

Uniqueness of Smith Normal Form

Let R be a commutative ring. Then the determinant det : $\mathbb{M}_n(R) \to R$ is a map that has the following properties:

(1) det is n-multilinear (or n-linear as a function of the rows (respectively, columns) of matrices in $\mathbb{M}_n(R)$. This means that it is R-linear (i.e., an R-homomorphism) in each of the n entries fixing the others, i.e.,

$$\det(\alpha_1, \dots, r\alpha_i + \alpha'_i, \dots, \alpha_n)$$

$$= r \det(\alpha_1, \dots, \alpha_i, \dots, \alpha_n) + \det(\alpha_1, \dots, \alpha'_i, \dots, \alpha_n)$$

for all r in R, and rows (respectively columns) of matrices A in $\mathbb{M}_n(R)$.

- (2) det is alternating as a function of the rows (respectively, columns) of matrices in $\mathbb{M}_n(R)$, i.e., if A has two identical rows (respectively, columns), then det A = 0. [Note: This implies that the matrix obtained by interchanging two rows (respectively columns) of A has determinant $-\det A$.
- (3) $\det I = 1$

Indeed it can be shown that det : $\mathbb{M}_n(R) \to R$ is the unique function satisfying (1), (2), and (3); and it is given by

$$\det(a_{ij}) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} \cdots a_{n\sigma(n)}$$

Here the sum is computed over all permutations σ of the ordered set of integers $\{1, 2, \ldots, n\}$. A permutation is a bijection of this ordered set, so the value in the *i*th position after the reordering σ is denoted by $\sigma(i)$. For example, for n=3, the original ordered sequence $\{1,2,3\}$ might be reordered by σ to $\{2,3,1\}$, where $\sigma(1)=2$, $\sigma(2)=3$, and $\sigma(3)=1$. The set of all such permutations (also known as the symmetric group on n elements) is denoted by S_n . We define the sign function sgn: $S_n \to \{\pm 1\}$ by sgn (σ) is +1 whenever the reordering given by σ can be achieved by successively interchanging two entries an even number of times, and -1 otherwise. It can be shown that sgn (σ) is independent of how this achieved, i.e., the parity of the number of interchanges to reorder $\{1,\ldots,n\}$ by σ is invariant.

Let A be an $m \times n$ matrix in $R^{m \times n}$ and $1 \le l \le \min\{m, n\}$. An l-order minor of A is a determinant of an $l \times l$ submatrix of A, i.e., a matrix obtained from A be deleting m - l rows and n - l columns of A. The key to proving our uniqueness statement is the following lemma:

LEMMA 1. Suppose that F be a field and A an $m \times n$ matrix in $F[t]^{m \times n}$. Let P and Q be invertible matrices in $GL_m(F[t])$ and $GL_n(F[t])$ respectively. Set B = PAQ. If $1 \le l \le \min\{m, n\}$ and

- (1) if the element a in F[t] is a gcd of all the l-order minors of A, and
- (2) if the element b in F[t] a gcd of all the l-order minors of B, then a = b.

PROOF. Let $P = (p_{ij})$, $A = (a_{ij})$, $Q = (q_{ij})$ and c in F[t] a gcd of all the l-order minors of PA. Then the kith entry of PA is $\sum_j p_{kj} a_{ji}$, so the kth row of PA is $\sum_j p_{kj} (a_{j1} a_{j2} \cdots a_{jn})$ (with the obvious notation). As the determinant is multilinear as a function of the rows,

we have $a \mid c$ in F[t]. As the determinant is multilinear as a function of the columns, an analogous argument shows that $c \mid b$ in F[t], hence $a \mid b$ in F[t]. But we also have $A = P^{-1}BQ^{-1}$, so arguing in the same way, we conclude that we also have $b \mid a$. As both are gcd's a = b.

COROLLARY 2. Let A be an $m \times n$ matrix in $F[t]^{m \times n}$ with B a diagonal matrix, write $B = \operatorname{diag}(d_1, \ldots, d_r, 0, \ldots, 0)$ in $F[t]^{m \times n}$, where $d_1, \ldots, d_r, 0, \ldots$ are the diagonal entries, satisfying $d_1 \mid \cdots \mid d_r$ and $d_r \neq 0$ in F[t] a Smith Normal Form of A. Let

 Δ_l be a gcd of all the l-order minors of A in F[t] for $1 \leq l \leq r$

and $\Delta_0 = 1$. Then

$$\Delta_0 \mid \Delta_1 \mid \cdots \mid \Delta_r \text{ and } d_l = \frac{\Delta_l}{\Delta_{l-1}} \text{ in } F[t] \text{ for all } l > 0.$$

Putting this all together, we obtain the following theorem:

THEOREM 3. Let A be an $m \times n$ matrix in $F[t]^{m \times n}$. Then A is equivalent to a matrix in Smith Normal Form. Moreover, if $\operatorname{diag}(a_1, \ldots, a_r, 0, \ldots, 0)$ and $\operatorname{diag}(b_1, \ldots, b_s, 0, \ldots, 0)$ are two Smith Normal Forms for A, then r = s and $a_i = b_i$ for $1 \le i \le r$. In particular, the sequence of monic polynomials in F[t]

$$a_1 \mid a_2 \mid \cdots \mid a_r$$

completely determine a Smith Normal Form of A with $a_l = \Delta_l/\Delta_{l-1}$ where Δ_l is a gcd of all the l-order minors of A in F[t] for $1 \le l \le r$ and $\Delta_0 = 1$.

The elements $a_1 \mid \cdots \mid a_r$ in the theorem are called the *invariants factors* of A.