) =
[
v1 . . . vn

] c̃1(x)
...

c̃m(x)

 = v>

 c̃1(x)
...

c̃m(x)

So,

L(x, λ, v) = f(x)− λ>

 c1(x)
...

cm(x)

− v>
 c̃1(x)

...
c̃m(x)

for λ =

λ1
...
λm

 ∈ Rm and v =

v1
...
vn

 ∈ Rn. If m = n = 1, then λ and v are both scalars, i.e.,

L (x, λ, v) = f(x)− λc1(x)− vc̃1(x)

Homework # 5 Problem 4:

minimize
x∈Rn

‖x‖22 subject to 1>x = 2, 1 =

[
1
1

]
Then,

L(x, v) = ‖x‖22 − v
(
1>x− 2

)
g(v) = inf

x
L(x, v) = inf

x
‖x‖22 − v(1>x) + 2v

Notice that

∇xL(x, v) = 2x− v1
∇2
xL(x, v) = 2I =⇒ L(x, v) is strongly convex in x

=⇒ critical point should be the unique global minimizer.

∇xL(x, v) = 2x− v1 = 0 =⇒ x? =
v

2
1

94

Duc Vu (Spring 2021) 29 Lec 28: Jun 4, 2021

So

g(v) = L(
v

2
1, 0) = ‖v

2
1‖22 − v

(
1>
(v

2
1
)
− 2
)

= 2v − v2

2

Then, the dual problem is

max
v

2v − v2

2

95

	Lec 1: Mar 29, 2021
	Introduction
	Some Examples
	Classification of Optimizations

	Lec 2: Mar 31, 2021
	An Overview of Linear Algebra

	Lec 3: Apr 2, 2021
	Lec 2 (Cont'd)
	Linear Operators
	Operator Norms

	Lec 4: Apr 5, 2021
	Operator Norms (Cont'd)
	Inverse Operator
	Adjoint Operators

	Lec 5: Apr 7, 2021
	Fundamental Subspaces of Linear Operators
	Projection Operators

	Lec 6: Apr 9, 2021
	Motivating Examples
	Eigenvalues and Eigenvectors

	Lec 7: Apr 12, 2021
	Diagonalization
	Positive Definite Matrices

	Lec 8: Apr 14, 2021
	Some Properties of Eigenvalues
	Singular Value Decomposition
	Gradient, Hessian, Jacobian, and Chain Rule

	Lec 9: Apr 16, 2021
	Lec 8 (Cont'd)

	Lec 10: Apr 19, 2021
	Lec 9 (Cont'd)
	Taylor's Theorem

	Lec 11: Apr 21, 2021
	Taylor's Theorem (Cont'd)
	Solution and Optimality Conditions

	Lec 12: Apr 23, 2021
	Solution and Optimality Conditions (Cont'd)
	Midterm
	Convexity

	Lec 13: Apr 26, 2021
	Strongly Convex Functions

	Lec 14: Apr 28, 2021
	Examples of Finding Global Minimizers

	Midterm: Apr 30, 2021 – :D
	Lec 15: May 3, 2021
	Gradient Descent Methods

	Lec 16: May 5, 2021
	Gradient Descent Methods (Cont'd)

	Lec 17: May 7, 2021
	Gradient Descent Methods (Cont'd)
	An Example

	Lec 18: May 10, 2021
	An Example (Cont'd)
	Newton's Method

	Lec 19: May 12, 2021
	Newton's Method (Cont'd)

	Lec 20: May 14, 2021
	Gradient Descent v.s. Newton's Method
	Subgradient Methods

	Lec 21: May 17, 2021
	Subgradient Methods (Cont'd)

	Lec 22: May 19, 2021
	Subgradient Methods (Cont'd)

	Lec 23: May 21, 2021
	Subgradient Methods (Cont'd)
	Theory of Constrained Optimization

	Lec 24: May 24, 2021
	Theory of Constrained Optimization (Cont'd)

	Lec 25: May 26, 2021
	Example – KKT Conditions

	Lec 26: May 28, 2021
	Examples – KKT Conditions (Cont'd)
	Duality

	Lec 27: Jun 2, 2021
	Duality (Cont'd)
	Lagrange Dual Problem

	Lec 28: Jun 4, 2021
	Final Review

