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§1 Lec 1: Oct 2, 2020

§1.1 Properties of Probabil ity

Definition 1.1 (Outcome Space) — Consider the outcome of a random experiment, e.g.
flipping a coin. The collection of all such outcomes, denoted by S︸︷︷︸

ω in other advanced prob. textbook

, is called the outcome space.

• A subset A ⊆ S is called an event.

• If A1, A2, . . . ⊆ S satisfy Ai ∩ Aj = ∅, i 6= j then they are called “disjoint”
(mutually exclusive)

• If A1, A2, . . . , An ⊆ satisfy
⋃n
i=1Ai = A1 ∪A2 ∪ . . . ∪An = S. Then {Ai}i=1...n

are called exhaustive(fully comprehensive).

Example 1.2 1. Flip two coins in order. Denote H = head, T = tail.

S = {HH,HT, TH, TT}
A = {HH} = {both coins are head}

A ⊆ S is an event.

B = {HT, TH}

B ⊆ S is another event.

A ∩B = ∅, they are disjoint.

2. Flip 2 coins at once.

S = {HH,HT, TT}
A = {one head, one tail}
A = {HT} , is an event.

Probability – A heuristic intro:
Consider an experiment and repeat n times. Let N(A) = number of times A occurs. The

ratio N(A)
n is called the relative frequency of A in n repetitions of the experiment.

0 ≤ N(A)

n
≤ 1

As n→∞,
N(A)

n
→ p ∈ [0, 1]

This p is called the prob. that event A occurs.
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Example 1.3

(a) Flip a coin

S = {H,T}
A = {H}

What is P (A)?
(b) Sometimes, we can also assign prob. based on the nature of the event Pick a

random point in the unit circle.

A =
{

chosen point ∈ 1stquadrant
}

P (A) = Area of first quadrant
Area of unit circle = 1

4
(c) Pick a number randomly from {0, 1, . . . , 9}, B = {2 is picked}

P (B) =
1

10

Table 1: From example 1.3 (a)

n N(A) N(A)
n

50 37 .74

500 333 .66

It is safe to assign P (A) = 0.66

Definition 1.4 (Probability) — Given an outcome space S, the probability of an event
A A ⊆ S, is a number satisfying:

1. P (A) ≥ 0

2. P (S) = 1

3. A1, . . . , An ⊆ S are disjoint events, i.e. Ai ∩Aj = ∅, i 6= j, then

P

(
n⋃
i=1

Ai

)
=

n∑
i=1

P (Ai) = P (A1) + . . .+ P (An)

More generally, if A1, . . . , An, . . . ⊆ S are disjoint events, then

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai)
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Theorem 1.5 1. Denote A′ to be the complement of A in S, i.e.

A′ ∪A = S

A′ ∩A = ∅

Then
P (A′) = 1− P (A)

2. P (∅) = 0

3. If A ≤ B then P (A) ≤ P (B)

4. P (A ∪B) = P (A) + P (B)− P (A ∩B)

5. P (A ∪ B ∪ C) = P (A) + P (B) + P (C) − P (A ∩ B) − P (B ∩ C) − P (A ∩ C) +
P (A ∩B ∩ C)

Note: The pattern here is add the prob. of odd event(s) and substract the prob. of even
events.(for prop (4) and (5) of theorem 1.5).

Proof.
P (A′) = 1− P (A)

Since A′ ∩A = ∅ (by def of A′ ). By property (c),

P (A′ ∪A︸ ︷︷ ︸
S

) = P (A′) + P (A)

P (S)︸ ︷︷ ︸
1(by prop.(b))

= P (A′) + P (A)

Thus,
P (A′) = 1− P (A)

§2 Lec 2: Oct 5, 2020

Cont’d of Lec 1
(2)

P (∅) = 1− P (S)

= 1− 1

= 0

(3)
P (A) ≤ P (B)
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Duc Vu (Fall 2020) 2 Lec 2: Oct 5, 2020

B \A is the set s.t.

A ∪ (B \A) = B

A ∩ (B \A) = ∅
something here

implying
P (A) ≤ P (B)

(4)
P (A ∪B) = P (A) + P (B)− P (A ∩B)

(5) Textbook Section 1.1.

Definition 2.1 (“Equally Likely”) — Suppose S = {e1, . . . , em} where each ei is a
possible outcome. Denote n(s) = number of outcomes = m. If each ei has the same
prob. of occurring, then they are called equally likely. In particular,

P (ei) =
1

n(s)
=

1

m

Moreover, if A ⊆ S is an event s.t. n(A) = k. Then,

P (A) =
n(A)

n(s)
=

k

m

Example 2.2

Draw one card from a deck of 52 cards.

P (each card is drawn) =
1

52

A = {a king is drawn}, so n(A) = 4. Thus,

P (A) =
n(A)

n(S)
=

4

52

§2.1 Method of Enumeration

Multiplication Principle:
Suppose an experiment E1 has n1 outcomes

• For each outcome from E1, a 2nd experiment E2 has n2 outcomes. Then the composite
E1E2 has n1 · n2 outcomes.

Permutation of size n:

8



Duc Vu (Fall 2020) 2 Lec 2: Oct 5, 2020

Definition 2.3 (Permutation of n objects) — Suppose there are n positions to be filled
by n persons. One such arrangement is called a permutation of size n.
FACT: the total number of different such arrangements is given by “n! = 1 · 2 · 3 · . . . n”

Proof. • E1 = fill the 1st position from n persons =⇒ n outcomes for E1.

• E2 = fill the 2nd pos. from n− 1 persons left =⇒ n− 1 outcomes for E2

...

• En = fill the nth pos. from 1 person left =⇒ 1 outcome for En

• One arrangement = E1E2 . . . En
Thus, total number of arrangements is n!.

Permutation/Combination of n objects taken k:

Definition 2.4 (Permutation/Combination of size n taken k) — Given k ≤ n and
suppose there are n objects. If k objects are taken from n with/without order, then
such a selection is called permutation/combination of size n taken k.

Note:“Permutation of size n” = “permutation of size n taken n”.

Fact 2.1. 1. The total number of permutation n taken k (order is important here) is
denoted by

n
P k is given by

n
P k =

n!

(n− k)!

2. The total numbers of combination of n taken k, denoted by
n
Ck or

(
n
k

)
is given by

n
Ck =

(
n

k

)
=

n!

(n− k)!k!

Proof. E1 = fill 1st pos. from n =⇒ n for E1
...

Ek = fill kth pos. from n− k + 1 persons left. Thus,

permk = n · . . . · (n− k + 1)

(2) Combination of n taken k :
Start with nPk as follow:

• E1 = take k from n at once, outcome =n Ck =
(
n
k

)
• E2 = permute k, outcomes = k!. Thus,

n
P k =

(
n

k

)
· k!

implying (
n

k

)
=

n
P k
k!

=
n!

(n− k)!k!
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Practice 1: https://ccle.ucla.edu/pluginfile.php/3766550/mod_resource/content/
1/Practice%201.pdf

1. Consider S = {1, . . . , 8}
a)

• E1 = filling 1st pos =⇒ 8 choices.

• Same for E2 =⇒ 8 choices.

• Likewise, E3 has 8 choices.

Thus, the number of 3 digit numbers can be formed is 83

b) “3 distinct digit numbers” = “permutation of size 8 taken 3”
Thus, total such numbers is 8P3 = 8!

5! = 8 · 7 · 6
c) Considering subset where order is not taken into account

Combination of size 8 taken 3. Thus, the answer is(
8

3

)
=

8!

3!5!

d) 3 digit numbers and divisible by 5

• E1 = choose 5 for the 3rd pos, so 1 choice.

• E2 = 8 choices

• E3 = 8 choices

Thus, the total of choices is 8 · 8 = 64.
e) 4 element subsets of S that has one even digit.

• E1 = choose one even digit from S, so 4 choices (2,4,6,8).

• E2 = choose 3 digits from {1, 3, 5, 7} without order, so
(

4
3

)
Thus, total = E1 · E2 = 4 ·

(
4
3

)
.

e’) What if “at least one even digit” instead of “exactly one even”?

1. Total = exactly “one even” + “two even” + “three even” + “four even”

2. Total = “4-element subset” - “4-element subset with no even digit”

§3 Lec 3: Oct 7, 2020

§3.1 Conditional Probabil ity

Definition 3.1 (Conditional Probability) — Let A,B ⊆ S be two events. The condi-
tional prob. of A, given that B has occurred with P (B) > 0, is defined as

P (A|B) =
P (A ∩B)

P (B)

10
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A B

S

A ∩B

A ∩B

B

A heuristic explanation: A ∩B: “the portion in B that A occurs”

P (A|B) =
“area of A in B”

“area of B”

Example 3.2

Suppose my family has two kids. Given that there is at least a boy, what is the prob.
my family has two boys?

S = {bb,bg,gb,gg}

Now, let B = { at least a boy}. So we only look at the first three outcomes from S
(B). Define A = { two boys}

A ∩B = {bb}

Note A = A ∩B since A ⊆ B. Thus,

P (A|B) =
P (A ∩B
P (B)

=
1
4
3
4

=
1

3

Note: We can also consider the alternative outcome space without order as follows

S =

{
(b, b)−−1

4
, (b, g)−−1

2
, (g, g)−−1

4

}

Fact 3.1. P (A|B) satisfies basic properties of probability:

• P (A|B) ≥ 0

11



Duc Vu (Fall 2020) 3 Lec 3: Oct 7, 2020

• P (B|B) = 1

Moreover, if B ≤ C then
P (C|B) = 1

• If A1, . . . , An . . . are disjoint events,

P (
∞⋃
k=1

Ak|B) =
∞∑
k=1

P (Ak|B)

Proof. (a) P (A|B) = P (A∩B)
P (B) ≥ 0

(b) P (B|B) = P (B∩B)
P (B) = P (B)

P (B) = 1
If B ⊆ C then B ∩ C = B

P (C|B) =
P (B ∩ C)

P (B)
=
P (B)

P (B)
= 1

B ⊆ C means “if B occurs then C must occur”.

(c) P (
⋃k=1
∞ Ak|B) =

P (
⋃k=1
∞ Ak∩B
P (B) . By distributive law,

=
P (
⋃k=1
∞ (Ak ∩B))

P (B)

=

∑∞
k=1 P (Ak ∩B
P (B)

=
∞∑
k=1

P (Ak|B)

*INSERT: PRACTICE 1 #3 here*

Theorem 3.3 1. P (A ∩B) = P (A|B) · P (B) given that P (B) > 0

2. P (A ∩B ∩ C) = P (A) · P (B|A) · P (C|A ∩B) given P (A), P (A ∩B) > 0.

Proof. 1. By defn of cond. prob.

P (A|B) =
P (A ∩B)

P (B)

implying
P (B)P (A|B) = P (A ∩B)

2. P (A ∩B ∩ C) = P (C ∩ (A ∩B). By part 1,

= P (C|A ∩B)P (A ∩B)P (A ∩B)

= P (C|A ∩B)P (B|A)P (A)

Practice 3.1. The url: https://ccle.ucla.edu/pluginfile.php/3776692/mod_resource/
content/0/Practice%202.pdf

*INSERT: Look at the online notes*
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§4 Lec 4: Oct 9, 2020

Cont’d (Practice)
3)

A = {spade} B = {heart} C = {diamond} D = {club}

P = (A ∩B ∩ C ∩D =? So,

= P (A)P (B|A)P (C|A ∩B)P (D|A ∩B ∩ C)

(from problem 2 in practice 2)

• P (A) = 13
52

• P (B|A) =, now restricted to outcome space {51 cards in cluding 13 hearts} B|A =
{ dealing a heart}. Thus,

P (B|A) =
13

51

• Similarly,

P (C|A ∩B) =
13

50

(13 diamond from 50 cards left)

• P (D|A ∩B ∩ C) = 13
49 (13 clubs from 49 cards left).

Hence,

P (A ∩B ∩ C ∩D) =
13

52

13

51

13

50

13

49

§4.1 Independent Events

Example 4.1

Flip a fair coin twice

S = { HH, HT , TH, TT}
A =

{
1stH

}
B =

{
2ndT

}
C = {TT}

13
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C ⊆ B “2 tails” =⇒ “2nd is T”. i.e., if C occurs then B must have occurred. Thus,

P (B|C) = 1

P (A|B) =
P (A ∩B)

P (B)

=
1
4
1
2

=
1

2

P (A) =
1

2

Thus, P (A|B) = P (A), i.e., B occurring does not impact the occurrence of A.

Note also that
P (A ∩B)

P (B)
= P (A|B) = P (A)

implying
P (A ∩B) = P (A)P (B)

Definition 4.2 (Independent Events) — Given two events A,B which are called
independents iff

P (A ∩B) = P (A)P (B)

Theorem 4.3

The following are equivalent

• A,B are independent

• P (A|B) = P (B), provided P (B) > 0

• P (B|A) = P (B), provided P (A) > 0

Proof. Left as an excercise.

Theorem 4.4 1. If P (A) = 0 then A is independent with any event.

2. If A and B are independent then so are the following pairs:

A,B′ A′, B A′, B′

Proof. 1. Let B an arbitrary event, we need to show P (A ∩ B) = P (A)P (B). Since
P (A) = 0, P (A)P (B) = 0.

A ∩B ⊆ A

14
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imply
0 ≤ P (A ∩B) ≤ P (A) = 0

thus P (A ∩B) = 0.

2. Textbook(section 1.5)

Practice 4.1. Practice 2 – Problem 4:
Let’s consider C and D first

D = { sum of two rolls = 12}
= {(6, 6)}

Thus, D ⊆ C = {first roll is 6}. Hence, C and D are dependent.
A v.s. B

P (A) =
5

6
B = { sum is even}

= { first and second roll are even} ∪ {first and second roll are odd}
P (B) = P (first even)P (second even) + P (first odd)P (second odd)

=
3

6

3

6
+

3

6

3

6

=
1

2

Now, consider A ∩B =
{

1st 6= 3, sum is even
}

. So,

A ∩B =
{

1st 6= 3, 1st odd, 2nd odd
}
∪
{

1st 6= 3, 1st even, 2nd even
}

P (A ∩B) = P (1st 6=, 1st odd)P (2nd odd) + P (1st 6= 3, 1st even)P (2nd even)

=
2

6

3

6
+

3

6

3

6

=
5

12

Since P (A ∩B) = 5
12 = 5

6
1
2 = P (A)P (B), A and B are independent.

§5 Lec 5: Oct 12, 2020

§5.1 Independent Events (cont’d)

15
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Definition 5.1 (Mutually Independent Events) — A,B,C are called “mutually inde-
pendent” if followings hold:

• pairwise independent

P (A ∩B) = P (A)P (B) P (B ∩ C) = P (B)P (C) P (A ∩ C) = P (A)P (C)

• “triple” wise independent, i.e.,

P (A ∩B ∩ C) = P (A)P (B)P (C)

Note:analogous defn holds for A1, . . . , An, . . . in which any pairs, triple, quadruple and so
on must satisfy the similarly multiplication rules. Usually, the term “mutually” is dropped
but it is understood that “independence” means “mutually independence”.

Remark 5.2. In general, pairwise independence does not imply triple-wise independence.

Practice 5.1. 2 – Problem 5:

A = {1, 2} , B = {1, 3} , C = {1, 4}

P (A) = 2
4 = P (B) = P (C)

A ∩B = {1} = B ∩ C = A ∩ C

P (A ∩B) = P (B ∩ C) = P (C ∩A) =
1

4

Thus,

P (A ∩B) =
1

4
= P (A)P (B)

Same for B,C and A,C – so pairwise independent.
Triple:

A ∩B ∩ C = {1}

P (A ∩B ∩ C) = 1
4 ; on the other hand, P (A)P (B)P (C) = 1

2
1
2

1
2 = 1

8 . They are not equal!
Therefore, A,B,C are not mutually independent.

§5.2 Bayes’s Theorem

Definition 5.3 (Partition of Outcome Space) — The events B1, . . . , Bn (n may be
finite or ∞ ) are called a partition of the outcome space S if followings hold

• disjoint: Bi ∩Bk = ∅, i 6= k

• exhausted:
⋃i=1
n Bi = S

then,
P (B1) + . . .+ P (Bn) = P (S) = 1

16
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Theorem 5.4 (Law of total Probability)

Suppose B1, . . . , Bn is a partition of S with P (Bi) > 0 for i = 1, . . . , n. If A is an
event in S, then

P (A) =

n∑
i=1

P (A|Bi)P (Bi)

where P (Bi) is called the prior probability.

Proof. (sketch)

P (A) = P (

i=1⋃
n

(A ∩Bi))

=
n∑
i=1

P (A ∩Bi)

=
n∑
i=1

P (A|Bi)P (Bi)

Practice 5.2. 3 – problem 1:

P (I) = .35

P (II) = .25

P (III) = .4

A = { a spring is defective} , P (A) =? We know

P (A|I) = .02

P (A|II) = .01

P (A|III) = .03

By law of total prob:

P (A) = P (A|I)P (I) + P (A|II)P (II) + P (A|III)P (III)

= 0.0215

Theorem 5.5 (Bayes’s Theorem)

Suppose {Bi}i=1,...,n is a partition of S with P (Bi) > 0. If A with P (A) > 0, then for
all i = 1, . . . , n

P (Bi|A) =
P (A|Bi)P (Bi)∑n
k=1 P (A|Bk)P (Bk)

where P (Bi|A) is called posterior probability.

17
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Proof.

P (Bi|A) =
P (Bi ∩A)

P (A)

=
P (A ∩Bi)
P (A)

=
P (A|Bi)P (Bi)

P (A)

=
P (A|Bi)P (Bi)

P (A|B1)P (B1) + . . .+ P (A|Bn)P (Bn)

Practice 5.3. 3 – problem 2: A = { person has disease } , P (A) = .005.

+ = {test +}
− = { test −}

P (+|A) = .99

P ( +|A′︸︷︷︸
false positive

) = .03

P (A|+) =?

By Bayes’s Theorem:

P (A|+) =
P (+|A)P (A)

P (+|A)P (A) + P (+|A′)P (A′)

=
(.99)(.005)

(.99)(.005) + (.03)(.995)

{A,A′} is a partition of S.

§6 Lec 6: Oct 14, 2020

Practice 6.1. 3 – Problem 3: Trial: know at least 1 girl

P (GG|at least a girl) =
1

3

However, the above approach is not correct.
Intuition: The moment the girl opens the door, the first child’s gender is determined – which
makes the other kid’s gender is now independent of the girl. Thus, P (other kid is girl) = 1

2 .
Correct approach:

A = { a girl opens the door}
P (GG|A) =?

• P (A|GG) = 1

• P (A|BB) = 0

• P (A|GB) = 1
2

18
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• P (A|BG) = 1
2

By Bayes’ Theorem

P (GG|A) =
P (A|GG)P (GG)

P (A|GG)P (GG) + P (A|BB)P (BB) + P (A|BG)P (BG) + P (A|GB)P (GB)

=
1

2

§6.1 Random Variables with Discrete Type

Example 6.1

Flip a coin
S = {H, T}

Define
X : S → R

4 7→ X(s) ∈ R

s.t. X(H) = 0, X(T ) = 1

0

1

X
H

T

The function X is called a random variable (RV). Since S is discrete space, X is called
a RV of discrete-type.

Definition 6.2 (Random Variable) — Given an outcome space S, a function X that
assigns X(s) = x ∈ R for each s ∈ S is called a random variable.
The space(range) of X is the collection of real numbers, denoted by Sx,

Sx = {x ∈ R : ∃s ∈ S,X(s) = x}

Sx is also called the “support” of X.
When the outcome space S is discrete, then X is called a discrete random variable.

Example above:
Sx = {0, 1}

Note: the space of X is denoted by S in the textbook. Here we will use Sx.

Remark 6.3. Under the above definition, for x ∈ Sx,

P (X = x) = P ({s ∈ S : X(s) = x})

19
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Example 6.4

Roll a fair dice

S = {1, 2, . . . , 6}
X : S → R
s 7→ X(s) = x

Sx = {1, 2, . . . , 6} (= S)

For each k ∈ Sx,

P (X = k) = P ({k}) =
1

6

Also,

∑
k∈Sx

P (X = k) =
6∑

k=1

1

6
= 1

Definition 6.5 (Probability Mass Function) — The probability mass function (pmf)
f(x) of a discrete random variable X is a function satisfying the followings:

• f(x) > 0, x ∈ Sx.

•
∑

x∈Sx f(x) = 1.

• If A ⊆ Sx,
P (X ∈ A) =

∑
x∈A

f(x)

Note: if x /∈ Sx, then we assign f(x) = 0(P (X = x) = 0).

Example 6.6 (above)

the pmf of X is given by f(k) = 1
6 for k = 1, . . . , 6

A = {1, 2, 3} = “X < 4”

A ⊆ Sx

P (X ∈ A) =
∑
k∈A

f(k) =
3∑

k=1

1

6
=

1

2

20
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Definition 6.7 (Cumulative Distribution Function) — Cumulative distribution function
(cdf) F (x) of a RV x is a function given by

F (x) = P (X ≤ x), −∞ < x <∞

Note: F (x) is usually called distribution function, “cumulative” is dropped.

Example 6.8

Rolling a fair dice

• • • • • •
1

1
6

2

1
6

3

1
6

4

1
6

5

1
6

6

1
6

xpmf

mass =

cdf F (x) = P (X ≤ x)

= total mass cumulated starting from the left up to x

x < 1,

F (x) = P (X ≤ x)

= 0 (no mass up to x < 1)

x = 1,
F (1) = P (X ≤ 1)

•1
1
6

•
2

1
6

F (1) = 1
6 (mass up to and including location 1).

1 < x < 2

•
1 x

•
2

•

F (x) = P (X ≤ 1)

= P (X = 1)

=
1

6

x = 2

21
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•
1

•
2

1
6

1
6

mass =

F (2) = P (X ≤ 2)

= P (X = 1) + P (X = 2)

=
2

6

Likewise, 2 < x < 3

F (x) =
2

6
...x = 6, F (X) = P (X ≤ 6) = 1

x > 6, F (x) = 1

x1 2 . . . 5 6

...

1
5
6

2
6
1
6

F (x)

• ◦
• . . .

• ◦
•

§7 Lec 7: Oct 16, 2020

§7.1 Lec 6 (Cont’d)

In order to graph the prob. mass function:

• Line graph

1 2 3 . . . 6

• Histogram

22
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1 2 3 . . . 6

Practice 7.1. 4 – Problem 1:

X = max of two rolls

SX = {1, 2, . . . , 6}

For k ∈ SX . Determine f(k) = P (X = k) =?

• 1st approach:

2nd roll

1st roll

1

2

3

...

6

1 2 3 4 5 6

(1, 1)(1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

(2, 1)(2, 2) (2, 3) (2, 4) (2, 5) (2, 6)

(3, 1)(3, 2) (3, 3) (3, 4) (3, 5) (3, 6)

(6, 1)(6, 2) . . .

2nd roll

1st roll

1

2

3

...

6

1 2 3 . . . 6

. . .

. . .

. . .

1 2 3 6

2 2 3 6

3 3 3 6

...

6 6 6 . . . 6

. . .
...

...
...

f(1) = P (X = 1) =
1

36

f(2) = P (X = 2) =
3

36

f(3) = P (X = 3) =
5

36
...

f(6) = P (X = 6) =
11

36
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• 2nd approach: for k = 1, . . . , 6 (disjoint sub-events)

{X = k} = {max = k}

=
{

1stroll = k, 2nd < k
}

∪
{

1stroll < k, 2nd = k
}

∪
{

1st roll = 2nd = k
}

Thus,

P (X = k) = P (1st roll = k)P (2nd < k) + P (1st < k)P (2nd = k) + P (1st = k)P (2nd = k)

=
1

6

k − 1

6
+
k − 1

6

1

6
+

1

6

1

6

=
2k − 1

36

Note:
∑6

k=1
2k−1

36 = 1.

1 2 3

. . .

6

1
36

3
36

5
36

...

11
36

Histogram of pmf for Xpmf

Similarly, we can calculate Y = min of 2 rolls.

Remark 7.1. Suppose X = max {U, V } where U, V are 2 discrete random variables. Then
pmf of X can be calculated as follows:

f(k) = P (X = k)

= P (U = k, V < k) + P (U < k, V = k) + P (U = k, V = k)

and we can often use indep. on each of the above events. On the other hand, for Y = min {U, V }
then

P (Y = k) = P (U = k, V > k) + P (U > k, V = k) + P (U = k, V = k)

and use indep. on the above events.

§7.2 Expectation & Special Math Expectations
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Definition 7.2 (Mathematical Expectation) — Suppose X is a discrete random variable
with SX ,pmf f(x). Let u(x) be a function, then if the sum

∑
x∈SX u(x)f(x) exists

(finite) then the sum is mathematical expectation (expected value) of u(X) and is
denoted by

E[u(X)] :=
∑
x∈SX

u(x)f(x)

Practice 7.2. 5 – Problem 1: SX = {1, . . . , 6}. For x ∈ SX , u(x) = x− 3.5

average income = E[u(x)]

=
∑
x∈SX

u(x)f(x)

=

6∑
k=1

(k − 3.5) · 1

6

= 0

“After one game, on average, I do not gain/lose any money.”

Theorem 7.3

When it exists, the expectation E satisfies:

• If c is a constant, then
E[c] = c

• If c is a constant and u(X) is a function, then

E[c · u(X)] = cE[u(X)]

• If c1, c2 are constants and u1(X), u2(X) are functions.

E[c1u1(X) + c2u2(X)] = c1E[u1(X)] + c2E[u2(X)]

Remark 7.4. Part (c) can be generalized for 2 discrete random variables X,Y .

E[c1u1(X) + c2u2(Y )] = c1E[u1(X)] + c2E[u2(Y )]

Proof. Textbook.
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Definition 7.5 (Mean, Variance, & Standard Deviation) — For a random variable X,

• the mean (of X ) is denoted by

u := E[x]

• the variance (of X ) is denoted by

σ2 := E[(x− µ)2]

• the standard deviation
σ :=

√
σ2

Example 7.6

Suppose X has pmf

x −2 0 1

f(x) 1
2

1
3

1
6

mean = µ = E[x]

=
∑
x∈SX

x · f(x)

= (−2)
1

2
+ 0

1

3
1

1

6

= −5

6
variance = σ2 = E[(x− µ)2]

=
∑
x∈SX

(x− µ)2f(x)

= (−2− (−5

6
)2 1

2
+ (0− (−5

6
))2 1

3
+ . . .

σ2 intepretation:
For a constant c ∈ R, define g(c) := E[(x− c)2]. Note that

g(c) = E[(X − c)2]

= E[X2 − 2cX + c2]

= E[X2] + E[−2cX] + E[c2]

= E[X2]− 2cE[X] + c2

= c2 − 2cE[X] ·+E[X2]

= c2 − 2µ · c+ E[X2]
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“u and E[X2] are constant with respect to c”.

c∗
c

g(c)

•
g(c∗)

g(c∗) = min g(c) where c∗ satisfies

g′(c∗) = 0

g′(x) = 2c− 2µ

Thus
g′(c∗) = 0 = 2c∗ − 2µ

i.e., c∗ = µ. Hence,
σ2 = E[(x− µ)2] = g(µ)

minimizes g(c) = E[(x− c)2], i.e.,

σ2 = min︸︷︷︸
c∈R

E[(x− c)2] = E[(x− µ)2]

“σ2 measures fluctuation of X around its mean µ.”

§8 Lec 8: Oct 19, 2020

§8.1 Info about 1st midterm

1st Midterm 11/2, Monday, 10am PT. Due: 10am PT – Tuesday 11/3.
2nd Midterm, after Thanksgiving.

§8.2 Lec 7 (Cont’d)

Review geometric series: for |q| < 1,

∞∑
k=0

qk = 1 + q + q2 + . . . =
1

1− q

Differentiating both sides,

∞∑
k=1

kqk−1 = 1 + 2q + 3q2 + . . . =
1

(1− q)2
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Practice 8.1. 5 – Problem 2:
SX = {1, 2, . . .}. The pmf f(f) = P (X = k) = P (1st k-1 shots are missed and k shot succcessful.

a) E[X] =?

Ak =
{
kth shot is successful

}
P (Ak) = p

P (A′k) = 1− p = q = P
({
kth shot is missed

})

P (X = k) = P

A′1 ∩A′2 ∩ . . . ∩A′k−1︸ ︷︷ ︸
miss1st k−1 shots

∩ Ak︸︷︷︸
make atkth shots


independence

= P (A′1)P (A′2) . . . P (A′k−1)P (Ak)

= q · q . . . q · p
= qk−1 · p

for each k = 1, 2, 3, . . .. Note that pmf f(k) = P (X = k) indeed satisfies:

∞∑
k=1

f(k) =

∞∑
k=1

qk−1 · p

= p
(
1 + q + q2 + . . .

)
= p · 1

1− q

= p · 1

p

= 1

Now,

µ = E[x] =
∑
x∈SX

xf(x)

=

∞∑
k=1

k · f(k)

=

∞∑
k=1

k · qk−1 · p

= p

∞∑
k=1

k · qk−1

= p · (1 + 2q + 3q2 + . . .)

= p · 1

(1− q)2

= p · 1

p2

=
1

p
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Definition 8.1 (Moment Generating Function) — Given a discrete RV X and δX and
pmf f(x), if ∃ a positive constant h s.t. for all t ∈ (−h, h), the following expectation
function

E[etX ] =
∑
x∈SX

etxf(x)

exists then E[etx] is called the mgf of X and is denoted by MX(t).

Note: (−h, h) needs not be a symmetric interval. But it has to contain the origin
0.

Example 8.2

Suppose X has the following pmf,

x −2 0 1

f(x) 1
2

1
3

1
6

E[etX ] = MX(t) =
∑
x∈SX

etxf(x)

=
1

2
e−2t +

1

3
+

1

6
et

which is finite for all t ∈ R.

Theorem 8.3

MGF determines RV X, i.e., if X and Y are 2 RV s.t.

MX(t) = MY (t)

then
SX = Sy

and
fX(x)︸ ︷︷ ︸

pmf of X

= fY (x)︸ ︷︷ ︸
pmf of Y

for x ∈ SX(= SY )

Example 8.4 (above)

Suppose Y has mgf

MY (t) =
1

2
e−2t +

1

3
+

1

6
et
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then
SY = {−2, 0, 1}

and fY (−2) = 1
2 , fY (0) = 1

3 , fY (1) = 1
6 . So that X and Y have same space and same

pmf.

Practice 8.2. 5 – Problem 2b: X has geometric distribution with parameter p ∈ [0, 1]
denoted by X ∼ Geom(P ).
with pmf f(k) = qk−1p for k = 1, 2, . . . , q = 1− p. MGF of X is given by

MX(t) =

∞∑
k=1

etkf(k)

=

∞∑
k=1

etkqk−1p

= p(et + et2q + et3q2 + . . .)

= p · et
(
1 + (etq) + (etq)2 + (etq)3 + . . .

)
= pet

1

1− etq

which is finite for t,

0 < et · q < 1

et <
1

q

t < ln

(
1

q

)
Thus,

MX(t) =
pet

1− qet
, with t < ln

(
1

q

)

Definition 8.5 (nth Moment) — For each n positive integer, if E[Xn] =
∑

x∈SX x
nf(x)

exists then E[Xn] is called the nth moment of X.
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Remark 8.6. Properties of MGF MX(t)

• t = 0, MX(0) = E[e0·X ] = E[1] = 1.

• Derivatives of MX(t) is given by

d

dt
[MX(t)] =

d

dt

[
E[etX ]

]
= E

[
d

dt
etX
]

assume
d

dt
and E are interchangeable

M ′X(t) = E
[
XetX

]
Thus,

M ′X(t)
∣∣∣
t=0

= E[Xe0·X ] = E[X], first moment of X

• Similarly, 2nd derivative of MX(t) given by

M ′′X(t) = E
[
X2etX

]
M ′′X(t)

∣∣∣
t=0

= E[x2], second moment of X

• More generally, the nth– derivative of MX satisfies

M
(
Xn)(t)

∣∣∣
t=0

= E[xn]

hence the name “mgf”.

Example 8.7

X ∼ Geom(p).

MX(t) =
pet

1− qet
, q = 1− p

M ′X(t) =
pet

(1− qet)2

M ′X(0) =
p

(1− q)2
=

p

p2
=

1

p
= E[x]

§9 Lec 9: Oct 21, 2020

§9.1 Binomial Distribution

Definition 9.1 (Bernoulli Trial) — Bernoulli trial is a random experiment such that
the outcomes can be classified in one of two mutually exclusive and exhaustive ways.

Example 9.2 1. Flipping a coin S = {H,T}.
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2. A sequence of Bernoulli trials occurs when the experiment is performed several
times and the prob. of success is the same in every trial and the trials are
independent.

3. A player shooting the throws in basket ball

• Making the shots has prob. p ∈ (0, 1).

• Missing.

Each throw is a Bernoulli trial. A sequence of throw is a sequence of Bernoulli
trial.

Definition 9.3 (Bernoulli Random Variable) — Let X be the random variable associated
with a Bernoulli trial. Then X is called a Bernoulli R.V with the pmf

P (X = 1(success)) = p

P (X = 0(failure)) = 1− p

which can also be rewritten as:

f(x) = px(1− p)1−x, x ∈ {0, 1}

Note: A formula of variance

σ2 = E[(X − µ)2]

= E[X2 − 2µX + µ2]

= E[X2]− 2µE[X] + µ2

= E[X2]− 2µ2 + µ2

= E[X2]− µ2

= E[X2]− (E[X])2

= M ′′X(0)−
(
M ′X(0)

)2
Practice 9.1. 6 – Problem 1: Let X ∼ Bernoulli R.V with p

µ = E[X] = 1 · P (X = 1) + 0 · P (X = 0)

= p

E[X2] = 12 · P (X = 1) + 02 · P (X = 0)

= p

Thus,

σ2 = E[X2]− (E[X])2

= p− p2

= p(1− p)
= pq
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Example 9.4

Suppose the player shoots three times. Let X be the number of times of making the
shot. P (X = 2) =?

√ √
×

√ √
×

√√
×

p p

p
p

p p

q = 1− p

q

q
⇒ p2q

⇒ p2q

⇒ p2q

In total

P (X = 2) = 3p2q =

(
3

2

)
p2q

Definition 9.5 (Binomial Distribution) — Given a Bernoulli trial, let X be the number
of successes in n Bernoulli trials. Then X is called the binomial distribution and is
denoted by

X ∼ B(n, p) or X ∼ Binom(n, p)

The pmf of X is given by

f(k) = P (X = k), k ∈ SX = {0, . . . , n}

=

(
n

k

)
pk(1− p)n−k

Explanation:

• choose k trials for success:

# ways =

(
n

k

)
• for each choice, prob of success = p · p . . . p︸ ︷︷ ︸

k times

and failures = (1− p) . . . (1− p)︸ ︷︷ ︸
n−k

.

=⇒
(
n

k

)
pk(1− p)n−k

Note:the pmf of B(n, p) satisfies

n∑
k=0

f(k) =
n∑
k=0

(
n

k

)
pk(1− p)n−k

= (p+ 1− p)n by Binomial Expansion Formula

= 1
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Practice 9.2. 6 – Problem 2: mgf of B(n, p) :

E[etX ] =

n∑
k=0

etkP (X = k)

=

n∑
k=0

etk
(
n

k

)
pk(1− p)n−k

=
∑(

n

k

)
etkpk(1− p)n−k

=

n∑
k=0

(
n

k

)(
pet
)k

(1− p)n−k

= (pet + 1− p)n by Binomial Expansion

Note that n = 1, B(1, p) is simply a Bernoulli trial mgf if Bernoulli trial is given by(
pet + 1− p

)1
= pet + 1− p

Now, we can calculate the mean

µ = E[X] =
∑
x∈SX

xf(x)

=
∑

k

(
n

k

)
pk(1− p)n−k︸ ︷︷ ︸

time consuming but doable

MGF approach:

µ = E[X] = M ′X(t)
∣∣∣
t=0

MX(t) = (pet + 1− p)n)

M ′X(0) = np

Variance:

σ2 = E[X2]− (E[X])2

E[X2] = M ′′X(0)

M ′′X(0) = n(n− 1)p2 + np

Thus,

σ2 = E[X2]− (E[X])2

= n(n− 1)p2 + np− (np)2

= np(1− p)

“Recalling variance of Bernoulli trial is p(1− p).”
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§10 Lec 10: Oct 23, 2020

§10.1 Practice 6 Problem 3

Practice 10.1. 6 – Problem 3: p = 0.95
a) Let X be the number of days without an accident in next 7 days. Then X ∼ B(n =
7, p = 0.95).

P (X = 7) =

(
7

7

)
.957(1− .95)7−7

= .957

b) Y = number of days in October without accident. Y ∼ B(n = 31, p = .95).

P (Y = 29) =

(
31

29

)
.9529(.05)2

c)

A = {today, no accident}
B = {no accident from day 2 to day 5}
C = {at least one day with accident between day 6 to day 10}
C ′ = {no accident between day 6 and day 10}

P (B ∩ C|A) =? Note that A,B,C are mutually independent. Thus,

P (B ∩ C|A) = P (B ∩ C)

= P (B)︸ ︷︷ ︸
(n=4,p=0.95)

P (C)︸ ︷︷ ︸
(n=5,p=.95)

=

(
4

4

)
(.95)4(.05)0

[
1− P (C ′)

] [
1−

(
5

5

)
(.95)5(.05)0

]
= (.95)4

[
1− (.95)5

]

Remark 10.1. It might be helpful to consider compliment when dealing with “at least” event.

§10.2 Hypergeometric Distribution

Practice 10.2. 7 – Problem 1: draw n = x reds + (n− x) blues

1 R1 . . . RN1
B1 BN2

. . .
red blue
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Denote X = # red balls from n drawn.

SX =


x ∈ N : 0 ≤ x ≤ n,

0 ≤ x ≤ N1,

0 ≤ n− x ≤ N2

For x ∈ SX , P (X = x) =?
Ways to drawn n balls from N1 +N2 :

(
N1+N2

n

)
• E1 = pick x reds from N1 which is

(
N1

x

)
• E2 = pick n− x blues from N2 =⇒

(
N2

n−x
)

• E1E2 = number of ways to pick n balls from N1 +N2 and pick exactly x red balls.
=⇒

(
N1

x

)(
N2

n−x
)
. Thus,

P (X = x) =

(
N1

x

)(
N2

n−x
)(

N1+N2

n

)
Note that X is denoted as X ∼ HG(N1, N2, n). The pmf indeed satisfies

∑
x∈SX

f(x) =
∑
x∈SX

(
N1

x

)(
N2

n−x
)(

N1+N2

x

) = 1

Fact 10.1. Let X ∼ HG(N1, N2, n) then

µ = E[X] = n
N1

N1 +N2

Proof. See textbook 2.5.

§11 Lec 11: Oct 26, 2020

§11.1 Negative Binomial Distribution

Definition 11.1 (Negative Binomial Distribution) — Considering the experiment of
performing Bernoulli trials until r successes occur (r is a fixed pos. integer). X =
number needed to observe the rth success. Then X is called a negative binomial
distribution.

× × × × ×
1st success 2nd success

. . . ×
√

rth success

X trials in total

X is denoted as X ∼ NB(r, p)
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Remark 11.2. When r = 1, X = # needed to observe the first success (∼ Geom (p) )

Fact 11.1. The pmf of X ∼ NB(r, p) is given by
for k ≥ r,

f(k) =

(
k − 1

r − 1

)
pr (1− p)k−r

where p is the probability of success (from Bernoulli trial). The space SX = {r, r + 1, . . .}.

Proof. Given k ≥ r, P (X = k) =?

. . .
√

rth

kth

k-1 trials and r-1 successes

P (X = k) = P (in the first k-1 trials, there are exactly r-1 successes)

and the kth trial is successful

= P (r − 1 successes from k-1 trials) · P (kth trial is successful)

=

(
k − 1

r − 1

)
pr−1(1− p)(k−1)−(r−1) · p

=

(
k − 1

r − 1

)
pr(1− p)k−r

Note: The pmf of NB(r, p) satisfies

∞∑
k=r

f(k) =
∞∑
k=r

(
k − 1

r − 1

)
pr(1− p)k−r = 1

We need Taylor expansion for the above formula, for |w| < 1,

1

(1− w)r
=
∞∑
k=1

(
k − 1

r − 1

)
wk−r

So,

∞∑
k=r

f(k) = pr
∞∑
k=r

(
k − 1

r − 1

)
(1− p)k−r

= pr
1

(1− (1− p))r

= 1

37



Duc Vu (Fall 2020) 11 Lec 11: Oct 26, 2020

Fact 11.2. X ∼ NB(r, p) then

MX(t) =

[
pet

1− (1− p)et

]r
Mean:

µ = E[X] =
r

p

Variance:

σ2 = Var(X) =
r(1− p)
p2

§11.2 Poisson Distribution

Motivation: Considering the arrivals(of guests at a bank or a restaurant,etc) in a continuous
time interval

0
•

1st guessing

time•
2nd guessing

• . . .

We assume the followings:

• The number of arrivals in non-overlapping intervals are mutually independent.

a b c d
number of guests
arriving in (a,b)

number of guests
arriving in (c,d)

independent

• There exists a fixed λ > 0 s.t. for all ε > 0 efficiently small P (exactly one arrival in [a, a+
ε]) = λε and P (at least two arrivals in [a, a+ ε)) = 0

0 a a+ ε

Note that we also have

P (no arrival in [a, a+ ε)) = 1− λε

Question 11.1. X = # arrivals in one hour

0 1
× × ×

P (X = k) =?

Approach: for n large

0 1
n

2
n

n−1
n

n
n = 1. . .

38



Duc Vu (Fall 2020) 12 Lec 12: Oct 28, 2020

By the second assumption,

P (one arrival in one subinterval) = λ · 1

n
=
λ

n

By the first assumption, subintervals arrivals are independent. Thus,

P (X = k) ∼= P (k subintervals have one arrival each, among n subintervals)

“ a subinterval having one arrival is a success with prob. λ
n ” where

P (X = k) ∼=
(
n

k

)(
λ

n

)k (
1− λ

n

)n−k

Practice 11.1. 8 – Problem 1: For k ≥ 0

Sn ∼ B(n,
λ

n
)

lim
n→∞

P (Sn = k) =

(
n

k

)(
λ

n

)k
(1− λ

n
)n−k

Everything converges to 1 except αk

λk
and

lim
n→∞

(1− α

n
)n = lim

y→∞

[
(1− 1

y
)y
]λ

Notice that

lim
y→∞

[(1− 1

y
)y]λ = (e−1)λ = e−λ

Hence,

lim
n→∞

(Sn = k) = e−λ
λk

k!

Definition 11.3 (Poisson Distribution) — Let X be a r.v. taking values in {0, 1, 2 . . .}
with pmf P (X = k) = e−λ λ

k

k! for a fixed λ > 0. Thus X is called a Poisson distribution,
X ∼ Pois(λ)

§12 Lec 12: Oct 28, 2020

§12.1 Lec 11 (Cont’d)

Remark 12.1. The pmf of Poisson distribution satisfies

∞∑
k=0

f(k) =

∞∑
k=0

e−λ
λk

k!

= e−λeλ

= 1
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Practice 12.1. 8 – Problem 2: Calculate the MGF of X ∼ Pois(A)

MX(t) = E
[
etX
]

=
∑
k≥0

etkf(k)

=
∑
k≥0

etke−λ
λk

k!

= e−λ
etkλk

k!

= e−λ
∑(

etλ
)k

k!

= eλ(et−1)

Note: MX(t) exists for all t ∈ R.
Now,

µ = E[x] = M ′X(t)
∣∣∣
t=0

M ′X(t) = λeteλ(et−1)

M ′X(0) = λ

Similarly,

σ2 = E[x− µ]2

= E[X2]− µ2

= M ′′X(t)
∣∣∣
t=0
− µ2

= λ

Another approach:

MX(t) := E
[
etX
]

= E

[
1 + tX +

t2X2

2!
+ . . .

]
= 1 + tM ′X(0) +

t2

2
M ′′X(0) + . . .

Remark 12.2. X ∼ Pois(λ) “represents” the number of arrivals in one hour and µ = E[X] = λ.
Thus, on average, we expect to have λ arrivals in one hour.

Practice 12.2. 8 – Problem 3:

X = # goals scored in one game

SX = {0, 1, 2, 3, . . .}

X ∼ Pois(λ) where α is TBD. Know: P (X ≥ 1) = 1
2 , so what’s P (X = 3)?
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Find λ

P (X ≥ 1) = 1− P (X = 0)

= 1− e−λλ
0

0!
1

2
= 1− e−λ

λ = ln 2

P (X = 3) = e−λ
λ3

3!

=
1

2

(ln 2)3

3!

§12.2 Binomial Distribution Approximation by Poisson
Distribution

Suppose Y ∼ B(n, p) where p � n. Then we can approximate Y by X ∼ Pois(α = np),
i.e.,

P (Y = k) ∼= e−λ
λk

k!

= e−np
(np)k

k!

Example 12.3

Suppose Y ∼ Binom(n = 1000, p = .001), so np = 1.

P (Y ≤ 2) ∼= P (X ≤ 2)

where X ∼ Pois(λ = np = 1)

P (Y ≤ 2) = P (X = 0) + P (X = 1) + P (X = 2)

= e−1 10

0!
+ e−1 1

1!
+ e−1 12

2!

=
5

2
e−1

Remark 12.4. The “rule of thump” is that np ≤ 1. Alternatively, the following is also
employed (in other textbooks)

np(1− p) ≤ 1

§12.3 Random Variable of Continuous Type
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Example 12.5 (Motivation)

Let X denote the outcome of selecting a point randomly from the interval [a, b] where
−∞ < a < b <∞

a x b

The prob. of X is selected from [a, x] where a < x < b is assigned as

P (a ≤ X ≤ x) =
x− a
b− a

Similarly,

P (a ≤ X ≤ b) =
b− a
b− a

= 1

a x b

•
X

The cdf:

F (x) = P (X ≤ x)

=


0, x < a
x−a
b−a , a ≤ x ≤ b
1, x > b

P (X ≤ x) = P (X < a) + P (a ≤ X ≤ x)

= 0 +
x− a
b− a

a b
x

1

F (x)

Note that the cdf actually satisfies

F (x) =

∫ x

−∞
f(y)dy

where

f(y) =

{
1
b−a , a ≤ y ≤ b
0, otherwise

To see this
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• x < a ∫ x

−∞
f(y)dy =

∫ x

−∞
0dy = 0 = F (x)

• a ≤ x ≤ b ∫ x

−∞
f(y)dy =

∫ a

−∞
f(y) +

∫ x

a
f(y)dy

= 0 +

∫ x

a

1

b− a

=
x− a
b− a

= F (x)

• x > b ∫ x

−∞
=

∫ a

−∞
+

∫ b

a
+

∫ x

b
f(y)dy

=

∫ b

a
f(y)dy

=

∫ b

a

1

b− a
= 1

Also, we have
F ′(x) = f(x)

f(x) is called the “probability density function”.

a b

1
b−a •

f(x)

x

•

§13 Lec 13: Oct 30, 2020

§13.1 Random Variable of Continuous Type (Cont’d)
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Definition 13.1 (Probability Density Function) — The probability density function
(pdf) of a continuous random variable X on a space SX is an integrable function s.t.
the followings hold:

• f(x) ≥ 0, x ∈ SX

•
∫∞
−∞ f(x) = 1

• If (a, b) ∈ SX , then P (a < X < b) =
∫ b
a f(x)dx

The cumulative distribution function (cdf)

F (x) = P (X ≤ x)

=

∫ x

−∞
f(y)dy

x

f (x) = pdf

x

Area =
∫x
−∞ f (y)dy = F (x) = P (X ≤ x)

Remark 13.2. 1. If X is a continuous RV with a pdf, f(x), then

P (a ≤ X ≤ b) = P (a < X ≤ b)
= P (a ≤ X < b)

= P (a < X < b)

=

∫ b

a

f(x)dx

i.e., a continuous RV does NOT have point mass, which can be seen

P (X = a) =

∫ a

a

f(x)dx = 0

2. By calculus, the cdf F (x) is a continuous function

F (x) =

∫ x

−∞
f(y)dy

F ′(x) = f(x)
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Discrete RV Continuous RV

pmf (mass func) f(x) = P (X = x)
f(x) ≥ 0,x ∈ SX∑
s∈SX

f(x) = 1

P (X ∈ A) =
∑
x∈A

f(x)

pdf (density function): f(x) ≥ 0,x ∈ SX∫ ∞
−∞

f(x)dx = 1

P (a ≤ X ≤ b) =

∫ b

a
f(x)dx

Cdf F (x) = P (X ≤ x)
cumulative mass from the left up to and including x. Cdf F (x) = P (X ≤ x)

=

∫ x

−∞
f(x)dy

Expectation: E[u(X)] =
∑
x∈SX

u(x)f(x) Expectation: E[u(X)] =

∫ ∞
−∞

u(x)f(x)dx

µ = E[x]

=
∑
s∈SX

xf(x)

Mgf: MX(t) =
∑
s∈SX

etxf(x) Mean: µ = E[x]

=

∫ ∞
−∞

xf(x)dx

Mgf: MX(t) =

∫ ∞
−∞

etxf(x)dx

Practice 13.1. 9 – Problem 1: X ∼ Unif(a, b) if X has the pdf

f(x) =

{
1
b−a , a ≤ x ≤ b
0, otherwise

Mean:

µ = E[X]

=

∫ ∞
−∞

xf(x)dx

=

∫ a

−∞
+

∫ b

a
+

∫ ∞
a

xf(x)dx

=

∫ b

a
xf(x)dx

=

∫ b

a
x

1

b− a
dx

µ =
a+ b

2

σ2 = E[X2]− µ2

E[X2] =

∫ b

a
x2f(x)dx

. . . Exercise
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Mgf:

MX(t) =

∫ ∞
−∞

etxf(x)dx

=

∫ b

a
etx

1

b− a
dx

=
1

b− a
etx

t

∣∣∣x=b

x=a

=
1

b− a
etb − eta

t

Note that MX(t) is well-defined for all t ∈ R

MX(t) =

{
1
b−a

etb−eta
t , t 6= 0∫∞

−∞ e
0·xf(x)dx = 1, t = 0

Also,

lim
t→0

1

b− a
etb − eta

t
= 1

Practice 13.2. 9 – Problem 2: Need to verify 2 condition:

1. f(x) ≥ 0

2.
∫∞
−∞ f(x)dx = 1

• f3(x) is not a pdf because sinx changes sign.

• f1(x) ≥ 0, note that SX = [1,∞)∫ ∞
−∞

f(x)dx =

∫ ∞
1

1

x2
dx

= 1

f1(x) is a pdf.

• f2(x) : If b ≤ 0 then f2 is NOT a pdf. If b > 0, then we have to find a, b s.t.∫ a
−a f(x)dx = 1. ∫ a

−a
b
√
a2 − x2dx = b

∫ a

−a

√
a2 − x2

Thus, ∫ a

−a
b
√
a2 − x2dx = 1 = b · πa

2

2

implying

a2b =
2

π
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Definition 13.3 (Percentile) — Given p ∈ [0, 1], the 100.pth percentile is a number πp
s.t.

F (πp) =

∫ πp

−∞
f(x)dx = p

p = 1
2 , = 50th percentile, π0.5 is called the median

F (π0.5) = P (X ≤ π0.5) =
1

2

p = 1
4 , π0.25 = 25th percentile is called the first quartile

F (π0.25) = P (X ≤ π0.25) =
1

4

§14 Midterm 1: Nov 2, 2020

NO CLASS :D

§15 Lec 14: Nov 4, 2020

§15.1 Exponential Distribution

Definition 15.1 (Exponential Distribution) — A continuous random variable is said to
have an exponential distribution if the pdf f(x) is given by for a fixed λ > 0

f(x) =

{
λe−λx, x ≥ 0,

0, otherwise

SX = [0,∞). X is denoted as X ∼ Exp(λ). Note that in textbook, λ is denoted as 1
θ

Remark 15.2. The pdf of X ∼ Exp(λ) satisfies∫ ∞
0

f(x)dx =

∫ ∞
0

λe−λxdx = −e−λx
∣∣∣x→∞
x=0

= 1

Fact 15.1. If X ∼ Exp(λ) then µ = 1
λ and σ2 = 1

λ2
.
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Indeed,

µ = E[x] =

∫ ∞
0

xf(x)dx

=

∫ ∞
0

xλe−λxdx

= x(−e−λx)
∣∣∣x→∞
x=0

−
∫ ∞

0
−e−λxdx

= 0 +− 1

λ
e−λx

∣∣∣x→∞
x=0

=
1

λ

Variance:

σ2 = E[X2]− E[X]2

=

∫ ∞
0

x2λe−λxdx− 1

λ2

=
2

λ2
− 1

λ2

=
1

λ2

Moreover, the mgf of Exp(λ) is given by

MX(t) =

∫ ∞
0

etxλe−λxdx

= λ

∫ ∞
0

e(t−λ)xdx

= λ

∫ ∞
o

e−(λ−t)xdx

=
λ

λ− t
Thus, MX(t) exists if t < λ

Practice 15.1. 10 – Problem 1: (Memoryless Property)

P (X > t+ s|X > t) = P (X > s)

• Cdf of X ∼ Exp(λ) : for t ≥ 0

F (t) = P (X ≤ t)

=

∫ t

0
λe−λxdx

= −e−λx
∣∣∣x=t

x=0

= 1− e−λt

Figure here

P (X > t) = 1− P (X ≤ t)
= 1− (1− e−λt)
= e−λt
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•

P (X > t+ s|X > t) =
P ({x > t+ s} ∩ {x > t})

P (x > t)

=
P (X > t+ s)

P (X > t)

=
e−λ(t+s)

e−λt

= e−λs = P (X > s)

Theorem 15.3

Suppose X is cont r.v. on [0,∞) s.t. X satisfies the memoryless property above, i.e.,
for all t, s > 0

P (X > t+ s|X > t) = P (X > s)

Then ∃λ s.t. X ∼ Exp(λ).

§15.2 Poisson Process

Recall that X ∼ Pois(λ) = # of arrivals in [0, 1) with mean = λ.

Question 15.1. Denote N [a, b) = # of guests arrivals in [a, b), N [a, b) =?

Ans: Using a similar approach – N [a, b) ∼ Pois(λ(b− a))

Definition 15.4 (Poisson Process) — Practice 10.

Practice 15.2. 10 – Problem 3a: U = first arrival time

U

1st guest 2nd guest0

Goal: Need to find cdf of U .

SU = [0,∞) and U is a continuous random variable

Given t ≥ 0

P (U ≤ t) = 1− P (U > t)

= 1− P (“no guest in [0, t)”)

= 1− P (N [0, t) = 0)

= 1− e−λt (λt)
0

0!

= 1− e−λt, cdf of Exp(λ)

Thus, U ∼ Exp(λ)
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§15.3 Gamma Distribution

Notation: Gamma function
For α > 0,

Γ(α) =

∫ ∞
0

tα−1e−tdt

Fact 15.2. If α is positive integer

Γ(α) = (α− 1)!

Definition 15.5 (Gamma Distribution) — X ∼ Γ(α, θ) if the pdf is given by

f(x) =

{
1

Γ(α)θαx
α−1e−

x
θ , x > 0

0, otherwise

Remark 15.6. f(x) indeed satisfies ∫ ∞
0

f(x)dx = 1

Practice 15.3. 10 – Problem 3b: α ∈ N

V

1st arrival 2nd arrival0 αth arrival
. . .

P (V ≤ t) = 1− P (V > t)

= 1− P (“ At most α− 1 arrivals before time t”)

= 1− P (N [0, t) ≤ α− 1)

= 1−
α−1∑
k=0

e−λt
(λt)k

k!

= P (V ≤ t)

Now differentiate with respect to t, we obtain the pdf of V given by

f(t) =
tα−1e

− t
1
λ

Γ(α)
(

1
λ

)α ∼ Γ(α, θ =
1

λ
)

∼ Gamma(α, θ = 1
λ .

Summary:

EXP(λ) = arrival time of 1st guest

Gamma(α, θ =
1

λ
) = arrival time of αth guest
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Remark 15.7. • Exp(λ ) is a special case of Gamma(α, θ) where α = 1, θ = 1
λ .

• Mean of Gamma(α, θ) is α · θ.

§16 Lec 15: Nov 6, 2020

§16.1 Chi – Squared Distribution

Definition 16.1 (Chi – Squared Distribution) — X is called to have a Chi – Squared
distribution if X ∼ Gamma(α = r

2 , θ = 2). More specifically, the pdf is given by

f(x) =


x
r
2−1e−

x
2

Γ( r
2

)2
r
2
, x > 0

0, otherwise

X is denoted as
X ∼ χ2(r)

and r is called the degree of freedom. (χ2 dist. with r degree of freedom).

§16.2 Normal Distribution

Definition 16.2 (Normal Distribution) — A continuous random variable is called to
have a normal distribution with parameter µ ∈ R, σ2 > 0 is the pdf is given by

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 , x ∈ R, SX = R

X is denoted as X ∼ N(µ, σ2).

Remark 16.3. f(x) actually satisfies∫ ∞
−∞

f(x)dx =

∫ ∞
−∞

1√
2πσ2

e−
(x−µ)2

2σ2 dx = 1

Fact 16.1. ∫ ∞
−∞

e−z
2
dz =

√
π

Definition 16.4 — 1. If Z ∼ N(µ = 0, σ2 = 1) then Z is said to have a standard
normal distribution.

2. In this case, the cdf of Z is denoted by Φ

Φ(x) = F (z ≤ x) =

∫ x

−∞

1√
2π
e
−z2
2 dz
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Practice 16.1. 11 – Problem 1: Given x ∈ R, z = x−µ
σ

P (Z ≤ x) = P

(
x− µ
σ
≤ x

)
= P (x ≤ σx+ µ), (σ > 0)

=

∫ σx+µ

−∞

1√
2πσ2

e−
(t−µ)2

2σ2 dt

Let z = t−µ
σ =⇒ dz = dt

σ

=

∫ x

−∞

1√
2πσ2

e−
z2

2 σdz

=

∫ x

−∞

1√
2π
e−

z2

2 dz = Φ(x)

Thus, Z = x−µ
σ ∼ N(0, 1).

Theorem 16.5

If X ∼ N(µ, σ2) then

• MGF: M(t) = exp(µt+t
2σ2

2 ).

• E[X] = µ and Var(X) = σ2

Proof.

M(t) = E[etX ]

=

∫ ∞
−∞

etx
1√

2πσ2
e−

(x−µ)2

2σ2 dx

= . . .

= eµt+
σ2t2

2

Practice 16.2. 11 – Problem 2: Z ∼ N(0, 1)

−z z

P (Z > z) = 1 − Φ(z)Φ(−z) = P (Z ≤ −z)

f (x)

x
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Φ(−z) = P (Z ≤ −z)

=

∫ −z
−∞

1√
2π
e−

t2

2 dt

1− Φ(z) = 1− P (Z ≤ z)
= P (Z > z)

=

∫ ∞
z

1√
2π
e−

t2

2 dt

Now, ∫ −z
−∞

1√
2π
e−

t2

2 dt =

∫ z

∞

1√
2π
e−

y2

2 (−dy)

=

∫ ∞
z

1√
2π
e
−y2
2 dy

Definition 16.6 — Let Z ∼ N(0, 1) and α ∈ (0, 1). Then zα is defined as

P (Z > Zα) = α

Area = α = P (Z > zα)

Practice 16.3. 11 – Problem 3: Z ∼ N(0, 1)
a)

P (.47 < Z ≤ 2.13) = P (Z ≤ 2.13)− P (Z ≤ .47)

= Φ(2.13)− Φ(.47)

b)

P (|Z| > 1.5) = P ({Z < −1.5} ∪ {Z > 1.5})
= P (Z < −1.5) + P (Z > 1.5)

= 2P (Z > 1.5) = 2 · 0.0668

c) α = 0.0485 =⇒ zα = 1.66
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§17 Lec 16: Nov 9, 2020

§17.1 Random Variable of Mixed Type

• Combination of point mass and density

a0 < a1 < . . . < an

• P (X = ai) > 0

• ai < ai+1, density fi(x)

a0

f0(x)

a1

f1(x)

a2 ai

fi(x). . .

. . .

n∑
i=0

P (X = ai) +

∫ a1

a0

f0(x)dx+ . . .+

∫ an

an−1

fn(x)dx = 1

• cdf

1

◦
a0 a1 a2

...

•
◦
...
• ◦

...
•

◦. . . . . . . . . . . . . . . . . .

• Expectation

E[u(X)] =

n∑
i=0

u(ai)P (X = ai) +

∫ a1

a0

u(x)f0(x)dx+ . . .+

∫ an

an−1

u(x)fn−1(x)dx
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Practice 17.1. 12 – Problem 1: find point mass:
P (X = 1) = 1

2

P (X = 2) =
x

3

∣∣∣
x=2
− 1

2

=
2

3
− 1

2
=

1

6

Find densities (by differentiating cdf)

• 0 ≤ x < 1

f0 (x) =

(
x2

4

)′
=
x

2

• 1 < x < 2

f1(x) =

(
1

2

)′
= 0

• 2 ≤ x < 3

f2(x) =
(x

3

)′
=

1

3

1 2

f1

3

f2

SX = 0 ≤ x ≤ 3

E[X] = 1 · P (X = 1) + 2 · P (X = 2) +

∫ 1

0
xf0(x)dx+

∫ 2

1
xf1(x)dx+

∫ 3

2
xf2(x)dx

= 1 · 1

4
+ 2 · 1

6
+

∫ 1

0
x
x

2
dx+

∫ 2

1
x · 0dx+

∫ 3

2
x · 1

2
dx

= . . .

Practice 17.2. 12 – Problem 2: X = damage (in unit) of car, Sx = 0 ≤ x ≤ 24,

P (X = 0) = .95

P (X = 24) = .01

0 < x < 24, f(x) = 25
24

1
(x+1)2

Note:

P (X = 0) + P (X = 24) +

∫ 24

0
f(x)dx = 1

Define u(x) = insurance payment for damage of x (units).

u(x) =

{
0, x ≤ 1

x− 1, x > 1
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which is due to one-unit deductible policy. Now,

E (u(x)) = u(0)P (X = 0) + u(24)P (X = 24) +

∫ 24

0
u(x)f(x)dx

= 0 · .95 + 23 · .01 +

∫ 1

0
+

∫ 24

1
u(x)f(x)dx

Consider the integral
∫ 1

0 = 0, and

=
25

24

∫ 24

1

x− 1

(x+ 1)2
dx

= . . .

See also Hw 6 #2.

§17.2 Weibull Distribution

Definition 17.1 (Weibull Distribution) — X ∼Weibull(α, β), α, β > 0 if SX = (0,∞)
and density is given by

f(x) =
α

βα
xα−1e

−
(
x
β

)α
, x > 0

Remark 17.2. Let G(x) =
(
x
β

)α
, then

f(x) = G′(x)e−G(x)

In contrast, for Y ∼ Exp(λ)
fY (x) = λe−λx

with G2 = λx, then
fY (x) = G′2(x)e−G2(x)

Practice 17.3. 12 – Problem 12: X ∼Weibull(α, β), E[X] =?
The MGF approach is not really helpful – See also HW 6 # 5.

E[X] =

∫ ∞
0

xf(x)dx

=

∫ ∞
0

x
α

βα
xα−1e

−
(
x
β

)α
dx

=
α

βα

∫ ∞
0

xαe
−
(
x
β

)α
dx

= αβ

∫ ∞
0

uαe−u
α
dx
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Let z = uα

= αβ

∫ ∞
0

ze−z
dz

αz1− 1
α

dz

= β

∫ ∞
0

z
1
α e−zdz

= β

∫ ∞
0

z( 1
α

+1)−1e−
z
1

Γ( 1
α + 1)1

1
α

+1
dzΓ(

1

α
+ 1)

= βΓ

(
1

α
+ 1

)

§18 Veterans Day: Nov 11, 2020

No class :D

§19 Lec 17: Nov 13, 2020

§19.1 Bivariate Distribution of Discrete Type

Definition 19.1 (Joint pmf) — Let X,Y be discrete random variables

1. SX×Y : the two – dimensional space of X × Y .

2. The joint PMF, f(x, y) for each x× y ∈ SX×Y is given by

f(x, y) = P (X = x, Y = y)

satisfying the followings:

• f(x, y) ≥ 0

•
∑

(x,y)∈SX×Y f(x, y) = 1

• P ((X,Y ) ∈ A) =
∑

(x,y)∈A f(x, y) where A ⊆ SX×Y

Example 19.2

Roll a dice twice. Denote X = min of 2 rolls, Y = max of 2 rolls.
e.g., roll (1,3) then X = 1, Y = 3.
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Table of outcomes of rolls with equal probability 1
36 each. TBA

f(x, y) = P (X = x, Y = y)

=


1
36 , x = y
2
36 , x < y

0, x > y

=
∑

(x,y)∈SX,Y

f(x, y) = 1

Definition 19.3 (Marginal Pmf) — Given a joint pmf of X,Y on SX×Y , the pmf of
X itself is called the marginal pmf of X and given by

fX(x) = P (X = x) =
∑
y

f(x, y)

where x ∈ SX . Similarly for the marginal pmf of Y .

Remark 19.4. We have

P (X = x) =
∑
y∈SY

P (X = x, Y = y)

=
∑
y∈Sy

f(x, y)

Definition 19.5 (Independent for Multivariable) — X,Y are independent if

P (X = x, Y = y) = P (X = x)P (Y = y)

i.e., f(x, y) = fX(x)fY (y)

Example 19.6 (above)

Marginal of Y

fY (1) =
1

36

fY (2) =
2

36
+

1

36
=

3

36
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Marginal of X

fX(1) =
∑
y∈SY

f(1, y) =
11

36

fX(2) =
∑

2nd column

f(2, y) =
9

36

Question 19.1. X,Y independent?

f(1, 1) =
1

36
6= 1

36
· 11

36
= fX(1)fY (1)

Thus, not independent.

Or, an alternative way:

f(2, 1) = 0 6= 9

36
· 1

36
= fX(2)fY (1)

Remark 19.7. 1. If the joint pmf table is not “full” then X,Y are dependent.

2. If the table is “full”, i.e., all entries are non-zero, it does NOT imply independence.

Definition 19.8 (Expectation for Multivarible) — 1. The expectation E [u(X,Y )]
is given by

E [u(X,Y )] =
∑

(x,y)∈SX×Y

u(x, y)f(x, y)

2. Marginal mean
µX = E[X], u(X,Y ) = X

Marginal variance

σ2
X = E

[
(x− µX)2

]
, u(X,Y ) = (X − µX)2

and similar notions for Y .

Practice 19.1. 13 – Problem 1: Left as exercise.
13 – Problem 2: X = #A students, Y = #B students
a)

SX×Y =



(x, y) : x ≥ 0,

y ≥ 0,

x ≤ 30,

y ≤ 60,

x+ y ≤ 40
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b) The total number of ways to choose 40 from 200 is
(

200
40

)
. Given (x, y) ∈ SX×Y

• Choose x students from 30 students with A which is
(

30
x

)
.

• Choose y students from 60 B which is
(

60
y

)
.

• Choose 40− x− y students from 110 students with C,D, F , which is
(

110
40−x−y

)
.

Thus,

P (X = x, Y = y) =

(
30
x

)(
60
y

)(
110

40−x−y
)(

200
40

)
c) X = #A students from a random of 40, n = 40.

N1 = #A students = 30

N2 = # non A students = 170

X ∼ Hypergeom(N1 = 30, N2 = 170, n = 40)

P (X = x) =

(
30
x

)(
170

40−x
)(

200
40

)
and

SX =

{
x ≥ 0, x ≤ 30

40− x ≤ 170

Practice 19.2. 13 – Problem 3: X = # sweet cups, Y = # bland cups. Each trial (cup)
has 3 outcomes

1. sweet with prob p1 = .26

2. bland with prob p2 = .04

3. perfect with prob p3 = .7

• Choose x cups from 25 to assign sweet which is
(

25
x

)
P x1

• Choose y cups from 25− x to assign “bland” which is
(

25−x
y

)
P y2

• Choose 25−x− y cups from 25−x− y to assign “perfect” which is
(

25−x−y
25−x−y

)
P 25−x−y

3 .
Thus, P (X = x, Y = y)

=

(
25

x

)(
25− x
y

)(
25− x− y
25− x− y

)
P x1 P

y
2 (1− P1 − P2)25−x−y

=
25!

x!(25− x)!
· (25− x)!

y!(25− x− y)!
· 1 · . . .

=
25!

x!y!(25− x− y)!
P x1 P

y
2 (1− P1 − P2)25−x−y

=

(
25

x, y, 25− x− y

)
P x1 P

y
2 (1− P1 − P2)25−x−y

SX×Y =

{
(x, y) : x+ y ≤ 25

x ≥ 0, y ≥ 0
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Note: Marginal of X ∼ Binom(n = 25, P1 = .26),
Marginal of Y ∼ Binom(n = 25, P2 = 0.04).

b) P (X ≥ 2 or Y ≥ 1) which is equal to 1− P (X ≤ 1, Y = 0) = 1− f(0, 0)− f(1, 0).

§20 Lec 18: Nov 16, 2020

§20.1 Correlation Coeff ic ient

Recall that if (X,Y ) has a joint pmf f(x, y) then µX = E[X], µy = E[Y ] and the variance
σ2
X = E(X − µX)2, σ2

Y = E(Y − µY )2.

Definition 20.1 (Covariance – Correlation Coefficient) — 1. The covariance, denoted
by cov(X,Y ) := σXY is given by

cov(X,Y ) = σXY = E [(X − µX)(Y − µY )]

2. The correlation coefficient, denoted P , is given by

P =
σXY
σXσY

=
cov(X,Y )

σXσY

Theorem 20.2 1. The covariance σXY is given by

σXY = cov(X,Y ) = E[XY ]− µXµY

2. If X,Y are independent, then

• E [u(X)v(Y )] = E [u(X)]E [v(Y )] for any u(x) and v(y).

• σXY = 0.

In general, σXY = 0, then X,Y are called uncorrelated.

Proof. 1.

σXY = E [(X − µX)(Y − µY )]

= E [XY − µX · Y −X · µY + µXµY ]

= E [XY ]− µXE[Y ]− µYE[X] + µXµY

= E[XY ]− µXµY

2. Recall X,Y independent means P (X = x, Y = y) = P (X = x)P (Y = y) for all
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(x, y) ∈ SX×Y . We have

E [u(X)v(Y )] =
∑

(x,y)∈SX×Y

u(x)v(y)P (X = x, Y = y)

=
∑

u(x)v(y)P (X = x)P (Y = y)

=
∑
x∈SX

∑
y∈SY

u(x)P (X = x)v(y)P (Y = y)

=
∑
x∈SX

u(x)P (X = x)
∑
y∈SY

v(y)P (Y = y)

= E[u(X)]E[v(Y )]

Also,

cov(X,Y ) = σXY

= E[XY ]− µXµY
= E[X]E[Y ]− µXµY
= 0

Remark 20.3. 1. Note that in general, cov(X,Y ) = 0 does not imply independence.
Example: figure here f(1, 1) = 0 but fX(1) = fY (1) = 1

3 and thus 1
32 6= 0. So, X,Y are

dependent. However, notice that cov(X,Y ) = 0.

2. The correlation coefficient p = σXY
σXσY

satisfies −1 ≤ p ≤ 1 i.e., |p| ≤ 1. (σXY maybe
negative in general)

Practice 20.1. 14 – Problem 1: a) (X,Y ) ∼ Trinom(n, p1, p2)
Each trial:

• X occurs with prob p1

• X does not occur with prob 1− p1

X ∼ Binom(n, p1)

µX = np1

σ2
X = np1(1− p1)

Likewise, Y ∼ Binom(n, p2).
b) Left as exercise.

Note: For a derivation of ρ the correlation coefficient, see textbook section 4.2.
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§20.2 Conditional Distribution

Consider (X,Y ) with joint f(x, y) and marginal fX , fY . DefineA = {X = x} , B = {Y = y}.
Then

P (A|B) =
P (A ∩B)

P (B)
=
P (X = x, Y = y)

P (Y = y)

=
f(x, y)

fY (y)
,

provided fY (y) > 0.

Definition 20.4 (Conditional pmf) — 1. The conditional pmf of X given Y = y,
is defined as

g(x|y) :=
f(x, y)

fY (y)
, provided fY (y) > 0

2. Likewise, the conditional pmf of Y , given X = x, is given by

h(y|x) :=
f(x, y)

fX(x)
, provided fX(x) > 0

Example 20.5

Flip a coin with faces {0, 1} twice. Define X = smaller value, Y = larger value. figure
here y = 0, X|Y = 0 is a RV with pmf

g(x|0) =
f(x, 0)

fY (0)
=


1
4
1
4

= 1, if x = 0

0
1
4

= 0, if x = 1

Given max = 0, the min must be 0 with prob 1.
y = 1, X|Y = 1 is a RV with pmf

g(x|1) =
f(x, 1)

fY (1)
=


2
4
3
4

= 2
3 , if x = 0

1
4
3
4

= 1
3 , if x = 1

Note that in both cases, ∑
x∈SX

g(x|0) = 1 =
∑
x∈SX

g(x|1)

Similarly, when either x = 0 or 1∑
y∈SY

h(y|x = 0) =
∑
y∈SY

h(y|x = 1) = 1
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Proposition 20.6

The conditional pmf g(x|y) and h(y|x) satisfy∑
x∈SX

g(x|y) = 1

and ∑
y∈SY

h(y|x) = 1

Proof. Given X = x, ∑
y∈SY

h(y|x) =
∑
y∈SY

f(x, y)

fX(x)

=

∑
y∈SY f(x, y)

fX(x)

=
fX(x)

fX(x)

= 1

Similarly for
∑

x∈SX g(x|y) = 1.

§21 Lec 19: Nov 18, 2020

§21.1 Lec 18 (Cont’d)

Recall that (X|Y = y) is discrete RV with the pmf

g(x|y) =
f(x, y)

fY (y)
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Definition 21.1 (Conditional Expectation) — The conditional expectation of X, given
{Y = y}, is defined as

E[X|Y = y] := E[X|y]

:=
∑
x∈SX

xg(x|y)

More generally, given Y = y,

E[u(X)|Y = y] := E[u(X)|y]

:=
∑
x∈SX

u(x)g(x|y)

We denote

µX|y = E[X|y]

σ2
X|y = E

[
(X − µX|y)2|y

]

Proposition 21.2

σ2
X|y = E[X2|y]−

(
µX|y

)2
Proof. Left as exercise.

Example 21.3 (Previous Lecture)

X = min, Y = max

• y = 0,

g(x|0) = 1 when x = 0

µX|0 = 0

σ2
X|0 = E[X2|0]−

(
µX|0

)2
= 0− 02 = 0
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• y = 1,

g(x|1) =

{
2
3 , when x = 0
1
3 , when x = 1

µX|1 = 0 · 2

3
+ 1 · 1

3
=

1

3

E[X2|1] = 02 · 2

3
+ 12 · 1

3
=

1

3

σ2
X|1 = E[X2|1]−

(
µX|1

)2
=

1

3
−
(

1

3

)2

=
2

9

• In summary,

µX|Y =

{
0, y = 0
1
3 , y = 1

i.e.,
µX|Y = E[X|y] is a function of y

Practice 21.1. 14 – Problem 2: a) Find h(y|x). 1 trial:

• Success

• Normal

• Failure

X = # successes, Y = # failures. (X,Y ) ∼ trinom(n, p1, p2). Given {X = x} =
{there arex successes among n trials}. A heuristics argument: there are x successes among
n trials – there are n-x non-success trials left, each happens with prob. 1− p1.

{Y = y|X = x} = {y failures among n-x non-success trials}

Y |X = x ∼ Binom(n− x, p2

1− p1
)

Rigorous calculation:

h(y|x) = P (Y = y|X = x)

=
f(x, y)

fX(x)
, X ∼ Binom(n, p1)

=

n!
x!y!(n−x−y)! · p

x
1p
y
2(1− p1 − p2)n−x−y

n!
x!(n−x)! · p

x
1(1− p1)n−x

=
(n− x)!

y!(n− x− y)!
·
(

p2

1− p1

)y
·
(

1− p2

1− p1

)n−x−y
(Y |X = x) ∼ binom(n− x, p2

1−p1 ). Thus,

µY |x = (n− x) · p2

1− p1
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B(n, p) then µ = np.

Notice that
p2

1− p1
≤ 1 since p2 + p1 ≤ 1

§21.2 Conditional Expectation as a Random Variable

Example 21.4 1. X is a RV then u(X) is too.

x -1 0 2
1
2

1
3

1
6f(x)

x -1 0 2

-1 -2 2u(x)

u(x) -1 -2 2
1
2

1
3

1
6fu(x)

u(x) = x2 − 2 pmf of u(x)

i.e., u(X) = X2 − 2 is a discrete random variable with the abode pmf.

P (u(X) = u(x)) = P (X = x)

2. Trinomial distribution: Define

u(x) := E[Y |x] = (n− x)
p2

1− p1

which is a function of x. Thus, u(X) := E[Y |X] is a random variable with pmf

P (u|X) = E[Y |x] = (n− x)
p2

1− p1
= P (X = x) =

n!

x!(n− x)!
px1(1− p1)n−x

Definition 21.5 (Conditional Expectation as a RV) — Given (X,Y ) jointly distributed,
define

u(x) := E[Y |x] = E[Y |X = x]

Then u(X), denoted by E[Y |X], is a RV with the space of values S = {E[Y |x] : x ∈ SX},
with pmf

P (u(X) = E[Y |x]) = P (X = x)

Example 21.6 (Trinomial Distribution)

E[Y |X] is a discrete RV with pmf

P (E[Y |X] = E[Y |x]) = P (X = x)
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Now,

E [E[Y |X]] =
∑

E[Y |x] · P (E[Y |X] = E[Y |x])

=
∑

(n− x)
p2

1− p1

n!

x!(n− x)!
px1(1− p1)n−x

= n · p2

= E[Y ], (Y ∼ Binom(n, p2))

Theorem 21.7

E [E[Y |X]] = E[Y ] (Practice 14 – Problem 3).

Proof.

E [E[Y |X]] =
∑

E[Y |x] · P (E[Y |X] = E[Y |x])

=
∑
x∈SX

E[Y |x] · fX(x)

=
∑
x∈SX

[∑
y

yh(y|x)

]
fX(x)

=
∑
x∈SX

∑
y∈SY

y
f(x, y)

fX(x)

 fX(x)

=
∑
x

[∑
y

y · f(x, y)

]

=
∑
y

∑
x

yf(x, y)

=
∑
y

y

[∑
x

f(x, y)

]
=
∑

yfY (y)

= E[Y ]

§22 Lec 20: Nov 20, 2020

§22.1 Continuous Bivariate Random Variable
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Definition 22.1 — 1. The joint pdf of a continuous bivariate RV (X,Y ) is an
integrable function f(x, y) s.t.

• f(x, y) ≥ 0, (x, y) ∈ SX×Y and f(x, y) = 0 if (x, y) /∈ SX×Y
•
∫∞
−∞

∫∞
−∞ f(x, y)dxdy = 1

• For A ⊆ SX×Y ,
∫∫
A f(x, y)dxdy = P ((X,Y ) ∈ A)

2. The marginal pdf’s of X,Y are given

fX(x) =

∫ ∞
−∞

f(x, y)dy, x ∈ SX

fY (y) =

∫ ∞
−∞

f(x, y)dx, y ∈ SY

Problem 22.1. 15 – Problem 1a): f(x, y) = 4
3(1− xy)

y

x

1

1

fX×Y = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}

f(x, y) = 0 for (x, y) /∈ fX×Y

• Check f(x, y) ≥ 0 for (x, y) ∈ SX×Y since 0 ≤ x, y ≤ 1, xy ≤ 1 thus 4
3(1− xy) ≥ 0
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• Check ∫ ∞
−∞

∫ ∞
−∞

f(x, y) dx dy = 1

=

∫ 1

0

∫ 1

0

4

3
(1− xy) dx dy

=

∫ 1

0

[
4

3
x− 4

3
y · x

2

2

]x=1

x=0

dy

=

∫ 1

0

4

3
− 2

3
ydy

=
4

3
y − 1

3
y2
∣∣∣y=1

y=0

= 1

Remark 22.2. For double integral, the order of integration does not matter, i.e.,∫∫
f(x, y) dx dy =

∫∫
f(x, y) dy dx

under “advance” condition. However, one direction might be easier than the other.

Problem 22.2. 15 – 1a) (cont’d) for each x ∈ [0, 1] = SX

fX(x) =

∫
R
f(x, y)dy

=

∫ 1

0
f(x, y)dy

=

∫ 1

0

4

3
(1− xy)dy

=
4

3
y − 4

3
x · y

2

2

∣∣∣y=1

y=0

=
4

3
− 2

3
x

Likewise,

fY (y) =

∫ 1

0
f(x, y)dx =

4

3
− 2

3
y

b) P (Y ≤ X
2 )
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1

1
2

1

y = x
2

A = {(x, y) ∈ SX×Y : y ≤ x
2}

P (Y ≤ X

2
) =

∫∫
A
f(x, y) dx dy

=

∫ 1
2

0

∫ 1

2y
f(x, y) dx dy

Note that we also have

P (Y ≤ X

2
) =

∫ 1

0

∫ x
2

0
f(x, y) dy dx

=

∫ 1

0

2

3
x− 1

6
x3dx

=
7

24

c)

E

X2 − Y︸ ︷︷ ︸
u(X,Y )

 =

∫ 1

0

∫ 1

0
(x2 − y)f(x, y)dxdy

=

∫ 1

0

∫ 1

0
(x2 − y)

4

3
(1− xy)dxdy

= . . .

=
1

6

§23 Lec 21: Nov 23, 2020

§23.1 Lec 20 (Cont’d)

Midterm 2 covers chapters 3 & 4.

71



Duc Vu (Fall 2020) 23 Lec 21: Nov 23, 2020

Practice 23.1. 15 – Problem 2a): Note that f(x, y) = 4 > 0 in SX×Y and

1 =

∫ 1
2

0

∫ 1

2y
f(x, y) dx dy =

∫ 1

0

∫ x
2

0
f(x, y) dy dx

b) Marginal:

fX(x) =

∫ x
2

0
f(x, y)dy

=

∫ x
2

0
4dy

= 2x

And

fY (y) =

∫ 1

2y
f(x, y)dx

=

∫ 1

2y
4dx

= 4− 8y

c) SX×Y =
{

0 ≤ X,Y ≤ 1
2

}
P (0 ≤ X,Y ≤ 1

2
) =

∫∫
f(x, y) dx dy

=

∫ 1
4

0

∫ 1
2

2y
4 dx dy

= . . . (algebra)

=
1

4

§23.2 Independence

Definition 23.1 (Independent Continuous Bivariate RV) — Let (X,Y ) be a continuous
random bivariate random variables. Then X,Y are said to be independent if for any
A ⊆ SX , B ⊆ SY ,

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B)

Theorem 23.2

Let (X,Y ) be a continuous bivariate RV. Then X,Y independent iff f(x, y) =
fX(x)fY (y).

Note:
Discrete case:
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• Independence ⇐⇒ f(x, y)︸ ︷︷ ︸
joint pmf

= fX(x)fY (y)︸ ︷︷ ︸
marginal pmf

.

• pmf table is not “full” =⇒ dependence.

• However, “full” does not imply independence

Continuous case:

• Independence ⇐⇒ f(x, y) = fX(x)fY (y)

• Domain SX×Y is not a “rectangle” =⇒ dependence.

• However, “rectangle” SX×Y does not imply independence.

Example 23.3 (Practice 15)

2) SX×Y is a triangle, X,Y are dependent.

f(x, y) = 4

fX(x) = 2x

fY (y) = 4(1− 2y)

4 6= 2x(4− 8y)

for (X,Y ) ∈ SX×Y . Thus, X,Y are dependent.

Theorem 23.4 1. X,Y are independent iff for any u(X), v(Y )

E [u(X)v(Y )] = E[u(X)]E[v(Y )]

2. If X,Y are independent then

Cov(X,Y ) = E [(X − µX)(Y − µY )] = E[XY ]− µXµY = 0

Practice 23.2. 15 – Problem 3: Recall in 1D, X ∼ Unif(a, b) then f(x) = 1
b−a , x ∈ (a, b).

So, in 2D, (X,Y ) is said to have a uniform dist with a joint pdf

f(x, y) =
1

area of the domain

In this problem,

f(x, y) =
1

2
, (x, y) ∈ {0 ≤ x ≤ 1, 0 ≤ y ≤ 2}

Note that ∫∫
SX×Y

f(x, y)dxdy =

∫ 2

0

∫ 1

0

1

2
dxdy = 1

Now, to verify independence,

fX(x) =

∫ 2

0
f(x, y)dy =

∫ 2

0

1

2
dy = 1
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for X ∈ SX = (0, 1). Thus, X ∼ Unif(0, 1).

fY (y) =

∫ 1

0
f(x, y) dx =

∫ 1

0

1

2
dx =

1

2

for Y ∈ SY = (0, 2). Thus, Y ∼ Unif(0, 2). Now,

f(x, y) =
1

2
= 1 · 1

2
= fX(x)fY (y)

Thus, X,Y are independent.

§23.3 Conditional Expectation

Discrete RV:

• Conditional pmf: X|Y = y is a RV

g(x|y) =
f(x, y)

fY (y)

=
P (X = x, Y = y)

P (Y = y)

= P (X = x|Y = y)

•
∑

x∈SX g(x|y) = 1.

• Expectation:

E [u(X)|y] =
∑
x∈SX

u(x)g(x|y)

In particular,

E [X|y] =
∑

xg(x|y)

Continuous RV:

• X|Y = y is a continuous RV with conditional pdf

g(x|y) =
f(x, y)

fY (y)

•

1 =

∫
R
g(x|y) dx

=

∫
R

f(x, y)

fY (y)

=
1

fY (y)
fY (y)

= 1
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• Expectation:

E [u(X)|Y ] =

∫
R
u(x)g(x|y)dx

In particular,

E[X|y] =

∫
R
xg(x|y)dx

Theorem 23.5

If (X,Y ) are conditional bivariate random variable, then

E[X] =

∫
E[X|y]fY (y) dy

E[Y ] =

∫
E[Y |x]fX(x) dx

§24 Lec 22: Nov 25, 2020

§24.1 Lec 21 (Cont’d)

Recalling Y |X = x is a continuous RV with the pdf

h(y|x) =
f(x, y)

fX(x)

and

E [u(Y )|x] =

∫
R
u(y)h(y|x) dy

Practice 24.1. 15 – Problem 2: Y |X = x

•

h(y|x) =
f(x, y)

fX(x)

=
2

x

• SY |x =
{

0 ≤ y ≤ x
2

}
. Thus, Y |X = x ∼ Unif

(
0, x2

)
.

• E [Y |X = x] =
0+x

2
2 = x

4 .

• Likewise, X|Y = y is a RV with pdf

g(x|y) =
1

1− 2y

and SX|y = {2y ≤ x ≤ 1}. Thus, X|Y = y ∼ Unif(2y, 1) and E[X|y] = 2y+1
2 .
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§24.2 Bivariate Normal Distribution

Definition 24.1 — (X,Y ) is called to have a bivariate normal distribution if any
linear combination of X,Y has a normal distribution, i.e., for all constants a and b in
R, a, b both not zero.

a ·X + b · Y ∼ N
(
µab, σ

2
ab

)
where µab ∈ R, σ2

ab > 0 depending on a, b.

Remark 24.2. 1. It follows from the definition that

X = 1 ·X + 0 · Y ∼ N(µX , σ
2
X)

Y = 0 ·X + 1 · Y ∼ N(µY , σ
2
Y )

2. In general, X,Y are normal does NOT imply (X,Y ) bivariate normal, i.e., aX + bY is
normal (per defn).

Example 24.3

X ∼ N(0, 1), Y := −X. Then Y ∼ N(0, 1). However, 1 ·X + 1 · Y = X + (−X) = 0
which is not normal.

Theorem 24.4

Refer to Theorem 1, Practice 16.

Practice 24.2. 16 – Problem 1:

• Recall that if X,Y are independent then Cov(X,Y ) = E [(X − µX)(Y − µY )] = 0.
However, in general, Cov = 0 does not imply independence.

• Now, consider (X,Y ) bivariate normal, Independence = f(x, y) = fX(x)fY (y). Since
Cov(X,Y ) = 0

ρ =
σxy
σxσy

= 0

Now,

f(x, y) =
1

2πσxσy
√

1− ρ2
exp

{
− 1

2(1− ρ2)

[
(x− µX)2

σ2
X

− 2ρ
(x− µX)(y − µY )

σXσY
+

(y − µY )2

σ2
Y

]}
= . . .

= fX(x)fY (y)

Practice 24.3. 16 – Problem 2: See §4.5, textbook.
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§24.3 Functions of One Dimension RV

Question 24.1. Given a continuous RV X with pdf f(x) and SX , define

Y = u(X)

where u(x) is a one-to-one and increasing function on SX . Find the distribution of Y ?

Example 24.5 (1-1 Function)

u1(x) = ex is 1-1 on x ∈ [−1, 1].

-1 1

...............

•

at most one intersection

u1(x) = ex is 1-1
on x ∈ [−1, 1]

u2(x) = x2 is NOT 1-1 on x ∈ [−1, 1].

-1 1

...... ...

•

u2(x) = x2 is NOT 1-1
on x ∈ [−1, 1]

...
•

Defn of 1-1: The eqn u(x) = a for a constant has at most one root. Note that

. . . . . . . . .
...
...
...

•

u3(x) = x2 is 1-1
on x ∈ [0, 1]
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Remark 24.6. If y = u(x) is 1-1 on SX , then it admits an inverse function x = v(y).

Example 24.7

y = u3(x) = x2 on [0, 1]. Then x =
√
y on y ∈ [0, 1].

Distribution Technique:

• Find the cdf of Y = u(X)

P (Y ≤ y) = P (u(X) ≤ y)

= P (X ≤ v(y))

=

∫ v(y)

−∞
f(x) dx

• Find the density of Y

g(y) =
d

dy

[∫ v(y)

−∞
f(x) dx

]
Define

F (y) =

∫ y

−∞
f(x) dx =⇒ F ′(y) = f(y)

Then ∫ v(y)

−∞
f(x)dx = F (v(y))

g(y) =
d

dy
F (v(y)) = F ′(v(y))v′(y)

g(y) = f(v(y))v′(y)

Change-of-variable Technique:
Given u(x) 1-1 function on SX then Y = u(X) has a density g(y) = f (v(y)|v′(y)) where
v(y) = x is the inverse of y = u(x).

§25 Lec 23: Nov 30, 2020

§25.1 Lec 22 (Cont’d)

Recall: Given u(x) 1-1 function of fX then Y = u(X) has a density

g(y) = f (v(y)) ·
∣∣v′(y)

∣∣
where v(y) = x is the inverse of y = u(x).
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Practice 25.1. 17 – Problem 2: f(x) = 3(1− x)2, 0 < x < 1. So, y = 1− (1− x)3

y = 1− (1− x)3

1

1 x

• SY = 0 < y < 1

• Solve for x in terms of y.

y = 1− (1− x)3

1− x = (1− y)
1
3

v(y) = x = 1− (1− y)
1
3

•

g(y) = f(v(y)) ·
∣∣v′(y)

∣∣
= 3

(
1− (1− (1− y)

1
3 )
)2

+
1

3
(1− y)−

2
3

= 1

Thus, Y ∼ Unif(0, 1).

Question 25.1. What if u is not 1-1?

Ans: No universal approach – Use case-by-case basis which is using the cdf approach.

Practice 25.2. 17 – Problem 3:
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y

x

4

y

1

1
√
y 2

• SY = {0 < y < 4}

• 1-1 part: 1 ≤ y ≤ 4

P (Y ≤ y) = P (X2 ≤ y)

= P (X ≤ √y)

Thus,

g(y) = f (v(y)) ·
∣∣v′(y)

∣∣
=

2

9
(
√
y + 1) · 1

2
√
y

=
1

9

√
y + 1
√
y

• Non 1-1 part: 0 ≤ y ≤ 1. Cdf technique:

P (Y ≤ y) = P (X2 ≤ y)

= P (|X| ≤ √y)

= P (−√y ≤ X ≤ √y)

= P (X ≤ √y)− P (X ≤ −√y)

= F (
√
y)− F (−√y)

Thus,

g(y) =
d

dy
[F (
√
y)− F (−√y)]

=
2

9
(
√
y + 1) · 1

2
√
y
− 2

9
(−√y + 1)− 1

2
√
y

=
2

9
√
y
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In summary,

g(y) =

{
1
9

√
y+1√
y , 1 ≤ y ≤ 4

2
9
√
y , 0 ≤ y ≤ 1

§25.2 Transformations of 2 Random Variables

Partial Derivatives & Jacobian matrix: Let f(x, y), g(x, y) be 2 functions.

1. Partial derivative :
∂

∂x
f(x, y) :=

d

dx
f(x, y)

Similarly,
∂

∂y
f(x, y) :=

d

dy
f(x, y)

Example 25.1

f(x, y) = sin(x · y2)

∂f

∂x
= cos(x · y2)y2

∂f

∂y
= cos(xy2) · 2xy

2. Jacobian Matrix of f, g

J(x, y) :=

(
∂f
∂x (x, y) ∂f

∂y (x, y)
∂g
∂x(x, y) ∂g

∂y (x, y)

)
determinant of J is defined as

det J =
∂f

∂x
· ∂g
∂y
− ∂f

∂y
· ∂g
∂x

is a function of x and y.

Problem: Suppose X,Y is a bivariate random variables with joint pdf f(x, y). Suppose

U = u(X,Y )

V = v(X,Y )

Under what condition of u(x, y) and v(x, y), can we determine the joint pdf of (U, V )?
Change-of-variable technique: Suppose u(x, y), v(x, y) have inverse functions, i.e., x, y can
be solved in terms of u and v

x = x(u, v)

y = y(u, v)

Then, g(u, v) the joint pdf of (U, V ) is given by the formula

g(u, v) = f (x(u, v), y(u, v)) · |det J |
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where det J = |∂x∂u ·
∂y
∂v −

∂x
∂v ·

∂y
∂u |. For 1-1 function Y = u(X) :

g(y) = f (v(y)) ·
∣∣v′(y)

∣∣
where v(y) = x is the inverse of x = u(y).

Practice 25.3. 18 – Problem 1:

1. Step 1: Find SY1×Y2

2

1

y2

y1
x1

x2

1

0 1

SX1×X2

x1 = x2

• x1 ∈ (0, 1) and x2 = 0, then

y1 =
x2

x1
= 0

y2 = 2x1 ∈ (0, 2)

• x1 = 1, 0 < x2 < 1 then

y1 =
x2

x1
= x2 ∈ (0, 1)

y2 = 2x1 = 2

• x1 = x2 ∈ (0, 1) then

y1 =
x2

x1
= 1

y2 = 2x1 ∈ (0, 2)

Thus,

SY1×Y2 =

{
0 < y1 < 1,

0 < y2 < 2

2. Step 2: Find the inverse function

x1 = x1(y1, y2)

x2 = x2(y1, y2){
y1 = x2

x1

y2 = 2 · 1
=⇒

{
x2 = x1 · y1

x1 = y2
2

=⇒

{
x2 = y2

2 · y1

x1 = y2
2
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3. Step 3: Find |det J |

det J =
y2

4

4. Step 4: joint pdf of (Y1, Y2)

g(y1, y2) = f (x1(y1, y2), x2(y1, y2)) |det J |

=
y2

2

Note: g is indeed a joint pdf∫ 2

0

∫ 1

0
gdy1dy2 =

∫ 2

0

∫ 1

0

y2

2
dy1dy2 = 1

§26 Lec 24: Dec 2, 2020

§26.1 Change of Variable Techniques to f ind pdf

1–Dimension: Given X, Y = u(X)

1. Find SY

2. If u(x( is 1-1, find the inverse x in terms of y, i.e.,

x = v(y)

3. Pdf of Y
g(y) = f (v(y)) |v′(y)|

where f is pdf of X.

2–Dimension: given (X,Y )

U = u(x, y)

V = v(x, y)

1. Find SU×V

2. Find the inverse (x, y) in terms of u, v i.e.,

x = x(u, v)

y = y(u, v)

3. Pdf of (u, v) is
g(u, v) = f (x(u, v), y(u, v)) · | det J |

where J = ∂(x,y)
∂(u,v) and

det J =
∂x

∂u
· ∂y
∂v
− ∂x

∂v
· ∂y
∂u
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§26.2 Several Random Variables

Definition 26.1 (Independent and Identically Distributed Sequence) — Given a sequence
of RVs, X1, X2, . . . that are (mutually) independent and have same distribution

1. {Xk}k≥1 is called an “i.i.d” (independent and identically distributed) sequence
of RVs.

2. A finite sub collection {X1, . . . , Xn} from the above i.i.d sequence is called “ a
random sample of size n”.

Theorem 26.2

X1, . . . , Xn are independent if and only if

f (x1, x2, . . . , xn) = f1(x1) . . . fn(xn)

where f, fi, i = 1, . . . , n are either joint pdf and marginal pmf (for discrete) or joint
pdf and marginal pdf (for continuous).

Theorem 26.3

If X1, X2, . . . , Xn are independent then for u1(x1), . . . , un(xn) are functions,

E

[
n∏
i=1

ui(Xi)

]
=

n∏
i=1

E [ui(Xi)]

Proof. A consequence of the above theorem (see textbook §5.3).

Theorem 26.4

If X1, . . . , Xn are independent with means µ1, . . . , µn, and variances σ2
1, . . . , σ

2
n. Let

Y =
∑n

i=1 aiXi where ai ∈ R if constant. Then

1. E[Y ] =
∑n

i=1 aiµi

2. Var[Y ] =
∑n

i=1 a
2
iσ

2
i

Proof. 1.

E[Y ] = E
[∑

aiXi

]
=
∑

aiE[Xi]

=
∑

aiµi
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2. Var[Y ] = E [Y − µY ]2. We have

(Y − µY )2 =
(∑

aiXi −
∑

aiµi

)2

=

(
n∑
i=1

ai(Xi − µi)

)2

=
n∑
i=1

a2
i (Xi − µi)2 + 2

∑
1≤j,i≤n,i 6=j

aiaj(Xi − µi)(Xj − µj)

Thus,

E (Y − µY )2 =
n∑
i=1

a2
iσ

2
i + 2

∑
i 6=j

aiajCov(Xi, Xj)

So, var(Y ) =
∑
a2
iσ

2
i .

Remark 26.5. Independence was only employed in Var(Y ). E[Y ] =
∑
aiµi always holds

regardless of independence.

Example 26.6

Suppose {xk} is iid with mean µ and variance σ2. Consider

Xn :=
X1 + . . .+Xn

n
=

n∑
i=1

1

n
Xi

Then

E
[
Xn

]
=

n∑
i=1

[
1

n
µ

]
= µ

Var
[
Xn

]
=

n∑
i=1

1

n2
σ2 =

sima2

n

Practice 26.1. 19 – Problem 1:

X1 ∼ Exp(λ1), f1(x) = λ1e
−λ1x,

X2 ∼ Exp(λ2), f2(x) = λ2e
−λ2x, x > 0

a) W = min(X1, X2).
Goal: Find pdf of W from the cdf of w. Note that SW = {w > 0} since w = min {x1, x2}
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and x1, x2 > 0.

P (W > t) = P (min(X1, X2) > t)

= P (both greater than t)

= P ({X1 > t} ∩ {X2 > t})
= P (X1 > t)P (X2 > t)

= e−λ1te−λ2t

= e−(λ1+λ2)t

= P (w > t)

Thus, W ∼ Exp(λ1 + λ2).

Remark 26.7. 1. IfXi ∼ Exp(λi), i = 1, . . . , n are independent. ThenWn = min {X1, . . . , Xn} ∼
Exp(λ1 + . . .+ λn).

2.

{min(X1, . . . , Xn) > t} = {X1 > t} ∩ . . . ∩ {Xn > t}
{max(X1, . . . , Xn) < t} = {X1 < t} ∩ . . . ∩ {Xn < t}

I is a Bernoulli dist. I ∈ {1, 2}.

P (I = 1) = P (min {X1, X2} = X1)

= P (X1 < X2)

By independence, joint pdf

f(x1, x2) = f1(x1)f2(x2)

= λ1e
−λ1x1λ2e

−λ2x2

So, ∫∫
x1<x2

f(x1, x2) dx1 dx2 = P (X1 < X2)∫ ∞
0

∫ x2

0
λ1e
−λ1x1λ2e

−λ2x2 dx1 dx2 =

∫ ∞
0

λ2e
−λ2x2(1− e−λ1x2) dx2

= 1− λ2

λ1 + λ2

=
λ1

λ1 + λ2

= P (I = 1)

Remark 26.8. If Xi ∼ Exp(λ1, then

P (min {X1, . . . , Xn} = Xj) =
λj

λ1 + . . .+ λn
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§27 Lec 25: Dec 4, 2020

§27.1 MGF Technique

Recall mgf M(t) determines the distribution, e.g.,

M(t) = eµt+σ
2 t2

2

=⇒ X ∼ N(µ, σ2).

Theorem 27.1

Given X1, . . . , Xn are independent RVs with MGF M1(t), . . . ,Mn(t), respectively,
define Y = a1X1 + . . .+ anXn where a′is are real constants. Then

MY (t) =
n∏
i=1

Mi(ait)

Proof.

MY (t) = E
[
etY
]

= E
[
et
∑
aiXi

]
= E

[
e
∑
aitXi

]
= E

[
ea1tX1

]
. . . E

[
eantXn

]
= M1(a1t)M2(a2t) . . .Mn(ant)

Corollary 27.2

If {Xk}k≥1 iid with the same mgf MX(t)

1. IF Y =
∑n

i=1Xi, (ai = 1) then MY (t) = [MX(t)]n

2. If Xn =
∑n
i=1Xi
n =

∑n
i=1

1
nXi. Then

MXn
(t) =

[
MX

(
t

n

)]n

Example 27.3 1. {Xi} iid Bernoulli RVs

Xi =

{
1 wp p ∈ (0, 1)

0 wp 1− p

Y =
∑n

i=1Xi = # of successes in n trials (∼ Binom(0, 1)). We have the mgf of
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Xi given by

MX(t) = E
[
etXi

]
= etp+ et·0(1− p)
= pet + 1− p

By the above Corollary, Y =
∑n

i=1Xi

MY (t) = [MX(t)]n

=
[
pet + 1− p

]n
which is the MGF of Binom(n,p). Thus,

Y ∼ Binom(n, p).

Example 27.4 2. Xi iid ∼ Exp(λ). Recall from Poisson process with rate λ

• Arrival of first guest

T1 ∼ Exp(λ) = Gamma(1, λ)

• arrivals of nth guest
Tn ∼ Gamma(n, λ)

•

x2 = T2 − T1 ∼ Exp(λ)

xn = Tn − Tn−1 ∼ Exp(λ)

x1, . . . , xn are indep. i.e., {xk} iid ∼ Exp(λ).

Now, Tn =
∑n

k=1Xk ∼ Gamma(n, λ). Mgf approach:

MXk(t) = E
[
etX
]

=

∫ ∞
0

etxλe−λx dx

=
λ

λ− t

=
1

1− t
λ

MTn(t) = [MXk(t)]n

=

[
1

1− t
λ

]n
Thus, Tn ∼ Gamma(n, λ).

88



Duc Vu (Fall 2020) 27 Lec 25: Dec 4, 2020

Practice 27.1. 19 – Problem 2: Similar to 5.2-12 if using cdf approach.

X ∼ N(µ1, σ
2
1),MX(t) = eµ1t+σ

2
1
t2

2

Y ∼ N(µ2, σ
2
2),MY (t) = eµ2t+σ

2
2
t2

2

Mgf: By independence,

MX+Y (t) = MX(t)MY (t)

= eµ1t+σ
2 t2

2 eµ2t+σ
2
2
t2

2

= e(µ1+µ2)t+(σ2
1+σ2

2) t
2

2

Thus,
X + Y ∼ N(µ1 + µ2, σ

2
1 + σ2

2)

Remark 27.5. Since X,Y are independent, (X,Y ) bivariate normal.

f(x, y) = fX(x)fY (y)

=
1√

2πσ1

1√
2πσ2

e
−
[

(x−µ1)2

2σ21
+

(y−µ2)2

2σ22

]

Recall that biv. normal means any aX + bY ∼ N(aµX + bµY , a
2σ2
x + b2σ2

y. Thus, X + Y =
1 ·X + 1 · Y ∼ N(µX = µY , σ

2
X + σ2

Y ).

Practice 27.2. 20 – Problem 1: Recall Gamma(α, β) then χ2(r) = Gamma( r2 ,
1
2).

a) X ∼ N(0, 1), X2 ∼?. Mgf:

MX2(t) = E
[
etX

2
]

=
1√
2π

∫
R
etx

2
e−

x2

2 dx

=
1√
2π

∫
e−( 1

2
−t)x2 dx

= . . .

=

(
1

1− 2t

) 1
2

∼ MGF of χ2(r = 1)

b) {Xk} iid ∼ N(0, 1) then X2
k are independent and ∼ χ2(1).

Y =

n∑
k=1

X2
k

MY (t) =
[
MX2

k
(t)
]n

=

[(
1

1− 2t

) 1
2

]n

=

(
1

1− 2t

)n
2

Thus, Y ∼ χ2(n).
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Note: There is a similar but more advance method called “characteristics function” using
complex analysis.

§28 Lec 26: Dec 7, 2020

§28.1 Random Functions Associated with Normal
Distributions

Recall that

1. X ∼ N(µ, σ2) then X−µ
σ ∼ N(0, 1).

2. If {Xk} iid ∼ N(0, 1) then

Y =

n∑
k=1

X2
k ∼ χ2(n)

Definition 28.1 (Sample Mean & Sample Variance) — Given {Xk} iid with mean µ&
variance σ2.

• Sample mean

Xn :=
X1 + . . .+Xn

n
=

1

n

n∑
k=1

Xk

• Sample variance:

S2 =
1

n− 1

n∑
k=1

(
Xk −Xn

)2

Remark 28.2. 1.

E[Xn] =
1

n

n∑
k=1

E[Xk]

= µ

2. E[S2] = σ2.

Theorem 28.3

If {Xk} independent, Xk ∼ N(µk, σ
2
k), then

Y =
n∑
k=1

akXk ∼ N

(
n∑
k=1

akµk,

n∑
k=1

akσ
2
k

)

Proof. MGF technique: Recall XK ∼ N(µk, σ
2
k). MGF:

Mk(t) = eµkt+
σ2k
2
t2
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Now,

MY (t) = E
[
et
∑
akXk

]
= E

[
eta1X1

]
. . . E

[
etanXn

]
= eµ1a1t+

σ21
2
a21t

2
. . . eµnant+

σ2n
2
a2nt

2

= e(
∑
µkak)t+(

∑
σ2
ka

2
k)

t2

2

Thus,

Y ∼ N
(∑

akµk,
∑

a2
kσ

2
k

)

Corollary 28.4

If Xk iid ∼ N(µ, σ2), then

Xn =

n∑
k=1

1

n
Xk ∼ N

(
µ,
σ2

n

)

µ

N(µ, σ
2

n )

N(µ, σ2)

“Xn is used to estimate µ in practice”

Fact 28.1. 1. If {Xk} iid ∼ N(µ, σ2) then for all k = 1, . . . , n,Xk −Xn independent of
Xn.

Proof. (sketch) prove for n = 2

Xn = X2 =
X1 +X2

2

and k = 1, 2

X1 −X2 =
X1 −X2

2

X2 −X2 =
X2 −X1

2
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Goal: Show X1 −X2 is independent of X1 +X2. Using change-of-variable technique.

2. As a consequence,

S2 =
1

n− 1

n∑
k=1

(
Xk −Xn

)2
is independent of Xn

Theorem 28.5 (Practice 20, # 2)

n− 1

σ2
S2 ∼ χ2(n− 1)

Proof. We have

n− 1

σ2
δ2 =

n∑
k=1

(
Xk −Xn

)2
σ2

=
∑ (xk − µ+ µ− xn)2

σ2

=
∑ (xk − µ)2

σ2
+

2(xk − µ)(µ− xn)

σ2
+

(µ− xn)2

σ2

=
n∑
k=1

(
xk − µ
σ

)2

+
2

σ2

n∑
k=1

(xk − µ)(µ− xn) + n
(µ− xn)2

σ2

= . . .

=
∑(

xk − µ
σ

)2

− n
(
xn − µ
σ

)2

Thus, n−1
σ δ2 =

∑(xk−µ
σ

)2 − n(xn−µσ )2
. It follows that

n− 1

σ2
δ2 + n

(
xn − µ
σ

)2

=
∑(

xk − µ
σ

)2

i.e.,

n− 1

σ2
δ2 +

(
xn − µ

σ√
n

)2

=
∑(

xk − µ
σ

)2

Recall Xn ∼ N(µ, σ
2

n ) =⇒ Xn−µ
σ√
n
∼ N(0, 1) and

(
Xn − µ

σ√
n

)2

∼ χ2(1)
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Xk ∼ N(µ, σ2) =⇒ Xk−µ
σ ∼ N(0, 1) and

∑n
k=1

(xk−µ
σ

)2 ∼ χ2(n). Thus, since A indepen-
dent of B, by MGF

E
[
et(A+B)

]
= E

[
etA
]
E
[
etB
]

E
[
etC
]

= E
[
etA
]
E
[
etB
]

1

(1− 2t)n
= E

[
etA
]( 1

1− 2t

)1

Hence,

E
[
etA
]

=

(
1

1− 2t

)n−1

and thus

A =
n− 1

σ2
δ2 ∼ χ2(n− 1)

Practice 28.1. 20 – Problem 3: See Thm 5.5-3, §5.5 Textbook. P (T < t) since Z
independent of U

SZ×U = {−∞ < z <∞, 0 < u}

and
f(z, u) = fZ(z)fU (u)

And

{T < t} =

{
z√
u
r

< t

}
=

{
z < t

√
u

r

}
So,

P (T < t) = P (Z <
t√
r

√
U)

=

∫ ∞
0

∫ t√
r

√
u

−∞
f(z, u) dz du

Thus, the pdf of T is given by

d

dt

[∫ ∞
0

∫ t√
r

√
u

−∞
f(z, u) dz du

]

§29 Lec 27: Dec 9, 2020

§29.1 Central Limit Theorem

Recall

1. If (X,Y ) biv. normal then Cov(X,Y ) = 0 =⇒ X,Y independent.
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2. If {X1} iid ∼ N(µ, σ2) then for all i = 1, . . . , n,Xi −Xn is independent of Xn

Xn =

∑n
i=1 xi
n

and sample variance

S2 =
1

n− 1

n∑
i=1

(Xi −Xn)2 independent of Xn

Question 29.1. Why “normal”?

Recall: If {Xk} iid with mean µ and variance σ2 then

E[Xn] = E

[
1

n

n∑
k=1

Xk

]
= µ

Var[Xn] = Var

[
1

n

∑
Xu

]
=

n∑
k=1

Var[Xk]

= n · 1

n2
σ2

=
σ2

n

Definition 29.1 (Converge in Distribution) — A sequence of RV {Xn}n≥1 is said to
“converge in distribution” to a RV X if for all fixed t ∈ R,

P (Xn ≤ t)
n→∞−→ P (X ≤ t)

i.e., Fn(t)
n→∞−→ F (t) where Fn : cdf of Xn, F : cdf of X.

Lemma 29.2

If Xn
in distribution−→ X then for all fixed s < t

P (s < Xn ≤ t)
n→∞−→ P (s < X ≤ t)

Proof.

P (s < Xn ≤ t) = P (Xn ≤ t)− P (Xn ≤ s)
= P (X ≤ t)− P (X ≤ s) as n→∞
= P (s < X ≤ t)
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Remark 29.3. “Convergence in Dist” does not indicate anything about independence, space
of values, etc between {Xn} and X. It only says some limiting behavior of the functions cdf.

Theorem 29.4 (Central Limit)

Suppose {Xk}k≥1 iid with mean µ. Then Xn−µ
σ√
n

, where Xn = 1
n

∑n
k=1Xk, converges

in distribution to Z ∼ N(0, 1), i.e., for all t ∈ R,

P

(
Xn − µ

σ√
n

≤ t

)
n→∞−→ P (Z ≤ t) = Φ(t)

where Φ(t) is the cdf of N(0, 1).

Proof. (Skipped)

Remark 29.5. 1. All sample means Xn with the right scaling must “normalize” to N(0, 1).
Hence, the name “normal”.

2. We note that

Xn − µ
σ√
n

=
1
n

∑n
k=1Xu − µ

σ√
n

· n
n

=

∑n
k=1Xu − nµ
σ
√
n

Define Sn :=
∑n
k=1Xk, then CLT can be stated as follows:

P

(
Sn − nµ
σ
√
n
≤ t
)
n→∞−→ P (Z ≤ t) = Φ(t)

Practice 29.1. 21 – Problem 1: n = 25, µ = 15, σ2 = 4, Xn = 1
n

∑n
k=1Xk, {Xk} iid

P (14.4 < Xn < 15.6) = P

(
14.4− µ

σ√
n

<
Xn − µ

σ√
n

<
15.6− µ

σ√
n

)
≈ P (

14.4− 15
2
5

< Z <
15.6− 15

2
5

= P (−1.5 < Z < 1.5)

= P (Z < 1.5)− P (Z < −1.5)

= P (Z < 1.5)− [1− P (Z < 1.5)]

= 2Φ(1.5)− 1

Practice 29.2. 21 – Problem 2: Xk = # sick days of a worker, {Xk} iid, µ = 10, σ =
2, n = 20, Sn =

∑n
k=1Xk. Denote A = # sick days budgeted by the firm.

P (Sn > A) < 0.2
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Question 29.2. Find A

We have

P

(
Sn − nµ
σ
√
n

>
A− nµ
σ
√
n

)
< 0.2

≈
(
Z >

A− nµ
σ
√
n

)
< 0.2

P (Z > .85) = .1977 < .2

P (Z > .84) = .2005 > .2

Thus,

A− nµ
σ
√
n
≈ .85

A− 20 · 10

σ
√

20
≈ .85

Thus,

A ≈ .85 · 2
√

20 + 200

= 233.65

≈ 234 sick days the firm should budget

Practice 29.3. 21 – Problem 3:

E[Xk] = 30, Var(Xk) = 52

E[Yk] = 50, Var(Yk) = 64

Cov(Xk, Yk) = 14

Zk = # hours a kid watching movies cartoon

= Xk + Yk

Z =
n∑
k=1

Zk = total # hours

P (197 < Z < 2090) =?

We have {Zk} iid

µZk = E[Zk] = E[Xk + Yk]

= 30 + 50 = 80

Var(Zu) = Var(Xu + Yu)

= var Xu + var Yu + 2Cov(Xk, Yk)

= 52 + 64 + 2 · 14

= 144

So, Var(Zu) = 122 = σ2
Zu

. Now, CLT

P

(
. . . <

Z − nµZk
σZu
√
n

< . . .

)
96



Duc Vu (Fall 2020) 30 Lec 28: Dec 11, 2020

§30 Lec 28: Dec 11, 2020

§30.1 Chebyshev’s Inequality & Convergence in
Probabil ity

Theorem 30.1 (Markov’s Inequality)

(Assignment 22, # 1) Given a non-negative RVX(SX = [0,∞)) and a finite nth-moment
for some n,E[Xn] <∞, then for all t > 0

P (X ≥ t) ≤ EXn

tn

Remark 30.2. Markov’s Inequality is only useful when t is large (hence, “total estimate”). If
t is very close to zero,

P (X ≥ t) ≤ E[Xn]

tn
← a large number

Proof. (Of theorem) Cont. RV

E[Xn] =

∫ ∞
0

xnf(x) dx

=

∫ t

0
+

∫ ∞
t

xnf(x) dx

≥
∫ ∞
t

xnf(x) dx

x ≥ t for x ∈ [t,∞)

≥
∫ ∞
t

tnf(x) dx

= tn
∫ ∞
t

f(x) dx

= tnP (X ≥ t)

Thus,
E[Xn]

tn
≥ P (X ≥ t)
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Discrete RV:

E[Xn] =
∑
x>0

xnp(x), p(x) is the pmf

=
∑

0<x<t

+
∑
x≥t

xnp(x)

≥
∑
x≥t

xnp(x)

≥
∑
x≥t

tnp(x)

= tn
∑
x≥t

p(x)

= tnP (X ≥ t)

Thus,. . .

Corollary 30.3 (Chebyshev’s Inequality)

If X is a RV with mean µ and finite variance σ2, then for all k ≥ 1,

P (|X − µ| > kσ) ≤ 1

k2

Note: If k < 1, then the estimate is trivial.

Proof. The RV |X−µ|
σ is non-negative and the second momemnt

E

[
|X − µ|

σ

]2

=
E|X − µ|2

σ2
= 1

By Markov’s Inequality, (n = 2)

P

(
|X − µ|

σ
≥ k

)
≤
E
(
|X−µ|
σ

)2

k2
=

1

k2

Remark 30.4. Chebyshev’s Inequality can also be stated as follows, for k ≥ 1,

P (|x− µ| ≥ k) ≤ σ2

k2

Replacing k by k
σ in the original Chebyshev:

P (|x− µ| ≥ k

σ
· σ) ≤ 1(

k
σ

)2
or

P (|x− µ| ≥ k) ≤ σ2

k2
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Practice 30.1. 22 – Problem 2: µ = 33, σ2 = 16, σ = 4
b)

P (|x− µ| ≥ k) ≤ σ2

k2

P (|x− 33| ≥ 14) ≤ 16

142
=

4

49

“In the final, the final answer must a simplified fraction”.
a)

P (23 < X < 43) = P (23− 33 < X − 33 < 43− 33)

= P (|X − 33| < 10)

= 1− P (|X − 33| ≥ 10)

≥ 1− 4

25
=

21

25

Definition 30.5 (Convergence in Probability) — Xn → X (in probability) if for all
ε > 0, P (|Xn −X| > ε)→ 0 as n→∞.

Theorem 30.6

Convergence in Probability implies convergence in distribution.

Remark 30.7. The converse is not true in general, i.e., convergence in distribution does not
imply convergence in probability.

Theorem 30.8 (The weak law of Large number)

(Practice 22, # 3) Suppose {Xn} iid with mean µ and variance σ2. Then Xn =∑n
k=1Xk
n

in prob−→ µ ,i.e., for all ε > 0,

P (|xn − µ| > ε)
n→∞−→ 0

Proof. Recall {Xn} iid then E[Xn] = µ, Var Xn = σ2

n . By Chebyshev, for all ε > 0,

P (|xn − µ| > ε) ≤
σ2

n

ε2
=

1

n

σ2

ε2
= 0

as n→∞.
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