
Uniqueness of Smith Normal Form

Let R be a commutative ring. Then the determinant det : Mn(R) → R is a map that has
the following properties:

(1) det is n-multilinear (or n-linear as a function of the rows (respectively, columns) of
matrices in Mn(R). This means that it is R-linear (i.e., an R-homomorphism) in
each of the n entries fixing the others, i.e.,

det(α1, . . ., rαi + α′
i, . . . , αn)

= r det(α1, . . . , αi, . . . , αn) + det(α1, . . . , α
′
i, . . . , αn)

for all r in R, and rows (respectively columns) of matrices A in Mn(R).

(2) det is alternating as a function of the rows (respectively, columns) of matrices in
Mn(R), i.e., if A has two identical rows (respectively, columns), then detA = 0.

[Note: This implies that the matrix obtained by interchanging two rows (respectively
columns) of A has determinant − detA.

(3) det I = 1

Indeed it can be shown that det : Mn(R) → R is the unique function satisfying (1), (2),
and (3); and it is given by

det(aij) =
∑
σ∈Sn

sgn(σ)a1σ(1) · · · anσ(n)

Here the sum is computed over all permutations σ of the ordered set of integers {1, 2, . . . , n}.
A permutation is a bijection of this ordered set, so the value in the ith position after the
reordering σ is denoted by σ(i). For example, for n = 3, the original ordered sequence
{1, 2, 3} might be reordered by σ to {2, 3, 1}, where σ(1) = 2, σ(2) = 3, and σ(3) = 1. The
set of all such permutations (also known as the symmetric group on n elements) is denoted by
Sn. We define the sign function sgn : Sn → {±1} by sgn(σ) is +1 whenever the reordering
given by σ can be achieved by successively interchanging two entries an even number of
times, and −1 otherwise. It can be shown that sgn(σ) is independent of how this achieved,
i.e., the parity of the number of interchanges to reorder {1, . . . , n} by σ is invariant.

Let A be an m × n matrix in Rm×n and 1 ≤ l ≤ min{m,n}. An l-order minor of A is
a determinant of an l × l submatrix of A, i.e., a matrix obtained from A be deleting m − l
rows and n− l columns of A. The key to proving our uniqueness statement is the following
lemma:

Lemma 1. Suppose that F be a field and A an m × n matrix in F [t]m×n. Let P and Q
be invertible matrices in GLm(F [t]) and GLn(F [t]) respectively. Set B = PAQ. If 1 ≤ l ≤
min{m,n} and

(1) if the element a in F [t] is a gcd of all the l-order minors of A, and
(2) if the element b in F [t] a gcd of all the l-order minors of B,

then a = b.

Proof. Let P = (pij), A = (aij) , Q = (qij) and c in F [t] a gcd of all the l-order minors
of PA. Then the kith entry of PA is

∑
j pkjaji, so the kth row of PA is

∑
j pkj(aj1 aj2 · · · ajn)

(with the obvious notation). As the determinant is multilinear as a function of the rows,

1



we have a | c in F [t]. As the determinant is multilinear as a function of the columns,
an analogous argument shows that c | b in F [t], hence a | b in F [t]. But we also have
A = P−1BQ−1, so arguing in the same way, we conclude that we also have b | a. As both
are gcd’s a = b. �

Corollary 2. Let A be an m×n matrix in F [t]m×n with B a diagonal matrix, write B =
diag(d1, . . . , dr, 0 . . . , 0) in F [t]m×n, where d1, . . . dr, 0, . . . are the diagonal entries, satisfying
d1 | · · · | dr and dr ̸= 0 in F [t] a Smith Normal Form of A. Let

∆l be a gcd of all the l-order minors of A in F [t] for 1 ≤ l ≤ r

and ∆0 = 1. Then

∆0 | ∆1 | · · · | ∆r and dl =
∆l

∆l−1

in F [t] for all l > 0.

Putting this all together, we obtain the following theorem:

Theorem 3. Let A be an m×n matrix in F [t]m×n. Then A is equivalent to a matrix in
Smith Normal Form. Moreover, if diag(a1, . . . , ar, 0, . . . , 0) and diag(b1, . . . , bs, 0, . . . , 0) are
two Smith Normal Forms for A, then r = s and ai = bi for 1 ≤ i ≤ r. In particular, the
sequence of monic polynomials in F [t]

a1 | a2 | · · · | ar
completely determine a Smith Normal Form of A with al = ∆l/∆l−1 where ∆l is a gcd of all
the l-order minors of A in F [t] for 1 ≤ l ≤ r and ∆0 = 1.

The elements a1 | · · · | ar in the theorem are called the invariants factors of A.
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